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Foreword

In early 2004, DTrace remained nascent; while Mike Shapiro, Adam Leventhal,
and I had completed our initial implementation in late 2003, it still had substan-
tial gaps (for example, we had not yet completed user-level instrumentation on
x86), many missing providers, and many features yet to be discovered. In part
because we were still finishing it, we had only just started to publicly describe
what we had done—and DTrace remained almost entirely unknown outside of
Sun. Around this time, I stumbled on an obscure little Solaris-based tool called
psio that used the operating system’s awkward pre-DTrace instrumentation facil-
ity, TNF, to determine the top I/O-inducing processes. It must be noted that TNF—
which arcanely stands for Trace Normal Form—is a baroque, brittle, pedantic
framework notable only for painfully yielding a modicum of system observability
where there was previously none; writing a tool to interpret TNF in this way is a
task of Herculean proportions. Seeing this TNF-based tool, I knew that its
author—an Australian named Brendan Gregg—must be a kindred spirit: gritty,
persistent, and hell-bent on shining a light into the inky black of the system’s
depths. Given that his TNF contortionist act would be reduced to nearly a one-
liner in DTrace, it was a Promethean pleasure to introduce Brendan to DTrace:

 From: Bryan Cantrill <bmc@eng.sun.com>
 To: Brendan Gregg <brendan.gregg@tpg.com.au>
 Subject: psio and DTrace
 Date: Fri, 9 Jan 2004 13:35:41 -0800 (PST)
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 Brendan,

 A colleague brought your "psio" to my attention -- very interesting.
 Have you heard about DTrace, a new facility for dynamic instrumentation
 in Solaris 10? As you will quickly see, there's a _lot_ you can do with
 DTrace -- much more than one could ever do with TNF.
 ...

With Brendan’s cordial reply, it was clear that although he was very interested
in exploring DTrace, he (naturally) hadn’t had much of an opportunity to really
use it. And perhaps, dear reader, this describes you, too: someone who has seen
DTrace demonstrated or perhaps used it a bit and, while understanding its poten-
tial value, has perhaps never actually used it to solve a real problem. It should
come as no surprise that one’s disposition changes when DTrace is used not to make
some academic point about the system but rather to save one’s own bacon. After
this watershed moment—which we came to (rather inarticulately) call the DTrace-
just-saved-my-butt moment—DTrace is viewed not as merely interesting but as
essential, and one starts to reach for it ever earlier in the diagnostic process.

Given his aptitude and desire for understanding the system, it should come as
no surprise that when I heard back from Brendan again some two months later, he
was long past his moment, having already developed a DTrace dependency:

 From: Brendan Gregg <brendan.gregg@tpg.com.au>
 To: Bryan Cantrill <bmc@eng.sun.com>
 Subject: Re: psio and DTrace
 Date: Mon, 29 Mar 2004 00:43:27 +1000 (EST)

 G'Day Bryan,

 DTrace is a superb tool. I'm already somewhat dependent on using it.
 So far I've rewritten my "psio" tool to use DTrace (now it is more
 robust and can access more details) and an iosnoop.d tool.
 ...

Brendan went on to an exhaustive list of what he liked and didn’t like in
DTrace. As one of our first major users outside of Sun, this feedback was tremen-
dously valuable to us and very much shaped the evolution of DTrace.

And Brendan became not only one of the earliest users and foremost experts on
DTrace but also a key contributor: Brendan’s collection of scripts—the DTrace-
Toolkit—became an essential factor in DTrace’s adoption (and may well be how
you yourself came to learn about DTrace). Indeed, one of the DTraceToolkit scripts,
shellsnoop, remains a personal favorite of mine: It uses the syscall provider to
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display the contents of every read and write executed by a shell. In the early days
of DTrace, whenever anyone asked whether there were security implications to
running DTrace, I used to love to demo this bad boy; there’s nothing like seeing
someone else’s password come across in clear text to wake up an audience!

Given not only Brendan’s essential role in DTrace but also his gift for clearly
explaining complicated systems, it is entirely fitting that he is the author of the
volume now in your hands. And given the degree to which proficient use of DTrace
requires mastery not only of DTrace itself but of the larger system around it, it is
further appropriate that Brendan teamed up with Jim Mauro of Solaris Internals
(McDougall and Mauro, 2006) fame. Together, Brendan and Jim are bringing you
not just a book about DTrace but a book about using it in the wild, on real prob-
lems and actual systems. That is, this book isn’t about dazzling you with what
DTrace can do; it is about getting you closer to that moment when it is your butt
that DTrace saves. So, enjoy the book, and remember: DTrace is a workhorse, not a
show horse. Don’t just read this book; put it to work and use it!

—Bryan Cantrill
Piedmont, California
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Preface

“[expletive deleted] it’s like they saw inside my head and gave me The One True Tool.”

—A Slashdotter, in a post referring to DTrace

“With DTrace, I can walk into a room of hardened technologists and
get them giggling.”

—Bryan Cantrill, father of DTrace

Welcome to Oracle Solaris Dynamic Tracing—DTrace! It’s been more than five
years since DTrace made its first appearance in Solaris 10 3/05, and it has been
just amazing to see how it has completely changed the rules of understanding sys-
tems and the applications they run. The DTrace technical community continues to
grow, embracing the technology, pushing DTrace in every possible direction, and
sharing new and innovative methods for using DTrace to diagnose myriad system
and application problems. Our personal experience with DTrace has been an
adventure in learning, helping customers solve problems faster, and improving our
internal engineering efforts to analyze systems and find ways to make our technol-
ogy better and faster.

The opening quotes illustrate just some of the reactions we have seen when
users experience how DTrace empowers them to observe, analyze, debug, and
understand their systems and workloads. The community acceptance and adop-
tion of DTrace has been enormously gratifying to watch and participate in. We
have seen DTrace ported to other operating systems: Mac OS X and FreeBSD both
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ship with DTrace. We see tools emerging that leverage the power of DTrace, most
of which are being developed by community members. And of course feedback and
comments from users over the years have driven continued refinements and new
features in DTrace.

About This Book

This book is all about DTrace, with the emphasis on using DTrace to understand,
observe, and diagnose systems and applications. A deep understanding of the
details of how DTrace works is not necessary to using DTrace to diagnose and
solve problems; thus, the book covers using DTrace on systems and applications,
with command-line examples and a great many D scripts. Depending on your level
of experience, we intend the book’s organization to facilitate its use as a reference
guide, allowing you to refer to specific chapters when diagnosing a particular area
of the system or application.

This is not a generic performance and tools book. That is, many tools are avail-
able for doing performance analysis, observing the system and applications, debug-
ging, and tuning. These tools exist in various places—bundled with the operating
system, part of the application development environment, downloadable tools, and
so on. It is probable that other tools and utilities will be part of your efforts involv-
ing DTrace (for example, using system stat tools to get a big-picture view of sys-
tem resource utilization). Throughout this book, you’ll see examples of some of
these tools being used as they apply to the subject at hand and aid in highlighting
a specific point, and coverage of the utility will include only what is necessary for
clarity.

Our approach in writing this book was that DTrace is best learned by example.
This approach has several benefits. The volume of DTrace scripts and one-liners
included in the text gives readers a chance to begin making effective and practical
use of DTrace immediately. The examples and scripts in the book were inspired by
the DTraceToolkit scripts, originally created by Brendan Gregg to meet his own
needs and experiences analyzing system problems. The scripts in this book encap-
sulate those experiences but also introduce analysis of different topics in a focused
and easy-to-follow manner, to aid learning. They generate answers to real and use-
ful questions and serve as a starting point for building more complex scripts.
Rather than an arbitrary collection of programs intended to highlight a poten-
tially interesting feature of DTrace or the underlying system, the scripts and one-
liners are all based on practical requirements, providing insight about the system
under observation. Explanations are provided throughout that discuss the DTrace
used, as well as the output generated.



ptg

Preface xxvii

DTrace was first introduced in Oracle Solaris 10 3/05 (the first release of Solaris
10) in March 2005. It is available in all Solaris 10 releases, as well as OpenSolaris,
and has been ported to Mac OS X 10.5 (Leopard) and FreeBSD 7.1. Although much
of DTrace is operating system–agnostic, there are differences, such as newer DTrace
features that are not yet available everywhere.1 Using DTrace to trace operating
system–specific functions, especially unstable interfaces within the kernel, will of
course be very different across the different operating systems (although the same
methodologies will be applicable to all). These differences are discussed through-
out the book as appropriate. The focus of the book is Oracle Solaris, with key
DTrace scripts provided for Mac OS X and FreeBSD. Readers on those operating
systems are encouraged to examine the Solaris-specific examples, which demon-
strate principles of using DTrace and often only require minor changes to execute
elsewhere. Scripts that have been ported to these other operating systems will be
available on the DTrace book Web site, www.dtracebook.com.

How This Book Is Structured

This book is organized in three parts, each combining a logical group of chapters
related to a specific area of DTrace or subject matter.

Part I, Introduction, is introductory text, providing an overview of DTrace and
its features in Chapter 1, Introduction to DTrace, and a quick tour of the D Lan-
guage in Chapter 2, D Language. The information contained in these chapters is
intended to support the material in the remaining chapters but does not necessar-
ily replace the more detailed language reference available in the online, wiki-based
DTrace documentation (see “Supplemental Material and References”).

Part II, Using DTrace, gets you started using DTrace hands-on. Chapter 3, Sys-
tem View, provides an introduction to the general topic of system performance,
observability, and debugging—the art of system forensics. Old hands and those
who have read McDougall, Mauro, and Gregg (2006) may choose to pass over this
chapter, but a holistic view of system and software behavior is as necessary to
effective use of DTrace as knowledge of the language syntax. The next several
chapters deal with functional areas of the operating system in detail: the I/O
path—Chapter 4, Disk I/O, and Chapter 5, File Systems—is followed by Chapter 6,
Network Lower-Level Protocols, and Chapter 7, Application-Level Protocols, on the
network protocols. A change of direction occurs at Chapter 8, Languages, where
application-level concerns become the focus. Chapter 8 itself covers programming

1. This will improve after publication of this book, because other operating systems
include the newer features.

www.dtracebook.com
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languages and DTrace’s role in the development process. Chapter 9, Applications,
deals with the analysis of applications. Databases are dealt with specifically in
Chapter 10, Databases. 

Part III, Additional User Topics, continues the “using DTrace” theme, covering
using DTrace in a security context (Chapter 11, Security), analyzing the kernel
(Chapter 12, Kernel), tools built on top of DTrace (Chapter 13, Tools), and some
tips and tricks for all users (Chapter 14, Tips and Tricks).

Each chapter follows a broadly similar format of discussion, strategy sugges-
tions, checklists, and example programs. Functional diagrams are also included in
the book to guide the reader to use DTrace effectively and quickly.

For further sources of information, see the online “Supplemental Material and
References” section, as well as the annotated bibliography of textbook and online
material provided at the end of the book.

Intended Audience

DTrace was designed for use by technical staff across a variety of different roles,
skills, experience, and knowledge levels. That said, it is a software analysis and
debugging tool, and any substantial use requires writing scripts in D. D is a struc-
tured language very similar to C, and users of that language can quickly take
advantage of that familiarity. It is assumed that the reader will have some knowl-
edge of operating system and software concepts and some programming back-
ground in scripting languages (Perl, shell, and so on) and/or languages (C, C++,
and so on).

In addition, you should be familiar with the architecture of the platform you’re
using DTrace on. Textbooks on Solaris, FreeBSD, and Mac OS X are detailed in the
bibliography.

To minimize the level of programming skill required, we have provided many
DTrace scripts that you can use immediately without needing to write code. These
also help you learn how to write your own DTrace scripts, by providing example
solutions that are also starting points for customization. The DTraceToolkit2 is a
popular collection of such DTrace scripts that has been serving this role to date,
created and mostly written by the primary author of this book. Building upon that
success, we have created a book that is (we hope) the most comprehensive source
for DTrace script examples.3

2. This is linked on www.brendangregg.com/dtrace.html and www.dtracebook.com.

3. The DTraceToolkit now needs updating to catch up!

www.brendangregg.com/dtrace.html
www.dtracebook.com
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This book will serve as a valuable reference for anyone who has an interest in or
need to use DTrace, whether it is a necessary part of your day job, a student study-
ing operating systems, or a casual user interested in figuring out why the hard
drive on your personal computer is clattering away doing disk I/Os.

Specific audiences for this book include the following.

Systems administrators, database administrators, performance ana-
lysts, and support staff responsible for the care and feeding of their pro-
duction systems can use this book as a guide to diagnose performance and 
pathological behavior problems, understand capacity and resource usage, and 
work with developers and software providers to troubleshoot application 
issues and optimize system performance.

Application developers can use DTrace for debugging applications and uti-
lizing DTrace’s User Statically Defined Tracing (USDT) for inserting DTrace 
probes into their code. 

Kernel developers can use DTrace for debugging kernel modules.

Students studying operating systems and application software can use 
DTrace because the observability that it provides makes it a perfect tool to 
supplement the learning process. Also, there’s the implementation of DTrace 
itself. DTrace is among the most well-thought-out and well-designed soft-
ware systems ever created, incorporating brilliantly crafted solutions to the 
extremely complex problems inherent in building a dynamic instrumentation 
framework. Studying the DTrace design and source code serves as a world-
class example of software engineering and computer science.

Note that there is a minimum knowledge level assumed on the part of the
reader for the topics covered, allowing this book to focus on the application of
DTrace for those topics.

Supplemental Material and References

Readers are encouraged to visit the Web site for this book: www.dtracebook.com.
All the scripts contained in the book, as well as reader feedback and comments,

book errata, and subsequent material that didn’t make the publication deadline,
can be downloaded from the site.

Brendan Gregg’s DTraceToolkit is free to download and contains more than 200
scripts covering every everything from disks and networks to languages and the
kernel. Some of these are used in this text: http://hub.opensolaris.org/bin/view/
Community+Group+dtrace/dtracetoolkit.

www.dtracebook.com
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
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The DTrace online documentation should be referenced as needed: http://
wikis.sun.com/display/DTrace/Documentation.

The OpenSolaris DTrace Community site contains links and information,
including projects and additional sources for scripts: http://hub.opensolaris.org/
bin/view/Community+Group+dtrace/.

The following texts (found in the bibliography) can be referenced to supplement
DTrace analysis and used as learning tools:

McDougall and Mauro, 2006

McDougall, Mauro, and Gregg, 2006

Gove, 2007

Singh, 2006 

Neville-Neil and McKusick, 2004

http://wikis.sun.com/display/DTrace/Documentation
http://wikis.sun.com/display/DTrace/Documentation
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/
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1
Introduction to DTrace

This chapter introduces you to DTrace.

What Is DTrace?

DTrace1 is an observability technology that allows you to answer countless ques-
tions about how systems and applications are behaving in development and in pro-
duction. DTrace empowers users in ways not previously possible by enabling the
dynamic instrumentation of unmodified kernel and user software. 

Created by Bryan Cantrill, Mike Shapiro, and Adam Leventhal, DTrace was
first introduced in Solaris 10 3/05 (the first release of Solaris 10) in March 2005. It
is now available in all Solaris 10 releases, as well as OpenSolaris, Mac OS X begin-
ning with release 10.5 (Leopard), and FreeBSD beginning with release 7.1.

Why Do You Need It?

Understanding what is going on in a software system has been a challenge for as
long as such systems have existed. Tools and instrumentation frameworks were
already available, such as language-specific debuggers and profiling tools, operat-

1. DTrace is short for Oracle Solaris Dynamic Tracing Facility.
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ing system–specific utilities built on precompiled instrumentation points, and so
on. But these tools suffered drawbacks: They added a performance burden to the
running system, required special recompiled versions of the software to function,
needed several different tools to give a complete view of system behavior, limited
available instrumentation points and data, and required significant postprocess-
ing to create meaningful information from the gathered data.

DTrace solves all these problems, but it also does much more; it revolutionizes
software instrumentation. It is so powerful that we’re still learning the full extent
of its potential uses, extending its capabilities with new features and functionality,
and devising new and innovative ways to leverage the power and flexibility it
brings.

Capabilities

DTrace’s broad range of capabilities make it useful for troubleshooting any soft-
ware function, including entry arguments and return values. This can be done in
production, without restarting or modifying applications or operating systems. You
can make detailed observations of devices, such as disks or network interfaces, and
explore the use of core resources such as CPU and memory. DTrace gives you
insight into where the kernel is spending time and how applications are function-
ing. It is particularly useful in performance analysis and capacity-planning tasks
such as finding latencies and understanding how resources are being used.

Figure 1-1 shows the software stack components found in a typical production
workload. The number of applications, languages, and so on, available today is
enormous, as is the number of tools and methods available for system analysis.

Given this problem space, it is interesting to compare the comprehensive cover-
age DTrace provides to the cohort of other available analysis tools. Consider the
tool sets required to examine every layer in Figure 1-1, as shown in Table 1-1 for
Oracle Solaris.

Different layers of the software stack typically require different tools and utili-
ties for analysis and debugging, none of which provides a complete system view.
The bundled system tools fall into one of several categories:

Process/thread centric: Examining process statistics from tools including 
prstat(1), ps(1), and top(1)

System resource centric: System tools to examine resource usage by com-
ponent, including vmstat(1), mpstat(1), and iostat(1)

Traditional debuggers: Used to inspect the execution of code, such as dbx,
mdb(1), and Oracle Sun Studio
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Many of these tools can provide useful starting points for analysis, which can
then be explored in depth with DTrace. Or, you can use DTrace from the outset to
examine the entire software stack from one consistent tool.

Although it is a system-level feature, DTrace is useful well beyond the operat-
ing system. It provides the application programmer with observability across the
entire OS and application stack, giving insight into the data-path traffic and net-
work activity generated by applications, as well as the internal runtime behaviors
of applications themselves. It can be used both to step through execution logic and
to profile behavior in a statistical manner. 

Figure 1-1 The software stack

Table 1-1 Software Stack Tools

Layer Layer Examples Previous Analysis
DTrace 
Visibility

Dynamic
languages

Java, Ruby, PHP, and 
so on

Debuggers Yes, with 
providers

Native code Compiled C/C++ code Debuggers, truss Yes

Libraries /usr/lib/*, compiled 
code

apptrace, sotruss, truss Yes

System calls man -s 2, read(2),
and so on

truss Yes

Kernel Proc/threads, FS, VM, 
and so on

prex; tnf, lockstat, mdb, adb Yes

Hardware Disk HBA, NIC, CPU,
and so on

cpustat, kstats, and so on Indirectly, 
yes
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Dynamic and Static Probes

Previous tracing tools used static instrumentation, which adversely affects perfor-
mance even when not enabled. DTrace supports both static and dynamic instru-
mentation. That is, the DTrace framework is designed to enable and disable
instrumentation points in unmodified software dynamically, on the fly, while the
system and applications are running. DTrace also provides a facility for develop-
ers to insert custom instrumentation points in their code (static tracing).

DTrace can insert instrumentation points called probes dynamically into run-
ning software. A probe can trace execution flow through code, collecting relevant
data along the way. When a probe has been enabled and the code where the probe
has been inserted executes, the probe will fire, showing that it hit the instru-
mented probe point in the code flow.

DTrace supports static probes by including instruction no-operations (NOPs) at
the desired probe points in compiled software, which become the real instructions
when in use. The disabled probe effect because of the addition of NOPs is near-zero.

What happens when the probe fires is entirely up to you. You can collect and
aggregate data, take time stamps, collect stack traces, and so on. These choices
will be explored extensively throughout this book. Once the desired actions have
been taken, the code resumes executing normally: The software behaves just as if
the probe were not present. Dynamically generated probes alter code only when
they are in use; when disabled, their effect on performance is zero. 

Among the many benefits of DTrace’s innovative design are CPU and memory
utilization—the framework makes minimal demand on CPU cycles and memory.
DTrace includes a logical predicate mechanism that allows actions to be taken only
when user-specified conditions are met, pruning unwanted data at the source. DTrace
thus avoids retaining, copying, and storing data that will ultimately be discarded.

DTrace Features

DTrace features2 include the following.

Dynamic instrumentation: Performance will always take a hit with static 
instrumentation, even when probes are disabled. To achieve the zero probe 
effect required for production systems, DTrace can also use dynamic instru-
mentation. When DTrace is not in use, there is absolutely no effect on system 
performance. 

2. This feature list is from Dynamic Instrumentation of Production Systems (Cantrill, Shapiro,
and Leventhal, 2005).
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Unified instrumentation: Beyond requiring different tools for different 
aspects of the operating system, earlier approaches also required different 
tools for the operating system vs. applications. DTrace can dynamically 
instrument both user- and kernel-level software and can do so in a unified
manner whereby both data and control flow can be followed across the user/
kernel boundary.

Arbitrary-context kernel instrumentation: DTrace can instrument virtu-
ally all of the kernel, including delicate subsystems such as the scheduler and 
synchronization facilities. 

Data integrity: DTrace reports any errors that prevent trace data from 
being recorded. If there are no errors, DTrace guarantees data integrity; 
recorded data cannot be silently corrupted or lost.

Arbitrary actions: Because it is dynamic, the actions taken by DTrace at 
any given point of instrumentation are not defined or limited a priori. You 
can enable any probe with an arbitrary set of actions. 

Safety: DTrace guarantees absolute safety of user-defined actions: Runtime 
errors such as illegal memory accesses are caught and reported. Indeed, 
safety was central to the design of DTrace from its inception, given that the 
target environment for using DTrace are production systems.3 In addition to 
runtime checking of user-defined actions, DTrace includes a watchdog timer, 
verifying that the target system is reasonably alive and responsive, and 
includes other safety mechanisms. 

Predicates: A logical predicate mechanism allows actions to be taken only 
when user-specified conditions are met. Unwanted data is discarded at the 
source—never retained, copied, or stored.

A high-level control language: DTrace is equipped with an expressive C-
like scripting language known as D. It supports all ANSI C operators, which 
may be familiar to you and reduce your learning curve, and allows access to 
the kernel’s variables and native types. D offers user-defined variables, 
including global variables, thread-local variables, and associative arrays, and 
it supports pointer dereferencing. This, coupled with the runtime safety 
mechanisms of DTrace, means that structure chains can be safely traversed 
in a predicate or action.

A scalable mechanism for aggregating data: Data retention can be fur-
ther minimized by statistical aggregation. This coalesces data as it is gener-
ated, reducing the amount that percolates through the framework by a factor 

3. Of course, DTrace can be used across the entire system’s spectrum—development, QA, test,
and so on.



ptg

6 Chapter 1 � Introduction to DTrace

of the number of data points. So, instead of handing a large quantity of data 
to user-land software for summarization, DTrace can perform certain summa-
ries in the kernel.

Speculative tracing: DTrace has a mechanism for speculatively tracing 
data, deferring the decision to commit or discard the data to a later time. This 
eliminates the need for most postprocessing when exploring sporadic aber-
rant behavior, such as intermittent error events.

Heterogeneous instrumentation: Where tracing frameworks have histori-
cally been designed around a single instrumentation methodology, DTrace is 
extensible to new instrumentation problems and their solutions. In DTrace, 
the instrumentation providers are formally separated from the probe process-
ing framework by a well-defined API, allowing fresh dynamic instrumenta-
tion technologies to plug in to and exploit the common framework.

Scalable architecture: DTrace allows for many tens of thousands of instru-
mentation points (even the smallest systems typically have on the order of 
30,000 such points) and provides primitives for subsets of probes to be effi-
ciently selected and enabled.

Virtualized consumers: Everything about DTrace is virtualized per con-
sumer: Multiple consumers can enable the same probe in different ways, and 
a single consumer can enable a single probe in different ways. There is no 
limit on the number of concurrent DTrace consumers.

Privileges: DTrace is secure. By default, only the root user (system adminis-
trator) has the privileges required to use DTrace. In Solaris, the Process 
Rights facility can be configured to allow DTrace to be used by nonroot users. 
This is covered in more detail in Chapter 11, Security.

In this chapter, we provide a jump-start into DTrace, with example one-liners
and enough coverage of the underlying architecture and terminology to get you
going.

A First Look

DTrace has been described as a tool that “allows you to ask arbitrary questions
about what the system is doing, and get answers.”4 This section provides examples
of DTrace fulfilling that promise and demonstrating its expressive power.

4. This often-used phrase to describe DTrace was first used by Bryan Cantrill, the coinventor of
DTrace.
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Consider getting beyond basic disk I/O statistics that provide reads and writes
per second on a per-device basis (such as iostat(1M) output) to something much
more meaningful. How about knowing which files are being read and which pro-
cesses are reading them? Such information is extremely helpful in understanding
your application and workload but near impossible to get on most operating sys-
tems. With DTrace, however, it is trivially easy. Here it is traced at the file system
level so that all I/O can be seen:

We use the DTrace command (dtrace(1M)) to enable a probe at the entry point
of the read(2) system call. A filter, in / /, is used to skip tracing system calls by
dtrace itself. The action taken, in { }, counts the number of reads by process
name and path name, derived using DTrace variables.

dtrace(1M) reported that we matched one probe, and the DTrace kernel sub-
system gathered the requested data until the command was terminated using Ctrl-C.
The output shows the process name, filename, and number of reads, in ascending
order.

You can see that we are able to observe a typical workload component (file sys-
tem I/O) in a way that has real meaning to us in terms of the running application
(processes and filenames), by running a relatively short DTrace command.

As another example, here we use DTrace to observe what happens when a very
common system command, man(1), is executed on Solaris. In this example, we use
man ls.

opensolaris# dtrace -n 'syscall::read:entry /execname != "dtrace"/ {
      @reads[execname, fds[arg0].fi_pathname] = count(); }' 
dtrace: description 'syscall::read:entry ' matched 1 probe 
^C
bash            /proc/1709/psinfo                   1 
loader          /zp/space/f2                  1 
nscd            /etc/user_attr                  1 
bash            /export/home/mauroj/.bash_history                2 
loader          /zp/space/f3                  2 
nscd            /etc/group                   2 
su  /etc/default/su                     8 
su              /devices/pseudo/sy@0:tty                 9 
bash            /dev/pts/5                  66 
Xorg            /devices/pseudo/conskbd@0:kbd              152 
gnome-terminal  /devices/pseudo/clone@0:ptm             254 

Script read-syscall.d

opensolaris# dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
dtrace: description 'exec-success ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0  24953 exec_common:exec-success   man ls
  0  24953         exec_common:exec-success   neqn /usr/share/lib/pub/eqnchar -
  0  24953 exec_common:exec-success   col -x

continues
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The DTrace probe enabled is proc:::exec-success5, a probe that fires when
one of the exec(2) family of system calls successfully loads a new process image—
a normal part of process creation. The user-defined action when the probe fires is
to execute the DTrace trace() function to print the argument list of the current
process, if available.6 The first four columns of output (starting at the left) consist
of the information DTrace provides by default whenever a probe fires. We see the
CPU the probe fired on, the probe ID, and part of the probe name. The last column
is the output generated from our trace() function, which is the argument list of
the process.

Starting at the top line of the output, we see man ls, followed by the typical
series of exec’d commands executed to format and display a man page (neqn, col,
sh, less, sh, tbl, nroff, sh, and lastly mv). Here again we see how the observ-
ability that DTrace probes provide, which allows us to understand all aspects of
the work our systems actually do, whether we’re looking at the execution of a com-
mon command or getting a systemwide view of disk I/O activity. Consider how dif-
ficult it would be to do this with earlier tools!

Overview

In this section, we provide an overview of the various components that make up
DTrace. Table 1-2 is a glossary of key DTrace terms; there is also a full glossary
toward the end of this book.

  0  24953  exec_common:exec-success  sh -c less -siM /tmp/mp1RaGim
  0  24953  exec_common:exec-success  less -siM /tmp/mp1RaGim
  1  24953         exec_common:exec-success   sh -c cd /usr/man; 
tbl /usr/man/man1/ls.1 |neqn /usr/share/lib/pub/eqnchar - |n
  1  24953 exec_common:exec-success tbl /usr/man/man1/ls.1
  1  24953         exec_common:exec-success  nroff -u0 -Tlp -man -
  1  24953    exec_common:exec-success   sh -c trap '' 1 15; 
/usr/bin/mv -f /tmp/mp1RaGim /usr/man/cat1/ls.1 2> 
/dev/nul
 1  24953         exec_common:exec-success  /usr/bin/mv -f 
/tmp/mp1RaGim /usr/man/cat1/ls.1

Script chpt1_exec.d

5. On FreeBSD, this probe was proc:::exec_success and is now being updated to proc:::
exec-success.

6. The full argument list is not currently shown on Mac OS X and FreeBSD at the time of writing
this book. (If you are a developer and would like to help fix this, the starting point is to grep for
pr_psargs in /usr/lib/dtrace/darwin.d for Mac OS X, and /usr/lib/dtrace/psinfo.d
on FreeBSD; they need to translate the arg string from the kernel.)
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Consumers

There are currently four bundled commands in Solaris categorized as DTrace con-
sumers, meaning they utilize the DTrace framework by calling into the routines in
the DTrace library. dtrace(1M) is the general-use DTrace consumer, allowing for
enabling probes and specifying predicates and actions to take when probes fire.
lockstat(1M) is a utility for collecting statistics on kernel locks (mutual exclu-
sion—or mutex—locks and reader/writer locks) and for generating kernel profiles.7

plockstat(1M) provides statistics on user-level mutex locks and reader/writer
locks. intrstat(1M) provides statistics on device interrupts.

Table 1-2 DTrace Terms

Term Definition

D language This is the defined set of terms, syntax, semantics, and functions for using 
DTrace. Note that using DTrace either from the command line or by 
running a script equates to the execution of a D program written in the 
D language.

Consumer This is a user-mode program that calls into the underlying DTrace 
framework.

Provider Part of the DTrace framework, providers manage probes associated with a 
specific subsystem.

Probe This is a user-enabled point of instrumentation.

Predicate This is a user-defined conditional statement evaluated (if present) when 
probes fire that enables data capture only if a specific condition or set of 
conditions is true.

Clause This is the user-defined actions to take when a probe fires.

Variable As with other programming languages, a variable in DTrace provides 
storage for a particular type of data object. DTrace supports user-defined 
variables, as well as a rich set of built-in variables.

Aggregation This is a variable type and set of related functions that provide for data 
coalescing and representation.

Function This is any one of many DTrace functions that can be called as part of a 
user-defined action in D.

7. lockstat(1M) has been available in Solaris since Solaris 7; in Solaris 10, it was modified to use
the DTrace framework. It is functionally identical to lockstat(1M) in pre–Solaris 10 releases.
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Probes

A probe is a point of instrumentation, typically a specific location in program flow,
although some probes are time-based, as we will discuss later. To list all the probes
available for your use, simply use dtrace(1M) with the -l flag.

The listing shows the probe identifier (ID) for internal use by DTrace, followed
by a probe name of four components. As an introduction to probe terminology (this
is covered again in Chapter 2, D Language), probe names are specified using the
following:

where

provider: Providers are libraries of probes that instrument a specific area of 
the system (for example, sched) or a mode of tracing (for example, fbt). New 
providers are written over time and added to newer releases (for example, ip, 
tcp, perl, python, mysql, and so on).

module: This is the kernel module where the probe is located. For user-land 
probes, it reflects the  shared object library that contains the probe.

function: This is the software function that contains this probe.

name: This is a meaningful name to describe the probe. For example, names 
such as entry and return are probes that fire at the entry and return of the 
corresponding function.

solaris# dtrace -l
   ID   PROVIDER    MODULE               FUNCTION NAME
    1     dtrace           BEGIN
    2     dtrace                        END
    3     dtrace           ERROR
[...]
  972        fbt       physmem  physmem_map_addrs entry
  973        fbt       physmem  physmem_map_addrs return
  974        fbt      physmem   physmem_getpage entry
 2884       proc    genunix              proc_exit exit
 2885       proc    genunix              lwp_exit lwp-exit
 2886       proc    genunix    proc_exit lwp-exit
 2887       proc    genunix   exec_common exec-success
 2888       proc    genunix   exec_common exec-failure
 2889       proc     genunix             exec_common exec
 2890    sysinfo       genunix     exec_common sysexec
 2891   sysevent    genunix   queue_sysevent post
 2892   sysevent    genunix   evch_chpublish post
 2893        sdt     genunix netstack_hold netstack-inc-ref
[...]

provider:module:function:name
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The number of probes available on an operating system will vary based on
loaded kernel modules and available providers for that version. To illustrate this,
we list in the following example probes and counted lines of output on the differ-
ent operating systems. The number reported is the number of currently available
probes plus a header line.

When enabling dynamically generated probes, these counts can become much
larger (hundreds of thousands of probes).

Providers

Providers are libraries of probes. Most exist to provide logical abstractions of com-
plex areas of the system, providing probes with intuitive names and providing use-
ful data related to that probe. They allow you to instrument software without
necessarily needing to study source code or become an expert in an area targeted
for instrumentation.

The core providers available in Solaris 10, OpenSolaris, Mac OS X, and Free-
BSD are as follows:

dtrace: The dtrace provider manages housekeeping probes to define what 
happens when a script BEGINs, ENDs, or ERRORs.

syscall: The syscall provider manages probes at the entry and return points 
for all available system calls—the API by which applications request the ser-
vices of the operating system.

proc: The proc provider manages probes specific to process- and thread-
related events.

profile: The profile provider manages probes used for time-based data 
collection.

Solaris 10 10/08
solaris10# dtrace -l | wc -l
   73742

Mac OS X 10.5.6
macosx# dtrace -l | wc -l
   23378

OpenSolaris 2008.11
opensolaris# dtrace -l | wc -l
   55665

FreeBSD 7.1
freebsd# dtrace -l | wc -l
   33207
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fbt: The fbt provider manages function boundary tracing, managing probes 
at the entry and exit points of almost all kernel functions.

lockstat: The lockstat provider manages probes that cover the operation of 
kernel synchronization primitives.

The proc provider is an example of static instrumentation, because these probe
points have been chosen, instrumented, and built into the kernel. The fbt provider
is an example of dynamic instrumentation; the probes it provides are generated
dynamically from the current kernel version.

Many other providers may or may not be available on your version of operating
system kernel and application software; they are discussed in later chapters of this
book. These include the io provider for disk and back-end device I/O, available on
Solaris 10, OpenSolaris, and Mac OS X. The io provider is a good example of the
role of providers, because it provides user-friendly probes for tracing disk I/O with-
out the user needing to learn and instrument kernel internals. Listing the io pro-
vider probes on Mac OS X, for example, is done using -l to list probes and -P to
specify a provider name:

The io provider gives us a small number of probes with intuitive names. These
names are listed in the NAME column: start fires when a disk I/O request is
started, and done fires when a disk I/O request is completed. Information about
these events is made available via argument variables, which include the size and
offset of the disk I/O. The io provider is described fully in Chapter 4, Disk I/O.

The reference for all DTrace providers is the DTrace Guide,8 which lists the
probes and arguments that each make available. Various providers are also dem-
onstrated throughout this book, and Appendix C, Provider Arguments, lists pro-
vider probes and arguments.

macosx# dtrace -l -P io
   ID   PROVIDER    MODULE               FUNCTION NAME
18501         io   mach_kernel    buf_strategy start
18514         io   mach_kernel             buf_biodone done
18516         io     mach_kernel buf_biowait_callback wait-done
18517         io    mach_kernel       buf_biowait_callback wait-start
18518         io  mach_kernel    buf_biowait wait-done
18519         io  mach_kernel   buf_biowait wait-start

8. This is currently available at http://wikis.sun.com/display/DTrace/Documentation.

http://wikis.sun.com/display/DTrace/Documentation
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Predicates

DTrace provides a facility for collecting data only when a user-defined condition or
set of conditions is true. For example, a specific process name can be targeted for
data collection or when you’re interested only in disk reads (not writes), network
transmits (not receives), specific error conditions, and so on. A predicate is an
optional conditional statement that is evaluated after its associated probes fire. If
the conditions evaluate true, the user-defined action is taken. If the predicate eval-
uates false, no action is taken.

Actions

The action we refer to here is the body of the D program, following the probe
description and optional predicate, where the user defines what to do when a probe
fires. These actions are defined within a probe’s clause. Actions may include col-
lecting data, capturing time stamps, gathering stack traces, and so on. It is
entirely up to you to determine what happens when a probe fires, and if present, a
predicate evaluates true.

Aggregations

DTrace provides the ability to coalesce data at the point of collection using a pre-
defined set of aggregating functions and storing the results of those functions in a
special DTrace variable called an aggregation. Aggregations minimize the amount
of data returned to the consumer and enable presenting the data in an immedi-
ately useful format; no postprocessing is required before analysis can begin.

For example, here we use an aggregation to examine disk I/O size as a distribu-
tion plot:

macosx# dtrace -n 'io:::start { @bytes = quantize(args[0]->b_bcount); }'
dtrace: description 'io:::start ' matched 1 probe
^C

           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@        129
            1024 |              0
            2048 |              0
            4096 |@@@@@@@@@@@@@@@@@@          318
            8192 |@@@@@@@               130
           16384 |@@@@            63
           32768 |@@               35
           65536 |@             18
          131072 |@               13
          262144 |                4
          524288 |                3
         1048576 |               1
         2097152 |                0
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Aggregation variables are prefixed with @ and are populated using aggregating
functions—in this case quantize(), which summarizes data for later printing as
a distribution plot. The previous output shows that the most frequent I/O size
requested was between 4KB and 8KB while this one-liner was tracing.

D Language

The format of a DTrace program is consistent whether you are using DTrace from
the command line or writing D scripts. This is covered in Chapter 2 and summa-
rized here as an introduction.

There are essentially three components to a DTrace invocation:

The probes

An optional predicate

An optional probe clause, containing the actions to take when the probe fires

Here is an example of using dtrace on a command line:

Here are the components as they appear in a D script:

The probe, as described previously, defines the point of instrumentation. More
than one probe can be defined (comma-separated) if the same predicate and action
are desired. Alternatively, multiple probes can be defined with different predicates
and actions. DTrace provides some flexibility in how you specify the probe names;
every probe need not be fully qualified with each of the four fields specified. For
example, you could enable a probe at the entry point of every system call using
this:

# dtrace -n 'probe /predicate/ { actions }'

#!/usr/sbin/dtrace -s
probe
/predicate/
{
      actions
}

# dtrace -n 'syscall:::entry'
dtrace: description 'syscall:::entry' matched 235 probes
CPU     ID            FUNCTION:NAME
  0  79352            ioctl:entry 
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In the previous example code, the function field, which for the syscall pro-
vider is the name of the system call, is left blank in the probe name. DTrace will
treat blank fields as wildcards and enable all probes matching the other fields
defined in the DTrace invocation. In this example, the entry point of every sys-
tem call was enabled. Because a probe clause was not specified, DTrace took the
default action, which is to print the CPU ID of the CPU that executed the code
(causing the probe to fire), the numeric ID of the probe, and the FUNCTION and
NAME fields of the probe.

When included, the probe clause follows the probe name, is enclosed in curly
braces, and contains the user-defined actions to be taken when the probe fires.
Extending the previous example, we can easily modify our D program to frequency
count the name of the system call and the name of the program that executed the
system call, in a simple statement in the probe clause:

This example used an aggregation to perform a frequency count, which was
specified using the count() aggregation function. Aggregations can be indexed
using keys. In this example, the keys were the process name (execname) and func-
tion field (probefunc, which for this provider contains the system call name);
these keys are printed as columns in the output, sorted on the value.

The final structure element to discuss is the predicate. Predicates are condi-
tional statements that get evaluated after the probe fires but before any actions in
the clause are executed. If the expression in the predicate is evaluated as TRUE,
the clause is entered, and the actions in the clause are executed. If the predicate
evaluates FALSE, no action is taken when the probe fires. Predicates add great
power to DTrace, giving users the ability to filter the data collected and returned,
based on specific conditions of interest. For example, here we can ask DTrace to

  0  79352            ioctl:entry 
  0  79490          sysconfig:entry 
  0  79490          sysconfig:entry 
[...]

# dtrace -n 'syscall:::entry { @sc[execname, probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 235 probes
^C
  . . .
  dtgreet         pollsys                20
  java            stat64                 45
  java            pollsys                88
  syslogd         getmsg                 160
  syslogd         pollsys                 160
  dtrace p_online                 256
  syslogd lwp_park                 640
  dtrace          ioctl                1599

Script syscall-1.d
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not capture data when the process executing is dtrace(1M) itself, by adding a
simple predicate to the example:

We added the predicate /execname != "dtrace"/ after the probe. The !=
operator is a relational operator that means not equal. If the name of the process
running on the CPU when the probe fires is not dtrace, the action in the clause is
taken. If the name is dtrace, the predicate evaluates FALSE, and no action is
taken.

DTrace supports a superset of ANSI-C operators that can be used to build com-
plex and powerful expressions, including relational, logical, bitwise, and arithme-
tic operators; this is covered in Chapter 2.

Architecture

Having described the terms and use of DTrace, we will now take a brief look at
how DTrace is structured. Figure 1-2 illustrates the major components of the
DTrace framework.

The DTrace consumers execute in user mode and use the libdtrace.so
library. This library is not a public interface; general-purpose use of DTrace is via
the dtrace(1M) command, as well as lockstat(1M), plockstat(1M), and
intrstat(1M) where available (the last three are not yet available on all operat-
ing systems that have DTrace).

When a D program is executed (script or command line), the program is com-
piled into byte code,9 representing the predicates and actions that can be bound to
probes. The actual code is validated for safety and executed in the kernel in a vir-

# dtrace -n 'syscall:::entry /execname != "dtrace"/ 
{ @sc[execname, probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 235 probes
^C
  . . .
  dtgreet         pollsys                20
  java   stat64                   45
  java            pollsys                 88
  syslogd         getmsg                 160
  syslogd         pollsys                 160
  syslogd lwp_park                 640
  loader          read                2232
Script syscall-2.d

9. This is similar to what happens when a program written in Java is compiled by the Java
compiler.
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tual machine–like environment. That is, part of the kernel DTrace framework
includes an emulated CPU supporting an RISC instruction set.

The internal implementation includes interfaces between the kernel framework
and the providers. Since it is the providers that manage the probes, the frame-
work calls into the providers based on the compiled D program to enable the
requested probes. During the execution of the D program, requested data is col-
lected, buffered, and returned to the requesting consumer. When the D program
terminates, the providers disable the probes, restoring all the instrumented code
paths to their original states.

Summary

DTrace is a revolutionary technology that provides observability up and down the
entire software stack, without requiring code modifications, through the use of
instrumentation points called probes. DTrace providers, a core component of the
framework, manage probes and enhance observability by abstracting complex

Figure 1-2 DTrace architecture
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areas of the system with intuitively named probes and probe arguments that facili-
tate capturing relevant data. The D language and DTrace variables, functions, and
subroutines combined provide a powerful and flexible environment for instrument-
ing and observing systems.

In this chapter, we introduced all aspects of DTrace: architecture, core compo-
nents, and the D language. Examples demonstrated the use of DTrace probes and
some of the available DTrace functions, subroutines, and variables. Throughout
the remainder of this book, we will expand on all the material presented in this
chapter, with an emphasis on DTrace by example.
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2
D Language

The D programming language was inspired by C and awk(1), with built-in sup-
port for variables, strings, and a special data type called aggregations. This chap-
ter summarizes the D programming language syntax in the abstract, as well as
usage of the dtrace(1M) command; its use is extensively demonstrated in the
numerous script examples throughout this book.

The Solaris Dynamic Tracing Guide1 (often called the DTrace Guide) contains
the complete reference for the D language and was released with Solaris 10 on the
Sun Documentation Web site in HTML and PDF format, at more than 400 pages
in length. It was later updated2 and made available as an editable online wiki.3 It
covers all syntax, operators, and functions, as well as demonstrates each of the
language components. As described in the preface, this book is intended as a com-
plementary text to the DTrace Guide, by providing demonstrations of using
DTrace to solve problems and a cookbook of complete scripts.

1. This is part number 817-6223, “Solaris Dynamic Tracing Guide,” currently at http://docs.sun.com/
doc/817-6223.

2. This is part number 819-3620, “Solaris Dynamic Tracing Guide,” currently at http://docs.sun.com/
doc/819-3620.

3. This is currently at http://wikis.sun.com/display/DTrace/Documentation.

http://docs.sun.com/doc/817-6223
http://docs.sun.com/doc/817-6223
http://docs.sun.com/doc/819-3620
http://docs.sun.com/doc/819-3620
http://wikis.sun.com/display/DTrace/Documentation
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This chapter will summarize the D language concisely, in a format inspired by
an original paper for awk.4 For the complete language reference, refer to the
DTrace Guide.

D Language Components

In this section, we provide an overview of the main components of a D program.

Usage

The command

will execute the D program, instrumenting any probes described within it. The
program can be saved to a file and executed using the following:

file.d is a D script, which for ease of identification has a .d extension. By
placing an interpreter line at the top of the script

the file can be made executable (chmod a+x file.d) and run like any other
program:

DTrace requires root (superuser) privileges to execute, unless finer-grained priv-
ileges are supported on the operating system and configured. For some systems,

4. “Awk: A Pattern Scanning and Processing Language (Second Edition),” Alfred V. Aho, Brian W.
Kernighan, Peter J. Weinberger, Unix 7th Edition man pages, 1978. Online at http://plan9.bell-
labs.com/7thEdMan/index.html.

dtrace -n program

dtrace -s file.d

#!/usr/sbin/dtrace -s

./file.d

http://plan9.belllabs.com/7thEdMan/index.html
http://plan9.belllabs.com/7thEdMan/index.html
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the root shell can be used to launch DTrace directly, while for others the sudo(8)
command may be preferable:

Program Structure

A D program is a series of statements of the following form:

When probes fire, the predicate test determines whether to execute the actions
(also called the clause), which are a series of statements. Without the predicate,
the actions are always executed. Without a predicate or an action, a default line of
output is printed to indicate that the probe fired. The only valid combinations are
the following:

The actions may be left blank, but when doing so, the braces are still necessary.

Probe Format

Probes are instrumentation points, described with this format:

where

provider names the provider. Providers are libraries of related probes.

module describes the probe software location; this is either a kernel module 
or a user segment.

sudo ./file.d

probes /predicate/ { actions }
probes /predicate/ { actions }
...

probes
probes { actions }
probes /predicate/ { actions }

provider:module:function:name
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function names the software function that contains the probe.

name is the name of the probe from the provider.

The provider and name fields are terms to describe the probe, whereas the mod-
ule and function fields explain the probe’s software location. For some providers, it
is these software locations that we want to instrument and are specified by the D
programmer; for other providers, these fields are observational and are left
unspecified (blank).

So, the probe description

matches the entry probe from the syscall provider, when the function name is
read. The syscall provider does not make use of the module field.

Predicates

Instead of conditional statements (if/then/else), DTrace has predicates. Predi-
cates evaluate their expression and, if true, execute the action statements that fol-
low in the clause. The expression is written in D, similar to the C language. For
example, the predicate

will execute the action that follows only if the uid variable (current user ID) is
equal to 101.

By not specifying a test

the predicate will check that the contents are nonzero (/pid/ is the same as /pid
!= 0/). These can be combined with Boolean operators, such as logical AND (&&),
which requires both expressions evaluate true for the action to be taken:

syscall::read:entry

/uid == 101/

/pid/

/pid && uid == 101/
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Actions

Actions can be a single statement or multiple statements separated by semicolons:

The final statement may also have a semicolon appended. The statements are
written in D, similar to the C language, and can manipulate variables and call
built-in functions. For example, the action

increments a variable, x, and then prints it out.

Probes

Probes are made available by providers. Commonly available providers include
dtrace,5 for the BEGIN and END probes; profile, for profile and tick probes; and
syscall, for system call entry and return probes. The full probe name is four
fields separated by colons. See the other chapters of this book for more probes and
providers, including Appendix C, Provider Argument Reference.

Wildcards

Wildcards (*) can be used in probe fields to match multiple probes. The field foo*
matches all fields that begin with foo, and *foo* matches all that contain foo.

A field that is only a wildcard can be left blank to match everything. For exam-
ple, to match a probe from any module or function, either of these will work:

{ action one; action two; action three }

{ x++; printf("x is %d", x); }

5. This is a provider that is called dtrace. (DTrace is the technology, and dtrace(1M) is the
command.)

provider:*:*:name
provider:::name
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Blank fields to the left can be left out entirely; so these are equivalent:

To test wildcards, the -l option to dtrace(1M) can be used to list probes. This
example

lists all entry probes from the syscall provider that have a function name begin-
ning with read and for all module names. The probe name is put in single forward
quotes to prevent the shell from attempting to interpret wildcards as shell
metacharacters.

BEGIN and END

The dtrace provider has a BEGIN probe that fires at the start of the program and
an END probe that fires at the end. The BEGIN probe can be used to initialize vari-
ables and print output headers, and the END probe can be used to print final
reports.

profile and tick

The profile provider can create timed probes that fire at custom frequencies. The
probe

fires on all CPUs at a rate of 1234 Hertz. The profile- probe may be used to
sample what is executing systemwide. Apart from hz, other suffixes include ms
(milliseconds), s (seconds), and m (minutes). The fastest sampling possible with

:::name
::name
:name
name

dtrace -ln 'syscall::read*:entry'

profile:::profile-1234hz
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DTrace is 4999 Hertz. The profile provider also provides the tick- probe, for
example,

which fires on one CPU only. The tick probe can be used for printing output sum-
maries at the specified interval.

syscall Entry and Return

The syscall provider instruments the entry and return of system calls. The probe

will fire when the read(2) system call begins, at which point the entry argu-
ments to read(2) can be inspected. For example, use

to print the requested bytes, which are the third argument (arg2) to the read(2)
system call.

And the probe

fires when the read(2) system call completes, at which point the return value and
error status (errno) can be inspected. For example, to trace only errors showing
the errno value, use this:

profile:::tick-1s

syscall::read:entry

syscall::read:entry { printf("%d bytes", arg2); }

syscall::read:return

syscall::read:return /arg0 < 0/ { trace(errno); }



ptg

26 Chapter 2 � D Language

Variables

DTrace automatically instantiates variables on first assignment. The actions

declare and assign an integer variable a and a string variable b. Without an
explicit type cast, integer variables are of type int (signed 32-bit). Variables can
be cast as in the C language:

These three examples are equivalent and declare the a variable to be an
unsigned 64-bit integer, assigned a value of 1.

If variables are used before assignment, such as in predicates, their type is
unknown, and an error will be generated. Either assign the variable beforehand,
thus informing DTrace of the type, or cast the variables before use. Outside of any
action group, the lines

will cast the variable a as an integer and b as a string.

Types

Integer variable types known by DTrace include the following:

char: 8-bit character

short or int16_t: Signed 16-bit integer

int or int32_t: Signed 32-bit integer

long long or int64_t: Signed 64-bit integer

a = 1;
b = "foo";

a = (unsigned long long)1;
a = (uint64_t)1;
a = 1ULL;

int a;
string b;



ptg

Variables 27

unsigned long long or uint64_t: Unsigned 64-bit integer

Integer constants may use the suffixes U for unsigned and L for long.
Floating-point types (float, double, long double) may be used for tracing

and formatting with printf(); however, operators cannot be applied.
String types are supported and use the same operators as other types. The

predicate

will return true (and execute the action clause) if the b string variable is equal to
foo.

Strings are NULL terminated and, when empty, are equivalent to NULL. The
example

tests that the string variable b contains data (not NULL).

Operators

All operators and order of precedence follow the ANSI-C conventions.
Arithmetic operators are supported for integers only. They are + (addition),

- (subtraction), * (multiplication), / (division), and % (modulus). The expression

will add b and c, then multiply by 2, and finally assign the result to a.
Assignment and unary operators may be used as in C, such that these are

equivalent:

/b == "foo"/

/b != NULL/

a = (b + c) * 2;

x = x + 1;
x += 1;
x++;
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Relational operators may be applied to integers, pointers, or strings; they are ==
(equal to), != (not equal to), < (less than), <= (less than or equal to), > (greater
than), and >= (greater than or equal to). The predicate

will fire the action clause if the a variable is greater than 2.
Boolean operators may also be used:

The Boolean operators are && (AND), || (OR), and ^^ (XOR). 
Bitwise operators are also supported: & (and), | (or), ^ (xor), << (shift left), and

>> (shift right).
Ternary operators may be used for simple conditional expressions. The example

will assign the absolute value of b to a.
For the complete list of operators, see Appendix B, D Language Reference.

Scalar

Scalar variables store individual values. They are known globally and can be
accessed from any action clause. The assignment

assigns the value 1 to the scalar variable a.
Scalars can be accessed by probes firing on multiple CPUs simultaneously and

as such may become corrupted. Their use is therefore discouraged whenever other
variable types (thread-local variables or aggregations) can be used instead.

/a > 2/

/a > 2 && (c == 3 || d == 4)/

a = b >= 0 ? b : -b;

a = 1;
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Associative Arrays

Associative arrays can contain multiple values accessed via a key. They are
declared with an assignment of the following form:

The key may be a comma-separated list of expressions. The example

declares a key of the integer 123 and the string foo, storing the integer value 456.
Associative arrays have the same issues as scalars, with the potential to become

corrupted if multiple CPUs modify the same key/value simultaneously.

Structs and Pointers

The D language supports structures and pointer operations based on C (ANSI-C).
Structures can be defined in typedef struct statements outside of action
clauses, and header files can be included (#include <file.h>) when the C pre-
processor (-C option) is used. Many structures are already known by DTrace. The
example

is a built-in type of struct psinfo, defined under /usr/lib/dtrace. And this
example

is possible only when the fbt provider has access to kernel type data so that the
args[] array can be aware of the types, including structures, of the probe argu-
ments. This example was from Oracle Solaris, where the fbt provider knows that
the first argument to fop_create() is a vnode_t, allowing the v_path member
to be retrieved.

name[key] = expression;

a[123, "foo"] = 456;

curpsinfo->pr_psargs

fbt::fop_create:entry { trace(stringof(args[0]->v_path)); }
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Thread Local

Thread-local variables are stored with the current thread of execution. They have
this prefix:

To declare a thread-local variable, set a value. The example

declares a thread-local variable, x, to contain the value 1.
To free a thread-local variable, set it to zero (also for string variables):

If thread-local variables are set but not freed after use, memory may be con-
sumed needlessly while those threads still exist on the system. Once the thread is
destroyed, the thread-local variables are freed.

Thread-local variables should be used in preference to scalars and associative
arrays wherever possible to avoid the possibility of multiple CPUs writing to the
same D variable location and the contents becoming corrupted. They may also
improve performance, since thread-local variables can be accessed by only one
CPU (one thread) at a time.

Clause Local

Clause-local variables are for use within a single of action group { }. They have
this prefix:

To declare a clause-local variable, set a value. The example

declares a clause-local variable, y, to contain the value 1.

self->

self->x = 1;

self->x = 0;

this->

this->y = 1;
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Clause-local variables do not need to be freed; this is done automatically when
the probe finishes executing all actions associated with that probe. If there are
multiple probe { action } groups for the same probe, clause-local variables can
be accessed across the action groups.

They should be used for temporary variables within an action, because they
have the lowest performance cost of all the variable types.

Built-in

A variety of built-in variables are available as scalar globals. They include the
variables presented in Table 2-1.

Table 2-1 Built-in Variables

Variable Name Type Description

arg0...arg9 uint64_t Probe arguments; content is provider-specific

args[] * Typed probe arguments; content is provider-specific

cpu processorid_t CPU ID of the current CPU

curpsinfo psinfo_t Process state info for the current thread

curthread kthread_t Operating system internal kernel thread structure for 
the current thread

errno int Error value from the last system call

execname string The name of the current process

pid pid_t Process ID for current process

ppid pid_t Parent process ID for current process

probeprov string Provider name of the current probe

probemod string Module name of the current probe

probefunc string Function name of the current probe

probename string Name of the current probe

stackdepth uint_t Current thread’s stack frame depth

tid id_t Thread ID of the current thread

timestamp uint64_t Elapsed time since boot in nanoseconds

uid uid_t Real user ID of the current process

uregs[] uint64_t The current thread’s saved user-mode register values

vtimestamp uint64_t Current thread’s on-CPU time in nanoseconds

walltimestamp uint64_t Nanoseconds since epoch (January 1, 1970)
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It is common to use built-in variables in predicates in order to gather data for
specific processes, threads, or events of interest. The example

is a predicate that will cause the actions in the clause to be executed only when the
process name is ls.

Macro

DTrace provides macro variables including the ones presented in Table 2-2.
For example, a D script called file.d could match the $target process ID in a

predicate:

which is provided to the D script at the command line,

so the predicate will fire the action clause only if the specified process ID, 123, is
on-CPU.

/execname == "ls"/

/pid == $target/

# ./file.d -p 123

Table 2-2 Macro Variables

Variable 
Name Type Description

$target pid_t Process ID specified using -p PID or -c command

$1..$N Integer or string Command-line arguments to dtrace(1M)

$$1..$$N String (forced) Command-line arguments to dtrace(1M)
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External

External variables are defined by the operating system (external to DTrace) and
accessed by prefixing the kernel variable name with a backquote. The kernel inte-
ger variable k could be printed using this:

Aggregations

Aggregations are a special variable type used to summarize data. They are pre-
fixed with an at (@) sign and are populated by aggregating functions. The action

populates an aggregation, a, that counts the number of times it was invoked.
Although this sounds similar to a scalar a with the operation a++, global scalars
may suffer data corruption from simultaneous writing across CPUs, as well as a
performance penalty for accessing the same location. Aggregations avoid this by
populating data in per-CPU buffers, which are combined when printing.

Aggregations can be printed and emptied explicitly with the printa() and
trunc() functions (covered later in the chapter). Aggregations not explicitly
printed or truncated are automatically printed at the end of D programs. They
cannot be tested in predicates.

Aggregations may have keys, like associative arrays. The example

will count events separately by pid (process ID). The aggregation will be printed
as a table with the keys on the left and values on the right, sorted on the values in
ascending order.

An aggregation without a name, @, may be used for D programs (especially one-
liners) that use only one aggregation and so don’t need a name to differentiate
them.

printf("k: %d\n",`k);

@a = count();

@a[pid] = count();
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Types

Table 2-3 lists functions that populate aggregations. There are four additional
functions to manipulate aggregations: trunc(), clear(), normalize(), and
printa().

The example

populates the aggregation t with the sum of the x value.

quantize()

The quantize() function populates a power-of-two frequency distribution. The action

populates the quantize aggregation, a, with the value x. This is printed as a distri-
bution plot showing power-of-two ranges on the left, counts on the right, and a text

Table 2-3 Aggregating Functions

Function Arguments Result

count None The number of times called.

sum Scalar The total value.

avg Scalar The arithmetic average.

min Scalar The smallest value.

max Scalar The largest value.

stddev Scalar The standard deviation.

lquantize Scalar,

lower bound,

upper bound,

step

A linear frequency distribution, sized by the specified 
range, of the values of the specified expressions. Incre-
ments the value in the highest bucket that is less than the 
specified expression. 

quantize Scalar A power-of-two frequency distribution of the values of 
the specified expressions. Increments the value in the 
highest power-of-two bucket that is less than the speci-
fied expression. 

@t = sum(x);

@a = quantize(x);
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rendition of the distribution. Because this is a data visualization, it is best
explained with an example output:

The value column shows the minimum of the range, and the count shows the
number in that range. The most common range while tracing in this example was
64–127, with a count of 316.

lquantize()

The lquantize() function populates a linear frequency distribution. The action

populates the linear quantize aggregation, a, with the value x. The other argu-
ments set a minimum value of 0, a maximum of 100, and a range step of 10. Exam-
ple output from this

shows the size of each range is 10 in the value column. This example shows the
most frequent range while tracing was 0–9, with a count of 27.

 value  ------------- Distribution ------------- count
     0 |           0
     1 |@@@@          62
     2 |@           10
     4 |           5
     8 |           6
    16 |           3
    32 |@@@          46
    64 |@@@@@@@@@@@@@@@@@@@@@@       316
   128 |@@@@@@@@         113
   256 |@          9
   512 |          1
  1024 |         0

@a = lquantize(x, 0, 100, 10);

 value  ------------- Distribution ------------- count
   < 0 |           0
     0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  27
    10 |           0
    20 |@          1
    30 |           0
    40 |           0
    50 |           0
    60 |@@@@          3
    70 |                       0 
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trunc() and clear()

The trunc() function can either completely clear an aggregation, leaving no keys

or truncate an aggregation to the top number of keys specified. For example, this
function truncates to the top 10:

The clear() function clears the values of keys but leaves the keys in the
aggregation.

normalize()

The normalize() function can divide an aggregation by a value. The example

will divide the @a aggregation values by 1,024; this may be used before printing to
convert values to kilobytes instead of bytes.

printa()

The printa() function prints an aggregation during a D program execution and
is similar to printf(). For example, the aggregation

where the key consists of the integer x and string y, may be printed using

which formats the key into columns: x, 10 characters wide and right-justified; y, 32
characters wide and left-justified. The aggregation value for each key is printed
using the %@ format code, eight characters wide and right-justified.

trunc(@a);

trunc(@a, 10);

normalize(@a, 1024);

@a[x, y] = sum(z);

printa("%10d %-32s %@8d\n", @a);
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The printa() function can also print multiple aggregations:

The aggregations must share the same key to be printed in the same printa().
By default, sorting is in ascending order by the first aggregation. Several options
exist for changing the default sort behavior and for picking which aggregation to
sort by.

aggsortkey: Sort by key order; any ties are broken by value.

aggsortrev: Reverse sort.

aggsortpos: Position of the aggregation to use as primary sort key.

aggsortkeypos: Position of key to use as primary sort key.

The aggregation sort options can be used in combination. See the “Options” sec-
tion for setting options.

Actions

DTrace actions may include built-in functions to print and process data and to
modify the execution of the program or the system (in a carefully controlled man-
ner). Several key functions are listed here.

Actions that print output (for example, trace() and printf()) will also print
default output columns from DTrace (CPU ID, probe ID, probe name), which can
be suppressed with quiet mode (see “Options” section). The output may also
become shuffled on multi-CPU systems because of the way DTrace collects per-
CPU buffers and prints them out, and a time stamp field can be included in the
output for postsorting, if accurate; chronological order is required.

trace()

The trace() action takes a single argument and prints it:

This prints the variable x, which may be an integer, string, or pointer to binary
data. DTrace chooses an appropriate method for printing, which may include print-
ing hexadecimal (hex dump).

printa("%10s %@8d %@8d\n", @a, @b);

trace(x)
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printf()

Variables can be printed with formatting using printf(), based on the C version:

The format string can contain regular text, plus directives, to describe how to
format the remaining arguments. Directives comprise the following.

%: To indicate a format directive.

-: (Optional.) To change justification from right to left.

width: (Optional.) Width of column as an integer.  Text will overflow if needed.

.length: (Optional.) To truncate to the length given.

type: Covered in a moment.

Types include the following.

a: Convert pointer argument to kernel symbol name.

A: Convert pointer argument to user-land symbol name.

d: Integer (any size).

c: Character.

f: Float.

s: String.

S: Escaped string (binary character safe).

u: Unsigned integer (any size).

Y: Convert nanoseconds since epoch (walltimestamp) to time string.

For example, the action

prints the a variable as an integer in an 8-character-wide, left-justified column; the
b variable as a string in a 32-character-wide, right-justified column, and with no
overflow; and the c variable as an integer, followed by the text bytes and the new
line character \n.

For the complete printf() reference, see Appendix B, D Language Reference.

printf(format, arguments ...)

printf("%-8d %32.32s %d bytes\n", a, b, c);
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tracemem()

To print a region of memory, the tracemem() function can be used. The example

prints 256 bytes starting at the p pointer, in hexadecimal. If tracemem() is given
a data type it can recognize, such as a NULL-terminated string, it will print that in
a meaningful way (not as a hex dump).

copyin()

DTrace operates in the kernel address space. To access data from the user-land
address space associated with a process, copyin() can be used. The example

copies 256 bytes of data from the p user-land pointer into the variable a. The buf-
fer pointers on the read(2) and write(2) syscalls are examples of user-land
pointers, so that

will copy the data from write(2) into the w variable.

stringof() and copyinstr()

To inform DTrace that a pointer is a string, use stringof(). The example

treats the p pointer variable as a string and prints it out using printf().
stringof()works only on pointers in the kernel address space; for user-land

pointers, use copyinstr(). For example, the first argument to the open(2) sys-
call is a user-land pointer to the path; it can be printed using the following:

tracemem(p, 256);

a = copyin(p, 256);

syscall::write:entry { w = copyin(arg0, arg2); }

printf("%s", stringof(p));

syscall::open:entry { trace(copyinstr(arg0)); }
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This may error if the pointer has not yet been faulted into memory; if this
becomes a problem, perform the copyinstr() after it has been used (for exam-
ple, on syscall::open:return).

strlen() and strjoin()

Some string functions are available for use in D programs, including strlen()
and strjoin(). The example

returns the string abcdef. Apart from literal strings, this may also be used on
string variables.

stack(), ustack(), and jstack()

The stack() action fetches the current kernel stack back trace. Used alone,

prints out the stack trace when the probe fires, with a line of output per stack
frame. To print a maximum of five stack frames only, use this:

It can also be used as keys for aggregations. For example, the action

counts invocations by stack trace; that is, when the aggregation is printed, a list of
stack traces will be shown along with the counts for each stack, in ascending order.
To print them in printa() statements, use the %k format directive.

The ustack() action fetches the current user-stack backtrace. This is stored as
the addresses of functions, which are translated into symbols when printed out;
however, if the process has terminated by that point, only hexadecimal addresses
will be printed.

strjoin("abc", "def")

stack();

stack(5);

@a[stack()] = count();
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The jstack() action behaves similarly to ustack(); however, it may insert
native-language stack frames when available, such as Java classes and methods
from the JVM.

Refer to the “Options” section in this chapter for tunable options that apply to
the stack functions.

sizeof()

The sizeof() operator returns the size of the data type, in bytes. The example

returns the number 8 (bytes).

exit()

This exits the D program with the specified return value. To exit and return suc-
cess, use the following:

Speculations

Speculative tracing provides the ability to tentatively trace data and then later
decide whether to commit it (print it out) or discard it. The action

creates a speculative buffer and saves its identifier in self->maybe. Then, the
action clause

prints the integer variables a and b into that speculative buffer. Finally,

sizeof (uint64_t)

exit(0);

self->maybe = speculation();

{ speculate(self->maybe); printf("%d %d", a, b); }

/errno != 0/ { commit(self->maybe); }
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will commit the speculation, printing all the contents of that speculative buffer. In
this case, when the errno built-in is nonzero (probe description not shown), the
example

will discard the contents of the speculation.

Translators

Translators are special functions that convert from one data type to another. They
are used by some stable providers to convert from unstable kernel locations into
the stable argument interface, as specified in the /usr/lib/dtrace files. The
example

takes the a variable and applies the appropriate info_t translator to retrieve the
name member; the translator is chosen based on the type of a. For example, if a
were of type _impl_t, the following translator would be used (defined earlier),

which translates type _impl_t (not defined here) into the members defined earlier.
Custom translators can be written and placed in additional .d files in the /usr/

lib/dtrace directory, which will be automatically loaded by dtrace(1M) for use
in D programs.

Others

For the complete list of actions, see Appendix B, D Language Reference. These
include basename(), bcopy(), dirname(), lltostr(), progenyof(), and rand().
These also include the destructive (-w required) actions: stop(), raise(), copyout(),
copyoutstr(), system(), and panic().

/errno == 0/ { discard(self->maybe); }

xlate <info_t *>(a)->name;

translator info_t < _impl_t *I > {
  name = stringof(I->nm);

            length = I->len;

}
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Options

There are various options to control the behavior of DTrace, which can be listed
using this:

The options include the following:

-c command: Runs command and exit on completion, setting $target to its PID

-n probe: Specifies a probe

-o file: Appends output to the file

-p PID: Provides PID as $target and exits on completion

-q: Suppresses default output

-s file: Executes the script file

-w: Allows destructive actions

-x option: Sets option

Some of these can be specified in the D script as pragma actions. The example

will set quiet mode (-q). And the example

sets the buffer switch rate to 10 Hertz (which can decrease the latency for traced
output). These name=value options can also be set at the command line using -x.
Others include the following:

bufsize: Principal buffer size

defaultargs: If unspecified, $1 becomes 0 and $$1 becomes “”

destructive: Allow destructive actions

dynvarsize: Dynamic variable space size

flowindent: Indent output on function entry

# dtrace -h

#pragma D option quiet

#pragma D option switchrate=10hz
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strsize: Max size of strings

stackframes: Max number of stack frames in stack()

ustackframes: Max number of user stack frames in ustack()

jstackstrsize: Size of the string buffer

For the complete list of tunables, see Appendix A, DTrace Tunables.

Example Programs

Here are a few example one-liners and a script, chosen to demonstrate compo-
nents of the D language. The other chapters in this book have many more exam-
ples to consider.

Hello World

This example uses the dtrace provider BEGIN probe to print a text string at the
start of execution. Ctrl-C was hit to exit dtrace(1M):

Apart from our text, DTrace has printed a line to describe how many probes
were matched, a heading line, and then the CPU ID, probe ID, and function:name
component of the probe. This default output can be suppressed with quiet mode (-q).

Tracing Who Opened What

This traces the open(2) syscall, printing the process name and path:

# dtrace -n 'BEGIN { trace("Hello World!"); }'
dtrace: description 'BEGIN ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0      1  :BEGIN   Hello World!
^C

# dtrace -n 'syscall::open:entry { printf("%s %s", execname, copyinstr(arg0)); }'
dtrace: description 'syscall::open:entry ' matched 1 probe
CPU     ID            FUNCTION:NAME
  1  96337          open:entry nscd /etc/inet/ipnodes
  1  96337 open:entry nscd /etc/resolv.conf
  1  96337  open:entry nscd /etc/hosts
  1  96337 open:entry nscd /etc/resolv.conf
  1  96337         open:entry automountd /var/run/syslog_door
  1  96337 open:entry automountd /dev/udp
  1  96337 open:entry automountd /dev/tcp
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Tracing fork() and exec()

Fundamental to process creation, these system calls can be traced along with the
pid and execname built-ins to see their behaviors:

Counting System Calls by a Named Process

An aggregation is used to count system calls from Mozilla Firefox, which is run-
ning with the process name firefox-bin:

Showing Read Byte Distributions by Process

Distribution plots can summarize information while retaining important details;
this shows power-of-two distributions for read(2) return values:

  1  96337  open:entry sh /var/ld/ld.config
  1  96337  open:entry sh /lib/libc.so.1
^C

# dtrace -n 'syscall::fork*: { trace(pid); }'
dtrace: description 'syscall::fork*: ' matched 2 probes
CPU     ID            FUNCTION:NAME
  0  13072        forksys:entry     16074
  0  13073        forksys:return     16136
  0  13073        forksys:return     16074
^C

# dtrace -n 'syscall::exec*: { trace(execname); }'
dtrace: description 'syscall::exec*: ' matched 2 probes
CPU     ID            FUNCTION:NAME
  0  12926 exece:entry   bash
  0  12927          exece:return   ls
^C

# dtrace -n 'syscall:::entry /execname == "firefox-bin"/ { @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 237 probes
^C

  close                     1
  setsockopt                      1
  getpid                     2
  yield                     47
  writev                    130
  lwp_park                    395
  ioctl                     619
  write                    1102
  pollsys                    1176
  read                    1773
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This shows a trimodal distribution for Firefox, with 25 returns of -1 (error), 64
of 1 byte, and 166 of between 32 and 63 bytes.

Profiling Process Names

The profile probe (from the profile provider) can be used to sample across all
CPUs at a specified rate. Here the process name is sampled and recorded in a
count() aggregation at 997 Hertz, on a 2x CPU system. A tick probe is used to
print the aggregation and then truncate all data every second so that interval
prints only the data from the last second.

# dtrace -n 'syscall::read:return { @[execname] = quantize(arg0); }'
dtrace: description 'syscall::read:return ' matched 1 probe
^C
[...output truncated...]

  firefox-bin
           value  ------------- Distribution ------------- count
              -2 |              0
              -1 |@@@@             25
               0 |              0
               1 |@@@@@@@@@@            64
               2 |              0
               4 |              2
               8 |              2
              16 |              0
              32 |@@@@@@@@@@@@@@@@@@@@@@@@@      166
              64 |              2
             128 |              0
             256 |              2
             512 |              0

  Xorg
           value  ------------- Distribution ------------- count
              -2 |              0
              -1 |@@@@@@@@@@@@@@@           233
               0 |              0
               1 |              0
               2 |              0
               4 |              0
               8 |@@@@@@@             100
              16 |@@@@@@@             106
              32 |@@@@             59
              64 |@              12
             128 |@              8
             256 |@              10
             512 |@              13
            1024 |              4
            2048 |@@@               42
            4096 |@             22
            8192 |              0

# dtrace -n 'profile-997 { @[execname] = count(); } tick-1s { printa(@); trunc(@); }'
dtrace: description 'profile-997 ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1  21301              :tick-1s 
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Timing a System Call

Most function calls will return from the same thread that they enter,6 so a thread-
local variable can be used to associate these events. Here a time stamp is saved on
the write(2) entry so that the time can be calculated on return:

  Shades                     1
  Preview                     2
  VBoxNetDHCP                    3
  ntpd                     4
  dtrace                     5
  Adium                     6
  VBoxSVC                     6
  quicklookd                      8
  soffice                    11
  VirtualBox                    13
  Terminal                    14
  SystemUIServer                     19
  WindowServer                     35
  firefox-bin                   856
  kernel_task                   1008

  1  21301              :tick-1s 
  Preview                     1
  dtrace                     1
  ntpd                     1
  VBoxSVC                     3
  Adium                     4
  soffice                    14
  VirtualBox                    15
  SystemUIServer                     18
  WindowServer                     19
  Terminal                    30
  firefox-bin                   883
  kernel_task                   1005
[...]

6. Exceptions include fork(), which has one entry and two returns, as shown in 7.3.

# dtrace -n 'syscall::write:entry { self->s = timestamp; } 
    syscall::write:return /self->s/ 
    { @["ns"] = quantize(timestamp - self->s); self->s = 0; }'
dtrace: description 'syscall::write:entry ' matched 2 probes
^C

  ns
           value  ------------- Distribution ------------- count
            2048 |              0
            4096 |@             6
            8192 |@@@@@               22
           16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            122
           32768 |@@@             13
           65536 |@             4
          131072 |                2
          262144 |                  0 
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The output showed that most writes took between 8 and 32 microseconds. The
thread-local variable was just self->s, which is sufficient for timing system calls
(but not for recursive functions, because multiple entry probes will overwrite
self->s).

Snoop Process Execution

This script prints details on new processes as they execute:

Line 1 is the interpreter line, feeding the following script -s to /usr/sbin/
dtrace.

Line 3 instructs DTrace to not print the default output when probes fire.
Line 4 increases the switch rate tunable to 10 Hertz so that output is printed

more rapidly.
Lines 8 and 9 print a heading line for the output, fired during the

dtrace:::BEGIN probe.
Line 12 uses the proc:::exec-success probe to trace successful execution of

new processes.
Lines 14 and 15 print details of the new process from various built-in variables,

formatted in columns using printf().
Running the script yields the following:

 1      #!/usr/sbin/dtrace -s
 2
 3      #pragma D option quiet
 4      #pragma D option switchrate=10hz
 5
 6      dtrace:::BEGIN
 7      {
 8            printf("%-20s %6s %6s %6s  %s\n", "ENDTIME",
 9    "UID", "PPID", "PID", "PROCESS");
10      }
11
12      proc:::exec-success
13      {
14            printf("%-20Y %6d %6d %6d %s\n", walltimestamp,
15     uid, ppid, pid, execname);
16      }
Script pexec.d

# ./pexec.d
ENDTIME    UID   PPID    PID  PROCESS
2010 Jul 20 22:16:04 501    244  38131  ps
2010 Jul 20 22:16:04 501    244  38132  grep
2010 Jul 20 22:16:38    501    159  38129  nmblookup
2010 Jul 20 22:16:39    501    159  38130  nmblookup
^C
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For this example, the command ps -ef | grep firefox was executed in
another terminal window, which was traced by pexec.d. The script was left trac-
ing, and it caught the execution of an unexpected process, nmblookup, which ran
twice.

Summary

In this chapter, we summarized the D language, including the syntax, operators,
and built-in functions; you can find full reference tables for these in Appendixes A
and B. The remaining chapters continue to demonstrate D, as used in one-liners
and scripts.
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3
System View

Now that we’ve introduced you to DTrace and covered the D language, it’s time to
get into what DTrace is really all about—solving problems and understanding
workload behavior. Some problems can be quickly correlated to a specific area of
hardware or software, but others have a potentially broader source of root causes.
These require starting with a systemwide view and drilling down based on what
the first-pass analysis reveals. In this chapter, we’ll show how existing non–
DTrace-based tools can help make that first pass and how DTrace can then com-
plement them and take analysis further. Specific hardware subsystems, network-
ing, disk I/O, file system, and specific applications are covered in greater detail in
later chapters.

So, what do we mean by system and system view? We’re referring to a coarse
decomposition of the various components that make up your computer system.
Specifically, looking at the major hardware subsystems, we’re talking about the
following:

Processors (CPUs), including modern multicore processors

Memory, in other words, installed physical RAM

Disk I/O, including controllers and storage

Network I/O
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From a software point of view, there’s the operating system (kernel) and user-
land application software. We’ll show techniques for analyzing user software here,
as well as figuring out what the kernel is doing. For some applications, we’ll
explore specific types of software that have a significant installed base and use in
dedicated chapters.

Start at the Beginning

One of the challenges facing new DTrace users is where to begin. DTrace is an
extremely powerful and potentially complex tool; it’s up to you to decide what to do
with it. Given that DTrace can examine the entire operating system plus applica-
tions, simply picking a starting point for analysis can be daunting. This is espe-
cially true when DTrace is used to troubleshoot application and performance
problems in production environments, where time is of the essence.

The basic approach to any problem starts with the same first step—defining the
problem in terms of something that can be measured. Examples in the domain of
performance include transaction response time and time to run batch jobs or other
workload tasks. The commonality here is time, a primary metric for quantifying
performance issues. Other metrics such as high CPU utilization, low network
bandwidth, high disk utilization, and so on, are not performance problems per se;
they may be contributing to the actual problem, but first and foremost the prob-
lem needs to be defined in the context of what the workload is requesting and how
long it is taking, not in terms of the utilization of the components that service it.

Even with a solid problem definition, determining the underlying cause (or
causes—there may be several contributing factors) sometimes requires taking a
big-picture view of the system and drilling down based on observations and analy-
sis. A system view starts with bundled tools and utilities that provide data on run-
ning processes and hardware utilization. That is, DTrace may not be the first tool
you should use. You could start with DTrace to get much of the system view data,
but it can be easier to start with your favorite set of “stat” tools to get the big pic-
ture and drill down from there.

To continue getting started, the next sections summarize performance analysis
in the abstract and then existing tool sets for the different operating systems. This
leverages existing methodology and tools and allows us to focus on using DTrace to
take analysis further. Another resource for Solaris performance analysis is Solaris
Performance and Tools (McDougall, Mauro, and Gregg, 2006), which covers the
Solaris tool set in detail.
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System Methodology

You can use the following questions as guidelines to approaching an undefined per-
formance issue and to help you on your way to finding the root cause. Most of these
questions are operating system–generic, but some are Solaris-specific.

How busy are the CPUs?

– Is there idle time (%idle)?

– Are CPU cycles being consumed in user mode (%usr) or in the kernel (%sys)?

– Is CPU utilization relatively flat, or does it fluctuate?

– Is CPU utilization balanced evenly across the available CPUs?

– What code paths are making the CPUs busy?

– Are interrupts consuming CPU cycles?

– Are the CPU cycles spent executing code or stalled on bus (memory) I/O?

– Is the dispatcher run queue consistently nonzero?

– Does the dispatcher run queue depth fluctuate, with bursts of runnable 
threads?

Does the system have sufficient memory?

– Is the system “swapping” (or “paging”) due to memory pressure?

– Is the page scanner running?

– How much memory are processes consuming (RSS)?

– Does the system make use of shared memory?

– How much time are applications spending allocating and freeing memory?

– How much time are applications waiting for memory pages to be paged in?

– Is there a file system component to the workload, where the file system page 
cache needs to be factored in as a potentially significant memory consumer?

How much disk I/O is the system generating?

– What is the average disk I/O service time?

– Does any disk I/O return with very high latency?

– Is the disk access pattern random or sequential?

– Are the I/Os generally small (less than 8KB) or large?

– Is there an imbalance in the disk I/O load, with some disks getting a much 
larger percentage of reads and writes than others?

– Are there disk I/O errors?
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– Can a disk I/O load generation tool be used to investigate disk I/O perfor-
mance and latency (outside the context of the applications)?

How much network I/O is occurring?

– Is the network load at or near the theoretical limit for the NIC, in terms of 
either bandwidth or packet rates?

– With which remote hosts is the system establishing TCP connections?

– Which remote hosts are causing the most network I/O?

– Are there multiple NICs?

– Is multipathing configured?

– How much time are the applications spending waiting for network I/O?

– Can network load generation tools be used to assess network throughput 
and latency (outside the context of the applications)?

The sections that follow in this chapter begin answering these questions for the
CPU, memory, and disk and network resources, first using existing tool sets and
then leading into DTrace. These questions will continue to be answered through-
out the book in chapters dedicated to these topics (for example, Chapter 4, Disk I/O)
or for consumers of these resources (for example, Chapter 12, Kernel, for CPU uti-
lization by the kernel).

In some cases, you know the resource or subsystem to examine based on the
problem or metrics previously examined. When it comes to available system
resources, the high-level questions you must answer are the same.

How utilized is the resource?

Is the resource saturated with work or under contention?

Is the resource encountering errors?

What is the response time for the resource?

What workload abstractions (files/clients/requests) are consuming the 
resource?

Which system components (processes/threads) are consuming the resource?

Is the performance of the resource a result of workload applied (high load) or 
system implementation (poor configuration)?

System Tools

The tools and utilities available for examining system load and utilization metrics
will vary across different operating systems. In some cases, the same utilities may
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be available on multiple platforms (for example, sar(1M)), or different systems
may have utilities with similar names but generate very different output (for
example, vmstat(1M) on Solaris vs. vm_stat(1) on Mac OS X). Always refer-
ence the appropriate man pages to determine available options and definitions of
the output generated. Table 3-1 presents the most commonly used system tools.

Table 3-1 System Tools

Solaris

Utility Description

sar(1) General-purpose System Activity Reporter providing numerous system 
statistics

vmstat(1M) Reports virtual memory statistics and aggregates systemwide CPU 
utilization

mpstat(1M) Per-CPU statistics

iostat(1M) Disk I/O statistics

netstat(1M) Network statistics

kstat(1M) All available kernel statistics

prstat(1M) Process/thread statistics

Mac OS X

Utility Description

sar(1) General-purpose System Activity Reporter providing numerous system 
statistics

vm_stat(1) Virtual memory statistics

top(1) Process statistics

FreeBSD

Utility Description

systat(1) Various system statistics

vmstat(8) Virtual memory statistics

iostat(8) Disk I/O statistics

netstat(8) Network statistics

sockstat(1) Open socket information

procstat(1) Detailed process information

top(1) Process statistics
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The information in Table 3-1 is not a comprehensive list of every available util-
ity for each operating system but are those most commonly used for a high-level
system view. Solaris, for example, includes a large number of process-centric tools
not listed here. Mac OS X includes a GUI-based Activity Monitor and other utili-
ties useful for monitoring a system.

Observing CPUs

CPU utilization as a key capacity metric has years of history in IT and is reported
by many of the traditional “stat” tools (Solaris vmstat(1M), and so on). The actual
meaning and usefulness of CPU utilization as a metric has diminished with the
evolution of processor technology. Multiprocessor systems, processors with multi-
ple execution cores, processor cores with multiple threads (or strands), processor
cores with multiple execution units (integer, floating point) allowing multiple
threads to advance instructions concurrently, and so on, all skew the notion of
what CPU utilization level really means in any given operating system. 

A specific example of this is memory bus I/O. CPU “load” and “store” instruc-
tions may stall while on-CPU, waiting for the memory bus to complete a data
transfer. Since these stall cycles occur during a CPU instruction, they’re treated as
utilized, although perhaps not in the expected way (utilized while waiting!).

The level of parallelism of the workload is also a factor; a single-threaded appli-
cation may consume 100 percent of a single CPU, leaving other CPUs virtually
idle. In such a scenario, on systems with a large number of CPUs, tools that aggre-
gate utilization would indicate very low systemwide CPU utilization, potentially
steering you away from looking more closely at CPUs. A highly threaded workload
with lock contention in the application may show many CPUs running at 100 per-
cent utilization, but most of the threads are spinning on locks, rather than doing
the work they were designed to do. The key point is that CPU utilization alone is
not sufficient to determine to what extent the CPUs themselves are the real per-
formance problem.

It is instructive to know exactly what the CPUs are doing—whether that is the
processing of instructions or memory I/O stall cycles—and for what applications or
kernel software.

CPU Strategy

Conventional tools and utilities can be a good place to start for a quick look at the
CPUs. vmstat(1) provides one row of output per sample, so for multiprocessor
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systems, CPU utilization is aggregated into one set of usr/sys/idle metrics. This is
especially useful for a high-level view on systems with a large number of CPUs;
modern high-end systems can have hundreds of CPUs, making per-CPU utiliza-
tion analysis daunting to start with. The mpstat(1) utility provides a row of out-
put for each CPU, along with many other useful statistics, such as per-second
counts of interrupts, system calls, context switches, and so on. The primary metric
of interest when doing a first-pass system view is where CPU cycles are being con-
sumed: how much of the busy time is in the kernel (%sys) vs. executing in user
mode (%usr).

CPU Checklist

The checklist in Table 3-2 describes the high-level issues around CPU usage and
performance.  

Table 3-2 CPU Checklist

Issue Description

Utilization—high %sys The system is spending what appears to be an inordinate 
amount of time in the kernel. This may or may not be a prob-
lem—some workloads are kernel intensive (for example, NFS/file 
servers, network-intensive workloads, and so on). A kernel pro-
file is the first step to determine where in the kernel CPU cycles 
are being consumed.

Utilization—high %user When burning CPU cycles, for most applications, it’s generally 
good to be spending most of the time in user mode. But that 
leaves the question of whether the cycles are being spent get-
ting real work done or potentially spinning on user locks or some 
other area of code that’s not advancing the workload. A profile 
of where the threads are spending time can answer this 
question.

Wait time Are threads waiting for an available CPU? This is known as run
queue latency and is easily tracked in Solaris with prstat -Lm,
monitoring the LAT column. DTrace can be used to measure 
how much time threads are spending on run queues, waiting to 
run. The vmstat(1M) r column shows systemwide runnable 
threads.

Configuration Solaris provides resource management tools such as processor 
sets, resource pools, CPU management, and different schedul-
ing classes and priority control mechanisms that can affect CPU 
usage.

continues
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CPU Providers

The DTrace providers shown in Table 3-3 are used for examining CPU usage.

CPU One-Liners

You can use the following one-liners to get quick answers to important questions
about what the CPUs are doing.

Interrupt load Modern I/O devices, especially 10Gb network cards, can gener-
ate a high level of interrupts to the CPUs. If application threads 
are sharing those CPUs, they may be getting pinned frequently 
by the interrupt threads, throttling throughput. It is sometimes 
advantageous to fence off interrupts (isolate CPUs handling 
interrupts from CPUs running workload threads).

Table 3-3 Providers for Tracking CPU usage

Provider Description

profile, tick These providers allow for time-based data collection and are very useful for 
kernel and user CPU profiling.

sched Observing scheduling activity is key to understanding CPU usage on loaded 
systems.

proc The proc provider lets you observe key process/thread events.

sysinfo This is important for tracking systemwide events that relate to CPU usage.

fbt The function boundary tracing provider can be used to examine CPU usage 
by kernel function.

pid The pid provider enables instrumenting unmodified user code for drilling 
down on application profiling.

lockstat lockstat is both a DTrace consumer (lockstat(1M)) and a special provider 
used for observing kernel locks and kernel profiling.

syscall Observing system calls is generally a good place to start, because system 
calls are where applications meet the kernel, and they can provide insight as 
to what the workload is doing.

plockstat This provides statistics on user locks. It can identify lock contention in appli-
cation code.

Table 3-2 CPU Checklist (Continued)

Issue Description
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profile Provider

The profile provider samples activity across the CPUs; for these one-liners, a rate
of 997 Hertz1 is used to avoid sampling in lockstep with timed kernel tasks.

Which processes are on-CPU?

Which processes are on-CPU, running user code?

What are the top user functions running on-CPU (%usr time)?

What are the top kernel functions running on-CPU (%sys time)?

What are the top five kernel stack traces on the CPU (shows why)?

What are the top five user stack traces on the CPU (shows why)?

What threads are on-CPU, counted by their thread name (FreeBSD)?

1. This means events per second.

dtrace -n 'profile-997hz { @[pid, execname] = count(); }'

dtrace -n 'profile-997hz /arg1/ { @[pid, execname] = count(); }'

dtrace -n 'profile-997hz /arg1/ { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'profile-997hz /arg0/ { @[func(arg0)] = count(); }'

dtrace -n 'profile-997hz { @[stack()] = count(); } END { trunc(@, 5); }'

dtrace -n 'profile-997hz { @[ustack()] = count(); } END { trunc(@, 5); }'

dtrace -n 'profile-997 { @[stringof(curthread->td_name)] = count(); }'
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sched Provider

Which processes are getting placed on-CPU (the sched provider, event-based)?

Which processes are getting charged with CPU time when tick accounting is
performed?

syscall Provider

What system calls are being executed by the CPUs?

Which processes are executing the most system calls?

What system calls are a given process name executing (for example, firefox-bin)?

CPU Analysis

Assuming the CPUs are not idle, a systemwide view of where the CPU cycles are
going can be determined using the DTrace profile provider. This is a time-based
provider; it does not instrument a specific area of code but rather allows the user
to specify time intervals for the probes to fire. This makes it suitable for sampling
what is occurring on the CPUs, which can be performed at a rate sufficiently high
enough to give a reasonable view of what the CPUs are doing (for example, sam-
pling at around 1000 Hertz).

We can start with a basic profile to determine which processes and threads are
running on the CPUs to account for the user cycles and then look at a kernel pro-
file to understand the sys cycles. In Solaris, the prstat(1M) utility is the easiest

dtrace -n 'sched:::on-cpu { @[pid, execname] = count(); }'

dtrace -n 'sched:::tick { @[stringof(args[1]->pr_fname)] = count(); }'

dtrace -n 'syscall:::entry { @[probefunc] = count(); }'

dtrace -n 'syscall:::entry { @[pid, execname] = count(); }'

dtrace -n 'syscall:::entry /execname == "firefox-bin"/ { @[probefunc] = count(); }'



ptg

Observing CPUs 61

way to track which processes are the top consumers of CPU cycles, but here we’ll
start by taking a look at using DTrace to observe CPU usage.

This DTrace one-liner uses the profile provider to sample process IDs and pro-
cess names that are on-CPU in user-mode code:

As introduced in Chapter 2, the profile provider has probes with the prefix
profile-, which fire on all CPUs. The probe name includes the rate to sample for:
Here 997 Hertz (997Hz) was specified. Avoiding rates of 1000 Hertz and 100 Hertz
is a good idea when doing time-based collection to avoid sampling in lockstep with
regular events such as the kernel clock interrupt.2 It does not need to be 997Hz—
you can sample less frequently (113Hz, 331Hz, 557Hz, and so on) if desired.

The profile probe has two arguments: arg0 and arg1. arg0 is the program
counter (PC) of the current instruction if the CPU is running in the kernel, and
arg1 is the PC of the current instruction if the CPU is executing in user mode.
Thus, the test /arg0/ (arg0 != 0) equates to “is the CPU executing in the ker-
nel?” and /arg1/ (arg1 != 0) equates to “is the CPU executing in user mode?”

The profile one-liner included the predicate /arg1/ to match on user-land execu-
tion. We see a pretty even distribution of different Oracle processes running on-CPU
based on our frequent (997Hz, or just about every millisecond) sampling. We see

solaris# dtrace -n 'profile:::profile-997hz /arg1/ { @[pid, execname] = count(); }'
^C
[...output truncated...]
     2735  oracle.orig                         4088
     2580  oracle.orig                         4090
     2746  oracle.orig                         4093
     2652  oracle.orig                         4100
     2748  oracle.orig                         4108
     2822  oracle.orig                         4111
     2644  oracle.orig                         4112
     2660  oracle.orig                         4122
     2554  oracle.orig                         4123
     2668  oracle.orig                         4123
     2560  oracle.orig                         4131
     2826  oracle.orig                         4218
     2568  oracle.orig                         4229
     2836  oracle.orig                         4244
     2736  oracle.orig                         4277
     2654  oracle.orig                         4290
     2816  oracle.orig                         4320
     2814  oracle.orig                         4353
     2658  oracle.orig                         4380
     2674  oracle.orig                         7892

2. This happens every ten milliseconds (unless tuned) and is used to take care of some kernel
housekeeping (statistics gathering, and so on).
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process PID 2674 as showing up most frequently during the sample period. Let’s take
a quick look with a simple ps(1) command and see whether that makes sense:

Process PID 2674 is the Oracle database log writer, which has several busy
threads. It is typical to see the log writer as a top CPU consumer in an Oracle
workload, so this is not surprising. To continue understanding the workload and
CPU usage in more detail, we can take a look at where the kernel is spending time
(the SYS component of CPU utilization) using either lockstat(1M), which uses
the lockstat provider, or the profile provider.

solaris# ps -efcL | grep 2674
  oracle  2674     1 1    19   TS   0   May 27 ?   51:21 ora_lgwr_BTRW
  oracle  2674     1 2    19   TS  59   May 27 ?   0:00 ora_lgwr_BTRW
  oracle  2674     1 3    19   TS  59   May 27 ?   0:00 ora_lgwr_BTRW
  oracle  2674     1 4    19   TS  59   May 27 ?   0:00 ora_lgwr_BTRW
  oracle  2674     1 5    19   TS  46   May 27 ?  10:51 ora_lgwr_BTRW
  oracle  2674     1 6    19   TS  59   May 27 ?   0:00 ora_lgwr_BTRW
  oracle  2674     1 7    19   TS  19   May 27 ?  10:50 ora_lgwr_BTRW
  oracle  2674     1 8    19   TS  59   May 27 ?   0:00 ora_lgwr_BTRW
  oracle  2674     1 9    19   TS  50   May 27 ?  10:49 ora_lgwr_BTRW
  oracle  2674     1    10    19   TS  59   May 27 ?          0:00 ora_lgwr_BTRW
  oracle  2674     1    11    19   TS  41   May 27 ?  10:50 ora_lgwr_BTRW
  oracle  2674     1    12    19   TS  59   May 27 ?          0:00 ora_lgwr_BTRW
  oracle  2674     1    13    19   TS  59   May 27 ?          0:00 ora_lgwr_BTRW
  oracle  2674     1    14    19   TS  59   May 27 ?          0:00 ora_lgwr_BTRW
  oracle  2674     1    15    19   TS  59   May 27 ?          0:00 ora_lgwr_BTRW
  oracle  2674     1    16    19   TS  25   May 27 ?  10:48 ora_lgwr_BTRW
  oracle  2674     1    17    19   TS  60   May 27 ?  10:50 ora_lgwr_BTRW
  oracle  2674     1    18    19   TS  60   May 27 ?  10:50 ora_lgwr_BTRW
  oracle  2674     1    19    19   TS   3   May 27 ?  10:49 ora_lgwr_BTRW

solaris# dtrace -n 'profile-997hz /arg0 && curthread->t_pri != -1/ 
    { @[stack()] = count(); } 
    tick-10sec { trunc(@, 10); printa(@); exit(0); }'
[...]

   FJSV,SPARC64-VII`copyout+0x468
   unix`current_thread+0x164
    genunix`uiomove+0x90
   genunix`struiocopyout+0x38
    genunix`kstrgetmsg+0x780
   sockfs`sotpi_recvmsg+0x2ac
    sockfs`socktpi_read+0x44
    genunix`fop_read+0x20
    genunix`read+0x274
    unix`syscall_trap+0xac

             1200

  FJSV,SPARC64-VII`cpu_smt_pause+0x4
   unix`current_thread+0x164
   platmod`plat_lock_delay+0x78
   unix`mutex_vector_enter+0x460
  genunix`cv_timedwait_sig_hires+0x1c0

   genunix`cv_waituntil_sig+0xb0
    semsys`semop+0x564
    unix`syscall_trap+0xac

             1208
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Before we describe the output, we’ll show the one-liner rewritten as a D script,
making it easier to read and understand:

The probe (line 3) is the profile provider, sampling at 997Hz. We make use of the
DTrace logical AND operator to test for more than one condition in the predicate
when the probe fires. Since we are interested only in the kernel this time, we’re
using a predicate that translates to “Are you running in the kernel?” (arg0, which
equates to arg0 != 0) and (curthread->t_pri != -1), which is a Solaris-
specific test to ensure that the CPU is not executing the kernel idle loop.

In Solaris, the idle loop priority will be set to -1 during execution. Table 3-4
shows equivalent predicates for Mac OS X and FreeBSD. These are all considered
“unstable” since they refer to a curthread member and value, neither of which are
public, stable interfaces; the Reference column in the table shows what these pred-
icates are based on and should be double-checked before using these predicates in
case there have been changes in your operating system version.

This script uses the tick probe to capture data for ten seconds, at which point
the aggregation of kernel stacks collected when the profile probe fires will be trun-
cated to the top ten (ten most frequent stack frames), the aggregation will be
printed, and the script will exit. 

    unix`disp_getwork+0xa0
   genunix`disp_lock_exit+0x58

     unix`disp+0x1b4
     unix`swtch+0x8c
   genunix`cv_wait_sig+0x114
    genunix`str_cv_wait+0x28
    genunix`strwaitq+0x238
    genunix`kstrgetmsg+0xdcc
   sockfs`sotpi_recvmsg+0x2ac
    sockfs`socktpi_read+0x44
    genunix`fop_read+0x20
    genunix`read+0x274
    unix`syscall_trap+0xac

             1757

1  #!/usr/sbin/dtrace -s
2
3  profile-997hz 
4  /arg0 && curthread->t_pri != -1/ 
5  { 
6       @[stack()] = count(); 
7  } 
8  tick-10sec 
9  { 
10      trunc(@,10); 
11      printa(@); 
12      exit(0); 
13  }

Script kprof.d
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Before getting into the specific example shown, here is a brief description of ker-
nel and application profiling. Profiling refers to the process of determining in what
area of code a piece of software is spending its time: what function or functions are
executing most frequently. The profile is obtained using a sampling mechanism,
where the program counter, which points to the currently executing instruction, is
sampled at a predefined interval. The results of the profile are typically a list of
software functions, sometimes in the form of stack frames, with either a count
(indicating how many times a PC that resides in that function was captured in the
sample) or a percentage (indicating what percent of time over the sampling period
was spent in each of the functions). The hotkernel and hotuser scripts in the
DTraceToolkit postprocess DTrace output and provide percentages. 

How much sense you can make of the results of function profiling will depend on
your experience, skill set, and knowledge of the software being profiled. But, even
with minimal knowledge of the profile target, you’ll still find it valuable to collect
this information; it might be used by other parties involved in the problem diagno-
sis or the owners of the software.

Referring to the sample output, we show the top three kernel stack frames (in
the interest of page space, we asked DTrace for the top ten). Once we get past the
cryptic nature of stack frames, we can understand where the kernel is spending
time. A given line in a kernel stack frame will include the name of the kernel mod-
ule, followed by the backtick (`) character, followed by the name of the kernel func-
tion, and ending with the offset into the function (in hexadecimal) derived from the
program counter. Here’s an example of one line from the kernel stack frame, sepa-
rating the three components to illustrate:

Table 3-4 Predicates for Filtering Out the Idle Thread

OS Predicate Reference

Solaris /curthread->t_pri != -1/ thread_init() in usr/src/
uts/common/disp/thread.c

Mac OS X /!(curthread->state & 0x80)/ TH_IDLE in osfmk/kern/
thread.h

FreeBSD /!(curthread->td_flags & 0x20)/ TDF_IDLETD in /usr/src/
sys/sys/proc.h

Kernel Module    Kernel Function    Offset into Kernel Function
sockfs  `socktpi_read      +0x44



ptg

Observing CPUs 65

Stack frames are read starting at the bottom, moving up to the top with each
function call. Note that user stack frames have the same format: the module and
function relating to the user process/thread being profiled and an offset showing
the specific user PC.

The bottom stack frame, which was the most frequent frame during the sam-
pling period, indicates the kernel was spending most of its time in reads of net-
work sockets, and the second most frequent stack frame indicates that the kernel
is handling semaphore system calls (which is not unusual for an Oracle workload).
The third frame, at the top, is another kernel stack from network socket reads.

Another method for profiling the kernel is to use the func() function and
caller variable in DTrace to generate output that can be easier to follow than
paging through screenfuls of stack frames.

The previous script uses several different keys in the count aggregation (line 7).
First is func(caller); this DTrace func function takes a PC as an argument
and returns the symbolic name of the function the PC resides in. caller is a
DTrace variable that contains the PC location of the current thread just before
entering the current function. The first aggregation key provides the function that
called the current function. It is essentially the top two entries off the stack frame.
The script includes formatting in the tick-10sec probe, with a printf() statement
to display headers that are left-justified and a printa() statement that formats
the output in alignment with the headers. These DTrace features enable building
scripts with formatted output, improving the readability of the generated data.

1   #!/usr/sbin/dtrace -s
2   #pragma D option quiet
3
4   profile-997hz 
5   /arg0 && curthread->t_pri != -1/ 
6   { 
7 @[func(caller), func(arg0)] = count(); 
8   } 
9   tick-10sec 
10  { 
11          trunc(@,20); 
12          printf("%-24s %-32s %-8s\n","CALLER","FUNCTION","COUNT");
13 printa("%-24a %-32a %-@8d\n",@); 
14          exit(0); 
15  }

Script kprof_func.d

solaris# ./kprof_func.d
CALLER    FUNCTION              COUNT
unix`syscall_trap   genunix`sleepq_wakeall_chan      1607

continues
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The output shows the top kernel function was mutex_enter, followed by disp_
getwork, copyout, and so on. For details on what each of these kernel modules
and functions do, see Solaris Internals (McDougall and Mauro, 2006) and the other
texts in the bibliography.

If you want to take one more step on the kernel profile, obtaining a stack trace
when the probe that corresponds to the top kernel function can be very informa-
tive, as shown in the next example:

genunix`fop_rwlock       genunix`fop_rwlock       1652
unix`current_thread unix`mutex_delay_default        1667
genunix`fop_rwunlock   genunix`fop_rwunlock        1691
ip`tcp_fuse_output       ip`tcp_fuse_output       1777
genunix`str_cv_wait genunix`rwnext         1797
unix`current_thread ip`tcp_loopback_needs_ip        1927
0x28cdf48    unix`disp_getwork          1962
unix`_resume_from_idle unix`_resume_from_idle          2041
unix`current_thread unix`lock_set          2120
0x1400       ip`tcp_fuse_output               2157
unix`current_thread  unix`lock_set_spl         2292
unix`current_thread  unix`mutex_exit         2313
unix`current_thread   FJSV,SPARC64-VII`cpu_smt_pause   2656
unix`current_thread  unix`fp_restore         2978
genunix`kstrgetmsg       genunix`kstrgetmsg       3102
0x0      unix`utl0              3782
unix`current_thread FJSV,SPARC64-VII`copyout        4957
genunix`disp_lock_exit   unix`disp_getwork        5110
unix`current_thread   unix`mutex_enter           17420

solaris# dtrace -n 'fbt:unix:mutex_enter:entry'
dtrace: invalid probe specifier fbt:unix:mutex_enter:entry:
probe description fbt:unix:mutex_enter:entry does not match any probes

solaris# dtrace -l | grep mutex_enter
60103   lockstat     genunix   mutex_enter adaptive-acquire
60104   lockstat     genunix   mutex_enter adaptive-block
60105   lockstat      genunix    mutex_enter adaptive-spin

solaris# dtrace -n 'lockstat:genunix:mutex_enter: { @[stack()] = count(); }'
[...]

 ip`tcp_fuse_rrw+0x14
    genunix`rwnext+0x254
    genunix`strget+0x8c
    genunix`kstrgetmsg+0x228
   sockfs`sotpi_recvmsg+0x2ac
    sockfs`socktpi_read+0x44
    genunix`fop_read+0x20
    genunix`read+0x274
    unix`syscall_trap+0xac

          1867400

   genunix`cv_wait_sig+0x13c
    genunix`str_cv_wait+0x28
    genunix`strwaitq+0x238
    genunix`kstrgetmsg+0xdcc
   sockfs`sotpi_recvmsg+0x2ac
    sockfs`socktpi_read+0x44
    genunix`fop_read+0x20
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The previous example code shows three separate invocations of dtrace(1M)
and is intended to illustrate another method of tracing software function flow. In
the first invocation, we attempted to enable a probe for mutex_enter() using the
fbt provider, and dtrace(1M) reported that no such probe exists. This may hap-
pen in rare cases when you attempt to enable a kernel function found in a stack
frame; not every function in the kernel can be instrumented with the DTrace fbt
provider.3

The next step was to determine whether probes do exist that correspond to the
string mutex_enter, and we found that the lockstat provider manages three such
probes. The third and final invocation instruments those three probes by leaving
the fourth probe field, probename, blank, which instructs DTrace to do a wildcard
match. The DTrace command will capture a kernel stack frame when the probes
fire. The resulting output shows the top three kernel stack frames, and we can see
that the mutex calls are the result of network reads and writes (write and read
system calls entering the kernel sockfs module).

This again illustrates the drill-down methodology that DTrace facilitates: tak-
ing information provided during one phase of the investigation, a kernel function
in this case, and creating a new DTrace invocation to further understand the
source.

It is not uncommon for performance analysis or troubleshooting system behav-
ior to require looking at the system and software from several angles, based on col-
lected data and observations. We illustrate this here as we continue with our
example, moving from profiling kernel time to taking an important component of
that data (the system calls observed) and collecting relevant data to better under-
stand that aspect of the load. Taking the next step with the data collected up to
this point, we can track the source of the write and read system calls (bottom of
the stack frames shown) and determine which processes are making the calls.

    genunix`read+0x274
    unix`syscall_trap+0xac

          1868297

    ip`squeue_enter+0x10
   sockfs`sostream_direct+0x194
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

          1893532

3. Reference Chapter 12 and the “fbt Provider” chapter in the DTrace Guide for more informa-
tion on using the fbt provider and known limitations on instrumenting some functions.
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The DTrace program executed on the command line shown previously enables
two probes: the entry points for the read and write system calls. The predicate
uses the DTrace fds[] array variable for file description information. We use
arg0 to index the fds[] array, which is the file descriptor passed to both the read
and write system calls. Among the file data made available in the fds[] array is
the file system type associated with the file descriptor. We know from the stack
frame that the reads and writes are on sockets, which is a special file type that
represents a network endpoint. Thus, in the predicate, we’re instructing DTrace to
take action only on reads and writes to network sockets.

The action in the DTrace program is another use of the count aggregation,
keyed on the process name (execname) and PID. The resulting output (execname,
PID, and the count in the rightmost column) shows that basically all our Oracle
workload processes are generating the network I/Os, which accounts for why we
see the kernel spending most of its time in network code.

Continuing to drill down and again illustrating how much can be learned about
precisely what your system is doing, we can determine how many bytes per second
are being read and written over the network connections.

solaris# dtrace -n 'syscall::read:entry,syscall::write:entry
/fds[arg0].fi_fs == "sockfs"/ { @[execname,pid] = count(); }'
[...]
  oracle.orig          8868            57888
  oracle.orig          8772            57892
  rwdoit         8724            57894
  rwdoit         8914            57918
  oracle.orig          8956            57920
  oracle.orig          8872            58434
  rwdoit         8849            58434
  oracle.orig          9030            58511
  rwdoit         8982            58512
  oracle.orig          8862            58770
  rwdoit         8816            58772
  oracle.orig          8884            59068
  rwdoit         8846            59068
  oracle.orig          8778            59616
  rwdoit         8735            59616
  rwdoit         8909            62624
  oracle.orig          8954            62626
  rwdoit         8844            62776
  oracle.orig          8874            62778

solaris# dtrace -qn 'syscall::read:entry,syscall::write:entry
/fds[arg0].fi_fs == "sockfs"/ { @[probefunc] = sum(arg2); }
tick-1sec { printa(@); trunc(@); }'

  write                  34141396
  read                 1832682240

  write                  33994014
  read                 1822898304
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We modified our DTrace program on the command line. Using the same probes
and predicate as in the previous example, we changed the action taken when the
probe fires (we also added the -q flag to the dtrace command, to enable quiet
mode). In the action, we now use the sum() function to maintain an arithmetic
sum of the passed value, in this case arg2, which for read and write system calls is
the number of bytes to read or write with the call (reference the man page for a
system call of interest to determine what arguments are passed). The resulting
output indicates that the system is writing about 34MB/sec and reading 1.8 GB/sec.
Note that system calls such as read and write may not actually read or write the
number of bytes requested. The return value from read and write provides the
actual number of bytes, and this can be instrumented using the return probes for
those system calls, shown here as a script:

The rw_bytes.d script sets a flag at the entry of the system calls (line 6),
which is tested in the predicate for the return probes (line 9). arg0 in the return
probes is the value returned by the system call, which for read and write is the
number of bytes actually read or written, or -1 if there was an error. The predicate
filters out the error state so that -1 is not added to the sum() by accident.

Note also that the script instruments only the read and write systems calls (as
does the previous command-line example). Variants on those calls, such as pread(2),
pread64(2), read_nocancel(2), and so on, will not be instrumented. That can
be accomplished to some degree by using the asterisk (*) pattern-matching character

  write                  33950736
  read                 1824884640

  write                  33877395
  read                 1820879136

1  #! /usr/sbin/dtrace -qs
2
3  syscall::read:entry,syscall::write:entry
4  /fds[arg0].fi_fs == “sockfs”/ 
5  { 
6       self->flag = 1 
7  }
8  syscall::read:return,syscall::write:return
9  /(int)arg0 != -1 && self->flag/ 
10 { 
11      @[probefunc] = sum(arg0); 
12 }
13 syscall::read:return,syscall::write:return
14 {
15      self->flag = 0; 
16 }

Script rw_bytes.d
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in the probe name, for example, syscall::*read*:entry. Consult the man
pages on the system calls that will be matched in this way to ensure that arg0 is
used as expected for all instrumented calls, because it is used in the rw_bytes.d
script. Also, on Mac OS X, syscall::*read*:entry will match several system
calls that are not related to I/O at all:

Having looked at the system call dimension of the load, we will now turn our
attention back to the %sys (kernel) component of CPU utilization.

Another approach to understanding kernel CPU utilization is to use the fbt pro-
vider, which enables instrumenting the entry and return of most functions in the
kernel. Note that fbt manages a great many probes, so enabling a large number of
fbt probes on a busy system spending time in the kernel will potentially have a
noticeable probe effect.

As an example, let’s get a broad view of which functions are being executed most
frequently by the kernel, by first tracking which kernel modules show up in a
count aggregation.

macosx> dtrace -ln 'syscall::*read*:entry'
   ID   PROVIDER    MODULE               FUNCTION NAME
18506    syscall        read entry
18616    syscall       readlink entry
18740    syscall       readv entry
18806    syscall       pread entry
19136    syscall       aio_read entry
19156    syscall    __pthread_kill entry
19158    syscall    __pthread_sigmask entry
19162    syscall        __disable_threadsignal entry
19164    syscall  __pthread_markcancel entry
19166    syscall   __pthread_canceled entry
19196    syscall    __pthread_chdir entry
19198    syscall    __pthread_fchdir entry
19220    syscall    bsdthread_create entry
19222    syscall  bsdthread_terminate entry
19232    syscall   bsdthread_register entry
19244    syscall    thread_selfid entry
19292    syscall    read_nocancel entry
19322    syscall    readv_nocancel entry
19328    syscall    pread_nocancel entry

solaris# dtrace -n 'fbt:::entry { @k[probemod] = count(); }'
dtrace: description 'fbt:::entry ' matched 29021 probes
^C
[...]
emlxs                  432236

  tmpfs                   3552878
  TS                   5364110
  FJSV,SPARC64-VII                  5403467
  platmod                  10341211
  sockfs                  20297174
  ip                   20526931
  unix                  117374161
  genunix                 312204419
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The D program in the previous example enables a probe at the entry point of
every kernel function (29,021 probes). The count aggregation data shows calls in
the genunix and unix modules were the most frequent, followed by ip and
sockfs, so significant networking activity is taking place. We can drill down fur-
ther by honing in on just the genunix module:

We added a module name to the DTrace probe (genunix) and changed the
aggregation key from probemod (which gave us kernel modules) to probefunc,
which will provide kernel function names in the genunix kernel module. Note the
top kernel functions displayed, syscall_mstate() and mstate_aggr_state().
We can drill down one more level to get the complete picture:

Here we gathered kernel stack frames when syscall_mstate() was called,
and we see it is being called right out of the system call trap handler. So, the calls
from functions in the genunix module are managing a high rate of system calls and
calling into the associated per-thread microstate accounting (mstate) code. We can
apply the same set of steps to the unix kernel module, which we saw in the fbt
kernel module count.

solaris# dtrace -n 'fbt:genunix::entry { @k[probefunc] = count(); }'
dtrace: description 'fbt:genunix::entry ' matched 6267 probes
^C
[...]
  times                   3018463
  disp_lock_exit_high                  3353612
  cv_broadcast                 3882154
  mstate_aggr_state                 6036982
  syscall_mstate                  9838849

solaris# dtrace -n 'fbt:genunix:syscall_mstate:entry { @k[stack()] = count(); }'
dtrace: description 'fbt:genunix:syscall_mstate:entry ' matched 1 probe
^C
[...]

    unix`syscall_trap+0x114
         10467759

    unix`syscall_trap+0x68
         10493467

solaris# dtrace -n 'fbt:unix::entry { @k[probefunc] = count(); }'
dtrace: description 'fbt:unix::entry ' matched 2179 probes
^C
[...]
  bitset_in_set                1867698
  disp_getwork                 2331845
  default_lock_backoff                 2915223

continues
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The previous example uses the same set of steps shown previously. First we
gathered a kernel function call count for the unix module, followed by gathering
kernel stack frames on the entry point of the most frequent kernel function
(bitset_find_in_word()) from that module. We can see from the stack frame
that the bitset_find_in_word() call is originating from a high volume of write
system calls to network sockets and the kernel issuing a wake-up to sleeping
threads. 

Before moving on, we should point out again that use of the fbt provider is an
advanced use of DTrace; proper interpretation of the data requires knowledge of
the kernel, and you may need to examine the kernel source code to understand
what a particular module or function does. The fbt provider manages a lot of
probes, so use it with care on busy systems spending time in the kernel and poten-
tially enabling a large number of fbt probes. 

Kernel profiling applies of course when CPUs are spending enough time in the
kernel to warrant having a look. If your system CPU utilization shows most of the
CPU cycles are in user mode, it’s useful to determine what is running and profile
the user processes. Recall that the CPU utilization for this example indicated
about 60 percent of CPU time is spent in user mode. Here’s a sample using the
Solaris mpstat(1M) command:

  cmt_ev_thread_swtch                  5092075
  bitset_find_in_word                  5244363

solaris# dtrace -n 'fbt:unix:bitset_find_in_word:entry { @k[stack()] = count(); }'
dtrace: description 'fbt:unix:bitset_find_in_word:entry ' matched 1 probe
^C
[...]

    unix`bitset_find+0x64
    unix`cpu_wakeup+0x80
   genunix`sleepq_wakeall_chan+0x48
   genunix`cv_broadcast+0x4c
    ip`tcp_fuse_output+0x7f0
    ip`tcp_output+0x74
    ip`squeue_drain+0x130
    ip`squeue_enter+0x348
   sockfs`sostream_direct+0x194
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

           997431

    unix`bitset_find+0x64
    unix`cpu_wakeup+0x80
   genunix`sleepq_wakeall_chan+0x48
   genunix`cv_broadcast+0x4c
    ip`tcp_fuse_output+0x7f0
    ip`tcp_output+0x74
    ip`squeue_enter+0x74
   sockfs`sostream_direct+0x194
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

          6778835
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We know from previous examples that we have many Oracle processes running
on the CPUs. In Solaris, nonetheless, it can be useful to capture a few samples
with prstat(1M) to determine which processes are the top CPU consumers. On
non-Solaris platforms, top(1) can be used to accomplish the same task.

prstat(1) provides another view of an Oracle workload, with many Oracle
shadow processes consuming CPU cycles. prstat(1) also shows us which pro-
cesses have more than one thread (the number value following the / in the last col-
umn). We see process PID 2674 has 19 threads. We can use another prstat(1)
invocation to take a closer look just at that process and where the individual
threads are spending time:

solaris# mpstat 1
CPU minf mjf xcal  intr ithr  csw icsw migr smtx srw syscl  usr sys  wt idl
  0    0   0 3660  1678   38 5715  101 2946  124  6 20093   58  33   0   9
  1    0   0 3782  1797   58 5998  108 2928  129  11 21123   59  29   0  12
  2    0   0 3632  1695   57 5968  111 3101  125 11 20523   62  29   0   9
  3    0   0 3579  1850   53 5832  104 2898  127  6 20498   61  28   0  11
  4    0   0 3525  1697  47 5781   82 3005  122  9 20221   63  28   0   9
  5    0   0 3620  1987  350 5375   79 2746  142  6 19332   57  33   0  10
  6    0   0 3644  1707  51 5821   95 3013  121  4 19564   62  29   0   9
  7    0   0 3529  1809   47 5725   86 2893  112   6 19878   61  28   0  11
  8    0   0 3725  1862   62 6029  103 3124  159  9 20713   61  29   0  10
. . .

solaris# prstat -c 1
  PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP
  2674 oracle     38G  38G sleep    0 0   6:03:27 1.1% oracle.orig/19
  9568 oracle     38G  38G sleep    0 0   0:03:58 0.8% oracle.orig/1
  9566 oracle     38G  38G cpu24    0 0   0:03:57 0.8% oracle.orig/1
  9570 oracle     38G  38G sleep    0 0   0:03:57 0.8% oracle.orig/1
  9502 oracle     38G  38G cpu19    0 0   0:03:57 0.8% oracle.orig/1
  9762 oracle     38G  38G cpu12    0 0   0:03:58 0.8% oracle.orig/1
  9500 oracle     38G  38G sleep    0 0   0:03:57 0.8% oracle.orig/1
  9736 oracle     38G  38G cpu18    0 0   0:03:50 0.8% oracle.orig/1
  9580 oracle     38G  38G sleep    0 0   0:03:50 0.8% oracle.orig/1
  9662 oracle     38G  38G cpu28    0 0   0:03:48 0.8% oracle.orig/1
  9508 oracle     38G  38G cpu13    0 0   0:03:48 0.8% oracle.orig/1
  9734 oracle     38G  38G cpu31    0 0   0:03:46 0.8% oracle.orig/1
  9562 oracle     38G  38G sleep    0 0   0:03:44 0.8% oracle.orig/1
  9668 oracle     38G  38G sleep    0 0   0:03:44 0.8% oracle.orig/1
  9748 oracle     38G  38G sleep    0 0   0:03:43 0.8% oracle.orig/1
Total: 281 processes, 1572 lwps, load averages: 57.01, 51.62, 51.27

# prstat -cLmp 2674
   PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID 
  2674 oracle    14 8.7 0.0 0.0 0.0 0.0  76 1.8 4K 130 10K 0 oracle.orig/1
  2674 oracle   0.4 4.7 0.0 0.0 0.0  86 8.8 0.5  1K 637  1K   0 oracle.orig/18
  2674 oracle   0.4 4.6 0.0 0.0 0.0  85 9.1 0.5  1K 624  1K   0 oracle.orig/5
  2674 oracle   0.4 4.6 0.0 0.0 0.0  85 9.4 0.5  1K 609  1K   0 oracle.orig/19
  2674 oracle   0.4 4.6 0.0 0.0 0.0  86 8.7 0.4  1K 632  1K   0 oracle.orig/16

continues
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Refer to the prstat(1) man page for details on the command line and what the
individual columns mean. Basically, we asked prstat(1) to display the percent-
age of time the individual threads are spending in each microstate (columns USR
through LAT are thread microstates tracked in the kernel).

We can take a closer look at the user component of CPU utilization using sev-
eral methods. Earlier, we demonstrated a couple of one-liners that show which pro-
cesses are getting on-CPU, using both the DTrace sched provider and the profile
provider. Let’s take another quick look:

Again, the top user process is the Oracle log writer, PID 2674. 
The variables in the aggregation key are printed in order. In this case, starting

from the left, the output is the process name (execname), PID, and the last col-
umn on the right is the count. The data aligns with the prstat(1M) output, show-
ing processes PID 2674 as the top user process. The largest count item is sched,
which is the Solaris kernel (sched is the PID 0 process name). Mac OS X uses
kernel_task.

We can explore this further by using /execname == "sched"/ as a predicate
with the sched:::on-cpu probe and capturing a stack trace:

  2674 oracle   0.4 4.6 0.0 0.0 0.0  85 9.2 0.5  1K 624  1K   0 oracle.orig/9
  2674 oracle   0.4 4.6 0.0 0.0 0.0  85 9.3 0.5  1K 610  1K   0 oracle.orig/7
  2674 oracle   0.4 4.5 0.0 0.0 0.0  85 9.3 0.5  1K 613  1K   0 oracle.orig/17
  2674 oracle   0.4 4.4 0.0 0.0 0.0  86 9.2 0.5  1K 585  1K   0 oracle.orig/11
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/15
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/14
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/13
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/12
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/10
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/8
Total: 1 processes, 19 lwps, load averages: 56.07, 56.48, 55.46 

solaris# dtrace -n 'sched:::on-cpu { @[execname, pid] = count(); }'
[...]
  oracle.orig         10194            16124
  oracle.orig         10362            16149
  oracle.orig         10370            16186
  oracle.orig         10268            16231
  oracle.orig         10290            16249
  oracle.orig         10352            16258
  rwdoit        10149            16260
  oracle.orig         10444            16296
  rwdoit        10245            16329
  rwdoit        10415            16401
  oracle.orig         10192            16967
  oracle.orig         10280            17035
  oracle.orig         10456            17114
  oracle.orig          2674            35566
  sched           0          1361419
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As we can see, there is nothing of much interest here; we’re in the kernel idle
loop for the most part when sched is on-CPU. 

Let’s take another look at the user mode component of the load. Drilling down
further into the kernel component, while potentially interesting, is not essential
for this example because we’re not chasing CPU cycles being consumed in the ker-
nel; we know that it’s user processes burning CPU time. But we wanted to illus-
trate how to use DTrace to drill down further on observed data and also show that
there may be situations where digging into kernel source code helps to further
understand the source of specific events.

Moving on to profiling the user component of our sample, we observed processes
called oracle.orig dominating the on-CPU profile. There are several different
ways we can take a closer look at these processes. First, let’s find out what system
calls the busy user processes are executing:

# dtrace -n 'sched:::on-cpu /execname == "sched"/ { @[stack()] = count(); }'
dtrace: description 'sched:::on-cpu ' matched 3 probes
^C
[...]

   unix`_resume_from_idle+0x228
     unix`idle+0xb4
    unix`thread_start+0x4

          1020020

   unix`_resume_from_idle+0x228
     unix`idle+0x140
    unix`thread_start+0x4

          1739939

solaris# dtrace -n 'syscall:::entry /execname == "oracle.orig"/ 
{ @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 234 probes
^C

  sysconfig                       2
  mmap                     8
  getloadavg                    10
  pollsys                    34
  pread                     38
  ioctl                     136
  close                     222
  open                     222
  lwp_sigmask                   774
  sigaction                   2322
  nanosleep                   3479
  yield                    7824
  pwrite                   33957
  kaio                   66733
  lwp_park                  67914
  semsys                   192263
  write                   3848880
  read                   3849103
  times                  27201971
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Here we see the times(2) system call is the most frequently executed, fol-
lowed by read(2), write(2), and semsys(2)—all very typical for an Oracle
workload. A simple change to the predicate, and we get the same information for
another process that appeared in our earlier profile, rwdoit:

Here we see the rwdoit process is all about write(2) and read(2) system
calls. Again, we can look at what type of files are being read and written by these
processes:

When looking at I/O targets, it can be useful to start by determining the file sys-
tem type, which in turn can make it easier to fine-tune the next DTrace program
for a closer look. In this case, all the reads and writes are to the socket file system
(sockfs), which means it’s all network I/O (which we observed earlier).

Getting back to the oracle.orig processes, it is often useful to obtain a user
stack leading up to frequently called system calls. This may or may not offer much
insight, depending on your familiarity with the code. Nonetheless, obtaining this
information and passing it on to a development team enables them to more quickly
determine whether there is an opportunity for improvement (or even a bug).

solaris# dtrace -n 'syscall:::entry /execname == "rwdoit"/ 
{ @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 234 probes
^C

  gtime                   912832
  read                   2574616
  write                   2574621

solaris# dtrace -n 'syscall::read:entry,syscall::write:entry
/execname == "rwdoit"/ { @[fds[arg0].fi_fs] = count(); }'
dtrace: description 'syscall::read:entry,syscall::write:entry ' matched 2 probes
^C

  sockfs                  5054183 

solaris# dtrace -qn 'syscall::times:entry /execname == "oracle.orig"/ 
{ @[ustack()] = count(); } END { trunc(@, 2); exit(0); }'
^C

    libc.so.1`times+0x4
  oracle.orig`kews_cln_timestate+0x80

    oracle.orig`ksudlc+0x9b0
    oracle.orig`kssdel+0xc0
    oracle.orig`ksupop+0x8e4
    oracle.orig`opiodr+0x724
    oracle.orig`ttcpip+0x420
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The previous example truncated the aggregation to just the top two user stack
frames. This is generally a good idea on large, busy machines running large, enter-
prise workloads, because the sheer number of processes and unique stack frames
can be extremely large and take a very long time to process once the DTrace invo-
cation is terminated. Note that the stack frames represent the function call path
through user code, in this case the oracle.orig executable. The function names
may or may not provide the DTrace user insight as to what the code is doing lead-
ing up to the execution of the system call. As we stated earlier, the software com-
pany or organization that owns the code is best equipped to make sense of the
stack frames, because they will have access to, and knowledge of, the source code.

It is often useful to examine the workload process that is the top CPU con-
sumer. Recall from previous examples that the Oracle logwriter process is our top
CPU user in this example. In Solaris, using prstat(1) is the best place to start to
profile the time of a specific process. We showed an example of this earlier. Here’s
another sample:

    oracle.orig`opitsk+0x5e8
    oracle.orig`opiino+0x3e8
    oracle.orig`opiodr+0x590
    oracle.orig`opidrv+0x448
    oracle.orig`sou2o+0x5c
   oracle.orig`opimai_real+0x130
   oracle.orig`ssthrdmain+0xf0
    oracle.orig`main+0x134
    oracle.orig`_start+0x17c

            29356

    libc.so.1`times+0x4
   oracle.orig`ksupucg+0x5d8
    oracle.orig`opiodr+0x358
    oracle.orig`ttcpip+0x420
    oracle.orig`opitsk+0x5e8
    oracle.orig`opiino+0x3e8
    oracle.orig`opiodr+0x590
    oracle.orig`opidrv+0x448
    oracle.orig`sou2o+0x5c
   oracle.orig`opimai_real+0x130
   oracle.orig`ssthrdmain+0xf0
    oracle.orig`main+0x134
    oracle.orig`_start+0x17c

            29357

# prstat -Lmp 2674 -c 1
PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID 

  2674 oracle    16 9.3 0.0 0.0 0.0 0.0  73 1.4  1K  31  2K   0 oracle.orig/1
  2674 oracle   0.4 5.1 0.0 0.0 0.0  86 8.1 0.5 304 164 390   0 oracle.orig/11
  2674 oracle   0.4 5.0 0.0 0.0 0.0  87 7.5 0.4 301 150 389   0 oracle.orig/7
  2674 oracle   0.4 5.0 0.0 0.0 0.0  87 7.5 0.6 311 152 388   0 oracle.orig/17
  2674 oracle   0.4 5.0 0.0 0.0 0.0  86 7.7 0.5 310 152 391   0 oracle.orig/19
  2674 oracle   0.4 4.9 0.0 0.0 0.0  86 8.1 0.5 305 154 393   0 oracle.orig/9

continues
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The prstat(1) data shows the logwriter process has one relatively busy thread
(thread 1), while the other threads spend most of their time waiting on a user lock
(LCK), which is most likely a user-defined mutex lock associated with a condition
variable. The microstate profile we get from prstat shows the busy thread spend-
ing 16 percent of time running on-CPU in user mode and 9.3 percent of time run-
ning on-CPU in the kernel (USR and SYS columns). We can get a time-based
sample of which user functions the process is spending time in using the profile
provider:

As when we examined user stack frames, the output here is a list of user func-
tions—the executable object where the function resides, followed by the backtick (`)
character, followed by the actual function name. The column on the right is the
count value from the count() aggregating function we used in the D program.
The most frequent function is kcrfw_redo_write(), which we can infer initiates
a write to the Oracle redo log file (pretty much what we would expect examining
the Oracle log writer process).

We can also see how much time the threads are spending on-CPU once they get
scheduled, using the following DTrace script:

  2674 oracle   0.4 4.8 0.0 0.0 0.0  87 7.5 0.5 306 147 392 0 oracle.orig/18
  2674 oracle   0.4 4.7 0.0 0.0 0.0  87 7.8 0.5 314 146 387 0 oracle.orig/16
  2674 oracle   0.4 4.7 0.0 0.0 0.0  87 7.7 0.5 305 143 392 0 oracle.orig/5
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/15
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/14
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/13
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/12
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/10
  2674 oracle   0.0 0.0 0.0 0.0 0.0 100 0.0 0.0   0   0   0   0 oracle.orig/8
Total: 1 processes, 19 lwps, load averages: 57.39, 57.11, 54.96

solaris# dtrace -n 'profile-1001hz /arg1 && pid == 2674/ { @[ufunc(arg1)] = 
count(); }'
dtrace: description 'profile-1001hz ' matched 1 probe
^C
[...]
  oracle.orig`skgfospo                   126
  oracle.orig`ksbcti                     130
  oracle.orig`ksl_postm_add                   137
  oracle.orig`dbgtTrcData_int                   143
  oracle.orig`ksfd_update_iostatsbytes               146
  libc.so.1`clear_lockbyte                   175
  oracle.orig`kslgetl                    201
  libc.so.1`mutex_lock_impl                   237
  oracle.orig`kcrfw_post                    278
  oracle.orig`_$c1A.kslpstevent                  355
  oracle.orig`kcrfw_redo_write                  638
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The wrun.d script is a slightly modified version of /usr/demo/dtrace/
whererun.d. The differences are the predicate for the on-CPU probe that matches
the specified process and changing the maximum seconds to the integer variable
MAX, which is printed in the BEGIN action. This script will exit automatically after
ten seconds (which can be modified on line 4), and it tracks the total time a pro-
cess was on a particular CPU over that ten-second period.

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4  inline int MAX = 10;
5
6  dtrace:::BEGIN
7  {
8   start = timestamp;
9          printf(“Tracing for %d seconds...hit Ctrl-C to terminate sooner\n”, MAX);
10 }
11
12 sched:::on-cpu
13 /pid == $target/
14 {
15   self->ts = timestamp;
16 }
17
18 sched:::off-cpu
19 /self->ts/
20 {
21         @[cpu] = sum(timestamp - self->ts);
22         self->ts = 0;
23 }
24
25 profile:::tick-1sec
26 /++x == MAX/
27 {
28         exit(0);
29 }
30
31 dtrace:::END
32 {
33         printf("\nCPU distribution over %d milliseconds:\n\n",
34  (timestamp - start) / 1000000);
35         printf("CPU microseconds\n--- ------------\n");
36   normalize(@, 1000);
37  printa("%3d %@d\n", @);
38 }

Script wrun.d

# ./wrun.d -p 2674
Tracing for 10 seconds...hit Ctrl-C to terminate sooner

CPU distribution over 10000 milliseconds:

CPU microseconds
--- ------------
 33 204
 61 1041

continues
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 56 1220
 57 1326
 50 1339
 58 1364
 54 1600
 48 1658
 42 1702
 51 1743
 45 1815
 36 1817
 47 1940
 46 2042
 41 2120
 49 2293
 62 2314
 60 2314
 43 2353
 39 2436
 37 2478
 38 2486
 44 2566
 55 2731
 34 2767
 35 2817
 40 2958
 53 3190
 63 3515
 59 3659
 52 4256
 32 4285
 20 154417
 21 155361
 15 161505
  8 163002
 31 163594
  1 164015
  9 165568
 29 166454
 19 166781
 18 166828
 11 166909
 27 168510
  6 169076
  7 169084
 14 169555
 28 172845
 26 175216
  4 175753
 10 176914
  5 179316
  0 180847
 16 180906
 30 181307
 25 183428
 22 186952
  2 189294
  3 189756
 12 190448
 17 192988
 23 193152
 13 196606
 24 199634
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The output from the wrun.d script shows the time in nanoseconds the various
threads in the logwriter process spent on the available system CPUs. The data
indicates that the threads in this process are not very CPU-bound (which we also
observed in the prstat(1) data), with a maximum time of 199,634 nanoseconds
(about 200 microseconds) spent on-CPU 24 over ten seconds of wall clock time. 

Having looked at CPU usage with some profiles and utilization scripts, along
with user processes getting on-CPU, let’s take a look at run queue latency. From a
performance perspective, it is very useful to know whether runnable threads are
spending an inordinate amount of time waiting for their turn on a CPU and
whether some CPUs have longer wait times than others. We can use the sched pro-
vider for this:

This script uses the DTrace avg(), max(), and min() functions to collect the
data for column output, which is printed in a per-second tick probe. We also dem-
onstrate the use of the printa() function to format the data and display multiple
aggregations (line 24). 

The sched:::enqueue probe fires when a thread is placed on a CPU run
queue, where a time stamp is stored in the global variable s (line 5), which is an
associative array, indexed by the lwpid and process PID derived from the argu-
ments available to that probe. When the dequeue probe fires, a thread is being
dequeued to be placed on a CPU. The predicate (line 9) both assigns the array

1   #!/usr/sbin/dtrace -s
2   #pragma D option quiet
3   sched:::enqueue
4   {
5           s[args[0]->pr_lwpid, args[1]->pr_pid] = timestamp;
6   }
7
8   sched:::dequeue
9   /this->start = s[args[0]->pr_lwpid, args[1]->pr_pid]/
10  {
11          this->time = timestamp - this->start;
12 @lat_avg[args[2]->cpu_id] = avg(this->time);
13 @lat_max[args[2]->cpu_id] = max(this->time);
14 @lat_min[args[2]->cpu_id] = min(this->time);
15 s[args[0]->pr_lwpid, args[1]->pr_pid] = 0;
16
17  }
18  tick-1sec
19  {
20          printf("%-8s %-12s %-12s %-12s\n", "CPU", "AVG(ns)",
 "MAX(ns)", "MIN(ns)");
21 printa("%-8d %-@12d %-@12d %-@12d\n", @lat_avg, @lat_max, @lat_min);
22          trunc(@lat_avg); trunc(@lat_max); trunc(@lat_min);
23  }

Script lat.d
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value to this->start and checks that it is not zero, which ensures that the
enqueue event was traced and the start time is known.

The output shown previously (truncated for space) shows the average run queue
latency time runs in the 45-microsecond to 60-microsecond range, with the low end
in the 5-microsecond to 6-microsecond range and a couple max values in the milli-
seconds. CPU 7 had the largest wait of 52 milliseconds.

For a per process/thread view, the Solaris prstat(1) command, with micro-
states and per-thread statistics, is a great tool to observe what percentage of time
threads are runnable, waiting for a CPU.

CPU      AVG(ns)   MAX(ns)      MIN(ns) 
[...]
24       45050 1532700      6100
22       45138 424700       4800
14       45144 507500       5500
21       45200 478200       4000
26       45215 529100       5000
17       45269 462900       4500
5        45311 832800       4700
4        45381 370800       5100
3        45414 697300       4700
20       45465 383200       7100
16       45521 675700       5300
12       45709 656300       5400
29       46143 438500       5000
23       46346 378000       4400
15       46460 376300       5000
6        46484 500600       4500
13       46534 506300       5400
28       46561 338400       5300
18       46577 486900       6500
10       46665 450000       4700
30       46982 837800       4300
31       47593 394700       5700
0        48973 661800       7200
7        60798     52566200     3800 

solaris# prstat -cLm 1 
   PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID 
 25888 oracle    40  13 0.0 0.0 0.0 0.0  42 4.6 2K  40 17K  0 oracle.orig/1
 25812 oracle    39  13 0.0 0.0 0.0 0.0  43 4.8 2K  26 17K  0 oracle.orig/1
 25806 oracle    39  13 0.0 0.0 0.0 0.0  43 4.6 2K  37 17K  0 oracle.orig/1
 26066 oracle    39  13 0.0 0.0 0.0 0.0  44 4.6 1K  38 17K  0 oracle.orig/1
 25820 oracle    39  13 0.0 0.0 0.0 0.0  44 4.6 1K  44 17K  0 oracle.orig/1
 26076 oracle    38  13 0.0 0.0 0.0 0.0  44 4.6 1K  39 16K  0 oracle.orig/1
 25986 oracle    38  12 0.0 0.0 0.0 0.0  45 4.3 1K  38 16K  0 oracle.orig/1
 25882 oracle    38  12 0.0 0.0 0.0 0.0  45 4.3 1K  41 16K  0 oracle.orig/1
 26080 oracle    38  13 0.0 0.0 0.0 0.0  45 4.6 1K  33 16K  0 oracle.orig/1
 25808 oracle    38  12 0.0 0.0 0.0 0.0  45 4.5 1K  30 16K  0 oracle.orig/1
 25892 oracle    37  13 0.1 0.0 0.0 0.0  45 4.4 1K  41 16K  0 oracle.orig/1
 25810 oracle    38  13 0.0 0.0 0.0 0.0  45 4.7 1K  45 16K  0 oracle.orig/1
 25804 oracle    38  12 0.0 0.0 0.0 0.0  45 4.5 1K  39 16K  0 oracle.orig/1
 26082 oracle    39  11 0.0 0.0 0.0 0.0  46 4.0 2K  34 17K  0 oracle.orig/1
 25980 oracle    38  12 0.0 0.0 0.0 0.0  48 2.4 2K  18 20K  0 oracle.orig/1
Total: 277 processes, 1569 lwps, load averages: 57.53, 56.45, 54.35
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The LAT column is defined as run queue latency. In this sample, we see our Ora-
cle processes spending about 4.6 percent of their time in each one-second sampling
interval waiting for a CPU. Using DTrace, we can measure the actual time spent
on the run queue for an individual process (or thread).

The plat.d script uses a predicate with the sched:::enqueue probe that
checks the PID of the process is enqueued with the $target DTrace macro, which
is expanded to the PID passed on the command line when the script is executed.
The sum function is used to track the total time spent between enqueue and
dequeue every second.

The resulting output shows that our target process spends about 110 millisec-
onds in each one-second period waiting on a run queue.

1   #!/usr/sbin/dtrace -s

2   #pragma D option quiet
3   sched:::enqueue
4   /args[1]->pr_pid == $target/
5   {
6  s[args[2]->cpu_id] = timestamp;
7   }
8
9   sched:::dequeue
10  /s[args[2]->cpu_id]/
11  {
12          @lat_sum[args[1]->pr_pid] = sum(timestamp - s[args[2]->cpu_id]);
13   s[args[2]->cpu_id] = 0;
14  }
15
16  tick-1sec
17  {
18   normalize(@lat_sum, 1000);
19          printa("PROCESS: %d spent %@d microseconds waiting for a CPU\n", @lat_sum);
20    trunc(@lat_sum);
21  }

Script plat.d

solaris# ./plat.d -p 2674

PROCESS: 2674 spent 119481 microseconds waiting for a CPU
PROCESS: 2674 spent 122856 microseconds waiting for a CPU
PROCESS: 2674 spent 134672 microseconds waiting for a CPU
PROCESS: 2674 spent 125041 microseconds waiting for a CPU
PROCESS: 2674 spent 117196 microseconds waiting for a CPU
PROCESS: 2674 spent 120019 microseconds waiting for a CPU
PROCESS: 2674 spent 117465 microseconds waiting for a CPU
PROCESS: 2674 spent 118093 microseconds waiting for a CPU
PROCESS: 2674 spent 118528 microseconds waiting for a CPU
^C
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It can also be useful to track CPU run queue depth across all the CPUs on the sys-
tem. Run queue depth refers to the number of runnable threads sitting on run queues
waiting for their turns on a CPU. The following script is from the DTrace Guide:

Using the sched provider’s enqueue and dequeue probes (lines 5 and 11), we incre-
ment an array variable, qlen, indexed by the CPU ID, and set a clause-local variable
(this->len) to that value (line 7). The aggregation on line 8 uses lquantize()
to provide a linear plot of per-CPU run queue depth. The dequeue probe is used to
decrement the depth variable when a thread is dequeued. 

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  sched:::enqueue
6  {
7 this->len = qlen[args[2]->cpu_id]++;
8          @[args[2]->cpu_id] = lquantize(this->len, 0, 100);
9  }
10
11 sched:::dequeue
12 /qlen[args[2]->cpu_id]/
13 {
14   qlen[args[2]->cpu_id]--;
15 }

Script rq.d

solaris# ./rq.d
^C
[...]
       39
           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  81527
               1 |@               1424
               2 |              21
               3 |              1
               4 |              1
               5 |              0

       47
           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  81520
               1 |@               1523
               2 |              30
               3 |              0

       53
           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  83952
               1 |@               1592
               2 |              28
               3 |              0
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The sample output shows a very good balance of runnable threads on the run
queues of each CPU. Each CPU typically has one to three runnable threads on its
run queue during the sampling period.

CPUs and Interrupts

Observing interrupt activity can be important in understanding and maximizing
performance. Modern I/O devices, such as 10Gb NIC cards and multiport 2/4/8Gb
Fibre Channel HBAs, SATA controllers, and so on, can sustain very high rates of I/O,
and interrupts are part of system I/O processing. Significant work went into the
Solaris kernel to distribute interrupt load from fast devices to multiple CPUs and
provide good out-of-the-box performance, but in some cases interrupt load can
intrude on sustainable application throughput when application threads share a
CPU that is handling a high rate of interrupts. intrstat(1M) is a DTrace con-
sumer (command) included in Solaris which provides more detail on per-CPU
interrupt load:

       44
           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  84715
               1 |@               1607
               2 |              33
               3 |              0

       52
           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  84833
               1 |@               1688
               2 |              35
               3 |              2
               4 |              0

       54
           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  82882
               1 |@               1723
               2 |              37
               3 |            0

solaris# intrstat
      device | cpu4 %tim      cpu5 %tim    cpu6 %tim      cpu7 %tim
-------------+------------------------------------------------------------
    e1000g#1 |         0  0.0     13252 51.1   0  0.0         0  0.0
      ehci#0 |         0  0.0         0  0.0     0  0.0         0  0.0

      device | cpu4 %tim      cpu5 %tim    cpu6 %tim      cpu7 %tim
-------------+------------------------------------------------------------
    e1000g#1 |         0  0.0     12886 51.9   0  0.0         0  0.0

continues
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The intrstat(1M) sample shown previously (edited for space) shows CPU 5
handling a high rate of interrupts from an e1000g network interface and spending
just more than 50 percent of available cycles processing those interrupts. 

The DTrace profile provider can be used to get another view on where CPU 5 is
spending its time:

The one-liner shown previously is very similar to prior examples of profiling the
kernel. In this example, we added a third expression to the predicate, testing for
CPU 5. cpu is a global, built-in DTrace variable, and using it in a predicate in this
way enables profiling a specific CPU, or a group of CPUs, by adding additional
expressions to the predicate. This is extremely useful on systems with large CPU
counts when the goal is to profile a subset of the available CPUs. The data here
shows that the top kernel functions are the e1000g_receive() and e1000g_
send() functions, along with the generic kernel mutex_enter() function. We can
surmise that the kernel mutex lock is likely an e1000g driver-specific lock. With
DTrace, it is easy to validate this.

      ehci#0 |         0 0.0         0  0.0    0  0.0         0  0.0
     emlxs#0 |         0 0.0         0  0.0    0  0.0         0  0.0
       mpt#0 |         0  0.0         0  0.0     0  0.0         0  0.0

      device |      cpu4 %tim      cpu5 %tim   cpu6 %tim    cpu7 %tim
-------------+------------------------------------------------------------
       ata#0 |         0  0.0         0  0.0     3  0.0         0  0.0
    e1000g#1 |         0  0.0     13036 51.4   0  0.0         0  0.0
      ehci#0 |         0 0.0         0  0.0    0  0.0         0  0.0
     emlxs#0 |         0 0.0         0  0.0    0  0.0         0  0.0
       mpt#0 |         0  0.0         0  0.0     0  0.0         0  0.0
      ohci#0 |         9 0.1         0  0.0    0  0.0         0  0.0

solaris# dtrace -n 'profile-997hz /arg0 && curthread->t_pri != -1 
&& cpu == 5/ { @[func(arg0)] = count(); }'
dtrace: description 'profile-997hz ' matched 1 probe
[...]
  unix`do_splx                   126
  genunix`dblk_lastfree                    128
  unix`kcopy                   137
  genunix`hcksum_assoc                   166
  e1000g`e1000g_recycle                    168
  unix`bcopy                   185
  mac_ether`mac_ether_header_info                 204
  ip`tcp_rput_data                    301
  genunix`ddi_dma_sync                   375
  e1000g`e1000g_send                     392
  unix`mutex_enter                    468
  e1000g`e1000g_receive                    725
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The kernel stack trace captured when mutex_enter() is called validates that
indeed the mutex lock calls are coming up from the e1000g interrupt handler
(e1000g_intr), which seems reasonable given the system profile showing virtu-
ally all the kernel cycles spent in the e1000g driver code. If the presence of the ker-
nel mutex lock function in the profile raises concerns over possible kernel lock
contention, then lockstat(1M), which is another DTrace consumer, will provide
kernel lock statistics.

solaris# dtrace -n 'mutex_enter:* { @s[stack()] = count(); }'
[...]

    ip`ipcl_classify_v4+0xa2
    ip`ip_tcp_input+0x757
    ip`ip_input+0xa1e
    dls`i_dls_link_rx+0x2c7
    mac`mac_do_rx+0xb7

     mac`mac_rx+0x1f
    e1000g`e1000g_intr+0x135
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

           355485

   ip`ipcl_classify_v4+0x14b
    ip`ip_tcp_input+0x757
    ip`ip_input+0xa1e
    dls`i_dls_link_rx+0x2c7
    mac`mac_do_rx+0xb7

     mac`mac_rx+0x1f
    e1000g`e1000g_intr+0x135
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

           355611

    ip`squeue_drain+0x175
   ip`squeue_enter_chain+0x394
    ip`ip_input+0xbff
    dls`i_dls_link_rx+0x2c7
    mac`mac_do_rx+0xb7

     mac`mac_rx+0x1f
    e1000g`e1000g_intr+0x135
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

           369351

solaris# lockstat sleep 10 

Adaptive mutex spin: 64453 events in 10.050 seconds (6413 events/sec)

Count indv cuml rcnt nsec Lock         Caller
-------------------------------------------------------------------------------
13393  21%  21% 0.00   1441 0xffffff112f01e428    e1000g_rxfree_func+0xaa 
11494  18%  39% 0.00  1622 0xffffff112f01e428   e1000g_receive+0x337
  400   1%  39% 0.00   1157 0xffffff112f01e4e0     e1000g_send+0x1422
  395   1%  40% 0.00 1620 0xffffff117ad98810   putnext+0x70

continues
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The lockstat data indicates that the top mutex spin events and mutex block
events occurred in e1000g driver routines. The mutex spin data on the first line
indicates a total of 19.3 milliseconds (13393 spins  1441 nanoseconds per spin)
was spent spinning on a mutex during the sampling period of 10 seconds. 

CPU Events

Various system utilities, notably mpstat(1M) in Solaris, provide statistics on key
metrics for each CPU. When observing CPUs, it is often useful to further track the
sources of these statistics. The sysinfo provider (Solaris only) is a good place to
start when using DTrace to track captured events.

The D program shown previously enables every probe managed by the sysinfo
provider (execute dtrace -l -P sysinfo for a complete list). Using the tick pro-
vider, our simple command line provides per-second statistics. Here we see just

  361   1%  40% 0.00  1630 0xffffff117ae0d558    putnext+0x70
. . .
Adaptive mutex block: 575 events in 10.050 seconds (57 events/sec)

Count indv cuml rcnt nsec Lock         Caller
-------------------------------------------------------------------------------
  128  22%  22% 0.00   14830 0xffffff112f01e428   e1000g_receive+0x337
   40   7%  29% 0.00    34121 0xffffff112f01e428   e1000g_rxfree_func+0xaa 
   29   5%  34% 0.00    11250 0xffffff112e8e1ac0   squeue_enter_chain+0x44 
[...]

solaris#  dtrace -qn 'sysinfo::: { @[probename] = count(); } 
tick-1sec { printa(@); trunc(@); }'

[...]
  rawch                     1
  bwrite                     2
  lwrite                     3
  namei                     20
  outch                     20
  rw_rdfails                    46
  rw_wrfails                   117
  intrblk                    955
  trap                     1157
  lread                    2140
  inv_swtch                   3042
  sema                     4271
  mutex_adenters                    5405
  idlethread                  116231
  xcalls                   158512
  readch                   176097
  sysread                  176098
  syswrite                  176882
  writech                  176882
  pswitch                  305054
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more than 300,000 pswitch events per second (process switch, or context switches),
followed by writech, syswrite, and sysread. We saw examples earlier of how to look
deeper into context switch activity using the sched provider to determine which
processes and threads are getting on-CPU. We can also determine why threads are
being switched off-CPU by looking at user stacks and kernel stacks when the
sched:::off-cpu probe fires.

solaris# dtrace -qn 'sched:::off-cpu /execname != "sched"/ 
{ @[execname, ustack()] = count(); } END { trunc(@,5); }'
^C
[...]
  oracle.orig

    libc.so.1`_read+0x8
    oracle.orig`nttfprd+0xac
   oracle.orig`nsbasic_brc+0x108
    oracle.orig`nioqrc+0x1a0
   oracle.orig`opikndf2+0x2b8
    oracle.orig`opitsk+0x2ec
    oracle.orig`opiino+0x3e8
    oracle.orig`opiodr+0x590
    oracle.orig`opidrv+0x448
    oracle.orig`sou2o+0x5c
   oracle.orig`opimai_real+0x130
   oracle.orig`ssthrdmain+0xf0
    oracle.orig`main+0x134
    oracle.orig`_start+0x17c

            22644
  oracle.orig

    libc.so.1`_read+0x8
    oracle.orig`nttfprd+0xac
   oracle.orig`nsbasic_brc+0x108
    oracle.orig`nioqrc+0x1a0
   oracle.orig`opikndf2+0x2b8
    oracle.orig`opitsk+0x2ec
    oracle.orig`opiino+0x3e8
    oracle.orig`opiodr+0x590
    oracle.orig`opidrv+0x448
    oracle.orig`sou2o+0x5c
   oracle.orig`opimai_real+0x130
   oracle.orig`ssthrdmain+0xf0
    oracle.orig`main+0x134
    oracle.orig`_start+0x17c

            22683
  oracle.orig

    libc.so.1`_pwrite+0x8
   libaio.so.1`_aio_do_request+0x1b4
    libc.so.1`_lwp_start

            27129
solaris# dtrace -qn 'sched:::off-cpu /execname != "sched"/
{ @[execname, stack()] = count(); } END { trunc(@,5); }'
^C
[...]
  oracle.orig

     unix`resume+0x4
    genunix`sema_p+0x138
    genunix`biowait+0x6c
   ufs`directio_wait_one+0x8
    ufs`directio_wait+0x34
   ufs`ufs_directio_write+0x900

continues
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In the previous example, we have two very similar D programs executed from
the command line. Our goal here again is to understand the pswitch metric (con-
text switches) and why processes are getting switched off-CPU. In both programs,
we use the sched:::off-cpu probe, which fires when a thread is switched off-
CPU. The aggregation key in the first program tracks the user stack, and we can
see the user call flow leading up to read and write systems calls. The second pro-
gram changes ustack() as an aggregation key to stack() to go from a user view
to a kernel view. The kernel view aligns with what we see in the user stack:
Threads are being switched off because of blocking on read and write system calls.
In the kernel stack sample, we also see instances of blocking on semaphore opera-
tions, and in the top kernel stack, we see blocking on a pwrite(2) system call to a
UFS file. The bottom two kernel stacks indicate blocking on reads of a network
socket.

The reads and writes observed using the sysinfo provider can be better under-
stood using the syscall provider:

    ufs`ufs_write+0x174
    genunix`fop_write+0x20
    genunix`pwrite+0x22c
    unix`syscall_trap+0xac

             8973
  oracle.orig

     unix`resume+0x4
  genunix`cv_timedwait_sig_hires+0x190

   genunix`cv_waituntil_sig+0xb0
    semsys`semop+0x564
    unix`syscall_trap+0xac

            43064
  oracle.orig

     unix`resume+0x4
   genunix`cv_wait_sig+0x114
    genunix`str_cv_wait+0x28
    genunix`strwaitq+0x238
    genunix`kstrgetmsg+0xdcc
   sockfs`sotpi_recvmsg+0x2ac
    sockfs`socktpi_read+0x44
    genunix`fop_read+0x20
    genunix`read+0x274
    unix`syscall_trap+0xac

           999643
  rwdoit

     unix`resume+0x4
   genunix`cv_wait_sig+0x114
    genunix`str_cv_wait+0x28
    genunix`strwaitq+0x238
    genunix`kstrgetmsg+0xdcc
   sockfs`sotpi_recvmsg+0x2ac
    sockfs`socktpi_read+0x44
    genunix`fop_read+0x20
    genunix`read+0x274
    unix`syscall_trap+0xac

           999690
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This is an example of using a previous example to better understand the reads
and writes:

In this example, we have two keys to the count aggregation: probefunc, which
for this provider will be the name of the system call, and the fds[].fi_fs vari-
able, showing the file system type of the file being read or written. The vast major-
ity of the reads and writes are network (sockfs), with a much smaller number of
writes going to a UFS file system, and reads from procfs (/proc).

Another event of interest observed from the sysinfo data is xcalls, or cross calls,
which are CPU-to-CPU interrupts in Solaris. We can also observe per-CPU xcalls
using mpstat(1M) and monitoring the xcal column:

In Solaris, cross calls are relatively lightweight events—modern CPUs are capa-
ble of handling large volumes of xcalls per second. The per-CPU statistics we see
from mpstat(1M) show about 3,000 xcalls per second per CPU, which is not a large
number for a modern, busy system. The source of the xcalls can be determined by
examining the kernel stack when the xcalls probe of the sysinfo provider fires:

solaris# dtrace -qn 'syscall::*read:entry,syscall::*write:entry
{ @[probefunc] = count(); } tick-1sec { printa(@); trunc(@); }'

 pread                     1
  pwrite                    946
  read                   228018
  write                   228043

  pwrite                    962
  read                   225105
  write                   225142

solaris# dtrace -qn 'syscall::read:entry,syscall::write:entry
{ @[probefunc, fds[arg0].fi_fs] = count(); } tick-1sec { printa(@); trunc(@); }'

read       proc                          16
  write      ufs                  30
  read       sockfs           225418
  write      sockfs           225418

solaris# mpstat 1
CPU minf mjf xcal  intr ithr  csw icsw migr smtx srw syscl  usr sys  wt idl
  0    0   0 2746  1707   48 4759  100 2464  130  7 17181   49  27   0  24
  1    0   0 2968  1808   49 5053   84 2560  115   8 18426   50  24   0  26
  2    0   0 2911  1742   50 5040   93 2610  116   7 18115   51  24   0  25
  3    0   0 2861  1729   41 4986   89 2498  110   6 18171   51  23   0  26
  4    0   0 2821  1786   50 5010   99 2527  117   7 17708   51  24   0  25
  5    0   0 2982  1958  276 4782   73 2443  104  5 17245   50  25   0  25
[...]
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Examining the kernel stack frame, starting at the bottom, we can see that most
xcalls originate from network writes, initiating a wake-up to sleeping threads. 

The same method can be applied to chasing any of the other sysinfo events
observed. Here is another example:

In the previous example, there are two dtrace(1M) invocations. The first is
essentially the same as the xcalls example, only this time the probe name is
changed to sema (semaphore operation), corresponding to the specific sysinfo event
of interest. The second is the same probe, only this time the aggregation key is the
DTrace execname variable, rather than the stack(). The results are relatively

solaris# dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); }'
[...]

  FJSV,SPARC64-VII`send_one_mondo+0x20
   unix`xt_one_unchecked+0xc8
   genunix`sleepq_wakeall_chan+0x48
   genunix`cv_broadcast+0x4c
    ip`tcp_fuse_output+0x7f0
    ip`tcp_output+0x74
    ip`squeue_drain+0x130
    ip`squeue_enter+0x348
   sockfs`sostream_direct+0x194
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

           177428

  FJSV,SPARC64-VII`send_one_mondo+0x20
   unix`xt_one_unchecked+0xc8
   genunix`sleepq_wakeall_chan+0x48
   genunix`cv_broadcast+0x4c
    ip`tcp_fuse_output+0x7f0
    ip`tcp_output+0x74
    ip`squeue_enter+0x74
   sockfs`sostream_direct+0x194
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

          1177168

solaris# dtrace -n 'sysinfo:::sema { @[stack()] = count(); }'
dtrace: description 'sysinfo:::sema ' matched 1 probe
^C

    semsys`semop+0x28
    unix`syscall_trap+0xac

            25508

solaris# dtrace -n 'sysinfo:::sema { @[execname] = count(); }'
dtrace: description 'sysinfo:::sema ' matched 1 probe
^C

  oracle.orig                  23453
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simple; the kernel stack shows the sema events are the result of semop system
calls, and the semop system calls are being generated by the oracle.orig pro-
cesses. By changing the aggregation key to use pid instead of execname, we can
determine whether a particular process is making an inordinate number of semop
system calls and drill down further by obtaining a user stack frame when a semop
system call is executed by a specific process.

Here again we have three consecutive DTrace executions to illustrate the poten-
tial for rapid drill-down. First we use the sema probename in the sysinfo provider
and use pid as an aggregation key. We can see process PID 2674 had the largest
number of semaphore calls during the sampling period. Next we use a different
probe—the entry point to the semaphore system call, taking the same action. This
illustrates how, in some cases, we can use more than one probe to gather the same
basic information. Finally, in the third example, we add a predicate to take action

solaris# dtrace -n 'sysinfo:::sema { @[pid] = count(); }'
dtrace: description 'sysinfo:::sema ' matched 1 probe
^C
[...]
    27924              240
    27760              241
    27926              241
    28006              241
    28028              242
     2674         1954

solaris# dtrace -n 'syscall::semsys:entry { @[pid] = count(); }'
dtrace: description 'syscall::semsys:entry ' matched 1 probe
^C
[...]
    28006              244
    27858              245
    27760              247
    28028              248
     2674         2028

solaris# dtrace -n 'syscall::semsys:entry /pid == 2674/ { @[ustack()] = count(); }'
dtrace: description 'syscall::semsys:entry ' matched 1 probe
^C
[...]

    libc.so.1`_syscall6+0x1c
   a.out`_$c1A.kslpstevent+0x7fc
   oracle.orig`kcrfw_post+0x95c
  oracle.orig`kcrfw_redo_write+0xd34

    oracle.orig`ksbabs+0x58c
    oracle.orig`ksbrdp+0x4cc
    oracle.orig`opirip+0x454
    oracle.orig`opidrv+0x308
    oracle.orig`sou2o+0x5c
    a.out`opimai_real+0x204
   oracle.orig`ssthrdmain+0xf0
    a.out`main+0x134
    a.out`_start+0x17c

             3695
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only when PID 2674 executes a semaphore system call, and we key on the user
stack so we can see the user code path leading to the semaphore call.

We can apply the same method for understanding the source of CPU statistics
and events by grouping related events together with multiple probe specifications.

As always, the columns are ordered based on the aggregation key ordering, so
starting at the left, we see the process PID that was on-CPU when the probe fired,
the probe name, and the count value. This information shows us which processes
issued the most read calls during the tracing period.

CPU Summary

The metrics of interest when observing CPUs are utilization and saturation—to
see whether the CPUs are a contended resource. DTrace can determine which
workload processes and threads are using CPU cycles, down to the software func-
tions responsible—in both user-land and the kernel. As is the case with all things
performance, latency is a critical measurement, and CPU latency (both time wait-
ing for a CPU and time running on a CPU) is measurable with DTrace, as shown
in this section.

solaris# dtrace -qn 'sysinfo:::sysread,sysinfo:::readch
{ @[pid, probename] = count(); } END { trunc(@, 20); exit(0); }'
^C
    15533  readch                        38033
    15533  sysread                        38033
    15575  readch                        38033
    15575  sysread                        38033
    15554  readch                        39370
    15554  sysread                        39370
    15569  readch                        39370
    15569  sysread                        39370
    15434  readch                        39393
    15434  sysread                        39393
    15481  readch                        39394
    15481  sysread                        39394
    15604  readch                        39744
    15604  sysread                        39744
    15653  readch                        39744
    15653  sysread                        39744
    15451  readch                        39811
    15479  readch                        39811
    15479  sysread                        39811
    15451  sysread                        39812



ptg

Observing Memory 95

Observing Memory

Several utilities are available for monitoring memory systemwide, as well as per-
process virtual and physical memory. Which you should use depends on the mem-
ory problem or capacity issue observed or whether your goal is simply to account
for memory use.

With DTrace, we can do the following:

Dynamically monitor kernel memory allocation and determine which kernel 
subsystem is consuming memory

Dynamically monitor process memory allocation and determine where in user 
code memory allocation is originating

Correlate system-reported memory paging activity to the application pro-
cesses generating the observed events (page faults, page-ins, page-outs)

Measure the memory-related latency in terms of how much time application 
processes are waiting for memory allocations, page faults, and other memory 
events

Depending on what the problem is and what’s been observed, DTrace can be
used to drill down on all aspects for memory allocation and use.

Memory Strategy

When examining memory use, consider the main consumers of physical memory.

The kernel: This includes executable code, I/O buffers, and system metadata.

File system caches: These are technically part of the kernel but potentially 
a large enough consumer to be treated separately. The file system being used 
(UFS, ZFS) will determine the right method for measuring this.

User processes: Application code and heap allocations.

The first step in observing memory is to get a big-picture view of how much
memory is being used by each of these consumers. 

Begin by checking whether a systemwide memory deficit is occurring, which
should be possible via the operating system vmstat(1M/8) tool (or vm_stat(1)
on Mac OS X). This may be identified by checking how much free memory the sys-
tem reports as available, if the page scanner is running, and if unwanted page-in/
page-out activity is occurring. System performance degrades substantially when
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the kernel needs to continually locate pages for freeing and move active memory
pages on and off the physical swap devices.

Once systemwide memory usage is understood, further investigation can be
done, looking at the various memory consumers and understanding requirements.

Memory Checklist

The checklist in Table 3-5 provides guidelines to observing memory.

Memory Providers 

Table 3-6 lists the DTrace providers applicable to observing memory.
The vminfo, io, pid, and plockstat providers are not yet available on FreeBSD. 

Table 3-5 Memory Checklist

Issue Description

Systemwide memory 
shortfall

The system does not have sufficient physical memory to support 
the workload, resulting in page-in/page-out activity. All operating 
systems generally perform very poorly when memory becomes a 
contended resource and there is sustained paging activity.

Kernel memory 
allocation

Observed metrics indicate CPU cycles and memory consumption by 
the kernel.

User process memory 
allocation

Observed metrics indicate CPU cycles in user memory allocation/
deallocation and memory consumption.

Memory page-in/
page-out activity

Virtual memory (VM) statistics indicate memory page-in/page-out 
activity.

Memory pagefault 
activity

VM statistics indicate minor and/or major page fault activity. Major 
page faults require a disk I/O; minor pagefaults do not.

Table 3-6 Memory Providers

Provider Description

vminfo Virtual memory statistics

syscall Processes memory allocation system calls (brk(2), mmap(2))

io Observes disk I/O due to paging or swapping

fbt Kernel functions related to memory allocation, deallocation, virtual memory, 
and page management
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Memory One-Liners

The following one-liners can be used as a starting point for memory analysis. As is
the case with any DTrace one-liner, they can be inserted into a file and turned into
a DTrace script to facilitate adding probes, predicates, additional data to collect,
and so on.

vminfo Provider

Tracking memory page faults by process name:

Tracking pages paged in by process name:

Tracking pages paged out by process name:

sched Provider

Tracking process user stack sizes:

Tracking which processes are growing their address space heap segment:

pid User process memory usage (trace malloc(), and so on)

plockstat User process locks related to memory routines

dtrace -n 'vminfo:::as_fault { @mem[execname] = sum(arg0); }'

dtrace -n 'vminfo:::pgpgin { @pg[execname] = sum(arg0); }'

dtrace -n 'vminfo:::pgpgout { @pg[execname] = sum(arg0); }'

dtrace -n 'sched:::on-cpu { @[execname] = max(curthread->t_procp->p_stksize);}'

dtrace -n 'fbt::brk:entry { @mem[execname] = count(); }'

Table 3-6 Memory Providers (Continued)

Provider Description
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fbt Provider

Tracking which processes are growing their address space stack segment:

pid Provider

These use the pid provider to trace a given process ID (PID). Either -p PID or -c
'command' can be used to specify the process.

Process allocation (via malloc()) counting requested size:

Process allocation (via malloc()) requested size distribution plot:

Process allocation (via malloc()) by user stack trace and total requested size:

Process allocation (via malloc()) by Java stack trace and total requested size:

Memory Analysis

Memory analysis begins with getting a systemwide view of key memory metrics.
Of course, it’s useful to know how much physical memory is installed in the sys-
tem and how much swap space is configured. On Solaris systems, these first basic
steps can be accomplished using the following:

dtrace -n 'fbt::grow:entry { @mem[execname] = count(); }'

dtrace -n 'pid$target::malloc:entry { @[arg0] = count(); }' -p PID

dtrace -n 'pid$target::malloc:entry { @ = quantize(arg0); }' -p PID

dtrace -n 'pid$target::malloc:entry { @[ustack()] = sum(arg0); }' -p PID

dtrace -n 'pid$target::malloc:entry { @[jstack()] = sum(arg0); }' -p PID

solaris_sparc# prtconf | grep "Memory size"
Memory size: 131072 Megabytes
solaris_sparc# swap -l
swapfile   dev  swaplo blocks   free
/dev/md/dsk/d20     85,20     16 20484272 20474544
/dev/dsk/c1t0d0s1   32,9    16 143074544 143061744



ptg

Observing Memory 99

There are two examples shown previously—the first from a Solaris SPARC sys-
tem and the second from a Solaris x86 system. Gathering this information as a
starting point may seem rudimentary, but it’s important to know basic system
information before proceeding with any analysis.

The next step is to get a systemwide view of memory usage and how much mem-
ory is free. In Solaris, this is most easily accomplished using the memstat dcmd
(d-command) under mdb(1):

In Solaris 10 5/09 or earlier, running memstat on a large system can take many
minutes. In Solaris 10 10/09, memstat was enhanced and made much faster.

Other utilities provide a good starting metric for looking at memory.
vmstat(1M/8) in both Solaris and FreeBSD allows free memory to be observed
and provides an indication of memory shortfalls with the sr (scan rate) column. In
Mac OS X, vm_stat(1) offers a similar systemwide view based on its own virtual
memory implementation.

The previous Solaris vmstat(1M) sample shows a system with a substantial
amount of free memory (59GB). The sr column (page scan rate) is zero. Nonzero

solaris_x86# prtconf | grep "Memory size"
Memory size: 10231 Megabytes
solaris_x86# swap -l
swapfile   dev  swaplo blocks   free
/dev/dsk/c0t0d0s1   32,1     8 1060280 1060280

solaris# echo "::memstat" | mdb -k
Page Summary      Pages          MB  %Tot
------------ ----------------  ----------------  ----
Kernel 268971      2101    2%
Anon 4761502     37199   29%
Exec and libs      30866         241    0%
Page cache      3576963       27945   22%
Free (cachelist)   2010595      15707   12%
Free (freelist)   5839192      45618   35%

Total   16488089        128813
Physical  16466389            128643

solaris# vmstat 1
 kthr      memory         page        disk     faults      cpu
 r b w   swap  free  re  mf pi po fr de sr m1 m1 m1 m2   in sy   cs us sy id
 0 0 0 148132968 72293376 3 11 2 0 0  0  0 14 14 14  1 13671 30379 23848 2 1 96
 0 2 0 138621040 59492152 9 97 0 0 0  0  0 161 160 161 0 243611 503049 436315 46 25 28
 4 1 0 138620616 59491792 0 30 0 0 0  0  0 189 189 190 0 241980 508303 434517 47 25 27
 4 1 0 138620616 59491776 0 0 0 0  0  0  0 142 142 141 0 239497 507814 431138 46 25 29
[...]
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sr column values indicate the kernel had to nudge the page scanner to wake up
and start finding memory pages to steal to replenish the memory freelist.

The values displayed by vm_stat(1) in Mac OS X are pages (showing the page
size in the output header), providing a systemwide view of key memory statistics.

Per-process memory use can be monitored on Solaris systems using either the
prstat(1) or ps(1) command. prstat(1) lets you sort the output based on resi-
dent memory size for each process, making it easier to see which processes are the
largest memory consumers.

The RSS column shows the physical memory usage of the process (SIZE is the
virtual memory size). Be aware of workloads that make use of shared memory,
because each process will show physical memory usage that includes shared mem-
ory. Here’s an example:

macosx# vm_stat 1
Mach Virtual Memory Statistics: (page size of 4096 bytes, cache hits 0%)
  free active  spec inactive   wire  faults    copy    0fill reactive  pageins pageout
 31010 550907 19312   205106 209483 158595K 2278296 52701106   211197  1305059 51672 
 31026 550933 19312   205106 209483   53       1       35        0        0 0 
 31040 550937 19312   205106 209483   26       0       12        0        0 0 
 31057 550934 19312   205106 209483   23       0 8        0        0 0 
 30820 551164 19312   205106 209483  257       0    243  0        0 0 
 30851 551152 19312   205106 209483   27       0       13        0        0 0 

solaris# prstat -s rss -n 20 -c 1
PID USERNAME  SIZE RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP

  1818 noaccess  149M  119M sleep   59 0   0:00:49 0.0% java/18
     7 root 13M   10M sleep   59  0   0:00:02 0.0% svc.startd/12
     9 root 11M 9944K sleep   59  0   0:00:09 0.0% svc.configd/16
   615 root 13M 9180K sleep   59   0   0:00:33 0.0% fmd/21
   156 root     9696K 6636K sleep   59  0   0:00:03 0.0% nscd/33
  2984 mauroj   6788K 4152K sleep   59 0   0:00:00 0.0% sshd/1
   606 root     4724K 3060K sleep   59  0   0:00:00 0.0% inetd/4
  2998 root     3724K 2784K cpu2    59 0   0:00:00 0.0% prstat/1
   488 root     3852K 2664K sleep   59 0   0:00:00 0.0% automountd/2
  2983 root     4808K 2648K sleep   59  0   0:00:00 0.0% sshd/1
   150 root     3660K 2364K sleep   59  0   0:00:00 0.0% picld/4
   124 root     5460K 2076K sleep   59 0   0:00:00 0.0% syseventd/15
   143 daemon   4228K 2036K sleep   59  0   0:00:00 0.0% kcfd/3
   732 root     3008K 2032K sleep   59  0   0:00:00 0.0% vold/4
   875 root     9012K 1992K sleep   59  0   0:00:01 0.0% sendmail/1
   147 root     3596K 1876K sleep   59  0   0:00:00 0.0% devfsadm/7
   546 root     3868K 1824K sleep   59  0   0:00:00 0.0% syslogd/11
  2995 root     2900K 1780K sleep   59  0   0:00:00 0.0% bash/1
   814 smmsp    9076K 1732K sleep   59 0   0:00:00 0.0% sendmail/1
  2214 root     5592K 1676K sleep   59 0   0:00:00 0.0% dtlogin/1
Total: 45 processes, 194 lwps, load averages: 0.00, 0.00, 0.00
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As is typical with database systems, all the processes associated with the data-
base instance attach to the same shared memory segment, so each process shows a
physical memory size of 38GB. If we were to sum the RSS column for all pro-
cesses, the resulting value would far exceed the amount of physical memory
installed, because most of that 38GB is a shared memory segment that is part of
each process’s address space. Only one copy of those physical memory pages is
actually resident in memory. Note that this applies to other types of shared mem-
ory, such as shared libraries.

User Process Memory Activity

The commands shown previously provide the big picture for determining physical
memory allocation and use by user processes. When analyzing memory, in addi-
tion to observing the actual amount of physical memory being used by processes,
it’s important to track which processes are allocating and freeing memory and
whether processes are waiting for memory allocations or waiting for their memory
pages to be paged in.

The vast majority of memory consumption by user processes is for heap space.
Typically, when examining the physical memory usage of a user process, the heap
segment will dominate. Space for stack segments, especially for processes with a
large number of threads, may be large, and of course the size of the text segment
will vary based on the size of the executable. User process heap segments are allo-
cated based on API calls to the malloc(3) family of interfaces or using mmap(2).
The underlying implementation will vary greatly across different operating systems.
Solaris, for example, typically uses the brk(2) system call underneath malloc(3)
calls when physical memory allocation is needed. The Solaris grow() kernel func-
tion is called for growing other address space segments.

solaris# prstat -s rss -c 1
PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP

  2662 oracle     38G  38G sleep   31 0  19:03:55 0.1% oracle.orig/1
  2668 oracle     38G  38G sleep   51 0   6:11:27 0.0% oracle.orig/258
  2666 oracle     38G  38G sleep   41 0   6:10:52 0.0% oracle.orig/258
  2670 oracle     38G  38G sleep   50 0   6:11:58 0.0% oracle.orig/258
  2672 oracle     38G  38G sleep   43 0   6:16:39 0.0% oracle.orig/258
  2682 oracle     38G  38G sleep   51 0   0:08:59 0.0% oracle.orig/11
  2678 oracle     38G  38G sleep   59 0   0:09:16 0.0% oracle.orig/39
  2676 oracle     38G  38G sleep   41 0   1:21:03 0.0% oracle.orig/19
  2714 oracle     38G  38G sleep   59 0   0:10:08 0.0% oracle.orig/1
  2648 oracle     38G  38G sleep   52 0   0:49:03 0.0% oracle.orig/1
  2700 oracle     38G  38G sleep   59 0   0:01:48 0.0% oracle.orig/1
[...]
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Mac OS X does not appear to implement the brk(2) system call, so the underly-
ing mechanism used to allocate heap segments is not readily apparent. Let’s use
DTrace to see whether we can figure out how Mac OS X implements malloc(3)
by examining a known workload. The workload was a simple program written in C
that makes eight malloc(3) calls in a loop, starting with malloc’ing 100MB and
adding 100KB to each subsequent malloc(3). We’ll use the DTrace syscall pro-
vider to see which underlying system calls are used:

The command line shown previously enables a probe on the entry point of all
system calls when the PID of the mm process is the PID on-CPU when the probe
fires (mm is our test program). The malloc messages are generated by the pro-
gram (not by DTrace). The result shows 16 calls to madvise(2) and 7 calls to
mmap(2) as memory-related system calls. Referencing the man pages, we know
madvise(2) is not used to allocate memory, but mmap(2) most certainly is, so it
seems mmap(2) is used in Mac OS X to enter the kernel for heap allocation. Let’s
verify this by just tracing mmap(2) calls and tracking the allocation size:

macosx# dtrace -n 'syscall:::entry /pid == $target/ 
{ @[probefunc]=count(); }' -c ./mm
malloc of 104857600 done, touching pages...
dtrace: description 'syscall:::entry ' matched 434 probes
malloc of 104960000 done, touching pages...
malloc of 105062400 done, touching pages...
malloc of 105164800 done, touching pages...
malloc of 105267200 done, touching pages...
malloc of 105369600 done, touching pages...
malloc of 105472000 done, touching pages...
malloc of 105574400 done, touching pages...
dtrace: pid 6283 has exited

  exit                      1
  mmap                      7
  write_nocancel                     7
  madvise                    16

macosx# dtrace -n 'syscall::mmap:entry /pid == $target/ 
{ @[arg1] = count(); }' -c ./mm
malloc of 104857600 done, touching pages...
dtrace: description 'syscall::mmap:entry ' matched 1 probe
malloc of 104960000 done, touching pages...
malloc of 105062400 done, touching pages...
malloc of 105164800 done, touching pages...
malloc of 105267200 done, touching pages...
malloc of 105369600 done, touching pages...
malloc of 105472000 done, touching pages...
malloc of 105574400 done, touching pages...
dtrace: pid 6292 has exited

        104960000             1
        105062400             1
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We changed the DTrace script to just enable a probe at the mmap(2) entry
point, and we tracked the second argument passed to mmap(2) in our action (refer-
ence the mmap(2) man page—the second argument is the size). We can see that
size arguments passed to mmap(2) align precisely with what our test program
passes to malloc(3), so we can conclude that Mac OS X creates user process heap
segments using mmap(2), most likely using the MAP_ANON flag to instruct
mmap(2) to map an anonymous memory segment (heap) vs. mapping a file. Of
course, we can use DTrace to verify this:

We changed the DTrace program to use a printf statement in the action and
print the value of arg3 in hexadecimal. We know from man mmap(2) that the
fourth argument is the flags, and the flags are defined in the /usr/include/
sys/mman.h header file as hex values, so printing them in hex makes it easier to
find our answer:

The DTrace output shows 0x1002 as the flag argument to mmap(2), and an
examination of the header file shows that, indeed, 0x1000 means the MAP_ANON
flag is set (the 0x0002 flag is left as an exercise for the reader). 

If we want to further drill down with DTrace and determine which OS X kernel
function is called for memory allocation, we can use the fbt provider and the fol-
lowing script:

        105164800             1
        105267200             1
        105369600             1
        105472000             1
        105574400             1

macosx# dtrace -qn 'syscall::mmap:entry /pid == $target/ 
{ printf("FLAG: %x\n", arg3); }' -c ./mm
malloc of 104857600 done, touching pages...
[...]
FLAG: 1002
FLAG: 1002
[...]

macosx# grep MAP_ANON /usr/include/sys/mman.h
#define     MAP_ANON  0x1000      /* allocated from memory, swap space */

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option flowindent

continues
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The mmap.d script enables all the fbt provider probes. When the mmap(2) system
call is entered, we set a flag that is used as a predicate in the fbt probes. Since an
action is not specified, we’ll get the default output of the CPU and probe function
when the fbt probes fire. Using the flowindent DTrace option, we’ll generate an
easy-to-read kernel function call flow.

5  syscall::mmap:entry
6  {
7  self->flag = 1;
8  }
9  fbt:::
10 /self->flag/
11 {
12 }
13 syscall::mmap:return
14 /self->flag/
15 {
16    self->flag = 0;
17    exit(0);
18 }

Script mmap.d

macosx# ./mmap.d -c ./mm
malloc of 104857600 done, touching pages...
dtrace: script './mmap.d' matched 18393 probes
malloc of 104960000 done, touching pages...
CPU FUNCTION
  1  -> mmap
  1    -> current_map
  1    <- current_map
  1    -> vm_map_enter_mem_object
  1      -> vm_map_enter
  1        -> lock_write
  1        <- lock_write
  1        -> vm_map_entry_insert
  1          -> zalloc
  1            -> zalloc_canblock
  1  -> lck_mtx_lock_spin
  1  <- lck_mtx_lock_spin
  1    -> lck_mtx_unlock_darwin10
  1    <- lck_mtx_unlock_darwin10
  1            <- zalloc_canblock
  1          <- zalloc
  1        <- vm_map_entry_insert
  1        -> lock_done
  1        <- lock_done
  1        -> lck_rw_done_gen
  1        <- lck_rw_done_gen
  1      <- vm_map_enter
  1    <- vm_map_enter_mem_object
  1  <- mmap
  1  <= mmap
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The call flow generated enables us to observe key kernel functions called for
memory allocations, vm_map_enter() and zalloc(). The zalloc() function
sounds interesting (allocate zeroed memory pages is our guess) and can be instru-
mented to track memory allocations by processes. However, since we’re not certain
under what other circumstances the Mac OS X zalloc() kernel function may be
called, we can stick with using a DTrace probe on mmap(2).

The DTrace program used here tracks the process name and size of processes
calling mmap(2). We use a predicate to determine whether the MAP_ANON flag is
set, since our interest here is tracking mmap(2) calls for heap memory allocations
vs. use of mmap(2) for mapping regular files. We also test for 0x0002, which is
MAP_PRIVATE, further reducing our output to only those allocations for private,
anonymous memory segments. During the sample period, we can see the Mac OS X
WindowServer process did 21 mmap(2) calls for 16KB chunks of memory.

In Solaris, the brk(2) system call is typically invoked when a user code calls
malloc(3) (which is a user library function), so we can begin there to see which
processes are doing memory allocations. It is important to note here that there are
many memory allocators available for Solaris, implemented as binary-compatible
malloc(3) calls in different shared object libraries. libc.so, libmtmalloc.so,
libumem.so, and so on, can be linked to your Solaris code to make use of a differ-
ent implementation of malloc(3) that may be more suitable in terms of perfor-
mance and/or efficiency. The libc.so malloc(3) uses brk(2)—malloc(3) out
of other shared object libraries may use a different underlying mechanism to enter
the kernel for memory allocation.

macosx# dtrace -qn 'syscall::mmap:entry /arg3 & 0x1002/ 
{ @m[execname, arg1] = count(); }'
^C

  Terminal 4096                1
  dtrace  4096                1
  dtrace 266240                1
  dtrace 4194304                2
  Dock   23040               21
  Dock   90112               21
  WindowServer          16384             21

solaris# dtrace -n 'syscall::brk:entry { @[pid,execname] = count(); }'
^C
[...]
    21008  arch                         28
    21013  arch                         28
    20958  oracle                         48
    21034  m2loader                        125

continues
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The output shows several Java processes doing memory allocations. The brk(2)
system call in Solaris does not take a size argument, so we cannot easily deter-
mine the amount of memory requested in Solaris by using a probe on brk(2).
However, it is possible to track heap growth by doing some math on the address
passed to brk(2), tracked over multiple calls.

The brk(2) system call takes a memory address as the only argument (arg0).
The predicate for the first action clause (line 6) verifies the PID specified on the
command line and tests that the thread-local variable self->endds is zero, in
which case self->endss is set to arg0, which is the address passed to brk(2).
In the second predicate (line 12), if the passed address (arg0) is different from the
previous address, we’ve been through at least one pass of brk(2), so we can mea-
sure the address space growth by finding the difference between the previous and
current memory address (line 14). Here’s a sample run on a test program that mal-
loc’s 8KB memory segments:

    20827  java                         246
    21035  java                         332
    21033  java                         340

1  #!/usr/sbin/dtrace -qs
2
3  self int endds;
4
5  syscall::brk:entry
6  /pid == $target && !self->endds/
7  {
8       self->endds = arg0;
9  }
10
11 syscall::brk:entry
12 /pid == $target && self->endds != arg0/
13 {
14      printf("Allocated %d\n", arg0 - self->endds);
15 self->endds = arg0;
16 }

Script brk.d

solaris# ./brk.d -c ./a.out
Allocated 16384
Allocated 8192
Allocated 8192
Allocated 8192
Allocated 8192
Allocated 8192
^C
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Another approach is to track sizes from a different level in the software stack.
Specifically, we can instrument the malloc(3) library call in processes of our
choice, but doing so requires the use of the pid provider since malloc(3) is a
library interface and resides in user space, not in the kernel.

The system we’re looking at for this example is running a workload that creates/
terminates Java processes (Java virtual machines [JVMs]) fairly rapidly, so using
the pid provider and specifying a PID is tricky. We found that most of the time, the
Java process we targeted had exited by the time we start the DTrace. To complete
the example, we used pgrep(1) to grab the most recent running Java process.4

The java process we tracked here (PID 11089) did just a few malloc(3) calls
for relatively small amounts of memory. We could take this one step further and
examine the call stack leading to the malloc calls.

solaris# dtrace -n 'pid$target::malloc:entry
{ @[pid, arg0] = count(); }' -p `pgrep -nx java`
dtrace: description 'pid$target::malloc:entry ' matched 2 probes
dtrace: pid 11089 has exited

    11089 552                1
    11089 1480                1
    11089 256                2

4. We hasten to point out that the DTrace will generate output only if java processes are executing.
Change the argument to -p accordingly to suit your needs.

solaris# dtrace -n 'pid$target::malloc:entry
{ @[jstack()] = count(); }' -p `pgrep java | tail -1`
dtrace: description 'pid$target::malloc:entry ' matched 2 probes
^C

    libc.so.1`lmalloc
    libc.so.1`fdopendir+0x22
    libc.so.1`opendir+0x3e

 libjava.so`Java_java_io_UnixFileSystem_list+0x65
              0xf82bfcf8
              0xeff0dc18
              0xebefeaf8
                6

    libc.so.1`lmalloc
    libc.so.1`fdopendir+0x30
    libc.so.1`opendir+0x3e

 libjava.so`Java_java_io_UnixFileSystem_list+0x65
              0xf82bfcf8
              0xeff0dc18
              0xebefeaf8
                6
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Note the use of the jstack() function in the DTrace program executed previ-
ously. Note also that the stack frames have been partially resolved. That is, some
entries show hex numbers (user virtual memory addresses) and not symbol names.
DTrace collects and stores the stack frames in their raw, numeric form and con-
verts addresses to symbols only when it’s time to display output. In some cases,
DTrace may not be able to convert a user address to its corresponding symbol. This
can happen if the process exits during tracing or the symbolic information has
been stripped.

In the previous example, we can see that the traced JVM was entering malloc
from a file system I/O code path. This gives us a little more insight into what the
code is doing, should it be necessary to drill down further.

Here’s another user process example, this time monitoring malloc calls from
Firefox on Mac OS X:

macosx> dtrace -n 'pid$target::malloc:entry
{ @[ustack()] = quantize(arg0); }' -p 1806
^C
[...]

    libSystem.B.dylib`malloc
  libmozjs.dylib`js_ValueToCharBuffer+0x3f55
  libmozjs.dylib`js_ValueToCharBuffer+0x4004
  libmozjs.dylib`js_ValueToCharBuffer+0x3b4

libmozjs.dylib`js_CoerceArrayToCanvasImageData+0x183c
libmozjs.dylib`js_CoerceArrayToCanvasImageData+0x1e54

 libmozjs.dylib`JS_HashTableRawRemove+0xab14
  libmozjs.dylib`js_FreeStack+0x18f8

libmozjs.dylib`JS_EvaluateUCScriptForPrincipals+0x9b
[...]

    XUL`DumpJSStack+0x17b5f2
    XUL`DumpJSStack+0x17f075

           value  ------------- Distribution ------------- count
              64 |              0
             128 |@              8
             256 |@@                16
             512 |@@                16
            1024 |@@@               27
            2048 |@@@               33
            4096 |@@@@             39
            8192 |@@@@@@@@@@                    95
           16384 |@@@@@@@@@             87
           32768 |@@@@@@              63
           65536 |@@               15
          131072 |                0

    libSystem.B.dylib`malloc
 XUL`cmmf_decode_process_cert_response+0x2cdc3
 XUL`cmmf_decode_process_cert_response+0x21f14
 XUL`cmmf_decode_process_cert_response+0x242ec
 XUL`cmmf_decode_process_cert_response+0x2447b
 XUL`cmmf_decode_process_cert_response+0x365

[...]
   XUL`JSD_GetValueForObject+0xebab9
   XUL`JSD_GetValueForObject+0xe3602
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In the previous example, we determined the PID of Firefox on Mac OS X and
tracked malloc() requested sizes using quantize along with aggregating on
user stack traces. With this running, we did a couple of Web page loads with
Firefox. This generated a huge amount of output, because Firefox does a great deal
of memory allocation using malloc(). In the two sample frames, the bottom frame
shows a small number of malloc calls (count values), ranging from 2KB to 2MB.
The top frame shows a larger number of malloc calls, most in the 8KB to 64KB range.

Also of interest when monitoring memory is tracking kernel virtual memory
events to the processes that are generating or waiting for those events. The DTrace
vminfo provider makes it relatively simple to correlate virtual memory events to
processes and quantify the effects on performance. First, get the big picture with
vmstat(1) on Solaris:

Next, use the vminfo provider to correlate VM events and running processes:

   XUL`JSD_GetValueForObject+0xf5d33
 AppKit`-[NSView _drawRect:clip:]+0xdb6

              AppKit`-[NSView _recursiveDisplayAllDirtyWithLockFocus:visRect:]+0x640

           value  ------------- Distribution ------------- count
            1024 |              0
            2048 |@@@@@@@              2
            4096 |@@@@@@@@@@@@@                   4
            8192 |@@@               1
           16384 |@@@             1
           32768 |             0
           65536 |@@@@@@@              2
          131072 |                0
          262144 |                0
          524288 |                0
         1048576 |@@@@@@@              2
         2097152 |               0

solaris# vmstat 1
  kthr      memory    page            disk          faults      cpu
 r b w   swap  free  re  mf pi po fr de sr s0 s1 s2 ---   in   sy   cs us sy id
 0 0 0 15377184 24309708 278 1546 243 0 0 0 0 15 15 0 0 4020 5314 2630 2 1 96
 3 0 0 4373156 12970972 2681 4728 9959 0 0 0 0 22 22 0 0 18460 4070 5312 5 5 90
 0 0 0 4365792 12969308 107 174 803 0 0 0 0 22 22 0 0 4029 3158 3691  1  3 96
 2 0 0 4365772 12969236 17 280 241 0 0 0 0 10 10 0  0 3883 4392 3999  7  3 90
 0 0 0 4320928 12968464 4025 23844 619 0 0 0 0 72 70 0 0 24525 20056 5212 27 16 57
 1 0 0 4428636 12935872 21 565 157 0 0 0 0 190 187 0 0 5377 187861 5265 16 7 77
 0 0 0 4426576 12933464 21 4238 167 0 0 0 0 5  5 0  0 3633 90565 2963 22 4 73
^C

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4

continues
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The vmtop10.d script enables every probe managed by the vminfo provider and
aggregates on execname, probefunc, and probename as keys. The script gener-
ates output every second (line 9). We use a printf() statement (line 12) to label
the columns, and we manage column width and alignment in the printf() and
printa() statements in order to produce output that is easier to read.

The probefunc (FUNCTION heading) shows us where the probe resides in the
kernel and can be used if further analysis is required by using the fbt provider to
instrument those functions or reading the source code. We also truncate the aggre-
gation collected, using the DTrace trunc() function to show the top ten VM
events captured during the sampling period.

5  vminfo:::
6  {
7          @[execname, probefunc, probename] = count();
8  }
9  tick-1sec
10 {
11         trunc(@);
12         printf("%-16s %-16s %-16s %-8s\n", "EXEC", "FUNCTION", "NAME", "COUNT");
13         printa("%-16s %-16s %-16s %-@8d\n",@);
14         trunc(@);
15         printf("\n");
16 }

Script vmtop.d

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  vminfo:::
6  {
7          @[execname, probefunc, probename] = count();
8  }
9  tick-1sec
10 {
11         trunc(@, 10);
12         printf("%-16s %-16s %-16s %-8s\n", "EXEC", "FUNCTION", "NAME", "COUNT");
13         printa("%-16s %-16s %-16s %-@8d\n",@);
14         trunc(@);
15         printf("\n");
16 }

Script vmtop10.d

solaris# ./vmtop10.d
EXEC             FUNCTION         NAME           COUNT
tnslsnr          as_fault         prot_fault       687
arch as_fault         as_fault         1014
oracle page_reclaim     pgfrec         1534
oracle page_reclaim     pgrec         1534
oracle  anon_private  cow_fault        1555
tnslsnr          as_fault         as_fault         1598
java anon_zero        zfod           6354
oracle           anon_zero        zfod          6382
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The output generated by the vmtop10.d script allows us to see which processes
are generating which VM events. Since we are aggregating on process name
(execname), all processes with the same name (for example, oracle) will show up
as one line for a given probefunc/probename pair. A predicate can be added to the
vm.d script to just take action for oracle processes (/execname == "oracle"/),
and execname could be replaced with pid as an aggregation key.

It is often interesting to examine just a specific area of the VM system, such as
page-in operations. Page-ins are interesting because they represent disk I/O (read)
and thus are heavier-weight operations than many other VM functions.

Here’s an example of drilling down on the m2loader process to get an idea of
the page-in activity:

java  as_fault         as_fault         6489
m2loader         as_fault         as_fault         7332
oracle           as_fault         as_fault         16443

EXEC             FUNCTION         NAME           COUNT
java page_reclaim     pgrec        49
run_m3loader     as_fault        as_fault       58
arch  anon_private cow_fault        60
uname            as_fault         as_fault         120
tds_job_status   as_fault         as_fault        134
arch as_fault         as_fault         229
java anon_zero        zfod           2778
java as_fault         as_fault         2907
oracle           anon_zero        zfod          3904
oracle           as_fault         as_fault         4512
[...]

solaris# dtrace -qn 'vminfo:genunix:pageio_setup:*pgin
    { @[execname,probename] = count(); } 
    END { printa("%-12s %-12s %-@12d\n",@); }'
^C
zsched       fspgin    75
zsched       pgin     75
zsched       pgpgin    75
m2loader     fspgin   686
m2loader     pgin    686
m2loader     pgpgin   686

solaris# dtrace -qn 'vminfo:genunix:pageio_setup:*pgin
/ execname == "m2loader" / { @[stack(),ustack()] = count(); }'
^C

. . .

    nfs`nfs4_getapage+0x1c1
    nfs`nfs4_getpage+0xe2
    genunix`fop_getpage+0x47

continues
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   genunix`segvn_fault+0x8b0
    genunix`as_fault+0x205
    unix`pagefault+0x8b

     unix`trap+0x3d7
    unix`_cmntrap+0x140

  libmysqlclient.so.16.0.0`adler32+0x685
  libmysqlclient.so.16.0.0`read_buf+0x62
  libmysqlclient.so.16.0.0`fill_window+0x969
 libmysqlclient.so.16.0.0`deflate_slow+0x1ff

  libmysqlclient.so.16.0.0`deflate+0x82d
   m2loader`read_zstream+0x1a3
   m2loader`get_filecont+0x2a0
   m2loader`store_files_data+0xb9c
    m2loader`main+0x463
    m2loader`0x403b3c

              198

    nfs`nfs4_getapage+0x1c1
    nfs`nfs4_getpage+0xe2
    genunix`fop_getpage+0x47
   genunix`segvn_fault+0x8b0
    genunix`as_fault+0x205
    unix`pagefault+0x8b

     unix`trap+0x3d7
    unix`_cmntrap+0x140

  libmysqlclient.so.16.0.0`adler32+0x685
  libmysqlclient.so.16.0.0`read_buf+0x62
  libmysqlclient.so.16.0.0`fill_window+0x969
 libmysqlclient.so.16.0.0`deflate_slow+0x1ff

  libmysqlclient.so.16.0.0`deflate+0x82d
   m2loader`read_zstream+0x1a3
   m2loader`get_filecont+0x2a0
   m2loader`store_files_data+0xb9c
    m2loader`main+0x463
    m2loader`0x403b3c

              225

    nfs`nfs4_getapage+0x1c1
    nfs`nfs4_getpage+0xe2
    genunix`fop_getpage+0x47
   genunix`segvn_fault+0x8b0
    genunix`as_fault+0x205
    unix`pagefault+0x8b

     unix`trap+0x3d7
    unix`_cmntrap+0x140

  libmysqlclient.so.16.0.0`adler32+0x66
  libmysqlclient.so.16.0.0`read_buf+0x62
  libmysqlclient.so.16.0.0`fill_window+0x969
 libmysqlclient.so.16.0.0`deflate_slow+0x1ff

  libmysqlclient.so.16.0.0`deflate+0x82d
   m2loader`read_zstream+0x1a3
   m2loader`get_filecont+0x2a0
   m2loader`store_files_data+0xb9c
    m2loader`main+0x463
    m2loader`0x403b3c

              354
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The previous example shows an interesting approach: combining both the
stack() (kernel stack) and ustack() (user stack) DTrace functions as aggrega-
tion keys. It allows us to see the code path from the user process up through the
kernel. In this example, we can see that the user code is executing an internal read
function (read_zstream()), which calls into the libmysqlclient.so library. In
the user library, a read_buf() call is executed. Looking at the corresponding ker-
nel stack, we see this causes a page fault trap that is resolved by reading a page
from an NFS-mounted file system. We now have a kernel function we can measure
directly related to the page fault activity of an application process. Specifically, the
kernel nfs4_getapage() function appears at the top of the kernel stack frame
collected when the vminfo *pgin (page-in) probes fired; thus, we can conclude
that the page-ins are being handled (in this case) by nfs4_getapage().

Here’s an example of using several functions to measure the nfs4_getapage()
time. We grab a time stamp at the function entry, and on the return we track the
minimum, maximum, and average times, along with a quantize plot to break them
down. We also track the number of calls during the sampling interval in the entry
probe.

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  fbt:nfs:nfs4_getapage:entry
6  /execname == "m2loader"/
7  {
8   self->st = timestamp;
9          @calls = count();
10 }
11 fbt:nfs:nfs4_getapage:return
12 /self->st/
13 {
14         @mint = min(timestamp - self->st);
15         @maxt = max(timestamp - self->st);
16         @avgt = avg(timestamp - self->st);
17         @t[“ns”] = quantize(timestamp - self->st);
18         self->st = 0;
19 }
20 END
21 {
22  normalize(@mint, 1000);
23  normalize(@maxt, 1000);
24  normalize(@avgt, 1000);
25 printf("%-8s %-8s %-8s %-8s\n","CALLS","MIN(us)", "MAX(us)", "AVG(us)");
26 printa("%-@8d %-@8d %-@8d %-@8d\n", @calls, @mint, @maxt, @avgt);
27         printf("\n");
28         printa(@t);
29 }

Script nfs.d
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Note that the nfs.d script adjusts the MIN, MAX, and AVG times to microsec-
onds, whereas the left column of the quantize aggregation is in nanoseconds (the
default). We can see from the quantize distribution that most of the getapage
operations are in the 1-microsecond to 4-microsecond range, with some outliers in
the 16-microsecond to 32-millisecond range, which aligns with the MAX value of
21.4 milliseconds. Interesting to note with this data is the AVG value of 42 micro-
seconds, which falls right around the middle of the values in the quantize graph.

One of the key points to take away from this example is the method applied to
determine what can be measured. By starting with some basic event monitoring
and drilling down with stack traces, we can see which functions are interesting to
measure to understand the latency component of these operations. We should also
point out that, in Solaris, the VM’s page-in/page-out facilities are invoked for most
file system read/write operations (that is, they are not just a sign of paging due to
low memory).

Additional information on the time spent waiting for page faults can be mea-
sured as follows:

solaris# ./nfs.d
^C
CALLS    MIN(us)  MAX(us)  AVG(us)
79742    1 21454    42

     ns
           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@@@@@                9211
            2048 |@@@@@@@@@@@@@@@@@@@@@@@@@@@              54209
            4096 |@@@              6915
            8192 |@@               3808
           16384 |              608
           32768 |             54
           65536 |             76
          131072 |@                 1196
          262144 |@                 1662
          524288 |@                 1038
         1048576 |              847
         2097152 |              107
         4194304 |               6
         8388608 |               3
        16777216 |             2
        33554432 |             0

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  dtrace:::BEGIN { trace(“Tracing...Ouput after 10 seconds, or Ctrl-C\n”); }
6
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The pf.d script uses the fbt provider to instrument the kernel pagefault()
function, grabbing counts at the entry point and using the timestamp built-in
variable and sum() function to total the amount of time on a per-execname basis.
The use of a ten-second interval is a trade-off between sampling too frequently and
managing a lot of output vs. sampling too infrequently and accumulating large val-
ues. Change this value to whatever interval suits your needs.

7  fbt:unix:pagefault:entry
8  {
9  @st[execname] = count();
10   self->pfst = timestamp
11 } 
12 fbt:unix:pagefault:return
13 /self->pfst/
14 {
15         @pft[execname] = sum(timestamp - self->pfst);
16   self->pfst = 0;
17 } 
18 tick-10s
19 {
20         printf("Pagefault counts by execname ...\n");
21         printa(@st);
22
23         printf("\nPagefault times(ns) by execname...\n");
24         printa(@pft);
25
26         trunc(@st);
27         trunc(@pft);
28 }

Script pf.d

solaris# ./pf.d
Pagefault counts by execname ...

  httpd                     2
  dtrace                     89
  rm                     112
  run_m2loader                   164
  getopt                    245
  date                     256
  cat                     348
  ypserv                    557
  sge_execd                    563
  m2loader                    797
  sge_shepherd                   932
  isainfo                    1185
  run_m3loader                  1517
  tds_job_status                    1594
  uname                    2300
  arch                    5037
  tnslsnr                   18728
  oracle                   94745
  java                   173492

Pagefault times(ns) by execname...
continues
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Note that the interval in the pf.d script is ten seconds, and the times reported
are in nanoseconds. In the last two lines of the sample output, we see that all the
java processes combined spent 5.7 seconds in the 10-second sampling period wait
on page faults. All the oracle processes combined spent 1.45 seconds. Drilling
down to the underlying cause of the page faults is more challenging. A page fault
occurs when a process (thread) references a virtual address in its address space
that does not have a corresponding physical address—an actual mapping to a
physical memory page does not exist. The page may be in memory, in which case
the kernel only needs to set up the mapping (minor page fault), or the page may
not be in memory, requiring a physical disk I/O (major page fault). In a modern
operating system, memory is demand-paged, so the occurrence of page faults is not
necessarily indicative of a problem. 

Another area of process memory growth is stack space. In Solaris, the kernel
grow() function is used to allocate space for stack growth.

  httpd                   73166
  dtrace                   816878
  rm                   1175890
  run_m2loader                 2027402
  date                   2913004
  getopt                  3130660
  cat                   3817559
  ypserv                  6227314
  sge_execd                  7472141
  sge_shepherd                11802223
  isainfo                  15452818
  tds_job_status                  19890730
  run_m3loader                20775753
  uname                  27416443
  arch                   56803348
  m2loader                 61545883
  tnslsnr                 246221638
  oracle                 1451181619
  java                 5741000093
[...]

solaris# dtrace -n 'fbt::grow:entry { @s[execname] = count(); }'
dtrace: description 'fbt::grow:entry ' matched 1 probe
^C

  m2loader                    1
  sleep                     1
  ls                      2
  msg-watch                       2
  run_m2loader                      2
  sge_execd                       2
  rm                      3
  date                      5
  getopt                     5
  sge_shepherd                      8
  tnslsnr                     8
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The two examples shown previously show the use of the same probe, but aggre-
gating on different data. First, we aggregate on the process name (execname), and
second we capture kernel stack frames, which can be useful in understanding the
underlying source of events of interest. In this example, we can see several of the
calls to grow() originate from exec systems calls, so there’s some process creation
happening with this workload. Most of the grow() calls originated as a result of a
system trap, which is not at all unusual. The page fault trap handler will call
grow() to increase a stack segment.

  cat                      9
  run_extractor                     10
  run_m3loader                     10
  isainfo                    25
  java                     25
  qconf                     27
  tds_job_status                     30
  uname                     75
  arch                     85
  oracle                     94

solaris# dtrace -n 'fbt::grow:entry { @s[stack()] = count(); }'
dtrace: description 'fbt::grow:entry ' matched 1 probe
^C
[...]

    unix`trap+0x1250
    unix`_cmntrap+0x140
    unix`suword64+0x21
    genunix`stk_copyout+0x72
    genunix`exec_args+0x309
    elfexec`elfexec+0x3db
    genunix`gexec+0x218
   genunix`exec_common+0x917
    genunix`exece+0xb
    unix`sys_syscall+0x17b

               15

    unix`trap+0x1250
    unix`_cmntrap+0x140
    unix`suword32+0x21
    genunix`stk_copyout+0x72
    genunix`exec_args+0x309
    elfexec`elf32exec+0x3db
    genunix`gexec+0x218
   genunix`exec_common+0x917
    genunix`exece+0xb
    unix`sys_syscall32+0x101

               31

    unix`trap+0x13c6
    unix`_cmntrap+0x140

              201
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Kernel Memory

Tracking kernel memory is generally a complex process, for several reasons:

Solaris, Mac OS X, and FreeBSD all implement sophisticated kernel memory 
allocation subsystems that leverage object caching mechanisms and reuse.5

The tools available for observing kernel memory are cryptic in nature and 
require some knowledge of the kernel and the internals of the allocation 
mechanisms in order to use them effectively.

The DTrace provider required to track kernel memory allocations is fbt, 
which, as we have pointed out several times, is an unstable provider.

Using the fbt provider with DTrace to track kernel memory requires knowl-
edge of the internals of the kernel and kernel memory allocation subsystem.

Having shared those caveats and given the complexity inherent in observing
kernel memory allocation and use, we will provide some methods that can be used
if there is a need to troubleshoot issues related to kernel memory. Because this is
not an operating systems internals text, we must make some assumptions about
your knowledge of kernel internals or your willingness to do research in source
code and books. Additional methods for using DTrace to track kernel memory allo-
cation are covered in Chapter 12.

In addition to DTrace, Solaris offers several tools for observing kernel memory:

The mdb(1) memstat dcmd (shown previously)

The mdb(1) kmastat dcmd

The kstat(1) command

Here’s an example of monitoring Solaris kernel object allocations using DTrace,
aggregating on the names of the internal caches, and using the sum() function to
track the volume of allocation requests while tracing:

5. See “The Slab Allocator: An Object-Caching Kernel Memory Allocator” by Jeff Bonwick, and
“Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary
Resources” by Jeff Bonwick and Jonathan Adams.

solaris# dtrace -n 'fbt::kmem_cache_alloc:entry
{ @[args[0]->cache_name] = sum(args[0]->cache_bufsize); }'
dtrace: description 'fbt::kmem_cache_alloc:entry ' matched 1 probe
^C
[...]
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Given that the most frequently used cache in this sample was a generic kmem_
alloc_4096 cache, we can use a predicate and kernel stack trace to determine
which kernel facilities are generating these allocations:

The kernel stack frames captured for kmem_alloc() from the kmem_alloc_
4096 cache indicate most of those allocation requests are the direct result of page
faults, generated by user processes. Recall that we can instrument the pagefault
routine to see which user processes are incurring page faults:

  vn_cache                  1469760
  streams_dblk_80                  1803648
  streams_dblk_208                  1859520
  HatHash                  3276800
  zio_buf_131072                  3407872
  anon_cache                 3625920
  kmem_alloc_1152                  3867264
  kmem_alloc_192                  4345344
  hment_t                  5134272
  streams_dblk_20304                 5267328
  kmem_alloc_32                5487296
  kmem_alloc_64                9930112
  zio_cache                 100685360
  kmem_alloc_4096                 269684736

solaris# dtrace -n 'fbt::kmem_cache_alloc:entry
/args[0]->cache_name == "kmem_alloc_4096"/ { @[stack()] = count(); }'
dtrace: description 'fbt::kmem_cache_alloc:entry ' matched 1 probe
^C
[…]

    genunix`kmem_alloc+0x70
    genunix`exec_args+0xe5
    elfexec`elf32exec+0x3db
    genunix`gexec+0x218
   genunix`exec_common+0x917
    genunix`exece+0xb
    unix`sys_syscall32+0x101

              144

    genunix`kmem_zalloc+0x3b
   genunix`anon_set_ptr+0xc9
    genunix`anon_dup+0x83
    genunix`segvn_dup+0x51c
    genunix`as_dup+0xf8
    genunix`cfork+0x661
    genunix`fork1+0x10
    unix`sys_syscall+0x17b

              257

    genunix`kmem_alloc+0x70
  genunix`segvn_fault_anonpages+0x177

   genunix`segvn_fault+0x23a
    genunix`as_fault+0x205
    unix`pagefault+0x8b

     unix`trap+0x3d7
    unix`_cmntrap+0x140

            59978
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Reference the “Memory” section, which covers user memory and drilling down
on page faults from a user process perspective.

Note that calls into the kmem_alloc() family of routines in Solaris do not nec-
essarily mean physical memory is being allocated. Most of the time, the kernel is
taking advantage of the design features of the slab allocator and simply reusing
memory from its object caches.

The Solaris kernel implements a vmem layer as a universal backing store for
the kmem caches and general-purpose kernel resource allocation. The vmem layer
can be observed using a very similar set of DTrace programs.

We see the largest vmem arenas during the sampling period are heap and
kmem_io_4G. As before, we can use these names in predicates to capture kernel
stack frames of interest.

solaris# dtrace -n 'fbt:unix:pagefault:entry { @[execname] = count(); }'
dtrace: description 'fbt:unix:pagefault:entry ' matched 1 probe
^C
[...]
  tds_job_status                    2380
  arch                     3778
  tnslsnr                    5909
  m2loader                   8581
  oracle                   35603
  java                    53396

solaris# dtrace -n 'fbt::vmem_alloc:entry { @[args[0]->vm_name] = sum(arg1); }'
dtrace: description 'fbt::vmem_alloc:entry ' matched 1 probe
^C

  crypto                     2
  tl_minor_space                     2
  contracts                       3
  ip_minor_arena_la                    47
  ip_minor_arena_sa                    79
  bp_map                  1040384
  kmem_oversize                   1314320
  kmem_firewall_va                  1343488
  segkp                   1400832
  kmem_io_4G                 20303872
  heap                   26734592

solaris# dtrace -n 'fbt::vmem_alloc:entry
    /args[0]->vm_name == "heap"/ { @[stack()] = count(); }'
dtrace: description 'fbt::vmem_alloc:entry ' matched 1 probe
^C
[…]

   unix`segkmem_xalloc+0x144
   unix`segkmem_alloc_io_4G+0x26
   genunix`vmem_xalloc+0x315
    genunix`vmem_alloc+0x155
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In the previous example, monitoring the vmem heap arena, we can see alloca-
tion requests coming from the ZFS layer on behalf of read system calls and the
SATA driver for DMA operations.

Another layer that can be instrumented in Solaris is the segkmem layer, which
is the segment driver for kernel address space segments that gets called from the
vmem layer. The following series of DTrace programs show a very similar flow to
what we have used to look at the kmem and vmem layers:

    unix`kalloca+0x160
   unix`i_ddi_mem_alloc+0xd6
  rootnex`rootnex_setup_copybuf+0xe4
  rootnex`rootnex_bind_slowpath+0x2dd
  rootnex`rootnex_coredma_bindhdl+0x16c

   rootnex`rootnex_dma_bindhdl+0x1a
  genunix`ddi_dma_buf_bind_handle+0xb0

   sata`sata_dma_buf_setup+0x4b9
   sata`sata_scsi_init_pkt+0x1f5
    scsi`scsi_init_pkt+0x44
    sd`sd_setup_rw_pkt+0xe5
   sd`sd_initpkt_for_buf+0xa3
    sd`sd_start_cmds+0xa5
    sd`sd_core_iostart+0x87
   sd`sd_mapblockaddr_iostart+0x11a
    sd`sd_xbuf_strategy+0x46

              259

    unix`ppmapin+0x2f
    zfs`mappedread+0x84
    zfs`zfs_read+0x10e
    zfs`zfs_shim_read+0xc
    genunix`fop_read+0x31
    genunix`read+0x188
    genunix`read32+0xe
    unix`sys_syscall32+0x101

              271

solaris# dtrace -n 'fbt::segkmem*:entry { @[probefunc] = count(); }'
dtrace: description 'fbt::segkmem*:entry ' matched 41 probes
^C

  segkmem_alloc                     19
  segkmem_zio_alloc                   680
  segkmem_alloc_vn                    699
  segkmem_page_create                    699
  segkmem_alloc_io_4G                    3562
  segkmem_free                  3577
  segkmem_free_vn                    3577
  segkmem_xalloc                    4261

solaris# dtrace -n 'fbt::segkmem_xalloc:entry
    { @[args[0]->vm_name,arg2] = count(); }'
dtrace: description 'fbt::segkmem_xalloc:entry ' matched 1 probe
^C
[…]
  heap   16384              64
  heap    8192              92
  heap   12288              96

continues
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 The three consecutive DTrace programs executed in the previous example show,
first, how to determine which segkmem routines are being called. We see segkmem_
xalloc(), which certainly looks like an allocation function, and we next instru-
ment the entry point to that function, aggregating on the name of the vmem arena
and calling into it and the size. Finally, we take the name from the generated out-
put (heap) and use it in a predicate in the third program, which captures kernel
stacks. We can see segkmem_xalloc() getting called out of vmem_alloc(),
entered from the SATA drive for DMA memory.

The examples shown are intended to provide some basic steps you can take to
determine which kernel subsystems are making use of kernel memory allocators.
There is nothing observed in the examples shown that indicates a problem. 

Mac OS X offers a zprint(1) utility, which generates output similar to the
kmastat dcmd available in DTrace, listing information about the many kernel
object caches in use. 

kernel_memory_allocate() is commonly (but not exclusively) used in the
Mac OS X kernel for kernel memory allocation. This can be instrumented with
DTrace using the fbt provider, and kernel stack traces can be captured to deter-
mine which kernel subsystem is allocating memory:

  heap    135168             852
solaris# dtrace -n 'fbt::segkmem_xalloc:entry
    /args[0]->vm_name == "heap"/ { @[stack()] = count(); }'
dtrace: description 'fbt::segkmem_xalloc:entry ' matched 1 probe
^C
[…]

   unix`segkmem_alloc_io_4G+0x26
   genunix`vmem_xalloc+0x315
    genunix`vmem_alloc+0x155
    unix`kalloca+0x160
   unix`i_ddi_mem_alloc+0xd6
  rootnex`rootnex_setup_copybuf+0xe4
  rootnex`rootnex_bind_slowpath+0x2dd
  rootnex`rootnex_coredma_bindhdl+0x16c

   rootnex`rootnex_dma_bindhdl+0x1a
  genunix`ddi_dma_buf_bind_handle+0xb0

   sata`sata_dma_buf_setup+0x4b9
   sata`sata_scsi_init_pkt+0x1f5
    scsi`scsi_init_pkt+0x44
    sd`sd_setup_rw_pkt+0xe5
   sd`sd_initpkt_for_buf+0xa3
    sd`sd_start_cmds+0xa5
   sd`sd_return_command+0xd7

     sd`sdintr+0x187
  sata`sata_txlt_rw_completion+0x145

   nv_sata`nv_complete_io+0x95
              369

macosx> dtrace -n 'fbt::kernel_memory_allocate:entry
    { @[stack()] = quantize(arg2); }'
dtrace: description 'fbt::kernel_memory_allocate:entry ' matched 1 probe
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The DTrace command used for Mac OS X instruments the entry point of
kernel_memory_allocate() and aggregates on the kernel stack using quantize
to track size allocation size (arg2). Here we see several allocations in the 8KB to
64KB range (top stack) from the trap code—most likely page fault traps, calling
into the page-in code. The bottom frame and associated aggregation shows ten allo-
cations in the 8KB to 16KB range and five in the 64KB to 128KB range, orginat-
ing from ioctl(2) system calls.

FreeBSD also makes use of a kmem layer for object caching kernel objects in ker-
nel memory:

^C
[…]

   mach_kernel`kmem_alloc+0x38
   mach_kernel`kalloc_canblock+0x76
   mach_kernel`OSMalloc+0x60

              0x5a5bcd93
              0x5a5be95b
              0x5a5befcc

  mach_kernel`decmpfs_hides_rsrc+0x5f3
 mach_kernel`decmpfs_pagein_compressed+0x1b6

   mach_kernel`hfs_vnop_pagein+0x64
   mach_kernel`VNOP_PAGEIN+0x9e
   mach_kernel`vnode_pagein+0x30b
  mach_kernel`vnode_pager_cluster_read+0x5c
  mach_kernel`vnode_pager_data_request+0x8a

   mach_kernel`vm_fault_page+0xcaa
   mach_kernel`vm_fault+0xd2d
   mach_kernel`user_trap+0x29f
   mach_kernel`lo_alltraps+0x12a

           value  ------------- Distribution ------------- count
            4096 |              0
            8192 |@@@@@@@              11
           16384 |@@@@@@@@@             13
           32768 |@@@@@@@@@@@@@@@@@@@@@@@@            37
           65536 |             0

   mach_kernel`kmem_alloc+0x38
   mach_kernel`kalloc_canblock+0x76
    mach_kernel`kalloc+0x19
  mach_kernel`dt_kmem_alloc_aligned+0x1a

   mach_kernel`helper_init+0x20c
   mach_kernel`helper_ioctl+0x36d
   mach_kernel`spec_ioctl+0x9d
   mach_kernel`VNOP_IOCTL+0xdc
   mach_kernel`utf8_encodelen+0x677
   mach_kernel`fo_ioctl+0x3f
    mach_kernel`ioctl+0x519
   mach_kernel`unix_syscall+0x243
   mach_kernel`lo_unix_scall+0x118

           value  ------------- Distribution ------------- count
            4096 |              0
            8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@              10
           16384 |             0
           32768 |             0
           65536 |@@@@@@@@@@@@@                   5
          131072 |                0
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When exploring a subsystem we are not familiar with, we often choose to look
first at which functions of interest are getting called, in this case from the kernel
kmem functions. We can then instrument a function of interest, kmem_malloc(),
aggregating on kernel stacks. With the FreeBSD system shown here, we see ker-
nel memory allocations coming up from lstat(2) system calls, through the file
system layers and into the FreeBSD kernel slab routines. 

Refer to Chapter 12 for more examples of kernel DTrace analysis.

Memory Summary

When observing memory, the metrics that interest us are used memory vs. free
memory and where used memory is being used. System utilities that provide sys-
temwide metrics and per-process metrics on memory are the right place to start.
DTrace can determine where and why the kernel and applications are consuming
memory and measure the latency impact of memory-related events such as page
faults. 

[root@freebsd ~]# dtrace -n 'fbt::kmem*:entry { @[probefunc] = count(); }'
dtrace: description 'fbt::kmem*:entry ' matched 18 probes
^C

  kmem_alloc_wait                     9
  kmem_free_wakeup                     9
  kmem_malloc                   3908

[root@freebsd ~]# dtrace -n 'fbt::kmem_malloc:entry { @[stack()] = count(); }'
dtrace: description 'fbt::kmem_malloc:entry ' matched 1 probe
^C
[…]

    kernel`page_alloc+0x27
   kernel`keg_alloc_slab+0xfd
   kernel`keg_fetch_slab+0xd4
   kernel`zone_fetch_slab+0x4c
   kernel`uma_zalloc_arg+0x4ae
    kernel`getnewvnode+0x155
    kernel`ffs_vgetf+0x112
    kernel`ffs_vget+0x2e
    kernel`ufs_lookup_+0xaa9
    kernel`ufs_lookup+0x1e
   kernel`VOP_CACHEDLOOKUP_APV+0x7c
   kernel`vfs_cache_lookup+0xd6
   kernel`VOP_LOOKUP_APV+0x84
    kernel`lookup+0x70e
    kernel`namei+0x7bf
   kernel`kern_statat_vnhook+0x72
    kernel`kern_statat+0x3c
    kernel`kern_lstat+0x36
    kernel`lstat+0x2f
    kernel`syscall+0x3e5

             1235
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Observing Disk and Network I/O

We cover disk I/O and network I/O extensively in Chapters 4 to 7. In the interest of
completeness, we’ll outline some preliminary methods for understanding disk and
network I/O in this chapter. We encourage you to reference the dedicated chapters
for drilling down further for observing and understanding I/O.

From a system perspective, it is relatively simple to observe disk and network
I/O activity using bundled tools and utilities. In Solaris, start with netstat(1M)
(network) and iostat(1M) (disk). The Mac OS X and FreeBSD operating systems
also include iostat(8) and netstat(8) utilities (reference the man pages for
implementation and command-line argument differences).

I/O Strategy

Once an overall view of the system has been established, use DTrace as your con-
nect-the-dots technology to do the following:

Determine which processes and threads are generating disk and network I/O

Determine the rate and latency of I/Os to disks and the network

Determine the I/O latency profile of your application processes

Track disk I/O targets (files, file systems, raw devices)

I/O Checklist

Table 3-7 provides an I/O checklist.

Table 3-7 I/O Checklist

Issue Description

Device I/O profile Which devices are targeted for I/O, and what is the read/write 
breakdown?

Device I/O latency How fast are I/Os being processed on a per-device basis?

Device I/O errors What device errors are occurring, and are they being handled by 
the OS?

Application I/O profile Which components of the workload are generating I/O?

Application I/O latency What is the cost of I/O latency in terms of delivered application 
performance?

Application I/O errors Is the application encountering I/O errors?
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I/O Providers

Table 3-8 and Figure 3-1 list the DTrace providers used most often when observ-
ing disk and network I/O. 

Table 3-8 I/O Providers

Provider Description

io Stable provider for observing physical disk I/O (and NFS back-end I/O on Solaris)

fbt Kernel memory modules and functions related to disk and network I/O

syscall Application-issued systems calls for disk and network I/O

mib Message Information Base provider, traces counters served by SNMP

ip Stable provider for observing IP-layer network traffic

fsinfo File system operations (Solaris)

vfs Virtual file system provider (FreeBSD)

Figure 3-1 DTrace providers for I/O 
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Check your operating system version to see which of these providers are avail-
able. For example, the ip provider is currently available only in OpenSolaris.

I/O One-Liners

The following one-liners can be used to begin understanding the I/O load at both
an application and system level.

syscall Provider

These may need adjustments to match the system calls on your operating system
(for example, syscall::*read:entry does not match the read_nocancel sys-
tem call on Mac OS X).

Which processes are executing common I/O system calls?

Which file system types are targeted for reads and writes?

Which files are being read, and by which processes?

Which files are being written, and by which processes?

Other Providers

Which processes are generating network I/O (Solaris)?

dtrace -n 'syscall::*read:entry,syscall::*write:entry { @rw[execname,probefunc] = 
count(); }'

dtrace -n 'syscall::*read:entry,syscall::*write:entry { @fs[execname, probefunc, 
fds[arg0].fi_fs] = count(); }'

dtrace -n 'syscall::*read:entry { @f[execname, fds[arg0].fi_pathname] = count(); }'

dtrace -n 'syscall::*write:entry { @f[execname, fds[arg0].fi_pathname] = count(); }'

dtrace -n 'fbt:sockfs::entry { @[execname, probefunc] = count(); }'
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Which processes are generating file system I/O (Solaris)?

What is the rate of disk I/O being issued?

Note also that the /usr/demo/dtrace directory on Solaris systems contains
several useful scripts for observing and measuring I/O.

I/O Analysis

When observing and measuring I/O, it’s important to be aware of the asynchro-
nous nature of I/O and how this affects what typically happens when a thread
issues a read or write to a disk, network interface, or file system file. At some point
after a system call is invoked, the calling thread will be put to sleep while the I/O
moves down through the kernel, through the device driver, out over the wire, and
back again. Once the I/O is completed, the kernel will copy the data to the thread
that executed the read or write and issue a wake-up to the thread.

As illustrated in Figure 3-2, once an application thread issues an I/O, it will be
taken off the CPU until the I/O completes. The actual processing of the I/O
through the kernel layers down into the device driver happens asynchronously
with respect to the thread that issued the I/O. From an observability perspective,
this means that when you are instrumenting lower layers of the I/O stack and
want to correlate I/O events to processes and threads using DTrace variables,
execname, pid, and tid may not provide the expected results, because the issu-
ing thread will likely not be on the CPU when probes instrumenting the lower lay-
ers of the I/O stack fire.

With that in mind, the key components to I/O analysis are measuring I/O rates
and I/O latency and determining to what extent I/O latency is affecting delivered
workload performance. Much of this is covered in the dedicated chapters, but we
discuss some methods that can be applied here.

 All I/O, from an application/workload perspective, begins with system calls.
There are several system calls that are used by applications to do disk I/O, the
most common being read(2) and write(2). Other variants include pread(2),
readv(2), pwrite(2), writev(2), and so on, depending on your operating sys-

dtrace -n 'fsinfo::: { @fs[execname, probefunc] = count(); }'

dtrace -n 'io:::start { @io = count(); } tick-1sec { printa("Disk I/Os per second: %@d
\n", @io); trunc(@io); }'
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tem version. You can start by using the DTrace syscall provider to observe which
processes are issuing which system calls and drilling down from there based on the
type of I/O system call in use. This is done by the following script:

The sctop10.d script truncates the output so we see only the top ten system
calls and calling process names.

Figure 3-2 I/O flow 

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  syscall:::entry
6  {
7          @[execname, probefunc] = count();
8  }
9  END
10 {
11         trunc(@, 10);
12         printf("%-16s %-16s %-8s\n", "EXEC", "SYSCALL", "COUNT");
13 printa("%-16s %-16s %-@8d\n",@);
14 }

Script sctop10.d
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The previous three examples show a big-picture system call profile from Solaris,
OS X, and FreeBSD. On the Solaris system, we can see several processes execut-
ing read(2), whereas on the Mac OS X system we appear to have mostly network
I/O (sendto and recvfrom system calls). The FreeBSD system was executing
some ls(1) commands, and the sshd daemon was doing some reads and writes.

By making some changes to the sctop10.d script, we can make it much more I/O
centric and learn more about the processes generating I/O on the system.

solaris# ./sctop10.d
^C
EXEC             SYSCALL          COUNT
java             stat            1127
sge_shepherd     getuid           1168
arch             sigaction        1272
dtrace           ioctl           1599
m2loader         brk           1606
arch             read            1808
sge_shepherd     close         2152
sge_execd        close          2197
java             lseek            6183
java             read             6388

macosx# ./sctop10.d
^C
EXEC             SYSCALL          COUNT
VBoxXPCOMIPCD    sendto           112
VirtualBoxVM     recvfrom        112
WindowServer  sigaltstack      118
WindowServer  sigprocmask      118
VBoxSVC          select          125
VBoxSVC  __semwait_signal 136
Mail   __semwait_signal 147
VirtualBoxVM     select           148
VirtualBoxVM     __semwait_signal 942
VirtualBoxVM     ioctl         68972

[root@freebsd /var/tmp]# ./sctop10.d
^C
EXEC             SYSCALL          COUNT
ls               fchdir           1643
ls               close            1654
ls               open             1657
ls               fstat            2201
ls               lstat            8062
sshd             write            8491
sshd             read            8501
ls               write            9295
sshd             select           16983
sshd  sigprocmask      33966

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  syscall::*read*:entry,
6  syscall::*write*:entry
7  {
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The scrwtop10.d script enables syscall provider probes for various read/write
system calls, using the * pattern matching character in the probefunc field. As
noted previously, this may result in matches on system calls that are not of inter-
est,6 so you should verify which system calls will be instrumented on your target
host by running dtrace -ln 'syscall::*read*:entry' and do the same for
the write probe.

Note that the use of the fds[] array as an aggregation key requires that the
probes specified take a file descriptor as the first argument (line 8, arg0). For
FreeBSD, which has not yet implemented the fds[] array, the key can be changed
to simply arg0, with changes to the output header to reflect the field is a file
descriptor (FD), not a file system (FS, line 13). Once again, we make use of the
trunc()function to generate just the top ten events captured during tracing. 

Here we get a better view of the I/O target by observing which file system layer
is being used, giving us more insight into the nature of the I/O load on the system.
Here’s another view, using the fsinfo provider:

8          @[execname, probefunc, fds[arg0].fi_fs] = count();
9  }
10 END
11 {
12         trunc(@, 10);
13         printf("%-16s %-16s %-8s %-8s\n", "EXEC", "SYSCALL", "FS", "COUNT");
14         printa("%-16s %-16s %-8s %-@8d\n",@);
15 }

Script scrwtop10.d

6. An example is readlink on Solaris.

solaris# ./scrwtop10.d
^C
EXEC  SYSCALL  FS       COUNT
Xvnc             read          sockfs   671
oracle pwrite zfs      1080
arch             read         lofs     1188
mysqld           read         sockfs   1385
oracle           write         sockfs   2295
oracle           read         sockfs   2322
java             write         nfs4     4538
java             read          sockfs   5630
java             read          zfs      15703
java             read          lofs     29359

1  #!/usr/sbin/dtrace -qs
2

continues
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As you can see, a DTrace script easily becomes a template on which to build
other scripts with minor changes. Things such as output formatting in END clauses
are easily reused, and minor edits to aggregations keys or the addition of predi-
cates to drill down further can be done quickly and easily.

In the fs.d script, we leverage the Solaris fsinfo provider to gain insight on I/O
based on the functions called in the file system–independent layer of the kernel.
The probefunc used here as an aggregation key (line 5) provides the name of the
kernel function that can be used in subsequent scripts for drill down if necessary.
probename can be used instead of probefunc to provide a generic FS operation
name that will remain stable across operating systems and releases (see
fstop10_enhanced.d, later in this section).

The output produced by fstop10.d shows us that, during this sampling period,
java processes generated a large number of I/O calls through the kernel’s virtual
file system layer. Note that these operations are not necessarily on-disk file sys-
tems (like ZFS or UFS) but may be I/Os to sockfs (network), devfs (devices), and
so on. We can enhance our view with more detail using the fsinfo provider by tak-
ing advantage of available arguments. args[0] is a pointer to a fileinfo_t
structure, and args[1] is the return value from the file system operation associ-
ated with the probe. A return value of zero means success. Other return values

3  fsinfo::: 
4  { 
5 @[execname,probefunc] = count(); 
6  } 
7  END 
8  { 
9          trunc(@,10); 
10         printf("%-16s %-16s %-8s\n","EXEC","FS FUNC","COUNT");
11 printa("%-16s %-16s %-@8d\n",@); 
12 }

Script fstop10.d

solaris# ./fstop10.d
^C
EXEC             FS FUNC          COUNT
oracle           fop_write        14494
java  fop_readlink     16410
java             fop_seek         28161
oracle fop_rwlock       28551
oracle fop_rwunlock     28613
java fop_access       32845
java             fop_read         59105
java fop_rwlock       60449
java  fop_rwunlock     60449
java  fop_lookup       110724
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depend on the actual file system operation; for example, the return for fop_
read() and fop_write() is the number of bytes read or written. For reference,
the fileinfo_t structure contains the following members:

Here’s a modified version of the fstop10.d script:

We added several fields as aggregation keys, enabling us to observe the specific
file system operation (probename), the file system type, and the full path name to
the file, in addition to again using trunc() to display only the top ten events
captured.

typedef struct fileinfo {
        string fi_name;  /* name (basename of fi_pathname) */
        string fi_dirname; /* directory (dirname of fi_pathname) */
        string fi_pathname;    /* full pathname */
        offset_t fi_offset;   /* offset within file */
        string fi_fs;       /* filesystem */
        string fi_mount; /* mount point of file system */
} fileinfo_t;

1  #!/usr/sbin/dtrace -qs
2
3  fsinfo::: 
4  { 
5  @[execname,probename,args[0]->fi_fs,args[0]->fi_pathname] = count(); 
6  } 
7  END 
8  { 
9          trunc(@,10); 
10         printf("%-16s %-8s %-8s %-32s %-8s\n",
11 "EXEC","FS FUNC","FS TYPE","PATH","COUNT");
12         printa("%-16s %-8s %-8s %-32s %-@8d\n",@); 
13 }

Script fstop10_enhanced.d

solaris# ./fstop10_enhanced.d
^C
EXEC FS FUNC  FS TYPE  PATH            COUNT
java             lookup   ufs      /var         39
java             lookup ufs      /var/webconsole       39
java             lookup   ufs      /var/webconsole/domains    39
java lookup   ufs   /var/webconsole/domains/console  39
java lookup   ufs  /usr/share/webconsole/webapps    70
java             lookup   ufs      /usr         88
java             lookup   ufs      /usr/share                      88
java             lookup  ufs      /usr/share/webconsole            88
fsflush          inactive tmpfs    /tmp/out1          1706
fsflush          putpage  tmpfs    /tmp/out1         1706
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With the enhanced version of the fs.d script, we have a more detailed view of
file I/O operations systemwide and can drill down from here based on what we
observe and the problem under investigation.

Disk I/O

It may be easiest to start looking at disk I/O with bundled tools such as
iostat(1M), which gives a systemwide view showing key disk I/O statistics on a
per-device and per-controller basis. Then use the DTrace io provider to examine
details of the I/O events and, if possible, identify the processes that are generating
disk I/O. The following example shows a series of DTrace programs executed from
the command line, illustrating the drill-down flow and how quickly you can under-
stand a great deal about the disk I/O load on a system.

The following examples were demonstrated on Solaris with UFS as the file
system:

solaris# dtrace -n 'io:::start { @[execname, pid] = count(); }'
dtrace: description 'io:::start ' matched 6 probes
^C

  sched  0                3
  java 7453                4
  fsflush          3                5
  java         7480            12933
  java         7486            13007
  java         7495            13009
  java         7498            13060
  java         7492            13153
  java         7489            13316
  java         7483            13380
  java         7500            13456

solaris# dtrace -qn 'syscall:::entry /execname == "java"/ 
    { @[pid, probefunc] = count(); } END { trunc(@, 10); printa(@); }'
^C

     7492  pread64                        6764
     7489  pread64                        6789
     7483  pwrite64                        6791
     7492  pwrite64                        6825
     7486  pwrite64                        6839
     7489  pwrite64                        6855
     7480  pwrite64                        6889
     7480  pread64                        6900
     7453  read                         23526
     7453  pollsys                        23644

solaris# dtrace -n 'syscall::pread*:entry,syscall::pwrite*:entry
     /execname == "java"/ { @[fds[arg0].fi_fs] = count(); }'
dtrace: description 'syscall::pread*:entry,syscall::pwrite*:entry ' matched 4 probes
^C
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This shows four consecutive invocations of DTrace used to get a handle on the
disk I/O load on the system. The first command uses the io provider, aggregating
on process name and PID to determine which processes are generating disk I/O—
on the assumption that the requesting process is still on-CPU (which may not be
the case, depending on the type of I/O and file system). We see from the output
that several java processes are generating disk I/O. The next step is to determine
which system calls the java processes are using to do I/O. From the second com-
mand, we can see extensive use of the pread64(2) and pwrite64(2) system
calls, so we follow up by using DTrace to instrument just those system calls and
taking a look at the target file system.

The resulting output shows that all the pread and pwrite calls are hitting
specfs, which is used in Solaris for raw or block device I/O. The last command
aggregates on the file path names, and we see that the I/O targets are in fact block
device files.

This is all good and useful information, but in order to properly characterize the
load on the system and the application, we need to generate a few key perfor-
mance metrics.

I/O rate: What is the rate of reads and writes per second?

I/O throughput: What is the data rate of reads and writes?

I/O latency: How long are the disk reads and writes taking?

  specfs                   147582

solaris# dtrace -n 'syscall::pread*:entry,syscall::pwrite*:entry /execname == "java"/
      { @[fds[arg0].fi_pathname] = count(); }'
dtrace: description 'syscall::pread*:entry,syscall::pwrite*:entry ' matched 4 probes
^C

  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,19:c  5235
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,d:    7077
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,e:c   7250
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,a:c   7648
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,c:c   7858
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,b:c   8872
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,1a:c  8991
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,14:c 10417
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,1b:c 10674
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,18:c 10721
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,1c:c 10987
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,16:c 11859
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,17:c 12191
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,15:c 12251
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,f:c  12310
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,10:c 12483
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,12:c 12521
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,13:c 12621
  /devices/pci@0,600000/pci@0/pci@9/SUNW,emlxs@0/fp@0,0/ssd@w5000097208140919,11:c 12867
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The disk_io.d script enables two io:::start probes, using a predicate to
separate reads from writes and testing for our process name of interest (passed as
a command-line argument in the following example, lines 13 and 20). We also show
the use of some time-saving features of the D language that can be integrated into
scripts. We defined a header to label our output (line 5). The D language supports
use of the #define directive, which we use here to define a macro to print the
header. This makes it easier to print the header in multiple places (lines 9 and 33),
as well as simplifying changes to the header. We need only edit line 5 for script
modification to the header. Note that, in order for the #define to work, we need to
instruct DTrace to invoke the C compiler preprocessor, which is done using the -C
flag (line 1).

If the target system does not have a C preprocessor available, an alternate
method of accomplishing the same thing is shown next. We set two integer vari-
ables in the dtrace:::BEGIN probe (LINES, line) and use a different predicate

1  #!/usr/sbin/dtrace -Cs
2
3  #pragma D option quiet
4
5  #define PRINT_HDR printf("%-8s %-16s %-8s %-16s\n","RPS","RD BYTES","WPS","WR BYTES");
6
7  dtrace:::BEGIN
8  {
9 PRINT_HDR
10 }
11
12 io:::start
13 /execname == $$1 && args[0]->b_flags & B_READ/
14 {
15   @rps = count();
16 @rbytes = sum(args[0]->b_bcount);
17 }
18
19 io:::start
20 /execname == $$1 && args[0]->b_flags & B_WRITE/
21 {
22   @wps = count();
23 @wbytes = sum(args[0]->b_bcount);
24 }
25 tick-1sec
26 {
27         printa("%-@8d %-@16d %-@8d %-@16d\n", @rps, @rbytes, @wps, @wbytes);
28         trunc(@rps); trunc(@rbytes); trunc(@wps); trunc(@wbytes);
29 }
30 tick-1sec
31 /x++ == 20/
32 {
33         PRINT_HDR
34         x = 0;
35 }

Script disk_io.d
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in a tick-1sec probe to print the header every 20 lines. The header will also be
printed initially, since line is initialized to zero.

We now have a script that will give us disk I/O load data for a process of interest:

We can see the java processes are doing about 6KB reads and just more than
9KB writes per second to disk, with about 48MB/sec read throughput and 77MB/
sec write throughput. With the I/O rate and throughput numbers in hand, the
remaining metric of interest is latency or how long disk I/Os are taking. The /usr/
demo/dtrace directory on Solaris systems includes a DTrace script, iotime.d,7

which will provide per-I/O, per-device I/O times.

1  #!/usr/sbin/dtrace -s
[...]
7  dtrace:::BEGIN
8  {
9     LINES = 20; line = 0;
10 }
[...]
30 tick-1sec
31 /--line <= 0/
32 {
33    printf("%-8s %-16s %-8s %-16s\n", "RPS", "RD BYTES", "WPS", "WR BYTES");
34    line = LINES;
35 }

solaris# ./disk_io.d java
RPS      RD BYTES        WPS   WR BYTES
6112     50069504       9363  76701696
5873     48111616       9482  77676544
5920     48496640       9303  76210176
5943     48685056       9345  76554240
5939     48652288       9210  75448320
5885     48209920       9264  75890688
6045     49520640       9192  75300864
5975     48947200       9415  77127680
5973     48930816       9305  76226560
^C
4808     39387136       7583  62119936

7. The iotime.d script is also listed in the DTrace Guide’s io provider chapter (a modified ver-
sion in included in this book on the following page, iotimeq.d).

solaris# dtrace -s /usr/demo/dtrace/iotime.d
[...]
    ssd149    <none>  W  30.899
    ssd147    <none>  W  48.833

continues
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The iotime.d script provides the short device name, file path (<none> in this
case because the load is block device I/O), whether the I/O was a read or write, and
the time in milliseconds from I/O request to completion. This script will generate a
tremendous amount of output if there is a steady rate of disk I/O traffic and many
disk devices handling I/Os. We can modify the script to use an aggregation and
grab a snapshot to track per-device I/O times.

The iotimeq.d script is based on iotime.d, but instead of printing a line of
output for every I/O, it uses a quantize() aggregation (line 19) to capture I/O
times per-device and per I/O type (read or write). The elapsed I/O time is con-
verted to milliseconds and stored in a clause-local variable (lines 15, 16), which is
passed to the quantize function.

    ssd155    <none>  R  29.113
    ssd158    <none>  W  14.520
    ssd148    <none>  R  17.496
    ssd147    <none>  R  43.884
    ssd156    <none>  R  23.689
    ssd148   <none>  R   9.485
    ssd155    <none>  R  23.559
    ssd145    <none>  R  15.707
    ssd151    <none>  R  14.037
    ssd158   <none>  W   5.441
    ssd161    <none>  R  20.636

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  dtrace:::BEGIN { trace(“Tracing...Output afer 10 seconds, or Ctrl-C\n”); }
6
7  io:::start
8  {
9          start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
10 }
11
12 io:::done
13 /start[args[0]->b_edev, args[0]->b_blkno]/
14 {
15         this->elapsed = 
16          (timestamp - start[args[0]->b_edev, args[0]->b_blkno]) / 1000000;
17   @iot[args[1]->dev_statname,
18  args[0]->b_flags & B_READ ? "READS(ms)" : "WRITES(ms)"] = 
19      quantize(this->elapsed);
20         start[args[0]->b_edev, args[0]->b_blkno] = 0;
21 }
22 tick-10sec
23 {
24         printa(@iot);
25         exit(0);
26 }

Script iotimeq.d
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The previous truncated sample output shows the quantize aggregation for reads
on device ssd153 and writes on device ssd148. We can see the I/O time falls mostly
in the 8-millisecond to 31-millisecond range, with some writes on ssd148 approach-
ing 128 milliseconds (which is really slow).

Another approach to measuring I/O latency is to trace file I/O at the system call
layer. One advantage of this approach is that the process responsible is guaran-
teed to still be on-CPU and can be matched with the execname and pid built-in D
variables. This is not the case with the io provider, and for some file systems such
as ZFS, disk I/O is often requested by another kernel thread. This means some of
the previous io provider examples that matched on execname will miss most ZFS
disk I/O events, since the execname is sched (the kernel).

The rwa.d script shown next traces file I/O at the system call layer and will
always match the correct process name. It also shows that you can create D scripts
using command-line arguments, reducing the need to do edits to measure specific
system calls for specific processes. The script takes two arguments: the system call
name and the process name. It assumes that the system call specified has a file
descriptor as the first argument (arg0); it’s up to you to choose system calls where
that is the case. It is a simple matter to remove that requirement, changing the
aggregation key and header also, to make the script more generic.

solaris# ./iotimeq.d
. . .
  ssd153                                              READS(ms)                                             
           value  ------------- Distribution ------------- count
               0 |              0
               1 |              4
               2 |              10
               4 |@@               146
               8 |@@@@@@@@@@@            889
              16 |@@@@@@@@@@@@@@@@@@@@@@@                 1946
              32 |@@@@                338
              64 |              0
. . .
  ssd148                                              WRITES(ms)                                            
           value  ------------- Distribution ------------- count
               1 |              0
               2 |              5
               4 |@              75
               8 |@@@@              368
              16 |@@@@@@@@@@@@@@@@                 1336
              32 |@@@@@@@@@@@@@@@@@                 1424
              64 |@              97
             128 |                   0
. . .

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet

continues
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Invoking this script requires passing the name of the system call to be mea-
sured as the first command-line argument ($1, line 7) and the process name used
in the entry probe predicate (line 8). You would typically run this script after hav-
ing done systemwide system call profiling and determining which processes are
generating I/O. Here’s a sample run:

4
5  dtrace:::BEGIN { trace("Tracing... Output after 10 seconds, or Ctrl-C\n"); }
6
7  syscall::$1:entry
8  /execname == $$2/
9  {
10   self->fd = arg0;
11   self->st = timestamp;
12 }
13 syscall::$1:return
14 /self->st/
15 {
16         @iot[pid, probefunc, fds[self->fd].fi_pathname] = sum(timestamp – self->st);
17         self->fd = 0;
18         self->st = 0;
19 }
20 tick-10sec
21 {
22   normalize(@iot, 1000);
23         printf("%-8s %-8s %-32s %-16s\n", "PID", "SYSCALL", "PATHNAME", "TIME(us)");
24         printa("%-8d %-8s %-32s %-@16d\n", @iot);
25 }

Script rwa.d

solaris# ./rwa.d write java
Tracing... Output after 10 seconds, or Ctrl-C
PID      SYSCALL PATHNAME           TIME(us)
20710    write    /export/zones/...         43
21414    write    /export/zones/...         97
21413    write    /export/zones/...         131
2366     write    <unknown>       2564
21407    write /export/zones/........./networks 3547
21407    write /export/zones/....g/drv/tnf.conf 32532
21407    write /export/zones/....00871B2761d0s1 36564
21407    write /export/zones/..../drv/ptsl.conf 50821
21407    write /export/zones/....t/etc/pam.conf 51627
21407    write /export/zones/....ig/drv/mm.conf 64201
21407    write /export/zones/..../drv/ohci.conf 69296
21407    write /export/zones/....nfo_shmmax.out 71929
21407    write /export/zones/....v/ramdisk.conf 139327
21407    write /export/zones/....el/drv/wc.conf 142931
21407    write /export/zones/....l/drv/ptc.conf 183881
21407    write /export/zones/....rv/pseudo.conf 187028
21407    write /export/zones/....sks/dev-lL.err 202320
21407    write /export/zones/..../ls-ld_tmp.out 217525
[...]
21407    write /export/zones/....nfo_semvmx.out 1018789
21407    write /export/zones/....fig/ipcs-a.out 1037886
21407    write /export/zones/....v/sbusmem.conf 1190904
^C



ptg

Observing Disk and Network I/O 141

The path names in this example have been truncated due to their length. We
measured the time of write(2) system calls for all processes named java. Note
the use of the sum aggregating function (line 16); the TIME values produced repre-
sent the total time spent writing to a particular file over the ten-second sampling
period (line 20). It’s easy to change the aggregating function from sum to, for exam-
ple, avg to get average times or quantize to get a distribution. 

See Chapters 4 and 5 on disk I/O and file systems to dig deeper into these areas
with DTrace.

Network I/O

As with disk I/O, network I/O begins with system calls from applications. In addi-
tion to the system calls listed in the “Disk I/O” section, applications performing
network I/O may use getmsg(2) and putmsg(2), as well as any number of sec-
tion 3SOCKET interfaces, many of which are implemented as system calls (for
example, recv(2), recvfrom(2), send(2), sendto(2), and so on). For the most
part, applications that perform network I/O use standard socket interfaces, which,
on Solaris systems, are implemented via the sockfs file system. This makes con-
necting network I/O activity to processes and threads a snap. Here’s a script that
builds on the sockfs example in the “One-Liners” section:

Here, and in the script that follows (sock_j.d), we leverage the existence of the
sockfs layer in Solaris to connect network activity to the calling processes. For
Mac OS X and FreeBSD, which do not implement sockets with sockfs, the fbt
provider can be used with a blank field for the probemod and a wildcard charac-
ter (*) in the probefunc field, using the entry probe name:

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  fbt:sockfs::entry
6  {
7          @[execname, probefunc] = count();
8  }
9  END
10 {
11 printf("%-16s %-24s %-8s\n", "EXEC", "SOCKFS FUNC", "COUNT");
12         printa("%-16s %-24s %-@8d\n", @);
13 }

Script sock.d
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These one-liners can be improved; some socket functions may contain abbrevi-
ated versions of socket (such as sock or so) and so will not be matched by the
previous probe name.

Here’s a sample run of the sock.d script on Solaris:

The output from the sock.d script gives us a good view into which processes
are hitting the socket layer of the kernel and thus generating network I/O, and
from the names of the sockfs functions, we can often infer the type of operation. 

Here’s the next drill-down:

[root@freebsd /sys]# dtrace -n 'fbt::*socket*:entry 
    { @[execname,probefunc] = count(); }'
dtrace: description 'fbt::*socket*:entry ' matched 41 probes
^C

  sendmail       mac_socket_check_poll                1
  sshd           mac_socket_check_receive                 1
  sshd  mac_socket_check_send                    1
  syslogd        mac_socket_check_poll                  2
  sshd  mac_socket_check_poll                    5
macosx# dtrace -n 'fbt::*socket*:entry { @[execname,probefunc] = count(); }'
dtrace: description 'fbt::*socket*:entry ' matched 31 probes
^C
[...]
  Safari         socket_lock                 512
  VBoxSVC        socket_unlock            1855
  VirtualBoxVM   socket_unlock                2091
  VBoxSVC        socket_lock            2395
  VirtualBoxVM   socket_lock                 2670
  VBoxXPCOMIPCD  socket_unlock                5152
  VBoxXPCOMIPCD  socket_lock                 5824

solaris# ./sock.d
^C
EXEC             SOCKFS FUNC              COUNT
gnome-panel      socktpi_ioctl            1
m2loader  getsonode                1 
. . .
oracle           so_update_attrs          4855
java             so_lock_read_intr    4984
java             so_unlock_read           4984
java   socktpi_read        4984
java    sotpi_recvmsg        4984
java             so_update_attrs          7525

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  fbt:sockfs::entry
6  /execname == "java"/ 
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The sock_j.d script includes some changes to drill down on just java pro-
cesses, enabling us to take execname out as an aggregation key and replace it
with pid. We capture a time stamp in the entry probe and do the math in the
return probe to track the total time spent in the various socket functions. The time
stamp is saved in self->st[stackdepth], which associates not only the time with
the current thread (self->st) but also the time with the current level of the stack
by using the stackdepth built-in. This is because the entry probe may fire multi-
ple times as sockfs subfunctions are called, before the return probe is fired.
Using stackdepth as a key associates each entry with the correct return, despite
the subfunction calls.

In the tick probe, we convert the times from nanoseconds to microseconds
using the normalize() function (line 20). We generate formatted output every
second, which is an important component of using the time stamp function in
DTrace. That is, when measuring the amount of time spent in different areas of
the code, it’s important to capture that information at predetermined intervals.
This makes it much easier to determine whether the amount of time spent in a
given function is relatively high or insignificant.

7  {
8  @[probefunc] = count();
9 self->st[stackdepth] = timestamp;
10
11 }
12 fbt:sockfs::return
13 /self->st[stackdepth]/
14 {
15 @sockfs_times[pid, probefunc] = sum(timestamp – self->st[stackdepth]);
16  self->st[stackdepth] = 0;
17 }
18 tick-1sec
19 {
20  normalize(@sockfs_times, 1000);
21 printf("%-8s %-24s %-16s\n", "PID", "SOCKFS FUNC", "TIME(ms)");
22         printa("%-8d %-24s %-@16d\n", @sockfs_times);
23
24         printf("\nSOCKFS CALLS PER SECOND:\n");
25         printa(@);
26
27  trunc(@); trunc(@sockfs_times);
28         printf("\n\n");
29 }

Script sock_j.d

solaris# ./sock_j.d
PID      SOCKFS FUNC          TIME(ms)
1819     getsonode            44
1819     so_lock_read_intr        89
1819     so_unlock_read           99

continues
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The sample output shows the time spent by specific java processes in network
functions in the kernel. PID 21281 spent 638 milliseconds in socktpi_read(),
582 milliseconds in sotpi_recvmsg(), and so on. Since these functions include
subfunction calls, the times overlap; the function call with the highest time is
likely to be the highest in the stack and include the others. In this case, that would
be socktpi_read(), which can be confirmed with some DTrace investigation of
kernel stacks.

Given the one-second sampling interval, we can see that this particular process
spent a significant percentage of time in socket I/O. Even though the kernel func-
tion so_update_attrs() was called the most frequently (13,524 times in the one-
second interval), the time spent in that code was relatively small (17 milliseconds

1819     so_update_attrs          137
1819     sostream_direct          212
1819     socktpi_ioctl          264
1819     sotpi_sendmsg          328
1819     sendit              639
1819     send 723
21281    getsonode            6541
21674    getsonode            7407
21674    so_unlock_read           11478
21674    so_lock_read_intr        11807 
21281    so_lock_read_intr        13271 
21281    so_unlock_read           13835
21674    so_update_attrs          17931
21281    so_update_attrs          20536
21281    sostream_direct          21309
21674    sostream_direct          21580
21674    sotpi_sendmsg          35054
21281    sotpi_sendmsg          36592
21674    sendit 74725
21281    sendit 78475
21674    send  85668
21281    send  90297
1819     sotpi_recvmsg           114010
1819     socktpi_read            114382
21674    sotpi_recvmsg          340786
21674    socktpi_read           387945
21281    sotpi_recvmsg          581747
21281    socktpi_read           637785

SOCKFS CALLS PER SECOND:

  socktpi_ioctl                     60
  getsonode                   4508
  send                     4508
  sendit                    4508
  sostream_direct                    4508
  sotpi_sendmsg                     4508
  so_lock_read_intr                   9016
  so_unlock_read                    9016
  socktpi_read                  9016
  sotpi_recvmsg                     9016
  so_update_attrs                   13524
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to 20 milliseconds). This illustrates the importance of measuring not just rates but
time as well. Latency (time) matters most for application performance.

Examining the output of a particular D program can often lead to other ques-
tions. Looking at the sample shown earlier, it may be interesting to understand
where the calls to the so_update_attrs() kernel socket module are originating.
We can get that answer with a simple DTrace command line to grab a kernel stack
when that function is entered:

The command line enabled a probe at the entry point of the kernel function of
interest, used a predicate since we were looking at java processes, and aggre-
gated on kernel stack frames. We can see from the output that the so_update_
attrs() kernel function gets called when the application code reads and writes
sockets. It also confirms that socktpi_read() was the highest sockfs function
in the stack.

Another way to determine which processes are generating network I/O is to use
the DTrace fds[] array and track I/O system calls to the sockfs file system.

solaris# dtrace -n 'fbt:sockfs:so_update_attrs:entry
    /execname == "java"/ { @[stack()] = count(); }'
dtrace: description 'fbt:sockfs:so_update_attrs:entry ' matched 1 probe
^C

    sockfs`socktpi_read+0x32
    genunix`fop_read+0x31
    genunix`read+0x188
    genunix`read32+0xe
    unix`sys_syscall32+0x101

                3

   sockfs`socktpi_write+0x161
    genunix`fop_write+0x31
    genunix`write+0x287
    unix`sys_syscall+0x17b

              195

    sockfs`sendit+0x17d
    sockfs`send+0x6a
    unix`sys_syscall+0x17b

             1126

    sockfs`socktpi_read+0x32
    genunix`fop_read+0x31
    genunix`read+0x188
    unix`sys_syscall+0x17b

             2481

solaris# dtrace -n 'syscall::*read:entry,syscall::*write:entry
    /fds[arg0].fi_fs == "sockfs"/ { @[execname] = count(); }'
dtrace: description 'syscall::*read:entry,syscall::*write:entry ' matched 4 probes
^C

continues
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Once again, a few tweaks to the command line, and we can drill down on a pro-
cess of choice, measuring (for example) the requested number of bytes to read, per
second:

Here we tracked the mysqld process, focusing on read bandwidth. With the per-
second ranges showing a pretty wide spread, it may be more interesting to use
quantize() for a distribution of read sizes by this process.

  xscreensaver                      3
  ssh                      4
  sshd                      6
  clock-applet                      7
  sge_execd                      36
  tnslsnr                    48
  m2loader                    558
  sge_qmaster                   658
  gnome-terminal                    1132
  oracle                    1202
  Xvnc                     1380
  java                     3096
  mysqld                    3617

solaris# dtrace -qn 'syscall::read:entry /execname == "mysqld" 
    && fds[arg0].fi_fs == "sockfs"/ { @rd_bytes = sum(arg2); } 
    tick-1sec { printa(@rd_bytes); trunc(@rd_bytes); }'

          8755050

          7537546

         50807026

            32211

         10020337

            21858
^C

solaris# dtrace -qn 'syscall::read:entry / execname == "mysqld" 
    && fds[arg0].fi_fs == "sockfs" / { @rd_bytes = quantize(arg2); }'

^C

           value  ------------- Distribution ------------- count
               0 |              0
               1 |              3
               2 |              0

4 |@@@@@@@@@@@@@@@@@@@@@@@@@                10160
               8 |              16
              16 |              76
              32 |              67
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We removed the tick probe and chose to sample for a few seconds before hit-
ting Ctrl-C. This gives us a better view of the distribution of the size of network
reads for this process. We see that most are very small (4 bytes to 8 bytes), with a
large percentage in the 128-byte to 1024-byte range. 

As was the case with disk I/O, determining which processes are generating net-
work I/O can be a good place to start, but it’s also important to understand rates,
throughput, and latency. We can use scripts like we used them in the “Disk I/O”
section to obtain this information.

Note the net.d script captures data in two aggregations (lines 9 and 10) to mea-
sure the rate of the calls and the amount of data requested to be read or written by

              64 |              39
             128 |@@@@@                2188
             256 |@@@               1225
             512 |@@                 679
            1024 |@              413
            2048 |@              204
            4096 |              74
            8192 |              52
           16384 |             48
           32768 |             59
           65536 |             75
          131072 |                90
          262144 |                133
          524288 |                177
         1048576 |              104
         2097152 |               64
         4194304 |               36
         8388608 |              0

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  syscall::*read:entry,
6  syscall::*write:entry
7  /fds[arg0].fi_fs == "sockfs"/
8  {
9  @ior[probefunc] = count();
10 @net_bytes[probefunc] = sum(arg2);
11 }
12 tick-1sec
13 {
14         printf("%-8s %-16s %-16s\n", "FUNC", "OPS PER SEC", "BYTES PER SEC");
15         printa("%-8s %-@16d %-@16d\n", @ior, @net_bytes);
16  trunc(@ior); trunc(@net_bytes);
17         printf("\n");
18 }

Script net.d
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the application. The printa() statement (line 15) leverages DTrace’s ability to
display multiple aggregations in one printa() call.

This system view of network activity indicates that we’re doing substantially
more reads than writes (by a factor of about three to one) and generating commen-
surately more read throughput than write throughput. However, this may not rep-
resent the entire picture for network traffic on the system. If applications are
using other APIs, such as getmsg(2) and putmsg(2) to read and write network
data, we would need to add those interfaces to the script or create a new script to
acquire the same information. Because getmsg(2) and putmsg(2) have a very
different argument list than read(2) and write(2) variants, obtaining the same
information requires changes to the probe actions. This is true for send(2) and
recv(2) as well, which are also used by applications doing network I/O. Chapter
6, Network Lower-Level Protocols, has several examples of scripts using these
interfaces. 

Reference Chapter 6 and Chapter 7, Application Protocols, for digging deeper
into networking with DTrace.

Summary

Any performance or capacity analysis begins with a concise description of the per-
formance problem in terms of something that can be measured. Taking a look at
the overall system is an essential starting point, because it provides an under-

solaris# ./net.d
FUNC     OPS PER SEC     BYTES PER SEC
write    5009     675705
read     14931     12102460

FUNC     OPS PER SEC     BYTES PER SEC
write    5123     1126565
read     15698     14811819

FUNC     OPS PER SEC     BYTES PER SEC
write    5658     1299127
read     16977     16165513

FUNC     OPS PER SEC     BYTES PER SEC
write    4782     673129
read     14179     11532204

FUNC     OPS PER SEC     BYTES PER SEC
write    3690     2442080
read     10941        30772527
. . .
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standing of the system and workload profile that may make your path to the root
cause much shorter and/or may uncover other issues that might not otherwise
have been visible. This chapter was intended to provide a starting point for your
work with DTrace. Use the remaining chapters in this book for more detailed
observability and to drill down into specific areas.
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4
Disk I/O

Disk I/O is one of the most common causes of poor system and application perfor-
mance. On the latency scale, CPU speeds are measured in gigahertz, memory
access takes tens to hundreds of nanoseconds, and network packets make round-trips
in microseconds. Disk reads and writes are at the far edge of this time scale, with a
typical disk I/O taking several milliseconds. Thus, when we profile application
latency, we must measure disk I/O and determine all aspects of a workload’s disk I/O
attributes (which files are being read and written, I/O sizes, I/O latency, through-
put, and so on) in order to understand application behavior and performance. 

DTrace can observe not only details of each disk I/O event but also the inner
workings of disk device drivers, storage controller drivers, file systems, system
calls, and the application that is requesting I/O. You can use it to answer ques-
tions such as the following.

What is the pattern of disk access, address, and size?

Which files in which file systems are being read or written?

What are the highest latencies the disks are returning?

Which processes/threads are causing disk I/O, and why?

As an example, iosnoop is a DTrace-based tool to trace disk I/O that ships with
Mac OS X and OpenSolaris. It prints details of disk I/O events as they occur,
including the I/O size and process name. The following shows the StarOffice appli-
cation being launched, which causes thousands of disk I/O events:
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The iosnoop program shows the bash shell referencing the soffice binary,
soffice reading several command binaries, and a Java virtual machine starting.
While the Java process loads libjvm.so, the I/O size is often 4KB, and the block
location is somewhat random. Because this is accessing a rotating disk, small, ran-
dom I/O is expected to perform poorly. This is an example of high-level informa-
tion identifying a potential issue;1 DTrace can dig much deeper as required. 

The iosnoop program is explained in detail later in this chapter.

Capabilities

As we explore DTrace’s capabilities for examining disk I/O, we will reference the func-
tional I/O software stack shown in Figure 4-1, based on the Solaris I/O subsystem.

DTrace is capable of tracing every software component of the I/O stack, with the
exception of physical disk drive internals.2 This being the case, one of the hardest
things for beginners is to decide what to do with it. DTrace can answer any ques-
tion, but what question should we ask?

# iosnoop
  UID   PID D    BLOCK  SIZE       COMM PATHNAME 
    0  1337 R  5596978   7168 bash /usr/opt/staroffice8/program/soffice
    0  1341 R    52496   6144 soffice /usr/bin/basename 
    0  1342 R    58304   8192 soffice /usr/bin/sed 
    0  1342 R    58320   8192 soffice /usr/bin/sed 
    0  1344 R    53776   6144 soffice /usr/bin/dirname 
    0  1349 R  5646208   8192    soffice /usr/opt/staroffice8/program/javaldx
    0  1349 R  5643226   3072    soffice /usr/opt/staroffice8/program/javaldx
    0  1349 R  5512544   8192    javaldx <none> 
    0  1349 R  5636672   8192    javaldx /usr/opt/staroffice8/program/libuno_sal.so.3
[...truncated...]
    0  1356 R 12094968   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12094952   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12095000   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12094840   8192       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12094992   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12094216   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12093960   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12094016   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12094672   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
    0  1356 R 12094736   4096       java /usr/j2se/jre/lib/i386/client/libjvm.so
[...truncated...]

1. One solution to this type of issue is to use an application to prefetch the library into DRAM
cache using sequential large I/O, before the application is launched.

2. An example is the operation of the onboard Disk Data Controller, since it is a dedicated sili-
con chip inside the actual hard drive; however, DTrace can examine all the requests and
responses to disk at multiple layers and can infer internal disk behavior.
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Figure 4-2 shows an abstract I/O module. At each of the numbered items, we
can ask questions such as the following.

1. What are the requests? What type, how many, and what I/O size?

2. What was rejected, and why?

3. How long did the request processing take (on-CPU)?

4. If a queue exists, what is the average queue length and wait time?

5. What made it to the next level? How does it compare to 1, and was the order-
ing the same?

6. How long did the I/O take to return, and how many are in-flight?

7. What’s the I/O latency (includes queue and service time)? Decompose latency 
by type.

8. What was the error latency?

9. How long did response processing take (on-CPU)?

10. What completed, and how does that compare to 5 and 1. Was the ordering the 
same?

11. What errors occurred, and why?

12. What I/Os were retried?

13. Are timeouts occurring?

14. How long were the timeout errors?

Figure 4-1 Functional diagram of Solaris I/O stack 
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Real system I/O components (hardware and software) will process I/O more or
less as shown in Figure 4-2 (block device driver, SCSI, SATA, and so on). Some
components may not have queues, or they may not retry or time out requests. If
you can find a similar internal diagram for the I/O module that interests you, then
you should be able to identify good targets to DTrace in a similar fashion.

Disk I/O Strategy 

To get started using DTrace to examine disk I/O, follow these steps (the target of
each step is in bold):

1. Try the DTrace one-liners and scripts listed in the sections that follow.

2. In addition to those DTrace tools, familiarize yourself with existing disk
statistic tools, such as iostat(1M). The metrics that these generate can be 
treated as starting points for customization with DTrace; the rwtime.d
script is an example.

Figure 4-2 Generic I/O module internals
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3. Locate or write tools to generate known workloads of disk I/O, such as run-
ning the dd(1) command to read from a raw disk device (under /dev/rdsk
on Solaris). When writing your own disk I/O tools, it is extremely helpful to 
have known workloads to check them against.

4. Customize and write your own one-liners and scripts using the io provider,
referring to the io provider documentation in the “Providers” section.

5. To dig deeper than the io provider allows, familiarize yourself with how the 
kernel and user-land processes call I/O by examining stack backtraces (see 
the “One-Liners” section). Also refer to functional diagrams of the I/O subsys-
tem, such as those shown earlier and those in published kernel texts such as 
Solaris Internals (McDougall and Mauro, 2006).

6. Examine kernel internals for file systems and device drivers by using the fbt
provider and referring to kernel source code (if available). Write scripts to 
examine higher-level details first (I/O counts), and then drill down deeper 
into areas of interest.

Checklist

Table 4-1 suggests different types of issues that can be examined using DTrace.
This can also serve as a checklist to ensure that you consider all obvious types of
issues.

Table 4-1 Disk I/O Checklist

Issue Description

Volume System and applications may be performing a high volume of disk I/O, 
which can be avoided by changing their behavior, for example, by using or 
tuning a higher-level cache. DTrace can be used to examine disk I/O by 
process, filename, size, and stack trace, to identify what is using the disks 
and by how much.

Service Time For rotating magnetic disks, I/O latency for random disk accesses can be 
many milliseconds, throttling application throughput. Flash-based solid-
state disks have submillisecond I/O latency. However, some types of solid-
state disks will still exhibit high latencies for writes. Use DTrace to examine 
disk I/O latency.

Queueing High I/O latency can also be caused by I/O queueing, rather than the disk 
time to service that I/O. Use DTrace to examine pending I/O, including 
cases where bursts of I/O are sent to the disk, causing I/O to wait on the 
queue.

continues
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To identify performance issues, focus on the time spent waiting for disk I/O to
complete: the I/O latency for the entire operation (queueing + service). I/O opera-
tions per second (IOPS), throughput, I/O size, and disk address all shed light on
the nature of the I/O. However, latency identifies whether this I/O is causing a
problem and can quantify the extent of it.

For example, if an application is performing transactions that include disk I/O,
the ideal DTrace script would show disk I/O time as a percentage ratio of transac-
tion time. Other components of that transaction time might include CPU time, net-
work I/O time, lock contention, and thread dispatcher queue latency, all of which
can also be measured using DTrace.

Providers

Table 4-2 shows providers that you can use to trace disk I/O.

Errors Disks can malfunction and can lead to latencies on the order of seconds 
while the disk retries the operation (this may not be reported by the stan-
dard operating system tools!). This may cause an application to experience 
slow I/O for no clear reason. DTrace can be used to examine errors, retries, 
and timeouts from all layers of the I/O subsystem.

Configuration Disks often support features such as read and write caching and command 
queueing, which can greatly affect performance when enabled. Other con-
figurable options may include multipathing to the disks. DTrace can be 
used to check that such options are enabled and working as expected.

Table 4-2 Providers for Disk I/O

Provider Description

io Stable I/O provider. Traces disk I/O (and other back-end storage devices).

sdt Statically Defined Tracing provider. Includes deliberately placed DTrace probes 
of interest, but the interface is considered unstable and may change.

fbt Function Boundary Tracing provider. Used to examine internals of the I/O sub-
system and drivers in detail. This has an unstable interface and will change 
between releases of the operating system and drivers, meaning that scripts 
based on fbt may need to be slightly rewritten for each such update. See the 
“fbt Provider” section in Chapter 12, Kernel.

Table 4-1 Disk I/O Checklist (Continued)

Issue Description
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io Provider

The io provider traces I/O events in the kernel. Its behavior varies slightly between
operating systems:

Solaris: Traces disk I/O and NFS client back-end I/O

Mac OS X: Traces disk I/O

FreeBSD: Not yet available (see the “fbt Provider” section)

For simplicity, many of the one-liners and scripts in this chapter describe the io
provider as tracing “disk I/O”; be aware that on Solaris it can also trace NFS client
back-end I/O (see the “Matching Disk I/O Only” section that follows for how to
avoid this).

The io provider design sets an excellent example for DTrace providers in gen-
eral. It presents data from complex kernel structures in a stable, intuitive, and
user-friendly way, encouraging the analysis of disk I/O events from kernel context.
For simplicity, the probes have been kept to the minimum: start, done, wait-
start, and wait-done (see Table 4-3). The arguments are also kept simple and
easy to follow, presenting details about the I/O, the device, and the file system. For
reference, the io provider specification has been reproduced from the DTrace
Guide3 in the following pages to illustrate these points.

Table 4-3  io Probes

Probe Description

start Fires when an I/O request is about to be made to a peripheral device or to an 
NFS server. The bufinfo_t corresponding to the I/O request is pointed to by 
args[0]. The devinfo_t of the device to which the I/O is being issued is 
pointed to by args[1]. The fileinfo_t of the file corresponding to the I/O 
request is pointed to by args[2]. Note that file information availability 
depends on the file system making the I/O request. See the information about 
fileinfo_t for more information.

done Fires after an I/O request has been fulfilled. The bufinfo_t corresponding to 
the I/O request is pointed to by args[0]. The done probe fires after the I/O 
completes but before completion processing has been performed on the 
buffer. As a result, B_DONE is not set in b_flags when the done probe fires. 
The devinfo_t of the device to which the I/O was issued is pointed to by 
args[1]. The fileinfo_t of the file corresponding to the I/O request is 
pointed to by args[2].

continues

3. You can currently find this at http://wikis.sun.com/display/DTrace/Documentation.

http://wikis.sun.com/display/DTrace/Documentation
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bufinfo_t

The bufinfo_t structure is the abstraction describing an I/O request. The buffer
corresponding to an I/O request is pointed to by args[0] in the start, done, wait-
start, and wait-done probes. The bufinfo_t structure definition is as follows:

The structure members are as follows.

The b_flags member indicates the state of the I/O buffer and consists of a 
bitwise-OR of different state values. The valid state values are shown in 
Table 4-4.

The b_bcount field is the number of bytes to be transferred as part of the I/O 
request.

The b_addr field is the virtual address of the I/O request, unless B_PAGEIO
is set. The address is a kernel virtual address unless B_PHYS is set, in which 

wait-
start

Fires after an I/O request has been fulfilled. The bufinfo_t corresponding to 
the I/O request is pointed to by args[0]. The done probe fires after the I/O 
completes but before completion processing has been performed on the 
buffer. As a result, B_DONE is not set in b_flags when the done probe fires. 
The devinfo_t of the device to which the I/O was issued is pointed to by 
args[1]. The fileinfo_t of the file corresponding to the I/O request is 
pointed to by args[2].

wait-
done

Fires on the completion of an I/O request. The bufinfo_t corresponding to 
the I/O request for which the thread will wait is pointed to by args[0]. The 
devinfo_t of the device to which the I/O was issued is pointed to by 
args[1]. The fileinfo_t of the file corresponding to the I/O request is 
pointed to by args[2]. The wait-done probe fires only after the wait-
start probe has fired in the same thread.

typedef struct bufinfo {
        int b_flags;     /* buffer status flags */
        size_t b_bcount;    /* number of bytes */
        caddr_t b_addr;     /* buffer address */
        uint64_t b_lblkno;   /* block # on device */
        uint64_t b_blkno; /* expanded block # on device */
        size_t b_resid; /* # of bytes not transferred */
        size_t b_bufsize;  /* size of allocated buffer */ 
        caddr_t b_iodone;   /* I/O completion routine */
        int b_error;    /* expanded error field */ 
        dev_t b_edev;      /* extended device */
 } bufinfo_t;

Table 4-3  io Probes (Continued)

Probe Description
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case it is a user virtual address. If B_PAGEIO is set, the b_addr field con-
tains kernel private data. Exactly one of B_PHYS and B_PAGEIO can be set, or 
neither will be set.

The b_lblkno field identifies which logical block on the device is to be 
accessed. The mapping from a logical block to a physical block (such as the 
cylinder, track, and so on) is defined by the device.

The b_resid field is set to the number of bytes not transferred because of an 
error.

The b_bufsize field contains the size of the allocated buffer.

The b_iodone field identifies a specific routine in the kernel that is called 
when the I/O is complete.

The b_error field may hold an error code returned from the driver in the 
event of an I/O error. b_error is set in conjunction with the B_ERROR bit set 
in the b_flags member.

The b_edev field contains the major and minor device numbers of the device 
accessed. Consumers may use the D subroutines getmajor and getminor to 
extract the major and minor device numbers from the b_edev field.

Table 4-4 b_flags Values

Provider Description

B_DONE Indicates that the data transfer has completed.

B_ERROR Indicates an I/O transfer error. It is set in conjunction with the b_error
field.  This flag may exist only on Solaris; for other operating systems, check 
for a nonzero value of b_error to identify errors.

B_PAGEIO Indicates that the buffer is being used in a paged I/O request. See the 
description of the b_addr field for more information.

B_PHYS Indicates that the buffer is being used for physical (direct) I/O to a user data 
area.

B_READ Indicates that data is to be read from the peripheral device into main memory.

B_WRITE Indicates that the data is to be transferred from main memory to the 
peripheral device.

B_ASYNC The I/O request is asynchronous and will not be waited for. The wait-
start and wait-done probes don’t fire for asynchronous I/O requests. 
Note that some I/Os directed to be asynchronous might not have B_ASYNC
set: the asynchronous I/O subsystem might implement the asynchronous 
request by having a separate worker thread perform a synchronous I/O 
operation.
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devinfo_t

The devinfo_t structure provides information about a device. The devinfo_t
structure corresponding to the destination device of an I/O is pointed to by
args[1] in the start, done, wait-start, and wait-done probes. The members
of devinfo_t are as follows:

The dev_major field is the major number of the device.

The dev_minor field is the minor number of the device.

The dev_instance field is the instance number of the device. The instance 
of a device is different from the minor number. The minor number is an 
abstraction managed by the device driver. The instance number is a property 
of the device node. 

The dev_name field is the name of the device driver that manages the device, 
if available.

The dev_statname field is the name of the device as reported by system 
administration tools such as  iostat(1M), if available.

The dev_pathname field is the full path of the device. The path specified by 
dev_pathname includes components expressing the device node, the instance 
number, and the minor node. However, all three of these elements aren’t nec-
essarily expressed in the statistics name. For some devices, the statistics 
name consists of the device name and the instance number. For other devices, 
the name consists of the device name and the number of the minor node. As a 
result, two devices that have the same dev_statname may differ in dev_
pathname.

On Mac OS X, dev_name, dev_statname, and dev_pathname may not be
available and return the string ??. In this case, devices may still be identified by
their major and minor numbers.

fileinfo_t

The fileinfo_t structure provides information about a file. The file to which an
I/O corresponds is pointed to by args[2] in the start, done, wait-start, and

typedef struct devinfo {
        int dev_major;         /* major number */
        int dev_minor;         /* minor number */
        int dev_instance;        /* instance number */
        string dev_name;   /* name of device */
        string dev_statname;      /* name of device + instance/minor */
        string dev_pathname; /* pathname of device */
} devinfo_t;
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wait-done probes. The presence of file information is contingent upon the file sys-
tem providing this information when dispatching I/O requests. Some file systems,
especially third-party file systems, might not provide this information. Also, I/O
requests might emanate from a file system for which no file information exists. For
example, any I/O to file system metadata will not be associated with any one file.
Finally, some highly optimized file systems might aggregate I/O from disjoint files
into a single I/O request. In this case, the file system might provide the file infor-
mation either for the file that represents the majority of the I/O or for the file that
represents some of the I/O; or, the file system might provide no file information at all.

The definition of the fileinfo_t structure is as follows:

The fi_name field contains the name of the file but does not include any 
directory components. If no file information is associated with an I/O, the 
fi_name field will be set to the string <none>. In some cases, the path name 
associated with a file might be unknown. In this case, the fi_name field will 
be set to the string <unknown>.  On Mac OS X, this string may also contain a 
reason in parentheses, for example, <unknown (NULL v_name)>.

The fi_dirname field contains only the directory component of the filename. 
As with fi_name, this string may be set to <none> if no file information is 
present or to <unknown> if the path name associated with the file is not 
known.

The fi_pathname field contains the full path name to the file. As with 
fi_name, this string may be set to <none> if no file information is present 
or to <unknown> if the path name associated with the file is not known.

The fi_offset field contains the offset within the file or contains -1 if file 
information is not present or if the offset is otherwise unspecified by the file 
system.

Command-Line Hints

At the command line, you can use the -v switch with dtrace(1M)as a reminder of
which arguments belong to which io provider probes:

typedef struct fileinfo {
        string fi_name;        /* name (basename of fi_pathname) */
        string fi_dirname;     /* directory (dirname of fi_pathname) */
        string fi_pathname;    /* full pathname */
        offset_t fi_offset;    /* offset within file */
        string fi_fs;        /* file system */
        string fi_mount;       /* mount point of file system */
} fileinfo_t;
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And, as a reminder of the members of these arguments, you can read the trans-
lator for the io provider, which is usually in /usr/lib/dtrace/io.d:

The translator file provides the stable argument interface for the io provider,
from raw kernel data. Since the language is D, it can be easily read for interesting
insight into how this information is retrieved from the kernel. For example, the mount-
point path fi_mount is translated differently between Solaris and Mac OS X.

Here it is on Solaris:

Here it is on Mac OS X:

This translation code may change in future updates to the kernels, but the
interface provided will remain the same, so scripts written using io probes will con-
tinue to work. This is how DTrace is able to maintain stable providers when
underlying implementation details change.

Matching Disk I/O Only

The io provider on Solaris and OpenSolaris also traces back-end NFS I/O, which
can be seen when listing probes:

solaris# dtrace -lvn io:::start
[...]
24463         io      genunix   bdev_strategy start 
[...]
        Argument Types 

    args[0]: bufinfo_t * 
    args[1]: devinfo_t * 
    args[2]: fileinfo_t * 

solaris# more /usr/lib/dtrace/io.d
[...]
typedef struct bufinfo { 
        int b_flags;      /* buffer status */ 
        size_t b_bcount;   /* number of bytes */ 
        caddr_t b_addr;    /* buffer address */ 
[...etc...]

fi_mount = B->b_file == NULL ? "<none>" : 
            B->b_file->v_vfsp->vfs_vnodecovered == NULL ? "/" : 
            B->b_file->v_vfsp->vfs_vnodecovered->v_path == NULL ? "<unknown>" : 
            cleanpath(B->b_file->v_vfsp->vfs_vnodecovered->v_path);

fi_mount = B->b_vp->v_mount->mnt_vnodecovered == NULL ? "/" : 
    B->b_vp->v _mount->mnt_vnodecovered->v_name;
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Note the io:::start probes in the nfs kernel module. There may be times
when you want to examine disk I/O on a client that is also performing NFS I/O and
want to filter out the NFS I/O events. The probe description io:genunix::start
would avoid matching nfs probes and only match the disk I/O probes; however, it
also includes an unstable component—the module name—in what is otherwise a
stable probe description. Module names are dynamically built based on the probe
location in the source and are not part of the stable provider interface. Future ver-
sions of Solaris could move the disk I/O functions from genunix into another ker-
nel module, or they could rename the genunix module entirely—either of which
would cause D scripts based on io:genunix::start to stop working.

Instead of the probe description (which does work4), disk I/O can be matched
exclusively by using the io:::start probe with the predicate: /args[1]->dev_
name != "nfs"/.

fbt Provider

The fbt provider can be used to examine all the functions in the kernel I/O subsys-
tem, function arguments, return codes, and elapsed time. Since it’s tracing raw
kernel code, any scripts are considered unstable and are likely to break between
different kernel versions, which is why we list the fbt provider last in the “Strat-
egy” section. See the “fbt Provider” section in Chapter 12 for more details, and the
fbt provider chapter of the DTrace Guide5 for the full reference.

To navigate this capability for disk I/O, kernel stack traces may be examined
using DTrace to create a list of potential fbt probes and their relationships. Each
line of the stack trace can be probed individually. Examining stack traces is also a
quick way to became familiar with a complex body of code such as the I/O subsys-
tem. We will demonstrate this for FreeBSD. Because the io provider is currently
not available on FreeBSD, the fbt provider is the next best choice.

solaris# dtrace -ln io:::start
   ID   PROVIDER    MODULE               FUNCTION NAME
  755         io       genunix    default_physio start
  756         io       genunix    bdev_strategy start
  757         io     genunix                aphysio start
 2028         io         nfs                 nfs4_bio start
 2029         io         nfs                 nfs3_bio start
 2030         io        nfs                 nfs_bio start

4. I’ve been guilty of using it, such as in many versions of the iosnoop tool.

5. You can find this currently at http://wikis.sun.com/display/DTrace/fbt+Provider.

http://wikis.sun.com/display/DTrace/fbt+Provider
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To explore FreeBSD I/O, the bsdtar(1) command was used to create a disk
read workload while the ATA disk driver strategy function was traced, aggregat-
ing on the process name and stack backtrace:

The process name identified was g_down, with a short stack backtrace. This
isn’t showing the bsdtar(1) command creating the workload; rather, this has
traced GEOM(4) (disk I/O transformation framework) performing the device I/O. To
see the rest of the stack, the GEOM VFS strategy function can be traced to see
who is requesting VFS-style I/O from GEOM.

This has identified the correct process, bsdtar(1), along with the stack trace
down to the read system call. Any line from these stacks can be traced individu-
ally using the fbt provider so that details of the I/O can be examined. For more
examples, see bufstrategy(). It is traced in the “One-Liners” section to see who
is requesting disk I/O. The GEOM functions are traced in geomiosnoop.d.

freebsd# dtrace -n 'fbt::ad_strategy:entry { @[execname, stack()] = count(); }'
dtrace: description 'fbt::ad_strategy:entry ' matched 1 probe
^C

  g_down
   kernel`g_disk_start+0x1a8
   kernel`g_io_schedule_down+0x269
   kernel`g_down_procbody+0x68
    kernel`fork_exit+0xca
    kernel`0xc0bc2040

             2863

freebsd# dtrace -n 'fbt::g_vfs_strategy:entry { @[execname, stack()] = count(); }'
dtrace: description 'fbt::g_vfs_strategy:entry ' matched 1 probe
^C
[...]
  bsdtar

   kernel`ffs_geom_strategy+0x14f
    kernel`ufs_strategy+0xd3
   kernel`VOP_STRATEGY_APV+0x8b
    kernel`bufstrategy+0x2e
    kernel`breadn+0xca
    kernel`bread+0x4c
    kernel`ffs_read+0x254
    kernel`VOP_READ_APV+0x7c
    kernel`vn_read+0x238
    kernel`dofileread+0x96
    kernel`kern_readv+0x58
    kernel`read+0x4f
    kernel`syscall+0x3e5
    kernel`0xc0bc2030

             2225
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One-Liners

The following one-liners should be used to begin your analysis of disk I/O.

io Provider

Trace disk I/O size by process ID:

Show disk I/O size as distribution plots, by process name:

Identify user stacks when a process ID directly causes disk I/O:

Identify user stacks when processes of a given name directly cause disk I/O, for
example, firefox-bin:

Identify kernel stacks calling disk I/O:

Trace errors along with disk and error number:

fbt Provider

The fbt provider instruments a particular operating system and version; these
one-liners may therefore require modifications to match the software version you
are running.

dtrace -n 'io:::start { printf("%d %s %d", pid, execname, args[0]->b_bcount); }'

dtrace -n 'io:::start { @size[execname] = quantize(args[0]->b_bcount); }'

dtrace -n 'io:::start /pid == $target/ { @[ustack()] = count(); }' -p PID

dtrace -n 'io:::start /execname == "firefox-bin"/ { @[ustack()] = count(); }'

dtrace -n 'io:::start { @[stack()] = count(); }' 

dtrace -n 'io:::done /args[0]->b_flags & B_ERROR/ { printf("%s err: %d"
 ,    args[1]->dev_statname, args[0]->b_error); }'
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Here are the frequency count functions from disk driver (for example, sd):

Identify kernel stacks calling disk I/O (FreeBSD):

Trace SCSI retries, showing sd_lun (Solaris):

Count SCSI commands by SCSI code (Solaris):

Count SCSI packets by completion code (Solaris):

One-Liner Examples

Each of the one-liners is demonstrated in this section.

Disk I/O Size by Process ID

StarOffice was launched on Mac OS X while this one-liner was executing: 

dtrace -n 'fbt:sd::entry { @[probefunc] = count(); }'
dtrace -n 'fbt::sd_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::bufstrategy:entry { @[stack()] = count(); }'

dtrace -n 'fbt::sd_set_retry_bp:entry { printf("%x", arg0); }'

dtrace -n 'fbt::scsi_transport:entry { @[*args[0]->pkt_cdbp] = count(); }'

dtrace -n 'fbt::scsi_destroy_pkt:entry { @[args[0]->pkt_reason] = count(); }'

# dtrace -n 'io:::start { printf("%d %s %d", pid, execname, args[0]->b_bcount); }' 
dtrace: description 'io:::start ' matched 1 probe 
CPU     ID            FUNCTION:NAME 
  0  18572     buf_strategy:start 189 Terminal 12288 
  0  18572     buf_strategy:start 1688 soffice 73728 
  0  18572     buf_strategy:start 1688 soffice 81920 
  0  18572     buf_strategy:start 1688 soffice 4096 
  0  18572     buf_strategy:start 1688 soffice 4096 
  0  18572     buf_strategy:start 1688 soffice 724992 
  0  18572     buf_strategy:start 1688 soffice 339968 
  0  18572     buf_strategy:start 1688 soffice 16384 
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The previous example shows the soffice process calling some large physical
disk I/Os, the largest more than 700KB. There are also several 4KB I/Os.

Disk I/O Size Aggregation

Here DTrace is used to determine the size of the disk I/O caused by the Virtual-
Box application running a virtual OS on Mac OS X: 

Using the DTrace quantize aggregating function, we see that most of the physi-
cal disk I/O was between 4KB and 8KB while this script was tracing. We also see
some large I/Os in the 256KB to 2MB range.

Identify User Stacks When a Process ID Causes Disk I/O

  0  18572     buf_strategy:start 1676 mdworker 12288 
  0  18572     buf_strategy:start 1676 mdworker 4096 
  1  18572     buf_strategy:start 1688 soffice 4096 
  1  18572       buf_strategy:start 22 mds 4096 
[...]

# dtrace -n 'io:::start { @size[execname] = quantize(args[0]->b_bcount); }' 
dtrace: description 'io:::start ' matched 1 probe 
^C

  VirtualBoxVM
           value  ------------- Distribution ------------- count
            2048 |              0
            4096 |@@@@@@@@@@@@@@@@@@@@@@@             690
            8192 |@@@@@@@@@       273
           16384 |@@@             76
           32768 |@@               53
           65536 |@             34
          131072 |@               28
          262144 |@               28
          524288 |@               23
         1048576 |               3
         2097152 |                0

# dtrace -n 'io:::start /pid == $target/ { @[ustack()] = count(); }' -p 1721 
dtrace: description 'io:::start ' matched 1 probe 
^C

 libSystem.B.dylib`write+0xa
 VBoxDDU.dylib`vmdkWrite(void*, unsigned long long, void const*, ... 
 VBoxDDU.dylib`vdWriteHelper(VBOXHDD*, VDIMAGE*, unsigned long long, ... 
 VBoxDD.dylib`drvblockWrite(PDMIBLOCK*, unsigned long long, 
    void const*, ...
 VBoxDD.dylib`ahciAsyncIOLoop(PDMDEVINS*, PDMTHREAD*)+0x3eb 
 VBoxVMM.dylib`pdmR3ThreadMain(RTTHREADINT*, void*)+0xd5 
 VBoxRT.dylib`rtThreadMain+0x40
 VBoxRT.dylib`rtThreadNativeMain(void*)+0x84

continues
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In this previous example, we can see the size of disk I/O that VirtualBox was
sending. Now we’ll frequency count the user stack traces when VirtualBoxVM (PID
1721) issues disk I/O in order to provide insight as to where in the VirtualBox code
path the I/Os are initiated from.

Most of the disk I/O includes vmdkRead in the stack, which, at a guess, might be
for a virtual machine disk read. Fetching stack traces is usually of most interest to
the developers of the application, who have access to the source code, but it can
still be useful for nondevelopers when trying to better understand the source of
disk I/Os or when gathering additional information to send to developers for
improving application code.

Identify Kernel Stacks Calling Disk I/O

While the previous user stack traces showed why the application caused disk I/O,
by examining the kernel stack trace we can see how the disk I/O was called. 

For Solaris and ZFS, note that the stack traces can become very long on ZFS;
the stackframes tunable must be set to include the entire stack backtrace. 

 libSystem.B.dylib`_pthread_start+0x141
 libSystem.B.dylib`thread_start+0x22
              188 

 libSystem.B.dylib`read+0xa
 VBoxDDU.dylib`vmdkRead(void*, unsigned long long, void*, 
    unsigned long, ...
 VBoxDDU.dylib`vdReadHelper(VBOXHDD*, VDIMAGE*, unsigned long long, ... 
 VBoxDD.dylib`ahciAsyncIOLoop(PDMDEVINS*, PDMTHREAD*)+0x4f9 
 VBoxVMM.dylib`pdmR3ThreadMain(RTTHREADINT*, void*)+0xd5 
 VBoxRT.dylib`rtThreadMain+0x40
 VBoxRT.dylib`rtThreadNativeMain(void*)+0x84
  libSystem.B.dylib`_pthread_start+0x141
  libSystem.B.dylib`thread_start+0x22
             2263 

solaris# dtrace -x stackframes=64 -n 'io:::start { @[stack()] = count(); }' 
dtrace: description 'io:::start ' matched 6 probes 
^C
[...]

   genunix`ldi_strategy+0x59
   zfs`vdev_disk_io_start+0xd0
   zfs`zio_vdev_io_start+0x17d
    zfs`zio_execute+0x89 
    zfs`zio_nowait+0x42 
   zfs`vdev_mirror_io_start+0x148
   zfs`zio_vdev_io_start+0x17d
    zfs`zio_execute+0x89 
    zfs`zio_nowait+0x42 
   zfs`vdev_mirror_io_start+0x148
   zfs`zio_vdev_io_start+0x1ba
    zfs`zio_execute+0x89 
    zfs`zio_nowait+0x42 
   zfs`arc_read_nolock+0x81e
    zfs`arc_read+0x75 
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The most frequent stack trace shows disk I/O being called from a taskq_
thread(), which is part of the ZFS pipeline. Only a few of the disk I/Os originate
directly from a system call, whose stack trace spans much of ZFS internals. 

Here’s the result on Mac OS X, HFS+: 

    zfs`dbuf_prefetch+0x134
   zfs`dmu_zfetch_fetch+0x8c
   zfs`dmu_zfetch_dofetch+0xb8
   zfs`dmu_zfetch_find+0x436
    zfs`dmu_zfetch+0xac 
    zfs`dbuf_read+0x11c 
  zfs`dmu_buf_hold_array_by_dnode+0x1c9

   zfs`dmu_buf_hold_array+0x6e
    zfs`dmu_read_uio+0x4d 
    zfs`zfs_read+0x19a 
    genunix`fop_read+0xa7 
    nfssrv`rfs3_read+0x3a1 
   nfssrv`common_dispatch+0x3a0
   nfssrv`rfs_dispatch+0x2d 
    rpcmod`svc_getreq+0x19c
    rpcmod`svc_run+0x16e 
    rpcmod`svc_do_run+0x81 
    nfs`nfssys+0x765 
   unix`sys_syscall32+0x101 

                4 

   genunix`ldi_strategy+0x59
   zfs`vdev_disk_io_start+0xd0
   zfs`zio_vdev_io_start+0x17d
    zfs`zio_execute+0x89 
   zfs`vdev_queue_io_done+0x92
   zfs`zio_vdev_io_done+0x62
    zfs`zio_execute+0x89 
   genunix`taskq_thread+0x1b7
    unix`thread_start+0x8 

             3702 

macosx# dtrace -n 'io:::start { @[stack()] = count(); }' 
dtrace: description 'io:::start ' matched 1 probe 
^C
[...]

   mach_kernel`buf_strategy+0x60
  mach_kernel`hfs_vnop_strategy+0x34

   mach_kernel`VNOP_STRATEGY+0x2f
  mach_kernel`cluster_copy_upl_data+0xacf
  mach_kernel`cluster_copy_upl_data+0xec8
  mach_kernel`cluster_pageout+0x161a
  mach_kernel`cluster_push_ext+0xb1

   mach_kernel`cluster_push+0x28
  mach_kernel`GetLogicalBlockSize+0x631d
  mach_kernel`hfs_vnop_ioctl+0x305a

   mach_kernel`vnode_iterate+0x15c
 mach_kernel`hfs_mark_volume_inconsistent+0x27ed

   mach_kernel`VFS_SYNC+0x6f
  mach_kernel`mount_dropcrossref+0xf0

   mach_kernel`vfs_iterate+0xcc
    mach_kernel`sync+0x22 
   mach_kernel`unix_syscall+0x23c
   mach_kernel`lo_unix_scall+0xea

               16 
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The stack trace spans from the system call (at the bottom) to the common disk I/O
call via buf_strategy(). Stack frames in between show processing for VFS and
then the HFS+ file system.

Identify Kernel Stacks Calling Disk I/O (FreeBSD)

Because FreeBSD does not yet have the io provider, the fbt provider is used
instead to trace the kernel function, which requests buffer I/O, bufstrategy():

The most frequent stack traces show that the disk I/O was originating from read
syscalls, dofileread(), VOP_READ_APV(), and ffs_read() (FreeBSD UFS).

Trace Errors Along with Disk and Error Number

To demonstrate tracing disk errors, we physically removed a disk during disk I/O:6

freebsd# dtrace -n 'fbt::bufstrategy:entry { @[stack()] = count(); }'
dtrace: description 'fbt::bufstrategy:entry ' matched 1 probe
^C
[...]

    kernel`breadn+0xca
    kernel`bread+0x4c
    kernel`ffs_read+0x254
    kernel`VOP_READ_APV+0x7c
    kernel`vn_read+0x238
    kernel`dofileread+0x96
    kernel`kern_readv+0x58
    kernel`read+0x4f
    kernel`syscall+0x3e5
    kernel`0xc0bc2030

             1408

# dtrace -n 'io:::done /args[0]->b_flags & B_ERROR/ 
    { printf("%s err: %d", args[1]->dev_statname, args[0]->b_error); }' 
dtrace: description 'io:::done ' matched 4 probes 
CPU     ID            FUNCTION:NAME 
  0  30197         biodone:done sd128 err: 14 
  0  30197         biodone:done sd128 err: 14 
  0  30197         biodone:done sd128 err: 14 
  0  30197         biodone:done sd128 err: 14 
  0  30197         biodone:done sd128 err: 5 
  1  30197         biodone:done sd128 err: 14 
  4  30197         biodone:done sd128 err: 14 
  4  30197         biodone:done sd128 err: 5 
  4  30197         biodone:done sd128 err: 5 
  3  30197         biodone:done sd128 err: 5 

6. This is not recommended. Nor is shouting at JBODs.
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Errors 5 and 14 are from the Solaris /usr/include/sys/errno.h file:

These are the same on Mac OS X. There is also a DTrace translator for these
error codes in /usr/lib/dtrace/errno.h, if you don’t have an errno.h file to
check.

Frequency Count Functions from Disk Driver (For Example, sd)

This shows tracing all the function calls from the SCSI disk driver on Solaris: 

To get detailed insight into disk driver operation, each of these functions can be
traced in more detail using the fbt provider. The fbt provider can examine the
function entry arguments, returning value and time to complete the function. As
with stack traces, it is difficult to make much sense of these functions without
access to the source code. 

#define EIO     5       /* I/O error */ 
#define EFAULT   14      /* Bad address */

# dtrace -n 'fbt:sd::entry { @[probefunc] = count(); }' 
dtrace: description 'fbt:sd::entry ' matched 273 probes 
^C

  sd_pm_idletimeout_handler                   11 
  ddi_xbuf_qstrategy                    906 
  sd_add_buf_to_waitq                  906 
  sd_core_iostart                    906 
  sd_initpkt_for_buf                    906 
  sd_mapblockaddr_iostart                   906 
  sd_setup_rw_pkt                    906 
  sd_xbuf_init                    906 
  sd_xbuf_strategy                   906 
  sdinfo                    906 
  sdstrategy                   906 
  xbuf_iostart                    906 
  ddi_xbuf_done                    917 
  ddi_xbuf_get                    917 
  sd_buf_iodone                    917 
  sd_destroypkt_for_buf                   917 
  sd_mapblockaddr_iodone                    917 
  sd_return_command                   917 
  sdintr                    917 
  xbuf_dispatch                    917 
  sd_start_cmds                    1823 
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Scripts

Table 4-5 summarizes the scripts that follow in this chapter and the providers they
use.

Table 4-5 Script Summary

Script Target Description Provider

iolatency.d I/O Systemwide I/O latency as a distribution plot io

disklatency.d I/O Measures I/O latency and shows as a distribu-
tion plot by device

io

iotypes.d I/O Measures I/O latency by type of I/O io

rwtime.d I/O Shows read and write I/O times io

bitesize.d I/O Shows disk I/O sizes as a distribution plot io

seeksize.d I/O Shows disk I/O seek distances as a distribution 
plot

io

iosnoop I/O Traces disk I/O live with various details io

iotop I/O Summarizes disk I/O and refresh screen io

iopattern I/O Shows disk I/O statistics including %random io

geomiosnoop.d I/O Traces GEOM I/O requests (FreeBSD) fbt

sdqueue.d SCSI Shows I/O wait queue times as a distribution 
plot by device

fbt, sdt

sdretry.d SCSI A status tool for SCSI retries fbt

scsicmds.d SCSI Frequency count SCSI commands, with 
descriptions

fbt

scsilatency.d SCSI Summarizes SCSI command latency by  type 
and result

fbt

scsirw.d SCSI Shows various SCSI read/write/sync statistics, 
including bytes

fbt

scsireasons.d SCSI Shows SCSI I/O completion reasons and device 
names

fbt

scsi.d SCSI Traces SCSI I/O live with various details or gen-
erates reports

fbt

satacmds.d SATA Frequency count SATA commands, with 
descriptions

fbt

satarw.d SATA Shows various SATA read/write/sync statistics, 
including bytes

fbt
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The fbt and sdt providers are considered “unstable” interfaces, because they
instrument a specific operating system or application version. For this reason,
scripts that use these providers may require changes to match the version of the
software you are using. These scripts have been included here as examples of D
programming and of the kind of data that DTrace can provide for each of these top-
ics. See Chapter 12 for more discussion about using the fbt provider.

io Provider Scripts

This is a stable interface for tracing I/O, and it is usually the first provider you
should try using when analyzing disk I/O. Functionally, it can be represented as in
Figure 4-3.

This high-level diagram can be referenced in the “Capabilities” section. 
The I/O provider scripts may also trace NFS client I/O, if your io provider ver-

sion supports it (currently only on Solaris). 

iolatency.d

This shows disk I/O latency as a distribution plot. Since this uses the io provider, it
includes NFS client back-end I/O on Solaris.

satareasons.d SATA Shows SATA I/O completion reasons and device 
names

fbt

satalatency.d SATA Summarizes SATA command latency by type 
and result

fbt

idelatency.d IDE Summarizes IDE command latency by type and 
result

fbt

iderw.d IDE Shows IDE read/write/sync statistics, including 
bytes

fbt

ideerr.d IDE Shows IDE command completion reasons with 
errors

fbt

mptsasscsi.d SAS Shows SAS SCSI commands with SCSI and mpt 
details

fbt

mptevents.d SAS Traces special mpt SAS events with details sdt, fbt

mptlatency.d SAS Shows mpt SCSI command times as a distribu-
tion plot

sdt

Table 4-5 Script Summary (Continued)

Script Target Description Provider
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Script

I/O latency is calculated as the time between io:::start and io:::done. Since
these events will occur in different threads (io:::done fires as part of the I/O
completion interrupt), they cannot be associated using thread-local variables,
because you would usually perform for latency calculations in DTrace. Instead, an
associative array is used, keyed on a unique ID for the I/O.

About arg0. The unique ID chosen to associate I/O events is the buf_t pointer
before it is translated into the io provider’s bufinfo_t args[0] (see /usr/lib/
dtrace/io.d). This is available as arg0, a uint64_t. Using arg0 as a unique ID
in the io provider is not described in the DTrace Guide, but it is the easiest unique
ID available, because the buf_t pointer doesn’t change between io:::start and
io:::done. At least this is true on current versions of Solaris and Mac OS X. If it
changes in the future, the use of arg0 in this script (and others in this chapter)
will need to change to pick a different unique identifier such as what iosnoop uses:
args[0]->b_edev and args[0]->b_blkno—both of which are stable members.

Figure 4-3 Basic I/O stack

1   #!/usr/sbin/dtrace -s
2
3   io:::start
4   {
5 start[arg0] = timestamp;
6   }
7
8   io:::done
9   /start[arg0]/
10  {
11      @time["disk I/O latency (ns)"] = quantize(timestamp - start[arg0]);
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Example

This was executed on a Mac OS X laptop while a disk read workload was execut-
ing. The distribution plot shows bimodal behavior: The most frequent group of I/O
completed between 131 us and 524 us, and another group completed between 1 ms
and 4 ms. While tracing, 15 I/Os reached the 67 ms to 134 ms range, which is slow
even for a laptop disk and may be evidence of queueing (the use of more DTrace
can determine this).

disklatency.d 

The disklatency.d script measures the time for I/O to complete by device and
shows the times as a distribution plot. This is particularly useful for finding disk
devices that have occasional slow I/O, which may not be easy to identify via other
metrics such as average service time. 

Script

This is an enhanced version of iolatency.d:

12      start[arg0] = 0;
13  }

Script iolatency.d

# iolatency.d
dtrace: script 'iolatency.d' matched 2 probes
^C

  disk I/O latency (ns)
           value  ------------- Distribution ------------- count
           32768 |             0
           65536 |@             26
          131072 |@@@@@@@@@@@             236
          262144 |@@@@@@@@              171
          524288 |@@@               65
         1048576 |@@               52
         2097152 |@@@@              88
         4194304 |@@@               68
         8388608 |@@               52
        16777216 |@@               40
        33554432 |@               28
        67108864 |@               15
       134217728 |               0

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 

continues
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The predicate for io:::done sets the clause-local variable this->start and
checks that it has a nonzero value. This wasn’t strictly necessary; the script could
have tested start_time[arg0] directly in the predicate as iolatency.d did;
this just demonstrates a different coding style.

Examples

The examples that follow demonstrate the use of the disklatency.d script on a
server system running Solaris and a Mac OS X desktop.

Disk I/O on a Solaris Server. The title before each distribution plot includes the
device statname (if available), device major and minor numbers, and time units
(in microseconds, or us). Comparing the two disks shows that sd112 is a little
faster than sd118, which has more I/O returning in the 32-ms to 65-ms range. The
difference here is small and might well be because of the applied workload rather
than properties of the disk. Some nfs I/O was also caught, mostly with an I/O time
between 8 ms and 16 ms. 

6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  io:::start 
11  { 
12  start_time[arg0] = timestamp; 
13  } 
14
15  io:::done 
16  /this->start = start_time[arg0]/ 
17  { 
18          this->delta = (timestamp - this->start) / 1000; 
19          @[args[1]->dev_statname, args[1]->dev_major,

 args[1]->dev_minor] = 
20     quantize(this->delta); 
21   start_time[arg0] = 0;
22  } 
23
24  dtrace:::END 
25  { 
26          printa("   %s (%d,%d), us:\n%@d\n", @); 
27  }

Script disklatency.d

solaris# disklatency.d
Tracing... Hit Ctrl-C to end. 
^C

   sd112 (227,7168), us: 

           value  ------------- Distribution ------------- count
             512 |              0
            1024 |              3
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Disk I/O on Mac OS X. Here, disk I/O is returning very quickly, often less than
1 ms (which may be because of hits on an on-disk cache). The device name was not
available and is printed as ??.

            2048 |@             16
            4096 |@@@@             41
            8192 |@@@@@@               66
           16384 |@@@@@@@@@@@@@@@@@@@@@@@        259
           32768 |@@@@@            51
           65536 |@             14
          131072 |                0

   sd118 (227,7552), us: 

           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@             6
            2048 |@@@               29
            4096 |@@@@@               47
            8192 |@@@@@@@@              80
           16384 |@@@@@@@@@@@@       120
           32768 |@@@@@@@@@@             101
           65536 |@             13
          131072 |                0

   nfs1 (309,1), us: 

           value  ------------- Distribution ------------- count
            1024 |              0
            2048 |@@                2
            4096 |@@                2

8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 48
           16384 |             0
           32768 |             0
           65536 |@             1
          131072 |                0
[...]

macosx# disklatency.d
Tracing... Hit Ctrl-C to end. 
^C
   ?? (14,2), us: 

           value  ------------- Distribution ------------- count
              16 |              0
              32 |              1
              64 |@@@@@@@        924

128 |@@@@@@@@@@@@@        1744
             256 |@              146
             512 |@@@@@@@@         1146
            1024 |@@                210
            2048 |@@@              379
            4096 |@@@@             493
            8192 |@@                291
           16384 |@             87
           32768 |             1
           65536 |             2
          131072 |                2
          262144 |                0
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iotypes.d

The previous script printed I/O latency by disk device; the iotypes.d script prints
I/O latency by type of I/O, from the b_flags member of args[0], which is a
pointer to a buf_t structure.

The type description is constructed between lines 19 and 23 by testing each flag
using bitwise-AND (&) in ternary operators (a ? b : c). If the flag is present, a
string description is included in the this->type variable by use of the built-in
strjoin() function. The end result is a single string that describes the flags,
which is printed in the TYPE column on line 40.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  io:::start 
11  { 
12  start_time[arg0] = timestamp; 
13  } 
14
15  io:::done 
16  /this->start = start_time[arg0]/ 
17  { 
18          this->delta = (timestamp - this->start) / 1000; 
19          this->type = args[0]->b_flags & B_READ ? "read" : "write"; 
20          this->type = args[0]->b_flags & B_PHYS ? 
21   strjoin("phys-", this->type) : this->type; 
22          this->type = args[0]->b_flags & B_ASYNC ? 
23  strjoin("async-", this->type) : this->type; 
24 this->pageio = args[0]->b_flags & B_PAGEIO ? "yes" : "no"; 
25          this->error = args[0]->b_error != 0 ? 
26              strjoin("Error:", lltostr(args[0]->b_error)) : "Success"; 
27
28          @num[this->type, this->pageio, this->error] = count(); 
29          @average[this->type, this->pageio, this->error] = avg(this->delta); 
30  @total[this->type, this->pageio, this->error] = sum(this->delta); 
31
32   start_time[arg0] = 0; 
33  } 
34
35  dtrace:::END 
36  { 
37   normalize(@total, 1000); 
38          printf("\n  %-18s %6s %10s %11s %11s %12s\n", "TYPE", "PAGEIO", 
39  "RESULT", "COUNT", "AVG(us)", "TOTAL(ms)"); 
40          printa("  %-18s %6s %10s %@11d %@11d %@12d\n", @num, @average, @total); 
41  }

Script iotypes.d
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Example

A storage server was performing a read-intensive workload when one of its disks
was removed. The iotypes.d script identified the error, along with the latency
caused:

There were four reads that returned error 14 (“Bad address,” from /usr/
include/sys/errno.h) and six physical reads that returned error 5 (“I/O error”).
The bad address errors had an average latency of 30 seconds, which could cause
serious performance issues for stalled applications. This time of 30 seconds didn’t
originate from the disk, which was removed but from a lower-level driver—mostly
likely SCSI. The inner working of SCSI can also be examined using DTrace; see
the examples later in this chapter. 

rwtime.d 

A useful metric provided by the iostat(1M) disk statistic tool is the I/O service
time (svc_t on Solaris, msps on Mac OS X). It includes both read and write I/O in
the same average, which may be undesirable because of the following reasons.

I/O by default to many file systems (including UFS and ZFS) will cause syn-
chronous read I/O (because the application is waiting) and asynchronous 
write I/O (writes are buffered and flushed later). Because the application does 
not wait for the write I/O to complete, whether it completes quickly or slowly 
does not matter; indeed, the kernel may buffer a large group of write I/O 
together (in ZFS, this is called a transaction group), which it flushes to disk 
all at once. This can cause some of the write I/O to queue for a long time and 
therefore have high service times. When iostat(1M) prints both read and 
write service times together, an administrator may notice spikes in service 
time in iostat(1M) corresponding to ZFS transaction group syncs and may 
believe that this may be causing a problem with application performance. 

Flash memory–based, solid-state disks (SSDs) can have considerably differ-
ent response times for read vs. write I/O. 

solaris# iotypes.d
Tracing... Hit Ctrl-C to end. 
^C

  TYPE  PAGEIO     RESULT COUNT     AVG(us)    TOTAL(ms) 
  read    no   Error:14   4    30461117       121844 
  phys-write             no   Success           5     8696           43 
  phys-read              no   Error:5           6      216            1 
  phys-read no    Success   3479 7163        24923 
  write    no    Success        4409       16568        73048 
  read     no    Success      395020       23209      9168382 
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The previous script, iolatency.d, split read and write I/O times into separate
metrics. Here we’ll take it further and produce distribution plots to examine the I/O
latency in more detail.

Script

The rwtime.d script measures both read and write I/O latency separately, print-
ing both distribution plots and averages:

The keys for the @plots and @avgs aggregations are descriptive strings that
include the units, “us” (microseconds), with all output generated. This helps read-
ability and makes the output self-descriptive.

Example

This was executed on Solaris with ZFS performing a disk scrub:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  io:::start 
11  { 
12  start_time[arg0] = timestamp; 
13  } 
14
15  io:::done 
16  /(args[0]->b_flags & B_READ) && (this->start = start_time[arg0])/
17  { 
18          this->delta = (timestamp - this->start) / 1000; 
19          @plots["read I/O, us"] = quantize(this->delta);
20          @avgs["average read I/O, us"] = avg(this->delta); 
21   start_time[arg0] = 0; 
22  } 
23
24  io:::done 
25  /!(args[0]->b_flags & B_READ) && (this->start = start_time[arg0])/ 
26  { 
27          this->delta = (timestamp - this->start) / 1000; 
28          @plots["write I/O, us"] = quantize(this->delta);
29          @avgs["average write I/O, us"] = avg(this->delta); 
30   start_time[arg0] = 0; 
31  } 
32
33  dtrace:::END 
34  { 
35          printa("   %s\n%@d\n", @plots); 
36          printa(@avgs); 
37  } 

Script rwtime.d
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This output shows a considerable difference between the I/O time for reads and
writes. Reads are completing in 8.7 ms on average, while writes are averaging 42.6
ms. The distribution plots allow outliers to be easily identified, which, because of
some disk pathologies (errors, retries), can cause I/O to take longer than one sec-
ond. In the write plot, we see three writes that took between 524 milliseconds and
1 second; 63 of the writes took between 131 and 262 milliseconds. Such outliers
can cause serious I/O issues but are difficult to identify from averages alone. 

bitesize.d

bitesize.d is a script to trace disk I/O events by process name and I/O size. It is
from the DTraceToolkit and is available on OpenSolaris in /opt/DTT and Mac OS X

solaris# rwtime.d
Tracing... Hit Ctrl-C to end. 
^C
   write I/O, us 

           value ------------- Distribution ------------- count 
               8 |                   0 
              16 |                   2 
              32 |                   0 
              64 |                   2 
             128 |                  12 
             256 |@                  22 
             512 |@@                  43 
            1024 |@@@@                 99 
            2048 |@                 29 
            4096 |@@@@@                126 
            8192 |@@@@@                133 
           16384 |@@@@@                132 
           32768 |@@@@@@@                  173 
           65536 |@@@@@@@                  189 
          131072 |@@                   63 
          262144 |                  0 
          524288 |                  3 
         1048576 |                  0 

   read I/O, us 

           value ------------- Distribution ------------- count 
              64 |                   0 
             128 |                   8 
             256 |                  98 
             512 |@                  429 
            1024 |@@@                 1197 
            2048 |@@@@@@                  2578 
            4096 |@@@@@@@@@@@@@@@              6216 
            8192 |@@@@@@@@@@                 4181 
           16384 |@@@@                1586 
           32768 |@                 333 
           65536 |                 27 
          131072 |                  0 

  average read I/O, us                  8675 
  average write I/O, us                  42564
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in /usr/bin. Checking disk I/O size can be useful to ensure that the physical
disks are using an optimal size for the workload applied: large I/O for streaming
workloads and sizes to match the application’s record size for random workloads. 

Script

bitesize.d is a simple script; without comments, it’s only 20 lines: 

The io:::start probe traces physical disk I/O requests and records the size in
bytes in the quantize aggregation @Size, which will be printed as a distribution
plot. The aggregation is keyed on the process PID and process name (derived from
curpsinfo->pr_psargs). This script uses a clause-local variable and an aggre-
gation, both called size. To differentiate between them, the aggregation was given
a capital letter (@Size). This is a matter of taste for the programmer: It is not nec-
essary in D programs, since DTrace will treat this->size and @size as differ-
ent variables (which they are).

Examples

The following examples demonstrate using bitesize.d under known workloads
to determine disk I/O sizes.

Launching Mozilla Firefox. On Mac OS X, bitesize.d was running while the
Firefox 3 Web browser was launched. The size of the disk I/O that Firefox caused
can be understood in the distribution plot:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  io:::start 
11  { 
12  this->size = args[0]->b_bcount; 
13          @Size[pid, curpsinfo->pr_psargs] = quantize(this->size); 
14  } 
15
16  dtrace:::END 
17  { 
18          printf("\n%8s  %s\n", "PID", "CMD"); 
19 printa("%8d  %S\n%@d\n", @Size); 
20  } 

Script bitesize.d
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Firefox was mostly causing 4KB disk I/O, with only some I/O reaching the
128KB and 256KB ranges. Further investigation with DTrace can identify which I/O
(the target file) was 4KB and which I/O was larger. The iosnoop tool from the
DTraceToolkit, shown later, will provide this information.

Known Test. On Solaris, the dd(1M) command was used with a raw disk
devices path (/dev/rdsk) to cause a known disk I/O workload of 32KB I/Os. This
type of simple experiment is recommended whenever possible to double-check
script output. 

Although most of the I/O was in the 32KB to 63KB byte bucket of the distribu-
tion plot, as expected, there were also a couple of I/Os between 1KB and 4KB. This
is likely to be the dd(1) command paging in its own binary from /usr/bin, before
executing and applying the known workload. Again, further DTrace can confirm.

macosx# bitesize.d
Tracing... Hit Ctrl-C to end. 
^C

     PID  CMD 
    1447  firefox-bin\0 

           value  ------------- Distribution ------------- count
             256 |              0
             512 |              8
            1024 |              0
            2048 |              0
            4096 |@@@@@@@@@@@@@@@@@@@@@@@@             532
            8192 |@@@@@               108
           16384 |@@               39
           32768 |@@               42
           65536 |@@@@@               108
          131072 |@               30
          262144 |                3
          524288 |                  0

solaris# bitesize.d
Tracing... Hit Ctrl-C to end. 
^C

     PID  CMD 
   29245  dd if=/dev/rdsk/c1d0s0 of=/dev/null bs=32k 

           value  ------------- Distribution ------------- count
             512 |              0
            1024 |              1
            2048 |              1
            4096 |              0
            8192 |              0
           16384 |             0
           32768 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 7784
           65536 |                  0
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seeksize.d

The seeksize.d script traces disk I/O events by process name and the requested
I/O seek distance by application workloads. It is from the DTraceToolkit and is
available on OpenSolaris in /opt/DTT and Mac OS X in /usr/bin. Workloads
that cause large disk seeks can incur high I/O latency.

Script

The following is seeksize.d without the inline comments:

The seek size is calculated as the difference between the disk block addresses of
subsequent I/O on the same disk, for the same thread. To do this, the address of
each I/O is saved in an associative array keyed on disk so that it can be retrieved
for next I/O and the calculation performed. To track the pattern of I/O requests
from a single application, the I/O must be from the same thread, which was
achieved by making the associative array a thread-local variable: self->last[].

To understand why the thread-local context was necessary, imagine that the
associative array was not thread-local (that is, just last[]). This would measure

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  self int last[dev_t]; 
11
12  io:::start 
13  /self->last[args[0]->b_edev] != 0/ 
14  { 
15 this->last = self->last[args[0]->b_edev];
16          this->dist = (int)(args[0]->b_blkno - this->last) > 0 ? 
17              args[0]->b_blkno - this->last : this->last - args[0]->b_blkno; 
18          @Size[pid, curpsinfo->pr_psargs] = quantize(this->dist); 
19  } 
20
21  io:::start 
22  { 
23          self->last[args[0]->b_edev] = args[0]->b_blkno + 
24    args[0]->b_bcount / 512; 
25  } 
26
27  dtrace:::END 
28  { 
29          printf("\n%8s  %s\n", "PID", "CMD"); 
30 printa("%8d  %S\n%@d\n", @Size); 
31  }

Script seeksize.d
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the disk seek pattern, regardless of the running application. If two different appli-
cations were performing sequential I/O to different areas of the disk, the script
would then identify both applications as having performed random disk I/O, which
is a consequence of them running at the same time when in fact they are request-
ing sequential I/O. By making it a thread-local variable, we are able to show what
disk seeks occurred because of application requests, not as a consequence of other
applications running on the system. (If the later is interesting as well, modify the
script to measure it as described.)

Examples

Disk seek activity will vary significantly based on the disk I/O load. Sequential
disk I/Os will not result in a large number of disk seeks, whereas random disk I/O
tends to be dominated by seek activity. The following examples demonstrate this.

Sequential Workload. Here a large file is copied using the scp(1) command to
a remote host, on Solaris with UFS. The pattern of reading the file from disk
should be mostly sequential, if the file system has placed it that way: 

The large count for zero shows that many of the I/Os did not seek from the pre-
vious location of the disk, confirming that this workload is sequential. 

Random Workload. Here the find(1) command is executed on Solaris/UFS,
which will walk directories:

# seeksize.d
Tracing... Hit Ctrl-C to end. 
^C

     PID  CMD 
   22349  scp /dl/sol-10-b63-x86-v1.iso mars:\0 

           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@   726
               1 |              0
               2 |              0
               4 |              0
               8 |@              13
              16 |              4
              32 |              0
              64 |              0
             128 |              2
             256 |              3
             512 |              4
            1024 |              4
            2048 |              3
            4096 |                0
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The output shows both a sequential component (1,475 I/Os with a seek value of
zero) and a substantial random component (thousands of I/Os).

Running gunzip. A large gzip’d file on Mac OS X in the HFS file system was
uncompressed using gunzip(1):

solaris# seeksize.d
Tracing... Hit Ctrl-C to end. 
^C

     PID  CMD 
   22399 find /var/sadm/pkg/\0 

           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@@@@@@@@@            1475
               1 |              0
               2 |              44
               4 |@              77
               8 |@@@              286
              16 |@@               191
              32 |@               154
              64 |@@               173
             128 |@@                 179
             256 |@@                 201
             512 |@@                 186
            1024 |@@                236
            2048 |@@                201
            4096 |@@                274
            8192 |@@                243
           16384 |@              154
           32768 |@              113
           65536 |@@              182
          131072 |@               81
          262144 |                  0

macosx# seeksize.d
Tracing... Hit Ctrl-C to end. 
^C

     PID  CMD 
    1651  gunzip\0 

           value  ------------- Distribution ------------- count
              -1 |              0

  0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         292
               1 |              0
               2 |              0
               4 |              0
               8 |              0
              16 |              0
              32 |              0
              64 |              0
             128 |              0
             256 |              0
             512 |              0
            1024 |              0
            2048 |              0
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Many I/Os are sequential (seek of 0), which can be both the reading of the
archive file and the writing of the expanded file. Seventy-three of the I/O events
caused an equal-sized seek of more than 1 million disk blocks; it is likely that this
occurs whenever gunzip(1) switches from reading the source to writing the
destination.

iosnoop
“sudo iosnoop” for slowdowns—the most useful command on OS X? 

—Alec Muffet, network security specialist, dropsafe blog 

You can use iosnoop to trace physical disk I/O events, which are traced using the
io provider. Probably the most popular DTrace script written to date, it is from the
DTraceToolkit and is available on OpenSolaris in /opt/DTT and Mac OS X in
/usr/bin. The most recent version on Solaris now allows it to trace all io pro-
vider events, including NFS client I/O.

It traces disk I/O events that cause disks to physically read or write data. For
rotating disks, these events include disk head seek and platter rotation time,
which can add significant latency to applications, making these events very inter-
esting for performance analysis. 

The following example shows iosnoop tracing the disk I/O caused by the
gzip(1) command compressing the file source.tar, on Solaris with the UFS file
system:

            4096 |              0
            8192 |              0
           16384 |             0
           32768 |             0
           65536 |             0
          131072 |                0
          262144 |                0
          524288 |                0
         1048576 |@@@@@@@@             73

   2097152 |                0

# iosnoop
  UID   PID D    BLOCK  SIZE       COMM PATHNAME 
    0 28777 R   310160 4096  bash /usr/bin/gzip 
    0 28777 R  3438352   8192  gzip /export/home/brendan/source.tar
    0 28777 R  3438368   8192  gzip /export/home/brendan/source.tar
    0 28777 R  3438384  57344 gzip /export/home/brendan/source.tar
    0 28777 R  3438496  24576 gzip /export/home/brendan/source.tar
    0 28777 R 16627552 8192       gzip <none> 
    0 28777 R 16627568  57344 gzip /export/home/brendan/source.tar
    0 28777 R 16627680  57344 gzip /export/home/brendan/source.tar
    0 28777 R 16627792  57344 gzip /export/home/brendan/source.tar
    0 28777 R 16627904  24576 gzip /export/home/brendan/source.tar
    0 28777 W  3632400  57344 gzip /export/home/brendan/source.tar.gz

continues
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The COMM column shows the process that was on-CPU when the disk I/O was
called. The first line shows that the bash command read 4KB from the /usr/bin/
gzip binary, followed by I/O called by the gzip program. Note the direction of
each I/O in the D column; gzip begins to read (R) from the source.tar file and fin-
ishes by writing (W) to the .gz output file. The two lines that show <none> for the
path name are likely to be when the file system read metadata from disk contain-
ing the file system layout (DTrace can confirm this with specific tracing).

Figure 4-4 may help you visualize the flow of I/O from application to disk that
iosnoop is tracing (refer to the “Capabilities” section for a more complete diagram).

iosnoop perhaps should have been called “disksnoop” to emphasize that it is
examining disk I/O events. Some users have been confused when examining an
application performing known reads and writes and finding that iosnoop is not
tracing those events. This is because applications usually do not perform disk I/O
directly; rather, they perform I/O to a file system (such as ZFS), which in turn per-
forms I/O to disks. File systems may return read I/O from their in-DRAM caches
and buffer write I/O for later asynchronous flushing—both of which cause applica-
tion I/O to not trigger an immediate disk I/O, which means the io:::start probe
will not fire. io:::start fires only for physical disk I/Os.

    0 28777 R 25165872 8192       gzip <none> 
    0 28777 W  3632512  40960       gzip /export/home/brendan/source.tar.gz
    0 28777 W 25180896  24576       gzip /export/home/brendan/source.tar.gz
    0 28777 W 25180944  32768       gzip /export/home/brendan/source.tar.gz
[...]

Figure 4-4 Application I/O stack
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The iosnoop script allows a variety of options to customize the output: 

Because of this complexity, the script itself is a DTrace script wrapped in a shell
script to process these options. As an example of option usage, the following shows
tracing the SSH daemon sshd on Solaris, with disk I/O times:

The slowest I/O was a read from /var/adm/wtmpx, at 17 milliseconds (17,123
microseconds).

Internals

The bulk of this script is about option processing rather than tracing disk I/O. As
an example of how shell scripting can add option processing to a DTrace script, we
will explain the entire source of iosnoop.

# iosnoop -h 
USAGE: iosnoop [-a|-A|-DeghiNostv] [-d device] [-f filename] 

 [-m mount_point] [-n name] [-p PID] 
       iosnoop       # default output 

-a      # print all data (mostly) 
                -A      # dump all data, space delimited 
                -D      # print time delta, us (elapsed) 

 -e      # print device name 
-g      # print command arguments 
-i      # print device instance 
-N      # print major and minor numbers 

                -o      # print disk delta time, us 
 -s      # print start time, us 

                -t      # print completion time, us 
                -v      # print completion time, string 
                -d device       # instance name to snoop 
                -f filename     # snoop this file only 

  -m mount_point  # this FS only 
                -n name # this process name only 
                -p PID          # this PID only 
   eg, 
        iosnoop -v    # human readable timestamps 
        iosnoop -N    # print major and minor numbers 
        iosnoop -m /  # snoop events on file system / only

# iosnoop -o -n sshd 
DTIME(us)    UID   PID D    BLOCK   SIZE    COMM PATHNAME 
5579           0 28870 R  7963696   4096 sshd /usr/lib/gss/mech_krb5.so.1
9564           0 28870 R  3967344   4096 sshd /usr/lib/gss/mech_spnego.so.1
221            0 28870 W 48304   3072    sshd /var/adm/lastlog 
479            0 28870 W   2657    512      sshd <none> 
17123          0 28870 R   145336   4096    sshd /var/adm/wtmpx
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The first line invokes the Bourne shell:

These are shell comment lines (beginning with #), so they are not executed. All
DTraceToolkit scripts begin with a similar style of block comment, naming the
script and providing a short synopsis of its function. 

Line 11 includes an identifier tag from Subversion, the source repository for the
DTraceToolkit. This shows when this script was last updated (2009-09-15), which
is effectively its version number. 

1   #!/bin/sh
2   # 
3   # iosnoop - A program to print disk I/O events as they happen, with useful 
4   #           details such as UID, PID, filename (if available), command, etc. 
5   #           Written using DTrace (Solaris 10 3/05, MacOS X 10.5). 
6   # 
7   # This is measuring events that have made it past system caches, such as 
8   # disk events for local file systems, and network events for remote 
9   # file systems (such as NFS.) 
10  # 

11  # $Id: iosnoop 75 2009-09-15 09:06:31Z brendan $ 
12  # 

13  # USAGE:    iosnoop [-a|-A|-DeghiNostv] [-d device] [-f filename] 
14  #       [-m mount_point] [-n name] [-p PID] 
15  # 
16  #  iosnoop   # default output 
17  # 
18  #               -a # print all data (mostly) 
19  #               -A           # dump all data, space delimited 
20  #               -D           # print time delta, us (elapsed) 
21  #               -e    # print device name 
22  #               -g  # print command arguments 
23  #               -i   # print device instance 
24  #               -N           # print major and minor numbers 
25  #               -o           # print disk delta time, us 
26  #               -s   # print start time, us 
27  #               -t # print completion time, us 
28  #               -v           # print completion time, string 
29  #     -d device # instance name to snoop (eg, dad0) 
30  #               -f filename     # full pathname of file to snoop 
31  #               -m mount_point  # this FS only (will skip raw events) 
32  #               -n name  # this process name only 
33  # -p PID    # this PID only 
34  #  eg, 
35  # iosnoop -v # human readable timestamps 
36  #               iosnoop -N      # print major and minor numbers 
37  #    iosnoop -m /    # snoop events on the root file system only 
38  # 
39  # FIELDS: 
40  # UID             user ID 
41  # PID             process ID 
42  #               PPID   parennt process ID 
43  #     COMM    command name for the process 
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The previous usage and fields descriptions are also in the man page for
iosnoop.

The previous are some important notes for understanding disk event times. 

The intent to share this script openly is made clear by the use of a standard
open source license. This has encouraged the inclusion of this and other scripts in
operating systems such as OpenSolaris and Mac OS X. 

44  #    ARGS   argument listing for the process 
45  #     SIZE    size of operation, bytes 
46  #     BLOCK   disk block for the operation (location) 
47  #    STIME timestamp for the disk request, us 
48  #    TIME  timestamp for the disk completion, us 
49  #   DELTA           elapsed time from request to completion, us 
50  #    DTIME time for disk to complete request, us 
51  #    STRTIME         timestamp for the disk completion, string 
52  #  DEVICE    device name 
53  #               INS  device instance number 
54  #               D  direction, Read or Write 
55  #  MOUNT     mount point 
56  #     FILE    filename (basename) for io operation 
57  #

58  # NOTE: 
59  # - There are two different delta times reported. -D prints the 
60  #   elapsed time from the disk request (strategy) to the disk completion 
61  #   (iodone); -o prints the time for the disk to complete that event 
62  #   since it's last event (time between iodones), or, the time to the 
63  #   strategy if the disk had been idle. 
64  # - When filtering on PID or process name, be aware that poor disk event 
65  #   times may be due to events that have been filtered away, for example 
66  #   another process that may be seeking the disk heads elsewhere. 
67  # 

68  # SEE ALSO: BigAdmin: DTrace, http://www.sun.com/bigadmin/content/dtrace
69  # Solaris Dynamic Tracing Guide, http://docs.sun.com 
70  #           DTrace Tools, http://www.brendangregg.com/dtrace.html
71  # 
72  # COPYRIGHT: Copyright (c) 2009 Brendan Gregg. 
73  # 
74  # CDDL HEADER START 
75  # 
76  #  The contents of this file are subject to the terms of the 
77  #  Common Development and Distribution License, Version 1.0 only 
78  #  (the "License").  You may not use this file except in compliance 
79  #  with the License. 
80  # 
81  #  You can obtain a copy of the license at Docs/cddl1.txt 
82  #  or http://www.opensolaris.org/os/licensing.
83  #  See the License for the specific language governing permissions
84  #  and limitations under the License. 
85  # 
86  # CDDL HEADER END 
87  #
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That was some script history. 

Now shell scripting begins with initializing the variables that will be used to
process the command-line options.

88  # 12-Mar-2004   Brendan Gregg   Created this, build 51. 
89  # 23-May-2004      "    "     Fixed mntpt bug. 
90  # 10-Oct-2004      "     "     Rewritten to use the io provider, build 63. 
91  # 04-Jan-2005 "      "     Wrapped in sh to provide options. 
92  # 08-May-2005      "   "     Rewritten for perfromance. 
93  # 15-Jul-2005      "   "     Improved DTIME calculation. 
94  # 25-Jul-2005      "  "     Added -p, -n. Improved code. 
95  # 17-Sep-2005      "    " Increased switchrate. 
96  # 15-Sep-2009      "      "     Removed genunix for both MacOS X and NFS. 
97  #

98
99
100  ##############################
101  # --- Process Arguments --- 
102  # 
103
104  ### default variables 
105  opt_dump=0; opt_device=0; opt_delta=0; opt_devname=0; opt_file=0; opt_args=0; 
106  opt_mount=0; opt_start=0 opt_end=0; opt_endstr=0; opt_ins=0; opt_nums=0 
107  opt_dtime=0; filter=0; device=.; filename=.; mount=.; pname=.; pid=0 
108  opt_name=0; opt_pid=0 
109

110  ### process options 
111  while getopts aAd:Def:ghim:Nn:op:stv name 
112  do 
113    case $name in 
114          a)  opt_devname=1; opt_args=1; opt_endstr=1; opt_nums=1 ;; 
115          A)      opt_dump=1 ;; 
116          d)     opt_device=1; device=$OPTARG ;; 
117 D)      opt_delta=1 ;; 
118          e)      opt_devname=1 ;; 
119          f)     opt_file=1; filename=$OPTARG ;; 
120          g)      opt_args=1 ;; 
121          i)      opt_ins=1 ;; 
122          N)      opt_nums=1 ;; 
123          n)      opt_name=1; pname=$OPTARG ;; 
124 o)      opt_dtime=1 ;; 
125          p)      opt_pid=1; pid=$OPTARG ;; 
126          m)     opt_mount=1; mount=$OPTARG ;; 
127 s)      opt_start=1 ;; 
128          t)      opt_end=1 ;; 
129          v)      opt_endstr=1 ;; 
130 h|?)    cat <<-END >&2 
131 USAGE: iosnoop [-a|-A|-DeghiNostv] [-d device] [-f filename] 
132   [-m mount_point] [-n name] [-p PID] 
133     iosnoop      # default output 
134 -a      # print all data (mostly) 
135                  -A      # dump all data, space delimited 
136                  -D      # print time delta, us (elapsed) 
137    -e      # print device name 
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The while getopts loop processes the command-line options. By the time this
loop finishes, variables beginning with opt_ have been set to record which com-
mand-line options were used. Any arguments to options are stored in their own
variable names (device, filename, and so on).

If the dump option was used with other options that print the same fields, this
ignores the other redundant options by setting their variables to 0.

A single variable filter is used to track whether the output is filtered by any
other option. 

138  -g      # print command arguments 
139   -i  # print device instance 
140                  -N      # print major and minor numbers 
141                  -o      # print disk delta time, us 
142  -s # print start time, us 
143 -t      # print completion time, us 
144                  -v      # print completion time, string 
145                  -d device # instance name to snoop 
146                  -f filename     # snoop this file only 
147    -m mount_point  # this FS only 
148                 -n name # this process name only 
149                  -p PID    # this PID only 
150                     eg, 
151     iosnoop -v   # human readable timestamps 
152            iosnoop -N     # print major and minor numbers 
153           iosnoop -m /   # snoop events on file system / only 
154                  END 
155         exit 1 
156          esac 
157  done 
158

159  ### option logic 
160  if [ $opt_dump -eq 1 ]; then 
161          opt_delta=0; opt_devname=0; opt_args=2; opt_start=0; 
162          opt_end=0; opt_endstr=0; opt_nums=0; opt_ins=0; opt_dtime=0 
163  fi

164  if [ $opt_device -eq 1 -o $opt_file -eq 1 -o $opt_mount -eq 1 -o \ 
165      $opt_name -eq 1 -o $opt_pid -eq 1 ]; then 
166          filter=1 
167  fi 
168
169

170  #################################
171  # --- Main Program, DTrace --- 
172  # 
173  /usr/sbin/dtrace -n '
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To keep the script simple to follow, the first half is shell scripting, and the sec-
ond half is an inline DTrace script. Line 173 is the boundary between the two. It
executes /usr/sbin/dtrace and finishes with a single quote character ('), which
feeds the lines that follow to dtrace(1M) instead of processing them in the shell.

Everything between the single quote characters in the previous code is shell
context; everything else is DTrace script context. This allows the shell option vari-
ables to be passed to the DTrace script. It’s made possible by staggering the pairs
of single forward quote characters; for example, one pair begins on line 173 and
ends on line 177; the next pair begins on line 177 and ends on line 178. Every-
thing between the staggered pairs is not processed by the shell and is passed
directly to /usr/sbin/dtrace. Shell option variables that start with $opt_
become DTrace variables that start with OPT_.

The quiet pragma stops DTrace from printing its default output, because
iosnoop will print customized output. Setting switchrate to 10 Hertz makes the
output of iosnoop appear more rapidly, rather than printing at the default rate of
1 Hertz.

174   /* 
175    * Command line arguments 
176    */ 
177   inline int OPT_dump    = '$opt_dump'; 
178   inline int OPT_device  = '$opt_device'; 
179   inline int OPT_delta   = '$opt_delta'; 
180   inline int OPT_devname = '$opt_devname';
181   inline int OPT_file    = '$opt_file'; 
182   inline int OPT_args    = '$opt_args'; 
183   inline int OPT_ins     = '$opt_ins'; 
184   inline int OPT_nums    = '$opt_nums'; 
185   inline int OPT_dtime   = '$opt_dtime'; 
186   inline int OPT_mount   = '$opt_mount'; 
187   inline int OPT_start   = '$opt_start'; 
188   inline int OPT_pid     = '$opt_pid'; 
189   inline int OPT_name    = '$opt_name'; 
190   inline int OPT_end     = '$opt_end'; 
191   inline int OPT_endstr  = '$opt_endstr'; 
192   inline int FILTER      = '$filter'; 
193   inline int PID        = '$pid'; 
194   inline string DEVICE   = "'$device'"; 
195   inline string FILENAME = "'$filename'"; 
196   inline string MOUNT    = "'$mount'"; 
197   inline string NAME     = "'$pname'"; 
198

199   #pragma D option quiet 
200   #pragma D option switchrate=10hz 
201
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This prints the output header, naming the columns. Depending on which option
was used, different column headers will be printed. Since DTrace doesn’t cur-
rently have if statements, ternary operators (a ? b : c) are used to either print
a column header using printf() or to do nothing by including a 1 in the script,
which is ignored. 

The self->ok variable records whether to trace this event. If no filtering is
used, it is set to 1 to trace all events. Otherwise, it is set to 1 only if the filtering
option is satisfied, by a series of ternary operator tests.

202   /* 
203    * Print header 
204    */ 
205   dtrace:::BEGIN 
206   { 
207   last_event[""] = 0; 
208
209 /* print optional headers */ 
210          OPT_start  ? printf("%-14s ","STIME(us)")   : 1; 
211          OPT_end   ? printf("%-14s ","TIME(us)")    : 1; 
212          OPT_endstr  ? printf("%-20s ","STRTIME") : 1; 
213          OPT_devname ? printf("%-7s ","DEVICE")   : 1; 
214          OPT_ins  ? printf("%-3s ","INS")      : 1; 
215          OPT_nums   ? printf("%-3s %-3s ","MAJ","MIN") : 1; 
216          OPT_delta  ? printf("%-10s ","DELTA(us)")   : 1; 
217          OPT_dtime  ? printf("%-10s ","DTIME(us)")   : 1; 
218
219  /* print main headers */ 
220          OPT_dump ? 
221              printf("%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n", 
222    "TIME", "STIME", "DELTA", "DEVICE", "INS", "MAJ", "MIN", "UID", 
223              "PID", "PPID", "D", "BLOCK", "SIZE", "MOUNT", "FILE", "PATH", 
224      "COMM","ARGS") : 
225   printf("%5s %5s %1s %8s %6s ", "UID", "PID", "D", "BLOCK", "SIZE"); 
226 OPT_args == 0 ? printf("%10s %s\n", "COMM", "PATHNAME") : 1; 
227 OPT_args == 1 ? printf("%28s %s\n", "PATHNAME", "ARGS") : 1; 
228   } 
229

230   /* 
231    * Check event is being traced 
232    */ 
233   io:::start 
234   { 
235          /* default is to trace unless filtering, */ 
236 self->ok = FILTER ? 0 : 1; 
237
238  /* check each filter, */ 
239          (OPT_device == 1 && DEVICE == args[1]->dev_statname)? self->ok = 1 : 1; 
240          (OPT_file == 1 && FILENAME == args[2]->fi_pathname) ? self->ok = 1 : 1; 
241          (OPT_mount == 1 && MOUNT == args[2]->fi_mount) ? self->ok = 1 : 1; 
242          (OPT_name == 1 && NAME == execname) ? self->ok = 1 : 1; 
243 (OPT_pid == 1 && PID == pid) ? self->ok = 1 : 1; 
244   } 
245
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Normally the last_event time for a disk is set only when it completes an
event, io:::done, and is used to calculate the time the disk spent processing a
single I/O by taking the delta time between events. However, if the disk is idle and
has no pending I/O, then that delta time includes idle time, which is not what we
want to measure. To prevent counting idle time, the last_event time is reset to
the start of any disk I/O if the disk was idle. 

The io:::start probe often fires in the same context as the requesting pro-
cess, so we’d like to save various details about the current process (such as uid,
pid, and execname) and refer to them later when needed. We want to be able to
print firefox, if the requesting application was Firefox, for example.

Important points to note here are the following. 

Whether io:::start fires in the context of the requesting process depends 
on the I/O type and any file system involved. Consider the following. 

– reads: These are likely to fire in the same context of the application, pro-
vided that a file system doesn’t sleep the application thread before issuing 
the disk I/O. If file systems begin to do this, iosnoop can be modified to 

246   /* 
247    * Reset last_event for disk idle -> start 
248    * this prevents idle time being counted as disk time. 
249    */ 
250   io:::start 
251   /! pending[args[1]->dev_statname]/
252   { 
253          /* save last disk event */ 
254          last_event[args[1]->dev_statname] = timestamp; 
255   } 
256

257   /* 
258    * Store entry details 
259    */ 
260   io:::start 
261   /self->ok/ 
262   { 
263 /* these are used as a unique disk event key, */ 
264  this->dev = args[0]->b_edev; 
265  this->blk = args[0]->b_blkno; 
266
267          /* save disk event details, */ 
268          start_uid[this->dev, this->blk] = uid; 
269          start_pid[this->dev, this->blk] = pid; 
270          start_ppid[this->dev, this->blk] = ppid; 
271  start_args[this->dev, this->blk] = (char *)curpsinfo->pr_psargs;
272          start_comm[this->dev, this->blk] = execname; 
273          start_time[this->dev, this->blk] = timestamp; 
274
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trace the read() system call and thread context switching so that it can 
detect whether the application thread leaves the CPU before the disk I/O 
event and, if so, use process information from the syscall context.

– prefetch/read-ahead reads: These occur when a file system detects 
sequential access and requests data ahead of where the application is cur-
rently reading, to improve performance by caching data early. Whether the 
application is still on-CPU during these I/O requests is up to file system 
implementation: For UFS it is; for ZFS it usually isn’t. iosnoop on ZFS 
may identify the requesting application as sched (kernel), instead of the 
process (which you could argue is correct, because it is the file system/
kernel requesting that I/O, not the application—yet). It is always possi-
ble—though sometimes difficult—to identify the process using DTrace, 
because it would require special casing for different file system types.

– writes: Depending on the file system, these are often buffered and flushed 
to disk sometime later, long after the application thread has left CPU. 
iosnoop may identify the process as sched (kernel), because it is a kernel 
thread collecting and flushing these modified file system pages to disk. 

– synchronous writes: These are likely to fire in the context of the 
application.

iosnoop does what it can using the stable io provider. If identifying the 
application (and not the kernel) for all types of I/O is important, custom 
DTrace scripts can be written for the file system type used. The syscall 
provider is useful for associating disk I/O to applications, since all applica-
tion-driven disk I/Os originate as system calls.7 This approach may require 
two steps. First, determine which system calls are being used (read(2),
pread(2), readv(2), and so on). Second, create a script that enables 
probes at those system calls. If the fbt provider or sdt probes are used, the 
scripts will not be stable and may require maintenance whenever the file 
system driver is upgraded. 

The process details are saved in associative arrays, start_uid[], and so on. 
We’d like to save various details on the io:::start probe and refer to them 
in the io:::done probe. This is often achieved in DTrace using thread-local 
variables (self->). However, this will not work here because the io:::done
probe will fire when the disk sends an interrupt, at which point whatever 
thread was on-CPU during io:::start will have long since left, and the 
thread context will have changed. So, instead of using the thread to associate 

7. The exception is the use of mmap(2), which will generate disk reads and writes as applica-
tion code reads and will modify the memory segment allocated for the mmap’d file.
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the start event with the done event via a thread-local variable, we use an 
associative array instead, keyed on something that will be the same for both 
io:::start and io:::done. This is a two-key pair consisting of the disk 
device ID and the block ID, which identifies the location on the disk this I/O 
is for and is the same for both io:::start and io:::done. This key could 
even be simplified to just arg0, as explained in iolatency.d.

The pending[] associative array tracks how many outstanding disk I/O events
there are for each disk. The disks are uniquely identified by their dev_statname.
For io:::start, pending is incremented; for io:::done, pending is decre-
mented. By tracking the number of outstanding I/Os, the idle state can be identi-
fied on line 251.

The self->ok variable is reset for this thread. 

The predicate here checks that the start_time was seen, which will be the
case for all I/O except for those in-flight when iosnoop was first executed.

275          /* increase disk event pending count */ 
276  pending[args[1]->dev_statname]++;
277

278    self->ok = 0; 
279   } 
280

281   /* 
282    * Process and Print completion 
283    */ 
284   io:::done 
285   /start_time[args[0]->b_edev, args[0]->b_blkno]/
286   {

287          /* decrease disk event pending count */ 
288  pending[args[1]->dev_statname]--;
289
290          /* 
291    * Process details 
292           */ 
293
294 /* fetch entry values */ 
295  this->dev = args[0]->b_edev; 
296  this->blk = args[0]->b_blkno; 
297          this->suid = start_uid[this->dev, this->blk]; 
298          this->spid = start_pid[this->dev, this->blk]; 
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Various bits of information are fetched and stored in clause-local variables
(this->), because they are used only in this block of code for io:::done. An
exception to this is string data types, which are saved as thread-local variables
(self->), only because earlier versions of DTrace didn’t allow strings as clause-
local variables. 

Note the different ways I/O latency can be calculated. this->delta (printed
with -D) is the time from io:::start to io:::done, and it reflects the latency
for this I/O to complete. Although this is a simple and useful metric, bear in mind
that many I/O devices can service multiple I/Os simultaneously. Disks are often
sent multiple I/O requests that they can queue, reorder, and access with one sweep
of the heads (sometimes called elevator seeking). Since the disk is servicing multi-
ple I/Os simultaneously, it is possible that the reported delta times from a disk
during a one-second interval can add up to much more than one second. 

this->dtime (printed with -o) calculates I/O latency as the time from the last
disk completion event to the current disk completion event. This is the time it took
the disk to seek and service the current I/O, excluding other I/O that was queued.
Adding these times during a one-second interval should not sum to more than one
second. Put another way, the delta time is the latency suffered by the application
waiting on that I/O. The disk time is the latency suffered by the disk to service
that I/O. 

299          this->sppid = start_ppid[this->dev, this->blk]; 
300          self->sargs = (int)start_args[this->dev, this->blk] == 0 ? 
301   "" : start_args[this->dev, this->blk]; 
302          self->scomm = start_comm[this->dev, this->blk]; 
303          this->stime = start_time[this->dev, this->blk]; 
304          this->etime = timestamp; /* endtime */

305          this->delta = this->etime - this->stime; 
306          this->dtime = last_event[args[1]->dev_statname] == 0 ? 0 : 
307  timestamp - last_event[args[1]->dev_statname];
308

309  /* memory cleanup */ 
310          start_uid[this->dev, this->blk]  = 0; 
311          start_pid[this->dev, this->blk]  = 0; 
312 start_ppid[this->dev, this->blk] = 0; 
313 start_args[this->dev, this->blk] = 0; 
314 start_time[this->dev, this->blk] = 0; 
315 start_comm[this->dev, this->blk] = 0; 
316          start_rw[this->dev, this->blk]   = 0; 
317
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This data is no longer needed and is cleared from the associative arrays. This
data was stored in seven associative arrays, and not one associative array with a
seven-member struct as the value, because there is currently no way to clear such
a seven-member struct.8

The optional fields are printed in ternary statements, in the same order as the
column headers were printed.

Look for the : in the previous ternary operator. If OPT_dump is set (-A), every-
thing is printed space delimited; otherwise, the default columns are printed.

318          /* 
319           * Print details 
320           */ 
321
322 /* print optional fields */ 
323          OPT_start ? printf("%-14d ", this->stime/1000) : 1; 
324          OPT_end  ? printf("%-14d ", this->etime/1000) : 1; 
325          OPT_endstr  ? printf("%-20Y ", walltimestamp) : 1; 
326 OPT_devname ? printf("%-7s ", args[1]->dev_statname) : 1; 
327          OPT_ins   ? printf("%3d ", args[1]->dev_instance) : 1; 
328          OPT_nums    ? printf("%3d %3d ", 
329 args[1]->dev_major, args[1]->dev_minor) : 1; 
330          OPT_delta ? printf("%-10d ", this->delta/1000) : 1; 
331          OPT_dtime ? printf("%-10d ", this->dtime/1000) : 1; 
332

8. CR 6411981 says “need a way to unallocate struct dynamic variables.”

333 /* print main fields */ 
334          OPT_dump ? 
335              printf("%d %d %d %s %d %d %d %d %d %d %s %d %d %s %s %s %s %S\n", 
336 this->etime/1000, this->stime/1000, this->delta/1000,
337              args[1]->dev_statname, args[1]->dev_instance, args[1]->dev_major,
338              args[1]->dev_minor, this->suid, this->spid, this->sppid, 
339 args[0]->b_flags & B_READ ? "R" : "W", 
340 args[0]->b_blkno, args[0]->b_bcount, args[2]->fi_mount,
341    args[2]->fi_name, args[2]->fi_pathname, self->scomm, self->sargs) : 
342   printf("%5d %5d %1s %8d %6d ", 
343              this->suid, this->spid, args[0]->b_flags & B_READ ? "R" : "W", 
344   args[0]->b_blkno, args[0]->b_bcount);

345 OPT_args == 0 ? printf("%10s %s\n", self->scomm, args[2]->fi_pathname) 
346              : 1; 
347          OPT_args == 1 ? printf("%28s %S\n", 
348  args[2]->fi_pathname, self->sargs) : 1; 
349
350          /* save last disk event */ 
351          last_event[args[1]->dev_statname] = timestamp;
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The last disk event time stamp for calculating disk times is stored for this disk. 

The clause-local variables were cleared automatically; these thread-local vari-
ables need to be cleared explicitly. 

Should iosnoop be executed during several I/Os to a disk, the io:::done
events will be seen, but the io:::start events will not, leading to a negative
value for pending. If this happens, pending is reset to zero. 

The last line has a single forward quote, which finishes quoting the DTrace
script fed into the /usr/sbin/dtrace command. 

Examples

In the examples that follow, the use of the iosnoop script is demonstrated show-
ing various options available for observing different dimensions of your disk I/O
load.

Disk Queueing. The following shows four different time measurements taken
while tracing a tar archive command on Solaris, UFS: 

352
353          /* cleanup */ 
354   self->scomm = 0; 
355   self->sargs = 0;

356   } 
357
358   /* 
359    * Prevent pending from underflowing 
360    * this can happen if this program is started during disk events. 
361    */ 
362   io:::done 
363   /pending[args[1]->dev_statname] < 0/ 
364   { 
365 pending[args[1]->dev_statname] = 0; 
366   }

367  ' 
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If you look closely at the start times (STIME), you can see that between the first
and last lines (a period of 242 us), seven I/Os were requested. These were queued
on the disk and processed in turn, the last completing 9559 us after the first was
requested (TIME 3323037582162 to STIME 3323037572603). Time for each I/O from
start to done as shown by the delta time (DELTA) column is usually more than 8
ms; however, they were all able to complete in 9 ms because the disk processed sev-
eral at the same time. The disk time (DTIME) column showed that the slowest I/O
took the disk 4.9 ms to service, and the writes (see the D column) returned almost
immediately, which is evidence of disk write caching. 

Random I/O. The following example shows a spike in disk time for a couple of I/Os,
on Solaris, UFS. What might have caused it? 

The disk device (DEVICE) column and disk block address (BLOCK) column show
that this disk seeked from block address 163680 to 2666640 and then back to
163872; these large seeks are likely to be the reason for the longer disk times. File
systems usually place data to avoid large seeks, if possible, to improve performance.

What Is sched and Why <none>? Here iosnoop is executed on a Solaris server
with a ZFS file system, as a tar(1) archive command is executed: 

solaris# iosnoop -Dots 
STIME(us)      TIME(us)       DELTA(us)  DTIME(us) UID  PID D    BLOCK   SIZE     COMM PATHNAME 
3323037572603  3323037577515  4912       4919       0  29102 R   493680  16384    tar  /root/perl/perl 
3323037572686  3323037581099  8413       3584       0  29102 R   496368  16384    tar  /root/perl/perl 
3323037572726  3323037581258  8532       158        0  29102 W   166896   8192    tar  /root/perl.tar 
3323037572745  3323037581394  8649       135        0  29102 W   167296   8192    tar  /root/perl.tar 
3323037572762  3323037581481  8718       87         0  29102 W   167568   8192    tar  /root/perl.tar 
3323037572801  3323037581966  9164       484        0  29102 W   167840  40960    tar  /root/perl.tar 
3323037572845  3323037582162  9317       195        0  29102 W     2076   8704    tar  <none> 
[...]

solaris# iosnoop -oe 
DEVICE  DTIME(us)    UID   PID D    BLOCK SIZE       COMM PATHNAME 
cmdk0   195    0 29127 R   163680  20480        tar /root/sh/sh.new 
cmdk0   8240    0 29127 R  2666640  32768        tar /root/sh/sh.new 
cmdk0   10816   0 29127 R   163872   8192        tar /root/sh/sh 
cmdk0   97    0 29127 R   163888 4096        tar /root/sh/sh 
cmdk0   181     0 29127 R   163904 16384        tar /root/sh/sh

solaris# iosnoop
  UID   PID D    BLOCK  SIZE       COMM PATHNAME 
  100 29166 R 184306688 131072     tar <none> 
  100 29166 R 184306944 131072     tar <none> 
  100 29166 R 184307200 131072     tar <none> 
  100 29166 R 184307456 131072     tar <none> 
  100 29166 R 184307712 131072     tar <none> 
    0     0 R 184307968 131072      sched <none> 
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First, sched is the scheduler—the kernel. It appears so frequently because ZFS
uses asynchronous threads and pipelining and will call prefetch I/O and flush
writes (transaction groups) from pools of ZFS threads in the kernel, not in applica-
tion context. As for the path name, when ZFS performs disk I/O, multiple I/O
requests can be aggregated to improve performance. By the time this I/O reaches
disk and fires the io:::start or io:::done probe, there is a mass of data to
read or write, but no single path name (actually, vnode) is responsible, so the io
provider translator (/usr/lib/dtrace/io.d) returns <none>.9 This doesn’t affect
ZFS functioning but does matter when DTrace is trying to debug that function. 

What Is ??? The following shows iosnoop run on Mac OS X, as StarOffice is
launched: 

The path name begins with ?? instead of what should be the mount point path.
This originates from the io provider translator (/usr/lib/dtrace/io.d), where
not all fields are currently available in Mac OS X, which returns ?? when unavail-
able. These may also be fixed in a future release.

    0     0 R 184308224 131072      sched <none> 
    0     0 R 184308480 131072      sched <none> 
    0     0 W 282938086   8704      sched <none> 
    0     0 W 137834280   8704      sched <none> 
    0     0 W 137834297   3584      sched <none> 
    0     0 W 282342144 131072      sched <none> 
    0     0 W 282343424 131072      sched <none> 
[...]

9. This is tracked as CR 6266202: “DTrace io provider doesn’t work with ZFS.” This hasn't been
fixed at the time of writing.

macosx# iosnoop
  UID  PID D    BLOCK  SIZE    COMM PATHNAME 
  501  988 R 45293712 4096 launchd ??/MacOS/soffice
  501  988 R 44433744  4096 soffice ??/lib/libuno_sal.dylib.3
    0   22 R 34670448 16384     mds ??/20BAE9D6-DC50-4B38-B8CF-A3D97020E320/.store.db
  501  988 R 44452544 73728 soffice ??/lib/libuno_sal.dylib.3
  501  988 R 44452376 81920 soffice ??/lib/libuno_sal.dylib.3
  501  988 R 44452536  4096 soffice ??/lib/libuno_sal.dylib.3
  501  988 R 44757680  4096 soffice ??/program/libsofficeapp.dylib
  501  988 R 44758496 65536 soffice ??/program/libsofficeapp.dylib
  501  988 R 44758392 49152 soffice ??/program/libsofficeapp.dylib
  501  988 R 44758488  4096 soffice ??/program/libsofficeapp.dylib
  501  988 R 44580232  4096 soffice ??/program/libcomphelp4gcc3.dylib
[...]
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iotop

While iosnoop traces and prints each I/O event live, another way to present this
data is to print summaries every few seconds. The iotop tool does this and will
also refresh the screen and print the top several events.10

Script

The script gathers data similarly to iosnoop and also gathers system load aver-
ages by reading and processing the hp_avenrun kernel variables. Here’s an exam-
ple on Solaris:

The full script can be found in the DTraceToolkit. It is also available as /usr/
bin/iotop on Mac OS X, where the `hp_avenrun lines were changed to work
with the Mac OS X kernel:

Examples

iotop offers several options for tracking which workload processes are generating
disk I/O. The examples that follow demonstrate these options.

Usage. Running iotop with the -h option prints its usage:

10. This is similar to the original top(1) tool by William LeFebvre.

356    /*
357     * Print Report
358     */
359    profile:::tick-1sec
360    /secs == 0/
361    {
362         /* fetch 1 min load average */
363         this->load1a  = `hp_avenrun[0] / 65536;
364         this->load1b = ((`hp_avenrun[0] % 65536) * 100) / 65536;

364    this->fscale = `averunnable.fscale;
365    this->load1a  = `averunnable.ldavg[0] / this->fscale;
366    this->load1b  = ((`averunnable.ldavg[0] % this->fscale) * 100) / this->fscale;

# iotop -h
USAGE: iotop [-C] [-D|-o|-P] [-j|-Z] [-d device] [-f filename]
             [-m mount_point] [-t top] [interval [count]]

 -C      # don't clear the screen
                -D      # print delta times, elapsed, us

 -j      # print project ID
                -o      # print disk delta times, us
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The default output is to print byte summaries every five seconds.

Bytes. This example shows iotop run on Solaris/UFS with the -C option to not
clear the screen but instead provide a scrolling output:

In the previous output, we can see that a tar(1) command is reading from the
cmdk0 disk, from several different slices (different minor numbers), on the last
report focusing on 102,5 (an ls -lL in /dev/dsk can explain the number to slice
mappings).

The disk_r and disk_w values give a summary of the overall activity in bytes.
Bytes can be used as a yardstick to determine which process is keeping the

disks busy, but either of the delta times available from iotop would be more accu-
rate (because they take into account whether the activity is random or sequential).

Disk Time. Here’s an example of printing disk time using -o:

                -P      # print %I/O (disk delta times)
  -Z      # print zone ID

                -d device       # instance name to snoop 
                -f filename     # snoop this file only

  -m mount_point  # this FS only 
 -t top  # print top number only

   eg,
        iotop    # default output, 5 second samples
        iotop 1      # 1 second samples
        iotop -P     # print %I/O (time based)
        iotop -m / # snoop events on file system / only
        iotop -t 20   # print top 20 lines only
        iotop -C 5 12 # print 12 x 5 second samples

solaris# iotop -C
Tracing... Please wait.
2005 Jul 16 00:34:40, load: 1.21,  disk_r:  12891 KB,  disk_w:   1087 KB

  UID    PID   PPID CMD           DEVICE  MAJ MIN D            BYTES
    0      3      0 fsflush          cmdk0   102  4 W              512
    0      3      0 fsflush          cmdk0   102   0 W            11776
    0  27751  20320 tar         cmdk0   102 16 W            23040
    0      3      0 fsflush          cmdk0   102   0 R            73728
    0      0      0 sched            cmdk0   102   0 R           548864
    0      0      0 sched            cmdk0   102   0 W          1078272
    0  27751  20320 tar          cmdk0   102  16 R          1514496
    0  27751  20320 tar          cmdk0   102   3 R         11767808
[...]

solaris# iotop -Co
Tracing... Please wait.
2005 Jul 16 00:39:03,  load: 1.10,  disk_r:   5302 KB,  disk_w:     20 KB

  UID    PID   PPID CMD           DEVICE  MAJ MIN D         DISKTIME
continues
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The disk time is given in microseconds. In the first sample, we can see the
find(1) command caused a total of 3.094 seconds of disk time: The duration of
the samples here is five seconds (the default), so it would be fair to say that the
find command is keeping this single disk 60 percent busy.

Find vs. Bart. Solaris 10 introduced the bart(1M) command for gathering and
comparing file checksums as a security fingerprinting tool. Bart will read a file
sequentially so that its checksums can be calculated. It can be run with the find
command to determine which files to checksum. Here the -P option is used to print
disk time percentages as both execute:

In the previous output, bart and find jostle for disk access as they create a
database of file checksums. The command was as follows:

    0      0      0 sched            cmdk0   102  0 W              532
    0      0      0 sched            cmdk0   102   0 R           245398
    0  27758  20320 find             cmdk0 102   0 R       3094794

2005 Jul 16 00:39:08,  load: 1.14,  disk_r:   5268 KB,  disk_w:    273 KB

  UID    PID   PPID CMD           DEVICE  MAJ MIN D         DISKTIME
    0      3      0 fsflush          cmdk0   102  0 W             2834
    0      0      0 sched            cmdk0   102   0 W           263527
    0      0      0 sched            cmdk0   102   0 R           285015
    0      3      0 fsflush          cmdk0   102   0 R           519187
    0  27758  20320 find             cmdk0 102   0 R       2429232
[...]

solaris# iotop -PC 1
Tracing... Please wait.
2005 Nov 18 15:26:14,  load: 0.24,  disk_r:  13176 KB,  disk_w:      0 KB

  UID    PID   PPID CMD             DEVICE  MAJ MIN D   %I/O
    0   2215   1663 bart             cmdk0   102   0 R     85

2005 Nov 18 15:26:15,  load: 0.25,  disk_r:   5263 KB,  disk_w:      0 KB

  UID    PID   PPID CMD             DEVICE  MAJ MIN D   %I/O
    0   2214   1663 find             cmdk0   102   0 R     15
    0   2215   1663 bart             cmdk0   102   0 R     67

2005 Nov 18 15:26:16,  load: 0.25,  disk_r:   8724 KB,  disk_w:      0 KB

  UID    PID   PPID CMD             DEVICE  MAJ MIN D   %I/O
    0   2214   1663 find             cmdk0   102   0 R     10
    0   2215   1663 bart             cmdk0   102   0 R     71
[...]

# find / | bart create -I > /dev/null
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Note that the %I/O is in terms of one disk. A %I/O of 200 would mean that two
disks were effectively at 100 percent, or 4 disks at 50 percent, and so on. The per-
centages can be presented in a different way (percentage of total disks or max per-
centage of busiest disk) by editing the script.

iopattern

Another presentation of statistics is to print single-line summaries. The iopattern
tool is a good example of this,11 which provides top-level data as a starting point
for further investigation.

Script

Much of the data summarized is straight from the io provider; what makes this
script interesting is a measure of percent random vs. sequential I/O. It does this
with the following code:

A diskran variable counts disk seeks for the percent random calculation and is
incremented if the location of the current disk I/O is not equal to where the disk
heads were after the last I/O. Although this works, it doesn’t take into account the
size of the seek—a workload is random whether it seeked over a short or long
range. If this simplification becomes problematic, the script could be adjusted to
express percent random I/O in terms of time spent serving random I/O vs. sequen-
tial I/O, rather than counts.

11. Thanks to Ryan Matteson for the idea.

197    io:genunix::done
198    /self->ok/
199    {
200         /*
201    * Save details
202          */
203 this->loc = args[0]->b_blkno * 512;
204         this->pre = last_loc[args[1]->dev_statname];
205         diskr += args[0]->b_flags & B_READ ? args[0]->b_bcount : 0;
206         diskw += args[0]->b_flags & B_READ ? 0 : args[0]->b_bcount;
207         diskran += this->pre == this->loc ? 0 : 1;
208         diskcnt++;
209         diskmin = diskmin == 0 ? args[0]->b_bcount :
210             (diskmin > args[0]->b_bcount ? args[0]->b_bcount : diskmin);
211         diskmax = diskmax < args[0]->b_bcount ? args[0]->b_bcount : diskmax;
212
213 /* save disk location */
214 last_loc[args[1]->dev_statname] = this->loc + args[0]->b_bcount;
215
216         /* cleanup */
217         self->ok = 0;
218    }
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The full script can be found in the DTraceToolkit and /usr/bin/iopattern on
Mac OS X.

Examples

Here we show using the iopattern script while tracing known disk I/O loads. 

Usage. The usage of iopattern can be printed with -h:

Unlike similar one-line summary tools (such as vmstat(1M)), there is no “sum-
mary since boot” line printed (because DTrace wasn’t running to trace the activity).

Sequential I/O. To demonstrate sequential I/O, a dd(1) command was exe-
cuted on a raw disk device path to intentionally create sequential disk activity:

In the previous output, the high percentages in the %SEQ column indicate that
disk activity is mostly sequential. The disks are also pulling around 30MB during
each sample, with a large average event size.

Random I/O. Here a find(1) command was used to cause random disk
activity:

# iopattern -h
USAGE: iopattern [-v] [-d device] [-f filename] [-m mount_point]

     [interval [count]]

                -v             # print timestamp
                -d device       # instance name to snoop 
                -f filename     # snoop this file only

  -m mount_point  # this FS only 
   eg,
        iopattern    # default output, 1 second samples
        iopattern 10      # 10 second samples
        iopattern 5 12   # print 12 x 5 second samples
        iopattern -m /  # snoop events on file system / only

solaris# iopattern
%RAN %SEQ  COUNT MIN    MAX    AVG     KR     KW
   1   99    465   4096  57344  52992  23916    148
   0  100    556  57344 57344  57344  31136      0
   0  100    634  57344 57344  57344  35504      0
   6   94    554 512  57344  54034 29184     49
   0  100    489  57344 57344  57344  27384      0
  21   79    568   4096  57344  46188  25576     44
   4   96    431   4096  57344  56118  23620      0
^C
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In the previous output, we can see from the percentages that the disk events
were mostly random. We can also see that the average event size is small, which
makes sense if we are reading through many directory files.

geomiosnoop.d

All the previous scripts use the io provider and execute on Solaris, OpenSolaris,
and Mac OS X. Until FreeBSD supports the io provider as well, the fbt provider
can be used to retrieve similar information from the kernel. This script demon-
strates this by snooping I/O requests to the GEOM(4) I/O framework. Since it uses
the fbt provider, it will require maintenance to match changes in the FreeBSD
kernel.

Script

To see both VFS and device I/O, two different GEOM functions are traced:

solaris# iopattern
%RAN %SEQ  COUNT MIN    MAX    AVG     KR     KW
  86   14    400   1024 8192   1543    603      0
  81   19    455   1024 8192   1606    714      0
  89   11    469    512  8192   1854    550    299
  83   17    463   1024 8192   1782    806      0
  87   13    394   1024 8192   1551    597      0
  85   15    348    512  57344   2835    808    155
  91    9    513    512  47616   2812    570    839
  76   24    317    512  35840   3755    562    600
^C

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option switchrate=10hz
5
6     /* from /usr/src/sys/sys/bio.h */
7     inline int BIO_READ = 0x01;
8     inline int BIO_WRITE = 0x02;
9
10    dtrace:::BEGIN
11    {
12 printf("%5s %5s %1s %10s %6s %16s %-8s %s\n", "UID", "PID", "D",
13 "OFFSET(KB)", "BYTES", "COMM", "VNODE", "INFO");
14    }
15
16    fbt::g_vfs_strategy:entry
17    {
18          /* attempt to fetch the filename from the namecache */
19          this->file = args[1]->b_vp->v_cache_dd != NULL ?
20              stringof(args[1]->b_vp->v_cache_dd->nc_name) : "<unknown>";
21 printf("%5d %5d %1s %10d %6d %16s %-8x %s \n", uid, pid,
22  args[1]->b_iocmd & BIO_READ ? "R" : "W",
23  args[1]->b_iooffset / 1024, args[1]->b_bcount,
24  execname, (uint64_t)args[1]->b_vp, this->file);
25    }

continues
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This traces GEOM requests via g_vfs_strategy() and g_dev_strategy()
so that the process name that requested the I/O can be traced. GEOM may trans-
form these requests into multiple other I/Os, which are later issued to the device
via g_down.

Lines 19 and 20 attempt to fetch the filename from the namecache entry of the
vnode, which is unreliable (when not cached). To compensate a little, the address of
the vnode is printed in the VNODE column: This will at least help identify whether
the same file or different files are being accessed. A more reliable way of determin-
ing the path name from a vnode is demonstrated in vfssnoop.d in Chapter 5, File
Systems. 

Example

Disk I/O requests from a couple of commands were caught; first, the dd(1) com-
mand was used to perform five 1KB reads from /dev/ad0, which was traced cor-
rectly. Then the bsdtar(1) command was used to archive the /usr file system,
for which some of the filenames were identified and some not (either not related to
a particular file or not in the name cache).

26
27    fbt::g_dev_strategy:entry
28    {
29 printf("%5d %5d %1s %10d %6d %16s %-8s %s\n", uid, pid,
30  args[0]->bio_cmd & BIO_READ ? "R" : "W",
31  args[0]->bio_offset / 1024, args[0]->bio_bcount,
32 execname, "<dev>", stringof(args[0]->bio_dev->si_name));
33    }

Script geomiosnoop.d

freebsd# geomiosnoop.d
  UID   PID D OFFSET(KB)  BYTES    COMM VNODE    INFO
    0 38004 R   0   1024       dd <dev>    ad0
    0 38004 R   1   1024       dd <dev>    ad0
    0 38004 R   2   1024       dd <dev>    ad0
    0 38004 R   3   1024       dd <dev>    ad0
    0 38004 R   4   1024       dd <dev>    ad0
    0 38005 R   11754552   2048     bsdtar c3f4eb84 etalon 
    0 38005 R   11754554   2048    bsdtar c4427754 <unknown> 
    0 38005 R   11727278   2048    bsdtar c3dd6b84 geom_stripe 
    0 38005 R   11754556   2048    bsdtar c442796c <unknown> 
    0 38005 R   11754558   2048    bsdtar c4427000 <unknown> 
    0 38005 R   11747062   2048    bsdtar c4427d9c <unknown> 
    0 38005 R   11727276   2048    bsdtar c3dd6c90 geom_shsec 
    0 38005 R   11747064   2048    bsdtar c4427c90 <unknown> 
    0 38005 R   11747066   2048    bsdtar c4427860 <unknown> 
    0 38005 R   11747068   2048    bsdtar c4427b84 <unknown> 
    0 38005 R   11727302   2048     bsdtar c3cbf53c lib 
    0 38005 R   11743946   2048     bsdtar c442710c msun 
[...]
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SCSI Scripts

These scripts use the fbt provider to trace the SCSI driver(s). Small Computer Sys-
tem Interface (SCSI) is a commonly used interface for managing disk devices, espe-
cially for external storage disks. DTracing the SCSI driver can provide details of
disk I/O operation at a lower level than with the io provider alone. Functionally, it
can be summarized as in Figure 4-5.

The high-level diagram is in the “Capabilities” section. Note that both the physi-
cal and multipathing layers may work with SCSI I/O, so a single disk I/O request
may be processed by multiple SCSI I/O events.

Since there is currently no stable SCSI provider, the fbt12 and sdt providers are
used. These are unstable interfaces: They expose kernel functions and data struc-
tures that may change from release to release. The following scripts were based on
OpenSolaris circa December 2009 and may not work on other OSs and releases
without changes. Even if these scripts no longer execute, they can still be treated
as examples of D programming and for the sort of data that DTrace can make
available for SCSI analysis.

12. See the “fbt Provider” section in Chapter 12 for more discussion about the use of the fbt
provider.

Figure 4-5 SCSI I/O stack
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The SCSI Probes

To become familiar with the probes available for DTracing SCSI events, a disk I/O
workload was applied while probes from the sdt and fbt providers were frequency
counted. Starting with sdt for the sd module (no sdt probes currently exist in the
scsi module itself):

This has matched a single probe, scsi-transport-dispatch. This probe can
be used to examine I/O dispatched from the sd target driver.

For the fbt provider, all probes from the sd and scsi kernel modules were fre-
quency counted:

# dtrace -n 'sdt:sd:: { @[probename] = count(); }'
dtrace: description 'sdt:sd:: ' matched 1 probe 
^C

  scsi-transport-dispatch                    3261

solaris# dtrace -n 'fbt:scsi::entry,fbt:sd::entry { @[probefunc] = count(); }' 
dtrace: description 'fbt:scsi::entry,fbt:sd::entry ' matched 585 probes 
^C

  sd_pm_idletimeout_handler                   40 
  ddi_xbuf_qstrategy                    3135 
  scsi_hba_pkt_alloc                    3135 
  scsi_pkt_size                    3135 
  sd_add_buf_to_waitq                   3135 
  sd_core_iostart                   3135 
  sd_initpkt_for_buf                    3135 
  sd_mapblockaddr_iostart                   3135 
  sd_setup_rw_pkt                   3135 
  sd_xbuf_init                  3135 
  sd_xbuf_strategy                   3135 
  sdinfo                   3135 
  sdstrategy                  3135 
  xbuf_iostart                  3135 
  scsi_hba_pkt_comp                  3140 
  ddi_xbuf_done                    3141 
  ddi_xbuf_get                  3141 
  scsi_hba_pkt_free                  3141 
  sd_buf_iodone                    3141 
  sd_destroypkt_for_buf                   3141 
  sd_mapblockaddr_iodone                   3141 
  sd_return_command                  3141 
  sdintr                   3141 
  xbuf_dispatch                    3141 
  scsi_init_pkt                    6270 
  scsi_device_hba_private_get                  6271 
  scsi_transport                    6272 
  sd_start_cmds                    6276 
  scsi_destroy_pkt                   6282 
  scsi_pkt_allocated_correctly                 9416 
  scsi_address_device                   12542
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As will be shown in the scripts that follow, two useful functions to probe are
scsi_transport() and scsi_destroy_pkt(), to examine the start and end of
all SCSI commands.

sdqueue.d

Although disk I/O latency was measured in the previous io provider scripts,
another source of latency was not: the sd queue. Here is an example for those
familiar with the output of iostat(1M) on Solaris:

The previous io provider scripts gave us extended visibility into the asvc_t
metric (active service time) but not wsvc_t (wait service time) due to queueing in
sd. The sdqueue.d script traces the time I/O spends queued in sd and shows this
by device as a distribution plot. 

Script

This script uses an fbt probe to trace when I/Os are added to an sd queue, and it
uses an sdt probe to trace when they are removed from the queue and dispatched.
It was written for Solaris Nevada circa December 2009 and does not work on other
Solaris versions that do not have the sd_add_buf_to_waitq() kernel function;
to get this to work on those versions, try to find a similar function that is available
and modify the script to use it.

# iostat -xnz 10 
[...]

      extended device statistics 
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device 
  235.2    0.0 1882.0   0.0 94.0 34.0  399.5 144.5 100 100 c4t5000C50010743CFAd0

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  fbt::sd_add_buf_to_waitq:entry
11  /args[1]->b_dip/ 
12  { 
13  start_time[arg1] = timestamp; 
14  } 
15
16  sdt:::scsi-transport-dispatch
17  /this->start = start_time[arg0]/ 
18  { 
19          this->delta = (timestamp - this->start) / 1000; 

continues
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Translators from the io provider (/usr/lib/dtrace/io.d) were used to con-
vert a buf_t into the device name and path, on lines 21 and 22. These translators
generated some errors when NFS I/O was traced, which is not the point of this
script, and has been filtered out on line 11 by ensuring that this is for a local
device. 

Example

A Solaris system has 128 application threads calling random disk I/O on the same
disk. The disk is saturated with I/O, and queue time dominates the latency—as
shown by the iostat(1M) output earlier. Here is the output of sdqueue.d:

20  this->bp = (buf_t *)arg0; 
21          this->dev = xlate <devinfo_t *>(this->bp)->dev_statname;
22          this->path = xlate <devinfo_t *>(this->bp)->dev_pathname;
23          @avg[this->dev, this->path] = avg(this->delta); 
24  @plot[this->dev, this->path] = lquantize(this->delta / 1000, 0, 1000, 
25              100); 
26   start_time[arg0] = 0; 
27  } 
28
29  dtrace:::END 
30  { 
31          printf("Wait queue time by disk (ms):\n"); 
32          printa("\n  %-12s %-50s\n%@d", @plot); 
33 printf("\n\n  %-12s %-50s %12s\n", "DEVICE", "PATH", "AVG_WAIT(us)"); 
34          printa("  %-12s %-50s %@12d\n", @avg); 
35  }

Script sdqueue.d

solaris# sdqueue.d
Tracing... Hit Ctrl-C to end. 
^C
Wait queue time by disk (ms): 

  sd116 /devices/scsi_vhci/disk@g5000c50010743cfa:wd

           value ------------- Distribution ------------- count 
             < 0 |                   0 
               0 |@@@@@                 303 
             100 |@@@@@                 258 
             200 |@@@@@                 301 
             300 |@@@@@                 280 
             400 |@@@@@                 271 
             500 |@@@@@                 271 
             600 |@@@@@                 264 
             700 |@@@@                 205 
             800 |@                  59 
             900 |                   1 
         >= 1000 |                  0 

  DEVICE       PATH        AVG_WAIT(us) 
  sd116        /devices/scsi_vhci/disk@g5000c50010743cfa:wd       394465
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The average wait time corresponds to the wsvc_t shown in the earlier
iostat(1M) output. Here we can see the distribution plot of wait time that caused
that average. This shows that 60 I/Os waited for longer than 800 ms—information
that is lost when we look only at averages. Although 800 ms queue time sounds
alarming, reconsider the workload: 128 application threads pounding on a single
disk. All this I/O can’t be delivered to the disk for its own on-disk queue, because
that has a limited length. The overflow queues in sd and waits there, as measured
by sdqueue.d.

sdretry.d

The SCSI disk driver can retry disk I/O if a problem was encountered. If this
begins to happen frequently on a disk, it may mean that the disk is deteriorating
and might fail soon. Surprisingly, this can occur in the Solaris SCSI driver with-
out incrementing any statistics (such as soft errors in iostat(1M)). Although
these I/Os do eventually complete successfully, it would be useful for us to know
that they encountered problems on the disk and needed to retry. This can be
observed using DTrace. 

The fbt provider is used to trace the following function from uts/common/io/
scsi/targets/sd.c:

Because this is a kernel function, there is no guarantee that this will not change
in the very next release of OpenSolaris, breaking the sdretry.d script. That’s a
drawback inherent with fbt. Should sdretry.d become a popular script and its
breakage become a nuisance, a static probe could be added to the kernel to ensure
a stable interface.

/*
 *    Function: sd_set_retry_bp 
 * 
 * Description: Set up the given bp for retry. 
 * 
 *   Arguments: un - ptr to associated softstate 
 * bp - ptr to buf(9S) for the command 
 *              retry_delay - time interval before issuing retry (may be 0) 
 * statp - optional pointer to kstat function 
 * 
 *     Context: May be called under interrupt context 
 */ 

static void 
sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 

void (*statp)(kstat_io_t *)) 
{
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Script

This script was written for Solaris Nevada circa December 2009; it may work on
other Solaris versions, depending on how much the sd_set_retry_bp() function
has changed.

Although this is an unstable fbt script, it fortunately uses only one fbt probe, so
maintenance as the underlying kernel changes may not be too difficult. This script
uses the existing io provider translator via xlate to fetch the device name and
major and minor numbers from args[1].

Examples

The following examples demonstrate the use of sdretry.d.

Unexpected Retries. This was executed on a system with 24 disks performing I/O,
plus two (mostly) idle system disks. This is a system running normally with no
errors visible in iostat(1M):

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing... output every 10 seconds.\n"); 
8   } 
9
10  fbt::sd_set_retry_bp:entry
11  { 
12          @[xlate <devinfo_t *>(args[1])->dev_statname,
13   xlate <devinfo_t *>(args[1])->dev_major,
14 xlate <devinfo_t *>(args[1])->dev_minor] = count(); 
15  } 
16
17  tick-10sec 
18  { 
19  printf("\n%Y:\n", walltimestamp); 
20          printf("%28s  %-3s,%-4s %s\n", "DEVICE", "MAJ", "MIN", "RETRIES"); 
21          printa("%28s  %-03d,%-4d  %@d\n", @); 
22          trunc(@); 
23  }

Script sdretry.d

solaris# iostat -e 
  ---- errors --- 

device  s/w h/w trn tot 
sd6       0   0   0   0 
sd7       0   0   0   0 
sd107     0   0   0   0 
sd108     0   0   0   0 
sd109     0   0   0   0 
sd110     0   0   0   0 
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For a system with no apparent disk issues, we would expect no, or very few,
SCSI retries. However, running the sdretry.d script immediately caught retries:

We see retries not on the storage disks but on the system disks (sd6 and sd7).
These were mostly idle, flushing monitoring data to disk every five seconds or so—
and, as it turns out, encountering SCSI retries.

Known Disk Issue. Here a disk was removed during disk I/O13 and reinserted a
few seconds later:

sd111     0   0   0   0 
sd112     0   0   0   0 
sd113     0   0   0   0 
sd114     0   0   0   0 
sd115     0   0   0   0 
sd116     0   0   0   0 
sd117     0   0   0   0 
sd118     0   0   0   0 
sd119     0   0   0   0 
sd120     0   0   0   0 
sd121     0   0   0   0 
sd122     0   0   0   0 
sd123     0   0   0   0 
sd124     0   0   0   0 
sd125     0   0   0   0 
sd126     0   0   0   0 
sd127     0   0   0   0 
sd128     0   0   0   0 
sd129     0   0   0   0 
sd130     0   0   0   0

solaris# sdretry.d
Tracing... output every 10 seconds. 

2009 Dec 28 04:32:19: 
      DEVICE  MAJ,MIN   RETRIES 
        sd7  227,448   15 
        sd6  227,384   17 

2009 Dec 28 04:32:29: 
      DEVICE  MAJ,MIN   RETRIES 

2009 Dec 28 04:32:39: 
      DEVICE  MAJ,MIN   RETRIES 
         sd6  227,384   4 
         sd7  227,448   7 

2009 Dec 28 04:32:49: 
      DEVICE  MAJ,MIN   RETRIES 
         sd6  227,384   9 
         sd7  227,448   16

13. This is not recommended.



ptg

218 Chapter 4 � Disk I/O

sdretry.d has picked up the disk which was pulled, which experienced six
retries. Interestingly, these were not counted as any type of error:

scsicmds.d

Apart from read and write I/O, there are many other SCSI commands that can be
sent to process I/O and manage SCSI devices. The scsicmds.d script frequency
counts these SCSI commands by type. 

Script

Most of this script is the dtrace:::BEGIN statement, which defines an associa-
tive array for translating a SCSI command code into a human-readable string.
This block of code was autogenerated by processing a SCSI definitions header file. 

# sdretry.d
2009 Dec 28 05:05:55: 

      DEVICE  MAJ,MIN   RETRIES 
       sd123  227,7872  6

# iostat -e 
  ---- errors --- 

device  s/w h/w trn tot 
[...]
sd123     0   0   0   0 

1   #!/usr/sbin/dtrace -s
2   #pragma D option quiet
3   string scsi_cmd[uchar_t];
4   dtrace:::BEGIN 
5   { 
6          /* 
7           * The following was generated from the SCSI_CMDS_KEY_STRINGS 
8 * definitions in /usr/include/sys/scsi/generic/commands.h using sed. 
9           */ 
10 scsi_cmd[0x00] = "test_unit_ready";
11  scsi_cmd[0x01] = "rezero/rewind"; 
12  scsi_cmd[0x03] = "request_sense"; 
13  scsi_cmd[0x04] = "format"; 
14 scsi_cmd[0x05] = "read_block_limits";
15  scsi_cmd[0x07] = "reassign"; 
16   scsi_cmd[0x08] = "read"; 
17   scsi_cmd[0x0a] = "write"; 
18   scsi_cmd[0x0b] = "seek"; 
19  scsi_cmd[0x0f] = "read_reverse"; 
20 scsi_cmd[0x10] = "write_file_mark";
21   scsi_cmd[0x11] = "space"; 
22  scsi_cmd[0x12] = "inquiry"; 
23  scsi_cmd[0x13] = "verify"; 
24 scsi_cmd[0x14] = "recover_buffer_data";
25  scsi_cmd[0x15] = "mode_select"; 
26  scsi_cmd[0x16] = "reserve"; 
27  scsi_cmd[0x17] = "release"; 
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28   scsi_cmd[0x18] = "copy"; 
29  scsi_cmd[0x19] = "erase_tape"; 
30  scsi_cmd[0x1a] = "mode_sense"; 
31 scsi_cmd[0x1b] = "load/start/stop";
32 scsi_cmd[0x1c] = "get_diagnostic_results";
33 scsi_cmd[0x1d] = "send_diagnostic_command";
34  scsi_cmd[0x1e] = "door_lock"; 
35 scsi_cmd[0x23] = "read_format_capacity";
36  scsi_cmd[0x25] = "read_capacity"; 
37  scsi_cmd[0x28] = "read(10)"; 
38  scsi_cmd[0x2a] = "write(10)"; 
39  scsi_cmd[0x2b] = "seek(10)"; 
40  scsi_cmd[0x2e] = "write_verify"; 
41  scsi_cmd[0x2f] = "verify(10)"; 
42 scsi_cmd[0x30] = "search_data_high";
43 scsi_cmd[0x31] = "search_data_equal";
44 scsi_cmd[0x32] = "search_data_low";
45  scsi_cmd[0x33] = "set_limits"; 
46  scsi_cmd[0x34] = "read_position"; 
47 scsi_cmd[0x35] = "synchronize_cache";
48 scsi_cmd[0x37] = "read_defect_data";
49  scsi_cmd[0x39] = "compare"; 
50  scsi_cmd[0x3a] = "copy_verify"; 
51  scsi_cmd[0x3b] = "write_buffer"; 
52  scsi_cmd[0x3c] = "read_buffer"; 
53  scsi_cmd[0x3e] = "read_long"; 
54  scsi_cmd[0x3f] = "write_long"; 
55          scsi_cmd[0x44] = "report_densities/read_header";
56  scsi_cmd[0x4c] = "log_select"; 
57  scsi_cmd[0x4d] = "log_sense"; 
58 scsi_cmd[0x55] = "mode_select(10)";
59  scsi_cmd[0x56] = "reserve(10)"; 
60  scsi_cmd[0x57] = "release(10)"; 
61  scsi_cmd[0x5a] = "mode_sense(10)"; 
62 scsi_cmd[0x5e] = "persistent_reserve_in";
63 scsi_cmd[0x5f] = "persistent_reserve_out";
64 scsi_cmd[0x80] = "write_file_mark(16)";
65 scsi_cmd[0x81] = "read_reverse(16)";
66  scsi_cmd[0x83] = "extended_copy"; 
67  scsi_cmd[0x88] = "read(16)"; 
68  scsi_cmd[0x8a] = "write(16)"; 
69  scsi_cmd[0x8c] = "read_attribute"; 
70 scsi_cmd[0x8d] = "write_attribute";
71  scsi_cmd[0x8f] = "verify(16)"; 
72  scsi_cmd[0x91] = "space(16)"; 
73  scsi_cmd[0x92] = "locate(16)"; 
74 scsi_cmd[0x9e] = "service_action_in(16)";
75 scsi_cmd[0x9f] = "service_action_out(16)";
76  scsi_cmd[0xa0] = "report_luns"; 
77 scsi_cmd[0xa2] = "security_protocol_in";
78  scsi_cmd[0xa3] = "maintenance_in"; 
79 scsi_cmd[0xa4] = "maintenance_out";
80  scsi_cmd[0xa8] = "read(12)"; 
81 scsi_cmd[0xa9] = "service_action_out(12)";
82  scsi_cmd[0xaa] = "write(12)"; 
83 scsi_cmd[0xab] = "service_action_in(12)";
84 scsi_cmd[0xac] = "get_performance";
85  scsi_cmd[0xAF] = "verify(12)"; 
86          scsi_cmd[0xb5] = "security_protocol_out";
87          printf("Tracing... Hit Ctrl-C to end.\n"); 
88  }
89  fbt::scsi_transport:entry
90  { 

continues
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Apart from aggregating on SCSI I/O type, the script also prints the DEVICE
NODE to indicate which layer (see Figure 4-5) those SCSI commands apply to.
Fetching the device node information involves walking several kernel structures,
which is the part of the script mostly likely to break (and require modification) in
future kernel updates.

Note the use of lltostr() on line 96: If a SCSI command cannot be found in
the translation array, its numerical code is converted to a string using lltostr(),
which is used in lieu of the missing string description.

Examples

Examples here include read workload and zpool status.

Read Workload. A read-intensive workload was occurring on a Solaris system
with 24 external storage disks configured with multipathing. The system also has
two internal system disks (no multipathing), which are occasionally writing moni-
toring data. 

91      this->dev = (struct dev_info *)args[0]->pkt_address.a_hba_tran->tran_hba_dip;
92 this->nodename = this->dev != NULL ? 
93 stringof(this->dev->devi_node_name) : "<unknown>";
94  this->code = *args[0]->pkt_cdbp; 
95          this->cmd = scsi_cmd[this->code] != NULL ? 
96   scsi_cmd[this->code] : lltostr(this->code); 
97          @[this->nodename, this->cmd] = count(); 
98  }
99  dtrace:::END 
100 { 
101          printf("  %-24s %-36s %s\n", "DEVICE NODE", "SCSI COMMAND", "COUNT"); 
102          printa("  %-24s %-36s  %@d\n", @); 
103 }

scsicmds.d

solaris# scsicmds.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE   SCSI COMMAND                COUNT 
  pci1000,3150 inquiry                 4 
  scsi_vhci   inquiry                  4 
  pci10de,cb84             write                 8 
  pci10de,cb84   synchronize_cache              22 
  pci1000,3150   synchronize_cache              50 
  scsi_vhci     synchronize_cache               50 
  pci1000,3150     get_diagnostic_results                117 
  scsi_vhci       get_diagnostic_results                117 
  pci1000,3150 write(10)                203 
  scsi_vhci   write(10)                 203 
  pci10de,cb84 write(10)                658 
  pci1000,3150 read(10)                535701 
  scsi_vhci   read(10)                 535701
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The SCSI writes to the system disks can be identified under the device node
pci10de,cb84. The remaining SCSI commands appear on both the multipathing
device scsi_vhci and the physical device paths to the external storage disks
pci1000,3150. The kernel module names for these device node names can be seen
in /etc/path_to_inst (for example, scsi_vhci devices are handled by the SCSI
disk driver sd, and pci1000,3150 is handled by the SAS HBA driver mpt); or this
DTrace script can be enhanced to dig out those module names as well. 

zpool Status. ZFS has a zpool status command, which lists the status of all
the pool disks. It fetches disk status using SCSI commands, which can be seen
using scsicmds.d:

If particular commands are of interest, the script could be customized to match
on them and dig out more information from the available function arguments.

scsilatency.d

The disklatency.d script earlier showed I/O latency in terms of disk; the
scsilatency.d script shows I/O latency in terms of SCSI command and comple-
tion reason. 

Script

This script also uses an associative array to convert SCSI commands into text
descriptions, however, only 16 of the most common commands are included. This
may be sufficient and reduces the length of the script. Latency is measured as the
time from scsi_transport() to scsi_destroy_pkt():

solaris# scsicmds.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE   SCSI COMMAND                COUNT 
  pci10de,cb84  mode_sense                4 
  pci10de,cb84   test_unit_ready               8 
  pci10de,cb84             read                 12 
  pci1000,3150  mode_sense                88 
  pci1000,3150   test_unit_ready               88 
  scsi_vhci    mode_sense                 88 
  scsi_vhci     test_unit_ready                     88 
  pci1000,3150             read                 132 
  scsi_vhci  read                  132

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4

continues
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SCSI command failures are detected by checking pkt_reason, which will be
zero for success and some other code for failure (translated in the scsireasons.d
script that follows). For failure, the script will include the failed reason code for
reference. 

5   string scsi_cmd[uchar_t];
6
7   dtrace:::BEGIN 
8   { 
9          /* See /usr/include/sys/scsi/generic/commands.h for the full list. */ 
10 scsi_cmd[0x00] = "test_unit_ready";
11   scsi_cmd[0x08] = "read"; 
12   scsi_cmd[0x0a] = "write"; 
13  scsi_cmd[0x12] = "inquiry"; 
14  scsi_cmd[0x17] = "release"; 
15  scsi_cmd[0x1a] = "mode_sense"; 
16 scsi_cmd[0x1b] = "load/start/stop";
17 scsi_cmd[0x1c] = "get_diagnostic_results";
18 scsi_cmd[0x1d] = "send_diagnostic_command";
19  scsi_cmd[0x25] = "read_capacity"; 
20  scsi_cmd[0x28] = "read(10)"; 
21  scsi_cmd[0x2a] = "write(10)"; 
22 scsi_cmd[0x35] = "synchronize_cache";
23  scsi_cmd[0x4d] = "log_sense"; 
24 scsi_cmd[0x5e] = "persistent_reserve_in";
25  scsi_cmd[0xa0] = "report_luns"; 
26
27          printf("Tracing... Hit Ctrl-C to end.\n"); 
28  } 
29
30  fbt::scsi_transport:entry
31  { 
32   start[arg0] = timestamp; 
33  } 
34
35  fbt::scsi_destroy_pkt:entry
36  /start[arg0]/ 
37  { 
38          this->delta = (timestamp - start[arg0]) / 1000; 
39  this->code = *args[0]->pkt_cdbp; 
40          this->cmd = scsi_cmd[this->code] != NULL ? 
41   scsi_cmd[this->code] : lltostr(this->code); 
42          this->reason = args[0]->pkt_reason == 0 ? "Success" : 
43   strjoin("Fail:", lltostr(args[0]->pkt_reason));
44
45          @num[this->cmd, this->reason] = count(); 
46          @average[this->cmd, this->reason] = avg(this->delta); 
47          @total[this->cmd, this->reason] = sum(this->delta); 
48
49    start[arg0] = 0; 
50  } 
51
52  dtrace:::END 
53  { 
54   normalize(@total, 1000); 
55 printf("\n  %-26s %-12s %11s %11s %11s\n", "SCSI COMMAND", 
56 "COMPLETION", "COUNT", "AVG(us)", "TOTAL(ms)"); 
57          printa("  %-26s %-12s %@11d %@11d %@11d\n", @num, @average, @total); 
58  }

Script scsilatency.d
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Example

On a server with an external storage array performing a heavy disk read work-
load, a disk was removed to cause some I/O to fail: 

The successful reads had an average latency of 24 ms. However, the failed reads
had an average latency of more than 1.27 seconds! The reason for the long latency
would be SCSI retries, timeouts, or a combination of both. (The previous sdre-
try.d script can be used to confirm that retries occurred.) This script also identi-
fied a SCSI command, which is particularly slow despite returning successfully:
the report luns command, with an average time of 175 ms.

scsirw.d

This script takes the three common SCSI commands—read, write, and sync-cache—
and prints summaries of the I/O sizes and times. This provides visibility for the I/O
throughput rates and latencies for SCSI. 

Script

Information about the I/O, including start time and size, is cached on the return of
the scsi_init_pkt() function, since its return value (arg1) is the packet
address and is used as a key for associative arrays. Command completion is traced
using scsi_destroy_pkt(), which takes the packet address as the argument
and uses it to look up the previous associative arrays. 

solaris# scsilatency.d
Tracing... Hit Ctrl-C to end. 
^C

  SCSI COMMAND     COMPLETION COUNT     AVG(us)   TOTAL(ms) 
  release   Success                2        128           0 
  persistent_reserve_in  Success                2        161           0 
  report_luns  Success 2      175346         350 
  load/start/stop    Success 6       10762          64 
  send_diagnostic_command    Success 12        8785         105 
  read(10)    Fail:4   12     1276114       15313 
  write     Success               16         479           7 
  read_capacity     Success               48         154           7 
  inquiry    Success              150        3294         494 
  read      Success 158        5438         859 
  log_sense    Success              190       43011        8172 
  test_unit_ready     Success              201        3529         709 
  mode_sense    Success 386       40300       15555 
  synchronize_cache    Success 780       36601       28548 
  get_diagnostic_results    Success             2070       10944       22654 
  write(10)     Success 6892       10117       69731 
  read(10)      Success 1166169  23516    27424549
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1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  fbt::sd_setup_rw_pkt:entry { self->in__sd_setup_rw_pkt = 1; } 
11  fbt::sd_setup_rw_pkt:return { self->in__sd_setup_rw_pkt = 0; } 
12
13  fbt::scsi_init_pkt:entry
14  /self->in__sd_setup_rw_pkt/
15  { 
16   self->buf = args[2]; 
17  } 
18
19  /* Store start time and size for read and write commands */ 
20  fbt::scsi_init_pkt:return
21  /self->buf/ 
22  { 
23   start[arg1] = timestamp; 
24  size[arg1] = self->buf->b_bcount; 
25 dir[arg1] = self->buf->b_flags & B_WRITE ? "write" : "read"; 
26    self->buf = 0; 
27  } 
28
29  fbt::sd_send_scsi_SYNCHRONIZE_CACHE:entry { self->in__sync_cache = 1; } 
30  fbt::sd_send_scsi_SYNCHRONIZE_CACHE:return { self->in__sync_cache = 0; } 
31
32  /* Store start time for sync-cache commands */ 
33  fbt::scsi_init_pkt:return
34  /self->in__sync_cache/ 
35  { 
36   start[arg1] = timestamp; 
37   dir[arg1] = "sync-cache"; 
38  } 
39
40  /* SCSI command completed */ 
41  fbt::scsi_destroy_pkt:entry
42  /start[arg0]/ 
43  { 
44          this->delta = (timestamp - start[arg0]) / 1000; 
45   this->size = size[arg0]; 
46   this->dir = dir[arg0]; 
47
48  @num[this->dir] = count(); 
49 @avg_size[this->dir] = avg(this->size);
50 @avg_time[this->dir] = avg(this->delta);
51 @sum_size[this->dir] = sum(this->size);
52 @sum_time[this->dir] = sum(this->delta);
53          @plot_size[this->dir] = quantize(this->size);
54          @plot_time[this->dir] = quantize(this->delta);
55
56    start[arg0] = 0; 
57          size[arg0] = 0; 
58    dir[arg0] = 0; 
59  } 
60
61  dtrace:::END
62  {
63   normalize(@avg_size, 1024);
64   normalize(@sum_size, 1048576);
65   normalize(@sum_time, 1000);
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Example

The following example traced read I/O and synchronous write I/O to a ZFS file sys-
tem. ZFS is calling the sync-cache commands to ensure that the synchronous
writes are properly sent to disk.

66          printf("  %-10s  %10s  %10s %10s  %10s %12s\n", "DIR",
67              "COUNT", "AVG(KB)", "TOTAL(MB)", "AVG(us)", "TOTAL(ms)");
68 printa("  %-10s  %@10d  %@10d %@10d  %@10d %@12d\n", @num,
69  @avg_size, @sum_size, @avg_time, @sum_time);
70  printf("\n\nSCSI I/O size (bytes):\n");
71    printa(@plot_size);
72          printf("\nSCSI I/O latency (us):\n");
73    printa(@plot_time);
74  }

Script diskIO_scsirw.d

solaris# scsirw.d
Tracing... Hit Ctrl-C to end. 
^C
  DIR   COUNT AVG(KB)  TOTAL(MB)  AVG(us)    TOTAL(ms) 
  sync-cache         490           0  0       11034         5407 
  write              647          9          5         608          393 
  read              1580         3          4        1258         1987 

SCSI I/O size (bytes): 

  sync-cache 
           value ------------- Distribution ------------- count 
              -1 |                   0 

 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 490 
               1 |                   0 

  read 
           value ------------- Distribution ------------- count 
             256 |                   0 
             512 |@@@@@@@@@@@@@@@@@@@@@@                 877 
            1024 |                  5 
            2048 |@@@@@@                  240 
            4096 |@@@@@@@@                  333 
            8192 |@@                 94 
           16384 |@                 23 
           32768 |                  1 
           65536 |                  7 
          131072 |                  0 

  write
           value ------------- Distribution ------------- count 
             256 |                   0 
             512 |@@                  37 
            1024 |@@@@                 72 
            2048 |@@@                 48 
            4096 |@                 16 

8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       474 
           16384 |                  0 

SCSI I/O latency (us): 
continues
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 The latency strongly suggests that the disk has an onboard write cache
enabled, since the write operations (which copy the data to the disk device) are
often returning in the 128- to 155-us range, whereas the sync-cache commands
are often returning in at least 8 ms. The fast write times are just showing the time
to copy the data to disk; the actual time to write the data to the stable storage
device is better reflected in the sync-cache value. 

Here is a sample iostat(1M) output while the synchronous write workload
continued to run: 

Based on those numbers, we would not think the disk was the bottleneck. How-
ever, iostat(1M) is not taking sync-cache into account, where the real time is
spent waiting on disk. 

  write
           value  ------------- Distribution ------------- count
              64 |              0
             128 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            467
             256 |                 5
             512 |@@                  33 
            1024 |@@@@@                83 
            2048 |@@@@                 58 
            4096 |                  1 
            8192 |                  0 

  read 
           value ------------- Distribution ------------- count 
              32 |              0
              64 |@@@@@@@@@@@@@            526
             128 |@@@@@@@@@@@@@@@@@@@@                 789 
             256 |@                  27 
             512 |                  12 
            1024 |                  16 
            2048 |@                 27 
            4096 |@@                83
            8192 |@@                93
           16384 |             7
           32768 |             0

  sync-cache 
           value ------------- Distribution ------------- count 
            1024 |                  0 
            2048 |@                 14 
            4096 |@@@@@@@                 85

8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@       344 
           16384 |@@@                 39 
           32768 |@                  8 
           65536 |                  0

# iostat -xnz 1 
[...]

      extended device statistics 
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device 
    0.0   83.0    0.0  996.1  0.0  0.0    0.0    0.2   0   1 c3t0d0 
    0.0   84.0    0.0 1008.1  0.0  0.0    0.0    0.2   0   1 c3t1d0 
[...]
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scsireasons.d

When SCSI events complete, a reason code is set to show why the completion was
sent. When errors occur, this can explain the nature of the error. The scsireasons.d
script shows a summary of all SCSI completion reason codes and those that
errored, along with the disk device name. 

Script

As with the scsicmds.d script, here an associative array is declared to translate
SCSI reason codes into human-readable text:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           /* 
8            * The following was generated from the CMD_* pkt_reason definitions 
9            * in /usr/include/sys/scsi/scsi_pkt.h using sed. 
10           */ 
11          scsi_reason[0] = "no transport errors- normal completion"; 
12 scsi_reason[1] = "transport stopped with not normal state"; 
13          scsi_reason[2] = "dma direction error occurred"; 
14          scsi_reason[3] = "unspecified transport error"; 
15          scsi_reason[4] = "Target completed hard reset sequence"; 
16          scsi_reason[5] = "Command transport aborted on request"; 
17 scsi_reason[6] = "Command timed out"; 
18 scsi_reason[7] = "Data Overrun"; 
19 scsi_reason[8] = "Command Overrun"; 
20 scsi_reason[9] = "Status Overrun"; 
21          scsi_reason[10] = "Message not Command Complete"; 
22 scsi_reason[11] = "Target refused to go to Message Out phase"; 
23          scsi_reason[12] = "Extended Identify message rejected"; 
24  scsi_reason[13] = "Initiator Detected Error message rejected"; 
25          scsi_reason[14] = "Abort message rejected"; 
26          scsi_reason[15] = "Reject message rejected"; 
27          scsi_reason[16] = "No Operation message rejected"; 
28  scsi_reason[17] = "Message Parity Error message rejected"; 
29          scsi_reason[18] = "Bus Device Reset message rejected"; 
30          scsi_reason[19] = "Identify message rejected"; 
31          scsi_reason[20] = "Unexpected Bus Free Phase occurred"; 
32          scsi_reason[21] = "Target rejected our tag message"; 
33  scsi_reason[22] = "Command transport terminated on request"; 
34          scsi_reason[24] = "The device has been removed"; 
35
36          printf("Tracing... Hit Ctrl-C to end.\n"); 
37  } 
38
39  fbt::scsi_init_pkt:entry
40  /args[2] != NULL/ 
41  { 
42          self->name = xlate <devinfo_t *>(args[2])->dev_statname;
43  } 
44
45  fbt::scsi_init_pkt:return
46  { 
47  pkt_name[arg1] = self->name; 

continues
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The SCSI reason code isn’t set properly until the command completes, so a com-
pletion event is traced: scsi_destroy_pkt(). We picked this because it happens
during completion of SCSI I/O and has the scsi_pkt type as an argument. That’s
when things get difficult: The device details it can reference may have been cleared
for failed devices, and we want to trace failed SCSI I/O using the device name. The
device name is available when the command is issued, but this is a different
thread, and the data can’t be associated between the probes using a thread-local
variable, self->.

To solve this, we trace scsi_init_pkt(), because it can access both the device
info (on its entry argument) and a packet address (return argument). That packet
address is used as a key to the pkt_name associative array, where the device name
is cached. scsi_destroy_pkt() also has the packet address, which it can use as
a key in that associative array to retrieve the device name. 

This is one example solution for a script that shows SCSI return codes with
device names, but it can be solved many other ways using DTrace. 

48          self->name = 0; 
49  } 
50
51  fbt::scsi_destroy_pkt:entry
52  { 
53  this->code = args[0]->pkt_reason; 
54          this->reason = scsi_reason[this->code] != NULL ? 
55 scsi_reason[this->code] : "<unknown reason code>"; 
56  @all[this->reason] = count(); 
57  } 
58
59  fbt::scsi_destroy_pkt:entry
60  /this->code != 0/ 
61  { 
62 this->name = pkt_name[arg0] != NULL ? pkt_name[arg0] : "<unknown>"; 
63          @errors[pkt_name[arg0], this->reason] = count(); 
64  } 
65
66  fbt::scsi_destroy_pkt:entry
67  { 
68   pkt_name[arg0] = 0; 
69  } 
70
71  dtrace:::END 
72  { 
73          printf("\nSCSI I/O completion reason summary:\n"); 
74          printa(@all); 
75 printf("\n\nSCSI I/O reason errors by disk device and reason:\n\n"); 
76 printf("  %-16s  %-44s %s\n", "DEVICE", "ERROR REASON", "COUNT"); 
77          printa("  %-16s  %-44s %@d\n", @errors); 
78  }

Script scsireasons.d
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Example

To trigger a SCSI error as an example, the scsireasons.d script was run while a
disk was removed: 

This has identified the problem disk as sd118, which had completed 12 hard
resets. 

scsi.d

scsi.d is a powerful DTrace script to trace or summarize SCSI I/O, showing
details of the SCSI operations and latency times. It was written by Chris Gerhard14

and Joel Buckley, and the latest version can be found at http://blogs.sun.com/
chrisg/page/scsi.d. It has been written using the fbt provider so it is likely to work
(without modification) on only some versions of the OpenSolaris kernel.

Script

scsi.d is almost 1,000 lines of DTrace—a little long to duplicate in this chapter
(see the Web site for the full listing). It is written in a distinctive style, worth com-
menting both as an example of the DTrace scripting language as well the tracing
of the SCSI driver; various parts of interest are shown here.

The first line

shows that the -C option is used, causing DTrace to run the cpp(1) preprocessor
and allowing the use of #defines and macros. Near the top of the script is a block
comment to describes its usage: 

solaris# scsireasons.d
Tracing... Hit Ctrl-C to end. 
^C

SCSI I/O completion reason summary: 

  Target completed hard reset sequence                      12 
  no transport errors- normal completion             835258 

SCSI I/O reason errors by disk device and reason: 

  DEVICE            ERROR REASON                COUNT 
  sd118             Target completed hard reset sequence         12

14. He describes scsi.d in a blog post at http://blogs.sun.com/chrisg/entry/scsi_d_script.

1  #!/usr/sbin/dtrace -qCs

http://blogs.sun.com/chrisg/page/scsi.d
http://blogs.sun.com/chrisg/page/scsi.d
http://blogs.sun.com/chrisg/entry/scsi_d_script
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36  /* 
37   * SCSI logging via dtrace. 
38   * 
39   * See http://blogs.sun.com/chrisg/tags/scsi.d
40   * 
41   * Usage: 
[...]
67   *   -D EXECNAME='"foo"' 
68   * Which results scsi.d only reporting IO associated with the application "foo". 
69   *      -D PRINT_STACK 
70   * Which results in scsi.d printing a kernel stack trace after every outgoing 
71   * packet. 
72   *      -D QUIET 
73   * Which results in none of the packets being printed. Kind of pointless 
74   * without another option. 
75   *      -D PERF_REPORT 
76   * Which results in a report of how long IOs took aggregated per HBA useful 
77   * with -D QUIET to get performance statistics. 
78   * -D TARGET_STATS 
79   *      aggregate the stats based on the target. 
80   * -D LUN_STATS 
81   *      aggregate the stats based on the LUN. Requires TARGET_STATS 
82   * -D DYNVARSIZE 
83   *      pass this value to the #pragma D option dynvarsize= option. 
84   * -D HBA 
85   *      the name of the HBA we are interested in. 
86   * -D MIN_LBA 
87   *      Only report logical blocks over this value 
88   * -D MAX_LBA 
89   *      Only IOs to report logical blocks that are less than this value. 
90   * -D REPORT_OVERTIME=N 
91   *      Only report IOs that have taken longer than this number of nanoseconds. 
92   *      This only stops the printing of the packets not the collection of 
93   *      statistics. 
94   *      There are some tuning options that take effect only when 
95   *      REPORT_OVERTIME is set. These are: 
96   *      -D NSPEC=N 
97   *  Set the number of speculations to this value. 
98   *      -D SPECSIZE=N 
99   *              Set the size of the speculaton buffer.  This should be 200 * 
100  *      the size of NSPEC. 
101  *      -D CLEANRATE=N 
102  *     Specify the clean rate. 
103  * 
104  * Finally scsi.d will also now accept the dtrace -c and -p options to trace 
105  * just the commands or process given. 
106  * 
107  * Since dtrace does not output in real time it is useful to sort the output 
108  * of the script using sort -n to get the entries in chronological order. 
109  * 
110  * NOTE:  This does not directly trace what goes onto the scsi bus or fibre, 
111  * to do so would require this script have knowledge of every HBA that could 
112  * ever be connected to a system. It traces the SCSI packets as they are 
113  * passed from the target driver to the HBA in the SCSA layer and then back 
114  * again. Although to get the packet when it is returned it guesses that the 
115  * packet will be destroyed using scsi_destroy_pkt and not modified before it 
116  * is. So far this has worked but there is no garauntee that it will work for 
117  * all HBAs and target drivers in the future. 
118  * 
119  */



ptg

Scripts 231

DTrace itself doesn’t allow flexible programmable arguments such as with the
getopts() function, so a workaround must be used to make DTrace script accept
arguments. Earlier, with iosnoop, we demonstrated wrapping the DTrace script
in a shell script; scsi.d makes use of the -D option to the dtrace command to
define arguments.

The following may not look much like the other scripts is this book, but it’s still
DTrace:

The use of -C on line 1 allows the script to use such preprocessor syntax. The
first three #defines reduce a lengthy statement into a short and readable macro
that can be reused throughout the code. Also, note the odd comment at the end of
line 229: /* ` */. This does nothing for DTrace but does prevent some syntax
highlighting text editors getting their colors confused as they try to pair up back-
quotes with a certain color. There was another backquote on line 229, for the ker-
nel symbol `devnamesp, which pairs with the one at the end of the line.

The following shows a translation associative array similar to the one in
scsicmds.d:

The names of the probes used are defined as macros CDB_PROBES and ENTRY_
PROBES:

226  #define P_TO_DEVINFO(pkt) ((struct dev_info *)(P_TO_TRAN(pkt)->tran_hba_dip))
227
228  #define DEV_NAME(pkt) \ 
229  stringof(`devnamesp[P_TO_DEVINFO(pkt)->devi_major].dn_name) /* ` */ 
230
231  #define DEV_INST(pkt) (P_TO_DEVINFO(pkt)->devi_instance)
232
233  #ifdef MIN_BLOCK 
234  #define MIN_TEST && this->lba >= (MIN_BLOCK) 
235  #else 
236  #define MIN_TEST 
237  #endif

332          scsi_ops[0x000, 0x0] = "TEST_UNIT_READY";
333          scsi_ops[0x001, 0x0] = "REZERO_UNIT_or_REWIND";
334          scsi_ops[0x003, 0x0] = "REQUEST_SENSE";

553  /* FRAMEWORK:- Add your probe name to the list for CDB_PROBES */ 
554  #define CDB_PROBES \ 
555  fbt:scsi:scsi_transport:entry, \ 
556  fbt:*sd:*sd_sense_key_illegal_request:entry
557
558  #define ENTRY_PROBES \ 
559  CDB_PROBES, \ 
560  fbt:scsi:scsi_destroy_pkt:entry
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Since these are used in many action blocks in the script, we can tune their defi-
nition in one place by using a macro. To see how these macros are used, use this:

The output line of text is generated with multiple print statements, with the
last printing \n.

And here’s something you don’t see every day:

PRINT_CDB is declared earlier to print the specified byte from the command
block (CDB). Up to 32 bytes are printed; however, because the DTrace language
does not support loops, this has been achieved by an unrolled loop.

Examples

Examples include disks reads and writes, disks reads with multipathing, and
latency by driver instance.

Disks Reads and Writes. This shows the default output of scsi.d while a sin-
gle read and then a single write I/O were issued. The disks were internal SATA
disks accessed via the nv_sata driver: 

798  ENTRY_PROBES 
799  / this->arg_test_passed / 
800  { 
801          SPECULATE 
802    PRINT_TIMESTAMP(); 
803  PRINT_DEV_FROM_PKT(this->pkt);
804 printf("%s 0x%2.2x %9s address %2.2d:%2.2d, lba 0x%*.*x, ", 
[...]

851  PRINT_CDB(0) 
852  PRINT_CDB(1) 
853  PRINT_CDB(2) 
854  PRINT_CDB(3) 
855  PRINT_CDB(4) 
856  PRINT_CDB(5) 
[...etc, to 31...]

solaris# scsi.d
00002.763975484 nv_sata4:-> 0x28  READ(10) address 00:00, lba 0x023e9082, len 0x000080
, control 0x00 timeout 5 CDBP ffffff8275b85d88 1 sched(0) cdb(10) 2800023e908200008000
00002.773631991 nv_sata4:<- 0x28  READ(10) address 00:00, lba 0x023e9082, len 0x000080
, control 0x00 timeout 5 CDBP ffffff8275b85d88, reason 0x0 (COMPLETED) pkt_state 0x1f 
state 0x0 Success Time 9679us 
00003.110393754 nv_sata4:-> 0x2a WRITE(10) address 00:00, lba 0x0474e714, len 0x000001
, control 0x00 timeout 5 CDBP ffffffda29746d88 1 sched(0) cdb(10) 2a000474e71400000100
00003.111017077 nv_sata4:<- 0x2a WRITE(10) address 00:00, lba 0x0474e714, len 0x000001
, control 0x00 timeout 5 CDBP ffffffda29746d88, reason 0x0 (COMPLETED) pkt_state 0x1f 
state 0x0 Success Time 649us



ptg

Scripts 233

Each SCSI event prints one output line, but these lines are more than 200 char-
acters long, so the output has wrapped. The first two lines show a SCSI read com-
mand request and its return, followed by a SCSI write request and its return. As
we can see, the time for the read was 9.7 ms, but the write occurred in 0.6 ms (per-
haps because of disk write caching).

The fields of the default output are shown in Table 4-6. 
Refer to documentation for the SCSI protocol for more details about these fields.

Table 4-6 scsi.d Output Fields

Number Direction Prefix Field

1 <- -> Elapsed time event occurred, in seconds

2 <- -> Name of kernel driver calling a SCSI command

3 <- -> Direction of SCSI command, either request -> or 
return <-

4 <- -> SCSI command code, hexadecimal

5 <- -> SCSI command code, text description

6 <- -> address SCSI address target:lun

7 <- -> lba Logical block address

8 <- -> len Length of I/O, hex number of sectors 
(1 sector == 512 bytes)

9 <- -> control SCSI command flags

10 <- -> timeout SCSI command timeout, seconds

11 <- -> CDBP Command block pointer (for use in mdb -k)

12 -> Process name (PID)

13 -> cdb Command block length, bytes

14 -> Command block contents, hexadecimal

12 <- reason Command completion reason code, decimal

13 <- Command completion reason code, text 
description

14 <- pkt_state State of SCSI command, number

15 <- state SCSI state, hexadecimal

16 <- SCSI state, text description

17 <- Time SCSI command response time, microseconds
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Disk Reads with Multipathing. This example shows a READ I/O to an external
disk connected to the host system using multipathing:

The SCSI read I/O is first issued by the scsi_vhci driver: the SCSI virtual host
controller interconnect driver. This driver presents multiple paths to disks as sin-
gle virtual targets. The SCSI I/O is then processed by the mpt driver: the SCSI
host bus adapter driver. The mpt driver sends the I/O to the correct path on the
host bus adapter card, which then sends it to the external storage device.

Latency by Driver Instance. Apart from tracing SCSI commands iosnoop-style,
the scsi.d script can also summarize data and print reports. The following was
run on a system performing a streaming I/O workload to an external storage
JBOD, connected using two paths and configured with multipathing:

solaris# scsi.d
[...]
00000.096386040 scsi_vhci0:-> 0x28  READ(10) address 2432:46, lba 0x0edd4e4e, le n 0x0
00100, control 0x00 timeout 5 CDBP ffffff89d1b44a08 1 sched(0) cdb(10) 2800 0edd4e4e00
010000
00000.096435411 mpt0:-> 0x28  READ(10) address 09:00, lba 0x0edd4e4e, len 0x0001 00, c
ontrol 0x00 timeout 5 CDBP ffffffc5e9f5e9a8 1 sched(0) cdb(10) 28000edd4e4e 00010000 
[...]
00000.103215546 scsi_vhci0:<- 0x28  READ(10) address 2432:46, lba 0x0edd4e4e, le n 0x0
00100, control 0x00 timeout 5 CDBP ffffff89d1b44a08, reason 0x0 (COMPLETED) pkt_state 
0x1f state 0x0 Success Time 6859us 
00000.103251793 mpt0:<- 0x28  READ(10) address 09:00, lba 0x0edd4e4e, len 0x0001 00, c
ontrol 0x00 timeout 5 CDBP ffffffc5e9f5e9a8, reason 0x0 (COMPLETED) pkt_sta te 0x1f st
ate 0x0 Success Time 6840us

solaris# scsi.d -D QUIET -D PERF_REPORT 
Hit Control C to interrupt 
^C

  nv_sata                  4 
           value  ------------- Distribution ------------- count
           65536 |             0
          131072 |@@@@@@@              57
          262144 |@@@@@@@@@@@@            97
          524288 |@@@@@@@@@@@             93
         1048576 |@@@@@@@              59
         2097152 |               2
         4194304 |               4
         8388608 |               2
        16777216 |             3
        33554432 |             3
        67108864 |             4
       134217728 |            0

  mpt                   0 
           value  ------------- Distribution ------------- count
          262144 |                0
          524288 |                125
         1048576 |              578
         2097152 |@@                4900
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The output shows driver and instance number, with a distribution plot of SCSI
command response times in nanoseconds. The first plot for nv_sata instance 4
(often written as nv_sata4) is for the internal system disks, which are not perform-
ing much I/O (although some outliers reached the 67-ms to 134-ms range).

The plots for mpt0 and mpt2 show the SCSI I/O on the mpt driver, which is the
SCSI host bus adapter driver. There are two instances, one for each path, allowing
two useful observations to be made.

The I/O count between the two paths appears well balanced (total counts 
appear similar).  If there was a problem with the multipathing driver (mpxio) 
favoring one path over the other (which should not occur), the counts would 
differ.

The latency between the two paths also appears similar, with the mpt0 path 
performing 56,658 SCSI commands 16 ms to 33 ms range and mpt2 perform-
ing 56,614 in the same range. If one path was slower than the other, this 

         4194304 |@@@@                14493
         8388608 |@@@@@@@@@               29044
        16777216 |@@@@@@@@@@@@@@@@@                  56658
        33554432 |@@@@@@               19138
        67108864 |@                4258
       134217728 |             515
       268435456 |            20
       536870912 |            0

  mpt                   2 
           value  ------------- Distribution ------------- count
          131072 |                0
          262144 |                1
          524288 |                125
         1048576 |              551
         2097152 |@                4829
         4194304 |@@@@                14448
         8388608 |@@@@@@@@@               29081
        16777216 |@@@@@@@@@@@@@@@@@                  56614
        33554432 |@@@@@@               19186
        67108864 |@                4343
       134217728 |             527
       268435456 |            14
       536870912 |            0

  scsi_vhci                  0 
           value  ------------- Distribution ------------- count
          262144 |                0
          524288 |                250
         1048576 |              1125
         2097152 |@                9717
         4194304 |@@@@                28945
         8388608 |@@@@@@@@@               58110
        16777216 |@@@@@@@@@@@@@@@@@                  113295
        33554432 |@@@@@@               38329
        67108864 |@                8601
       134217728 |              1042
       268435456 |            34
       536870912 |                 0
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could be evidence of a hardware issue with the cabling and remote storage 
controllers.

The last plot is for scsi_vhci, the driver exporting virtual sd instances that rep-
resent multipathed drives. The counts for scsi_vhci appear to sum both mpt paths,
which is expected.

SATA Scripts

These use the fbt provider to trace the SATA and SAS drivers. DTracing these
drivers can provide more lower-level details of disk I/O operation than with the io
provider alone. Functionally, the SATA IO stack works as shown in Figure 4-6.

The high-level diagram is in the “Capabilities” section.
Since there is currently no stable SATA provider, the fbt15 provider is used. fbt

is an unstable interface: It exports kernel functions and data structures that may
change from release to release. The following scripts were based on OpenSolaris
circa December 2009 and may not work on other OSs and releases without
changes. Even if these scripts no longer execute, they can still be treated as exam-
ples of D programming and for the sort of data that DTrace can make available for
SATA analysis. Table 4-7 is a Solaris SATA driver reference.

See the man pages for each driver for the complete description.
SATA drivers are a complex and low-level part of the kernel; DTracing them

using the fbt provider exposes this complexity. However, you don’t need to be a ker-
nel engineer on Oracle’s SATA driver team to understand or write these scripts:

15. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

Figure 4-6 SATA I/O stack 



ptg

Scripts 237

There are tricks and techniques for using DTrace and experimentation to gain
quick familiarity with an unknown subsystem. The case study at the end of this
chapter demonstrates this: DTracing an unfamiliar I/O driver (SATA).

satacmds.d

A good place to start with any target is to DTrace high-level information. In this
example, we count the SATA commands being issued. 

Script

Most of this script is the dtrace:::BEGIN statement, which defines an associa-
tive array for translating SATA command codes into human-readable strings. This
block of code was autogenerated by processing a SATA definitions header file.

Table 4-7 Solaris SATA Driver Reference

Driver Synopsis Description

sata Solaris SATA 
framework

Serial ATA is an interconnect technology designed to 
replace parallel  ATA technology. It is used to connect 
hard drives, optical drives, removable magnetic media 
devices, and other peripherals to the host system. For 
complete information on Serial ATA technology, visit the  
Serial  ATA  Web  site  at www.serialata.org.

nv_sata Nvidia ck804/
mcp55 SATA 
controller driver 

The nv_sata driver is a SATA HBA driver that supports 
Nvidia ck804  and mcp55 SATA HBA controllers. While 
these Nvidia  controllers  support  standard  SATA  fea-
tures including SATA-II drives, NCQ, hotplug, and ATAPI 
drives, the driver currently does not support NCQ features.

ahci Advanced Host 
Controller
Interface  SATA  
controller driver

The ahci driver is a  SATA  framework-compliant HBA 
driver that  supports SATA HBA controllers compatible 
with the Advanced Host Controller  Interface  1.0  specifi-
cation.  AHCI  is  an  Intel-developed  protocol  that
describes the register-level interface for host controllers for 
Serial ATA 1.0a and Serial ATA II. The AHCI 1.0 specifica-
tion describes the interface between the system software 
and the host  controller hardware.

marvell88sx Marvell 88SX 
SATA controller 
driver

The marvell88sx driver is  a  SATA  framework-compliant  
HBA driver supporting the  Marvell  88SX5081,  
88SX5080, 88SX5040, 88SX5041, 88SX6081, and 
88SX6041 controllers. 

www.serialata.org
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1   #!/usr/sbin/dtrace -Zs 
2
3   #pragma D option quiet 
4
5   string sata_cmd[uchar_t];
6
7   dtrace:::BEGIN 
8   { 
9           /* 
10 * These are from the SATA_DIR_* and SATA_OPMODE_* definitions in 
11  * /usr/include/sys/sata/sata_hba.h:
12           */ 
13   sata_dir[1] = "no-data"; 
14   sata_dir[2] = "read"; 
15   sata_dir[4] = "write"; 
16 sata_opmode[0] = "ints+async";  /* interrupts and asynchronous */ 
17          sata_opmode[1] = "poll";        /* polling */ 
18          sata_opmode[4] = "synch";  /* synchronous */ 
19          sata_opmode[5] = "synch+poll";  /* (valid?) */ 
20
21          /* 
22 * These SATA command descriptions were generated from the SATAC_* 
23           * definitions in /usr/include/sys/sata/sata_defs.h:
24           */ 
25 sata_cmd[0x90] = "diagnose command"; 
26          sata_cmd[0x10] = "restore cmd, 4 bits step rate"; 
27          sata_cmd[0x50] = "format track command"; 
28 sata_cmd[0xef] = "set features"; 
29 sata_cmd[0xe1] = "idle immediate"; 
30 sata_cmd[0xe0] = "standby immediate"; 
31  sata_cmd[0xde] = "door lock"; 
32 sata_cmd[0xdf] = "door unlock"; 
33   sata_cmd[0xe3] = "idle"; 
34  sata_cmd[0xe2] = "standby"; 
35          sata_cmd[0x08] = "ATAPI device reset"; 
36 sata_cmd[0x92] = "Download microcode"; 
37 sata_cmd[0xed] = "media eject"; 
38 sata_cmd[0xe7] = "flush write-cache"; 
39 sata_cmd[0xec] = "IDENTIFY DEVICE"; 
40          sata_cmd[0xa1] = "ATAPI identify packet device"; 
41          sata_cmd[0x91] = "initialize device parameters"; 
42 sata_cmd[0xa0] = "ATAPI packet"; 
43          sata_cmd[0xc4] = "read multiple w/DMA"; 
44 sata_cmd[0x20] = "read sector"; 
45 sata_cmd[0x40] = "read verify"; 
46  sata_cmd[0xc8] = "read DMA"; 
47   sata_cmd[0x70] = "seek"; 
48          sata_cmd[0xa2] = "queued/overlap service"; 
49          sata_cmd[0xc6] = "set multiple mode"; 
50          sata_cmd[0xca] = "write (multiple) w/DMA"; 
51 sata_cmd[0xc5] = "write multiple"; 
52 sata_cmd[0x30] = "write sector"; 
53          sata_cmd[0x24] = "read sector extended (LBA48)"; 
54          sata_cmd[0x25] = "read DMA extended (LBA48)"; 
55          sata_cmd[0x29] = "read multiple extended (LBA48)"; 
56          sata_cmd[0x34] = "write sector extended (LBA48)"; 
57          sata_cmd[0x35] = "write DMA extended (LBA48)"; 
58          sata_cmd[0x39] = "write multiple extended (LBA48)"; 
59          sata_cmd[0xc7] = "read DMA / may be queued"; 
60          sata_cmd[0x26] = "read DMA ext / may be queued"; 
61          sata_cmd[0xcc] = "write DMA / may be queued"; 
62          sata_cmd[0x36] = "write DMA ext / may be queued"; 
63          sata_cmd[0xe4] = "read port mult reg"; 
64          sata_cmd[0xe8] = "write port mult reg"; 
65          sata_cmd[0x60] = "First-Party-DMA read queued"; 
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This script traces SATA commands by tracing the individual SATA HBA driver
(the sata_tran_start function). This function has two arguments: a struct
dev_info and sata_pkt_t. To figure out how to fetch various information from
sata_pkt_t, structure definitions were examined in the kernel source code and
then examined using DTrace along with known workloads.

If this script fails to trace any SATA commands on your system, find the appro-
priate probe for the start function in your SATA HBA driver, and add it after line
81. If that fails, you can use the higher-level function sata_hba_start() by
replacing lines 78 through to 84 with this:

66          sata_cmd[0x61] = "First-Party-DMA write queued"; 
67  sata_cmd[0x2f] = "read log"; 
68   sata_cmd[0xb0] = "SMART"; 
69 sata_cmd[0xe5] = "check power mode"; 
70
71          printf("Tracing... Hit Ctrl-C to end.\n"); 
72  } 
73
74  /* 
75   * Trace SATA command start by probing the entry to the SATA HBA driver.  Four 
76   * different drivers are covered here; add yours here if it is missing. 
77   */ 
78  fbt::nv_sata_start:entry,
79  fbt::bcm_sata_start:entry,
80  fbt::ahci_tran_start:entry,
81  fbt::mv_start:entry 
82  { 
83          this->dev = (struct dev_info *)arg0; 
84 this->sata_pkt = (sata_pkt_t *)arg1; 
85
86          this->modname = this->dev != NULL ? 
87 stringof(this->dev->devi_node_name) : "<unknown>";
88          this->dir = this->sata_pkt->satapkt_cmd.satacmd_flags.sata_data_direction;
89          this->dir_text = sata_dir[this->dir] != NULL ? 
90    sata_dir[this->dir] : "<none>"; 
91          this->cmd = this->sata_pkt->satapkt_cmd.satacmd_cmd_reg;
92          this->cmd_text = sata_cmd[this->cmd] != NULL ? 
93   sata_cmd[this->cmd] : lltostr(this->cmd); 
94          this->op_mode = this->sata_pkt->satapkt_op_mode;
95          this->op_text = sata_opmode[this->op_mode] != NULL ? 
96 sata_opmode[this->op_mode] : lltostr(this->op_mode); 
97
98  @[this->modname, this->dir_text, this->cmd_text, this->op_text] = 
99              count(); 
100  } 
101
102  dtrace:::END 
103  { 
104          printf("  %-14s %-9s %-30s %-10s   %s\n", "DEVICE NODE", "DIR", 
105    "COMMAND", "OPMODE", "COUNT"); 
106          printa("  %-14s %-9s %-30s %-10s   %@d\n", @); 
107  }

Script satacmds.d
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sata_hba_start() is from the generic sata driver, and as such makes for a
script that is more likely to see SATA commands on different systems. The down-
side is that sata_hba_start() traces most, but not all, SATA commands.

78  fbt::sata_hba_start:entry
79  { 
80          this->hba_inst = args[0]->txlt_sata_hba_inst;
81 this->sata_pkt = args[0]->txlt_sata_pkt;
82
83          this->dev = (struct dev_info *)this->hba_inst->satahba_dip;
84

Warning

The sata_cmd translations in this script were automatically generated from the definitions
in the /usr/include/sys/sata/sata_defs.h file, for example:

#define SATAC_READ_DMA_QUEUED   0xc7    /* read DMA / may be queued */ 
#define SATAC_READ_DMA_QUEUED_EXT 0x26  /* read DMA ext / may be queued */ 
#define SATAC_WRITE_DMA_QUEUED  0xcc    /* read DMA / may be queued */ 
#define SATAC_WRITE_DMA_QUEUED_EXT 0x36 /* read DMA ext / may be queued */ 

The sed utility was used to strip out all text apart from the hexadecimal value and the
comment and replace them with the D syntax for an associative array declaration. For sed
programmers who are curious, I copied the #defines to a cmds.h file and then used the
following:

# sed 's:[^/]*0x: sata_cmd[0x:;s:[ ]*/\* :] = ":;s/...$/";/' cmds.h
[...]
        sata_cmd[0xc7] = "read DMA / may be queued"; 
        sata_cmd[0x26] = "read DMA ext / may be queued"; 
        sata_cmd[0xcc] = "read DMA / may be queued"; 
        sata_cmd[0x36] = "read DMA ext / may be queued"; 
[...]

I then copied this output into the scsicmds.d script. This is an example of using one pro-
gramming language (sed) to generate another programming language (D).

But not so fast: Take a closer look at the four lines in the previous samples. Should the com-
ment for SATAC_WRITE_DMA_QUEUED really be “read DMA / may be queued”? Shouldn’t
this be “write DMA / may be queued”? This looks like a copy-and-paste error.

That raises an important warning: There are not only bugs in kernel code (as in all source
code), but there are also bugs in source code comments. Be a little cautious when reading
them to understand some code or when processing them, as shown earlier.
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Examples

Examples include read I/O, synchronous vs. asyncronous write workloads, UFS vs.
ZFS synchronous writes, and device insertion.

Read I/O. A read I/O workload was performed to local system disks, attached
via SATA (the nv_sata driver). The following shows the SATA commands issued:

 The most frequent SATA command issued was reads via DMA with the default
opmode (interrupts and asynchronous). 

The device node pci10de,cb84 is the path to the SATA HBA for these local sys-
tem disks. This is perhaps the easiest indicator of the device that can be extracted
from the available probe arguments; more information about the device can be
obtained by enhancing the script (though it will quickly become complex).

Synchronous vs. Asyncronous Write Workloads. Synchronous writes are where
the system waits until the write has been written to stable storage before return-
ing a completion. Applications can request synchronous semantics by opening files
with a SYNC flag (often O_DSYNC). They are sometimes used by applications to
ensure that critical data is known to be written before moving on, such as when
databases write their log files. 

Here a synchronous write workload was performed on a ZFS file system using
local system disks: 

The output shows how ZFS is implementing synchronous writes. Writes are
issued, along with an equal number of flush write-cache requests. The flush
write-cache request ensures that the disk has written its onboard write cache to
stable storage, which ZFS is calling (via a DKIOCFLUSHWRITECACHE ioctl) to ensure
that the disk really has written out the data. Without this flush write-cache,

solaris# satacmds.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE    DIR    COMMAND          OPMODE       COUNT 
  pci10de,cb84   no-data flush write-cache       ints+async   2 
  pci10de,cb84   write   write DMA extended (LBA48)  ints+async   2 
  pci10de,cb84   read   read DMA extended (LBA48)  ints+async   1988

solaris# satacmds.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE    DIR    COMMAND          OPMODE       COUNT 
  pci10de,cb84   no-data   flush write-cache       ints+async   752 
  pci10de,cb84   write   write DMA extended (LBA48)  ints+async   752
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the regular write command would return quickly from disk as it was cached on
disk-based DRAM, and the application would think that the write completed, but
it hasn’t until the disk itself flushes its own cache. Should a power outage occur
before the disk can do this, data is lost even though the file system and applica-
tion believe it to have been written. This is data corruption. ZFS ensures that this
does not happen by waiting for flush write-cache requests before believing
that the disk has really written its data. 

The write DMA extended command specifies how the write should be per-
formed: Write the data via Direct Memory Access. 

Compare the synchronous write workload with an asynchoronous write work-
load, which is the default when writing data to file systems: 

UFS vs. ZFS Synchronous Writes. In the previous example, SATA commands
called by the ZFS file system performing synchronous writes were shown. Let’s try
the same with the UFS file system: 

What’s this? No flush write-cache commands? As previously mentioned,
this is a problem (and is true on many other file systems), because disks can and
will buffer write data and send completion interrupts before they have actually
written to stable storage. If a power outage occurs at the wrong time, data corrup-
tion can occur because the file system may think that it has written data that it
has not. Remember how UFS required the fsck(1M) tool to repair file system cor-
ruption and inconsistencies? ZFS does not—it cannot become corrupted or have its
on-disk state made inconsistent. This is part of the reason why. 

Device Insertion. Here a SATA device was inserted while satacmds.d was
tracing:

solaris# satacmds.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE    DIR    COMMAND          OPMODE       COUNT 
  pci10de,cb84   read   read DMA extended (LBA48)  ints+async   3 
  pci10de,cb84   no-data   flush write-cache       ints+async   18 
  pci10de,cb84   write   write DMA extended (LBA48) ints+async   2395

solaris# satacmds.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE    DIR    COMMAND          OPMODE       COUNT 
  pci10de,cb84   write   write DMA extended (LBA48) ints+async   1918
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Various different SATA commands can be seen that were sent to initialize the
new device, including IDENTIFY DEVICE and set features. Note that the opera-
tion mode for these commands is synchronous.

satarw.d 

This script takes the three most common SATA commands (read, write, and
sync-cache) and prints summaries of the I/O sizes and times. It’s simple but
effective—this provides visibility for the I/O throughput rates and latencies for
SATA. 

Script

The start probes for the SATA events were traced in the generic sata driver using
sata_txlt_read(), and so on. Latency time is calculated by storing the start
time for these SATA commands in an associative array keyed on the sata packet
address and retrieved when the SATA command is completed. The trickiest part
was fetching the size of the I/O, which was much easier to pull from the SCSI layer
than from SATA. 

solaris# satacmds.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE    DIR    COMMAND          OPMODE       COUNT 
  pci10de,cb84   no-data set features             synch        1 
  pci10de,cb84   no-data   idle           synch        2 
  pci10de,cb84   no-data  check power mode           synch        3 
  pci10de,cb84   no-data read verify        synch        3 
  pci10de,cb84   read      IDENTIFY DEVICE      synch        3 
  pci10de,cb84   read   read DMA extended (LBA48)  ints+async   3 
  pci10de,cb84   no-data flush write-cache       ints+async   38 
  pci10de,cb84   write   write DMA extended (LBA48)  ints+async   78

1  #!/usr/sbin/dtrace -s 
2
3  #pragma D option quiet 
4
5  dtrace:::BEGIN 
6  { 
7          /* 
8           * SATA_DIR of type 1 normally means no-data, but we can call it 
9 * sync-cache as that's the only type 1 we are tracing. 
10           */ 
11  sata_dir[1] = "sync-cache";
12   sata_dir[2] = "read"; 
13   sata_dir[4] = "write"; 
14
15          printf("Tracing... Hit Ctrl-C to end.\n"); 
16  } 
17
18  /* cache the I/O size while it is still easy to determine */ 

continues
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19  fbt::sd_start_cmds:entry
20  { 
21          /* see the sd_start_cmds() source to understand the following logic */ 
22 this->bp = args[1] != NULL ? args[1] : args[0]->un_waitq_headp;
23          self->size = this->bp != NULL ? this->bp->b_bcount : 0; 
24  } 
25
26  fbt::sd_start_cmds:return { self->size = 0; } 
27
28  /* trace generic SATA driver functions for read, write and sync-cache */ 
29  fbt::sata_txlt_read:entry,
30  fbt::sata_txlt_write:entry,
31  fbt::sata_txlt_synchronize_cache:entry
32  { 
33 this->sata_pkt = args[0]->txlt_sata_pkt;
34          start[(uint64_t)this->sata_pkt] = timestamp; 
35          size[(uint64_t)this->sata_pkt] = self->size; 
36  } 
37
38  /* SATA command completed */ 
39  fbt::sata_pkt_free:entry
40  /start[(uint64_t)args[0]->txlt_sata_pkt]/
41  { 
42 this->sata_pkt = args[0]->txlt_sata_pkt;
43  this->delta = (timestamp - start[(uint64_t)this->sata_pkt]) / 1000; 
44          this->size = size[(uint64_t)this->sata_pkt];
45          this->dir = this->sata_pkt->satapkt_cmd.satacmd_flags.sata_data_direction;
46          this->dir_text = sata_dir[this->dir] != NULL ? 
47    sata_dir[this->dir] : "<none>"; 
48
49  @num[this->dir_text] = count(); 
50          @avg_size[this->dir_text] = avg(this->size);
51          @avg_time[this->dir_text] = avg(this->delta);
52          @sum_size[this->dir_text] = sum(this->size);
53          @sum_time[this->dir_text] = sum(this->delta);
54          @plot_size[this->dir_text] = quantize(this->size);
55          @plot_time[this->dir_text] = quantize(this->delta);
56
57 start[(uint64_t)this->sata_pkt] = 0; 
58 size[(uint64_t)this->sata_pkt] = 0; 
59  } 
60
61  dtrace:::END 
62  { 
63   normalize(@avg_size, 1024); 
64  normalize(@sum_size, 1048576); 
65   normalize(@sum_time, 1000);
66          printf("  %-10s  %10s  %10s %10s  %10s %12s\n", "DIR", 
67              "COUNT", "AVG(KB)", "TOTAL(MB)", "AVG(us)", "TOTAL(ms)"); 
68 printa("  %-10s  %@10d  %@10d %@10d  %@10d %@12d\n", @num, 
69  @avg_size, @sum_size, @avg_time, @sum_time); 
70 printf("\n\nSATA I/O size (bytes):\n"); 
71    printa(@plot_size); 
72          printf("\nSATA I/O latency (us):\n"); 
73    printa(@plot_time); 
74  }

Script satarw.d
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Example

This shows a mixed workload of reads and synchronous writes, on a ZFS file system:

solaris# satarw.d
Tracing... Hit Ctrl-C to end. 
^C
  DIR   COUNT AVG(KB)  TOTAL(MB)  AVG(us)    TOTAL(ms) 
  sync-cache         914           0 0        9187         8397 
  write              914         12         10         198          181 
  read              1091         6          6        1773         1935 

SATA I/O size (bytes): 

  sync-cache 
           value ------------- Distribution ------------- count 
              -1 |                 0

 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 914 
               1 |                  0

  read 
           value ------------- Distribution ------------- count 
             256 |                 0
             512 |@@@@@@@@@@@@@@@@@@@                 520 
            1024 |                  8
            2048 |@@@@@@@@                  221 
            4096 |@@@@@@                  171 
            8192 |@@@                 95 
           16384 |@@                 41 
           32768 |                  8 
           65536 |                  9 
          131072 |@                 18 
          262144 |                  0 

  write 
           value ------------- Distribution ------------- count 
            4096 |                  0 
            8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 914 
           16384 |                  0 

SATA I/O latency (us): 

  write 
           value ------------- Distribution ------------- count 
              64 |                   0 
             128 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 903 
             256 |                   8 
             512 |                   3 
            1024 |                  0 

  read 
           value ------------- Distribution ------------- count 
              32 |                   0 
              64 |@@@@@@@@@@                275 
             128 |@@@@@@@@@@@@@@@@@@@@@                 576 
             256 |@                  30 
             512 |                   9 
            1024 |                  10 
            2048 |@                 20 
            4096 |@@                 63 
            8192 |@@@@                 96 

continues
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The sync-cache commands show zero bytes, since they are not performing
data transfer. 

satareasons.d

When SATA commands complete, a reason code is set to show why the completion
was sent. Typically most SATA commands will succeed, and the reason code
returned will be “Success.” If SATA commands are erroring, the reason code can be
useful to examine to understand the type of error. 

Script

satareasons.d includes translations of SATA reasons codes. To keep the script
length down, only a handful of common SATA command codes are translated:

           16384 |                 11 
           32768 |                  1 
           65536 |                  0 

  sync-cache 
           value ------------- Distribution ------------- count 
             512 |                   0 
            1024 |@                 21 
            2048 |@@                 50 
            4096 |@@@@@@@@@@                 233 
            8192 |@@@@@@@@@@@@@@@@@@@@@@@@@                578 
           16384 |@                 29 
           32768 |                  3 
           65536 |                  0 

1  #!/usr/sbin/dtrace -s 
2
3  #pragma D option quiet 
4
5  string sata_cmd[uchar_t];
6
7  dtrace:::BEGIN 
8  { 
9          /* 
10           * These are SATA_DIR_* from /usr/include/sys/sata/sata_hba.h:
11           */ 
12   sata_dir[1] = "no-data"; 
13   sata_dir[2] = "read"; 
14   sata_dir[4] = "write"; 
15
16          /* 
17           * Some SATAC_* definitions from /usr/include/sys/sata/sata_defs.h, for 
18           * commands commonly issued.  More can be added from satacmds.d. 
19           */ 
20 sata_cmd[0x20] = "read sector"; 
21          sata_cmd[0x25] = "read DMA extended"; 
22          sata_cmd[0x35] = "write DMA extended"; 
23 sata_cmd[0x30] = "write sector"; 
24 sata_cmd[0x40] = "read verify"; 
25   sata_cmd[0x70] = "seek"; 
26 sata_cmd[0x90] = "diagnose command"; 
27   sata_cmd[0xb0] = "SMART"; 
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28 sata_cmd[0xec] = "IDENTIFY DEVICE"; 
29 sata_cmd[0xe5] = "check power mode"; 
30 sata_cmd[0xe7] = "flush write-cache"; 
31 sata_cmd[0xef] = "set features"; 
32
33          /* 
34           * These are SATA_PKT_* from /usr/include/sys/sata/sata_hba.h:
35           */ 
36          sata_reason[-1] = "Not completed, busy"; 
37  sata_reason[0] = "Success"; 
38          sata_reason[1] = "Device reported error"; 
39          sata_reason[2] = "Not accepted, queue full"; 
40          sata_reason[3] = "Not completed, port error"; 
41 sata_reason[4] = "Cmd unsupported"; 
42 sata_reason[5] = "Aborted by request"; 
43 sata_reason[6] = "Operation timeout"; 
44          sata_reason[7] = "Aborted by reset request"; 
45
46          printf("Tracing... Hit Ctrl-C to end.\n"); 
47  } 
48
49  fbt::sd_start_cmds:entry
50  { 
51          /* see the sd_start_cmds() source to understand the following logic */ 
52 self->bp = args[1] != NULL ? args[1] : args[0]->un_waitq_headp;
53  } 
54
55  fbt::sd_start_cmds:return { self->bp = 0; } 
56
57  fbt::sata_hba_start:entry
58  /self->bp->b_dip/ 
59  { 
60  statname[args[0]->txlt_sata_pkt] = 
61  xlate <devinfo_t *>(self->bp)->dev_statname;
62  } 
63
64  fbt::sata_pkt_free:entry
65  /args[0]->txlt_sata_pkt->satapkt_cmd.satacmd_cmd_reg/
66  { 
67 this->sata_pkt = args[0]->txlt_sata_pkt;
68          this->devname = statname[this->sata_pkt] != NULL ? 
69    statname[this->sata_pkt] : "<?>"; 
70          this->dir = this->sata_pkt->satapkt_cmd.satacmd_flags.sata_data_direction;
71          this->dir_text = sata_dir[this->dir] != NULL ? 
72    sata_dir[this->dir] : "<none>"; 
73          this->cmd = this->sata_pkt->satapkt_cmd.satacmd_cmd_reg;
74          this->cmd_text = sata_cmd[this->cmd] != NULL ? 
75   sata_cmd[this->cmd] : lltostr(this->cmd); 
76          this->reason = this->sata_pkt->satapkt_reason;
77  this->reason_text = sata_reason[this->reason] != NULL ? 
78  sata_reason[this->reason] : lltostr(this->reason); 
79  statname[this->sata_pkt] = 0; 
80
81  @[this->devname, this->dir_text, this->cmd_text, this->reason_text] = 
82              count(); 
83  } 
84
85  dtrace:::END 
86  { 
87          printf("  %-8s %-10s %-20s %25s  %s\n", "DEVICE", "DIR", "COMMAND", 
88     "REASON", "COUNT"); 
89          printa(" %-8s %-10s %-20s %25s  %@d\n", @); 
90  } 

Script satareasons.d
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The script gets a little complex because it has to fetch the name of the disk
device and does so by recording an associative array called statname that trans-
lates SATA packet addresses into device names. The SATA command completions
are traced by the sata_pkt_free() function, because it is the end of the road for
that SATA command—at this point the packet is freed. Details are not tracked in
sata_pkt_free() if the SATA command was zero, which may be because of an
invalid packet that was never sent anyway (and is now being freed).

Examples

The SATA disk sd4 was during read I/O: 

One of the read commands on sd4 returned Not completed, port error,
because the disk had been removed. 

satalatency.d 

The satalatency.d script summarizes SATA command latency in terms of SATA
command and completion reasons. 

Script

Time is measured from the entry to the SATA HBA driver to when the generic
SATA driver frees the SATA packet. 

solaris# satareasons.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE   DIR COMMAND      REASON  COUNT 
  <?>      read read DMA extended                  Success  1 
  sd4      read       read DMA extended    Not completed, port error  1 
  sd6      write      write DMA extended            Success  46 
  sd7      write      write DMA extended            Success  46 
  <?>      no-data    flush write-cache           Success  58 
  sd4      read       read DMA extended            Success  6704

1   #!/usr/sbin/dtrace -Zs 
2
3   #pragma D option quiet 
4
5   string sata_cmd[uchar_t];
6
7   dtrace:::BEGIN 
8   { 
9           /* 
10           * Some SATAC_* definitions from /usr/include/sys/sata/sata_defs.h, for 
11           * commands commonly issued.  More can be added from satacmds.d. 
12           */ 
13 sata_cmd[0x20] = "read sector"; 
14          sata_cmd[0x25] = "read DMA extended"; 
15          sata_cmd[0x35] = "write DMA extended"; 
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16 sata_cmd[0x30] = "write sector"; 
17 sata_cmd[0x40] = "read verify"; 
18   sata_cmd[0x70] = "seek"; 
19 sata_cmd[0x90] = "diagnose command"; 
20   sata_cmd[0xb0] = "SMART"; 
21 sata_cmd[0xec] = "IDENTIFY DEVICE"; 
22 sata_cmd[0xe5] = "check power mode"; 
23 sata_cmd[0xe7] = "flush write-cache"; 
24 sata_cmd[0xef] = "set features"; 
25
26          /* 
27           * These are SATA_PKT_* from /usr/include/sys/sata/sata_hba.h:
28           */ 
29          sata_reason[-1] = "Not completed, busy"; 
30  sata_reason[0] = "Success"; 
31          sata_reason[1] = "Device reported error"; 
32          sata_reason[2] = "Not accepted, queue full"; 
33          sata_reason[3] = "Not completed, port error"; 
34 sata_reason[4] = "Cmd unsupported"; 
35 sata_reason[5] = "Aborted by request"; 
36 sata_reason[6] = "Operation timeout"; 
37          sata_reason[7] = "Aborted by reset request"; 
38
39          printf("Tracing... Hit Ctrl-C to end.\n"); 
40  } 
41
42  /* 
43   * Trace SATA command start by probing the entry to the SATA HBA driver.  Four 
44   * different drivers are covered here; add yours here if it is missing. 
45   */ 
46  fbt::nv_sata_start:entry,
47  fbt::bcm_sata_start:entry,
48  fbt::ahci_tran_start:entry,
49  fbt::mv_start:entry 
50  { 
51   start[arg1] = timestamp; 
52  } 
53
54  fbt::sata_pkt_free:entry
55  /start[(uint64_t)args[0]->txlt_sata_pkt]/
56  { 
57 this->sata_pkt = args[0]->txlt_sata_pkt;
58  this->delta = (timestamp - start[(uint64_t)this->sata_pkt]) / 1000; 
59          this->cmd = this->sata_pkt->satapkt_cmd.satacmd_cmd_reg;
60          this->cmd_text = sata_cmd[this->cmd] != NULL ? 
61   sata_cmd[this->cmd] : lltostr(this->cmd); 
62          this->reason = this->sata_pkt->satapkt_reason;
63  this->reason_text = sata_reason[this->reason] != NULL ? 
64  sata_reason[this->reason] : lltostr(this->reason); 
65
66          @num[this->cmd_text, this->reason_text] = count(); 
67          @average[this->cmd_text, this->reason_text] = avg(this->delta); 
68          @total[this->cmd_text, this->reason_text] = sum(this->delta); 
69
70 start[(uint64_t)this->sata_pkt] = 0; 
71  } 
72
73  dtrace:::END 
74  { 
75   normalize(@total, 1000); 
76 printf("\n  %-18s %23s %10s %10s %10s\n", "SATA COMMAND", 
77 "COMPLETION", "COUNT", "AVG(us)", "TOTAL(ms)"); 
78          printa("  %-18s %23s %@10d %@10d %@10d\n", @num, @average, @total); 
79  }

Script chpt_diskIO_satalatency.d
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Example

The following system was performing a mixed workload of random disk reads and
synchronous writes on a ZFS file system: 

Based on just the average time for the read and write commands, it would
appear that the read I/O are the slowest, with an average time of 4.1 ms, whereas
writes returned in 0.2 ms. However, since this is synchronous writes on ZFS, the
write will not be acknowledged to the application until the flush write-cache
command has completed, which averages 9.1 ms. 

IDE Scripts

These use the fbt provider to trace the IDE driver. DTracing the IDE driver can
provide lower-level details of disk I/O operation than with the io provider alone.
Functionally, the IDE IO stack works as shown in Figure 4-7.

Also see the high-level diagram in the “Capabilities” section.
Since there is currently no stable IDE provider, the fbt16 provider is used. fbt is

an unstable interface: It exports kernel functions and data structures that may

solaris# satalatency.d
Tracing... Hit Ctrl-C to end. 
^C

  SATA COMMAND        COMPLETION  COUNT     AVG(us)   TOTAL(ms) 
  flush write-cache         Success         728        9131        6647 
  write DMA extended         Success      729   222         162 
  read DMA extended         Success        3488        4187       14607

16. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

Figure 4-7 IDE I/O stack
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change from release to release. The following scripts were based on OpenSolaris
circa December 2009 and may not work on other OSs and releases without
changes. Even if these scripts no longer execute, they can still be treated as exam-
ples of D programming and for the sort of data that DTrace can make available for
IDE analysis.

See the man pages for each driver for the complete description.

Familiarization

To become familiar with DTracing IDE, we’ll perform 10,000 read disk I/O to an
IDE disk:

We use DTrace to frequency count all calls to the dad driver:

Table 4-8 Solaris IDE Driver Reference

Driver Synopsis Description

cmdk Common disk 
driver

A common interface to various disk devices. The  driver sup-
ports magnetic fixed disks and magnetic removable disks.

dad Driver for IDE 
disk devices

Handles the IDE disk drives on SPARC platforms. The type of 
disk drive is determined using the ATA IDE identify device 
command and by reading the volume label stored on the 
drive. The dad device driver supports the Solaris SPARC VTOC 
and the EFI/GPT disk volume labels. 

ata AT attachment 
disk driver

Supports disk and ATAPI CD/DVD devices conforming to the 
AT Attachment specification including IDE interfaces. Support 
is provided for both parallel ATA (PATA) and serial ATA (SATA) 
interfaces. 

# dd if=/dev/rdsk/c0d0s0 of=/dev/null count=10000 

solaris# dtrace -n 'fbt:dadk::entry { @[probefunc] = count(); }'
dtrace: description 'fbt:dadk::entry ' matched 43 probes 
^C

  dadk_getgeom                      1 
  dadk_getphygeom                     2 
  dadk_iob_alloc                     5 
  dadk_iob_free                     5 
  dadk_iob_xfer                     5 
  dadk_strategy                   10000 
  dadk_iodone                 10005 
  dadk_ioprep                 10005 
  dadk_iosetup                 10005 

continues
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The dadk_strategy() and dadk_iodone() are familiar (bdev_strategy()
and biodone()), but they only take buf_t as the argument; we can already trace
such buf_t details using the stable io provider, as shown earlier in this chapter. If
we are digging into the IDE driver, it’s to see specific IDE command information,
such as is available in the following functions:

The first can be used to trace regular IDE I/O, and the second can be used for
IDE command completions (pktcb == packet callback). Both have access to spe-
cific IDE information in their arguments. dadk_iosetup() does miss ioctl(),
which needs to be traced separately (dadk_ioctl() or something deeper along
the code path, after IDE information has been initialized).

Because IDE is less commonly used these days, only a few IDE scripts are
included here, chosen for the widest coverage. They can be customized as needed
into scripts similar to those in the “SATA” section.

idelatency.d

Because of dad’s simple interface, this script is one of the most straightforward in
this chapter’s collection of kernel driver scripts:   

Script

To record the time between IDE command start and completion events, a packet
pointer was used in an associative array to store the time stamp by packet. This
was easy to retrieve in dadk_iosetup (arg1) but not so easy in dadk_ioctl()
because the packet hasn’t been created yet; to solve this, dadk_pktprep() is
traced as the starting point for both types of IDE command, because it is common
to both code paths. 

  dadk_pkt                  10005 
  dadk_pktcb                 10005 
  dadk_pktprep                 10005 
  dadk_transport                   10005

dadk_iosetup(struct dadk *dadkp, struct cmpkt *pktp) 
dadk_pktcb(struct cmpkt *pktp)

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   string dcmd[uchar_t]; 
6
7   dtrace:::BEGIN 
8   { 
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9           /* 
10           * These command descriptions are from the DCMD_* definitions 
11 * in /usr/include/sys/dktp/dadkio.h:
12           */ 
13 dcmd[1] = "Read Sectors/Blocks";
14  dcmd[2] = "Write Sectors/Blocks"; 
15  dcmd[3] = "Format Tracks"; 
16 dcmd[4] = "Format entire drive"; 
17   dcmd[5] = "Recalibrate"; 
18 dcmd[6] = "Seek to Cylinder"; 
19          dcmd[7] = "Read Verify sectors on disk"; 
20          dcmd[8] = "Read manufacturers defect list"; 
21  dcmd[9] = "Lock door"; 
22  dcmd[10] = "Unlock door"; 
23  dcmd[11] = "Start motor"; 
24  dcmd[12] = "Stop motor"; 
25 dcmd[13] = "Eject medium"; 
26 dcmd[14] = "Update geometry"; 
27          dcmd[15] = "Get removable disk status"; 
28  dcmd[16] = "cdrom pause"; 
29 dcmd[17] = "cdrom resume"; 
30          dcmd[18] = "cdrom play by track and index"; 
31 dcmd[19] = "cdrom play msf"; 
32          dcmd[20] = "cdrom sub channel"; 
33          dcmd[21] = "cdrom read mode 1"; 
34          dcmd[22] = "cdrom read table of contents header"; 
35          dcmd[23] = "cdrom read table of contents entry"; 
36          dcmd[24] = "cdrom read offset"; 
37 dcmd[25] = "cdrom mode 2"; 
38          dcmd[26] = "cdrom volume control"; 
39          dcmd[27] = "flush write cache to physical medium"; 
40
41          /* from CPS_* definitions in /usr/include/sys/dktp/cmpkt.h */ 
42   reason[0] = "success"; 
43   reason[1] = "failure"; 
44   reason[2] = "fail+err"; 
45   reason[3] = "aborted"; 
46
47          printf("Tracing... Hit Ctrl-C to end.\n"); 
48  } 
49
50  /* IDE command start */ 
51  fbt::dadk_pktprep:return
52  { 
53   start[arg1] = timestamp; 
54  } 
55
56  /* IDE command completion */ 
57  fbt::dadk_pktcb:entry 
58  /start[arg0]/ 
59  { 
60   this->pktp = args[0]; 
61
62          this->delta = (timestamp - start[arg0]) / 1000; 
63          this->cmd = *((uchar_t *)this->pktp->cp_cdbp);
64          this->cmd_text = dcmd[this->cmd] != NULL ? 
65   dcmd[this->cmd] : lltostr(this->cmd); 
66 this->reason = this->pktp->cp_reason;
67          this->reason_text = reason[this->reason] != NULL ? 
68  reason[this->reason] : lltostr(this->reason);
69
70          @num[this->cmd_text, this->reason_text] = count(); 
71          @average[this->cmd_text, this->reason_text] = avg(this->delta); 
72          @total[this->cmd_text, this->reason_text] = sum(this->delta);

continues
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Examples

Examples include known workload and synchronous ZFS writes.

Known Workload. In this example, a known load generating 10,000 disk reads
was used: 

The script output shows 10,009 IDE read commands (nine extra from other sys-
tem activity), which had an average latency of 0.2 ms. 

Synchronous ZFS Writes. The following was executed on a Solaris system with
ZFS, performing a synchronous write workload: 

 As previously observed with SCSI and SATA, the latency for synchronous
writes in ZFS is in the sync cache command, or, as it is described in the IDE
header files, “flush write cache to physical medium,” which had an average latency
of 16.8 ms. 

73
74    start[arg0] = 0; 
75  } 
76
77  dtrace:::END 
78  { 
79   normalize(@total, 1000); 
80          printf("\n %-36s %8s %8s %10s %10s\n", "IDE COMMAND", 
81  "REASON", "COUNT", "AVG(us)", "TOTAL(ms)"); 
82          printa("  %-36s %8s %@8d %@10d %@10d\n", @num, @average, @total); 
83  } 

Script idelatency.d

solaris# idelatency.d
Tracing... Hit Ctrl-C to end. 
^C

  IDE COMMAND                REASON    COUNT   AVG(us)  TOTAL(ms) 
  Read Sectors/Blocks              success 10009        210       2105

solaris# idelatency.d
Tracing... Hit Ctrl-C to end. 
^C

  IDE COMMAND                REASON    COUNT   AVG(us)  TOTAL(ms) 
  Read Sectors/Blocks                success     7      30325        212 
  flush write cache to physical medium  success     147 16848       2476 
  Write Sectors/Blocks              success   4087       4021      16435
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iderw.d

This script takes the three common IDE commands (read, write, and flush
write-cache) and prints summaries of the I/O sizes and times. This provides vis-
ibility for the I/O throughput rates and detailed latencies for IDE, especially outli-
ers that may not be observable in the averages in idelatency.d.

Script

This script filters on the command type so that only the reads, writes, and
sync-cache commands are traced: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   string dcmd[uchar_t]; 
6
7   dtrace:::BEGIN 
8   { 
9           /* 
10           * These commands of interest are from the DCMD_* definitions in 
11  * /usr/include/sys/dktp/dadkio.h:
12           */ 
13 dcmd[1] = "Read Sectors/Blocks";
14  dcmd[2] = "Write Sectors/Blocks"; 
15          dcmd[27] = "flush write cache"; 
16
17          /* from CPS_* definitions in /usr/include/sys/dktp/cmpkt.h */ 
18   reason[0] = "success"; 
19   reason[1] = "failure"; 
20   reason[2] = "fail+err"; 
21   reason[3] = "aborted"; 
22
23          printf("Tracing... Hit Ctrl-C to end.\n"); 
24  } 
25
26  fbt::dadk_pktprep:entry
27  { 
28  self->size = args[2]->b_bcount; 
29  } 
30
31  /* IDE command start */ 
32  fbt::dadk_pktprep:return
33  { 
34   start[arg1] = timestamp; 
35   size[arg1] = self->size; 
36          self->size = 0; 
37  } 
38
39  /* IDE command completion */ 
40  fbt::dadk_pktcb:entry 
41  /start[arg0]/ 
42  { 
43   this->pktp = args[0]; 
44          this->cmd = *((uchar_t *)this->pktp->cp_cdbp);
45  } 
46
47  /* Only match desired commands: read/write/flush-cache */ 
48  fbt::dadk_pktcb:entry 

continues
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Example

In this example, 100 1MB reads were performed on an IDE disk:

Tracing with iderw.d:

49  /start[arg0] && dcmd[this->cmd] != NULL/ 
50  { 
51          this->delta = (timestamp - start[arg0]) / 1000; 
52          this->cmd_text = dcmd[this->cmd] != NULL ? 
53   dcmd[this->cmd] : lltostr(this->cmd); 
54   this->size = size[arg0]; 
55
56  @num[this->cmd_text] = count(); 
57          @avg_size[this->cmd_text] = avg(this->size);
58          @avg_time[this->cmd_text] = avg(this->delta);
59          @sum_size[this->cmd_text] = sum(this->size);
60          @sum_time[this->cmd_text] = sum(this->delta);
61          @plot_size[this->cmd_text] = quantize(this->size);
62          @plot_time[this->cmd_text] = quantize(this->delta);
63
64    start[arg0] = 0; 
65          size[arg0] = 0; 
66  } 
67
68  dtrace:::END 
69  { 
70   normalize(@avg_size, 1024); 
71  normalize(@sum_size, 1048576); 
72   normalize(@sum_time, 1000);
73 printf("  %-20s  %8s  %10s %10s  %10s %11s\n", "DIR", 
74              "COUNT", "AVG(KB)", "TOTAL(MB)", "AVG(us)", "TOTAL(ms)"); 
75          printa("  %-20s  %@8d  %@10d %@10d  %@10d %@11d\n", @num, 
76  @avg_size, @sum_size, @avg_time, @sum_time); 
77          printf("\n\nIDE I/O size (bytes):\n"); 
78    printa(@plot_size); 
79 printf("\nIDE I/O latency (us):\n"); 
80    printa(@plot_time); 
81  } 

Script iderw.d

# dd if=/dev/rdsk/c1d0s0 of=/dev/null bs=1024k count=100

solaris# iderw.d
Tracing... Hit Ctrl-C to end. 
^C
  DIR COUNT     AVG(KB)  TOTAL(MB)     AVG(us)   TOTAL(ms) 
  Read Sectors/Blocks     405         252  100        1156         468

IDE I/O size (bytes): 

  Read Sectors/Blocks
           value  ------------- Distribution ------------- count
             256 |              0
             512 |              5
            1024 |              0
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The output may be surprising. The dd command requested 100 reads from the
raw device (/dev/rdsk). Raw device interfaces are supposed to do as they are told,
unlike block interfaces, which may use layers of caching. However, this is not what
happened here: Despite dd requesting 100 1MB reads, the IDE disk actually per-
formed this using 400 256KB reads.

This is because the IDE driver is respecting the DK_MAXRECSIZE constant from
/usr/include/sys/dktp/tgdk.h:

ideerr.d

Errors are usually worth examining, and IDE has its own collection of possible
error types. This script will print the IDE command, command completion reason,
and (if available) additional IDE error information. 

Script

The following script can be used to track error events in the IDE code path:

            2048 |              0
            4096 |              0
            8192 |              0
           16384 |             0
           32768 |             0
           65536 |             0
          131072 |                0
          262144 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 400
          524288 |                0

IDE I/O latency (us): 

  Read Sectors/Blocks
           value  ------------- Distribution ------------- count
              16 |              0
              32 |              2
              64 |              0
             128 |              0
             256 |              0

 512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  358
            1024 |              0
            2048 |@@@@             40
            4096 |              1
            8192 |              3
           16384 |             1
           32768 |                  0

#define    DK_MAXRECSIZE   (256<<10)       /* maximum io record size       */

 1  #!/usr/sbin/dtrace -s 
 2
 3  #pragma D option quiet 

continues
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 4
 5  string dcmd[uchar_t]; 
 6
 7  dtrace:::BEGIN 
 8  { 
 9          /* 
10 * These command and error descriptions are from the DCMD_* and DERR_* 
11           * definitions in /usr/include/sys/dktp/dadkio.h:
12           */ 
13
14 dcmd[1] = "Read Sectors/Blocks";
15  dcmd[2] = "Write Sectors/Blocks"; 
16  dcmd[3] = "Format Tracks"; 
17 dcmd[4] = "Format entire drive"; 
18   dcmd[5] = "Recalibrate"; 
19 dcmd[6] = "Seek to Cylinder"; 
20          dcmd[7] = "Read Verify sectors on disk"; 
21          dcmd[8] = "Read manufacturers defect list"; 
22  dcmd[9] = "Lock door"; 
23  dcmd[10] = "Unlock door"; 
24  dcmd[11] = "Start motor"; 
25  dcmd[12] = "Stop motor"; 
26 dcmd[13] = "Eject medium"; 
27 dcmd[14] = "Update geometry"; 
28          dcmd[15] = "Get removable disk status"; 
29  dcmd[16] = "cdrom pause"; 
30 dcmd[17] = "cdrom resume"; 
31          dcmd[18] = "cdrom play by track and index"; 
32 dcmd[19] = "cdrom play msf"; 
33          dcmd[20] = "cdrom sub channel"; 
34          dcmd[21] = "cdrom read mode 1"; 
35          dcmd[22] = "cdrom read table of contents header"; 
36          dcmd[23] = "cdrom read table of contents entry"; 
37          dcmd[24] = "cdrom read offset"; 
38 dcmd[25] = "cdrom mode 2"; 
39          dcmd[26] = "cdrom volume control"; 
40          dcmd[27] = "flush write cache to physical medium"; 
41
42   derr[0] = "success"; 
43          derr[1] = "address mark not found"; 
44 derr[2] = "track 0 not found"; 
45  derr[3] = "aborted command"; 
46   derr[4] = "write fault"; 
47  derr[5] = "ID not found"; 
48   derr[6] = "drive busy"; 
49 derr[7] = "uncorrectable data error"; 
50 derr[8] = "bad block detected"; 
51  derr[9] = "invalid cdb"; 
52          derr[10] = "hard device error- no retry"; 
53          derr[11] = "Illegal length indication"; 
54          derr[12] = "End of media detected"; 
55          derr[13] = "Media change requested"; 
56          derr[14] = "Recovered from error"; 
57          derr[15] = "Device not ready"; 
58 derr[16] = "Medium error"; 
59  derr[17] = "Hardware error"; 
60 derr[18] = "Illegal request"; 
61  derr[19] = "Unit attention"; 
62  derr[20] = "Data protection"; 
63  derr[21] = "Miscompare"; 
64 derr[22] = "Interface CRC error"; 
65  derr[23] = "Reserved"; 
66
67          /* from CPS_* definitions in /usr/include/sys/dktp/cmpkt.h */ 
68   reason[0] = "success"; 



ptg

Scripts 259

If the IDE command returned with CPS_CHKERR (shown as fail+err to fit in
the column; the full description is “command fails with status”), then there is an
additional error code that must also be checked. The table for translating these is
included in this script, derr, and they are printed in the ERROR column.

Example

On a system performing disk I/O to IDE disks: 

There are no errors—always good to see!

SAS Scripts

The fbt provider can be used to trace the SAS HBA drivers. Serial Attached SCSI
(SAS) is a transport protocol usually used with external storage devices. DTracing

69   reason[1] = "failure"; 
70   reason[2] = "fail+err"; 
71   reason[3] = "aborted"; 
72
73          printf("Tracing... Hit Ctrl-C to end.\n"); 
74  } 
75
76  fbt::dadk_pktcb:entry 
77  { 
78   this->pktp = args[0]; 
79
80          this->cmd = *(char *)this->pktp->cp_cdbp;
81          this->cmd_text = dcmd[this->cmd] != NULL ? 
82   dcmd[this->cmd] : lltostr(this->cmd); 
83 this->reason = this->pktp->cp_reason;
84          this->reason_text = reason[this->reason] != NULL ? 
85  reason[this->reason] : lltostr(this->reason);
86          this->err = *(char *)this->pktp->cp_scbp;
87          this->err_text = derr[this->err] != NULL ? 
88   derr[this->err] : lltostr(this->err); 
89
90  @[this->cmd_text, this->reason_text, this->err_text] = count(); 
91  } 
92
93  dtrace:::END 
94  { 
95 printf("%-36s %8s %27s %s\n", "IDE COMMAND", "REASON", "ERROR",
96       "COUNT"); 
97          printa("%-36s %8s %27s %@d\n", @); 
98  }

Script ideerr.d

# ideerr.d
IDE COMMAND                  REASON        ERROR COUNT 
Write Sectors/Blocks               success                 success 136 
Read Sectors/Blocks               success       success 20528
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SAS can provide lower-level details of disk I/O and SAS bus operation than the io
provider alone can. Functionally, it can be described as in Figure 4-8.

Since there is currently no stable SAS provider, the fbt17 and sdt providers are
used. These are unstable interfaces: They expose kernel functions and data struc-
tures that may change from release to release. The scripts that follow were based
on OpenSolaris circa December 2009 and may not work on other OSs and releases
without changes. Even if these scripts no longer execute, they can still be treated
as examples of D programming and for the sort of data that DTrace can make
available for SAS analysis. Table 4-9 presents the Solaris SAS driver reference.

Figure 4-8 SAS I/O stack 

17. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

Table 4-9 Solaris SAS Driver Reference

Driver Synopsis Description

mpt SCSI host bus 
adapter driver

A  SCSA-compliant nexus driver that supports the LSI 
53C1030 SCSI, SAS1064, SAS1068, and SAS1068E 
controllers.
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Familiarization

Unlike SCSI, there is no generic SAS driver that we can DTrace, so we must
DTrace it in the specific HBA drivers that implement SAS. In the scripts that fol-
low, the mpt driver is traced. If you would like to DTrace SAS on a different SAS
HBA driver, the scripts will need to be rewritten to match its probes.

To get a quick insight into mpt internals, we performed an experiment where
the dd(1) command issued 1,000 reads to a disk device, and all calls to mpt were
frequency counted:

This shows some possibilities. For SAS SCSI command requests, I’d check the
stack trace and source code for mpt_start_cmd(), mpt_scsi_start(), and
mpt_scsi_init_pkt(). For command completion, I’d check mpt_intr() and
mpt_scsi_destroy_pkt(). Although mpt has 287 probes (and functions), by this
quick experiment we have narrowed it down to five likely probes to try first.

mpt is currently a closed source driver, so we’ve theoretically reached the end of
the line using fbt—or have we? For example, to figure out the arguments for mpt_
start_cmd(), we can use the mdb debugger on Solaris (which can fetch symbol
information from CTF):

solaris# dtrace -n 'fbt:mpt::entry { @[probefunc] = count(); }' 
dtrace: description 'fbt:mpt::entry ' matched 287 probes 
^C

  mpt_watch                       1 
  mpt_capchk                      2 
  mpt_scsi_setcap                     2 
  mpt_ioc_faulted                     3 
  mpt_watchsubr                     3 
  mpt_sge_setup                    1005 
  mpt_accept_pkt                    1007 
  mpt_doneq_add                    1007 
  mpt_intr                   1007 
  mpt_prepare_pkt                   1007 
  mpt_process_intr                   1007 
  mpt_remove_cmd                    1007 
  mpt_save_cmd                  1007 
  mpt_scsi_destroy_pkt                  1007 
  mpt_scsi_init_pkt                  1007 
  mpt_scsi_start                    1007 
  mpt_send_pending_event_ack                  1007 
  mpt_start_cmd                    1007 
  mpt_check_acc_handle                  2014 
  mpt_doneq_rm                  2014 
  mpt_free_extra_cmd_mem                   2014 
  mpt_doneq_empty                   4079 
  mpt_check_dma_handle                  6042

solaris# mdb -k
> mpt_start_cmd::nm -f ctype 

continues
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The mdb example first shows the two arguments to mpt_start_cmd() are of
type mpt_t and mpt_cmd_t. If their header files are also closed source, we can
continue to use mdb to determine what the actual members are of the mpt_cmd_t
data structure. This is shown in the previous example of ::print -at mpt_cmd_t.
Although we may not have the comments to explain what these members are
for, we can DTrace their contents with known workloads, which may give us this
information.

Apart from the fbt provider, the mpt driver has a collection of SDT DTrace
probes inserted into the source code, available via the sdt provider. Although the
sdt provider isn’t officially a stable interface, it is usually much more stable than
using fbt to trace kernel function calls. So, for mpt, the sdt provider may be the
best place to start. 

Listing the probes shows the following:

And, repeating the 1,000 read test:

C Type
int (*)(mpt_t *, mpt_cmd_t *)

> ::print -at mpt_cmd_t 
0 mpt_cmd_t { 
    0 uint_t cmd_flags 
    8 ddi_dma_handle_t cmd_dmahandle 
[...]
    98 struct buf *cmd_ext_arq_buf 
    a0 int cmd_pkt_flags 
    a4 int cmd_active_timeout 
    a8 struct scsi_pkt *cmd_pkt 

solaris# dtrace -ln 'sdt:mpt::' 
   ID   PROVIDER  MODULE           FUNCTION NAME 
16359        sdt        mpt  mpt_ioc_task_management mpt_ioc_task_management 
16360        sdt        mpt mpt_disp_task_management mpt_disp_task_management
16361        sdt        mpt       mpt_send_inquiryVpd scsi-poll 
16362        sdt     mpt  mpt_ioctl report-phy-sata 
16363        sdt      mpt mpt_start_cmd untagged_drain
16364        sdt      mpt       mpt_restart_hba mpt_restart_cmdioc
16365        sdt      mpt       mpt_handle_event phy-link-event 
16366        sdt       mpt      mpt_handle_event event-sas-phy-link-status
16367        sdt       mpt   mpt_handle_event_sync device-status-change 
16368        sdt       mpt    mpt_handle_event_sync handle-event-sync 
16369        sdt        mpt       mpt_handle_hipri_dr hipri-dr 
16370        sdt       mpt           mpt_handle_dr dr 
16371        sdt       mpt      mpt_check_task_mgt mpt_check_task_mgt 
16372        sdt        mpt    mpt_check_scsi_io_error mpt-scsi-check 
16373        sdt        mpt    mpt_check_scsi_io_error mpt_terminated 
16374        sdt        mpt    mpt_check_scsi_io_error scsi-io-error 
16375        sdt       mpt   mpt_process_intr io-time-on-hba-non-a-reply
16376        sdt      mpt      mpt_process_intr io-time-on-hba-a-reply
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Only one probe fired. Maybe there are not enough sdt probes for regular SAS I/O,
but the list showed many other promising probes that our simple 1,000 read I/O
test may not have triggered.

mptsassscsi.d

The mptsasscsi.d script counts SAS commands issued by mpt, showing the
SCSI type along with details of the mpt device. This is a high-level summary script
to see what SAS commands mpt is sending. 

Script

To trace all mpt SAS commands, the generic mpt_start_cmd() function was
traced and then predicated on the port type of SAS on line 36. 

solaris# dtrace -n 'sdt:mpt:: { @[probename] = count(); }'
dtrace: description 'sdt:mpt:: ' matched 18 probes 
^C

  io-time-on-hba-non-a-reply                  1007

1   #!/usr/sbin/dtrace -Cs 
2
3   #pragma D option quiet 
4
5   /* From uts/common/sys/mpt/mpi_ioc.h */ 
6   #define MPI_PORTFACTS_PORTTYPE_INACTIVE       0x00 
7   #define MPI_PORTFACTS_PORTTYPE_SCSI        0x01 
8   #define MPI_PORTFACTS_PORTTYPE_FC         0x10 
9   #define MPI_PORTFACTS_PORTTYPE_ISCSI       0x20 
10  #define MPI_PORTFACTS_PORTTYPE_SAS             0x30 
11
12  dtrace:::BEGIN 
13  { 
14 /* See /usr/include/sys/scsi/generic/commands.h for the full list. */ 
15 scsi_cmd[0x00] = "test_unit_ready";
16   scsi_cmd[0x08] = "read"; 
17   scsi_cmd[0x0a] = "write"; 
18  scsi_cmd[0x12] = "inquiry"; 
19  scsi_cmd[0x17] = "release"; 
20  scsi_cmd[0x1a] = "mode_sense"; 
21 scsi_cmd[0x1b] = "load/start/stop";
22 scsi_cmd[0x1c] = "get_diagnostic_results";
23 scsi_cmd[0x1d] = "send_diagnostic_command";
24  scsi_cmd[0x25] = "read_capacity"; 
25  scsi_cmd[0x28] = "read(10)"; 
26  scsi_cmd[0x2a] = "write(10)"; 
27 scsi_cmd[0x35] = "synchronize_cache";
28  scsi_cmd[0x4d] = "log_sense"; 
29 scsi_cmd[0x5e] = "persistent_reserve_in";
30  scsi_cmd[0xa0] = "report_luns"; 
31
32          printf("Tracing... Hit Ctrl-C to end.\n"); 
33  } 
34

continues
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Example

Here an application was performing synchronous writes to a ZFS file system that
was using external storage (JBODs), attached via dual SAS paths (multipathing).
mptsassscsi.d shows that two instances of mpt were handling the SCSI
requests, one for each path: 

The counts are roughly similar for mpt0 and mpt2, showing that multipathing
is balancing the load evenly.

mptevents.d

Although the previous mptsasscsi.d script was useful, it showed SCSI com-
mand counts for which we already had some insight at higher layers in the I/O
stack. Here we trace specific mpt SAS events, excluding the transport of SCSI com-

35  fbt::mpt_start_cmd:entry
36  /args[0]->m_port_type[0] == MPI_PORTFACTS_PORTTYPE_SAS/
37  { 
38   this->mpt = args[0]; 
39          this->mpt_name = strjoin("mpt", lltostr(this->mpt->m_instance));
40          this->node_name = this->mpt->m_dip != NULL ? 
41              stringof(((struct dev_info *)this->mpt->m_dip)->devi_node_name) : 
42       "<unknown>"; 
43  this->scsi_pkt = args[1]->cmd_pkt; 
44 this->code = *this->scsi_pkt->pkt_cdbp;
45          this->cmd_text = scsi_cmd[this->code] != NULL ? 
46   scsi_cmd[this->code] : lltostr(this->code); 
47  @cmd[this->node_name, this->mpt_name, this->cmd_text] = count(); 
48  } 
49
50  dtrace:::END 
51  { 
52          printf("  %-16s %-12s %-36s %s\n", "DEVICE NODE", "MODULE", "SCSI CMD", 
53       "COUNT"); 
54          printa("  %-16s %-12s %-36s %@d\n", @cmd); 
55  } 

Script mpt_sasscsi.d

solaris# mptsasscsi.d
Tracing... Hit Ctrl-C to end. 
^C
  DEVICE NODE      MODULE       SCSI CMD                   COUNT 
  pci1000,3150     mpt2       send_diagnostic_command              1 
  pci1000,3150     mpt0       inquiry                   6 
  pci1000,3150     mpt2       inquiry                   6 
  pci1000,3150     mpt0         synchronize_cache                    26 
  pci1000,3150     mpt2         synchronize_cache                    26 
  pci1000,3150     mpt0         get_diagnostic_results          99 
  pci1000,3150     mpt2         get_diagnostic_results          99 
  pci1000,3150     mpt0       write(10)           17299 
  pci1000,3150     mpt2       write(10)           17300
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mands. Output is printed as it occurs, iosnoop style. These mpt events include
performing SAS discovery on the external storage.

Script

This script makes use of the SDT probes that exist in the mpt driver, which makes
extracting various details more convenient: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           /* 
9            * These MPI_EVENT_* definitions are from uts/common/sys/mpt/mpi_ioc.h
10           */ 
11
12 mpi_event[0x00000000] = "NONE"; 
13 mpi_event[0x00000001] = "LOG_DATA"; 
14          mpi_event[0x00000002] = "STATE_CHANGE";
15          mpi_event[0x00000003] = "UNIT_ATTENTION";
16          mpi_event[0x00000004] = "IOC_BUS_RESET";
17          mpi_event[0x00000005] = "EXT_BUS_RESET";
18 mpi_event[0x00000006] = "RESCAN"; 
19          mpi_event[0x00000007] = "LINK_STATUS_CHANGE";
20          mpi_event[0x00000008] = "LOOP_STATE_CHANGE";
21 mpi_event[0x00000009] = "LOGOUT"; 
22          mpi_event[0x0000000A] = "EVENT_CHANGE";
23          mpi_event[0x0000000B] = "INTEGRATED_RAID";
24          mpi_event[0x0000000C] = "SCSI_DEVICE_STATUS_CHANGE";
25          mpi_event[0x0000000D] = "ON_BUS_TIMER_EXPIRED";
26 mpi_event[0x0000000E] = "QUEUE_FULL"; 
27          mpi_event[0x0000000F] = "SAS_DEVICE_STATUS_CHANGE";
28 mpi_event[0x00000010] = "SAS_SES"; 
29          mpi_event[0x00000011] = "PERSISTENT_TABLE_FULL";
30          mpi_event[0x00000012] = "SAS_PHY_LINK_STATUS";
31          mpi_event[0x00000013] = "SAS_DISCOVERY_ERROR";
32          mpi_event[0x00000014] = "IR_RESYNC_UPDATE";
33 mpi_event[0x00000015] = "IR2"; 
34          mpi_event[0x00000016] = "SAS_DISCOVERY";
35          mpi_event[0x00000017] = "SAS_BROADCAST_PRIMITIVE";
36          mpi_event[0x00000018] = "SAS_INIT_DEVICE_STATUS_CHANGE";
37          mpi_event[0x00000019] = "SAS_INIT_TABLE_OVERFLOW";
38          mpi_event[0x0000001A] = "SAS_SMP_ERROR";
39          mpi_event[0x0000001B] = "SAS_EXPANDER_STATUS_CHANGE";
40          mpi_event[0x00000021] = "LOG_ENTRY_ADDED";
41
42          sas_discovery[0x00000000] = "SAS_DSCVRY_COMPLETE";
43          sas_discovery[0x00000001] = "SAS_DSCVRY_IN_PROGRESS";
44
45   dev_stat[0x03] = "ADDED"; 
46  dev_stat[0x04] = "NOT_RESPONDING"; 
47  dev_stat[0x05] = "SMART_DATA"; 
48 dev_stat[0x06] = "NO_PERSIST_ADDED";
49  dev_stat[0x07] = "UNSUPPORTED"; 
50 dev_stat[0x08] = "INTERNAL_DEVICE_RESET";
51 dev_stat[0x09] = "TASK_ABORT_INTERNAL";
52 dev_stat[0x0A] = "ABORT_TASK_SET_INTERNAL";

continues
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Apart from probing all events using sdt:mpt::handle-event-sync, some events
print an extra line or two of details by probing them separately. To differentiate
their output, their event details are indented by three more spaces. More such
probes from sdt or fbt could be added to print extra details on events, if required. 

53 dev_stat[0x0B] = "CLEAR_TASK_SET_INTERNAL";
54 dev_stat[0x0C] = "QUERY_TASK_INTERNAL";
55 dev_stat[0x0D] = "ASYNC_NOTIFICATION";
56 dev_stat[0x0E] = "CMPL_INTERNAL_DEV_RESET";
57          dev_stat[0x0F] = "CMPL_TASK_ABORT_INTERNAL";
58
59          printf("%-20s  %-6s %-3s    %s\n", "TIME", "MODULE", "CPU", "EVENT"); 
60  }
62  sdt:mpt::handle-event-sync
63  { 
64  this->mpt = (mpt_t *)arg0; 
65          this->mpt_name = strjoin("mpt", lltostr(this->mpt->m_instance));
66          this->event_text = mpi_event[arg1] != NULL ? 
67    mpi_event[arg1] : lltostr(arg1); 
68          printf("%-20Y  %-6s %-3d -> %s\n", walltimestamp, this->mpt_name, cpu, 
69      this->event_text); 
70  }
72  sdt:mpt::handle-event-sync
73  /arg1 == 0x00000016/ 
74  { 
75  self->mpt = (mpt_t *)arg0; 
76   self->discovery = 1; 
77  }

79  fbt::mpt_handle_event_sync:return
80  /self->discovery/ 
81  { 
82          /* remove the PHY_BITS from the discovery status */ 
83          this->cond = self->mpt->m_discovery & 0x0000FFFF; 
84          this->cond_text = sas_discovery[this->cond] != NULL ? 
85  sas_discovery[this->cond] : lltostr(this->cond); 
86          printf("%-20Y  %-6s %-3d    -> discovery status: %s\n", walltimestamp, 
87   this->mpt_name, cpu, this->cond_text); 
88    self->mpt = 0; 
89   self->discovery = 0; 
90  }
92  sdt:mpt::device-status-change
93  { 
94  this->mpt = (mpt_t *)arg0; 
95          this->mpt_name = strjoin("mpt", lltostr(this->mpt->m_instance));
96   this->reason = arg2; 
97          this->reason_text = dev_stat[this->reason] != NULL ? 
98  dev_stat[this->reason] : lltostr(this->reason); 
99          printf("%-20Y  %-6s %-3d    -> device change: %s\n", walltimestamp, 
100   this->mpt_name, cpu, this->reason_text); 
101 printf("%-20Y  %-6s %-3d       wwn=%x\n", walltimestamp, 
102     this->mpt_name, cpu, arg3); 
103  }
105  sdt:mpt::event-sas-phy-link-status
106  { 
107  this->mpt = (mpt_t *)arg0; 
108          this->mpt_name = strjoin("mpt", lltostr(this->mpt->m_instance));
109  this->phynum = arg1; 
110          printf("%-20Y  %-6s %-3d    -> phy link status, phy=%d\n", 
111 walltimestamp, this->mpt_name, cpu, this->phynum); 
112  } 

Script mptevents.d
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The CPU ID is printed only as a reminder that the output may be a little shuf-
fled because of the way dtrace collects data from its per-CPU switch buffers for
printing; if this potential for shuffling was a problem, a time stamp field (in nano-
seconds) could be printed for postsorting. 

Example

While an application was busy writing to external storage on this system, there
were no specific mpt events occurring. To trigger some, we removed a disk from a
JBOD:

The output shows SAS_DEVICE_STATUS_CHANGE events in response to pulling
a disk; the reason code for the status change begins as INTERNAL_DEVICE_RESET
and finishes as NOT_RESPONDING.

mptlatency.d 

Finally, this section presents a short script to show latency by mpt SCSI command.

solaris# mptevents.d
TIME      MODULE CPU    EVENT 
2009 Dec 31 09:02:31  mpt0   1   -> SAS_DISCOVERY 
2009 Dec 31 09:02:31  mpt0   1      -> discovery status: SAS_DSCVRY_IN_PROGRESS
2009 Dec 31 09:02:31  mpt0   1   -> SAS_PHY_LINK_STATUS 
2009 Dec 31 09:02:31 mpt0   12     -> phy link status, phy=13 
2009 Dec 31 09:02:31  mpt0   1 -> SAS_DEVICE_STATUS_CHANGE 
2009 Dec 31 09:02:31  mpt0   1      -> device change: INTERNAL_DEVICE_RESET
2009 Dec 31 09:02:31  mpt0 1   wwn=500163600004db49 
2009 Dec 31 09:02:31  mpt0   1   -> SAS_DISCOVERY 
2009 Dec 31 09:02:31  mpt0   1      -> discovery status: SAS_DSCVRY_COMPLETE
2009 Dec 31 09:02:31 mpt2   7 -> phy link status, phy=13 
2009 Dec 31 09:02:31  mpt2   15  -> SAS_DISCOVERY 
2009 Dec 31 09:02:31  mpt2   15     -> discovery status: SAS_DSCVRY_IN_PROGRESS
2009 Dec 31 09:02:31  mpt2   15  -> SAS_PHY_LINK_STATUS 
2009 Dec 31 09:02:31  mpt2   15  -> SAS_DEVICE_STATUS_CHANGE
2009 Dec 31 09:02:31  mpt2   15     -> device change: INTERNAL_DEVICE_RESET
2009 Dec 31 09:02:31  mpt2 15  wwn=500163600015c7c9 
2009 Dec 31 09:02:31  mpt2   15  -> SAS_DISCOVERY 
2009 Dec 31 09:02:31  mpt2   15     -> discovery status: SAS_DSCVRY_COMPLETE
2009 Dec 31 09:02:31  mpt0   1 -> SAS_DEVICE_STATUS_CHANGE 
2009 Dec 31 09:02:31  mpt0   1      -> device change: CMPL_INTERNAL_DEV_RESET
2009 Dec 31 09:02:31  mpt0 1   wwn=500163600004db49 
2009 Dec 31 09:02:31  mpt2   15  -> SAS_DEVICE_STATUS_CHANGE
2009 Dec 31 09:02:31  mpt2   15     -> device change: CMPL_INTERNAL_DEV_RESET
2009 Dec 31 09:02:31  mpt2 15  wwn=500163600015c7c9 
2009 Dec 31 09:02:32  mpt2   15  -> SAS_DEVICE_STATUS_CHANGE
2009 Dec 31 09:02:32 mpt2   15     -> device change: NOT_RESPONDING 
2009 Dec 31 09:02:32  mpt2 15  wwn=500163600015c7c9 
2009 Dec 31 09:02:33  mpt0   1 -> SAS_DEVICE_STATUS_CHANGE 
2009 Dec 31 09:02:33  mpt0   1      -> device change: NOT_RESPONDING 
2009 Dec 31 09:02:33  mpt0 1   wwn=500163600004db49 
^C
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Script

Time stamps are already kept in the mpt_cmd_t such that they can be read in the
sdt:mpt::io-time-on-hba-non-a-reply probe to calculate command time. 

Example

This example has been trimmed to show just one distribution plot from the many
that were printed: 

1   #!/usr/sbin/dtrace -s 
2
3   dtrace:::BEGIN 
4   { 
5           /* See /usr/include/sys/scsi/generic/commands.h for the full list. */ 
6 scsi_cmd[0x00] = "test_unit_ready";
7   scsi_cmd[0x08] = "read"; 
8   scsi_cmd[0x0a] = "write"; 
9  scsi_cmd[0x12] = "inquiry"; 
10  scsi_cmd[0x17] = "release"; 
11  scsi_cmd[0x1a] = "mode_sense"; 
12 scsi_cmd[0x1b] = "load/start/stop";
13 scsi_cmd[0x1c] = "get_diagnostic_results";
14 scsi_cmd[0x1d] = "send_diagnostic_command";
15  scsi_cmd[0x25] = "read_capacity"; 
16  scsi_cmd[0x28] = "read(10)"; 
17  scsi_cmd[0x2a] = "write(10)"; 
18 scsi_cmd[0x35] = "synchronize_cache";
19  scsi_cmd[0x4d] = "log_sense"; 
20 scsi_cmd[0x5e] = "persistent_reserve_in";
21  scsi_cmd[0xa0] = "report_luns"; 
22  } 
23
24  sdt:mpt::io-time-on-hba-non-a-reply
25  { 
26  this->mpt = (mpt_t *)arg0; 
27 this->mpt_cmd = (mpt_cmd_t *)arg1; 
28
29          this->mpt_name = strjoin("mpt", lltostr(this->mpt->m_instance));
30          this->delta = (this->mpt_cmd->cmd_io_done_time - 
31   this->mpt_cmd->cmd_io_start_time) / 1000; 
32 this->code = *this->mpt_cmd->cmd_cdb;
33          this->cmd_text = scsi_cmd[this->code] != NULL ? 
34   scsi_cmd[this->code] : lltostr(this->code); 
35          @[this->mpt_name, this->cmd_text] = quantize(this->delta);
36  } 
37
38  dtrace:::END 
39  { 
40 printf("Command Latency (us):\n"); 
41          printa(@); 
42  } 

Script mptlatency.d

solaris# mptlatency.d
dtrace: script '/chapters/disk/sas/mptlatency.d' matched 3 probes 
^C
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The system was performing disk reads, whose latency as seen by mpt is shown
in a distribution plot. The latency values look very good, with a large distribution
in the 512-microsecond to 2-millisecond range.

Case Studies

In this section, we show applying some of the one-liners, scripts, and methods dis-
cussed in this chapter to specific instances of disk I/O analysis.

Shouting in the Data Center: A Personal Case Study (Brendan)

In December 2008, I used a DTrace-based tool called Analytics (see Chapter 14,
Analytics) to discover that shouting at disk arrays can cause significant disk I/O
latency. Bryan Cantrill (coinventor of DTrace) immediately filmed me doing this
and posted it online.18 Here I’ll show you how to measure the same effect using
DTrace scripting, should analytics not be available on your system.

The problem arises when vibrations (or shock) cause high I/O latency on
mechanical disk drives with rotating disk platters and seeking heads. If a disk
head moves slightly off-track during read, it may read incorrect data, fail the disk
sector CRC, and retry the read (perhaps by automatically repositioning the head to
slightly different locations in an attempt to realign); this may happen a number of
times before the disk successfully reads the data, causing higher-than-usual
latency. For writes, disks may be much more careful when detecting head misalign-
ment in order to prevent writing to the wrong location and corrupting data.

In the Shouting in the Datacenter video, I was testing maximum write performance
of two JBODs (arrays of disks) when I noticed that the overall throughput was
lower than expected. I investigated using DTrace-based analytics and discovered

CPU     ID            FUNCTION:NAME 
  8      2   :END Command Latency (us): 

  mpt0               read(10) 
           value ------------- Distribution ------------- count 
             256 |                   0 
             512 |@@@@@@@@@@@@@@@@@@@@@@                 277 
            1024 |@@@@@@@@@@@@@              161 
            2048 |@@@@@                61 
            4096 |                  0 
            8192 |                  1 
           16384 |                  0

18. This is available at www.youtube.com/watch?v=tDacjrSCeq4, where it has had more than
650,000 views, making it the most-watched video about Sun in the history of Sun Microsystems.

www.youtube.com/watch?v=tDacjrSCeq4
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that a single disk had high latency. I began to suspect vibration was the cause,
because it was missing a screw on the drive bracket and was loose. Then it began
to behave normally (same latency as other disks). Wanting to re-create the vibra-
tion issue, I hit upon the idea of shouting at it. That’s when I discovered that my
shout affected every disk in the array. Disks just don’t like being shouted at.

To detect this with DTrace, we need an effective way to identify occasional high
latency. Metrics such as average disk service time won’t do it: My disks were per-
forming thousands of disk I/Os, and a few slow ones would simply get lost in the
average. There is where quantize() and lquantize() come in handy.

I could DTrace this from any layer of the I/O stack, but I decided to stick to the
block device layer: It has the stable io provider. I’ll describe in the following sec-
tions how I wrote a custom script to show only the high latencies by disk device,
and I’ll also show how well the other scripts in this chapter identify the issue.

Workload

I had some unused SATA system disks that I could write over using the dd(1)
command:

While this write workload was running, I used iolatency.d to get an accurate
average I/O time:

The average IO time was 3.6 ms.

Perturbation

To perturb this workload, I shouted at the disk—twice—from a couple of inches.
First I shouted very loudly and then even louder—as loud as I possibly could. I
wish I could quantify how loud, but last time I used a decibel meter, I reached its

# dd if=/dev/zero of=/dev/rdsk/c0t0d0s0 bs=64k 

Warning

If you run this on a disk, it will erase all data!

solaris# iolatency.d
Tracing... Hit Ctrl-C to end. 
^C

  TYPE   PAGEIO     RESULT  COUNT     AVG(us)    TOTAL(ms) 
  phys-write             no    Success  1478        3588         5303 
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max. From that close, a shout can be so loud that I’ve heard it described as a per-
cussive shock wave rather than sound vibration.

Observation

During the shouts, I ran a few DTrace scripts from this chapter, plus one custom-
ized for this situation. iolatency.d isn’t suited for detecting this, because it gives
latency results in terms of averages, which can hide the severity of the slowest I/O. 

The average I/O latency has increased from 3.6 ms to 17.2 ms, almost five times
worse, so we have reason to be suspicious and investigate further.

rwtime.d shows read/write I/O latency:

solaris# iolatency.d

Tracing... Hit Ctrl-C to end. 
^C
  TYPE  PAGEIO     RESULT COUNT     AVG(us)    TOTAL(ms) 
  phys-read no    Success          18      10751          193 
  phys-write no    Success         536      17227         9233

solaris# rwtime.d
Tracing... Hit Ctrl-C to end. 
^C
   read I/O, us 

           value  ------------- Distribution ------------- count
            1024 |              0
            2048 |@@@@             2
            4096 |@@@@@@@@@@@@@                   6
            8192 |@@@@@@@@@@@@@                   6
           16384 |@@@@@@@@@             4
           32768 |             0

   write I/O, us 

           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@@                     96
            1024 |@@@@@               58
            2048 |@             7
            4096 |              0
            8192 |@@@@@@@@@@@@@@@@@@          216
           16384 |@@@@@@              73
           32768 |@             16
           65536 |             2
          131072 |                0
          262144 |                0
          524288 |                0
         1048576 |               2
         2097152 |               0

  average read I/O, us                 10793 
  average write I/O, us                  19236
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This effectively shows the problem with average latency: Although the average
measured here was 19.2 ms (at a slightly different interval than before), the distri-
bution plot for writes showed the outliers clearly—two writes in the one- to two-
second range.

The disklatency.d script can be used to identify the disk affected:

The data shows that sd0 was the affected disk.
Finally, shoutdetector.d is a custom script that shows only slow I/Os—those

longer than 500 ms. Unlike the previous scripts, which ran until Ctrl-C was hit,
this script prints output every second:

solaris# disklatency.d
Tracing... Hit Ctrl-C to end. 
[...]

   sd0 (227,0), us: 

           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@@@@       176
            1024 |@@@@@@@@@       148
            2048 |@             20
            4096 |              0
            8192 |@@@@@@@@@@@@@@      234
           16384 |@@@@@            81
           32768 |@             16
           65536 |             2
          131072 |                0
          262144 |                0
          524288 |                0
         1048576 |               2
         2097152 |                  0

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   inline int SLOWIO = 500;      /* millisecond threshould */ 
5
6   io:::start 
7   { 
8  start_time[arg0] = timestamp; 
9   } 
10
11  io:::done 
12  /(this->start = start_time[arg0]) && 
13      (this->delta_ms = (timestamp - this->start) / 1000000) && 
14      (this->delta_ms > SLOWIO)/ 
15  { 
16  @[args[1]->dev_statname] = lquantize(this->delta_ms, 0, 5000, 100); 
17   start_time[arg0] = 0; 
18  } 
19
20  profile:::tick-1sec 
21  { 
22  printf("%Y:", walltimestamp);
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Here’s the output:

Perfect—it’s showing only the data I’m interested in (the extremely slow I/O),
along with the disk name. This also shows that my second shout really was louder
than my first: The first caused a 1.0 second I/O, and the second caused a 1.6 sec-
ond I/O.

DTracing an Unfamiliar I/O Driver (SATA)

Although I had DTraced a wide variety of subsystems and applications before, I
had never used DTrace on SATA before writing this chapter. I had also never seen
the SATA source code nor knew how the internals worked. In less than a day, I had

23          printa(@); 
24          trunc(@); 
25  }

Script shoutdetector.d

# shoutdetector.d
2010 Jan  1 22:54:16: 
2010 Jan  1 22:54:17: 
2010 Jan  1 22:54:18: 
2010 Jan  1 22:54:19: 
2010 Jan  1 22:54:20: 
2010 Jan  1 22:54:21: 
2010 Jan  1 22:54:22: 
  sd0
           value  ------------- Distribution ------------- count
             900 |              0
            1000 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
            1100 |              0

2010 Jan  1 22:54:23: 
2010 Jan  1 22:54:24: 
2010 Jan  1 22:54:25: 
  sd0
           value  ------------- Distribution ------------- count
            1500 |              0
            1600 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
            1700 |              0

2010 Jan  1 22:54:26: 
2010 Jan  1 22:54:27: 
2010 Jan  1 22:54:28: 
2010 Jan  1 22:54:29: 
2010 Jan  1 22:54:30: 
2010 Jan  1 22:54:31: 
2010 Jan  1 22:54:32: 
2010 Jan  1 22:54:33: 
2010 Jan  1 22:54:34: 
2010 Jan  1 22:54:35: 
2010 Jan  1 22:54:36: 
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figured this all out and had written most of the scripts included in the “SATA” sec-
tion. The secret isn’t superhuman powers (or superstrong coffee) but rather an
effective strategy for approaching unfamiliar drivers or subsystems and gaining
quick familiarity with them. In the following sections, I’ve documented exactly how
I did it, as a case study for DTracing the unknown. This isn’t the only way to do
this, but it is one effective strategy that may serve you well.

Documentation

I started by searching for some high-level documentation for SATA to get a basic
understanding of its purpose and terminology. I also looked for functional dia-
grams to understand how it fits into the bigger picture. The functional diagram in
the “SATA Scripts” section is exactly what I was looking for, but I couldn’t find
anything like it at the time.

I checked the following sources for driver documentation:

Man pages (kernel drivers often have them)

Internet search engines

Solaris Internals (McDougall and Mauro, 2006)

Comments in driver source code

I reached for the source code, not to read the code itself but to look for the large
descriptive block comments, often found at the top of source files, which some-
times include functional diagrams.

I was eventually able to figure out the functional diagram for the SATA drivers,
as shown in Figure 4-9.

Figure 4-9 SATA stack 
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Stable Providers

I checked whether DTrace had a stable provider for SATA yet; it doesn’t. You can
check for stable providers in the “Providers” section of the DTrace Guide.19

If a stable provider exists, the provider documentation will likely contain example
scripts that can be run immediately, which would work on any OS that had that provider.

Unstable Providers: sdt

Without a stable provider, I next checked the sdt (statically defined tracing) pro-
vider. If any sdt probes exist, they are likely to be interesting, because someone
would have added them specifically for use by DTrace—they may also be reason-
ably stable. Engineers try not to change sdt probes, because that would break
DTrace scripts based on them, but will if they need to20 (and are allowed to, since
it isn’t a committed stable provider).

I knew that these kernel drivers are called sata and nv_sata, so I could specify
that as the module name and attempt to list probes from the sdt provider:

The grep search command works fine too:

This picked up an extra probe from the mpt driver.

19. This is currently at http://wikis.sun.com/display/DTrace/Providers.

20. I recently changed sdt:::arc-miss for CR 6876733: “sdt:::arc-hit and sdt:::arc-miss pro-
vide inconsistent args[0].”

solaris# dtrace -ln 'sdt:sata::,sdt:nv_sata::'
   ID   PROVIDER    MODULE    FUNCTION NAME 
dtrace: failed to match sdt:sata::: No probe matches description 
30987        sdt     nv_sata nv_sgp_error sgpio-error 
30988        sdt     nv_sata nv_sgp_locate sgpio-locate 
30989        sdt       nv_sata       nv_sgp_drive_active sgpio-active 
30990        sdt        nv_sata     nv_sgp_activity_led_ctl sgpio-new-led-
state
30991        sdt        nv_sata     nv_sgp_activity_led_ctl sgpio-activity-
state
30992        sdt     nv_sata  nv_sgp_init sgpio-cmd

solaris# dtrace -ln 'sdt:::' | grep sata 
36362        sdt       mpt   mpt_ioctl report-phy-sata 
30987        sdt     nv_sata nv_sgp_error sgpio-error 
30988        sdt     nv_sata nv_sgp_locate sgpio-locate 
30989        sdt       nv_sata       nv_sgp_drive_active sgpio-active 
30990        sdt        nv_sata     nv_sgp_activity_led_ctl sgpio-new-led-
state
30991        sdt        nv_sata     nv_sgp_activity_led_ctl sgpio-activity-
state
30992        sdt     nv_sata  nv_sgp_init sgpio-cmd

http://wikis.sun.com/display/DTrace/Providers
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So, there are sdt probes available, but only for the nv_sata driver, not sata. I’d
rather write scripts based on the generic sata driver, because they are more likely
to work elsewhere (systems with SATA HBAs that aren’t nv_sata). But I decided to
check out these sdt probes first; they were probably more stable.

Frequency Count sdt

To quickly get familiar with these sdt probes, I started by applying a simple known
workload to see what probes would fire. I used the dd(1) command to perform
10,000 reads from a SATA disk:

While using DTrace to frequency count which sdt probes fired:

I hoped to find a probe corresponding to the known workload of 10,000 reads.
This showed that the sgpio-active probe fired 10,017 times. sgpio-active?
That name didn’t seem promising, but perhaps it could be used to trace I/O anyway.

I knew I was unlikely to find any documentation for this SDT probe outside of
the kernel source code. To find where it lives in the source, I read the FUNCTION
field in the previous dtrace -l outputs, which showed that it is in the nv_sgp_
drive_active() function.

This function is in uts/common/io/sata/adapters/nv_sata/nv_sata.c
and is as follows:

solaris# dd if=/dev/rdsk/c3t0d0s0 of=/dev/null bs=8k count=10000
1000+0 records in 
1000+0 records out

solaris# dtrace -n 'sdt:nv_sata:: { @[probename] = count(); }'
dtrace: description 'sdt:nv_sata:: ' matched 6 probes 
^C

  sgpio-activity-state                  164 
  sgpio-new-led-state                  164 
  sgpio-active                 10017

6948 /* 
6949  * nv_sgp_drive_active 
6950  * Sets the flag used to indicate that the drive has been accessed and the 
6951  * LED should be flicked off, then on.  It is cleared at a fixed time 
6952  * interval by the LED taskq and set by the sata command start. 
6953  */ 
6954 static void 
6955 nv_sgp_drive_active(nv_ctl_t *nvc, int drive) 
6956 { 
6957   nv_sgp_cmn_t *cmn; 
6958
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The description shows that this function controls the blinking of the drive LED.
The DTrace probe is on line 6963 and shows the arguments it provides: drive,
which is of type int. This was not what I was after. Had it been a pointer to a
structure, there might have been many useful members to read that might help me
identify the SATA command, SCSI command, HBA details, and so on. There wasn’t
much I could do with this one integer, apart from the following:

So, although I couldn’t use sdt to trace read I/O (remember, nothing other than
the LED probe fired ~10,000 times during my experiment), perhaps one of the
other probes would be useful, for example for tracing error events. After reading
the comments above these functions, I found that most of the others are also for
tracing LED activity (sgpio-error is for the error LED!). And I never saw
sgpio-cmd fire, even when physically swapping SATA disks.

Unstable Providers: fbt

The fbt (function boundary tracing) provider traces entry and returns from kernel
functions. This checks what function entry probes fbt can see for the sata and
nv_sata drivers:

6959         if (nv_sgp_check_set_cmn(nvc) == NV_FAILURE) 
6960                 return; 
6961  cmn = nvc->nvc_sgp_cmn; 
6962
6963 DTRACE_PROBE1(sgpio__active, int, drive); 
6964
6965  mutex_enter(&cmn->nvs_slock);
6966         cmn->nvs_activity |= (1 << drive); 
6967  mutex_exit(&cmn->nvs_slock);
6968 }

# dtrace -qn 'sgpio-active { printf("drive %d just blinked its LED!\n", arg0); }' 
drive 2 just blinked its LED! 
drive 2 just blinked its LED! 
drive 2 just blinked its LED! 
drive 2 just blinked its LED! 
^C

solaris# dtrace -ln 'fbt:sata::entry,fbt:nv_sata::entry'
   ID   PROVIDER    MODULE               FUNCTION NAME 
65557        fbt          sata sata_trace_rbuf_alloc entry 
65559        fbt         sata sata_trace_rbuf_free entry 
65561        fbt           sata     sata_validate_sata_hba_tran entry 
65563        fbt         sata  sata_scsi_tgt_init entry 
65565        fbt         sata sata_scsi_tgt_probe entry 
65567        fbt         sata  sata_scsi_tgt_free entry 
65569        fbt        sata   sata_scsi_start entry 
65571        fbt        sata   sata_scsi_reset entry 
65573        fbt        sata   sata_scsi_abort entry 

continues
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That’s 259 probes, representing 259 kernel functions that make up the sata and
nv_sata providers. Some of these functions would likely fire for the events I was
interested in: read/write I/O, other SATA commands, SCSI commands, and so on.
Some of the function arguments might also point to interesting data, such as SATA
command types, SATA command errors, I/O sizes, and device details. However, I
didn’t know the functions or the arguments, and they weren’t likely to be docu-
mented beyond the source code. And I couldn’t find any examples of using fbt to
DTrace SATA on the Internet. I was on my own.

I could bring up the SATA code and start reading through it, to know what to
use fbt with. But I didn’t even know where to start reading. The SATA code is
more than 20,000 lines, and the nv_sata code is 7,000 lines, which could take days
to read through. It’s often quicker to use DTrace to see which probes fire and start
with those functions. 

Frequency Count fbt

My experiment was a known workload of 10,000 reads to a SATA disk, as I did pre-
viously with the sdt provider. I would also physically swap some disks to trigger
other SATA events.

The output was as follows:

65575        fbt        sata   sata_scsi_getcap entry 
65577        fbt        sata   sata_scsi_setcap entry 
[...]
solaris# dtrace -ln 'fbt:sata::entry,fbt:nv_sata::entry' | wc -l 
     260

solaris# dtrace -n 'fbt:sata::entry,fbt:nv_sata::entry
{ @[probemod, probefunc] = count(); }
    END { printa("  %-10s %-40s %@10d\n", @); }'
dtrace: description 'fbt:sata::entry,fbt:nv_sata::entry ' matched 260 probes 

CPU     ID            FUNCTION:NAME 
 11      2                  :END
   sata       sata_set_cache_mode                        1 
   nv_sata    nv_abort_active                   2 
   nv_sata    nv_monitor_reset                  2 
[...truncated...]
   nv_sata    nv_start_nodata                 125 
   sata       sata_txlt_write                 189 
   nv_sata    nv_sgp_csr_read                 574 
   nv_sata    nv_sgp_csr_write                 574 
   nv_sata    nv_sgp_write_data           574 
   sata       sata_txlt_read                 10009 
   nv_sata    nv_bm_status_clear              10185 
   nv_sata    nv_intr_dma                  10185 
   nv_sata    nv_start_dma                 10185 
   nv_sata    nv_start_dma_engine              10185 
   sata       sata_txlt_rw_completion            10185 
   sata       sata_dma_buf_setup                     10218 
   sata sata_adjust_dma_attr                     10220 
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I started by identifying the I/O probes, trying to identify the highest-level probes
first. For SATA, this would be a probe (or probes) to trace the issuing of SATA com-
mands, and probes for the response.

Since I assumed21 that I had issued 10,000 disk I/Os via SATA, I started by
looking at probes that fired around 10,000 times. Twenty-seven such probes are
listed, some of which look promising: Their names are as generic as possible (for
example, sata_start and sata_done). For command start, there is nv_start_
common, sata_hba_start, and nv_sata_start. For a command completion
probe, there is nv_complete_io but nothing obvious in the SATA layer. 

The possibilities I’ve found are as follows:

SATA command start: nv_start_common(), sata_hba_start(), and
nv_sata_start()

SATA command completion: nv_complete_io()

   nv_sata    nv_start_async                 10302 
   nv_sata    mcp5x_packet_complete_intr                 10314 
   nv_sata    nv_complete_io                 10314 
   nv_sata    nv_program_taskfile_regs                 10316 
   nv_sata    nv_sgp_drive_active              10316 
   nv_sata    nv_start_common           10316 
   nv_sata    nv_wait                  10316 
   sata       sata_hba_start                 10320 
   nv_sata    nv_copy_registers               10324 
   sata sata_scsi_destroy_pkt                    10328 
   nv_sata    nv_sata_start                 10329 
   sata       sata_scsi_init_pkt                     10330 
   sata       sata_pkt_free                 10337 
   sata       sata_pkt_alloc                 10339 
   sata       sata_txlt_generic_pkt_info                10339 
   sata       sata_scsi_start           10341 
   sata       sata_common_free_dma_rsrcs                10363 
   sata       sata_validate_sata_address                10428 
   sata       sata_validate_scsi_address                10428 
   nv_sata    mcp5x_intr                  27005 
   nv_sata    nv_read_signature               27437 
   nv_sata    nv_sgp_drive_disconnect             27439 
   nv_sata    nv_sgp_check_set_cmn              37763 
   sata sata_get_device_info                     51551 
   nv_sata    mcp5x_intr_port                54009

21. While I used dd to cause 10,000 read I/Os on the /dev/rdsk path, I don’t know for certain
that these were still 10,000 read I/Os by the time SATA issued them. SATA could split I/Os
into smaller sizes to overcome hardware bus or buffer limitations. It could also be clever and
aggregate I/Os into larger sizes. This is why I chose 10,000 as a count and not, say, 100. If my
10,000 events are doubled or halved or whatever, they are still likely to amount to a large
count that should stand out above the noise.
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Examine Stack Backtraces: I/O Start

To understand the relationships among these functions, I could examine stack
backtraces. Since I wanted to capture as much of the stack backtrace as possible,
for the start probe I started at the nv_sata layer—its stack backtrace should
include the sata layer:

The stack included here was the longest visible stack backtrace, showing that
nv_start_common() is deep in the code path. I could also see that sata_hba_
start() calls nv_sata_start(), which calls another function and then nv_
start_common().

The point of tracing at nv_sata shown earlier was simply to get a long illustra-
tive stack trace, which I succeeded in doing. Now I wanted to pick a function to
actually trace, which would preferably be in the generic sata driver and not spe-
cific to nv_sata (Nvidia SATA HBA). Examining the other stack frames showed
that both sata_hba_start() and sata_scsi_start() were common to all
stacks and  in the sata layer.

Examine Stack Backtraces: I/O Done

For the I/O completion probe, I used a different strategy. I didn’t want to show
stack traces from nv_sata, since that would show the shortest, not the longest,
stack this time:

solaris# dtrace -x stackframes=100 -n 
'fbt::nv_start_common:entry,fbt::nv_sata_start:entry
{ @[probefunc, stack()] = count(); }' 
[...]
  nv_start_common

   nv_sata`nv_start_async+0x74
   nv_sata`nv_sata_start+0x132
  sata`sata_hba_start+0x112

   sata`sata_txlt_read+0x412
   sata`sata_scsi_start+0x38b
   scsi`scsi_transport+0xb5 
    sd`sd_start_cmds+0x2e8 
   sd`sd_core_iostart+0x186 
   sd`sd_mapblockaddr_iostart+0x306
   sd`sd_xbuf_strategy+0x50 
    sd`xbuf_iostart+0x1e5 
   sd`ddi_xbuf_qstrategy+0xd3
    sd`sdstrategy+0x101 
   genunix`default_physio+0x3cb
    genunix`physio+0x25 
    sd`sdread+0x16b 
    genunix`cdev_read+0x3d 
    specfs`spec_read+0x233 
    genunix`fop_read+0xa7 
    genunix`read+0x2b8 
    genunix`read32+0x22 
   unix`sys_syscall32+0x101 

              100
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The stack backtrace can show only where a thread has been, and on the return
path it is beginning from nv_sata, so there isn’t much stack backtrace to see yet. I
need to trace from sata or higher.

Back in step 6, I never found anything obvious from the sata driver for the com-
pletion events. I could try a couple of other ways to find it.

Experimentation

I expected a completion event to have nv_complete_io() in its stack trace and
be fired around 10,000 times for my experiment. I frequency counted all functions
and stack traces from the sata layer and started by eyeballing the output for some-
thing containing nv_complete_io() in its stack:

solaris# dtrace -n 'fbt::nv_complete_io:entry { @[stack()] = count(); }' 
dtrace: description 'fbt::nv_complete_io:entry ' matched 1 probe 
^C

  nv_sata`mcp5x_packet_complete_intr+0xbd
   nv_sata`mcp5x_intr_port+0x8a
    nv_sata`mcp5x_intr+0x45
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

            10005

solaris# dtrace -x stackframes=100 -n 'fbt:sata::entry 
{ @[probefunc, stack()] = count(); }' 
dtrace: description 'fbt:sata::entry ' matched 179 probes 
^C
[...]
  sata_pkt_free

   sata`sata_scsi_destroy_pkt+0x3f
   scsi`scsi_destroy_pkt+0x21
   sd`sd_destroypkt_for_buf+0x20
   sd`sd_return_command+0x1c3
    sd`sdintr+0x58d 
   scsi`scsi_hba_pkt_comp+0x15c
  sata`sata_txlt_rw_completion+0x1d3

    nv_sata`nv_complete_io+0x7f
  nv_sata`mcp5x_packet_complete_intr+0xbd

   nv_sata`mcp5x_intr_port+0x8a
    nv_sata`mcp5x_intr+0x45
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

            10000 
[...]
  sata_txlt_rw_completion

nv_sata`nv_complete_io+0x7f
  nv_sata`mcp5x_packet_complete_intr+0xbd

   nv_sata`mcp5x_intr_port+0x8a
    nv_sata`mcp5x_intr+0x45
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

            10003



ptg

282 Chapter 4 � Disk I/O

I truncated the output down to the two most interesting stacks for probes that
fired around 10,000 times. I looked for stacks containing nv_sata in the stack,
which identifies the I/O completion path. I also looked for generic function names.

sata_txlt_rw_completion() looked like it would work, but perhaps only for
SATA read/write commands (is that what the rw means? I could check the source
code to find out). I wanted to identify a return probe for all SATA commands,
whether read/write I/O or other type. sata_pkt_free(), which frees the sata
packet, might work for everything. This sounded better: It would happen near the
end of the completion code path (after processing of the packet is done) and should
match both read/write and other commands. A drawback is that it might catch
packets that were never actually sent but errored before reaching nv_sata and the
packets themselves were freed.

Source Code

Another way to see how we return from the sata driver to nv_sata is to start read-
ing the source code from the nv_complete_io() function to see how it gets there.

From uts/common/io/sata/adapters/nv_sata/nv_sata.c, here’s the output:

The function call is on line 3600, which is C syntax for calling a function from a
“function pointer.” These make reading the code very difficult, since on line 3600
we can’t read what function was called but only the variable satapkt_comp that
contained the function. I could search the code to see where the satapkt_comp
function was set. This found only two possibilities:

I’d already found the first one by experimentation, but I hadn’t yet discovered
sata_txlt_atapi_completion(). I could stop right there and trace SATA com-
pletion events by tracing both of those functions, provided their arguments were
useful enough. Or I could keep reading through the code to see whether all paths

3567 static void 
3568 nv_complete_io(nv_port_t *nvp, sata_pkt_t *spkt, int slot) 
3569 { 
[...]
3598         if (spkt->satapkt_comp != NULL) { 
3599      mutex_exit(&nvp->nvp_mutex);
3600      (*spkt->satapkt_comp)(spkt);
3601      mutex_enter(&nvp->nvp_mutex);
3602         }

spx->txlt_sata_pkt->satapkt_comp = sata_txlt_rw_completion;

spx->txlt_sata_pkt->satapkt_comp = sata_txlt_atapi_completion;
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led to something more generic so that I could dtrace everything with just one
probe—instead of two. I already suspected from experimentation that all roads
eventually led to sata_pkt_free().

Now I had two possibilities for DTracing the completion of SATA commands:

Trace both sata_txlt_rw_completion() and sata_txlt_atapi_
completion()

Trace sata_pkt_free(), and be careful  not to count packets that were 
never sent

Their arguments might provide the tie-breaker.

Examine Function Arguments

Back to the SATA command start probe. So far, I’d found two possible functions to
pick from in sata: sata_scsi_start() and sata_hba_start(). I turned to the
source code of the sata driver to see which had the best information in its argu-
ments, which are DTraceable as args[]:

Interesting. Since sata_scsi_start() is highest in the stack backtrace, it is
executed first in the sata driver and doesn’t have any sata information yet in its
arguments, only scsi information. (If I wanted to trace scsi information, I’d usually
move further up the stack into scsi or sd.) sata_hba_start() is called deeper
and has sata_pkt_txlate_t, which looks more promising. It is defined in uts/
common/sys/sata/impl/sata.h as:

Excellent—the top three members to this function looked as if they would pro-
vide HBA instance information, SCSI packet information, and SATA packet infor-
mation, which is everything I really wanted. I read the definitions for those data
types and found the following:

static int sata_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt) 
static int sata_hba_start(sata_pkt_txlate_t *spx, int *rval)

typedef struct sata_pkt_txlate { 
        struct sata_hba_inst    *txlt_sata_hba_inst;
        struct scsi_pkt         *txlt_scsi_pkt; 
        struct sata_pkt         *txlt_sata_pkt; 
        ddi_dma_handle_t txlt_buf_dma_handle;
        uint_t      txlt_flags;   /* data-in / data-out */ 
        uint_t      txlt_num_dma_win; /* number of DMA windows */ 
        uint_t       txlt_cur_dma_win; /* current DMA window */ 
[...]
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The two members that looked most interesting there were satapkt_cmd for the
SATA command itself and satapkt_reason for the reason the command returned
(success or error).

I could search the source code to see how these arguments are processed and
what they mean. But first I performed a quick experiment with a known workload
to see how they looked. I started with satapkt_reason, because it’s just an int,
and “completion reason” sounded like it could be interesting—it might tell me why
commands completed (success or error):

So, satapkt_reason of 0 occurred 10,026 times, and 2 occurred once. I didn’t
know what these codes meant, but I could search the sata driver source to see how
it processes them. Searching for the text satapkt_reason, I found examples like
this:

This is from uts/common/io/sata/impl/sata.c. On line 6534, we can see that
satapkt_reason is compared with the constant SATA_PKT_COMPLETED. Search-
ing for that constant finds it defined in /usr/include/sys/sata/sata_hba.h:

struct sata_pkt { 
        int  satapkt_rev;      /* version */ 
        struct sata_device satapkt_device;  /* Device address/type */ 

        /* HBA driver private data */ 
        void *satapkt_hba_driver_private;

        /* SATA framework priv data */ 
        void *satapkt_framework_private;

        /* Rqsted mode of operation */ 
        uint32_t        satapkt_op_mode; 

        struct sata_cmd satapkt_cmd;   /* composite sata command */ 
        int             satapkt_time;  /* time allotted to command */ 
        void    (*satapkt_comp)(struct sata_pkt *); /* callback */ 
        int  satapkt_reason;    /* completion reason */ 
};

solaris# dtrace -n 'fbt::sata_hba_start:entry
{ @[args[0]->txlt_sata_pkt->satapkt_reason] = count(); }' 
dtrace: description 'fbt::sata_hba_start:entry ' matched 1 probe 
^C

        2                1 
        0            10026

6534         if (sata_pkt->satapkt_reason == SATA_PKT_COMPLETED) { 
6535      /* Normal completion */
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These defines can serve as a lookup table of codes to descriptions. Here we can
see that 0 means “No error,” and 2 means “Not accepted, queue full.” This list also
confirmed my suspicion about the satapkt_reason code—it is interesting.

DTrace has access to the integer code; I’d rather it printed out a descriptive
string. The previous table could be converted into an associative array to be used
in DTrace programs for translation, or I could convert it to a translator file. To try
the associative array approach, I saved the defines into a file called reasons.h
and converted it using sed:22

The script satareasons.d demonstrates using such a translation table to print
out command completion reasons.

satapkt_reason was just an integer. Another interesting member would be
the SATA command itself, satapkt_cmd, but that is a struct that turned out to be
somewhat complex to unravel. Remember, the driver code processes it, so I do have
examples to pick through.

Latency

I/O latency is extremely important for performance analysis, but it’s rare to find I/O
latency precalculated and ready to be fetched from a function argument. I often
need to calculate this myself, by tracing two events (start and done) and calcu-
lating the delta (done_time – start_time). The trick is associating the events
together in one DTrace action block so that I have both times available to perform
that calculation.

#define SATA_PKT_BUSY               -1      /* Not completed, busy */ 
#define SATA_PKT_COMPLETED  0       /* No error */ 
#define SATA_PKT_DEV_ERROR            1     /* Device reported error */ 
#define SATA_PKT_QUEUE_FULL             2     /* Not accepted, queue full */ 
#define SATA_PKT_PORT_ERROR             3     /* Not completed, port error */ 
[...]

# sed 's/[^0-9-]*/    sata_reason[/;s: */\* :] = ":;s: ..$:";:' reasons.h
        sata_reason[-1] = "Not completed, busy"; 

sata_reason[0] = "No error"; 
        sata_reason[1] = "Device reported error"; 
        sata_reason[2] = "Not accepted, queue full"; 
        sata_reason[3] = "Not completed, port error"; 
[...]

22. It can be handy to know sed programming for times like this, but it’s really not necessary;
the same conversion could have been done by hand in a text editor in a minute or two.
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I can’t use a global variable to store the start time, because many I/Os may be
in-flight concurrently and can’t share the same variable. Thread-local variables
can’t be used either: The completion event is usually on a different thread than the
start event. Associative arrays can be used as long as I can find a unique key to
store the start time against, a key that is available to both the start and done
functions.

For the start function, one option was sata_hba_start():

And for completion, here’s sata_pkt_free():

Ideally, an argument would be something like “unique ID for this I/O com-
mand,” which I’d pull from the args[] array and use as a key in an associative
array. I didn’t see it. They both do have sata_pkt_txlate_t as args[0], so per-
haps an ID was in there:

I didn’t see an ID member, but I did have the next best thing: The comment says
that sata_pkt_txlate is for the packet. This isn’t some data type shared by oth-
ers; it’s unique for the packet. So, I could use the memory address of this data type
as my unique ID. The memory address is unique: Two variables can’t store data on
the same memory address. It’s not as good as a unique ID, since the packet could
be relocated in memory during the I/O, changing the ID. But that’s unlikely, for a
couple of reasons:

static int sata_hba_start(sata_pkt_txlate_t *spx, int *rval) ;

static void sata_pkt_free(sata_pkt_txlate_t *spx) ;

/*
 * sata_pkt_txlate structure contains info about resources allocated 
 * for the packet 
 * Address of this structure is stored in scsi_pkt.pkt_ha_private and 
 * in sata_pkt.sata_hba_private fields, so all three strucures are 
 * cross-linked, with sata_pkt_txlate as a centerpiece. 
 */ 

typedef struct sata_pkt_txlate { 
        struct sata_hba_inst    *txlt_sata_hba_inst;
        struct scsi_pkt        *txlt_scsi_pkt; 
        struct sata_pkt        *txlt_sata_pkt; 
[...]
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Moving packet data around memory is a performance-expensive operation 
(memory I/O). The kernel stack is optimized for the opposite—“zero copy”—
trying to avoid moving data around memory if at all possible.

If an I/O is in-flight and the kernel changes the packet memory location, it 
would need to change all the other variables that refer to it, including inter-
rupt callbacks. This could be difficult to do and would be avoided if possible.

So, I decided to try using the spx variables themselves as the unique ID to start
with:

Available either as args[0] or even arg0—the uint64_t version—since I
wasn’t referencing it to walk its members, but rather to refer to the memory
address itself. If I hit a problem, I could try some of the other packet unique mem-
ory addresses in sata_pkt_txlate, such as txlt_scsi_pkt and txlt_sata_
pkt.

I was now ready to try writing a basic DTrace script for measuring SATA com-
mand latency, latency.d:

Line 9 ensured that this packet was seen on sata_hba_start() and had its
time stamp recorded (checking whether that key has a nonzero value). This also
neatly solved the earlier concern with sata_pkt_free(). The possibility of it
tracing invalid packets that were never sent to the HBA.

static int sata_hba_start(sata_pkt_txlate_t *spx, int *rval) ;
static void sata_pkt_free(sata_pkt_txlate_t *spx) ;

1  #!/usr/sbin/dtrace -s 
2
3  fbt::sata_hba_start:entry
4  { 
5  start_time[arg0] = timestamp; 
6  } 
7
8  fbt::sata_pkt_free:entry 
9  /start_time[arg0]/ 
10  { 
11          this->delta = (timestamp - start_time[arg0]) / 1000; 
12          @["Average SATA time (us):"] = avg(this->delta); 
13   start_time[arg0] = 0; 
14  }

Script sata_latency.d
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Testing

DTrace makes it easy to create statistics that appear useful, but under closer scru-
tiny creates more questions than answers, for example, measuring too few or too
many I/Os for different workloads. It’s crucial to double-check everything.

Given latency.d, I now performed sanity tests to see whether this latency
looked correct. Here I performed random read I/O to a SATA disk and first checked
latency with the system tool iostat(1M):

I was getting average service times of 12.3 ms.
Running the latency.d script, here’s the output:

This also showed 12.3 ms—a perfect match (for this workload, anyway).
While I was getting the same information from iostat(1M) at the moment, I

could customize latency.d in any direction desirable: showing latency as distri-
bution plots, showing it for some types of SATA or SCSI commands only, and so on.

I repeated such testing for all the probes and arguments I used and brain-
stormed which different workload types might be processed differently by the
driver to ensure that my driver-dependent, fbt-based script still handles them. (I
spend much more time testing DTrace scripts than I ever do writing them. As the
saying goes, “If it isn’t tested, it doesn’t work.”)

Read the Source

At this point, I browsed through the source code to see whether I’d missed any-
thing and to double-check that the functions I was tracing made sense. I checked
block comments, function names, any calls for system logging or debug logging
(since they are often descriptive and placed at logical points in the code), and any-
thing else that looked interesting. I might have spotted procedures custom to this
driver that I wouldn’t normally think of tracing. I might also have seen special
case functions for a particular type of I/O that I hadn’t tested yet.

# iostat -xnz 5
[...]

extended device statistics
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device 
   81.0    0.0  648.0   0.0  0.0  1.0    0.0   12.3   0  99 c3t1d0

# latency.d
dtrace: script '/chapters/disk/sata/latency.d' matched 2 probes 
^C

  Average SATA time (us):                  12342
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Browsing the source, I realized I’d made an incorrect assumption. I’d assumed
that sata_hba_start() would trace all SATA commands issued to the SATA
HBA. sata_hba_start() sends SATA commands using the following:

SATA_START_FUNC is a macro to ask the driver from sata_hba_inst to call its
transport function, which is stored in the sata_tran_start member:

 The question was, do any other functions in SATA call SATA_START_FUNC and
bypass sata_hba_start()? If so, I couldn’t trace all SATA commands with
sata_hba_start() alone.

By searching for SATA_START_FUNC in sata.c, I discovered that there were
several other functions that called it, such as sata_set_dma_mode() and sata_
set_cache_mode(). These events are uncommon, which is why I hadn’t spotted
the discrepancy in testing.

I began by adding the several other functions to my latency script so that it
matched the beginning of all SATA commands. It started to become complex, so I
searched for and found an alternative: the sata_tran_start member, which
points to the specific SATA HBA start function. Although it is relative to the SATA
HBA driver (nv_sata, ahci, and so on), there is only one such function for each,
and it has the same arguments. Seaching the kernel code showed that they were as
follows:

So, instead of tracing the several sata functions that may call sata_tran_
start, I could trace the specific sata_tran_start functions themselves, such as
nv_sata_start() and ahci_tran_start(). This made the DTrace script eas-
ier (fewer and simpler probes) but made it dependent on the SATA HBAs that it
specifies. See the satalatency.d script for the final solution I wrote for this,
which included the following:

stat = (*SATA_START_FUNC(sata_hba_inst))(SATA_DIP(sata_hba_inst),
   spx->txlt_sata_pkt);

#define SATA_START_FUNC(sata_hba_inst) \ 
        sata_hba_inst->satahba_tran->sata_tran_start

stran.sata_tran_start = nv_sata_start; 
        sata_hba_tran->sata_tran_start = ahci_tran_start;
[...]
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Conclusion

With any luck, your DTracing experiences will end with the second step: the dis-
covery of a stable provider for the target of interest. But if one does not exist, there
is much more that can be done, as shown by this case study.

Summary

This chapter showed many ways to observe useful disk I/O details using DTrace, at
different layers of the I/O subsystem. Many of these scripts print statistics that
were previously difficult or impossible to see without installing debug drivers or
using tunables. With DTrace, you have the power to observe the entire disk I/O
subsystem instantly, on demand, in production, and without installing custom
drivers or rebooting.

The most important lesson from this chapter is that DTrace can observe all of
these I/O subsystem components, in as much detail as needed. The last 80 pages
showed numerous examples of this, not just as demonstrations of useful tools but
also to illustrate the scope of DTrace. Our main objective here is simply to show
you that it is possible to observe these details—even if you forget the specifics of
how (you can refer to this book later) and even if all the fbt-based scripts stop
working (you can try fixing them or find updates on the Web23).

/*
 * Trace SATA command start by probing the entry to the SATA HBA driver.  Four 
 * different drivers are covered here; add yours here if it is missing. 
 */ 
fbt::nv_sata_start:entry,
fbt::bcm_sata_start:entry,
fbt::ahci_tran_start:entry,
fbt::mv_start:entry
{

start[arg1] = timestamp; 
}

23. And we may add stable providers for SCSI, SATA, and so on, so that these scripts can be
written once and will always work.
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5
File Systems

File systems—an integral part of any operating system—have long been one of the
most difficult components to observe when analyzing performance. This is largely
because of the way file system data and metadata caching are implemented in the
kernel but also because, until now, we simply haven’t had tools that can look into
these kernel subsystems. Instead, we’ve analyzed slow I/O at the disk storage layer
with tools such as iostat(1), even though this is many layers away from applica-
tion latency. DTrace can be used to observe exactly how the file system responds to
applications, how effective file system tuning is, and the internal operation of file
system components. You can use it to answer questions such as the following.

What files are being accessed, and how? By what or whom? Bytes, I/O counts? 

What is the source of file system latency? Is it disks, the code path, locks? 

How effective is prefetch/read-ahead? Should this be tuned? 

As an example, rwsnoop is a DTrace-based tool, shipping with Mac OS X and
OpenSolaris, that you can use to trace read and write system calls, along with the
filename for file system I/O. The following shows sshd (the SSH daemon) accept-
ing a login on Solaris: 

# rwsnoop
  UID    PID CMD       D   BYTES FILE 
    0 942611 sshd     R      70 <unknown> 
    0 942611 sshd    R       0 <unknown> 

continues
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Unlike iosnoop from Chapter 4, Disk I/O, the reads and writes shown previ-
ously may be served entirely from the file system in-memory cache, with no need
for any corresponding physical disk I/O.

Since rwsnoop traces syscalls, it also catches reads and writes to non–file sys-
tem targets, such as sockets for network I/O (the <unknown> filenames). Or
DTrace can be used to drill down into the file system and catch only file system I/O,
as shown in the “Scripts” section.

Capabilities

The file system functional diagram shown in Figure 5-1 represents the flow from user
applications, through the major kernel subsystems, down to the storage subsystem.
The path of a data or metadata disk operation may fall into any of the following:

1. Raw I/O (/dev/rdsk) 

2. File system I/O 

3. File system ops (mount/umount) 

4. File system direct I/O (cache bypass) 

5. File system I/O 

6. Cache hits (reads)/writeback (writes) 

7. Cache misses (reads)/writethrough (writes) 

8. Physical disk I/O

    0 942611 sshd    R    1444 /etc/gss/mech 
    0 942611 sshd   R       0 /etc/gss/mech 
    0 942611 sshd   R  0 /etc/krb5/krb5.conf 
    0 942611 sshd   R    1894 /etc/crypto/pkcs11.conf 
    0 942611 sshd  R 0 /etc/crypto/pkcs11.conf 
    0 942611 sshd   R 336 /proc/942611/psinfo 
    0 942611 sshd   R 553 /etc/nsswitch.conf 
    0 942611 sshd   R  0 /etc/nsswitch.conf 
    0 942611 sshd   R 916 /var/ak/etc/passwd 
    0 942611 sshd         R       4 /.sunw/pkcs11_softtoken/objstore_info
    0 942611 sshd R      16 /.sunw/pkcs11_softtoken/objstore_info
    0 942611 sshd  W      12 /devices/pseudo/random@0:urandom
    0 942611 sshd   R  0 /etc/krb5/krb5.conf 
    0 942611 sshd  W      12 /devices/pseudo/random@0:urandom
    0 942611 sshd   R  0 /etc/krb5/krb5.conf 
    0 942611 sshd  W      12 /devices/pseudo/random@0:urandom
    0 942611 sshd   R  0 /etc/krb5/krb5.conf 
    0 942611 sshd  W      12 /devices/pseudo/random@0:urandom
    0 942611 sshd    W     520 <unknown> 
[...]
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Figure 5-2 shows the logical flow of a file system read request processing
through to completion. At each of the numbered items, we can use DTrace to
answer questions, such as the following.

1. What are the requests? Type? Count? Read size? File offset? 

2. What errors occurred? Why? For who/what? 

3. How many reads were from prefetch/read ahead? (ZFS location shown.) 

4. What was the cache hit rate? Per file system? 

5. What is the latency of read, cache hit (request processing)? 

6. What is the full request processing time (cache lookup + storage lookup)? 

7. What is the volume of disk I/O? (How does it compare to 1?) 

8. What is the disk I/O latency? 

9. Did any disk errors occur? 

10. Latency of I/O, cache miss? 

11. Error latency? (May include disk retries.) 

Figure 5-1 File system functional diagram 
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Figure 5-3 shows the logical flow of a file system write request processing
through to completion. At each of the numbered items, we can use DTrace to
answer questions, such as the following.

1. What are the requests? Type? Count? Write size? File offset? 

2. What errors occurred? Why? For who/what? 

3. How much of the write I/O was synchronous? 

4. What is the latency of write, writeback (request processing)? 

5. What is the full request processing time (cache insertion + storage lookup)? 

6. What is the volume of disk I/O? (How does it compare to 1?) 

7. What is the disk I/O latency for normal writes? 

8. What is the disk I/O latency for synchronous writes (includes disk cache 
sync)?

9. Did any disk errors occur? 

10. What is the latency of an I/O on a cache miss? 

11. What is the error latency? (This may include disk retries.) 

Figure 5-2 File system read operation 



ptg

Strategy 295

Logical vs. Physical I/O

Figure 5-1 labels I/O at the system call layer as “logical” and I/O at the disk layer
as “physical.”  Logical I/O describes all requests to the file system, including those
that return immediately from memory.  Physical I/O consists of requests by the file
system to its storage devices. 

There are many reasons why the rate and volume of logical I/O may not match
physical I/O, some of which may already be obvious from Figure 5-1. These include
caching, read-ahead/prefetch, file system record size inflation, device sector size
fragmentation, write cancellation, and asynchronous I/O. Each of these are
described in the “Scripts” section for the readtype.d and writetype.d scripts,
which trace and compare logical to physical I/O.

Strategy

The following approach will help you get started with disk I/O analysis using
DTrace. Try the DTrace one-liners and scripts listed in the sections that follow. 

1. In addition to those DTrace tools, familiarize yourself with existing file sys-
tem statistical tools. For example, on Solaris you can use df(1M) to list file 
system usage, as well as a new tool called fsstat(1) to show file system I/O 
types. You can use the metrics from these as starting points for customiza-
tion with DTrace. 

Figure 5-3 File system write operation 
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2. Locate or write tools to generate known file system I/O, such as running 
the dd command to create files with known numbers of write I/O and to read 
them back. Filebench can be used to generate sophisticated I/O. It is 
extremely helpful to have known workloads to check against. 

3. Customize and write your own one-liners and scripts using the syscall pro-
vider. Then try the vminfo and sysinfo providers, if available.

4. Try the currently unstable fsinfo provider for more detailed file system 
scripts, and customize the fsinfo scripts in this chapter. 

5. To dig deeper than these providers allow, familiarize yourself with how the 
kernel and user-land processes call file system I/O by examining stack back-
traces (see the “One-Liners” section). Also refer to functional diagrams of the 
file system subsystem, such as the generic one shown earlier, and others for 
specific file system types. Check published kernel texts such as Solaris Inter-
nals (McDougall and Mauro, 2006) and Mac OS X Internals (Singh, 2006). 

6. Examine kernel internals for file systems by using the fbt provider and 
referring to kernel source code (if available).

Checklist

Table 5-1 describes some potential problem areas with file systems, with sugges-
tions on how you can use DTrace to troubleshoot them.

Table 5-1 File System I/O Checklist

Issue Description

Volume Applications may be performing a high volume of file system I/O, which 
could be avoided or optimized by changing their behavior, for example, by 
tuning I/O sizes and file locations (tmpfs instead of nfs, for example). The 
file system may break up I/O into multiple physical I/O of smaller sizes, 
inflating the IOPS. DTrace can be used to examine file system I/O by pro-
cess, filename, I/O size, and application stack trace, to identify what files 
are being used, how, and why. 

Latency A variety of latencies should be examined when analyzing file system I/O: 

• Disk I/O wait, for reads and synchronous writes 

• Locking in the file system 

• Latency of the open() syscall 

• Large file deletion time

Each of these can be examined using DTrace. 
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Providers

Table 5-2 shows providers you can use to trace file system I/O.

Queueing Use DTrace to examine the size and wait time for file system queues, such 
as queueing writes for later flushing to disk. Some file systems such as ZFS 
use a pipeline for all I/O, with certain stages serviced by multiple threads. 
High latency can occur if a pipeline stage becomes a bottleneck, for exam-
ple, if compression is performed; this can be analyzed using DTrace. 

Caches File system performance can depend on cache performance: File systems 
may use multiple caches for different data types (directory names, inodes, 
metadata, data) and different algorithms for cache replacement and size. 
DTrace can be used to examine not just the hit and miss rate of caches, but 
what types of data are experiencing misses, what contents are being 
evicted, and other internals of cache behavior.

Errors The file system interface can return errors in many situations: invalid file off-
sets, permission denied, file not found, and so on. Applications are sup-
posed to catch and deal with these errors with them appropriately, but 
sometimes they silently fail. Errors returned by file systems can be identi-
fied and summarized using DTrace.

Configuration File access can be tuned by flags, such as those on the open() syscall. 
DTrace can be used to check that the optimum flags are being used by the 
application, or if it needs to be configured differently.

Table 5-2 Providers for File System I/O

Provider Description

syscall Many syscalls operate on file systems (open(), stat(), creat(), and so on); 
some operate on file descriptors to file systems (read(), write(), and so 
on).  By examining file system activity at the syscall interface, user-land con-
text can be examined to see why the file system is being used, such as examin-
ing user stack backtraces. 

vminfo Virtual memory info provider. This includes file system page-in and page-out 
probes (file system disk I/O); however, these only provide number of pages and 
byte counts. 

fsinfo File system info provider: This is a representation of the VFS layer for the oper-
ating system and allows tracing of file system events across different file sys-
tem types, with file information for each event. This isn’t considered a stable 
provider as the VFS interface can change and is different for different OSs. 
However, it is unlikely to change rapidly. 

continues

Table 5-1 File System I/O Checklist (Continued)

Issue Description
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Check your operating system to see which providers are available; at the very
least, syscall and fbt should be available, which provide a level of coverage of
everything.

The vminfo and io providers should also be available on all versions of Solaris 10
and Mac OS X. fsinfo was added to Solaris 10 6/06 (update 2) and Solaris Nevada
build 38 and is not yet available on Mac OS X.

fsinfo Provider

The fsinfo provider traces logical file system access. It exports the VFS vnode
interface, a private interface for kernel file systems, so fsinfo is considered an
unstable provider.

Because the vnode operations it traces are descriptive and resemble many well-
known syscalls (open(), close(), read(), write(), and so on), this interface
provides a generic view of what different file systems are doing and has been
exported as the DTrace fsinfo provider. 

Listing the fsinfo provider probes on a recent version of Solaris Nevada, we get
the following results:

vfs Virtual File System provider: This is on FreeBSD only and shows VFS and name-
cache operations.

io Trace disk I/O event details including disk, bytes, and latency. Examining stack 
backtraces from io:::start shows why file systems are calling disk I/O. 

fbt Function Boundary Tracing provider. This allows file system internals to be 
examined in detail, including the operation of file system caches and read 
ahead. This has an unstable interface and will change between releases of the 
operating system and file systems, meaning that scripts based on fbt may need 
to be slightly rewritten for each such update. 

# dtrace -ln fsinfo::: 
   ID   PROVIDER   MODULE              FUNCTION NAME 
30648     fsinfo       genunix     fop_vnevent vnevent 
30649     fsinfo       genunix     fop_shrlock shrlock 
30650     fsinfo    genunix  fop_getsecattr getsecattr 
30651     fsinfo    genunix  fop_setsecattr setsecattr 
30652     fsinfo       genunix     fop_dispose dispose 
30653     fsinfo       genunix     fop_dumpctl dumpctl 
30654     fsinfo       genunix     fop_pageio pageio 
30655     fsinfo    genunix    fop_pathconf pathconf 
30656     fsinfo       genunix      fop_dump dump 
30657     fsinfo       genunix      fop_poll poll 

Table 5-2 Providers for File System I/O (Continued)

Provider Description
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A selection of these probes is described in Table 5-3.

fileinfo_t

The fileinfo structure contains members to describe the file, file system, and
open flags of the file that the fsinfo operation is performed on. Some of these mem-
bers may not be available for particular probes and return <unknown>, <none>, or 0:

30658     fsinfo       genunix     fop_delmap delmap 
30659     fsinfo       genunix     fop_addmap addmap 
30660     fsinfo       genunix                 fop_map map 
30661     fsinfo       genunix     fop_putpage putpage 
30662     fsinfo       genunix     fop_getpage getpage 
30663     fsinfo       genunix     fop_realvp realvp 
30664     fsinfo       genunix     fop_space space 
30665     fsinfo       genunix     fop_frlock frlock 
30666     fsinfo       genunix                 fop_cmp cmp 
30667     fsinfo       genunix                fop_seek seek 
30668     fsinfo    genunix    fop_rwunlock rwunlock 
30669     fsinfo       genunix     fop_rwlock rwlock 
30670     fsinfo       genunix                 fop_fid fid 
30671     fsinfo    genunix    fop_inactive inactive 
30672     fsinfo       genunix     fop_fsync fsync 
30673     fsinfo    genunix    fop_readlink readlink 
30674     fsinfo       genunix     fop_symlink symlink 
30675     fsinfo       genunix     fop_readdir readdir 
30676     fsinfo       genunix     fop_rmdir rmdir 
30677     fsinfo       genunix     fop_mkdir mkdir 
30678     fsinfo       genunix     fop_rename rename 
30679     fsinfo       genunix                fop_link link 
30680     fsinfo       genunix     fop_remove remove 
30681     fsinfo       genunix     fop_create create 
30682     fsinfo       genunix     fop_lookup lookup 
30683     fsinfo       genunix     fop_access access 
30684     fsinfo       genunix     fop_setattr setattr 
30685     fsinfo       genunix     fop_getattr getattr 
30686     fsinfo       genunix     fop_setfl setfl 
30687     fsinfo       genunix     fop_ioctl ioctl 
30688     fsinfo       genunix     fop_write write 
30689     fsinfo       genunix                fop_read read 
30690     fsinfo       genunix     fop_close close 
30691     fsinfo       genunix                fop_open open 

Table 5-3 fsinfo Probes

Probe Description

open Attempts to open the file described in the args[0] fileinfo_t

close Closes the file described in the args[0] fileinfo_t

read Attempts to read arg1 bytes from the file in args[0] fileinfo_t

write Attempts to write arg1 bytes to the file in args[0] fileinfo_t

fsync Calls fsync to synronize the file in args[0] fileinfo_t
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These are translated from the kernel vnode. The fileinfo_t structure is also
available as the file descriptor array, fds[], which provides convenient file infor-
mation by file descriptor number. See the one-liners for examples of its usage.

io Provider

The io provider traces physical I/O and was described in Chapter 4.

One-Liners

These one-liners are organized by provider.

syscall Provider

Some of these use the fds[] array, which was a later addition to DTrace; for an
example of similar functionality predating fds[], see the rwsnoop script. 

For the one-liners tracing read(2) and write(2) system calls, be aware that
variants may exist (readv(), pread(), pread64()); use the “Count read/write
syscalls by syscall type” one-liner to identify which are being used. Also note that
these match all reads and writes, whether they are file system based or not, unless
matched in a predicate (see the “zfs” one-liner).

Trace file opens with process name: 

Trace file creat() calls with file and process name: 

Frequency count stat() file calls:

typedef struct fileinfo { 
        string fi_name; /* name (basename of fi_pathname) */ 
        string fi_dirname; /* directory (dirname of fi_pathname) */ 
        string fi_pathname;    /* full pathname */ 
        offset_t fi_offset;   /* offset within file */ 
        string fi_fs;            /* file system */ 
        string fi_mount; /* mount point of file system */ 
        int fi_oflags; /* open(2) flags for file descriptor */ 
} fileinfo_t;

dtrace -n 'syscall::open*:entry { printf("%s %s", execname, copyinstr(arg0)); }' 

dtrace -n 'syscall::creat*:entry { printf("%s %s", execname, copyinstr(arg0)); }' 

dtrace -n 'syscall::stat*:entry { @[copyinstr(arg0)] = count(); }' 
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Tracing the cd(1) command:

Count read/write syscalls by syscall type:

Syscall read(2) by filename: 

Syscall write(2) by filename: 

Syscall read(2) by file system type: 

Syscall write(2) by file system type: 

Syscall read(2) by process name for the zfs file system only:

Syscall write(2) by process name and file system type: 

dtrace -n 'syscall::chdir:entry { printf("%s -> %s", cwd, copyinstr(arg0)); }' 

dtrace -n 'syscall::*read*:entry,syscall::*write*:entry { @[probefunc] = count(); }'

dtrace -n 'syscall::read:entry { @[fds[arg0].fi_pathname] = count(); }' 

dtrace -n 'syscall::write:entry { @[fds[arg0].fi_pathname] = count(); }' 

dtrace -n 'syscall::read:entry { @[fds[arg0].fi_fs] = count(); }' 

dtrace -n 'syscall::write:entry { @[fds[arg0].fi_fs] = count(); }' 

dtrace -n 'syscall::read:entry /fds[arg0].fi_fs == "zfs"/ { @[execname] = count(); }'

dtrace -n 'syscall::write:entry { @[execname, fds[arg0].fi_fs] = count(); } 
    END { printa("%18s %16s %16@d\n", @); }' 
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vminfo Provider

This processes paging in from the file system: 

fsinfo Provider

You can count file system calls by VFS operation: 

You can count file system calls by mountpoint: 

Bytes read by filename: 

Bytes written by filename: 

Read I/O size distribution by file system mountpoint: 

Write I/O size distribution by file system mountpoint: 

dtrace -n 'vminfo:::fspgin { @[execname] = sum(arg0); }' 

dtrace -n 'fsinfo::: { @[probename] = count(); }' 

dtrace -n 'fsinfo::: { @[args[0]->fi_mount] = count(); }' 

dtrace -n 'fsinfo:::read { @[args[0]->fi_pathname] = sum(arg1); }' 

dtrace -n 'fsinfo:::write { @[args[0]->fi_pathname] = sum(arg1); }' 

dtrace -n 'fsinfo:::read { @[args[0]->fi_mount] = quantize(arg1); }' 

dtrace -n 'fsinfo:::write { @[args[0]->fi_mount] = quantize(arg1); }' 
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vfs Provider

Count file system calls by VFS operation:

Namecache hit/miss statistics:

sdt Provider

You can find out who is reading from the ZFS ARC (in-DRAM cache):

fbt Provider

The fbt provider instruments a particular operating system and version; these
one-liners may therefore require modifications to match the software version you
are running.

VFS: You can count file system calls at the fop interface (Solaris):

VFS: You can count file system calls at the VNOP interface (Mac OS X):

VFS: You can count file system calls at the VOP interface (FreeBSD):

ZFS: You can show SPA sync with pool name and TXG number:

dtrace -n 'vfs:vop::entry { @[probefunc] = count(); }'

dtrace -n 'vfs:namecache:lookup: { @[probename] = count(); }'

dtrace -n 'sdt:::arc-hit,sdt:::arc-miss { @[stack()] = count(); }' 

dtrace -n 'fbt::fop_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::VNOP_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::VOP_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt:zfs:spa_sync:entry
{ printf("%s %d", stringof(args[0]->spa_name), arg1); }'
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One-Liners: syscall Provider Examples

Trace File Opens with Process Name 

Tracing opens can be a quick way of getting to know software. Software will often
call open() on config files, log files, and device files. Sometimes tracing open() is
a quicker way to find where config and log files exist than to read through the
product documentation. 

The probe definition uses open* so that both open() and open64() versions
are traced. This one-liner has caught a software build in progress; the process
names dmake and sh can be seen, and the files they were opening are mostly
library files under /lib.

The dtrace error is likely due to copyinstr() operating on a text string that
hasn’t been faulted into the process’s virtual memory address space yet. The page
fault would happen during the open() syscall, but we’ve traced it before it has
happened. This can be solved by saving the address on open*:entry and using
copyinstr() on open*:return, after the string is in memory.

Trace File creat() Calls with Process Name 

This also caught a software build in progress. Here the cp command is creating
files as part of the build. The Bourne shell sh also appears to be creating /dev/
null; this is happening as part of shell redirection. 

# dtrace -n 'syscall::open*:entry { printf("%s %s", execname, copyinstr(arg0)); }' 
 29  87276          open:entry dmake /var/ld/ld.config
 29  87276          open:entry dmake /lib/libnsl.so.1
 29  87276         open:entry dmake /lib/libsocket.so.1 
 29  87276          open:entry dmake /lib/librt.so.1 
 29  87276 open:entry dmake /lib/libm.so.1
 29  87276 open:entry dmake /lib/libc.so.1
 29  87672       open64:entry dmake /var/run/name_service_door
 29  87276          open:entry dmake /etc/nsswitch.conf
 12  87276  open:entry sh /var/ld/ld.config
 12  87276  open:entry sh /lib/libc.so.1 
dtrace: error on enabled probe ID 1 (ID 87672: syscall::open64:entry): invalid address
 (0x8225aff) in action #2 at DIF offset 28 
 12  87276  open:entry sh /var/ld/ld.config
 12  87276  open:entry sh /lib/libc.so.1 
[...]

# dtrace -n 'syscall::creat*:entry { printf("%s %s", execname, copyinstr(arg0)); }' 
dtrace: description 'syscall::creat*:entry ' matched 2 probes 
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Frequency Count stat() Files

As a demonstration of frequency counting instead of tracing and of examining the
stat() syscall, this frequency counts filenames from stat():

During tracing, stat() was called on /tmp 638 times. A wildcard is used in the
probe name so that this one-liner matches both stat() and stat64(); however,
applications could be using other variants such as xstat() that this isn’t matching.

CPU     ID           FUNCTION:NAME 
 25  87670     creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/platform/i86xpv/kernel/misc/amd64/xpv_autoconfig
 31  87670 creat64:entry sh /dev/null 
  0  87670     creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/platform/i86xpv/kernel/drv/xdf

 20  87670 creat64:entry sh /dev/null 
 26  87670 creat64:entry sh /dev/null 
 27  87670 creat64:entry sh /dev/null 
 31  87670     creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/usr/lib/llib-l300.ln
  0  87670     creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/kernel/drv/amd64/iwscn
 12  87670     creat64:entry cp /builds/brendan/ak-on-new/proto/root_i3
86/platform/i86xpv/kernel/drv/xnf
 16  87670       creat64:entry sh obj32/ao_mca_disp.c 
[...]

# dtrace -n 'syscall::stat*:entry { @[copyinstr(arg0)] = count(); }' 
dtrace: description 'syscall::stat*:entry ' matched 5 probes 
^C

  /builds/brendan/ak-on-new/proto/root_i386/kernel/drv/amd64/mxfe/mxfe
1
  /builds/brendan/ak-on-new/proto/root_i386/kernel/drv/amd64/rtls/rtls
1
  /builds/brendan/ak-on-new/proto/root_i386/usr/kernel/drv/ii/ii                1 
  /lib/libmakestate.so.1                     1 
  /tmp/dmake.stdout.10533.189.ejaOKu                 1 
[...output truncated...] 
  /ws/onnv-tools/SUNWspro/SS12/prod/lib/libmd5.so.1             105 
  /ws/onnv-tools/SUNWspro/SS12/prod/lib/sys/libc.so.1             105 
  /ws/onnv-tools/SUNWspro/SS12/prod/lib/sys/libmd5.so.1              105 
  /ws/onnv-tools/SUNWspro/SS12/prod/bin/../lib/libc.so.1              106 
  /ws/onnv-tools/SUNWspro/SS12/prod/bin/../lib/lib_I_dbg_gen.so.1              107
  /lib/libm.so.1                    112 
  /lib/libelf.so.1                   136 
  /lib/libdl.so.1                    151 
  /lib/libc.so.1                    427 
  /tmp                    638 
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Tracing cd

You can trace the current working directory (pwd) and chdir directory (cd) using
the following one-liner: 

This output shows a software build iterating over subdirectories. 

Reads by File System Type 

During this build, tmpfs is currently receiving the most reads: 128,645 during this
trace, followed by ZFS at 65,919. 

Note that this one-liner is matching only the read variant of the read() syscall.
On Solaris, applications may be calling readv(), pread(), or pread64(); Mac OS X
has readv(), pread(), read_nocancel(), and pread_nocancel(); and Free-
BSD has more, including aio_read(). You can match all of these using wildcards: 

# dtrace -n 'syscall::chdir:entry { printf("%s -> %s", cwd, copyinstr(arg0)); }' 
dtrace: description 'syscall::chdir:entry ' matched 1 probe 
CPU     ID     FUNCTION:NAME 
  4  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> aac 
  5  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> amd64_gart 
  8  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> amr 
  9  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> agptarget 
 12  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> aggr 
 12  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> agpgart 
 16  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> ahci 
 16  87290      chdir:entry /builds/brendan/ak-on-new/usr/src/uts/intel -> arp 
[...]

# dtrace -n 'syscall::read:entry { @[fds[arg0].fi_fs] = count(); }' 
dtrace: description 'syscall::read:entry ' matched 1 probe 
^C

  specfs                    22 
  sockfs                    28 
  proc                    103 
  <none>                    136 
  nfs4                    304 
  fifofs                   1571 
  zfs                   65919 
  tmpfs                   128645

solaris# dtrace -ln 'syscall::*read*:entry'
   ID   PROVIDER   MODULE              FUNCTION NAME 
87272    syscall        read entry 
87418    syscall       readlink entry 
87472    syscall       readv entry 
87574    syscall       pread entry 
87666    syscall       pread64 entry 
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However, this also matches readlink(), and our earlier one-liner assumes that
arg0 is the file descriptor, which is not the case for readlink(). Tracing all read
types properly will require a short script rather than a one-liner. 

Writes by File System Type

This one-liner matches all variants of write, assuming that arg0 is the file descrip-
tor. In this example, most of the writes were to tmpfs (/tmp).

Writes by Process Name and File System Type

This example extends the previous one-liner to include the process name: 

Now we can see the processes that were writing to tmpfs: iropt, ir2hf, and so on.

# dtrace -n 'syscall::*write*:entry { @[fds[arg0].fi_fs] = count(); }' 
dtrace: description 'syscall::write:entry ' matched 1 probe 
^C

  specfs                     2 
  nfs4                    47 
  sockfs                    55 
  zfs                    154 
  fifofs                    243 
  tmpfs                   22245 

# dtrace -n 'syscall::write:entry { @[execname, fds[arg0].fi_fs] = count(); }
END { printa("%18s %16s %16@d\n", @); }' 
dtrace: description 'syscall::write:entry ' matched 2 probes 
^C
CPU     ID            FUNCTION:NAME 
 25      2             :END            ar     zfs          1 
            dtrace    specfs                1 
                sh     fifofs                1 
              sshd     specfs                1 
  ssh-socks5-proxy     fifofs                2 
             uname    fifofs                3 
               sed              zfs                4 
               ssh     fifofs               10 
             strip      zfs               15 
[...truncated...]
               gas      tmpfs          830 
             acomp      tmpfs         2072 
               ube       tmpfs          2487 
             ir2hf      tmpfs         2608 
             iropt      tmpfs         3364 
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One-Liners: vminfo Provider Examples

Processes Paging in from the File System 

The vminfo provider has a probe for file system page-ins, which can give a very
rough idea of which processes are reading from disk via a file system: 

This worked a little: Both dmake and scp are responsible for paging in file sys-
tem data. However, it has identified sched (the kernel) as responsible for the most
page-ins. This could be because of read-ahead occurring in kernel context; more
DTrace will be required to explain where the sched page-ins were from. 

One-Liners: fsinfo Provider Examples

File System Calls by fs Operation 

This uses the fsinfo provider, if available. Since it traces file system activity at the
VFS layer, it will see activity from all file system types: ZFS, UFS, HSFS, and so on.

# dtrace -n 'vminfo:::fspgin { @[execname] = sum(arg0); }' 
dtrace: description 'vminfo:::fspgin ' matched 1 probe 
^C

  dmake                     1 
  scp                      2 
  sched                    42 

# dtrace -n 'fsinfo::: { @[probename] = count(); }' 
dtrace: description 'fsinfo::: ' matched 44 probes 
^C

  rename                     2 
  symlink                     4 
  create                     6 
  getsecattr                      6 
  seek                      8 
  remove                    10 
  poll                     40 
  readlink                   40 
  write                    42 
  realvp                    52 
  map                    144 
  read                    171 
  addmap                    192 
  open                    193 
  delmap                    194 
  close                    213 
  readdir                   225 
  dispose                   230 
  access                    248 
  ioctl                    421 
  rwlock                    436 
  rwunlock                   436 
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The most frequent vnode operation was lookup(), called 86,059 times while
this one-liner was tracing.

File System Calls by Mountpoint

The fsinfo provider has fileinfo_t as args[0]. Here the mountpoint is fre-
quency counted by fsinfo probe call, to get a rough idea of how busy (by call count)
file systems are as follows: 

Even though I’m doing a source build in /builds/brendan, it’s the root file
system on / that has received the most file system calls. 

Bytes Read by Filename

The fsinfo provider gives an abstracted file system view that isn’t dependent on
syscall variants such as read(), pread(), pread64(), and so on. 

  getpage                   1700 
  getattr                   3221 
  cmp                   48342 
  putpage                  77557 
  inactive                  80786 
  lookup                   86059

# dtrace -n 'fsinfo::: { @[args[0]->fi_mount] = count(); }' 
dtrace: description 'fsinfo::: ' matched 44 probes 
^C

  /home                     8 
  /builds/bmc                    9 
  /var/run                   11 
  /builds/ahl                   24 
  /home/brendan                    24 
  /etc/svc/volatile                   47 
  /etc/svc                   50 
  /var                    94 
  /net/fw/export/install                    176 
  /ws                    252 
  /lib/libc.so.1                    272 
  /etc/mnttab                  388 
  /ws/onnv-tools                    1759 
  /builds/brendan                  17017 
  /tmp                  156487 
  /                   580819 

# dtrace -n 'fsinfo:::read { @[args[0]->fi_pathname] = sum(arg1); }' 
dtrace: description 'fsinfo:::read ' matched 1 probe 
^C

  /usr/bin/chmod                    317 
  /home/brendan/.make.machines                  572 

continues
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The file being read the most is a .make.state file: During tracing, more than
5MB was read from the file. The fsinfo provider traces these reads to the file sys-
tem: The file may have been entirely cached in DRAM or read from disk. To deter-
mine how the read was satisfied by the file system, we’ll need to DTrace further
down the I/O stack (see the “Scripts” section and Chapter 4, Disk I/O). 

Bytes Written by Filename 

During tracing, a .make.state.tmp file was written to the most, with more than
1MB of writes. As with reads, this is writing to the file system. This may not write
to disk until sometime later, when the file system flushes dirty data. 

Read I/O Size Distribution by File System Mountpoint

This output shows a distribution plot of read size by file system. The /builds/
brendan file system was usually read at between 1,024 and 131,072 bytes per
read. The largest read was in the 1MB to 2MB range. 

  /usr/bin/chown                    951 
  <unknown>                   1176 
  /usr/bin/chgrp                    1585 
  /usr/bin/mv                  1585 
[...output truncated...] 
  /builds/brendan/ak-on-new/usr/src/uts/intel/Makefile.rules           325056 
  /builds/brendan/ak-on-new/usr/src/uts/intel/Makefile.intel.shared           415752 
  /builds/brendan/ak-on-new/usr/src/uts/intel/arn/.make.state           515044 
  /builds/brendan/ak-on-new/usr/src/uts/Makefile.uts           538440 
  /builds/brendan/ak-on-new/usr/src/Makefile.master            759744 
  /builds/brendan/ak-on-new/usr/src/uts/intel/ata/.make.state           781904 
  /builds/brendan/ak-on-new/usr/src/uts/common/Makefile.files           991896 
  /builds/brendan/ak-on-new/usr/src/uts/common/Makefile.rules          1668528 
  /builds/brendan/ak-on-new/usr/src/uts/intel/genunix/.make.state          5899453 

# dtrace -n 'fsinfo:::write { @[args[0]->fi_pathname] = sum(arg1); }' 
dtrace: description 'fsinfo:::write ' matched 1 probe 
^C

  /tmp/DAA1RaGkd                    22 
  /tmp/DAA5JaO6c                    22 
[...truncated...]
  /tmp/iroptEAA.1524.dNaG.c                 250588 
  /tmp/acompBAA.1443.MGay0c                 305541 
  /tmp/iroptDAA.1443.OGay0c                 331906 
  /tmp/acompBAA.1524.aNaG.c                 343015 
  /tmp/iroptDAA.1524.cNaG.c                 382413 
  /builds/brendan/ak-on-new/usr/src/cmd/fs.d/.make.state.tmp      1318590 

# dtrace -n 'fsinfo:::read { @[args[0]->fi_mount] = quantize(arg1); }' 
dtrace: description 'fsinfo:::read ' matched 1 probe 
^C
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Write I/O Size Distribution by File System Mountpoint 

During tracing, /tmp was written to the most (listed last), mostly with I/O sizes
between 4KB and 8KB. 

  /builds/bmc
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2
               1 |              0

[...output truncated...] 

  /builds/brendan
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@              15
               1 |              0
               2 |              0
               4 |              0
               8 |              0
              16 |              0
              32 |              0
              64 |@@         28
             128 |              0
             256 |              0
             512 |@@                28
            1024 |@@@@@@@              93
            2048 |@@@@             52
            4096 |@@@@@@               87
            8192 |@@@@@@@              94
           16384 |@@@@@@@@              109
           32768 |@@               31
           65536 |@@               30
          131072 |                0
          262144 |                2
          524288 |                1
         1048576 |               1
         2097152 |                 0

# dtrace -n 'fsinfo:::write { @[args[0]->fi_mount] = quantize(arg1); }' 
dtrace: description 'fsinfo:::write ' matched 1 probe 
^C

  /etc/svc/volatile
           value  ------------- Distribution ------------- count
             128 |              0
             256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 34
             512 |              0
[...]

  /tmp
           value  ------------- Distribution ------------- count
               2 |              0
               4 |              1
               8 |              4
              16 |@@@@                121
              32 |@@@@                133
              64 |@@         56
             128 |@@                51

continues
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One-Liners: sdt Provider Examples

Who Is Reading from the ZFS ARC?

This shows who is performing reads to the ZFS ARC (the in-DRAM file system
cache for ZFS) by counting the stack backtraces for all ARC accesses. It uses SDT
probes, which have been in the ZFS ARC code for a while:

             256 |@              46
             512 |@              39
            1024 |@             32
            2048 |@@                52
            4096 |@@@@@@@@@@@@@@@@@@@@@@@@             820
            8192 |                  0 

# dtrace -n 'sdt:::arc-hit,sdt:::arc-miss { @[stack()] = count(); }' 
dtrace: description 'sdt:::arc-hit,sdt:::arc-miss ' matched 3 probes 
^C
[...]

    zfs`arc_read+0x75 
    zfs`dbuf_prefetch+0x131
    zfs`dmu_prefetch+0x8f 
    zfs`zfs_readdir+0x4a2 
   genunix`fop_readdir+0xab 
    genunix`getdents64+0xbc
   unix`sys_syscall32+0x101 

              245 

    zfs`dbuf_hold_impl+0xea
    zfs`dbuf_hold+0x2e 
  zfs`dmu_buf_hold_array_by_dnode+0x195

   zfs`dmu_buf_hold_array+0x73
    zfs`dmu_read_uio+0x4d 
    zfs`zfs_read+0x19a 
    genunix`fop_read+0x6b 
    genunix`read+0x2b8 
    genunix`read32+0x22 
   unix`sys_syscall32+0x101 

              457 

    zfs`dbuf_hold_impl+0xea
    zfs`dbuf_hold+0x2e 
    zfs`dmu_buf_hold+0x75 
    zfs`zap_lockdir+0x67 
   zfs`zap_cursor_retrieve+0x74
    zfs`zfs_readdir+0x29e 
   genunix`fop_readdir+0xab 
    genunix`getdents64+0xbc
   unix`sys_syscall32+0x101 

             1004 

    zfs`dbuf_hold_impl+0xea
    zfs`dbuf_hold+0x2e 
    zfs`dmu_buf_hold+0x75 
    zfs`zap_lockdir+0x67 
   zfs`zap_lookup_norm+0x55 
    zfs`zap_lookup+0x2d 
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This output is interesting because it demonstrates four different types of ZFS
ARC read. Each stack is, in order, as follows. 

1. prefetch read: ZFS performs prefetch before reading from the ARC. Some 
of the prefetch requests will actually just be cache hits; only the prefetch 
requests that miss the ARC will pull data from disk.

2. syscall read: Most likely a process reading from a file on ZFS.

3. read dir: Fetching directory contents.

4. stat: Fetching file information.

Scripts

Table 5-4 summarizes the scripts that follow and the providers they use.

    zfs`zfs_match_find+0xfd
   zfs`zfs_dirent_lock+0x3d1
    zfs`zfs_dirlook+0xd9 
    zfs`zfs_lookup+0x104 
    genunix`fop_lookup+0xed
   genunix`lookuppnvp+0x3a3 
   genunix`lookuppnat+0x12c 
   genunix`lookupnameat+0x91
   genunix`cstatat_getvp+0x164
   genunix`cstatat64_32+0x82
    genunix`lstat64_32+0x31
   unix`sys_syscall32+0x101 

             2907 

Table 5-4 Script Summary

Script Target Description Providers

sysfs.d Syscalls Shows reads and writes by process and 
mountpoint

syscall

fsrwcount.d Syscalls Counts read/write syscalls by file system and 
type

syscall

fsrwtime.d Syscalls Measures time in read/write syscalls by file 
system

syscall

fsrtpk.d Syscalls Measures file system read time per kilobyte syscall

rwsnoop Syscalls Traces syscall read and writes, with FS details syscall

mmap.d Syscalls Traces mmap() of files with details syscall

fserrors.d Syscalls Shows file system syscall errors syscall

continues
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fswho.d1 VFS Summarizes processes and file read/writes fsinfo

readtype.d1 VFS Compares logical vs. physical file system 
reads

fsinfo, io

writetype.d1 VFS Compares logical vs. physical file system 
writes

fsinfo, io

fssnoop.d VFS Traces file system calls using fsinfo fsinfo

solvfssnoop.d VFS Traces file system calls using fbt on Solaris fbt

macvfssnoop.d VFS Traces file system calls using fbt on Mac OS X fbt

vfssnoop.d VFS Traces file system calls using vfs on FreeBSD vfs

sollife.d VFS Shows file creation and deletion on Solaris fbt

maclife.d VFS Shows file creation and deletion on Mac OS X fbt

vfslife.d VFS Shows file creation and deletion on FreeBSD vfs

dnlcps.d VFS Shows Directory Name Lookup Cache hits by 
process2

fbt

fsflush_cpu.d VFS Shows file system flush tracer CPU time2 fbt

fsflush.d VFS Shows file system flush statistics2 profile

ufssnoop.d UFS Traces UFS calls directly using fbt2 fbt

ufsreadahead.d UFS Shows UFS read-ahead rates for sequential I/O2 fbt

ufsimiss.d UFS Traces UFS inode cache misses with details2 fbt

zfssnoop.d ZFS Traces ZFS calls directly using fbt2 fbt

zfsslower.d ZFS Traces slow HFS+ read/writes2 fbt

zioprint.d ZFS Shows ZIO event dump2 fbt

ziosnoop.d ZFS Shows ZIO event tracing, detailed2 fbt

ziotype.d ZFS Shows ZIO type summary by pool2 fbt

perturbation.d ZFS Shows ZFS read/write time during given 
perturbation2

fbt

spasync.d ZFS Shows SPA sync tracing with details2 fbt

hfssnoop.d HFS+ Traces HFS+ calls directly using fbt3 fbt

hfsslower.d HFS+ Traces slow HFS+ read/writes3 fbt

hfsfileread.d HFS+ Shows logical/physical reads by file3 fbt

pcfsrw.d PCFS Traces pcfs (FAT16/32) read/writes2 fbt

cdrom.d HSFS Traces CDROM insertion and mount2 fbt

dvd.d UDFS Traces DVD insertion and mount2 fbt

nfswizard.d NFS Summarizes NFS performance client-side2 io

Table 5-4 Script Summary (Continued)

Script Target Description Providers
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1 This uses the fsinfo provider, currently available only on Oracle Solaris.
2 This is written for Oracle Solaris.
3 This is written for Apple Mac OS X.

There is an emphasis on the syscall and VFS layer scripts, since these can be
used on any underlying file system type.

Note that the fbt provider is considered an “unstable” interface, because it
instruments a specific operating system or application version. For this reason,
scripts that use the fbt provider may require changes to match the version of the
software you are using. These scripts have been included here as examples of D
programming and of the kind of data that DTrace can provide for each of these top-
ics. See Chapter 12, Kernel, for more discussion about using the fbt provider.

Syscall Provider

File system tracing scripts based on the syscall provider are generic and work
across all file systems. At the syscall level, you can see “logical” file system I/O, the
I/O that the application requests from the file system. Actual disk I/O occurs after
file system processing and may not match the requested logical I/O (for example,
rounding I/O size up to the file system block size).

sysfs.d

The sysfs.d script traces read and write syscalls to show which process is per-
forming reads and writes on which file system. 

Script

This script is written to work on both Solaris and Mac OS X. Matching all the possi-
ble read() variants (read(), readv(), pread(), pread64(), read_nocancel(),
and so on) for Solaris and Mac OS X proved a little tricky and led to the probe defi-
nitions on lines 11 to 14. Attempting to match syscall::*read*:entry doesn’t

nfs3sizes.d NFSv3 Shows NFSv3 logical vs physical read sizes2 fbt

nfs3fileread.d NFSv3 Shows NFSv3 logical vs physical reads by file2 fbt

tmpusers.d TMPFS Shows users of /tmp and tmpfs by tracing 
open()2

fbt

tmpgetpage.d TMPFS Measures whether tmpfs paging is occurring, 
with I/O time2

fbt

Table 5-4 Script Summary (Continued)

Script Target Description Providers
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work, because it matches readlink() and pthread syscalls (on Mac OS X), nei-
ther of which we are trying to trace (we want a read() style syscall with a file
descriptor as arg0, for line 17 to use). 
The -Z option prevents DTrace on Solaris complaining about line 14, which is
just there for the Mac OS X read_nocancel() variants. Without it, this script
wouldn’t execute because DTrace would fail to find probes for syscall::*read*
nocancel:entry.

Example

This was executed on a software build server. The busiest process name during
tracing was diff, performing reads on the /ws/ak-on-gate/public file system.
This was probably multiple diff(1) commands; the sysfs.d script could be mod-
ified to include a PID if it was desirable to split up the PIDs (although in this case
it helps to aggregate the build processes together).

Some of the reads and writes to the / mountpoint may have been to device
paths in /dev, including /dev/tty (terminal); to differentiate between these and
I/O to the root file system, enhance the script to include a column for
fds[arg0].fi_fs—the file system type (see fsrwcount.d).

1   #!/usr/sbin/dtrace -Zs 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  /* trace read() variants, but not readlink() or __pthread*() (macosx) */ 
11  syscall::read:entry, 
12  syscall::readv:entry, 
13  syscall::pread*:entry, 
14  syscall::*read*nocancel:entry,
15  syscall::*write*:entry 
16  { 
17          @[execname, probefunc, fds[arg0].fi_mount] = count(); 
18  } 
19
20  dtrace:::END 
21  { 
22          printf("  %-16s %-16s %-30s %7s\n", "PROCESS", "SYSCALL", 
23     "MOUNTPOINT", "COUNT"); 
24          printa("  %-16s %-16s %-30s %@7d\n", @); 
25  } 

Script sysfs.d

# sysfs.d
Tracing... Hit Ctrl-C to end. 
^C
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fsrwcount.d 

You can count read/write syscall operations by file system and type. 

Script

This is similar to sysfs.d, but it prints the file system type instead of the process
name:

  PROCESS SYSCALL          MOUNTPOINT            COUNT 
  hg  write            /devices               1 
  in.mpathd        read             /                         1 
  in.mpathd        write            /                1 
[...truncated...]
  nawk             write            /tmp               36 
  dmake  write  /builds/brendan             40 
  nawk             write /ws/ak-on-gate/public          50 
  dmake            read             /var               54 
  codereview       write           /tmp                     61 
  ksh93            write /ws/ak-on-gate/public          65 
  expand           read            /           69 
  nawk             read             /           69 
  expand  write            /                72 
  sed              read         /tmp                    100 
  nawk             read         /tmp                    113 
  dmake            read             /           209 
  dmake  read  /builds/brendan            249 
  hg               read         /                     250 
  hg               read             /builds/fishgk           260 
  sed              read  /ws/ak-on-gate/public          430 
  diff             read             /ws/ak-on-gate/public             2592 

1   #!/usr/sbin/dtrace -Zs 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  /* trace read() variants, but not readlink() or __pthread*() (macosx) */ 
11  syscall::read:entry, 
12  syscall::readv:entry, 
13  syscall::pread*:entry, 
14  syscall::*read*nocancel:entry,
15  syscall::*write*:entry 
16  { 
17          @[fds[arg0].fi_fs, probefunc, fds[arg0].fi_mount] = count(); 
18  } 
19
20  dtrace:::END 
21  { 
22          printf("  %-9s  %-16s %-40s %7s\n", "FS", "SYSCALL", "MOUNTPOINT", 
23       "COUNT"); 
24          printa("  %-9.9s  %-16s %-40s %@7d\n", @); 
25  } 

Script fsrwcount.d
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Example

Here’s an example of running fsrwcount.d on Solaris:

During a software build, this has shown that most of the file system syscalls
were reads to the NFSv4 share /ws/ak-on-gate/public. The busiest ZFS file
systems were / followed by /builds/brendan.

Here’s an example of running fsrwcount.d on Mac OS X: 

This helps explain line 24, which truncated the FS field to nine characters (%9.9s).
On Mac OS X, <unknown (not a vnode>) may be returned, and without the trun-

# fsrwcount.d
Tracing... Hit Ctrl-C to end. 
^C
  FS         SYSCALL    MOUNTPOINT                   COUNT 
  specfs     write     /                         1 
  nfs4       read         /ws/onnv-tools               3 
  zfs        read    /builds/bmc              5 
  nfs4       read         /home/brendan              11 
  zfs        read    /builds/ahl             16 
  sockfs     writev    /           20 
  zfs        write    /builds/brendan            30 
  <none>     read      <none>               33 
  sockfs     write     /           34 
  zfs        read  /var                      88 
  sockfs     read      /           104 
  zfs        read     /builds/fishgk            133 
  nfs4       write      /ws/ak-on-gate/public            171 
  tmpfs      write      /tmp               197 
  zfs        read     /builds/brendan            236 
  tmpfs      read       /tmp               265 
  fifofs     write     /           457 
  fifofs     read      /           625 
  zfs        read       /            809 
  nfs4       read       /ws/ak-on-gate/public            1673 

# fsrwcount.d
Tracing... Hit Ctrl-C to end. 
^C
  FS         SYSCALL    MOUNTPOINT                   COUNT 
  devfs      write      dev                 2 
  devfs      write_nocancel   dev                2 
  <unknown   write_nocancel   <unknown (not a vnode)>             3 
  hfs        write_nocancel   /                         6 
  devfs      read      dev                 7 
  devfs      read_nocancel    dev                7 
  hfs        write      /            18 
  <unknown   write  <unknown (not a vnode)>                     54 
  hfs        read_nocancel    /           55 
  <unknown   read   <unknown (not a vnode)>                     134 
  hfs        pwrite      /           155 
  hfs        read       /            507 
  hfs        pread       /           1760 
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cation the columns become crooked. These nonvnode operations may be reads and
writes to sockets. 

fsrwtime.d 

The fsrwtime.d script measures the time spent in read and write syscalls, with
file system information. The results are printed in distribution plots by microsecond.

Script

If averages or sums are desired instead, change the aggregating function on line 20
and the output formatting on line 26: 

The syscall return probes on lines 14 and 15 use more wildcards without fear of
matching unwanted syscalls (such as readlink()), since it also checks for self->
start to be set in the predicate, which will be true only for the syscalls that
matched the precise set on lines 4 to 8.

Example

This output shows that /builds/brendan, a ZFS file system, mostly returned
reads between 8 us and 127 us. These are likely to have returned from the ZFS file
system cache, the ARC. The single read that took more than 32 ms is likely to have
been returned from disk. More DTracing can confirm. 

1   #!/usr/sbin/dtrace -Zs 
2
3   /* trace read() variants, but not readlink() or __pthread*() (macosx) */ 
4   syscall::read:entry, 
5   syscall::readv:entry,
6   syscall::pread*:entry,
7   syscall::*read*nocancel:entry,
8   syscall::*write*:entry
9   { 
10   self->fd = arg0; 
11   self->start = timestamp; 
12  } 
13
14  syscall::*read*:return,
15  syscall::*write*:return
16  /self->start/ 
17  { 
18          this->delta = (timestamp - self->start) / 1000; 
19          @[fds[self->fd].fi_fs, probefunc, fds[self->fd].fi_mount] = 
20     quantize(this->delta); 
21          self->fd = 0; self->start = 0; 
22  } 
23
24  dtrace:::END 
25  { 
26          printa("\n  %s %s (us) \t%s%@d", @); 
27  } 

Script fsrwtime.d
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fsrtpk.d

As an example of a different way to analyze time, the fsrtpk.d script shows file
system read time per kilobyte.

Script

This is similar to the fsrwtime.d script, but here we divide the time by the num-
ber of kilobytes, as read from arg0 (rval) on read return: 

# fsrwtime.d
dtrace: script 'fsrwtime.d' matched 18 probes 
^C
CPU     ID            FUNCTION:NAME 
  8      2                  :END 
  specfs read (us)      /devices 
           value  ------------- Distribution ------------- count
               4 |              0
               8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
              16 |              0
[...]

  zfs write (us)      /builds/brendan 
           value  ------------- Distribution ------------- count
               8 |              0
              16 |@@@@@             4
              32 |@@@@@@@@@@@@@@           11
              64 |@@@@@@@@@@@@@@@@@@@@@              17
             128 |              0

  zfs read (us)      /builds/brendan 
           value  ------------- Distribution ------------- count
               4 |              0
               8 |@@@@@@@@@@@@@@@@          72
              16 |@@@@@@@@@@            44
              32 |@@@@@@@             32
              64 |@@@@@             24
             128 |              0
             256 |@              3
             512 |              1
            1024 |              0
            2048 |              0
            4096 |              0
            8192 |              0
           16384 |             0
           32768 |             1
           65536 |             0

1   #!/usr/sbin/dtrace -Zs 
2
3   /* trace read() variants, but not readlink() or __pthread*() (macosx) */ 
4   syscall::read:entry, 
5   syscall::readv:entry,
6   syscall::pread*:entry,
7   syscall::*read*nocancel:entry
8   { 
9   self->fd = arg0; 
10   self->start = timestamp; 
11  } 
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Example

For the same interval, compare fsrwtime.d and fsrtpk.d:

12
13  syscall::*read*:return 
14  /self->start && arg0 > 0/ 
15  { 
16          this->kb = (arg1 / 1024) ? arg1 / 1024 : 1; 
17          this->ns_per_kb = (timestamp - self->start) / this->kb; 
18          @[fds[self->fd].fi_fs, probefunc, fds[self->fd].fi_mount] = 
19     quantize(this->ns_per_kb);
20  } 
21
22  syscall::*read*:return 
23  { 
24          self->fd = 0; self->start = 0; 
25  } 
26
27  dtrace:::END 
28  { 
29          printa("\n  %s %s (ns per kb) \t%s%@d", @); 
30  } 

Script fsrtpk.d

# fsrwtime.d
[...]
  zfs read (us)      /export/fs1 
           value  ------------- Distribution ------------- count
               0 |              0
               1 |              7
               2 |              63
               4 |              10
               8 |              15
              16 |@               3141
              32 |@@@@@@          27739
              64 |@@@@@@@@@@@              55730
             128 |@@@@@@@@         39625
             256 |@@@@@@@          34358
             512 |@@@@               18700
            1024 |@@               8514
            2048 |@@               8407
            4096 |              361
            8192 |              32
           16384 |             1
           32768 |             0

# fsrtpk.d
[...]
  zfs read (ns per kb)  /export/fs1 
           value  ------------- Distribution ------------- count
             128 |              0
             256 |@@@@@@@@@@@@@@@@@@@@@@                 109467
             512 |@@@@@@@@@@@@@@@@            79390
            1024 |@@               7643
            2048 |              106
            4096 |              2
            8192 |                0
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From fstime.d, the reads to zfs are quite varied, mostly falling between 32 us
and 1024 us. The reason was not varying ZFS performance but varying requested
I/O sizes to cached files: Larger I/O sizes take longer to complete because of the
movement of data bytes in memory. 

The read time per kilobyte is much more consistent, regardless of the I/O size,
returning between 256 ns and 1023 ns per kilobyte read. 

rwsnoop

The rwsnoop script traces read() and write() syscalls across the system, print-
ing process and size details as they occur. Since these are usually frequent sys-
calls, the output can be verbose and also prone to feedback loops (this is because
the lines of output from dtrace(1M) are performed using write(), which are
also traced by DTrace, triggering more output lines, and so on). The -n option can
be used to avoid this, allowing process names of interest to be specified.

These syscalls are generic and not exclusively for file system I/O; check the
FILE column in the output of the script for those that are reading and writing to
files.

Script

Since most of this 234-line script handles command-line options, the only interest-
ing DTrace parts are included here. The full script is in the DTraceToolkit and can
also be found in /usr/bin/rwsnoop on Mac OS X.

The script saves various details in thread-local variables. Here the direction and
size of read() calls are saved:

which it then prints later:

This is straightforward. What’s not straightforward is the way the file path
name is fetched from the file descriptor saved in self->fd (line 211):

182   syscall::*read:return 
183   /self->ok/
184   {
185    self->rw = "R";
186   self->size = arg0;
187   }

202   syscall::*read:return,
203   syscall::*write:entry
[...]
225          printf("%5d %6d %-12.12s %1s %7d %s\n",
226              uid, pid, execname, self->rw, (int)self->size, self->vpath);
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This lump of code digs out the path name from the Solaris kernel and was written
this way because rwsnoop predates the fds array being available in Solaris. With
the availability of the fds[] array, that entire block of code can be written as follows:

unless you are using a version of DTrace that doesn’t yet have the fds array, such
as FreeBSD, in which case you can try writing the FreeBSD version of the previ-
ous code block.

Examples

The following examples demonstrate the use of the rwsnoop script.

Usage: rwsnoop.d.

Web Server. Here rwsnoop is used to trace all Web server processes named
httpd (something that PID-based tools such as truss(1M) or strace cannot do
easily):

202   syscall::*read:return,
203   syscall::*write:entry
204   /self->ok/
205   {
206          /*
207    * Fetch filename
208           */
209          this->filistp = curthread->t_procp->p_user.u_finfo.fi_list;
210          this->ufentryp = (uf_entry_t *)((uint64_t)this->filistp +
211  (uint64_t)self->fd * (uint64_t)sizeof(uf_entry_t));
212 this->filep = this->ufentryp->uf_file;
213 this->vnodep = this->filep != 0 ? this->filep->f_vnode : 0;
214          self->vpath = this->vnodep ? (this->vnodep->v_path != 0 ? 
215              cleanpath(this->vnodep->v_path) : "<unknown>") : "<unknown>";

self->vpath = fds[self->fd].fi_pathname

# rwsnoop -h
USAGE: rwsnoop [-hjPtvZ] [-n name] [-p pid]

 -j       # print project ID
-P       # print parent process ID
 -t # print timestamp, us
 -v # print time, string

  -Z       # print zone ID
 -n name  # this process name only

  -p PID   # this PID only
   eg,
        rwsnoop       # default output
        rwsnoop -Z       # print zone ID
        rwsnoop -n bash  # monitor processes named "bash"
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The files that httpd is reading can be seen in the output, along with the log file
it is writing to. The <unknown> file I/O is likely to be the socket I/O for HTTP,
because it reads requests and responds to clients.

mmap.d

Although many of the scripts in this chapter examine file system I/O by tracing
reads and writes, there is another way to read or write file data: mmap(). This sys-
tem call maps a region of a file to the memory of the user-land process, allowing
reads and writes to be performed by reading and writing to that memory segment.
The mmap.d script traces mmap calls with details including the process name, file-
name, and flags used with mmap().

Script

This script was written for Oracle Solaris and uses the preprocessor (-C on line 1)
so that the sys/mman.h file can be included (line 3):

# rwsnoop -tn httpd
TIME             UID PID CMD          D   BYTES FILE
6854075939432     80 713149 httpd   R     495 <unknown>
6854075944873     80 713149 httpd R     495 /wiki/includes/WebResponse.php
6854075944905     80 713149 httpd        R      0 /wiki/includes/WebResponse.php
6854075944921     80 713149 httpd        R      0 /wiki/includes/WebResponse.php
6854075946102     80 713149 httpd   W     100 <unknown>
6854075946261     80 713149 httpd   R     303 <unknown>
6854075946592     80 713149 httpd W       5 <unknown>
6854075959169     80 713149 httpd        W     92 /var/apache2/2.2/logs/access_log
6854076038294     80 713149 httpd R       0 <unknown>
6854076038390     80 713149 httpd  R      -1 <unknown>
6854206429906     80 713251 httpd R    4362 /wiki/includes/LinkBatch.php
6854206429933     80 713251 httpd        R      0 /wiki/includes/LinkBatch.php
6854206429952     80 713251 httpd        R      0 /wiki/includes/LinkBatch.php
6854206432875     80 713251 httpd  W      92 <unknown>
6854206433300     80 713251 httpd  R      52 <unknown>
6854206434656     80 713251 httpd R    6267 /wiki/includes/SiteStats.php
[...]

1     #!/usr/sbin/dtrace -Cs
2
3     #include <sys/mman.h>
4
5     #pragma D option quiet
6     #pragma D option switchrate=10hz
7
8     dtrace:::BEGIN
9     {
10  printf("%6s %-12s %-4s %-8s %-8s %-8s %s\n", "PID",
11              "PROCESS", "PROT", "FLAGS", "OFFS(KB)", "SIZE(KB)", "PATH");
12     }
13
14    syscall::mmap*:entry
15    /fds[arg4].fi_pathname != "<none>"/
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Example

While tracing, the cp(1) was executed to copy a 100MB file called 100m:

The file was read by cp(1) by mapping it to memory, 8MB at a time:

The output also shows the initialization of the cp(1) command because it maps
libraries as executable segments.

16    {
17          /* see mmap(2) and /usr/include/sys/mman.h */
18  printf("%6d %-12.12s %s%s%s  %s%s%s%s%s%s%s%s %-8d %-8d %s\n",
19      pid, execname,
20              arg2 & PROT_EXEC  ? "E" : "-",  /* pages can be executed */
21              arg2 & PROT_WRITE ? "W" : "-",  /* pages can be written */
22              arg2 & PROT_READ  ? "R" : "-", /* pages can be read */
23  arg3 & MAP_INITDATA  ? "I" : "-",     /* map data segment */
24 arg3 & MAP_TEXT      ? "T" : "-",     /* map code segment */
25              arg3 & MAP_ALIGN     ? "L" : "-",     /* addr specifies alignment */
26              arg3 & MAP_ANON      ? "A" : "-",     /* map anon pages directly */
27 arg3 & MAP_NORESERVE ? "N" : "-",     /* don't reserve swap area */
28 arg3 & MAP_FIXED     ? "F" : "-",     /* user assigns address */
29  arg3 & MAP_PRIVATE   ? "P" : "-",     /* changes are private */
30 arg3 & MAP_SHARED    ? "S" : "-",     /* share changes */
31 arg5 / 1024, arg1 / 1024, fds[arg4].fi_pathname);
32    }

Script mmap.d

solaris# cp /export/fs1/100m /export/fs2

solaris# mmap.d
   PID PROCESS      PROT FLAGS    OFFS(KB) SIZE(KB) PATH
  2652 cp  E-R  --L---P- 0  32       /lib/libc.so.1
  2652 cp  E-R  -T---FP- 0   1274     /lib/libc.so.1
  2652 cp           EWR  I----FP- 1276     27      /lib/libc.so.1
  2652 cp  E-R  --L---P- 0  32       /lib/libsec.so.1
  2652 cp  E-R  -T---FP- 0  62       /lib/libsec.so.1
  2652 cp  -WR  I----FP- 64  15       /lib/libsec.so.1
  2652 cp  E-R  --L---P- 0  32  /lib/libcmdutils.so.1
  2652 cp  E-R  -T---FP- 0  11  /lib/libcmdutils.so.1
  2652 cp  -WR  I----FP- 12 0  /lib/libcmdutils.so.1
  2652 cp  --R  -------S 0   8192     /export/fs1/100m
  2652 cp           --R  -----F-S 8192     8192     /export/fs1/100m
  2652 cp           --R  -----F-S 16384    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 24576    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 32768    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 40960    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 49152    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 57344    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 65536    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 73728    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 81920    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 90112    8192     /export/fs1/100m
  2652 cp           --R  -----F-S 98304    4096     /export/fs1/100m
^C
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fserrors.d

Errors can be particularly interesting when troubleshooting system issues, includ-
ing errors returned by the file system in response to application requests. This
script traces all errors at the syscall layer, providing process, path name, and error
number information. Many of these errors may be “normal” for the application and
handled correctly by the application code. This script merely reports that they hap-
pened, not how they were then handled (if they were handled).

Script

This script traces variants of read(), write(), open(), and stat(), which are
handled a little differently depending on how to retrieve the path information. It
can be enhanced to include other file system system calls as desired:

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7 trace("Tracing syscall errors... Hit Ctrl-C to end.\n");
8   }
9
10  syscall::read*:entry, syscall::write*:entry { self->fd = arg0; }
11  syscall::open*:entry, syscall::stat*:entry  { self->ptr = arg0; }
12
13  syscall::read*:return, syscall::write*:return
14  /(int)arg0 < 0 && self->fd > 2/
15  {
16 self->path = fds[self->fd].fi_pathname;
17  }
18
19  syscall::open*:return, syscall::stat*:return
20  /(int)arg0 < 0 && self->ptr/
21  {
22  self->path = copyinstr(self->ptr);
23  }
24
25  syscall::read*:return, syscall::write*:return,
26  syscall::open*:return, syscall::stat*:return
27  /(int)arg0 < 0 && self->path != NULL/
28  {
29          @[execname, probefunc, errno, self->path] = count();
30          self->path = 0;
31  }
32
33  syscall::read*:return, syscall::write*:return { self->fd = 0; }
34  syscall::open*:return, syscall::stat*:return { self->ptr = 0; }
35
36  dtrace:::END
37  {
38 printf("%16s %16s %3s %8s %s\n", "PROCESSES", "SYSCALL", "ERR",
39      "COUNT", "PATH");
40          printa("%16s %16s %3d %@8d %s\n", @);
41  }

Script fserrors.d
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Example

fserrors.d was run for one minute on a wiki server (running both TWiki and
MediaWiki):

While tracing, processes with the name view attempted to stat64() an
IOPS.txt file 319 times, each time encountering error number 2 (file not found).
The view program was short-lived and not still running on the system and so was
located by using a DTrace one-liner to catch its execution:

It took a little more investigation to find the reason behind the stat64() calls:
TWiki automatically detects terms in documentation by searching for words in all
capital letters and then checks whether there are pages for those terms. Since
TWiki saves everything as text files, it checks by running stat64() on the file
system for those pages (indirectly, since it is a Perl program). If this sounds subop-
timal, use DTrace to measure the CPU time spent calling stat64() to quantify
this behavior—stat() is typically a fast call.

fsinfo Scripts

The fsinfo provider traces file system activity at the VFS layer, allowing all file
system activity to be traced within the kernel from one provider. The probes it

# fserrors.d
       PROCESSES     SYSCALL ERR    COUNT PATH
            sshd     open   2      1 /etc/hosts.allow
            sshd     open   2      1 /etc/hosts.deny
[...output truncated...]
            sshd   stat64   2     2 /root/.ssh/authorized_keys
            sshd   stat64   2     2 /root/.ssh/authorized_keys2
          locale            open  2   4 /var/ld/ld.config
            sshd     open   2      5 /var/run/tzsync
            view  stat64   2   7 /usr/local/twiki/data/Main/NFS.txt
            view  stat64   2   8 /usr/local/twiki/data/Main/ARC.txt
            view  stat64   2   11 /usr/local/twiki/data/Main/TCP.txt
            Xorg       read  11       27 <unknown>
            view  stat64   2   32 /usr/local/twiki/data/Main/NOTES.txt
           httpd       read  11       35 <unknown>
            view  stat64   2   85 /usr/local/twiki/data/Main/DRAM.txt
            view   stat64   2   174 /usr/local/twiki/data/Main/ZFS.txt
            view   stat64   2   319 /usr/local/twiki/data/Main/IOPS.txt

# dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
dtrace: description 'proc:::exec-success ' matched 1 probe
CPU     ID          FUNCTION:NAME
  2  23001 exec_common:exec-success   /usr/bin/perl -wT /usr/local/twiki/bin/view
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exports contain mapped file info and byte counts where appropriate. It is cur-
rently available only on Solaris; FreeBSD has a similar provider called vfs.

fswho.d

This script uses the fsinfo provider to show which processes are reading and writ-
ing to which file systems, in terms of kilobytes.

Script

This is similar to the earlier sysfs.d script, but it can match all file system reads
and writes without tracing all the syscalls that may be occurring. It can also eas-
ily access the size of the reads and writes, provided as arg1 by the fsinfo provider
(which isn’t always easy at the syscall provider: Consider readv()).

Example

The source code was building on a ZFS share while fswho.d was run: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  fsinfo:::read, 
11  fsinfo:::write 
12  { 
13 @[execname, probename == "read" ? "R" : "W", args[0]->fi_fs, 
14   args[0]->fi_mount] = sum(arg1); 
15  } 
16
17  dtrace:::END 
18  { 
19   normalize(@, 1024); 
20          printf("  %-16s  %1s %12s  %-10s %s\n", "PROCESSES", "D", "KBYTES",
21     "FS", "MOUNTPOINT"); 
22          printa(" %-16s  %1.1s %@12d  %-10s %s\n", @); 
23  } 

Script fswho.d

# fswho.d
Tracing... Hit Ctrl-C to end. 
^C
  PROCESSES         D  KBYTES  FS       MOUNTPOINT 
  tail              R        0  zfs        /builds/ahl 
  tail              R        0  zfs        /builds/bmc 
  sshd              R          0  sockfs     / 
  sshd              W          0  sockfs     / 
  ssh-socks5-proxy  R     0  sockfs     / 
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fswho.d has identified that processes named dmake read 21MB from the /builds/
brendan share and wrote back 13MB. Various other process file system activity
has also been identified, which includes socket I/O because the kernel implementa-
tion serves these via a sockfs file system.

readtype.d

This script shows the type of reads by file system and the amount for comparison,
differentiating between logical reads (syscall layer) and physical reads (disk layer).
There are a number of reasons why the rate of logical reads will not equal physi-
cal reads.

Caching: Logical reads may return from a DRAM cache without needing to 
be satisfied as physical reads from the storage devices.

Read-ahead/prefetch: The file system may detect a sequential access pat-
tern and request data to prewarm the cache before it has been requested logi-
cally. If it is then never requested logically, more physical reads may occur 
than logical.

File system record size: The file system on-disk structure may store data 
as addressable blocks of a certain size (record size), and physical reads to 
storage devices will be in units of this size. This may inflate reads between 
logical and physical, because they are rounded up to record-sized reads for 
the physical storage devices.

Device sector size: Despite the file system record size, there may still be a 
minimum physical read size required by the storage device, such as 512 bytes 
for common disk drives (sector size).

As an example of file system record size inflation, consider a file system that
employs a fixed 4KB record size, while an application is performing random 512-
byte reads. Each logical read will be 512 bytes in size, but each physical read will
be 4KB—reading an extra 3.5KB that will not be used (or is unlikely to be used,

  sh                W          1  tmpfs      /tmp 
  dmake             R        1  nfs4       /home/brendan 
[...output truncated...]
  id                R        68  zfs        /var 
  cp                R       133  zfs        /builds/brendan 
  scp               R      224  nfs4      /net/fw/export/install 
  install           R      289  zfs        / 
  dmake             R       986  zfs        / 
  cp                W      1722  zfs       /builds/brendan 
  dmake             W     13357  zfs       /builds/brendan 
  dmake             R     21820  zfs       /builds/brendan 
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because the workload is random). This makes for an 8x inflation between logical
and physical reads.

Script

This script uses the fsinfo provider to trace logical reads and uses the io provider
to trace physical reads. It is based on rfsio.d from the DTraceToolkit.

Examples

Examples include uncached file system read and cache file system read.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   inline int TOP = 20;
6   self int trace;
7   uint64_t lbytes;
8   uint64_t pbytes;
9
10  dtrace:::BEGIN
11  {
12  trace("Tracing... Output every 5 secs, or Ctrl-C.\n");
13  }
14
15  fsinfo:::read
16  {
17          @io[args[0]->fi_mount, "logical"] = count();
18          @bytes[args[0]->fi_mount, "logical"] = sum(arg1);
19          lbytes += arg1;
20  }
21
22  io:::start
23  /args[0]->b_flags & B_READ/
24  {
25          @io[args[2]->fi_mount, "physical"] = count();
26          @bytes[args[2]->fi_mount, "physical"] = sum(args[0]->b_bcount);
27  pbytes += args[0]->b_bcount;
28  }
29
30  profile:::tick-5s,
31  dtrace:::END
32  {
33    trunc(@io, TOP);
34   trunc(@bytes, TOP);
35  printf("\n%Y:\n", walltimestamp);
36          printf("\n Read I/O (top %d)\n", TOP);
37 printa(" %-32s %10s %10@d\n", @io);
38          printf("\n Read Bytes (top %d)\n", TOP);
39          printa(" %-32s %10s %10@d\n", @bytes);
40          printf("\nphysical/logical bytes rate: %d%%\n",
41  lbytes ? 100 * pbytes / lbytes : 0);
42          trunc(@bytes);
43          trunc(@io);
44          lbytes = pbytes = 0;
45  }

Script readtype.d
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Uncached File System Read. Here the /usr file system is archived, reading
through the files sequentially:

The physical/logical throughput rate was 102 percent during this interval. The rea-
sons for the inflation may be because of both sector size (especially when reading
any file smaller than 512 bytes) and read-ahead (where tracing has caught the
physical but not yet the logical reads). 

Cache File System Read. Following on from the previous example, the /usr file
system was reread:

# readtype.d
Tracing... Output every 5 secs, or Ctrl-C.

2010 Jun 19 07:42:50:

 Read I/O (top 20)
 / logical         13
 /export/home  logical         23
 /tmp logical        428
 /usr physical       1463
 /usr  logical       2993

 Read Bytes (top 20)
 /tmp   logical          0
 /  logical       1032
 /export/home   logical      70590
 /usr    logical   11569675
 /usr    physical   11668480

physical/logical bytes rate: 102%

# readtype.d
Tracing... Output every 5 secs, or Ctrl-C.

2010 Jun 19 07:44:05:

 Read I/O (top 20)
 /            physical          5
 / logical         21
 /export/home  logical         54
 /tmp logical        865
 /usr physical       3005
 /usr  logical      14029

 Read Bytes (top 20)
 /tmp   logical          0
 /  logical       1372
 /  physical      24576
 /export/home    logical     166561
 /usr    physical   16015360
 /usr    logical   56982746

physical/logical bytes rate: 27%
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Now much of data is returning from the cache, with only 27 percent being read
from disk. We can see the difference this makes to the application: The first exam-
ple showed a logical read throughput of 11MB during the five-second interval as
the data was read from disk; the logical rate in this example is now 56MB during
five seconds.

writetype.d

As a companion to readtype.d, this script traces file system writes, allowing
types to be compared. Logical writes may differ from physical writes for the follow-
ing reasons (among others):

Asynchronous writes: The default behavior1 for many file systems is that 
logical writes dirty data in DRAM, which is later flushed to disk by an asyn-
chronous thread. This allows the application to continue without waiting for 
the disk writes to complete. The effect seen in writetype.d will be logical 
writes followed some time later by physical writes.

Write canceling: Data logically written but not yet physically written to 
disk is logically overwritten, canceling the previous physical write.

File system record size: As described earlier for readtype.d.

Device sector size: As described earlier for readtype.d.

Volume manager: If software volume management is used, such as apply-
ing levels of RAID, writes may be inflated depending on the RAID configura-
tion. For example, software mirroring will cause logical writes to be doubled 
when they become physical.

Script

This script is identical to readtype.d except for the following lines:

Now fsinfo is tracing writes, and the io:::start predicate also matches writes.

1. For times when the application requires the data to be written on stable storage before con-
tinuing, open() flags such as O_SYNC and O_DSYNC can be used to inform the file system to
write immediately to stable storage.

15  fsinfo:::write

22  io:::start
23  /!(args[0]->b_flags & B_READ)/

36 printf("\n Write I/O (top %d)\n", TOP);

38          printf("\n Write Bytes (top %d)\n", TOP);
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Example

The writetype.d script was run for ten seconds. During the first five seconds, an
application wrote data to the file system:

In the first five-second summary, more logical bytes were written than physical,
because writes were buffered in the file system cache but not yet flushed to disk.
The second output shows those writes finishing being flushed to disk.

fssnoop.d

This script traces all file system activity by printing every event from the fsinfo
provider with user, process, and size information, as well as path information if
available. It also prints all the event data line by line, without trying to summa-
rize it into reports, making the output suitable for other postprocessing if desired.
The section that follows demonstrates rewriting this script for other providers and
operating systems. 

Script

Since this traces all file system activity, it may catch sockfs activity and create a
feedback loop where the DTrace output to the file system or your remote network

# writetype.d
Tracing... Output every 5 secs, or Ctrl-C.

2010 Jun 19 07:59:10:

 Write I/O (top 20)
 /var   logical          1
 /            logical          3
 /export/ufs1 logical          9
 /export/ufs1  physical        696

 Write bytes (top 20)
 / logical        208
 /var logical        704
 /export/ufs1    physical    2587648
 /export/ufs1     logical    9437184

physical/logical throughput rate: 24%

2010 Jun 19 07:59:15:

 Write I/O (top 20)
 /            logical          2
 /export/ufs1  physical        238

 Write bytes (top 20)
 / logical        752
 /export/ufs1    physical    7720960

physical/logical throughput rate: 805%
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session is traced. To work around this, it accepts an optional argument of the pro-
cess name to trace and excludes dtrace processes by default (line 14). For more
sophisticated arguments, the script could be wrapped in the shell like rwsnoop so
that getopts can be used.

So that the string argument $$1 could be optional, line 4 sets the default-
args option, which sets $$1 to NULL if it wasn’t provided at the command line.
Without defaultargs, DTrace would error unless an argument is provided.

Examples

The default output prints all activity:

Since it was run over an SSH session, it sees its own socket writes to sockfs by
the sshd process. An output file can be specified to prevent this:

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option defaultargs
5   #pragma D option switchrate=10hz
6
7   dtrace:::BEGIN
8   {
9 printf("%-12s %6s %6s %-12.12s %-12s %-6s %s\n", "TIME(ms)", "UID",
10  "PID", "PROCESS", "CALL", "BYTES", "PATH");
11  }
12
13  fsinfo:::
14  /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
15  {
16          printf("%-12d %6d %6d %-12.12s %-12s %-6d %s\n", timestamp / 1000000,
17              uid, pid, execname, probename, arg1, args[0]->fi_pathname);
18  }

Script fssnoop.d

# fssnoop.d
TIME(ms)        UID  PID PROCESS      CALL         BYTES  PATH
924434524         0   2687 sshd         poll       0      <unknown>
924434524         0 2687 sshd         rwlock       0      <unknown>
924434524         0 2687 sshd         write        112    <unknown>
924434524         0 2687 sshd         rwunlock     0      <unknown>
[...]

# fssnoop.d -o out.log
# cat out.log
TIME(ms)       UID PID PROCESS      CALL        BYTES  PATH 
924667432        0   7108 svcs         lookup   0  /usr/share/lib/zoneinfo
924667432        0   7108 svcs         lookup   0 /usr/share/lib/zoneinfo/UTC
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This has caught the execution of the Oracle Solaris svcs(1) command, which
was listing system services. The UTC file was read in this way 204 times (the out-
put was many pages long), which is twice for every line of output that svcs(1)
printed, which included a date.

To filter on a particular process name, you can provided as an argument. Here,
the file system calls from the ls(1) command were traced:

VFS Scripts

VFS is the Virtual File System, a kernel interface that allows different file sys-
tems to integrate into the same kernel code. It provides an abstraction of a file sys-
tem with the common calls: read, write, open, close, and so on. Interfaces and
abstractions can make good targets for DTracing, since they are often documented
and relatively stable (compared to the implementation code).

The fsinfo provider for Solaris traces at the VFS level, as shown by the scripts in
the previous “fsinfo” section. FreeBSD has the vfs provider for this purpose, dem-
onstrated in this section. When neither vfs or fsinfo is available, VFS can be traced
using the fbt2 provider. fbt is an unstable interface: It exports kernel functions and
data structures that may change from release to release. The following scripts
were based on OpenSolaris circa December 2009 and on Mac OS X version 10.6,
and they may not work on other releases without changes. Even if these scripts no
longer execute, they can still be treated as examples of D programming and for the
sort of data that DTrace can make available for VFS analysis.

924667432        0   7108 svcs         getattr  0 /usr/share/lib/zoneinfo/UTC
924667432        0   7108 svcs         access   0 /usr/share/lib/zoneinfo/UTC
924667432        0  7108 svcs         open     0  /usr/share/lib/zoneinfo/UTC
924667432        0   7108 svcs         getattr  0 /usr/share/lib/zoneinfo/UTC
924667432        0   7108 svcs         rwlock   0 /usr/share/lib/zoneinfo/UTC
924667432        0  7108 svcs         read      56  /usr/share/lib/zoneinfo/UTC
924667432        0   7108 svcs         rwunlock  0 /usr/share/lib/zoneinfo/UTC
924667432        0  7108 svcs         close     0  /usr/share/lib/zoneinfo/UTC
[...]

# fssnoop.d ls
TIME(ms)        UID  PID PROCESS      CALL         BYTES  PATH 
924727221         0   7111 ls           rwlock       0      /tmp
924727221         0 7111 ls readdir      1416   /tmp
924727221         0 7111 ls rwunlock     0      /tmp
924727221         0   7111 ls           rwlock       0      /tmp
[...]

2. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.
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To demonstrate the different ways VFS can be traced and to allow these to be
compared, the fssnoop.d script has been written in four ways:

fssnoop.d: fsinfo provider based (OpenSolaris), shown previously

solvfssnoop.d: fbt provider based (Solaris)

macvfssnoop.d: fbt provider based (Mac OS X)

vfssnoop.d: vfs provider based (FreeBSD)

Because these scripts trace common VFS events, they can be used as starting
points for developing other scripts. This section also includes three examples that
trace file creation and deletion on the different operating systems (sollife.d,
maclife.d, and vfslife.d).

Note that VFS can cover more than just on-disk file systems; whichever kernel
modules use the VFS abstraction may also be traced by these scripts, including
terminal output (writes to /dev/pts or dev/tty device files).

solvfssnoop.d

To trace VFS calls in the Oracle Solaris kernel, the fop interface can be traced
using the fbt provider. (This is also the location that the fsinfo provider instru-
ments.) Here’s an example of listing fop probes:

The function names include the names of the VFS calls. Although the fbt pro-
vider is considered an unstable interface, tracing kernel interfaces such as fop is
expected to be the safest use of fbt possible—fop doesn’t change much (but be
aware that it can and has).

Script

This script traces many of the common VFS calls at the Oracle Solaris fop inter-
face, including read(), write() and open(). See /usr/include/sys/vnode.h
for the full list. Additional calls can be added to solvfssnoop.d as desired. 

solaris# dtrace -ln 'fbt::fop_*:entry'
   ID   PROVIDER    MODULE               FUNCTION NAME
36831        fbt     genunix    fop_inactive entry
38019        fbt    genunix    fop_addmap entry
38023        fbt    genunix    fop_access entry
38150        fbt    genunix    fop_create entry
38162        fbt    genunix    fop_delmap entry
38318        fbt    genunix    fop_frlock entry
38538        fbt    genunix    fop_lookup entry
38646        fbt    genunix    fop_close entry
[...output truncated...]
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Lines 15 to 32 probe different functions and populate the self->path and
self->kb variables so that they are printed out in a common block of code on
lines 39 to 41.

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option defaultargs
5     #pragma D option switchrate=10hz
6
7     dtrace:::BEGIN
8     {
9           printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
10  "PID", "PROCESS", "CALL", "KB", "PATH");
11    }
12
13    /* see /usr/include/sys/vnode.h */
14
15    fbt::fop_read:entry, fbt::fop_write:entry
16    {
17  self->path = args[0]->v_path;
18          self->kb = args[1]->uio_resid / 1024;
19    }
20
21    fbt::fop_open:entry
22    {
23  self->path = (*args[0])->v_path;
24          self->kb = 0;
25    }
26
27    fbt::fop_close:entry, fbt::fop_ioctl:entry, fbt::fop_getattr:entry,
28    fbt::fop_readdir:entry
29    {
30  self->path = args[0]->v_path;
31          self->kb = 0;
32    }
33
34    fbt::fop_read:entry, fbt::fop_write:entry, fbt::fop_open:entry,
35    fbt::fop_close:entry, fbt::fop_ioctl:entry, fbt::fop_getattr:entry,
36    fbt::fop_readdir:entry
37    /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
38    {
39          printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
40  uid, pid, execname, probefunc, self->kb,
41              self->path != NULL ? stringof(self->path) : "<null>");
42    }
43
44    fbt::fop_read:entry, fbt::fop_write:entry, fbt::fop_open:entry,
45    fbt::fop_close:entry, fbt::fop_ioctl:entry, fbt::fop_getattr:entry,
46    fbt::fop_readdir:entry
47    {
48 self->path = 0; self->kb = 0;
49    }

Script solvfssnoop.d
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Example

As with fssnoop.d, this script accepts an optional argument for the process name
to trace. Here’s an example of tracing ls -l:

The output has been truncated to highlight three stages of ls that can be seen
in the VFS calls: command initialization, reading the directory, and reading sys-
tem databases.

macvfssnoop.d

To trace VFS calls in the Mac OS X kernel, the VNOP interface can be traced using
the fbt provider. Here’s an example of listing VNOP probes:

solaris# solvfssnoop.d ls
TIME(ms)      UID PID PROCESS     CALL       KB   PATH
2499844         0   1152 ls          fop_close    0    /var/run/name_service_door
2499844         0  1152 ls fop_close    0    <null>
2499844         0  1152 ls fop_close    0    /dev/pts/2
2499844         0  1152 ls fop_getattr  0    /usr/bin/ls
2499844         0  1152 ls fop_getattr  0    /lib/libc.so.1
2499844         0   1152 ls          fop_getattr  0    /usr/lib/libc/libc_hwcap1.so.1
2499844         0  1152 ls fop_getattr  0    /lib/libc.so.1
2499844         0   1152 ls          fop_getattr  0    /usr/lib/libc/libc_hwcap1.so.1
[...]
2499851         0  1152 ls fop_getattr  0    /var/tmp
2499851         0 1152 ls          fop_open     0    /var/tmp
2499851         0  1152 ls fop_getattr  0    /var/tmp
2499852         0  1152 ls fop_readdir  0    /var/tmp
2499852         0 1152 ls          fop_getattr  0    /var/tmp/ExrUaWjc
[...]
2500015         0 1152 ls          fop_open     0    /etc/passwd
2500015         0  1152 ls fop_getattr  0    /etc/passwd
2500015         0  1152 ls fop_getattr  0    /etc/passwd
2500015         0  1152 ls fop_getattr  0    /etc/passwd
2500015         0 1152 ls          fop_ioctl    0    /etc/passwd
2500015         0 1152 ls          fop_read     1    /etc/passwd
2500016         0  1152 ls fop_getattr  0    /etc/passwd
2500016         0 1152 ls          fop_close    0    /etc/passwd
[...]

macosx# dtrace -ln 'fbt::VNOP_*:entry'
ID   PROVIDER  MODULE            FUNCTION NAME
  705        fbt  mach_kernel    VNOP_ACCESS entry
  707        fbt   mach_kernel    VNOP_ADVLOCK entry
  709        fbt   mach_kernel   VNOP_ALLOCATE entry
  711        fbt   mach_kernel   VNOP_BLKTOOFF entry
  713        fbt   mach_kernel   VNOP_BLOCKMAP entry
  715        fbt  mach_kernel    VNOP_BWRITE entry
  717        fbt  mach_kernel    VNOP_CLOSE entry
  719        fbt   mach_kernel   VNOP_COPYFILE entry
  721        fbt  mach_kernel    VNOP_CREATE entry
  723        fbt   mach_kernel   VNOP_EXCHANGE entry
  725        fbt  mach_kernel    VNOP_FSYNC entry
  727        fbt   mach_kernel    VNOP_GETATTR entry
[...output truncated...]



ptg

Scripts 339

The kernel source can be inspected to determine the arguments to these calls.

Script

This script traces many of the common VFS calls at the Darwin VNOP interface,
including read(), write(), and open(). See sys/bsd/sys/vnode_if.h from
the source for the full list. Additional calls can be added as desired.

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option defaultargs
5     #pragma D option switchrate=10hz
6
7     dtrace:::BEGIN
8     {
9           printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
10  "PID", "PROCESS", "CALL", "KB", "PATH");
11    }
12
13    /* see sys/bsd/sys/vnode_if.h */
14
15    fbt::VNOP_READ:entry, fbt::VNOP_WRITE:entry
16    {
17          self->path = ((struct vnode *)arg0)->v_name;
18          self->kb = ((struct uio *)arg1)->uio_resid_64 / 1024;
19    }
20
21    fbt::VNOP_OPEN:entry
22    {
23          self->path = ((struct vnode *)arg0)->v_name;
24          self->kb = 0;
25    }
26
27    fbt::VNOP_CLOSE:entry, fbt::VNOP_IOCTL:entry, fbt::VNOP_GETATTR:entry,
28    fbt::VNOP_READDIR:entry
29    {
30          self->path = ((struct vnode *)arg0)->v_name;
31          self->kb = 0;
32    }
33
34    fbt::VNOP_READ:entry, fbt::VNOP_WRITE:entry, fbt::VNOP_OPEN:entry,
35    fbt::VNOP_CLOSE:entry, fbt::VNOP_IOCTL:entry, fbt::VNOP_GETATTR:entry,
36    fbt::VNOP_READDIR:entry
37    /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
38    {
39          printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
40  uid, pid, execname, probefunc, self->kb,
41              self->path != NULL ? stringof(self->path) : "<null>");
42    }
43
44    fbt::VNOP_READ:entry, fbt::VNOP_WRITE:entry, fbt::VNOP_OPEN:entry,
45    fbt::VNOP_CLOSE:entry, fbt::VNOP_IOCTL:entry, fbt::VNOP_GETATTR:entry,
46    fbt::VNOP_READDIR:entry
47    {
48 self->path = 0; self->kb = 0;
49    }

Script macvfssnoop.d
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Example

An ls -l command was traced to compare with the other VFS script examples:

The VFS calls show three stages to ls on Mac OS X: command initialization, an
initial check of the files, and then a second pass as output is written to the screen
(ttys003).

vfssnoop.d

FreeBSD has the VOP interface for VFS, which is similar to the VNOP interface
on Mac OS X (as traced by macvfssnoop.d). Instead of tracing VOP via the fbt
provider, this script demonstrates the FreeBSD vfs provider.3 Here’s an example
listing vfs probes:

macosx# macvfssnoop.d ls
TIME(ms)        UID  PID PROCESS      CALL         KB   PATH
1183135202      501  57611 ls  VNOP_GETATTR 0    urandom
1183135202      501  57611 ls VNOP_OPEN    0    urandom
1183135202      501  57611 ls VNOP_READ    0    urandom
1183135202      501  57611 ls VNOP_CLOSE   0    urandom
1183135202      501  57611 ls           VNOP_GETATTR 0  libncurses.5.4.dylib
1183135202      501  57611 ls           VNOP_GETATTR 0  libSystem.B.dylib
1183135202      501  57611 ls           VNOP_GETATTR 0  libSystem.B.dylib
1183135202      501  57611 ls           VNOP_GETATTR 0 libmathCommon.A.dylib
1183135203      501  57611 ls           VNOP_GETATTR 0 libmathCommon.A.dylib
[…]
1183135221      501  57611 ls  VNOP_GETATTR 0    fswho
1183135221      501  57611 ls VNOP_GETATTR 0   macvfssnoop.d
1183135221      501  57611 ls VNOP_GETATTR 0   macvfssnoop.d
1183135221      501  57611 ls  VNOP_GETATTR 0    new
1183135221      501  57611 ls VNOP_GETATTR 0    oneliners
[…]
1183135225      501  57611 ls  VNOP_GETATTR 0    fswho
1183135225      501  57611 ls VNOP_WRITE   0    ttys003
1183135225      501  57611 ls VNOP_GETATTR 0   macvfssnoop.d
1183135225      501  57611 ls VNOP_GETATTR 0   macvfssnoop.d
1183135225      501  57611 ls VNOP_WRITE   0    ttys003
[…]

3. This was written by Robert Watson.

freebsd# dtrace -ln vfs:::
   ID   PROVIDER    MODULE               FUNCTION NAME
38030        vfs    namecache            zap_negative done
38031        vfs  namecache                 zap done
38032        vfs   namecache              purgevfs done
38033        vfs    namecache   purge_negative done
38034        vfs  namecache               purge done
38035        vfs  namecache               lookup miss
38036        vfs  namecache     lookup hit_negative
38037        vfs  namecache               lookup hit
38038        vfs   namecache              fullpath return
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Four different types of probes are shown in this output:

vfs:namecache::: Name cache operations, including lookups (hit/miss)

vfs:namei::: Filename to vnode lookups

vfs::stat:: Stat calls

vfs:vop::: VFS operations

The vfssnoop.d script demonstrates three of these (namecache, namei, and vop).

Script

The vfs:vop:: probes traces VFS calls on vnodes, which this script converts into
path names or filenames for printing. On FreeBSD, vnodes don’t contain a cached path
name and may not contain a filename either unless it’s in the (struct namecache *)
v_cache_dd member. There are a few ways to tackle this; here, vnode to path or
filename mappings are cached during namei() calls and namecache hits, both of
which can also be traced from the vfs provider:

38039        vfs   namecache              fullpath miss
38040        vfs   namecache              fullpath hit
38041        vfs   namecache              fullpath entry
38042        vfs    namecache   enter_negative done
38043        vfs  namecache               enter done
38044        vfs     namei               lookup return
38045        vfs     namei                lookup entry
38046        vfs                    stat reg
38047        vfs                    stat mode
38048        vfs        vop     vop_vptocnp return
38049        vfs        vop              vop_vptocnp entry
38050        vfs       vop     vop_vptofh return
38051        vfs        vop               vop_vptofh entry
[...]

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option defaultargs
5     #pragma D option switchrate=10hz
6     #pragma D option dynvarsize=4m
7
8     dtrace:::BEGIN
9     {
10          printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
11 "PID", "PROCESS", "CALL", "KB", "PATH/FILE");
12    }
13
14    /*
15     * Populate Vnode2Path from namecache hits
16     */
17    vfs:namecache:lookup:hit
18    /V2P[arg2] == NULL/

continues



ptg

342 Chapter 5 � File Systems

19    {
20  V2P[arg2] = stringof(arg1);
21    }
22
23    /*
24     * (Re)populate Vnode2Path from successful namei() lookups
25     */
26 vfs:namei:lookup:entry
27    {
28    self->buf = arg1;
29    }
30 vfs:namei:lookup:return
31    /self->buf != NULL && arg0 == 0/
32    {
33  V2P[arg1] = stringof(self->buf);
34    }
35 vfs:namei:lookup:return
36    {
37    self->buf = 0;
38    }
39
40    /*
41     * Trace and print VFS calls
42     */
43    vfs::vop_read:entry, vfs::vop_write:entry
44    {
45   self->path = V2P[arg0];
46          self->kb = args[1]->a_uio->uio_resid / 1024;
47    }

48
49    vfs::vop_open:entry, vfs::vop_close:entry, vfs::vop_ioctl:entry,
50    vfs::vop_getattr:entry, vfs::vop_readdir:entry
51    {
52   self->path = V2P[arg0];
53          self->kb = 0;
54    }
55
56    vfs::vop_read:entry, vfs::vop_write:entry, vfs::vop_open:entry,
57    vfs::vop_close:entry, vfs::vop_ioctl:entry, vfs::vop_getattr:entry,
58 vfs::vop_readdir:entry
59    /execname != "dtrace" && ($$1 == NULL || $$1 == execname)/
60    {
61          printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
62  uid, pid, execname, probefunc, self->kb,
63              self->path != NULL ? self->path : "<unknown>");
64    }
65
66    vfs::vop_read:entry, vfs::vop_write:entry, vfs::vop_open:entry,
67    vfs::vop_close:entry, vfs::vop_ioctl:entry, vfs::vop_getattr:entry,
68 vfs::vop_readdir:entry
69    {
70 self->path = 0; self->kb = 0;
71    }
72
73    /*
74     * Tidy V2P, otherwise it gets too big (dynvardrops)
75     */
76    vfs:namecache:purge:done,
77    vfs::vop_close:entry
78    {
79    V2P[arg0] = 0;
80    }

Script vfssnoop.d
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The V2P array can get large, and frequent probes events may cause dynamic
variable drops. To reduce these drops, the V2P array is trimmed in lines 76 to 80,
and the dynvarsize tunable is increased on line 6 (but may need to be set higher,
depending on your workload).

Example

An ls -l command was traced to compare with the other VFS script examples:

The three stages of ls shown here are similar to those seen on Oracle Solaris:
command initialization, reading the directory, and reading system databases. In
some cases, vfssnoop.d is able to print full path names; in others, it prints only
the filename.

sollife.d

This script shows file creation and deletion events only. It’s able to identify file system
churn—the rapid creation and deletion of temporary files. Like solfssnoop.d, it
traces VFS calls using the fbt provider.

Script

This is a reduced version of solfssnoop.d, which traces only the create() and
remove() events:

freebsd# vfssnoop.d ls
TIME(ms)        UID PID PROCESS      CALL        KB   PATH/FILE
167135998         0 29717 ls  vop_close    0    /bin/ls
167135999 0  29717 ls           vop_open     0   /var/run/ld-elf.so.hints
167135999 0  29717 ls           vop_read     0   /var/run/ld-elf.so.hints
167136000 0  29717 ls           vop_read     0   /var/run/ld-elf.so.hints
167136000 0  29717 ls vop_close    0   /var/run/ld-elf.so.hints
167136000 0  29717 ls vop_open     0    /lib/libutil.so.8
[...]
167136007         0 29717 ls  vop_getattr  0    .history
167136007         0  29717 ls vop_getattr  1   .bash_history
167136008         0 29717 ls  vop_getattr  0    .ssh
167136008         0 29717 ls  vop_getattr  0    namecache.d
167136008         0 29717 ls  vop_getattr  0    vfssnoop.d
[...]
167136011         0  29717 ls           vop_read     0    /etc/spwd.db
167136011         0  29717 ls           vop_getattr  0  /etc/nsswitch.conf
167136011         0  29717 ls           vop_getattr  0  /etc/nsswitch.conf
167136011         0  29717 ls           vop_read     4    /etc/spwd.db
167136011         0  29717 ls           vop_getattr  0  /etc/nsswitch.conf
167136011         0  29717 ls           vop_open     0    /etc/group
[...]
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Example

Here the script has caught the events from the vim(1) text editor, which opened
the script in a different terminal window, made a change, and then saved and quit:

The output shows the temporary swap files created and then removed by vim.
This script could be enhanced to trace rename() events as well, which may better
explain how vim is managing these files.

maclife.d

This is the sollife.d script, written for Mac OS X. As with macvfssnoop.d, it
uses the fbt provider to trace VNOP interface calls:

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option switchrate=10hz
5
6     dtrace:::BEGIN
7     {
8 printf("%-12s %6s %6s %-12.12s %-12s %s\n", "TIME(ms)", "UID",
9   "PID", "PROCESS", "CALL", "PATH");
10    }
11
12    /* see /usr/include/sys/vnode.h */
13
14 fbt::fop_create:entry,
15    fbt::fop_remove:entry
16    {
17          printf("%-12d %6d %6d %-12.12s %-12s %s/%s\n",
18              timestamp / 1000000, uid, pid, execname, probefunc,
19              args[0]->v_path != NULL ? stringof(args[0]->v_path) : "<null>",
20      stringof(arg1));
21    }

Script sollife.d

# sollife.d
TIME(ms)        UID   PID PROCESS CALL         PATH
1426193948   130948 112454 vim fop_create   /home/brendan/.sollife.d.swp
1426193953   130948 112454 vim fop_create   /home/brendan/.sollife.d.swx
1426193956   130948 112454 vim fop_remove   /home/brendan/.sollife.d.swx
1426193958   130948 112454 vim fop_remove   /home/brendan/.sollife.d.swp
1426193961   130948 112454 vim fop_create   /home/brendan/.sollife.d.swp
1426205215   130948 112454 vim fop_create /home/brendan/4913
1426205230   130948 112454 vim fop_remove /home/brendan/4913
1426205235   130948 112454 vim fop_create   /home/brendan/sollife.d
1426205244   130948 112454 vim fop_remove   /home/brendan/sollife.d~
1426205246   130948 112454 vim fop_create   /home/brendan/.viminfz.tmp
1426205256   130948 112454 vim fop_remove   /home/brendan/.viminfo
1426205262   130948 112454 vim fop_remove   /home/brendan/.sollife.d.swp
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vfslife.d

This is the sollife.d script, written for FreeBSD. As with vfssnoop.d, it uses
the vfs provider. This time it attempts to retrieve a directory name from the direc-
tory vnode namecache entry (v_cache_dd), instead of using DTrace to cache
vnode to path translations.

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option switchrate=10hz
5
6     dtrace:::BEGIN
7     {
8 printf("%-12s %6s %6s %-12.12s %-12s %s\n", "TIME(ms)", "UID",
9   "PID", "PROCESS", "CALL", "DIR/FILE");
10    }
11
12    /* see sys/bsd/sys/vnode_if.h */
13
14    fbt::VNOP_CREATE:entry,
15    fbt::VNOP_REMOVE:entry
16    {
17          this->path = ((struct vnode *)arg0)->v_name;
18          this->name = ((struct componentname *)arg2)->cn_nameptr;
19          printf("%-12d %6d %6d %-12.12s %-12s %s/%s\n",
20              timestamp / 1000000, uid, pid, execname, probefunc,
21              this->path != NULL ? stringof(this->path) : "<null>",
22      stringof(this->name));
23    }

Script maclife.d

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option switchrate=10hz
5
6     dtrace:::BEGIN
7     {
8 printf("%-12s %6s %6s %-12.12s %-12s %s\n", "TIME(ms)", "UID",
9   "PID", "PROCESS", "CALL", "DIR/FILE");
10    }
11
12    /* see sys/bsd/sys/vnode_if.h */
13
14    vfs::vop_create:entry,
15    vfs::vop_remove:entry
16    {
17          this->dir = args[0]->v_cache_dd != NULL ?
18  stringof(args[0]->v_cache_dd->nc_name) : "<null>";
19          this->name = args[1]->a_cnp->cn_nameptr != NULL ?
20  stringof(args[1]->a_cnp->cn_nameptr) : "<null>";
21
22          printf("%-12d %6d %6d %-12.12s %-12s %s/%s\n",
23              timestamp / 1000000, uid, pid, execname, probefunc,
24     this->dir, this->name);
25    }

Script vfslife.d
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dnlcps.d

The Directory Name Lookup Cache is a Solaris kernel facility used to cache path
names to vnodes. This script shows its hit rate by process, which can be poor when
path names are used that are too long for the DNLC. A similar script can be writ-
ten for the other operating systems; FreeBSD has the vfs:namecache:lookup:
probes for this purpose.

Script

Example

The DNLC lookup result is shown in a distribution plot for visual comparison.
Here, a tar(1) command had a high hit rate (hit == 1) compared to misses.

See Also

For more examples of DNLC tracing using DTrace, the DTraceToolkit has dnlcstat
and dnlcsnoop, the latter printing DNLC lookup events as they occur; for example:

1   #!/usr/sbin/dtrace -s
[...]
43  #pragma D option quiet
44
45  dtrace:::BEGIN
46  {
47          printf("Tracing... Hit Ctrl-C to end.\n");
48  }
49
50  fbt::dnlc_lookup:return
51  {
52          this->code = arg1 == 0 ? 0 : 1;
53  @Result[execname, pid] = lquantize(this->code, 0, 1, 1);
54  }
55
56  dtrace:::END
57  {
58          printa(" CMD: %-16s PID: %d\n%@d\n", @Result);
59  }

Script dnlcps.d

# dnlcps.d
Tracing... Hit Ctrl-C to end.
^C
[...]

 CMD: tar       PID: 7491

           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@               273
            >= 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@   6777
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fsflush_cpu.d

fsflush is the kernel file system flush thread on Oracle Solaris, which scans
memory periodically for dirty data (data written to DRAM but not yet written to
stable storage devices) and issues device writes to send it to disk. This thread
applies to different file systems including UFS but does not apply to ZFS, which
has its own way of flushing written data (transaction group sync).

Since system memory had become large (from megabytes to gigabytes since
fsflush was written), the CPU time for fsflush to scan memory had become a per-
formance issue that needed observability; at the time, DTrace didn’t exist, and this
was solved by adding a virtual process to /proc with the name fsflush that
could be examined using standard process-monitoring tools (ps(1), prstat(1M)):

Note the SYS scheduling class, identifying that this is a kernel thread.
The fsflush_cpu.d script prints fsflush information including the CPU

time using DTrace.

Script

This script uses the fbt provider to trace the fsflush_do_pages() function and
its logical calls to write data using fop_putpage(). The io provider is also used to
measure physical device I/O triggered by fsflush.

# dnlcsnoop.d
   PID CMD     TIME HIT PATH
  9185 bash     9   Y /etc
  9185 bash     3   Y /etc
 12293 bash     9   Y /usr
 12293 bash     3   Y /usr/bin
 12293 bash    4   Y /usr/bin/find
 12293 bash     7   Y /lib
 12293 bash    3   Y /lib/ld.so.1
 12293 find     6   Y /usr
 12293 find     3   Y /usr/bin
 12293 find    3   Y /usr/bin/find
[...]

solaris# ps -ecf | grep fsflush
    root     3     0  SYS 60   Nov 14 ?       1103:59 fsflush

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7  trace("Tracing fsflush...\n");

continues
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Script subtleties include the following.

Lines 19, 25, and 26 use aggregations instead of global variables, for reliabil-
ity on multi-CPU environments.

Lines 36 to 38 print aggregations in separate printa() statements instead 
of a single statement, so this worked on the earliest versions of DTrace on 
Oracle Solaris, when support for multiple aggregations in a single printa()
did not yet exist.

Line 8 and using clear() instead of trunc() on line 41 are intended to 
ensure that the aggregations will be printed. Without them, if an aggrega-
tion contains no data, the printa() statement will be skipped, and the out-
put line will miss elements.

Since only fsflush_do_pages() is traced, only the flushing of pages is con-
sidered in the CPU time reported, not the flushing of inodes (the script could 
be enhanced to trace that as well).

8          @fopbytes = sum(0); @iobytes = sum(0);
9   }
10
11  fbt::fsflush_do_pages:entry
12  {
13  self->vstart = vtimestamp;
14  }
15
16  fbt::fop_putpage:entry
17  /self->vstart/
18  {
19   @fopbytes = sum(arg2);
20  }
21
22  io:::start
23  /self->vstart/
24  {
25 @iobytes = sum(args[0]->b_bcount);
26          @ionum = count();
27  }
28
29  fbt::fsflush_do_pages:return
30  /self->vstart/
31  {
32   normalize(@fopbytes, 1024);
33   normalize(@iobytes, 1024);
34          this->delta = (vtimestamp - self->vstart) / 1000000;
35          printf("%Y %4d ms, ", walltimestamp, this->delta);
36          printa("fop: %7@d KB, ", @fopbytes);
37          printa("device: %7@d KB ", @iobytes);
38  printa("%5@d I/O", @ionum);
39          printf("\n");
40   self->vstart = 0;
41          clear(@fopbytes); clear(@iobytes); clear(@ionum);
42  }

Script fsflush_cpu.d
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Example

A line is printed for each fsflush run, showing the CPU time spent in fsflush,
the amount of logical data written via the fop interface, and the number of physi-
cal data writes issued to the storage devices including the physical I/O count:

To demonstrate this, we needed dirty data for fsflush to write out. We did this
by writing data to a UFS file system, performing a random 4KB write workload to
a large file.

We found that applying a sequential write workload did not leave dirty data for
fsflush to pick up, meaning that the writes to disk were occurring via a different
code path. That different code path can be identified using DTrace, by looking at
the stack backtraces when disk writes are being issued:

So, fop_putpage() is happening directly from the ufs_write(), rather than
fsflush.

fsflush.d

The previous script (fsflush_cpu.d) was an example of using DTrace to create
statistics of interest. This is an example of retrieving existing kernel statistics—if

# fsflush_cpu.d
Tracing fsflush...
2010 Jun 20 04:15:52   24 ms, fop:     228 KB, device:    216 KB    54 I/O
2010 Jun 20 04:15:53   26 ms, fop:     260 KB, device:    244 KB    61 I/O
2010 Jun 20 04:15:54   35 ms, fop:    1052 KB, device:    1044 KB   261 I/O
2010 Jun 20 04:15:56   52 ms, fop:    1548 KB, device:    1532 KB   383 I/O
2010 Jun 20 04:15:57   60 ms, fop:    2756 KB, device:    2740 KB   685 I/O
2010 Jun 20 04:15:58   41 ms, fop:    1484 KB, device:    1480 KB   370 I/O
2010 Jun 20 04:15:59   37 ms, fop:    1284 KB, device:    1272 KB   318 I/O
2010 Jun 20 04:16:00   38 ms, fop:     644 KB, device:    632 KB   157 I/O
[...]

# dtrace -n 'io:::start /!(args[0]->b_flags & B_READ)/ { @[stack()] = count(); }'
dtrace: description 'io:::start ' matched 6 probes
^C
[...]

   ufs`lufs_write_strategy+0x100
    ufs`ufs_putapage+0x439
    ufs`ufs_putpages+0x308
    ufs`ufs_putpage+0x82
    genunix`fop_putpage+0x28
   genunix`segmap_release+0x24f

     ufs`wrip+0x4b5
    ufs`ufs_write+0x211
    genunix`fop_write+0x31
    genunix`write+0x287
    genunix`write32+0xe
    unix`sys_syscall32+0x101

             3201



ptg

350 Chapter 5 � File Systems

they are available—and printing them out. It was written by Jon Haslam4 and
published in Solaris Internals (McDougall and Mauro, 2006).

Statistics are maintained in the kernel to count fsflush pages scanned, modi-
fied pages found, run time (CPU time), and more.

They are kept in a global variable called fsf_total of fsf_stat_t, which the
fsflush.d script reads using the ` kernel variable prefix.

Script

Since the counters are incremental, it prints out the delta every second:

4. This was originally posted at http://blogs.sun.com/jonh/entry/fsflush_revisited_in_d.

usr/src/uts/common/fs/fsflush.c:
    82 /*
    83  * some statistics for fsflush_do_pages
    84  */
    85 typedef struct {
    86   ulong_t fsf_scan;  /* number of pages scanned */
    87         ulong_t fsf_examined;   /* number of page_t's actually examined, can */
    88 /* be less than fsf_scan due to large pages */
    89   ulong_t fsf_locked; /* pages we actually page_lock()ed */
    90   ulong_t fsf_modified;   /* number of modified pages found */
    91   ulong_t fsf_coalesce;   /* number of page coalesces done */
    92   ulong_t fsf_time;  /* nanoseconds of run time */
    93         ulong_t fsf_releases;   /* number of page_release() done */
    94 } fsf_stat_t;
    95 
    96 fsf_stat_t fsf_recent;  /* counts for most recent duty cycle */
    97 fsf_stat_t fsf_total;   /* total of counts */

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   BEGIN
6   {
7      lexam = 0; lscan = 0; llock = 0; lmod = 0; lcoal = 0; lrel = 0; lti = 0;
8      printf("%10s %10s %10s %10s %10s %10s %10s\n", "SCANNED", "EXAMINED",
9          "LOCKED", "MODIFIED", "COALESCE", "RELEASES", "TIME(ns)");
10  }
11
12  tick-1s
13  /lexam/
14  {
15      printf("%10d %10d %10d %10d %10d %10d %10d\n", `fsf_total.fsf_scan,
16  `fsf_total.fsf_examined - lexam, `fsf_total.fsf_locked - llock,
17  `fsf_total.fsf_modified - lmod, `fsf_total.fsf_coalesce - lcoal,
18          `fsf_total.fsf_releases - lrel, `fsf_total.fsf_time - ltime);
19      lexam = `fsf_total.fsf_examined;
20      lscan = `fsf_total.fsf_scan;
21      llock = `fsf_total.fsf_locked;
22      lmod = `fsf_total.fsf_modified;
23      lcoal = `fsf_total.fsf_coalesce;

http://blogs.sun.com/jonh/entry/fsflush_revisited_in_d


ptg

Scripts 351

This script uses the profile provider for the tick-1s probes, which is a stable
provider. The script itself isn’t considered stable, because it retrieves kernel inter-
nal statistics that may be subject to change (fsf_stat_t).

Example

UFS Scripts

UFS is the Unix File System, based on Fast File System (FFS), and was the main
file system used by Solaris until ZFS. UFS exists on other operating systems,
including FreeBSD, where it can also be examined using DTrace. Although the on-
disk structures and basic operation of UFS are similar, the implementation of UFS
differs between operating systems. This is noticeable when listing the UFS probes
via the fbt provider:

24      lrel = `fsf_total.fsf_releases;
25      ltime = `fsf_total.fsf_time;
26  }
27
28  /*
29   * First time through
30   */
31
32  tick-1s
33  /!lexam/
34  {
35      lexam = `fsf_total.fsf_examined;
36      lscan = `fsf_total.fsf_scan;
37      llock = `fsf_total.fsf_locked;
38      lmod = `fsf_total.fsf_modified;
39      lcoal = `fsf_total.fsf_coalesce;
40      ltime = `fsf_total.fsf_time;
41      lrel = `fsf_total.fsf_releases;
42  }

Script fsflush.d

solaris# fsflush.d
   SCANNED   EXAMINED   LOCKED   MODIFIED   COALESCE   RELEASES   TIME(ns)
     34871      34872       2243  365          0         0    3246343
     34871      34872       1576  204          0         0    2727493
     34871      34872       1689  221          0         0    2904566
     34871      34872       114         19      0          0    2221724
     34871      34872       1849  892          0         0    3297796
     34871      34872       1304  517          0         0    3408503
[...]

solaris# dtrace -ln 'fbt::ufs_*:' | wc -l
     403

freebsd# dtrace -ln 'fbt::ufs_*:' | wc -l
     107
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For comparison, only those beginning with ufs_ are listed. The fbt provider on
Oracle Solaris can match the module name as ufs, so the complete list of UFS
probes can be listed using fbt:ufs:: (which shows 832 probes).

This section demonstrates UFS tracing on Oracle Solaris and is intended for
those wanting to dig deeper into file system internals, beyond what is possible at
the syscall and VFS layers. A basic understanding of UFS internals is assumed,
which you can study in Chapter 15, The UFS File System, of Solaris Internals
(McDougall and Mauro, 2006). 

Since there is currently no stable UFS provider, the fbt5 provider is used. fbt is
an unstable interface: It exports kernel functions and data structures that may
change from release to release. The following scripts were based on OpenSolaris
circa December 2009 and may not work on other OSs and releases without
changes. Even if these scripts no longer execute, they can still be treated as exam-
ples of D programming and for the sort of data that DTrace can make available for
UFS analysis.

ufssnoop.d

This script uses the fbt provider to trace and print UFS calls from within the ufs
kernel module. It provides a raw dump of what UFS is being requested to do,
which can be useful for identifying load issues. Since the output is verbose and
inclusive, it is suitable for post-processing, such as filtering for events of interest.

The script is included here to show that this is possible and how it might look.
This is written for a particular version of Oracle Solaris ZFS and will need tweaks to
work on other versions. The functionality and output is similar to solvfssnoop.d
shown earlier.

Script

Common UFS requests are traced: See the probe names on lines 33 to 35. This
script can be enhanced to include more request types as desired: See the source file
on line 12 for the list.

5. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

1   #!/usr/sbin/dtrace -Zs
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   dtrace:::BEGIN
7   {
8 printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
9  "PID", "PROCESS", "CALL", "KB", "PATH");
10  }
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As another lesson in the instability of the fbt provider, the ufs_open() call
doesn’t exist on earlier versions of UFS. For this script to provide some functional-
ity without it, the -Z option is used on line 1 so that the script will execute despite
missing a probe, and line 22 casts arg0 instead of using args[0] so that the
script compiles.

Example

To test this script, the dd(1) command was used to perform three 8KB  reads from
a file:

11
12  /* see uts/common/fs/ufs/ufs_vnops.c */
13
14  fbt::ufs_read:entry, fbt::ufs_write:entry
15  {
16  self->path = args[0]->v_path;
17          self->kb = args[1]->uio_resid / 1024;
18  }
19
20  fbt::ufs_open:entry
21  {
22          self->path = (*(struct vnode **)arg0)->v_path;
23          self->kb = 0;
24  }
25
26  fbt::ufs_close:entry, fbt::ufs_ioctl:entry, fbt::ufs_getattr:entry,
27  fbt::ufs_readdir:entry
28  {
29  self->path = args[0]->v_path;
30          self->kb = 0;
31  }
32
33  fbt::ufs_read:entry, fbt::ufs_write:entry, fbt::ufs_open:entry,
34  fbt::ufs_close:entry, fbt::ufs_ioctl:entry, fbt::ufs_getattr:entry,
35  fbt::ufs_readdir:entry
36  {
37          printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
38  uid, pid, execname, probefunc, self->kb,
39              self->path != NULL ? stringof(self->path) : "<null>");
40 self->path = 0; self->kb = 0;
41  }

Script ufssnoop.d

solaris# ufssnoop.d
TIME(ms)        UID  PID PROCESS      CALL         KB   PATH
1155732900        0   8312 dd ufs_open     0    /mnt/1m
1155732901        0   8312 dd ufs_read     8    /mnt/1m
1155732901        0   8312 dd ufs_read     8    /mnt/1m
1155732901        0   8312 dd ufs_read     8    /mnt/1m
1155732901        0 8312 dd  ufs_close    0    /mnt/1m
1155739611        0 8313 ls  ufs_getattr  0    /mnt
1155739611        0 8313 ls  ufs_getattr  0    /mnt
[...]
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The events have been traced correctly. The TIME(ms) column showed no delay
between these reads, suggesting that the data returned from DRAM cache. This
column can also be used for postsorting, because the output may become shuffled
slightly on multi-CPU systems.

ufsreadahead.d

Oracle Solaris UFS uses read-ahead to improve the performance of sequential
workloads. This is where a sequential read pattern is detected, allowing UFS to
predict the next requested reads and issue them before they are actually
requested, to prewarm the cache.

The ufsreadahead.d script shows bytes read by UFS and those requested by
read-ahead. This can be used on a known sequential workload to check that read-
ahead is working correctly and also on an unknown workload to determine
whether it is sequential or random.

Script

Since this script is tracing UFS internals using the fbt provider and will require
maintenance, it has been kept as simple as possible:

Example

The following example shows the use of ufsreadahead.d examining a sequential/
streaming read workload:

1   #!/usr/sbin/dtrace -s
2
3   fbt::ufs_getpage:entry
4   {
5 @["UFS read (bytes)"] = sum(arg2);
6   }
7
8   fbt::ufs_getpage_ra:return
9   {
10          @["UFS read ahead (bytes)"] = sum(arg1);
11  }

Script ufsreadahead.d

solaris# ufsreadahead.d
dtrace: script './ufsreadahead.d' matched 2 probes
^C

  UFS read ahead (bytes)                70512640
  UFS read (bytes)               71675904
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This was a known sequential read workload. The output shows that about
71MB were reads from UFS and 70MB were from read-ahead, suggesting that
UFS has correctly detected this as sequential. (It isn’t certain, since the script isn’t
checking that the read-ahead data was then actually read by anyone.)

Here we see the same script applied to a random read workload:

This was a known random read workload that performed 2MB of reads from
UFS. No read-ahead was triggered, which is what we would expect (hope).

See Also

For more examples of UFS read-ahead analysis using DTrace, see the fspaging.d
and fsrw.d scripts from the DTraceToolkit, which trace I/O from the syscall layer
to the storage device layer. Here’s an example:

This output shows five syscall reads (sc-read) of 8KB in size, starting from file
offset 0 and reaching file offset 32 (kilobytes). The first of these syscall reads trig-
gers an 8KB VFS read (fop_read), which triggers a disk read to satisfy it (disk_
io); also at this point, UFS read-ahead triggers the next 8KB to be read from disk
(disk_ra). The next syscall read triggers three more read-aheads. The last read-
ahead seen in this output shows a 1MB read from offset 232, and yet the syscall

solaris# ufsreadahead.d
dtrace: script './ufsreadahead.d' matched 2 probes
^C

  UFS read (bytes)                  2099136

solaris# fsrw.d
Event Device RW Size Offset Path
sc-read               .  R     8192      0 /mnt/bigfile
  fop_read            . R     8192      0 /mnt/bigfile
    disk_io    sd15  R 8192      0 /mnt/bigfile
    disk_ra    sd15  R 8192      8 /mnt/bigfile
sc-read               .  R     8192      8 /mnt/bigfile
  fop_read            . R     8192      8 /mnt/bigfile
    disk_ra        sd15  R    81920    16 /mnt/bigfile
    disk_ra        sd15  R     8192     96 <none>
    disk_ra    sd15  R 8192     96 /mnt/bigfile
sc-read               .  R     8192    16 /mnt/bigfile
  fop_read            . R     8192    16 /mnt/bigfile
    disk_ra        sd15  R   131072   104 /mnt/bigfile
    disk_ra        sd15  R  1048576   232 /mnt/bigfile
sc-read               .  R     8192    24 /mnt/bigfile
  fop_read            . R     8192    24 /mnt/bigfile
sc-read               .  R     8192    32 /mnt/bigfile
  fop_read            . R     8192    32 /mnt/bigfile
[...]



ptg

356 Chapter 5 � File Systems

interface—what’s actually being requested of UFS—has only had three 8KB reads
at this point. That’s optimistic!

ufsimiss.d

The Oracle Solaris UFS implementation uses an inode cache to improve the perfor-
mance of inode queries. There are various kernel statistics we can use to observe
the performance of this cache, for example:

These counters show a high rate of inode cache misses. DTrace can investigate
these further: The ufsimiss.d script shows the process and filename for each
inode cache miss.

Script

The parent directory vnode and filename pointers are cached on ufs_lookup()
for later printing if an inode cache miss occurred, and ufs_alloc_inode() was
entered:

solaris# kstat -p ufs::inode_cache:hits ufs::inode_cache:misses 1
ufs:0:inode_cache:hits  580003
ufs:0:inode_cache:misses      1294907

ufs:0:inode_cache:hits  581810
ufs:0:inode_cache:misses      1299367

ufs:0:inode_cache:hits  582973
ufs:0:inode_cache:misses      1304608
[...]

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   dtrace:::BEGIN
7   {
8 printf("%6s %-16s %s\n", "PID", "PROCESS", "INODE MISS PATH");
9   }
10
11  fbt::ufs_lookup:entry
12  {
13   self->dvp = args[0];
14          self->name = arg1;
15  }
16
17  fbt::ufs_lookup:return
18  {
19    self->dvp = 0;
20          self->name = 0;
21  }
22
23  fbt::ufs_alloc_inode:entry
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Example

Here the UFS inode cache misses were caused by find(1) searching /usr/
share/man:

ZFS Scripts

ZFS is an advanced file system and volume manager available on Oracle Solaris.
Its features include 128-bit capacity, different RAID types, copy-on-write transac-
tions, snapshots, clones, dynamic striping, variable block size, end-to-end check-
summing, built-in compression, data-deduplication, support for hybrid storage
pools, quotas, and more. The interaction of these features is interesting for those
examining file system performance, and they have become a common target for
DTrace.

ZFS employs an I/O pipeline (ZIO) that ends with aggregation of I/O at the
device level. By the time an I/O is sent to disk, the content may refer to multiple
files (specifically, there is no longer a single vnode_t for that I/O). Because of this,
the io provider on ZFS can’t show the path name for I/O; this has been filed as a
bug (CR 6266202 “DTrace io provider doesn’t work with ZFS”). At the time of writ-
ing, this bug has not been fixed. The ZFS path name of disk I/O can still be fetched
with a little more effort using DTrace; the ziosnoop.d script described next
shows one way to do this. For reads, it may be possible to simply identify slow
reads at the ZFS interface, as demonstrated by the zfsslower.d script. 

This section demonstrates ZFS tracing on Oracle Solaris and is intended for
those wanting to dig deeper into file system internals, beyond what is possible at
the syscall and VFS layers. An understanding of ZFS internals is assumed. 

24  /self->dvp && self->name/
25  {
26          printf("%6d %-16s %s/%s\n", pid, execname,
27  stringof(self->dvp->v_path), stringof(self->name));
28  }

Script ufsimiss.d

solaris# ufsimiss.d
   PID PROCESS     INODE MISS PATH
 22966 find    /usr/share/man/sman3tiff/TIFFCheckTile.3tiff
 22966 find    /usr/share/man/sman3tiff/TIFFClientOpen.3tiff
 22966 find    /usr/share/man/sman3tiff/TIFFCurrentRow.3tiff
 22966 find   /usr/share/man/sman3tiff/TIFFDefaultStripSize.3tiff
 22966 find     /usr/share/man/sman3tiff/TIFFFileno.3tiff
 22966 find    /usr/share/man/sman3tiff/TIFFGetVersion.3tiff
 22966 find    /usr/share/man/sman3tiff/TIFFIsMSB2LSB.3tiff
 22966 find    /usr/share/man/sman3tiff/TIFFIsTiled.3tiff
 22966 find    /usr/share/man/sman3tiff/TIFFIsUpSampled.3tiff
[...]
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Since there is currently no stable ZFS provider, the fbt6 provider is used. fbt is
an unstable interface: It exports kernel functions and data structures that may
change from release to release. The following scripts were based on OpenSolaris
circa December 2009 and may not work on other OSs and releases without
changes. Even if these scripts no longer execute, they can still be treated as exam-
ples of D programming and for the sort of data that DTrace can make available for
ZFS analysis.

zfssnoop.d

This script uses the fbt provider to trace and print ZFS calls from within the zfs
kernel module. It provides a raw dump of what ZFS is being requested to do, which
can be useful for identifying load issues. Since the output is verbose and inclusive,
it is suitable for postprocessing, such as filtering for events of interest. The func-
tionality and output is similar to solvfssnoop.d shown earlier.

Script

Common ZFS requests are traced; see the probe names on lines 33 to 35. This
script can be enhanced to include more request types as desired; see the source file
on line 12 for the list.

6. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   dtrace:::BEGIN
7   {
8           printf("%-12s %6s %6s %-12.12s %-12s %-4s %s\n", "TIME(ms)", "UID",
9  "PID", "PROCESS", "CALL", "KB", "PATH");
10  }
11
12  /* see uts/common/fs/zfs/zfs_vnops.c */
13
14  fbt::zfs_read:entry, fbt::zfs_write:entry
15  {
16  self->path = args[0]->v_path;
17          self->kb = args[1]->uio_resid / 1024;
18  }
19
20  fbt::zfs_open:entry
21  {
22  self->path = (*args[0])->v_path;
23          self->kb = 0;
24  }
25
26  fbt::zfs_close:entry, fbt::zfs_ioctl:entry, fbt::zfs_getattr:entry,
27  fbt::zfs_readdir:entry
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The TIME(ms) column can be used for postsorting, because the output may
become shuffled slightly on multi-CPU systems.

Example

The following script was run on a desktop to identify ZFS activity:

Various ZFS calls have been traced, including gnome-panel checking file attri-
butes and firefox-bin reading cache files.

28  {
29  self->path = args[0]->v_path;
30          self->kb = 0;
31  }
32
33  fbt::zfs_read:entry, fbt::zfs_write:entry, fbt::zfs_open:entry,
34  fbt::zfs_close:entry, fbt::zfs_ioctl:entry, fbt::zfs_getattr:entry,
35  fbt::zfs_readdir:entry
36  {
37          printf("%-12d %6d %6d %-12.12s %-12s %-4d %s\n", timestamp / 1000000,
38  uid, pid, execname, probefunc, self->kb,
39              self->path != NULL ? stringof(self->path) : "<null>");
40 self->path = 0; self->kb = 0;
41  }

Script zfssnoop.d

solaris# zfssnoop.d
TIME(ms)        UID    PID PROCESS      CALL         KB   PATH
19202174470     102  19981 gnome-panel  zfs_getattr  0    /export/home/claire/.gnome2/
vfolders
19202174470     102  19981 gnome-panel  zfs_getattr  0    /export/home/claire/.gnome2/
vfolders
19202174470     102  19981 gnome-panel  zfs_getattr  0    /export/home/claire/.gnome2/
vfolders
19202174470     102  19981 gnome-panel  zfs_getattr  0    /export/home/claire/.gnome2/
vfolders
19202174470     102  19981 gnome-panel  zfs_getattr  0    /export/home/claire/.recentl
y-used
19202175400     101   2903 squid        zfs_open     0    /squidcache/05/03
19202175400     101   2903 squid        zfs_getattr  0    /squidcache/05/03
19202175400     101   2903 squid        zfs_readdir  0    /squidcache/05/03
19202175400     101   2903 squid        zfs_readdir  0    /squidcache/05/03
19202175400     101   2903 squid        zfs_close    0    /squidcache/05/03
19202175427     102  23885 firefox-bin  zfs_getattr  0    /export/home/claire/.recentl
yused.xbe
l
19202176030     102  13622 nautilus     zfs_getattr  0    /export/home/claire/Desktop
19202176215     102  23885 firefox-bin  zfs_read     3    /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_002_
19202176216     102  23885 firefox-bin  zfs_read     3    /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_002_
19202176215     102  23885 firefox-bin  zfs_read     0    /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_001_
19202176216     102  23885 firefox-bin  zfs_read     0    /export/home/claire/.mozilla
/firefox/3c8k4kh0.default/Cache/_CACHE_001_
[...]
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zfsslower.d

This is a variation of the zfssnoop.d script intended for the analysis of perfor-
mance issues. zfsslower.d shows the time for read and write I/O in millisec-
onds. A minimum number of milliseconds can be provided as an argument when
running the script, which causes it to print only I/O equal to or slower than the
provided milliseconds.

Because of CR 6266202 (mentioned earlier), we currently cannot trace disk I/O
with ZFS filename information using the io provider arguments. zfsslower.d
may be used as a workaround: By executing it with a minimum time that is likely
to ensure that it is disk I/O (for example, at least 2 ms), we can trace likely disk I/O
events with ZFS filename information.

Script

The defaultargs pragma is used on line 4 so that an optional argument can be
provided of the minimum I/O time to print. If no argument is provided, the mini-
mum time is zero, since $1 will be 0 on line 11.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option defaultargs
5   #pragma D option switchrate=10hz
6
7   dtrace:::BEGIN
8   {
9  printf("%-20s %-16s %1s %4s %6s %s\n", "TIME", "PROCESS",
10    "D", "KB", "ms", "FILE");
11  min_ns = $1 * 1000000;
12  }
13
14  /* see uts/common/fs/zfs/zfs_vnops.c */
15
16  fbt::zfs_read:entry, fbt::zfs_write:entry
17  {
18  self->path = args[0]->v_path;
19          self->kb = args[1]->uio_resid / 1024;
20   self->start = timestamp;
21  }
22
23  fbt::zfs_read:return, fbt::zfs_write:return
24  /self->start && (timestamp - self->start) >= min_ns/
25  {
26          this->iotime = (timestamp - self->start) / 1000000;
27          this->dir = probefunc == "zfs_read" ? "R" : "W";
28          printf("%-20Y %-16s %1s %4d %6d %s\n", walltimestamp,
29  execname, this->dir, self->kb, this->iotime,
30              self->path != NULL ? stringof(self->path) : "<null>");
31  }
32
33  fbt::zfs_read:return, fbt::zfs_write:return
34  {
35          self->path = 0; self->kb = 0; self->start = 0;
36  }

Script zfsslower.d
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Example

Here the zfsslower.d script was run with an argument of 1 to show only ZFS
reads and writes that took 1 millisecond or longer:

The files accessed here were not cached and had to be read from disk.

zioprint.d

The ZFS I/O pipeline (ZIO) is of particular interest for performance analysis or
troubleshooting, because it processes, schedules, and issues device I/O. It does this
through various stages whose function names (and hence fbt provider probe
names) have changed over time. Because of this, a script that traces specific ZIO
functions would execute only on a particular kernel version and would require reg-
ular maintenance to match kernel updates.

The zioprint.d script addresses this by matching all zio functions using a
wildcard, dumping data generically, and leaving the rest to postprocessing of the
output (for example, using Perl).

Script

This script prints the first five arguments on function entry as hexadecimal inte-
gers, whether or not that’s meaningful (which can be determined later during post-
processing). For many of these functions, the first argument on entry is the
address of a zio_t, so a postprocessor can use that address as a key to follow that
zio through the stages. The return offset and value are also printed.

solaris# zfsslower.d 1
TIME                 PROCESS          D   KB     ms FILE
2010 Jun 26 03:28:49 cat          R    8     14 /export/home/brendan/randread.pl
2010 Jun 26 03:29:04 cksum            R  4      5 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum            R  4     20 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum            R  4     34 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum            R  4      7 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum            R  4     12 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum            R  4      1 /export/home/brendan/perf.tar
2010 Jun 26 03:29:04 cksum            R  4     81 /export/home/brendan/perf.tar
[...]

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   dtrace:::BEGIN
7   {
8 printf("%-16s %-3s %-22s %-6s %s\n", "TIME(us)", "CPU", "FUNC",
9      "NAME", "ARGS");
10  }

continues
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This script can be reused to dump events from any kernel area by changing the
probe names on lines 12 and 18.

Example

The script is intended to be used to write a dump file (either by using shell redirec-
tion > or via the dtrace(1M) -o option) for postprocessing. Since the script is
generic, it is likely to execute on any kernel version and produce a dump file,
which can be especially handy in situations with limited access to the target sys-
tem but unlimited access to any other system (desktop/laptop) for postprocessing.

The meaning of each hexadecimal argument can be determined by reading the
ZFS source for that kernel version. For example, the zio_wait_for_chil-
dren() calls shown earlier have the function prototype:

11
12  fbt::zio_*:entry
13  {
14          printf("%-16d %-3d %-22s %-6s %x %x %x %x %x\n", timestamp / 1000,
15              cpu, probefunc, probename, arg0, arg1, arg2, arg3, arg4);
16  }
17
18  fbt::zio_*:return
19  {
20          printf("%-16d %-3d %-22s %-6s %x %x\n", timestamp / 1000, cpu,
21   probefunc, probename, arg0, arg1);
22  }

Script zioprint.d

solaris# zioprint.d
TIME(us)         CPU FUNC        NAME   ARGS
1484927856573    0   zio_taskq_dispatch     entry  ffffff4136711c98 2 0 4a 49
1484927856594    0  zio_taskq_dispatch  return ac ffffff4456fc8090
1484927856616    0   zio_interrupt   return 1d ffffff4456fc8090
1484927856630    0   zio_execute entry  ffffff4136711c98 ffffff4456fc8090 
a477aa00 a477aa00 c2244e36f410a
1484927856643    0   zio_vdev_io_done       entry  ffffff4136711c98 ffffff4456fc8090
a477aa00 a477aa00 12
1484927856653    0 zio_wait_for_children  entry ffffff4136711c98 0 1 a477aa00 12
1484927856658    0   zio_wait_for_children  return 7b 0
1484927856667    0  zio_vdev_io_done    return 117 100
[...]

usr/src/uts/common/fs/zfs/zio.c:

static boolean_t
zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
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which means that the entry traced earlier has a zio_t with address
ffffff4136711c98 and a zio_wait_type of 1 (ZIO_WAIT_DONE). The addi-
tional arguments printed (a477aa00 and 12) are leftover register values that are
not part of the function entry arguments.

ziosnoop.d

The ziosnoop.d script is an enhancement of zioprint.d, by taking a couple of
the functions and printing useful information from the kernel—including the pool
name and file path name. The trade-off is that these additions make the script
more fragile and may require maintenance to match kernel changes.

Script

The zio_create() and zio_done() functions were chosen as start and end
points for ZIO (zio_destroy() may be a better endpoint, but it didn’t exist on
earlier kernel versions). For zio_create(), information about the requested I/O
including pool name and file path name (if known) are printed. On zio_done(),
the results of the I/O, including device path (if present) and error values, are
printed.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option defaultargs
5   #pragma D option switchrate=10hz
6
7   dtrace:::BEGIN
8   {
9   start = timestamp;
10          printf("%-10s %-3s %-12s %-16s %s\n", "TIME(us)", "CPU",
11  "ZIO_EVENT", "ARG0", "INFO (see script)");
12  }
13
14  fbt::zfs_read:entry, fbt::zfs_write:entry   { self->vp = args[0]; }
15  fbt::zfs_read:return, fbt::zfs_write:return { self->vp = 0; }
16
17  fbt::zio_create:return
18  /$1 || args[1]->io_type/
19  {
20          /* INFO: pool zio_type zio_flag bytes path */
21 printf("%-10d %-3d %-12s %-16x %s %d %x %d %s\n",
22 (timestamp - start) / 1000, cpu, "CREATED", arg1,
23 stringof(args[1]->io_spa->spa_name), args[1]->io_type,
24 args[1]->io_flags, args[1]->io_size, self->vp &&
25              self->vp->v_path ? stringof(self->vp->v_path) : "<null>");
26  }
27
28  fbt::zio_*:entry
29  /$1/
30  {
31 printf("%-10d %-3d %-12s %-16x\n", (timestamp - start) / 1000, cpu,
32      probefunc, arg0);
33  }

continues
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By default, only zio_create() and zio_done() are traced; if an optional
argument of 1 (nonzero) is provided, the script traces all other zio functions as
well.

Examples

This is the default output:

Note the TIME(us) column—the output is shuffled. To see it in the correct
order, write to a file and postsort on that column.

Running ziosnoop.d with an argument of 1 will execute verbose mode, print-
ing all zio calls. Here it is written to a file, from which a particular zio_t address
is searched using grep(1):

34
35  fbt::zio_done:entry
36  /$1 || args[0]->io_type/
37  {
38          /* INFO: io_error vdev_state vdev_path */
39          printf("%-10d %-3d %-12s %-16x %d %d %s\n", (timestamp - start) / 1000,
40   cpu, "DONE", arg0, args[0]->io_error,
41  args[0]->io_vd ? args[0]->io_vd->vdev_state : 0,
42  args[0]->io_vd && args[0]->io_vd->vdev_path ?
43  stringof(args[0]->io_vd->vdev_path) : "<null>");
44  }

Script ziosnoop.d

solaris# ziosnoop.d
TIME(us)   CPU ZIO_EVENT  ARG0     INFO (see script)
75467      2   CREATED ffffff4468f79330 pool0 1 40440 131072 /pool0/fs1/1t
96330      2   CREATED  ffffff44571b1360 pool0 1 40 131072 /pool0/fs1/1t
96352      2   CREATED ffffff46510a7cc0 pool0 1 40440 131072 /pool0/fs1/1t
96363      2   CREATED ffffff4660b4a048 pool0 1 40440 131072 /pool0/fs1/1t
24516      5   DONE   ffffff59a619ecb0 0 7 /dev/dsk/c0t5000CCA20ED60516d0s0
24562      5   DONE      ffffff4141ecd340 0 7 <null>
24578      5   DONE      ffffff4465456320 0 0 <null>
34836      5   DONE   ffffff4141f8dca8 0 7 /dev/dsk/c0t5000CCA20ED60516d0s0
34854      5   DONE      ffffff414d8e8368 0 7 <null>
34867      5   DONE      ffffff446c3de9b8 0 0 <null>
44818      5   DONE   ffffff5b3defd968 0 7 /dev/dsk/c0t5000CCA20ED60164d0s0
[...]

solaris# ziosnoop.d 1 -o ziodump
solaris# more ziodump
TIME(us)   CPU ZIO_EVENT  ARG0     INFO (see script)
[...]
171324     6   CREATED      ffffff6440130368 pool0 1 40440 131072 /pool0/fs1/1t
171330     6 zio_nowait ffffff6440130368
171332     6 zio_execute  ffffff6440130368
[...]
solaris# grep ffffff6440130368 ziodump | sort -n +0
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The output of grep(1) is passed to sort(1) to print the events in the correct
timestamp order. Here, all events from zio_create() to zio_done() can be
seen, along with the time stamp. Note the jump in time between zio_vdev_io_
start() and zio_interrupt() (171334 us to 179672 us = 8 ms)—this is the
device I/O time. Latency in other zio stages can be identified in the same way
(which can be expedited by writing a postprocessor).

ziotype.d

The ziotype.d script shows what types of ZIO are being created, printing a count
every five seconds.

Script

A translation table for zio_type is included in the BEGIN action, based on zfs.h.
If zfs.h changes with kernel updates, this table will need to be modified to match.

171324     6   CREATED      ffffff6440130368 pool0 1 40440 131072 /pool0/fs1/1t
171330     6   zio_nowait ffffff6440130368
171332     6   zio_execute  ffffff6440130368
171334     6 zio_vdev_io_start ffffff6440130368
179672     0 zio_interrupt ffffff6440130368
179676     0   zio_taskq_dispatch ffffff6440130368
179689     0   zio_execute  ffffff6440130368
179693     0   zio_vdev_io_done ffffff6440130368
179695     0   zio_wait_for_children ffffff6440130368
179698     0   zio_vdev_io_assess ffffff6440130368
179700     0   zio_wait_for_children ffffff6440130368
179702     0   zio_checksum_verify ffffff6440130368
179705     0   zio_checksum_error ffffff6440130368
179772     0   zio_done     ffffff6440130368
179775     0   DONE   ffffff6440130368 0 7 /dev/dsk/c0t5000CCA20ED60516d0s0
[...]

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7 /* see /usr/include/sys/fs/zfs.h */
8   ziotype[0] = "null";
9   ziotype[1] = "read";
10   ziotype[2] = "write";
11          ziotype[3] = "free";
12   ziotype[4] = "claim";
13   ziotype[5] = "ioctl";
14 trace("Tracing ZIO...  Output interval 5 seconds, or Ctrl-C.\n");
15  }
16
17  fbt::zio_create:return
18  /args[1]->io_type/            /* skip null */
19  {
20  @[stringof(args[1]->io_spa->spa_name),
21   ziotype[args[1]->io_type] != NULL ?

continues
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Example

The example has identified a mostly write workload of about 12,000 write ZIO
every five seconds:

perturbation.d

The perturbation.d script measures ZFS read/write performance during a given
perturbation. This can be used to quantify the performance impact during events
such as snapshot creation.

Script

The perturbation function name is provided as an argument, which DTrace makes
available in the script as $$1.

22  ziotype[args[1]->io_type] : "?"] = count();
23  }
24
25  profile:::tick-5sec,
26  dtrace:::END
27  {
28 printf("\n %-32s %-10s %10s\n", "POOL", "ZIO_TYPE", "CREATED");
29 printa(" %-32s %-10s %@10d\n", @);
30          trunc(@);
31  }

Script zioype.d

solaris# ziotype.d
Tracing ZIO...  Output interval 5 seconds, or Ctrl-C.

 POOL ZIO_TYPE      CREATED
 pool0                ioctl              28
 pool0                free               48
 pool0 read             1546
 pool0  write           12375

 POOL ZIO_TYPE      CREATED
 pool0                ioctl              14
 pool0                free               24
 pool0 read             1260
 pool0  write           11929
[...]

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option defaultargs
5
6   dtrace:::BEGIN
7   {
8           printf("Tracing ZFS perturbation by %s()... Ctrl-C to end.\n", $$1);
9   }



ptg

Scripts 367

Example

Here we measure ZFS performance during snapshot creation. The perturbation.d
script is run with the argument zfs_ioc_snapshot, a function call that encom-
passes snapshot creation (for this kernel version). While tracing, a read and write
workload was executing on ZFS, and three snapshots were created:

10
11  fbt::$$1:entry
12  {
13  self->pstart = timestamp;
14   perturbation = 1;
15  }
16
17  fbt::$$1:return
18  /self->pstart/
19  {
20          this->ptime = (timestamp - self->pstart) / 1000000;
21 @[probefunc, "perturbation duration (ms)"] = quantize(this->ptime);
22   perturbation = 0;
23  }
24
25  fbt::zfs_read:entry, fbt::zfs_write:entry
26  {
27   self->start = timestamp;
28  }
29
30  fbt::zfs_read:return, fbt::zfs_write:return
31  /self->start/
32  {
33          this->iotime = (timestamp - self->start) / 1000000;
34          @[probefunc, perturbation ? "during perturbation (ms)" :
35   "normal (ms)"] = quantize(this->iotime);
36    self->start = 0;
37  }

Script perturbation.d

solaris# perturbation.d zfs_ioc_snapshot
Tracing ZFS perturbation by zfs_ioc_snapshot()... Ctrl-C to end.
^C

  zfs_write         normal (ms)
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 348381
               1 |              7
               2 |              0

  zfs_write         during perturbation (ms)
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 276029
               1 |              11
               2 |              5
               4 |                0

  zfs_ioc_snapshot        perturbation duration (ms)
           value  ------------- Distribution ------------- count

continues
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The impact on performance can be seen clearly in the last distribution plots for
ZFS reads. In normal operation, the time for ZFS reads was mostly between 8 ms
and 31 ms. During snapshot create, some ZFS reads were taking 32 ms and lon-
ger, with the slowest five I/O in the 512-ms to 1023-ms range. Fortunately, these
are outliers: Most of the I/O was still in the 8-ms to 31-ms range, despite a snap-
shot being created.

Another target for perturbation.d can be the spa_sync() function.
Note that perturbation.d cannot be run without any arguments; if that is

tried, DTrace will error because the $$1 macro variable is undefined:

A function name must be provided for DTrace to trace.

             512 |              0
            1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@              2
            2048 |@@@@@@@@@@@@@                   1
            4096 |              0

  zfs_read          during perturbation (ms)
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@              5
               1 |              0
               2 |              0
               4 |              3
               8 |@@@@@@@@@@@@           77
              16 |@@@@@@@@@@@@@@@@@@                117
              32 |@@@@             26
              64 |@@              16
             128 |@              8
             256 |              2
             512 |@              5
            1024 |              0

  zfs_read        normal (ms)
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@             97
               1 |              0
               2 |              0
               4 |@              29
               8 |@@@@@@@@@@@@@@@@@@@@@@@@                563
              16 |@@@@@@@@@@            241
              32 |              10
              64 |              1
             128 |                  0

solaris# perturbation.d
dtrace: failed to compile script perturbation.d: line 11: invalid probe description "f
bt::$$1:entry": Undefined macro variable in probe description
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spasync.d

The spa_sync() function flushes a ZFS transaction group (TXG) to disk, which
consists of dirty data written since the last spa_sync().

Script

This script has a long history: Earlier versions were created by the ZFS engineer-
ing team and can be found in blog entries.7 Here it has been rewritten to keep it
short and to print only spa_sync() events that were longer than one millisec-
ond—tunable on line 5:

7. See http://blogs.sun.com/roch/entry/128k_suffice by Roch Bourbonnais, and see 
www.cuddletech.com/blog/pivot/entry.php?id=1015 by Ben Rockwood.

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4
5     inline int MIN_MS = 1;
6
7     dtrace:::BEGIN
8     {
9 printf("Tracing ZFS spa_sync() slower than %d ms...\n", MIN_MS);
10          @bytes = sum(0);
11    }
12
13    fbt::spa_sync:entry
14    /!self->start/
15    {
16    in_spa_sync = 1;
17   self->start = timestamp;
18   self->spa = args[0];
19    }
20
21    io:::start
22    /in_spa_sync/
23    { 
24    @io = count();
25  @bytes = sum(args[0]->b_bcount);
26    }
27
28    fbt::spa_sync:return
29    /self->start && (this->ms = (timestamp - self->start) / 1000000) > MIN_MS/
30    {
31  normalize(@bytes, 1048576);
32          printf("%-20Y %-10s %6d ms, ", walltimestamp,
33   stringof(self->spa->spa_name), this->ms);
34          printa("%@d MB %@d I/O\n", @bytes, @io);
35    }
36
37    fbt::spa_sync:return
38    {
39          self->start = 0; self->spa = 0; in_spa_sync = 0;
40   clear(@bytes); clear(@io);
41    }

Script spasync.d

www.cuddletech.com/blog/pivot/entry.php?id=1015
http://blogs.sun.com/roch/entry/128k_suffice
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HFS+ Scripts

HFS+ is the Hierarchal File System plus from Apple, described in Technical Note
TN11508 and Mac OS X Internals.

Some of the functions in the HFS code are declared static, so their symbol infor-
mation is not available for DTrace to probe. This includes hfs_vnop_open() and
hfs_vnop_close(), which are missing from the previous list. Despite this, there
are still enough visible functions from HFS+ for DTrace scripting: the functions
that call HFS and the functions that HFS calls.

This section is intended for those wanting to dig deeper into file system inter-
nals, beyond what is possible at the syscall and VFS layers. A basic understanding
of HFS+ internals is assumed, which can be studied in Chapter 12 of Mac OS X
Internals.

solaris# spa_sync.d
Tracing ZFS spa_sync() slower than 1 ms...
2010 Jun 17 01:46:18 pool-0       2679 ms, 31 MB 2702 I/O
2010 Jun 17 01:46:18 pool-0        269 ms, 0 MB 0 I/O
2010 Jun 17 01:46:18 pool-0        108 ms, 0 MB 0 I/O
2010 Jun 17 01:46:18 system        597 ms, 0 MB 0 I/O
2010 Jun 17 01:46:18 pool-0        184 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 pool-0        154 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 system        277 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 system         34 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 pool-0        226 ms, 27 MB 1668 I/O
2010 Jun 17 01:46:19 system        262 ms, 0 MB 0 I/O
2010 Jun 17 01:46:19 system        174 ms, 0 MB 0 I/O
[...]

macosx# dtrace -ln 'fbt::hfs_*:entry'
   ID   PROVIDER    MODULE               FUNCTION NAME
 9396        fbt    mach_kernel  hfs_addconverter entry
 9398        fbt  mach_kernel              hfs_bmap entry
[...]
 9470        fbt   mach_kernel  hfs_vnop_ioctl entry
 9472        fbt      mach_kernel      hfs_vnop_makenamedstream entry
 9474        fbt    mach_kernel  hfs_vnop_offtoblk entry
 9476        fbt   mach_kernel  hfs_vnop_pagein entry
 9478        fbt    mach_kernel  hfs_vnop_pageout entry
 9480        fbt   mach_kernel   hfs_vnop_read entry
 9482        fbt       mach_kernel  hfs_vnop_removenamedstream entry
 9484        fbt   mach_kernel  hfs_vnop_select entry
 9486        fbt    mach_kernel  hfs_vnop_strategy entry
 9488        fbt   mach_kernel  hfs_vnop_write entry

8. See http://developer.apple.com/mac/library/technotes/tn/tn1150.html.

http://developer.apple.com/mac/library/technotes/tn/tn1150.html
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Since there is currently no stable HFS+ provider, the fbt9 provider is used. fbt is
an unstable interface: It exports kernel functions and data structures that may
change from release to release. The following scripts were based on Mac OS X ver-
sion 10.6 and may not work on other releases without changes. Even if these
scripts no longer execute, they can still be treated as examples of D programming
and for the sort of data that DTrace can make available for HFS+ analysis.

hfssnoop.d

This script uses the fbt provider to trace HFS+ calls from within the kernel (this
will need tweaks to work on future Mac OS X kernels). It provides a raw dump of
what HFS+ is being requested to do, which can be useful for identifying load
issues. Since the output is verbose and inclusive, it is suitable for postprocessing,
such as filtering for events of interest. The functionality and output is similar to
macvfssnoop.d shown earlier.

Script

This script currently only traces reads and writes. Other available hfs_vnop_*
functions can be added, and those not visible (such as open) can be traced from an
upper layer, such as VFS (via VNOP_*, and filtering on HFS calls only).

9. See the “fbt Provider” section in Chapter 12 for more discussion about use of the fbt provider.

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option switchrate=10hz
5
6     dtrace:::BEGIN
7     {
8           printf("%-12s %6s %6s %-12.12s %-14s %-4s %s\n", "TIME(ms)", "UID",
9  "PID", "PROCESS", "CALL", "KB", "FILE");
10    }
11
12    /* see bsd/hfs/hfs_vnops.c */
13
14    fbt::hfs_vnop_read:entry
15    {
16          this->read = (struct vnop_read_args *)arg0;
17 self->path = this->read->a_vp->v_name;
18          self->kb = this->read->a_uio->uio_resid_64 / 1024;
19    }
20
21    fbt::hfs_vnop_write:entry
22    {
23          this->write = (struct vnop_write_args *)arg0;
24 self->path = this->write->a_vp->v_name;
25          self->kb = this->write->a_uio->uio_resid_64 / 1024;
26    }

continues
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Here the hfssnoop.d script has traced vim(1) opening itself in another window
to edit it:

All the files read and written while vim was loading have been traced. The final
lines show a swap file being written and vim reloading the hfssnoop.d file. The
kilobyte sizes shown are those requested; many of these reads will have returned a
smaller size in bytes (which can be shown, if desired, with more DTrace).

hfsslower.d

This is a variation of the hfssnoop.d script, intended for the analysis of perfor-
mance issues. hfsslower.d shows the time for read and write I/O in millisec-
onds. A minimum number of milliseconds can be provided as an argument when
running the script, which causes it to print only that I/O equal to or slower than
the provided milliseconds.

27
28    fbt::hfs_vnop_read:entry, fbt::hfs_vnop_write:entry
29    {
30          printf("%-12d %6d %6d %-12.12s %-14s %-4d %s\n", timestamp / 1000000,
31  uid, pid, execname, probefunc, self->kb,
32              self->path != NULL ? stringof(self->path) : "<null>");
33 self->path = 0; self->kb = 0;
34    }

Script hfssnoop.d

macosx# hfssnoop.d
TIME(ms)        UID PID PROCESS      CALL         KB   FILE
1311625280      501  67349 vim          hfs_vnop_read  4    LC_COLLATE
1311625280      501  67349 vim          hfs_vnop_read  0    LC_CTYPE/..namedfork/rsrc
1311625280      501  67349 vim hfs_vnop_read  4    LC_CTYPE
[...]
1311625288      501  67349 vim          hfs_vnop_read  8    hfssnoop.d
1311625280      501  67349 vim hfs_vnop_read  4    LC_CTYPE
1311625280      501  67349 vim hfs_vnop_read  4    LC_CTYPE
1311625280      501  67349 vim hfs_vnop_read  4    LC_CTYPE
1311625280      501  67349 vim hfs_vnop_read  54   LC_CTYPE
1311625280      501  67349 vim          hfs_vnop_read  0    LC_MONETARY
1311625280      501  67349 vim          hfs_vnop_read  0    LC_NUMERIC
1311625280      501  67349 vim hfs_vnop_read  0    LC_TIME
1311625280      501  67349 vim          hfs_vnop_read  0    LC_MESSAGES
1311625281      501  67349 vim          hfs_vnop_read  4    xterm-color
1311625282      501  67349 vim  hfs_vnop_read  4    vimrc
1311625282      501  67349 vim  hfs_vnop_read  4    vimrc
1311625284      501  67349 vim          hfs_vnop_read  4    netrwPlugin.vim
1311625284      501  67349 vim          hfs_vnop_read  4    netrwPlugin.vim
[...]
1311625285      501  67349 vim          hfs_vnop_read  4    zipPlugin.vim
1311625286      501  67349 vim          hfs_vnop_read  4    zipPlugin.vim
1311625288      501  67349 vim          hfs_vnop_write 4    .hfssnoop.d.swp
1311625288      501  67349 vim          hfs_vnop_read  64   hfssnoop.d
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Script

The defaultargs pragma is used on line 4 so that an optional argument can be
provided of the minimum I/O time to print. If no argument is provided, the mini-
mum time is zero, since $1 will be 0 on line 11.

Example

Here hfsslower.d is run with the argument 1 so that it prints out only the I/O
that took one millisecond and longer:

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4     #pragma D option defaultargs
5     #pragma D option switchrate=10hz
6
7     dtrace:::BEGIN
8     {
9  printf("%-20s %-16s %1s %4s %6s %s\n", "TIME", "PROCESS",
10    "D", "KB", "ms", "FILE");
11  min_ns = $1 * 1000000;
12    }
13
14    /* see bsd/hfs/hfs_vnops.c */
15
16    fbt::hfs_vnop_read:entry
17    {
18          this->read = (struct vnop_read_args *)arg0;
19 self->path = this->read->a_vp->v_name;
20          self->kb = this->read->a_uio->uio_resid_64 / 1024;
21   self->start = timestamp;
22    }
23
24    fbt::hfs_vnop_write:entry
25    {
26          this->write = (struct vnop_write_args *)arg0;
27 self->path = this->write->a_vp->v_name;
28          self->kb = this->write->a_uio->uio_resid_64 / 1024;
29   self->start = timestamp;
30    }
31
32    fbt::hfs_vnop_read:return, fbt::hfs_vnop_write:return
33    /self->start && (timestamp - self->start) >= min_ns/
34    {
35          this->iotime = (timestamp - self->start) / 1000000;
36          this->dir = probefunc == "hfs_vnop_read" ? "R" : "W";
37          printf("%-20Y %-16s %1s %4d %6d %s\n", walltimestamp,
38  execname, this->dir, self->kb, this->iotime,
39              self->path != NULL ? stringof(self->path) : "<null>");
40    }
41
42    fbt::hfs_vnop_read:return, fbt::hfs_vnop_write:return
43    {
44          self->path = 0; self->kb = 0; self->start = 0;
45    }

Script hfslower.d
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While tracing, there was many fast (less than 1 ms) I/Os to HFS that were fil-
tered from the output.

hfsfileread.d

This script shows both logical (VFS) and physical (disk) reads to HFS+ files, show-
ing data requests from the in-memory cache vs. disk.

Script

This script traces the size of read requests. The size of the returned data may be
smaller than was requested or zero if the read failed; the returned size could also
be traced if desired.

macosx# hfsslower.d 1
TIME                 PROCESS          D   KB     ms FILE
2010 Jun 23 00:44:05 mdworker32       R  0     21 sandbox-cache.db
2010 Jun 23 00:44:05 mdworker32       R 0     19 AdiumSpotlightImporter
2010 Jun 23 00:44:05 mdworker32       R  16     18 schema.xml
2010 Jun 23 00:44:05 soffice          W   1      2 sve4a.tmp
2010 Jun 23 00:44:05 soffice          W   1      3 sve4a.tmp
2010 Jun 23 00:44:05 soffice          R   31      2 sve4a.tmp
2010 Jun 23 00:44:05 fontd          R 0     22 Silom.ttf/..namedfork/rsrc
^C

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4
5     dtrace:::BEGIN
6     {
7  trace("Tracing HFS+ file reads... Hit Ctrl-C to end.\n");
8     }
9
10    fbt::hfs_vnop_read:entry
11    {
12          this->read = (struct vnop_read_args *)arg0;
13 this->path = this->read->a_vp->v_name;
14          this->bytes = this->read->a_uio->uio_resid_64;
15 @r[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
16    }
17
18    fbt::hfs_vnop_strategy:entry
19    /((struct vnop_strategy_args *)arg0)->a_bp->b_flags & B_READ/
20    {
21          this->strategy = (struct vnop_strategy_args *)arg0;
22          this->path = this->strategy->a_bp->b_vp->v_name;
23          this->bytes = this->strategy->a_bp->b_bcount;
24 @s[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
25    }
26
27    dtrace:::END
28    {
29          printf(" %-56s %10s %10s\n", "FILE", "READ(B)", "DISK(B)");
30          printa(" %-56s %@10d %@10d\n", @r, @s);
31    }

Script hfsfileread.d
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While tracing, there were about 240MB of requested reads to the ss7000_
b00.vmdk file, about 230MB of which were from disk, meaning that this file is
mostly uncached. The 10m_file was completely read; however, 0 bytes were read
from disk, meaning that it was entirely cached.

PCFS Scripts

pcfs is an Oracle Solaris driver for the Microsoft FAT16 and FAT32 file systems.
Though it was once popular for diskettes, today FAT file systems are more likely to
be found on USB storage devices.

Since there is currently no stable PCFS provider, the fbt provider is used here.
fbt instruments a particular operating system and version, so this script may
therefore require modifications to match the software version you are using.

pcfsrw.d

This script shows read(), write(), and readdir() calls to pcfs, with details
including file path name and latency for the I/O in milliseconds.

Script

This script traces pcfs kernel functions; if the pcfs module is not loaded (no pcfs
in use), the script will not execute because the functions will not yet be present in
the kernel for DTrace to find and probe. If desired, the -Z option can be added to
line 1, which would allow the script to be executed before pcfs was loaded (as is
done in cdrom.d).

macosx# hfsfileread.d
Tracing HFS+ file reads... Hit Ctrl-C to end.
^C
 FILE    READ(B)    DISK(B)
 swapfile1    0       4096
 dyld/..namedfork/rsrc               50          0
 dyld       4636          0
 cksum      12288          0
 template.odt   141312     143360
 10m_file 10502144          0
 ss7000_b00.vmdk    246251520  230264832

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5

continues
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This script prints basic information. To retrieve pcfs-specific information such
as the FAT type, the struct pcfs can be retrieved from the vnode in the same way
as at the start of the pcfs_read() function (see the source, including VFSTOPCFS).
We’ve resisted including an example of this, since struct pcfs has changed
between Solaris versions, and it would make this script much more fragile; add the
appropriate code for your Solaris version.

HSFS Scripts

HSFS is the High Sierra File System (ISO 9660) driver on Oracle Solaris, used by
CD-ROMs. In cases of unusual performance or errors such as failing to mount,
DTrace can be used to examine the internal operation of the device driver using
the fbt provider. On recent versions of Oracle Solaris, the kernel engineers have
also placed sdt provider probes in hsfs for convenience:

6   dtrace:::BEGIN
7   {
8  printf("%-20s %1s %4s %6s %3s %s\n", "TIME", "D", "KB",
9     "ms", "ERR", "PATH");
10  }
11
12  fbt::pcfs_read:entry, fbt::pcfs_write:entry, fbt::pcfs_readdir:entry
13  {
14  self->path = args[0]->v_path;
15          self->kb = args[1]->uio_resid / 1024;
16   self->start = timestamp;
17  }
18
19  fbt::pcfs_read:return, fbt::pcfs_write:return, fbt::pcfs_readdir:return
20  /self->start/
21  {
22          this->iotime = (timestamp - self->start) / 1000000;
23          this->dir = probefunc == "pcfs_read" ? "R" : "W";
24          printf("%-20Y %1s %4d %6d %3d %s\n", walltimestamp,
25   this->dir, self->kb, this->iotime, arg1,
26              self->path != NULL ? stringof(self->path) : "<null>");
27          self->start = 0; self->path = 0; self->kb = 0;
28  }

Script pcfsrw.d

solaris# dtrace -ln 'sdt:hsfs::'
   ID   PROVIDER  MODULE           FUNCTION NAME
83019        sdt      hsfs      hsched_enqueue_io hsfs_io_enqueued
83020        sdt       hsfs    hsched_invoke_strategy hsfs_coalesced_io_
done
83021        sdt       hsfs    hsched_invoke_strategy hsfs_coalesced_io_
start
83022        sdt       hsfs    hsched_invoke_strategy hsfs_io_dequeued
83023        sdt       hsfs   hsched_invoke_strategy hsfs_deadline_expiry
83024        sdt     hsfs hsfs_getpage hsfs_compute_ra
83025        sdt     hsfs hsfs_getapage hsfs_io_done
83026        sdt     hsfs hsfs_getapage hsfs_io_wait
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The *_ra probes shown previously refer to read-ahead, a feature of the hsfs
driver to request data ahead of time to prewarm the cache and improve perfor-
mance (similar to UFS read-ahead).

Since there is currently no HSFS provider, the options are to use the fbt pro-
vider to examine driver internals; use the sdt provider (if present), because it has
probe locations that were deliberately chosen for tracing with DTrace; or use the
stable io provider by filtering on the CD-ROM device. For robust scripts, the best
option is the io provider; the others instrument a particular operating system and
version and may require modifications to match the software version you are
using.

cdrom.d

The cdrom.d script traces the hs_mountfs() call via the fbt provider, showing
hsfs mounts along with the mount path, error status, and mount time.

Script

The -Z option is used on line 1 because the hsfs driver may not yet be loaded, and
the functions to probe may not yet be in memory. Once a CD-ROM is inserted, the
hsfs driver is automounted.

83027        sdt      hsfs        hsfs_getpage_ra hsfs_readahead
83028        sdt     hsfs hsfs_ra_task hsfs_io_done_ra
83029        sdt     hsfs hsfs_ra_task hsfs_io_wait_ra
83030        sdt     hsfs  hs_mountfs rootvp-failed
83031        sdt     hsfs   hs_mountfs mount-done
[...]

1   #!/usr/sbin/dtrace -Zs
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   dtrace:::BEGIN
7   {
8           trace("Tracing hsfs (cdrom) mountfs...\n");
9   }
10
11  fbt::hs_mountfs:entry
12  {
13          printf("%Y: Mounting %s... ", walltimestamp, stringof(arg2));
14   self->start = timestamp;
15  }
16
17  fbt::hs_mountfs:return
18  /self->start/
19  {
20          this->time = (timestamp - self->start) / 1000000;
21          printf("result: %d%s, time: %d ms\n", arg1,
22  arg1 ? "" : " (SUCCESS)", this->time);

continues
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Example

Here’s a CD-ROM with the label “Photos001” inserted:

Several seconds passed between CD-ROM insertion and the mount initiating, as
shown by cdrom.d. This time can be understood with more DTrace.

For example, the operation of volume management and hardware daemons can
be traced (vold(1M), rmvolmgr(1M), hald(1M), …). Try starting this investiga-
tion with process execution:

The same CD-ROM was reinserted, and the HAL processes that executed to
mount the CD-ROM can now be seen. DTrace can be used to further examine
whether these events were triggered by a hardware interrupt (media insertion) or
by polling. 

UDFS Scripts

UDFS is the Universal Disk Format file system driver on Oracle Solaris, used by
DVDs. This driver can be examined using DTrace in a similar way to HSFS.

dvd.d

Since the source code functions between hsfs and udfs are similar, only three lines
need to be changed to cdrom.d for it to trace DVDs instead:

23    self->start = 0;
24  }

Script cdrom.d

solaris# cdrom.d
Tracing hsfs (cdrom) mountfs...
2010 Jun 20 23:40:59: Mounting /media/Photos001... result: 0 (SUCCESS), time: 157 ms

solaris# dtrace -qn 'proc:::exec-success { printf("%Y %s\n", walltimestamp, 
curpsinfo->pr_psargs); }'
2010 Jun 21 23:51:48 /usr/lib/hal/hald-probe-storage --only-check-for-media
2010 Jun 21 23:51:48 /usr/lib/hal/hald-probe-volume
2010 Jun 21 23:51:50 /usr/lib/hal/hal-storage-mount
2010 Jun 21 23:51:50 /sbin/mount -F hsfs -o nosuid,ro /dev/dsk/c0t0d0s2 /media/Photos0
01
2010 Jun 21 23:51:50 mount -o nosuid,ro /dev/dsk/c0t0d0s2 /media/Photos001
^C



ptg

Scripts 379

The output printed for mounts is the same as cdrom.d.

NFS Client Scripts

Chapter 7, Network Protocols, covers tracing from the NFS server. The NFS client
can also be traced, which we will cover here in this chapter because the NFS
mount from a client perspective behaves like any other file system. Because of this,
physical (network device) I/O to serve that file system can be traced by the io pro-
vider (currently Oracle Solaris only), just like tracing physical (storage device) I/O
for a local file system.

Physical I/O is not the only I/O we can use to analyze NFS client performance.
Logical I/O to the NFS client driver is also interesting and may be served without
performing network I/O to the NFS server—for example, when returning data
from a local NFS client cache.

For kernel-based NFS drivers, all internals can be examined using the fbt pro-
vider. fbt instruments a particular operating system and version, so these scripts
may therefore require modifications to match the software version you are using.

nfswizard.d

This script from the DTraceToolkit demonstrates using the io provider on Oracle
Solaris to trace and summarize NFS client I/O. It traces back-end I/O only: those
that trigger NFS network I/O. More I/O may be performed to the NFS share from
the client, which is returned from the client cache only.

Script

This is a neat example of how you can produce a sophisticated report from basic D
syntax:

     8  trace("Tracing udfs (dvd) mountfs...\n");
    11 fbt::ud_mountfs:entry
    17 fbt::ud_mountfs:return

1   #!/usr/sbin/dtrace -s
[...]
35  #pragma D option quiet
36
37  dtrace:::BEGIN
38  {
39          printf("Tracing... Hit Ctrl-C to end.\n");
40  scriptstart = walltimestamp;
41   timestart = timestamp;
42  }

continues
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43
44  io:nfs::start
45  {
46  /* tally file sizes */
47          @file[args[2]->fi_pathname] = sum(args[0]->b_bcount);
48
49    /* time response */
50 start[args[0]->b_addr] = timestamp;
51
52   /* overall stats */
53 @rbytes = sum(args[0]->b_flags & B_READ ? args[0]->b_bcount : 0);
54 @wbytes = sum(args[0]->b_flags & B_READ ? 0 : args[0]->b_bcount);
55   @events = count();
56  }
57
58  io:nfs::done
59  /start[args[0]->b_addr]/
60  {
61          /* calculate and save response time stats */
62          this->elapsed = timestamp - start[args[0]->b_addr];
63  @maxtime = max(this->elapsed);
64  @avgtime = avg(this->elapsed);
65          @qnztime = quantize(this->elapsed / 1000);
66  }
67
68  dtrace:::END
69  {
70   /* print header */
71 printf("NFS Client Wizard. %Y -> %Y\n\n", scriptstart, walltimestamp);
72
73  /* print read/write stats */
74          printa("Read:  %@d bytes ", @rbytes);
75  normalize(@rbytes, 1000000);
76  printa("(%@d Mb)\n", @rbytes);
77          printa("Write: %@d bytes ", @wbytes);
78  normalize(@wbytes, 1000000);
79 printa("(%@d Mb)\n\n", @wbytes);
80
81  /* print throughput stats */
82    denormalize(@rbytes);
83          normalize(@rbytes, (timestamp - timestart) / 1000000);
84          printa("Read:  %@d Kb/sec\n", @rbytes);
85    denormalize(@wbytes);
86          normalize(@wbytes, (timestamp - timestart) / 1000000);
87          printa("Write: %@d Kb/sec\n\n", @wbytes);
88
89  /* print time stats */
90          printa("NFS I/O events:   %@d\n", @events);
91  normalize(@avgtime, 1000000);
92          printa("Avg response time: %@d ms\n", @avgtime);
93  normalize(@maxtime, 1000000);
94          printa("Max response time: %@d ms\n\n", @maxtime);
95          printa("Response times (us):%@d\n", @qnztime);
96
97  /* print file stats */
98 printf("Top 25 files accessed (bytes):\n");
99          printf("   %-64s %s\n", "PATHNAME", "BYTES");
100   trunc(@file, 25);
101         printa("   %-64s %@d\n", @file);
102 }

Script nfswizard.d
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The io provider is used to trace client NFS I/O only, by including nfs in the
probe module field. This is technically an unstable field of the probe name,
although it’s also unlikely to be renamed any time soon. An alternate approach
would be to trace all io probes and use a predicate to match when args[1]->dev_
name was equal to nfs. See the io provider description in Chapter 4 for more dis-
cussion about matching this field for io probes.

Example

Here nfswizard.d was run for a few seconds while a tar(1) command archived
files from an NFSv4 share:

The output includes a distribution plot of response times, which includes net-
work latency and NFS server latency—which may return from cache (fast) or disk
(slow), depending on the I/O.

client# nfswizard.d
Tracing... Hit Ctrl-C to end.
^C
NFS Client Wizard. 2010 Jun 22 05:32:23 -> 2010 Jun 22 05:32:26

Read:  56991744 bytes (56 Mb)
Write: 0 bytes (0 Mb)

Read:  18630 Kb/sec
Write: 0 Kb/sec

NFS I/O events:    1747
Avg response time: 2 ms
Max response time: 59 ms

Response times (us):
           value ------------- Distribution ------------- count
             128 |                   0
             256 |                   1
             512 |@@@@@                 221
            1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         1405
            2048 |@                  37
            4096 |                  21
            8192 |@                  31
           16384 |                  19
           32768 |                  12
           65536 |                  0

Top 25 files accessed (bytes):
   PATHNAME           BYTES
   /net/mars/export/home/brendan/Downloads/ping.tar               40960
   /net/mars/export/home/brendan/Downloads/pkg_get.pkg              69632
   /net/mars/export/home/brendan/Downloads/procps-3.2.8.tar.gz      286720
   /net/mars/export/home/brendan/Downloads/psh-i386-40              2260992
   /net/mars/export/home/brendan/Downloads/proftpd-1.3.2c.tar.gz   3174400
   /net/mars/export/home/brendan/Downloads/perlsrc-5.8.8stable.tar  51159040
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nfs3sizes.d

This script shows both logical (local) and physical (network) reads by an Oracle
Solaris NFSv3 client, showing requested read size distributions and total bytes. It
can be used as a starting point to investigate.

Client caching: The nfs client driver performs caching (unless it is directed 
not to, such as with the forcedirectio mount option), meaning that many 
of the logical reads may return from the client’s DRAM without performing a 
(slower) NFS read to the server.

Read size: The nfs client driver read size may differ from the application 
read size on NFS files (this can be tuned to a degree using the rsize mount 
option).

Script

The nfs3_read() function is the VFS interface into the NFSv3 client driver,
which is traced to show requested NFS reads. The nfs3_getpage() and nfs3_
directio_read() functions perform NFSv3 network I/O.

This script traces the size of read requests. The size of the returned data may be
smaller than was requested, or zero if the read failed; the script could be enhanced
to trace the returned data size instead if desired.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7 trace("Tracing NFSv3 client file reads... Hit Ctrl-C to end.\n");
8   }
9
10  fbt::nfs3_read:entry
11  {
12          @q["NFS read size (bytes)"] = quantize(args[1]->uio_resid);
13          @s["NFS read (bytes)"] = sum(args[1]->uio_resid);
14  }
15
16  fbt::nfs3_directio_read:entry
17  {
18  @q["NFS network read size (bytes)"] = quantize(args[1]->uio_resid);
19          @s["NFS network read (bytes)"] = sum(args[1]->uio_resid);
20  }
21
22  fbt::nfs3_getpage:entry
23  {
24          @q["NFS network read size (bytes)"] = quantize(arg2);
25          @s["NFS network read (bytes)"] = sum(arg2);
26  }

Script nfs3sizes.d
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Example

An application performed random 1KB reads on a file shared over NFSv3:

In this example, there were many more logical NFS reads (147,084) than physi-
cal network reads (2,566) to the NFS server, suggesting that the NFS client cache
is serving most of these logical reads (high client cache hit rate). The difference
between logical and physical read size distribution can also be compared, which
shows that the nfs client driver is requesting 4+KB reads to satisfy 1+KB requests.
Both of these behaviors can be investigated further by DTracing more internals
from the nfs client driver.

nfs3fileread.d

This script shows both logical and physical (network) reads by an Oracle Solaris
NFSv3 client, showing the requested and network read bytes by filename. This is a
variation of the nfs3sizes.d script explained previously.

Script

client# nfssizes.d
Tracing NFSv3 client file reads... Hit Ctrl-C to end.
^C

  NFS network read size (bytes)
           value ------------- Distribution ------------- count
            2048 |                  0
            4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2564
            8192 |                  2
           16384 |                  0

  NFS read size (bytes)
           value ------------- Distribution ------------- count
             128 |                   0
             256 |                   1
             512 |                   0
            1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 147083
            2048 |                  0

  NFS network read (bytes)                 10518528
  NFS read (bytes)               150613423

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7 trace("Tracing NFSv3 client file reads... Hit Ctrl-C to end.\n");
8   }
9

continues
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Example

All of the files read were 10MB in size and were read sequentially. 

The difference between the READ (requested read bytes) and NET (network read
bytes) columns are because of the following.

10m_d: About 4MB was read from this file, which was partially cached.

10m_a: This file was entirely cached in the client’s DRAM and was read 
through once.

10m_c: This file was entirely uncached and was read through once from the 
NFS server.

10m_b: This file was entirely uncached and was read through multiple 
times—the first reading it from the NFS server.

10  fbt::nfs3_read:entry
11  {
12  this->path = args[0]->v_path;
13  this->bytes = args[1]->uio_resid;
14 @r[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
15  }
16
17  fbt::nfs3_directio_read:entry
18  {
19  this->path = args[0]->v_path;
20  this->bytes = args[1]->uio_resid;
21 @n[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
22  }
23
24  fbt::nfs3_getpage:entry
25  {
26  this->path = args[0]->v_path;
27   this->bytes = arg2;
28 @n[this->path ? stringof(this->path) : "<null>"] = sum(this->bytes);
29  }
30
31  dtrace:::END
32  {
33          printf(" %-56s %10s %10s\n", "FILE", "READ(B)", "NET(B)");
34          printa(" %-56s %@10d %@10d\n", @r, @n);
35  }

Script nfs3fileread.d

client# nfs3fileread.d
Tracing NFSv3 client file reads... Hit Ctrl-C to end.
^C
 FILE    READ(B)     NET(B)
 /saury-data-0/10m_d    4182016    1265216
 /saury-data-0/10m_a            10493952          0
 /saury-data-0/10m_c    10493952   10485760
 /saury-data-0/10m_b    43753984   10485760
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TMPFS Scripts

tmpfs is a file system type for temporary files that attempts to reside in memory
for fast access. It’s used by Oracle Solaris for /tmp and other directories. The per-
formance of /tmp can become a factor when tmpfs contains more data than can fit
in memory, and it begins paging to the swap devices.

tmpfs activity can be traced at other levels such as the syscall interface and
VFS. The scripts in this section demonstrate examining activity from the kernel
tmpfs driver, using the fbt provider. fbt instruments a particular operating system
and version, so these scripts may therefore require modifications to match the soft-
ware version you are using. You shouldn’t have too much difficulty rewriting them
to trace at syscall or VFS instead if desired and to match only activity to /tmp or
tmpfs.

tmpusers.d

This script shows who is using tmpfs on Oracle Solaris by tracing the user, pro-
cess, and filename for tmpfs open calls.

Script

Example

Here’s an example:

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4
5     dtrace:::BEGIN
6     {
7           printf("%6s %6s %-16s %s\n", "UID", "PID", "PROCESS", "FILE");
8     }
9
10    fbt::tmp_open:entry
11    {
12          printf("%6d %6d %-16s %s\n", uid, pid, execname,
13     stringof((*args[0])->v_path));
14    }

Script tmpusers.d

solaris# tmpusers.d
   UID    PID PROCESS          FILE
     0 47 svc.configd /etc/svc/volatile/svc_nonpersist.db-journal
     0     47 svc.configd      /etc/svc/volatile
     0 47 svc.configd /etc/svc/volatile/sqlite_UokyAO1gmAy2L8H
     0 47 svc.configd /etc/svc/volatile/svc_nonpersist.db-journal

continues
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tmpgetpage.d

This script shows which processes are actively reading from tmpfs files by tracing
the tmpfs getpage routine, which is the interface to read pages of data. The time
spent in getpage is shown as a distribution plot.

Script

Example

Here the cksum(1) command was reading a file that was partially in memory. The
time for getpage shows two features: fast I/O between 0 us and 4 us and slower I/O
mostly between 128 us and 1024 us. These are likely to correspond to reads from
DRAM or from disk (swap device). If desired, the script could be enhanced to trace
disk I/O calls so that a separate distribution plot could be printed for DRAM reads
and disk reads.

     0     47 svc.configd      /etc/svc/volatile
     0     47 svc.configd      /etc/svc/volatile/sqlite_Ws9dGwSvZRtutXk
     0     47 svc.configd     /etc/svc/volatile/svc_nonpersist.db-journal
     0     47 svc.configd      /etc/svc/volatile/sqlite_zGn0Ab6VUI6IFpr
[...]
     0   1367 sshd        /etc/svc/volatile/etc/ssh/sshd_config
     0   1368 sshd          /var/run/sshd.pid

1     #!/usr/sbin/dtrace -s
2
3     #pragma D option quiet
4
5     dtrace:::BEGIN
6     {
7           trace("Tracing tmpfs disk read time (us):\n");
8     }
9
10 fbt::tmp_getpage:entry
11    {
12   self->vp = args[0];
13   self->start = timestamp;
14    }
15
16 fbt::tmp_getpage:return
17    /self->start/
18    {
19 @[execname, stringof(self->vp->v_path)] =
20  quantize((timestamp - self->start) / 1000);
21          self->vp = 0;
22    self->start = 0;
23    }

Script tmpgetpage.d
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Case Study

Here we present the application of the DTrace commands, scripts, and methods
discussed in this chapter.

ZFS 8KB Mirror Reads

This case study looks at a ZFS workload doing 8KB reads from a mirrored zpool.

System:

– 7410: 4 AMD Barcelona CPUs, 128GB DRAM, one 10Gb Ethernet port

– 1 JBOD: 22 1TB disks, 2 Logzillas, mirroring

– ZFS: 10 shares, 8KB record size

Workload:

– NFSv3 streaming reads, 1MB I/O size

– 100 threads total, across 10 clients (10 threads per client)

– 200+GB working set, mostly uncached

Clients:

– 10 blades

solaris# tmpgetpage.d
Tracing tmpfs disk read time (us):
^C

  cksum                                               /tmp/big0                                         

           value  ------------- Distribution ------------- count
               0 |              0
               1 |@@@@@@@@@@@@@@@@@@@@                9876
               2 |@@@@@@@@@@             5114
               4 |              29
               8 |              48
              16 |@               354
              32 |               120
              64 |              19
             128 |@              317
             256 |@@@@@@@         3223
             512 |@              444
            1024 |              71
            2048 |              31
            4096 |              37
            8192 |              33
           16384 |             23
           32768 |             4
           65536 |             2
          131072 |                  0 
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Total throughput for this workload is 338MB/sec. The 10Gb Ethernet port has a
theoretical maximum throughput of 1.16GB/sec, so what is holding us back? Disk
I/O latency? CPU?

Basic Observability

Operating system tools commonly used to check system performance include
vmstat(1M), mpstat(1M), and iostat(1M). Running these

vmstat(1M) shows high sys time (62 percent).

mpstat(1M) shows CPU 2 is hot at 97 percent sys, and we have frequent cross
calls (xcals), especially on CPU 2.

# vmstat 5
 kthr      memory        page            disk faults      cpu
 r b w   swap  free  re  mf pi po fr de sr s6 s7 s1 s1   in   sy   cs us sy id
 0 0 0 129657948 126091808 13 13 0 0 0 0 2 4  4 19  3 3088 2223  990  0  1 99
 8 0 0 7527032 3974064 0 42  0  0  0  0 0  2  1  0 303 570205 2763 100141 0 62 37
 7 0 0 7527380 3974576 0  7  0  0  0  0 0  0  0  0 309 561541 2613 99200 0 62 38
 6 0 0 7526472 3973564 0  4  0  0  0  0 0  0  0  0 321 565225 2599 101515 0 62 37
 7 0 0 7522756 3970040 11 85 0  0  0  0 0  7  7  0 324 573568 2656 99129 0 63 37
[...]

# mpstat 5
CPU minf mjf xcal  intr ithr  csw icsw migr smtx srw syscl  usr sys  wt idl
[...summary since boot truncated...]
CPU minf mjf xcal  intr ithr  csw icsw migr smtx srw syscl  usr sys  wt idl
  0    0   0 21242 34223  205 5482    2 1669 7249    0    28    0  58   0  42
  1    0   0 27446 30002 113 4574    2 1374 7029    0  1133    1  53   0  46
  2    0   0 198422 31967 2951 20938    3  213 2655    0    27    0  97   0   3
  4    0   0 16970 39203 3082 3866    9  829 6695    0    55    0  59   0  40
  5    4   0 24698 33998   10 5492    3 1066 7492    0    43    0  57   0  43
  6    0   0 26184 41790   11 7412    1 1568 6586    0    15    0  67   0  33
  7   14   0 17345 41765    9 4797    1  943 5764 1    98    0  65   0  35
  8    5   0 17756 36776   37 6110    4 1183 7698    0    62    0  58   0  41
  9    0   0 17265 31631    9 4608    2  877 7784  0    37    0  53   0  47
 10    2   0 24961 34622  7 5553    1 1022 7057    0   109    1  57   0  42
 11    3   0 33744 40631 11 8501    4 1742 6755    0    72    1  65   0  35
 12    2   0 27320 42180 468 7710   18 1620 7222    0   381    0  65   0  35
 13    1   0 20360 63074 15853 5154   28 1095 6099   0    36    1  72   0  27
 14    1   0 13996 31832  9 4277    8  878 7586    0    36    0  52   0  48
 15    8   0 19966 36656  5 5646    7 1054 6703    0   633    2  56   0  42
[...]

# iostat -xnz 5
extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
[...summary since boot truncated...]

extended device statistics
    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
    0.2   23.4   12.8 1392.7  0.5  0.1   20.3    2.3   6   5 c3t0d0
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iostat(1M) shows the disks are fairly busy (77 percent).
Just based on this information, there is little we can do to improve performance

except upgrade to faster CPUs and faster disks. We could also check kernel tuning
parameters to prevent CPU 2 from running hot, but at this point we don’t even
know why it is hot. It could be the cross cals, but we can’t tell for certain that they
are responsible for the high sys time. Without DTrace, we’ve hit a brick wall.

Enter DTrace

First we’ll use DTrace to check high system time by profiling kernel stacks on-CPU
and for the hot CPU 2:

    0.0   22.4    0.0 1392.7  0.5  0.0   22.3    1.7   6   4 c3t1d0
  324.8    0.0 21946.8 0.0  0.0  4.7    0.0 14.4   1  79 c4t5000C5001073ECF5d0
  303.8    0.0 19980.0 0.0  0.0  4.0    0.0 13.1   1  75 c4t5000C50010741BF9d0
  309.8    0.0 22036.5 0.0  0.0  5.3    0.0 17.0   1  82 c4t5000C5001073ED34d0
  299.6    0.0 19944.1 0.0  0.0  4.4    0.0 14.7   1  76 c4t5000C5000D416FFEd0
  302.6    0.0 20229.0 0.0  0.0  4.4    0.0 14.4   1  77 c4t5000C50010741A8Ad0
  292.2    0.0 19198.3 0.0  0.0  4.0    0.0 13.8   1  74 c4t5000C5000D416E2Ed0
  305.6    0.0 21203.4 0.0  0.0  4.5    0.0 14.8   1  80 c4t5000C5001073DEB9d0
  280.8    0.0 18160.5 0.0  0.0  4.0    0.0 14.3   1  75 c4t5000C5001073E602d0
  304.2    0.0 19574.9 0.0  0.0  4.3    0.0 14.2   1  77 c4t5000C50010743CFAd0
  322.0    0.0 21906.5 0.0  0.0  5.1    0.0 15.8   1  80 c4t5000C5001073F2F8d0
  295.8    0.0 20115.4 0.0  0.0  4.6    0.0 15.7   1  77 c4t5000C5001073F440d0
  289.2    0.0 20836.0 0.0  0.0  4.6    0.0 16.0   1  75 c4t5000C5001073E2F4d0
  278.6    0.0 18159.2 0.0  0.0  3.8    0.0 13.6   1  73 c4t5000C5001073D840d0
  286.4    0.0 21366.9 0.0  0.0  5.0    0.0 17.5   1  79 c4t5000C5001073ED40d0
  307.6    0.0 19198.1 0.0  0.0  4.2    0.0 13.5   1  74 c4t5000C5000D416F21d0
  292.4    0.0 19045.3 0.0  0.0  4.2    0.0 14.2   1  76 c4t5000C5001073E593d0
  293.2    0.0 20590.0 0.0  0.0  5.2    0.0 17.7   1  81 c4t5000C50010743BD1d0
  317.2    0.0 21036.5 0.0  0.0  3.9    0.0 12.4   1  74 c4t5000C5000D416E76d0
  295.6    0.0 19540.1 0.0  0.0  4.0    0.0 13.5   1  72 c4t5000C5001073DDB4d0
  332.6    0.0 21610.2 0.0  0.0  4.2    0.0 12.5   1  75 c4t5000C500106CF55Cd0
[...]

# dtrace -n 'profile-1234 { @[stack()] = count(); } tick-5sec { exit(0); }'
dtrace: description 'profile-1234 ' matched 2 probes
CPU     ID            FUNCTION:NAME
 11  85688             :tick-5sec 
[...output truncated...]

    unix`0xfffffffffb84fd8a
    zfs`zio_done+0x383
    zfs`zio_execute+0x89
   genunix`taskq_thread+0x1b7
    unix`thread_start+0x8

             2870

    unix`do_splx+0x80
    unix`xc_common+0x231
    unix`xc_call+0x46
    unix`hat_tlb_inval+0x283
    unix`x86pte_inval+0xaa
    unix`hat_pte_unmap+0xfd
   unix`hat_unload_callback+0x193

continues
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This shows that we are hottest in do_splx(), a function used to process cross
calls (see xc_call() further down the stack).

Now we check the hot stacks for CPU 2, by matching it in a predicate:

This shows that CPU 2 is indeed hot in cross calls. To quantify the problem, we
could postprocess this output to add up which stacks are cross calls and which
aren’t, to calculate the percentage of time spent in cross calls.

    unix`hat_unload+0x41
   unix`segkmem_free_vn+0x6f
    unix`segkmem_free+0x27
    genunix`vmem_xfree+0x104
    genunix`vmem_free+0x29
    genunix`kmem_free+0x20b
  genunix`dblk_lastfree_oversize+0x69

    genunix`dblk_decref+0x64
    genunix`freeb+0x80
    ip`tcp_rput_data+0x25a6
    ip`squeue_enter+0x330
    ip`ip_input+0xe31
   mac`mac_rx_soft_ring_drain+0xdf

             3636

    unix`mach_cpu_idle+0x6
    unix`cpu_idle+0xaf
   unix`cpu_idle_adaptive+0x19

     unix`idle+0x114
    unix`thread_start+0x8

            30741

# dtrace -n 'profile-1234 /cpu == 2/ { @[stack()] = count(); } 
tick-5sec { exit(0); }'
dtrace: description 'profile-1234 ' matched 2 probes
CPU     ID            FUNCTION:NAME
  8  85688             :tick-5sec 
[...output truncated...]

    unix`do_splx+0x80
    unix`xc_common+0x231
    unix`xc_call+0x46
    unix`hat_tlb_inval+0x283
    unix`x86pte_inval+0xaa
    unix`hat_pte_unmap+0xfd
   unix`hat_unload_callback+0x193
    unix`hat_unload+0x41
   unix`segkmem_free_vn+0x6f
    unix`segkmem_free+0x27
    genunix`vmem_xfree+0x104
    genunix`vmem_free+0x29
    genunix`kmem_free+0x20b
  genunix`dblk_lastfree_oversize+0x69

    genunix`dblk_decref+0x64
    genunix`freeb+0x80
    ip`tcp_rput_data+0x25a6
    ip`squeue_enter+0x330
    ip`ip_input+0xe31
   mac`mac_rx_soft_ring_drain+0xdf

             1370
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Sometimes frequency counting the kernel function name that is on-CPU is suffi-
cient to identify the activity, instead of counting the entire stack:

This output is easier to examine and still identifies the cross call samples as the
hottest CPU activity (do_splx() function). By postprocessing the sample counts
(summing the count column using awk(1)), we found that CPU 2 spent 46 per-
cent of its time in do_splx(), which is a significant percentage of time.

Investigating Cross Calls

CPU cross calls can be probed using DTrace directly:

# dtrace -n 'profile-1234 /cpu == 2/ { @[func(arg0)] = count(); } 
tick-5sec { exit(0); }'
dtrace: description 'profile-1234 ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1  85688             :tick-5sec 

  mac`mac_hwring_tx                    1
  mac`mac_soft_ring_worker_wakeup                  1
  mac`mac_soft_ring_intr_disable                  1
  rootnex`rootnex_init_win                    1
  scsi_vhci`vhci_scsi_init_pkt                   1
[...output truncated...]
  unix`setbackdq                     31
  ip`ip_input                   33
  unix`atomic_add_64                     33
  unix`membar_enter                    38
  unix`page_numtopp_nolock                   47
  unix`0xfffffffffb84fd8a                    50
  unix`splr                      56
  genunix`ddi_dma_addr_bind_handle                 56
  unix`i_ddi_vaddr_get64                     62
  unix`ddi_get32                     81
  rootnex`rootnex_coredma_bindhdl                  83
  nxge`nxge_start                     92
  unix`mutex_delay_default                   93
  unix`mach_cpu_idle                     106
  unix`hat_tlb_inval                     126
  genunix`biodone                    157
  unix`mutex_enter                    410
  unix`do_splx                  2597

# dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); } tick-5sec { exit(0); }'
dtrace: description 'sysinfo:::xcalls ' matched 2 probes
CPU     ID            FUNCTION:NAME
 10  85688             :tick-5sec 
[...output truncated...]

    unix`xc_call+0x46
    unix`hat_tlb_inval+0x283
    unix`x86pte_inval+0xaa
    unix`hat_pte_unmap+0xfd
   unix`hat_unload_callback+0x193
    unix`hat_unload+0x41

continues
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The most frequent stacks originate in either ip (the IP and TCP module) or nxge
(which is the 10GbE network interface driver). Filtering on CPU 2 (/cpu == 2/)
showed the same hottest stacks for these cross calls. Reading up the stack to
understand the nature of these cross calls shows that they enter the kernel mem-
ory subsystem (Solaris Internals [McDougall and Mauro, 2006] is a good reference
for understanding these).

Perhaps the most interesting stack line is dblk_lastfree_oversize()—over-
size is the kernel memory allocator slab for large buffers. Although it is perform-
ing well enough, the other fixed-size slabs (8KB, 64KB, 128KB, and so on) perform
better, so usage of oversize is undesirable if it can be avoided.

The cross call itself originates from a code path that is freeing memory, includ-
ing functions such as kmem_free(). To better understand this cross call, the
kmem_free() function is traced so that the size freed can be examined if this
becomes a cross call on CPU 2:

   unix`segkmem_free_vn+0x6f
    unix`segkmem_free+0x27
    genunix`vmem_xfree+0x104
    genunix`vmem_free+0x29
    genunix`kmem_free+0x20b
  genunix`dblk_lastfree_oversize+0x69

    genunix`dblk_decref+0x64
    genunix`freemsg+0x84
   nxge`nxge_txdma_reclaim+0x396
    nxge`nxge_start+0x327
   nxge`nxge_tx_ring_send+0x69
    mac`mac_hwring_tx+0x20
    mac`mac_tx_send+0x262
   mac`mac_tx_soft_ring_drain+0xac

           264667

    unix`xc_call+0x46
    unix`hat_tlb_inval+0x283
    unix`x86pte_inval+0xaa
    unix`hat_pte_unmap+0xfd
   unix`hat_unload_callback+0x193
    unix`hat_unload+0x41
   unix`segkmem_free_vn+0x6f
    unix`segkmem_free+0x27
    genunix`vmem_xfree+0x104
    genunix`vmem_free+0x29
    genunix`kmem_free+0x20b
  genunix`dblk_lastfree_oversize+0x69

    genunix`dblk_decref+0x64
    genunix`freeb+0x80
    ip`tcp_rput_data+0x25a6
    ip`squeue_enter+0x330
    ip`ip_input+0xe31
   mac`mac_rx_soft_ring_drain+0xdf
   mac`mac_soft_ring_worker+0x111
    unix`thread_start+0x8

           579607
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The output shows that the frees that become cross calls are in the 1MB to 2MB
range.

This rings a bell. The clients are using a 1MB I/O size for their sequential reads,
on the assumption that 1MB would be optimal. Perhaps it is these 1MB I/Os that
are causing the use of the oversize kmem cache and the cross calls.

Trying the Solution

As an experiment, we changed I/O size on the clients to 128KB. Let’s return to sys-
tem tools for comparison:

The cross calls have mostly vanished, and throughput is 503MB/sec—a 49 per-
cent improvement!

# dtrace -n 'fbt::kmem_free:entry /cpu == 2/ { self->size = arg1; }
sysinfo:::xcalls /cpu == 2/ { @ = quantize(self->size); }'
dtrace: description 'fbt::kmem_free:entry ' matched 2 probes
^C

           value  ------------- Distribution ------------- count
          524288 |                0
         1048576 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 37391
         2097152 |                 0

# mpstat 5
CPU minf mjf xcal  intr ithr  csw icsw migr smtx srw syscl  usr sys  wt idl
[...summary since boot truncated...]
CPU minf mjf xcal  intr ithr  csw icsw migr smtx srw syscl  usr sys  wt idl
  0    0   0 2478  7196 205 10189    2 2998 3934    0    41    0  47   0  53
  1    0   0  139  6175  111 9367    2 2713 3714    0    84    0  44   0  56
  2    0   0 10107 11434 3610 54281   11 1476 2329    0   465    1  79   0  20
  4    7   0   36  7924 3703 6027   11 1412 5085    0   146   1  54   0  46
  5    0   0    4  5647   10 8028    3 1793 4347 0    28    0  53   0  47
  6    1   0   49  6984   12 12248    2 2863 4374    0    38    0  56   0  44
  7    0   0   11  4472   10 7687    3 1730 3730 0    33    0  49   0  51
  8    0   0   82  5686   42 9783    2 2132 5116  0   735    1  49   0  49
  9    0   0   39  4339    7 7308    1 1511 4898  0   396    1  43   0  57
 10    0   0    3  5256    4 8997    1 1831 4399 0    22    0  43   0  57
 11    0   0    5  7865   12 13900    1 3080 4365    1    43    0  55   0  45
 12    0   0   58  6990  143 12108   12 2889 5199    0   408    1  56   0  43
 13    1   0    0 35884 32388 6724   48 1536 4032    0   77    0  73   0  27
 14    1   0   14  3936    9 6473    6 1472 4822  0   102    1  42   0  58
 15    3   0    8  5025    8 8460    8 1784 4360  0   105    2  42   0  56
[...]

# iostat -xnz 5
extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
[...summary since boot truncated...

extended device statistics
continues
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The disks are now reaching 100 percent busy and have become the new bottle-
neck (one disk in particular). This often happens with performance investigations:
As soon as one problem has been fixed, another one becomes apparent.

Analysis Continued 

From the previous iostat(1M) output, it can be calculated that the average I/O
size is fairly large (~60KB), yet this results in low throughput per disk (20MB/sec)
for disks that can pull more than 80MB/sec. This could indicate a random compo-
nent to the I/O. However, with DTrace, we can measure it directly.

Running bitesize.d from Chapter 4 (and the DTraceToolkit) yields the following:

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
    0.2   45.6   12.8 3982.2  1.7  0.2   37.6    4.3  19  20 c3t0d0
    0.4   45.2   25.6 3982.2  1.3  0.1   28.7    2.9  15  13 c3t1d0
  381.8    0.0 21210.8    0.0  0.0  5.2    0.0   13.7   1  92 c4t5000C5001073ECF5d0
  377.2    0.0 21914.8    0.0  0.0  5.5    0.0   14.6   1  87 c4t5000C50010741BF9d0
  330.2    0.0 21334.7    0.0  0.0  6.4    0.0   19.3   1  89 c4t5000C5001073ED34d0
  379.8    0.0 21294.8    0.0  0.0  5.4    0.0   14.3   1  92 c4t5000C5000D416FFEd0
  345.8    0.0 21823.1    0.0  0.0  6.1    0.0   17.6   1  90 c4t5000C50010741A8Ad0
  360.6    0.0 20126.3    0.0  0.0  5.2    0.0   14.5   1  85 c4t5000C5000D416E2Ed0
  352.2    0.0 23318.3    0.0  0.0  6.9    0.0   19.7   1  93 c4t5000C5001073DEB9d0
  253.8    0.0 21745.3 0.0  0.0 10.0    0.0 39.3   0 100 c4t5000C5001073E602d0
  337.4    0.0 22797.5    0.0  0.0  7.1    0.0   20.9   1  96 c4t5000C50010743CFAd0
  346.0    0.0 22145.4    0.0  0.0  6.7    0.0   19.3   1  87 c4t5000C5001073F2F8d0
  350.0    0.0 20946.2    0.0  0.0  5.3    0.0   15.2   1  89 c4t5000C5001073F440d0
  383.6    0.0 22688.1    0.0  0.0  6.5    0.0   17.0   1  94 c4t5000C5001073E2F4d0
  333.4    0.0 24451.0    0.0  0.0  8.2    0.0   24.6   1  98 c4t5000C5001073D840d0
  337.6    0.0 21057.5    0.0  0.0  5.9    0.0   17.4   1  90 c4t5000C5001073ED40d0
  370.8    0.0 21949.1    0.0  0.0  5.3    0.0   14.2   1  88 c4t5000C5000D416F21d0
  393.2    0.0 22121.6    0.0  0.0  5.6    0.0   14.3   1  90 c4t5000C5001073E593d0
  354.4    0.0 22323.5    0.0  0.0  6.4    0.0   18.1   1  93 c4t5000C50010743BD1d0
  382.2    0.0 23451.7    0.0  0.0  5.9    0.0   15.3   1  95 c4t5000C5000D416E76d0
  357.4    0.0 22791.5    0.0  0.0  6.8    0.0   19.0   1  93 c4t5000C5001073DDB4d0
  338.8    0.0 22762.6    0.0  0.0  7.3    0.0   21.6   1  92 c4t5000C500106CF55Cd0
[...]

# bitesize.d
Tracing... Hit Ctrl-C to end.

     PID  CMD
    1040  /usr/lib/nfs/nfsd -s /var/ak/rm/pool-0/ak/nas/nfs4\0

           value  ------------- Distribution ------------- count
            4096 |              0
            8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 8296
           16384 |             0

       0  sched\0

           value  ------------- Distribution ------------- count
             256 |              0
             512 |              8
            1024 |              51
            2048 |              65
            4096 |              25
            8192 |@@@@@@@@        5060
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This shows I/O from 8KB through to 128KB. 8KB I/O is expected because of the
ZFS record size and when nfsd responds to a request by reading 8KB I/O. Doing
this sequentially will trigger ZFS prefetch, which will read ahead in the file asyn-
chronously to the nfsd thread (sched). The vdev layer can aggregate these reads
up to 128KB before they are sent to disk. All of these internals can be examined
using DTrace.

Running seeksize.d from Chapter 4 (and the DTraceToolkit) yields the following:

           16384 |@@@@              2610
           32768 |@@@@              2881
           65536 |@@@@@@@@@@@@@       8576
          131072 |@@@@@@@@@@@        7389
          262144 |                  0 

# seeksize.d
Tracing... Hit Ctrl-C to end.

     PID  CMD
    1040  /usr/lib/nfs/nfsd -s /var/ak/rm/pool-0/ak/nas/nfs4\0

           value  ------------- Distribution ------------- count
              -1 |              0

0 |@@@@@@@@@@@@@@@@@@@@@@@@               5387
               1 |              1
               2 |              53
               4 |              3
               8 |              7
              16 |@@               450
              32 |@@               430
              64 |@               175
             128 |@              161
             256 |@              144
             512 |              97
            1024 |              49
            2048 |              10
            4096 |              19
            8192 |              34
           16384 |             84
           32768 |@              154
           65536 |@              307
          131072 |@@                528
          262144 |@@@                598
          524288 |@                266
         1048576 |               23
         2097152 |               0

       0  sched\0

           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@              3160
               1 |              2
               2 |              38
               4 |              11
               8 |              3
              16 |               265
              32 |@               309

continues



ptg

396 Chapter 5 � File Systems

This shows that the disks are often seeking to perform I/O. From this, we could
look at how the files were created and what file system parameters existed to opti-
mize placement in order to reduce seeking.

Running iopattern from Chapter 4 (and the DTraceToolkit) yields the following:

iopattern confirms the previous findings.
Finally, an iolatency.d script was written to show overall device latency as a

distribution plot:

              64 |@               442
             128 |@              528
             256 |@              767
             512 |@              749
            1024 |@              427
            2048 |              165
            4096 |              250
            8192 |@              406
           16384 |@              870
           32768 |@@@              1623
           65536 |@@@@@                2801
          131072 |@@@@@@@               4113
          262144 |@@@@@@@               4167
          524288 |@@@                1787
         1048576 |              141
         2097152 |               7
         4194304 |@                718
         8388608 |@                354
        16777216 |             0

# iopattern
%RAN %SEQ  COUNT MIN    MAX    AVG     KR     KW
  72   28  72996  36 131072  59152 4130835  85875
  70   30  71971 512 131072  61299 4217260  91147
  67   33  68096 512 131072  59652 3872788  94092
  63   37  72490  36 131072  60248 4173898  91155
  66   34  73607 512 131072  60835 4285085  95988
[...]

1     #!/usr/sbin/dtrace -s
2
3     io:::start
4     { 
5   start[arg0] = timestamp; 
6     } 
7
8     io:::done
9     /start[arg0]/ 
10    { 
11  @time["disk I/O latency (ns)"] = quantize(timestamp - start[arg0]); 
12    start[arg0] = 0; 
13    }

Script iolatency.d
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The latency for these disk I/Os is fairly large, often exceeding 8 ms.
There are a few ways we might improve performance here.

Tuning file system on-disk placement to promote sequential access, which 
should take I/O latency closer to 1 ms.

Upgrading (or improving) caches by increasing the size of the Level 1 cache 
(the ARC, which is DRAM-based) or using a level-two cache (the ZFS L2ARC, 
which is SSD-based) to span more of the working set. The internal workings 
of these caches can also be examined.

Faster disks.

Conclusion

In this case study, we’ve demonstrated using DTrace to solve one problem and
gather data on the next. This isn’t the end of the road for DTrace—we can con-
tinue to study the internals of file system on-disk placement using DTrace, as well
as the workings of the level-one file system cache to hunt for suboptimalities.

Summary

In this chapter, DTrace was used to examine file system usage and internals. This
was performed from different perspectives: at the system call layer, at the virtual

# iolatency.d -n 'tick-5sec { exit(0); }'
dtrace: script 'io-latency.d' matched 10 probes
dtrace: description 'tick-5sec ' matched 1 probe
CPU     ID            FUNCTION:NAME
 15  85688             :tick-5sec 

  disk I/O latency (ns)
           value  ------------- Distribution ------------- count
           32768 |             0
           65536 |             1
          131072 |                259
          262144 |@                457
          524288 |@@                 1330
         1048576 |@@@@                2838
         2097152 |@@@@@               4095
         4194304 |@@@@@@@               5303
         8388608 |@@@@@@@@@              7460
        16777216 |@@@@@@@              5538
        33554432 |@@@@               3480
        67108864 |@@                1338
       134217728 |             147
       268435456 |            3
       536870912 |            0
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file system (VFS) layer, and from the file system software itself. For performance
investigations, at the ability to measure I/O latency from these different layers can
be crucial for pinpointing the source of latency—whether that’s from the file sys-
tem or underlying devices. Characteristics of the file system workload were also
measured, such as I/O types and filenames, to provide context for understanding
what the file system is doing and why.
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6
Network Lower-Level 
Protocols

Network I/O is processed by many different layers and protocols, including the
application, the protocol libraries, the TCP/IP stack, and the network interface
driver. DTrace allows you to examine the internals of each layer, tracking a packet
step-by-step as it is processed from the application to the network interface. Using
DTrace, you can answer questions about system network load such as the following.

What clients are requesting network I/O?  

To which TCP or UDP ports?

Which processes are generating network I/O? Why?

Are packets being dropped in the TCP/IP stack? Why?

As an example, connections is a DTrace-based tool you can use to trace
inbound network connections:

solaris# connections -v
TIMESTR     UID   PID CMD      TYPE  PORT IP_SOURCE
2010 Jan  3 01:08:34 0   753 sshd   tcp    22 192.168.2.124
2010 Jan  3 01:08:41 0  1630 inetd   tcp    23 192.168.2.241
2010 Jan  3 01:08:48 0   753 sshd   tcp    22 192.168.2.241
2010 Jan  3 01:08:52 0   753 sshd   tcp    22 192.168.2.124
2010 Jan  3 01:08:59 0   753 sshd   tcp    22 192.168.2.145
2010 Jan  3 01:09:54 0  1630 inetd   tcp    79 192.168.2.145
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Network-sniffing tools, such as snoop and tcpdump, can show what packets
transmitted over the wire and can identify that TCP completed connections.  How-
ever, they cannot identify which process accepted connections or provide details
beyond what is in the network packet. The connections script uses DTrace to trace
at the socket layer, in the context of the accepting process, to show both network
and process details.

This is the first of two chapters on networking and covers the first six network
stack layers: XDR, Sockets, TCP, UDP, IP, ICMP, and the physical network inter-
face. The next chapter focuses on application-level protocols, such as HTTP and
NFS (layer-seven protocols).

Capabilities

The five-layer TCP/IP model groups the Application, Presentation, and Session
layers together. The seven-layer OSI model is used here (see Figure 6-1), not just
because DTrace can see the Session and Presentations layers but because tracing
sockets is very useful in terms of application context, as will be demonstrated in
the “Scripts” section. 

Figure 6-1 OSI model 
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Figure 6-2 shows the Solaris TCP/IP stack. At each of the numbered items, we
can use DTrace to ask questions such as the following.

1. What protocol requests are occurring? By user stack trace? By latency?

2. What application level I/O is occurring? With protocol details?

Figure 6-2 Solaris TCP/IP stack
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3. What direct network I/O is occurring (for example, NFS client)?

4. What socket I/O is occurring, throughput and IOPS? By process and stack 
trace?

5. What socket connections are being created/accepted?

6. Is the socket layer returning errors? Why?

7. What transport I/O is occurring? TCP vs. UDP?

8. What raw network I/O is occurring? ICMP by type?

9. What IP I/O is occurring? By size? By source/destination?

10. What network interface I/O is occurring? By size?

11. What network devices are still using dld?

12. What is the frequency of driver calls?

13. Are drivers polling interfaces or waiting for interrupts?

14. What is the network stack latency?

15. What is the driver interface stack latency?

Note that application protocols, the very top of this stack (NFS, HTTP, FTP, and
so on), are covered in Chapter 7, Application Protocols.

Strategy

To get started using DTrace to examine network I/O in the networking stack, fol-
low these steps (the target of each step is in bold):

1. Try the DTrace one-liners and scripts listed in the sections that follow.

2. In addition to those DTrace tools, familiarize yourself with existing
network statistic tools. For example, netstat -s shows various TCP/IP 
statistics, netstat -i shows network interface statistics, and you can use 
tcpdump or snoop for packet details. The metrics that these print can be 
treated as starting points for customization with DTrace.

3. Locate or write tools to generate known network I/O, which could be as 
simple as using ftp to transfer a large file of a known size. Many tools exist 
to generate TCP and UDP I/O, including ttcp for simple TCP connections 
and uperf for sophisticated network I/O. It is extremely helpful to have 
known workloads to examine while developing DTrace scripts.

4. Customize and write your own one-liners and scripts using the syscall
provider for socket I/O.
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5. If available, try the mib, ip, tcp, and udp providers for writing stable one-
liners and scripts.

6. To dig deeper than these providers allow, familiarize yourself with how the 
kernel and user-land processes call network I/O by examining stack back-
traces (see the “fbt Provider” section). Also refer to functional diagrams of 
the network stack such as the OSI model shown in Figure 6-1 and the net-
work flow diagrams. Refer to published kernel texts such as Solaris Internals
(McDougall and Mauro, 2006) and Mac OS X Internals (Singh, 2006).

7. Examine kernel internals for network I/O by using the fbt provider, and refer 
to kernel source code (if available). Be aware that scripts using fbt may 
require maintenance to match updates to the kernel software.

Checklist

Consider Table 6-1 as a checklist of network I/O issue types, which can be exam-
ined using DTrace.

Table 6-1 Network I/O Checklist

Issue Description

Volume A server may be accepting a high volume of network I/O from unexpected 
clients, which may be avoidable by reconfiguring the client environment. 
Applications may also be performing a high volume of network I/O that 
could be avoided by modifying their behavior. DTrace can be used to 
examine network I/O by client, port, and applications to identify who is 
using the network, how much, and why.

Latency There are a variety of latencies we can look at when diagnosing network I/O:

First byte latency: The time from requesting a TCP connection to when 
the first byte is transferred. High latency here can be an indication of a sat-
urated server that is taking time to create a TCP session and schedule the 
application.

Round-trip time: The time for a TCP data packet to be acknowledged. 
High latency here can be a sign of a slow external network.

Stack latency: The time for a packet to be processed by each layer of the 
TCP/IP stack.

DTrace can be used to measure all of these latencies, which is essential 
information for understanding the performance of any application that 
does network I/O.

continues
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Providers

Table 6-2 shows providers of interest when tracing network stack I/O.

Queueing I/O latency can also be caused by network I/O queuing in the network 
stack. Queue length and wait time such as on the TCP transmission queue 
and device driver queues can be examined using DTrace.

Errors Each layer of the network stack can generate an error or misbehave in a 
variety of ways, such as checksum errors, packet drops, routing errors, and 
out-of-order packets. Some errors are not reported by user-land tools yet 
are known in the kernel. DTrace can be used to monitor all errors and iden-
tify whether errors are affecting applications and connections.

Configuration There are typically many tunables that can be set to tune network perfor-
mance. Are they working, and can they be tuned further? For example, 
DTrace can be used to check whether jumbo frames are being used and to 
easily identify the clients who are not using them. Other features and tun-
ables, if available, could also be studied with DTrace: TCP window and buf-
fer sizes, TCP Large Send Offload, TCP fusion, and so on.

Table 6-2 Providers for Network I/O

Provider Description

mib A stable provider that allows tracing when statistics for the SNMP Message 
Information Bases (MIBs) are incremented. Although the arguments are lim-
ited, this provider is useful for locating logical events in the code path.

ip IPv4/IPv6 provider. Trace IP packet send and receive, with IP header details and 
payload length. This provider makes it easy to see which clients are connect-
ing and what their network throughputs are. The IP provider is currently avail-
able only on recent builds of OpenSolaris.

tcp TCP provider. Trace TCP send, receive, and connection events, with TCP 
header details. The TCP provider is currently only available on recent builds of 
OpenSolaris.

udp UDP provider. Trace UDP send and receive with UDP header details. The UDP 
provider is currently available only on recent builds of OpenSolaris.

syscall Trace entry and return of operating system calls, arguments, and return val-
ues. Much of network I/O begins as application syscalls, making this a useful 
provider to consider, especially as the user stack trace must be examined in 
application context. 

Table 6-1 Network I/O Checklist (Continued)

Issue Description
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Check your operating system version to see which of these providers are avail-
able. At the very least, syscall, fbt, and mib should be available, which provide
an excellent level of coverage for examining the network stack.

mib Provider

The mib provider traces updates to the SNMP MIB counters from the hundreds of
update points in the kernel. For example, Solaris 10 5/08 probes 573 kernel locations
to provide a stable interface of 212 probe names—the exported MIB counters. In the
following output, the top three probes provide mib:::ipv6IfIcmpInBadRedirects:

The probe names (NAME) constitute a stable interface based on SNMP MIB coun-
ters; the module and function names show the kernel implementation, which is
subject to change. Since the mib provider accesses both in the same probes, it can be
used to bridge kernel implementation with stable SNMP MIB probes, for example:

sched Trace kernel scheduling events, including when threads leave CPU and return. 
This can be useful for following network I/O, since application threads will 
leave CPU when waiting for network I/O to complete and then return.

fbt The fbt provider allows the internals of the network stack and network device 
drivers to be examined. This has an unstable interface and will change 
between releases of the operating system and drivers, meaning that scripts 
based on fbt may need to be significantly rewritten for each such update. The 
upside is that everything can be traced from fbt.

gld Stable network providers currently in development (see the “Network Provid-
ers” section).

solaris# dtrace -ln mib:::
   ID  PROVIDER  MODULE      FUNCTION NAME 
25050       mib      ip       icmp_redirect_v6 ipv6IfIcmpInBadRedirects
25051       mib      ip        icmp_inbound_v6 ipv6IfIcmpInBadRedirects
25052       mib ip  ip_mib2_add_icmp6_stats ipv6IfIcmpInBadRedirects 
25053       mib      ip     ndp_input_solicit ipv6IfIcmpInBadNeighborSolicitations
25054       mib      ip ip_mib2_add_icmp6_stats ipv6IfIcmpInBadNeighborSolicitations
25055       mib      ip     ndp_input_advert ipv6IfIcmpInBadNeighborAdvertisements
25056       mib      ip  ip_mib2_add_icmp6_stats ipv6IfIcmpInBadNeighborAdvertisements
25057       mi       ip      ip_fanout_proto_v6 ipv6IfIcmpInOverflows
[...]

Table 6-2 Providers for Network I/O (Continued)

Provider Description
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For anyone considering DTracing the kernel network stack via the fbt pro-
vider, the mib provider may be used first in this way to locate functions of inter-
est. By tracing the kernel stack (using stack()) instead of probefunc, the entire
calling path can be examined.

For historical data (before DTrace was tracing), the netstat -s command on
Solaris prints out the current value of the maintained MIB counters. These use
names that closely match the probe names for the DTrace mib provider. Here’s an
example:

The output of netstat -s showed a high rate of tcpRetransBytes. To under-
stand how this occurs in the kernel TCP/IP stack, that MIB counter can be probed
and the stack collected: 

solaris# dtrace -n 'mib:::tcp* 
{ @[strjoin(probefunc, strjoin("() -> ", probename))] = count();}' 
dtrace: description 'mib:::tcp* ' matched 94 probes 
^C

  tcp_connect_ipv4() -> tcpActiveOpens                1 
  tcp_xmit_mp() -> tcpOutControl                          1 
  tcp_rput_data() -> tcpOutAck                   12 
  tcp_ack_timer() -> tcpOutAck                   19 
  tcp_ack_timer() -> tcpOutAckDelayed                19 
  tcp_output() -> tcpOutDataBytes                 124 
  tcp_output() -> tcpOutDataSegs                 124 
  tcp_rput_data() -> tcpInAckBytes                 124 
  tcp_rput_data() -> tcpInAckSegs           124 
  tcp_set_rto() -> tcpRttUpdate                  124 
  tcp_rput_data() -> tcpInDataInorderBytes                   146 
  tcp_rput_data() -> tcpInDataInorderSegs                   146 

solaris# netstat -s
[...]
TCP     tcpRtoAlgorithm    =     4     tcpRtoMin           =   400
        tcpRtoMax       = 60000     tcpMaxConn          =    -1
        tcpActiveOpens      =3754034  tcpPassiveOpens     =145293
        tcpAttemptFails     = 16723     tcpEstabResets      = 30598
        tcpCurrEstab     =    38     tcpOutSegs          =178686476
        tcpOutDataSegs      =127818052 tcpOutDataBytes   =2924374551
        tcpRetransSegs      =686172 tcpRetransBytes   =667592163
[...]

solaris# dtrace -n 'mib:::tcpRetransBytes { @[stack()] = count(); }'
dtrace: description 'mib:::tcpRetransBytes ' matched 4 probes
^C

   ip`tcp_timer_handler+0x28
    ip`squeue_drain+0xf0
    ip`squeue_worker+0xeb
    unix`thread_start+0x8

                4
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DTrace reported that this probe description matched four probes, meaning there
are four locations in the kernel that increment this counter. The location that was
being called has been identified in the stack trace. Those functions can now be
examined in the source code and traced using the fbt provider to get a grip on
exactly why this counter was incremented.

The HC in the probe names stands for High Capacity, which typically means
these are 64-bit counters.

See the “mib Provider” chapter of the DTrace Guide for the full mib provider doc-
umentation and probe definitions.1 Since these probe names are from MIBs, there
are many other documentation sources for the counters, including request for com-
ments (RFCs) that define the counters; mib definition files, such as those shipped

Table 6-3 Example mib Probes

Probe Protocol Description

tcpActiveOpens TCP Outbound connection: fires whenever a TCP con-
nection directly transitions from the CLOSED to 
SYN_SENT state.

tcpPassiveOpens TCP Inbound connection: fires whenever TCP connec-
tions directly transition from the LISTEN to 
SYN_RCVD state.

tcpOutRsts TCP Fires whenever a segment is sent with the RST 
flag set, such as for connection refused.

tcpOutDataBytes TCP Fires whenever data is sent. The number of bytes 
sent is in args[0].

tcpOutDataSegs TCP Fires whenever a segment is sent.

tcpInDataInorderBytes TCP Fires whenever data is received such that all data 
prior to the new data’s sequence number has 
previously been received. The number of bytes 
received in order is passed in args[0].

tcpInDataInorderSegs TCP Fires whenever a segment is received such that all
data prior to the new segment’s sequence num-
ber has previously been received.

udpHCOutDatagrams UDP Fires whenever a UDP datagram is sent.

udpHCInDatagrams UDP Fires whenever a UDP datagram is received.

ipIfStatsHCOutOctets IP The total number of octets (bytes) sent on the 
interface, including framing characters.

ipIfStatsHCInOctets IP The total number of octets (bytes) received on 
the interface, including framing characters.

1. http://wikis.sun.com/display/DTrace/mib+Provider

http://wikis.sun.com/display/DTrace/mib+Provider
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in Solaris under /etc/sma/snmp/mibs; plus the Solaris mib header file /usr/
include/inet/mib2.h.

ip Provider

The ip provider traces the IPv4 and IPv6 protocols. Probes and arguments for the
ip provider are listed in Tables 6-4 and 6-5 and are also shown in the ip provider
section of the DTrace Guide.2

These probes trace packets on physical interfaces as well as packets on loopback
interfaces that are processed by ip. These can be differentiated using the args[3]->
if_local argument in a predicate when an ip provider probe fires (see Table 6-5).
An IP packet must have a full IP header to be visible to these probes.

Table 6-5 shows the arguments to the ip probes. These argument types are
designed to be reused where possible for other network provider probes, as dis-
cussed in the “Network Providers” section.

2. http://wikis.sun.com/display/DTrace/ip+Provider

Note

Loopback TCP packets on Solaris may be processed by tcp fusion, a performance feature
that bypasses the ip layer. These are packets over a fused connection, which will not be visi-
ble using the ip:::send and ip:::receive probes (but they can be seen using the
tcp:::send and tcp:::receive probes). When TCP fusion is enabled (which it is by
default), loopback connections become fused after the TCP handshake, and then all data
packets take a shorter code path that bypasses the ip layer.

Table 6-4 ip Provider Probes

Probe Description

send Fires whenever the kernel network stack sends an ip packet

receive Fires whenever the kernel network stack receives an ip packet

Table 6-5 ip Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4] args[5]

send pktinfo_t * csinfo_t * ipinfo_t * ifinfo_t * ipv4info_t * ipv6info_t *

receive pktinfo_t * csinfo_t * ipinfo_t * ifinfo_t * ipv4info_t * ipv6info_t *

http://wikis.sun.com/display/DTrace/ip+Provider
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pktinfo_t

The pktinfo_t structure is where packet ID info can be made available for more
detailed analysis. However, it is not currently implemented. The pkt_addr mem-
ber is currently always NULL.

Should packet IDs become available, measuring network stack layer-to-layer
latency will become relatively easy, using the packet ID as a key to an associative
array storing the previous layer time stamp.

csinfo_t

The csinfo_t structure is used for systemwide connection state information. It
contains a unique identifier, cs_cid, which can be used as a key for an associa-
tive array, to cache data by connection, which can then be retrieved from other
events. It also has cs_pid, for the process ID that created the connection.

Note that the original integration (and documentation) of the ip provider had
csinfo_t as a placeholder for future additions, with cs_addr as the only mem-
ber (raw pointer to conn_t). At the time of writing, the additional members shown
previously now exist but are populated only for the tcp and udp providers. Addi-
tional work is required for these to work for the ip provider as well.

ipinfo_t

The ipinfo_t structure contains common IP information for both IPv4 and IPv6.

typedef struct pktinfo {
        uintptr_t pkt_addr;   /* currently always NULL */
} pktinfo_t;

typedef struct csinfo {
        uintptr_t cs_addr;
        uint64_t cs_cid;
        pid_t cs_pid;
        zoneid_t cs_zoneid;
} csinfo_t;

typedef struct ipinfo {
        uint8_t ip_ver;   /* IP version (4, 6) */
        uint16_t ip_plength;    /* payload length */
        string ip_saddr;     /* source address */
        string ip_daddr;    /* destination address */
} ipinfo_t;



ptg

410 Chapter 6 � Network Lower-Level Protocols

ifinfo_t

The ifinfo_t structure contains network interface information.

The if_local member is 1 for a local interface (loopback), 0 for not a local
interface, and 1 if unknown.

ipv4info_t

The ipv4info_t structure is a DTrace-translated version of the IPv4 header.

ipv6info_t

The ipv6info_t structure is a DTrace-translated version of the IPv6 header.

typedef struct ifinfo {
        string if_name;  /* interface name */
        int8_t if_local;    /* is delivered locally */
        netstackid_t if_ipstack;    /* ipstack ID */
        uintptr_t if_addr;   /* pointer to raw ill_t */
} ifinfo_t;

typedef struct ipv4info {
        uint8_t ipv4_ver;    /* IP version (4) */
        uint8_t ipv4_ihl;   /* header length, bytes */
        uint8_t ipv4_tos;   /* type of service field */
        uint16_t ipv4_length;  /* length (header + payload) */
        uint16_t ipv4_ident;    /* identification */
        uint8_t ipv4_flags;     /* IP flags */
        uint16_t ipv4_offset;    /* fragment offset */
        uint8_t ipv4_ttl;     /* time to live */
        uint8_t ipv4_protocol;  /* next level protocol */
        string ipv4_protostr;           /* next level protocol, as a string */
        uint16_t ipv4_checksum;   /* header checksum */
        ipaddr_t ipv4_src;    /* source address */
        ipaddr_t ipv4_dst;    /* destination address */
        string ipv4_saddr;  /* source address, string */
        string ipv4_daddr; /* destination address, string */
        ipha_t *ipv4_hdr;   /* pointer to raw header */
} ipv4info_t;

typedef struct ipv6info {
        uint8_t ipv6_ver;    /* IP version (6) */
        uint8_t ipv6_tclass;    /* traffic class */
        uint32_t ipv6_flow;     /* flow label */
        uint16_t ipv6_plen;     /* payload length */
        uint8_t ipv6_nexthdr;  /* next header protocol */
        string ipv6_nextstr;            /* next header protocol, as a string*/
        uint8_t ipv6_hlim;      /* hop limit */
        in6_addr_t *ipv6_src;    /* source address */
        in6_addr_t *ipv6_dst;   /* destination address */
        string ipv6_saddr;  /* source address, string */
        string ipv6_daddr; /* destination address, string */
        ip6_t *ipv6_hdr;    /* pointer to raw header */
} ipv6info_t;
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The ipv4info_t and ipv6info_t export fields of the IP headers, after net-
work to host byte order correction. There are also versions of the source and desti-
nation addresses, converted to strings, available in these structures, such as
args[2]->ip_saddr, which performs the translation automatically whether it is
IPv4 or IPv6.

Network Providers

The ip provider is the first in a planned series of stable network providers, which
includes providers for TCP, UDP, ARP, and ICMP. This project is described on the
“Network Providers” page3 on the OpenSolaris Web site and by the ip, tcp, and udp
provider sections in the DTrace Guide. While writing this book, the tcp and udp
providers were successfully integrated into Solaris Nevada (build 142),4 and work
on the next providers (sctp, icmp) is underway.

Example One-Liners

Here we count Web server–received packets by client IP address:

Here we count established TCP connections by port number:

3. http://hub.opensolaris.org/bin/view/Community+Group+dtrace/NetworkProvider

4. The project identifier is PSARC/2010/106, “DTrace TCP and UDP providers,” and was
designed and developed by Brendan Gregg and Alan Maguire.

solaris# dtrace -n 'tcp:::receive /args[4]->tcp_dport == 80/ {
        @pkts[args[2]->ip_daddr] = count();
}'
dtrace: description 'tcp:::receive' matched 1 probe
^C

  192.168.1.8                    9
  fe80::214:4fff:fe3b:76c8                   12
  192.168.1.51                     32
  10.1.70.16                    83
  192.168.7.3                   121
  192.168.101.101                    192

solaris# dtrace -n 'tcp:::accept-established { @[args[4]->tcp_dport] = count(); }'
dtrace: description 'tcp:::accept-established' matched 1 probe
^C

       79                2
       22               14
       80              327

http://hub.opensolaris.org/bin/view/Community+Group+dtrace/NetworkProvider
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Network Provider Collection

The collection of stable network providers has been designed with the providers
and arguments shown in Tables 6-6, 6-7, and 6-8.

Table 6-6 Planned Network Providers

Provider Description

gld Traces the generic LAN device layer and shows link layer activity such as Ether-
net frames. The probes allow frame-by-frame tracing.

arp Traces ARP and RARP packets.

icmp Traces ICMP packets and provides the type and code from the ICMP header.

ip Traces IP details for IPv4 and IPv6 send and receive I/O.

tcp Traces the TCP layer, showing send/receive I/O, connections, and state 
changes.

udp Traces User Datagram Protocol and send and receive I/O.

sctp Traces the Stream Control Transmission Protocol.

socket Traces the socket layer, close to the application. These probes fire in the same 
context as the corresponding process, and show socket I/O.

Table 6-7 Planned Network Provider Arguments

Probes args[0] args[1] args[2] args[3] args[4] args[5]

gld:::send
gld:::receive

pktinfo_t * NULL ipinfo_t * illinfo_t * etherinfo_t *

ip:::send

ip:::receive

pktinfo_t * csinfo_t * ipinfo_t * illinfo_t * ipv4info_t * ipv6info_t *

tcp:::send

tcp:::receive

pktinfo_t * csinfo_t * ipinfo_t * tcpsinfo_t * tcpinfo_t *

tcp:::accept-*

tcp:::connect-*

pktinfo_t * csinfo_t * ipinfo_t * tcpsinfo_t * tcpinfo_t *

tcp:::state-change NULL csinfo_t * NULL tcpnsinfo_t * NULL tcplsinfo_t *

udp:::send

udp:::receive

pktinfo_t * csinfo_t * ipinfo_t * udpinfo_t *

udp:::stream-* pktinfo_t *

sctp:::send

sctp:::receive

pktinfo_t * csinfo_t * ipinfo_t * sctpsinfo_t * sctpinfo_t *

sctp:::state-change NULL csinfo_t * NULL sctpsinfo_t * NULL sctplsinfo_t *

icmp:::send

icmp:::receive

pktinfo_t * csinfo_t * ipinfo_t * NULL icmpinfo_t *
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See the DTrace Guide for full documentation of existing and proposed provid-
ers.5 Some (or all) of these providers may be unavailable on your operating system
version; if they are unavailable, treat this as a preview of new providers coming up
in DTrace and the enhanced capabilities that they will enable. Until they are
available, all networking layers can still be traced using the fbt provider.

Example Scripts

The following scripts further demonstrate the role of the network providers by
showing example usage. As with the previous one-liners, these scripts demon-
strate the tcp provider. More examples of tcp provider scripts are in the “TCP
Scripts” section and in the tcp provider section of the DTrace Guide.6

Table 6-8 Planned Network Provider Argument Types

Type Description

pktinfo_t Packet info: includes packet IDs

csinfo_t Connection state info: includes connection IDs

ipinfo_t IP info available throughout the stack: IP protocol version, source and 
destination address (as a string), payload length

ifinfo_t Interface info: details about the network interface

etherinfo_t Ethernet header info

ipv4info_t IPv4 header info

ipv6info_t IPv6 header info

tcpinfo_t TCP header info

tcpsinfo_t TCP connection state info (new state)

tcplsinfo_t TCP connection last state info (previous state)

udpinfo_t UDP header info

sctpinfo_t SCTP header info

sctpsinfo_t SCTP connection state info (new state)

sctplsinfo_t SCTP connection last state info (previous state)

icmpinfo_t ICMP header info

5. http://wikis.sun.com/display/DTrace

6. http://wikis.sun.com/display/DTrace/tcp+Provider

http://wikis.sun.com/display/DTrace
http://wikis.sun.com/display/DTrace/tcp+Provider
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tcpconnlat.d

TCP connection latency is a very useful metric and can provide insight into the
target server load. The following script was designed to measure it from the client:

The connection request time stamp is saved to an associative array called start
(line 5), which is keyed on args[1]->cs_cid, which is a unique connection iden-
tifier for this TCP session. The saved time stamp is retrieved when the connection
is established to calculate the connection time. Executing this script yields the
following:

The output shows that the host 72.5.124.61 was slower to establish a TCP con-
nection than host 192.168.1.109.

The tcpconnlat.d script is discussed in more detail in the “TCP Scripts”
section.

1   #!/usr/sbin/dtrace -s 
2
3   tcp:::connect-request
4   { 
5 start[args[1]->cs_cid] = timestamp; 
6   } 
7
8   tcp:::connect-established
9   /start[args[1]->cs_cid]/
10  { 
11          @latency["Connect Latency (ns)", args[2]->ip_daddr] = 
12  quantize(timestamp - start[args[1]->cs_cid]);
13  start[args[1]->cs_cid] = 0; 
14  } 

Script tcpconnlat.d

solaris# tcpconnlat.d
dtrace: script 'tcpconnlat.d' matched 2 probes
^C

  Connect Latency (ns)           192.168.1.109
           value ~------------- Distribution ~------------- count
           65536 |                  0
          131072 |@@@@@@@@@@@@@@@@@@@@@@@@                3
          262144 |@@@@@@@@@@@@@@@@              2
          524288 |                  0

  Connect Latency (ns)            72.5.124.61
           value ~------------- Distribution ~------------- count
         4194304 |                  0
         8388608 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@           3
        16777216 |@@@@@@@@@@                1
        33554432 |                 0
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tcpstate.d

This script shows TCP state changes along with delta times. This assumes that
only one TCP session is actively changing state. For it to track multiple TCP ses-
sions properly, the time stamp will need to be saved to an associative array keyed
on a csinfo_t identifier for that session (arg0 as in tcpconnlat.d):

Using tcpstate.d to trace state changes yields the following:

fbt Provider

The fbt provider can be used to examine all the functions in the network stack, the
function arguments, the return codes, the return instruction offsets, and both the

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10 
5
6   dtrace:::BEGIN 
7   { 
8           printf(" %3s %12s  %-20s    %-20s\n", 

   "CPU", "DELTA(us)", "OLD", "NEW"); 
9   last = timestamp; 
10  } 
11
12  tcp:::state-change 
13  { 
14          this->elapsed = (timestamp - last) / 1000; 
15 printf(" %3d %12d  %-20s -> %-20s\n", cpu, this->elapsed,
16   args[5]->tcps_state, args[3]->tcps_state);
17   last = timestamp; 
18  } 

Script tcpstate.d

solaris# tcpstate.d 
 CPU    DELTA(us)  OLD  NEW
   3       938491  state-syn-received   -> state-syn-received
   3           98 state-syn-received   -> state-established
   3     14052789  state-established -> state-close-wait
   3           67  state-close-wait     -> state-last-ack
   3 56  state-last-ack -> state-bound
   2         7783  state-bound  -> state-closed
   2     68797522  state-idle -> state-bound
   2          172  state-bound   -> state-syn-sent
   3          210  state-syn-sent -> state-established
   2         5364  state-established    -> state-fin-wait1
   3           79  state-fin-wait1      -> state-fin-wait2
   3           65 state-fin-wait2   -> state-time-wait
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elapsed time and on-CPU time. See the “fbt Provider” chapter of the DTrace Guide
for the full reference.7

To navigate this capability for network stack I/O, kernel stack traces may be
examined using DTrace as a list of potential fbt probes and their relationships.
Each line of the stack trace can be probed individually. Examining stack traces is
also a quick way to become familiar with a complex body of code, such as the net-
work stack.

Using the fbt provider should be considered a last resort, as we mentioned in
the “Strategy” section. Writing scripts based on the fbt provider ties them to a par-
ticular operating system and kernel version, because they instrument the raw ker-
nel source code. When the kernel is upgraded, the fbt scripts may need to be
rewritten to follow changes in function names and arguments. The Solaris net-
work stack implementation does change regularly with kernel updates, so you
should expect fbt scripts to require maintenance. The tcpsnoop script (discussed
later) is an example of this, because it was originally written using the fbt pro-
vider and broke several times because of kernel upgrades. What’s most important
to remember is that fbt tracing of these functions is nonetheless possible using
DTrace, should the need arise.

The following sections show how to trace send and receive packets using the fbt
provider to illustrate the capability (and complexity) of fbt-based tracing.

Send

Sending a packet ends with the network device driver send function. By looking at
the stack backtrace at this point, we can see the path taken through the kernel to
send a packet.

Solaris

A Solaris system with an nge network interface was traced; this version of the nge
driver has a function called nge_send(), from which the stack backtrace was
counted:

7. http://wikis.sun.com/display/DTrace/fbt+Provider

solaris# dtrace -n 'fbt::nge_send:entry { @[probefunc, stack()] = count(); }'
dtrace: description 'fbt::nge_send:entry ' matched 1 probe
^C
[...]
  nge_send

    nge`nge_m_tx+0x57
     dls`dls_tx+0x1d
    dld`dld_tx_single+0x2a
   dld`str_mdata_fastpath_put+0x7f

http://wikis.sun.com/display/DTrace/fbt+Provider
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The path from the write syscall at the bottom of the stack through to the net-
work interface at the top can be seen. If you try this yourself on any Solaris ver-
sion (and trace the send routine of the network driver you are using), there is a
very good chance that the network stack trace will look slightly different: Differ-
ent workloads are processed in different ways, and the network stack implementa-
tion changes over time (that’s why the fbt provider is an unstable solution).

The same DTrace one-liner and workload was executed on the latest version of
the Solaris Nevada8 kernel, and the stack has indeed changed:

This newer kernel appears to have replaced the dls_tx() function with mac_tx().
This illustrates that any fbt-based script will need to be modified to match the
underlying source it is tracing. The same fbt-based script is unlikely to work on

    ip`tcp_send_data+0x7c9
    ip`tcp_send+0xb1b
    ip`tcp_wput_data+0x75a
    ip`tcp_output+0x7c5
    ip`squeue_enter+0x416
    ip`tcp_wput+0xf8
   sockfs`sostream_direct+0x168
   sockfs`socktpi_write+0x179
    genunix`fop_write+0x69
    genunix`write+0x208
    genunix`write32+0x1e
    unix`sys_syscall32+0x1fc

              721

solaris# dtrace -n 'fbt::nge_send:entry { @[probefunc, stack()] = count(); }'
dtrace: description 'fbt::nge_send:entry ' matched 1 probe
^C
[...]
  nge_send

    nge`nge_m_tx+0x60 
    mac`mac_tx+0x2c4 
   dld`str_mdata_fastpath_put+0xa4
    ip`tcp_send_data+0x94e 
    ip`tcp_send+0xb69 
    ip`tcp_wput_data+0x72c 
    ip`tcp_rput_data+0x3342
    ip`squeue_drain+0x17f 
    ip`squeue_enter+0x3f4 
    ip`tcp_sendmsg+0xfd 
    sockfs`so_sendmsg+0x1c7
   sockfs`socket_sendmsg+0x61
   sockfs`socket_vop_write+0x63
    genunix`fop_write+0xa4 
    genunix`write+0x2e2 
    genunix`write32+0x22 
   unix`sys_syscall32+0x101 

              766 

8. Solaris Nevada is the current development version of Solaris.
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different versions of the Solaris kernel, which may implement networking using
slightly different sets of functions. For this reason, an fbt-based script that exe-
cutes correctly on a given server may fail after that server has had a software
upgrade or kernel patch applied.

Maintaining fbt-based scripts is a known nuisance. Still, tracing at this level is
very valuable in spite of the drawbacks. Any areas commonly traced using fbt
should eventually have stable providers available, such as the ip provider for IP
and the tcp provider for TCP. Stable scripts won’t require such maintenance and
should work everywhere that the provider is available.

That said, the previous two examples illustrate the value derived from a rela-
tively simple DTrace invocation. The code path through the kernel from the appli-
cation-issued system call through to the network driver send function provides a
series of instrumentation points that may be useful when investigating or examin-
ing network activity.

Mac OS X

On this version of Mac OS X (10.6), functions for the network device driver were
not visible to DTrace, which can happen if symbol information is stripped from
binaries. Instead of tracing from the device driver, outbound network I/O can be
traced as far as the ether_frameout() function in the OS X kernel:

We can see the path from the write system call at the bottom of the stack
through to ether_frameout() at the top. As with the Solaris network stack,
these functions may change from software release to release.

macosx# dtrace -n 'fbt::ether_frameout:entry { @[probefunc, stack()] = count() }'
dtrace: description 'fbt::ether_frameout:entry ' matched 1 probe
^C

  ether_frameout
   mach_kernel`ifnet_input+0xe43
   mach_kernel`ifnet_output+0x4d
   mach_kernel`ip_output_list+0x1d9f
   mach_kernel`tcp_setpersist+0x16e
   mach_kernel`tcp_output+0x17ab
   mach_kernel`tcp_ctloutput+0x453
    mach_kernel`sosend+0x84e
   mach_kernel`fill_pipeinfo+0x9e0
    mach_kernel`readv+0x138
   mach_kernel`write_nocancel+0xb4
   mach_kernel`unix_syscall+0x23c
   mach_kernel`lo_unix_scall+0xea

               15
[...]
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FreeBSD

This FreeBSD 8.0 system uses an “em” interface for Ethernet, from which the em_
xmit() function was traced along with the kernel stack backtrace:

This shows the path from write system call to the em interface. Key TCP/IP
stack functions include tcp_output(), ip_output(), and ether_output().

Some of the functions in the stack have similar names to the Mac OS X stack,
which is not surprising: The Mac OS X kernel has components based on the Free-
BSD and 4.4BSD code.9

Receive

Receiving network I/O usually ends with the application completing a read() (or
equivalent) system call. However, the kernel stack trace here does not show the
full stack when the read return probe is instrumented:

freebsd# dtrace -n 'fbt::em_xmit:entry { @[probefunc, stack()] = count(); }'
dtrace: description 'fbt::em_xmit:entry ' matched 1 probe
^C

  em_xmit
   kernel`em_mq_start_locked+0x14f
    kernel`em_mq_start+0x50
   kernel`ether_output_frame+0x60
   kernel`ether_output+0x5de
    kernel`ip_output+0x9ce
    kernel`tcp_output+0x14cf
   kernel`tcp_usr_send+0x28a
   kernel`sosend_generic+0x645
    kernel`sosend+0x3f
    kernel`soo_write+0x63
    kernel`dofilewrite+0x97
    kernel`kern_writev+0x58
    kernel`write+0x4f
    kernel`syscall+0x3e5
    kernel`0xc0bc2030

               38

9. Code sharing is not uncommon between operating systems; other instances include the ZFS
code from OpenSolaris being ported to both Mac OS X and FreeBSD, and, of course, the
DTrace code itself.

# dtrace -n 'syscall::read*:return /execname == "ttcp"/ { @[stack()] = count(); }'
dtrace: description 'syscall::read*:return ' matched 3 probes
^C

  unix`_sys_sysenter_post_swapgs+0x14b
            10001
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This is because the stack shown previously has occurred after a context switch
to the application thread, from a kernel thread that performed the TCP/IP process-
ing. Briefly, receive packets are typically processed in the interrupt handler of the
NIC driver. Subsequent receive packet handling may be passed off to other func-
tions in the driver code to minimize time spent in interrupt context. The key point
here is that tracing the code path through the kernel for network receive packet
handling is challenging because of the asynchronous nature of the receive event,
interrupt processing, and the subsequent context switching that occurs when the
receive data is made available to the application by the kernel.

Solaris

The sched provider can be used to show the stack trace just before application
threads are scheduled. To only show those stack traces from TCP receives, the mib
provider is used to check that the kernel thread did process TCP/IP while execut-
ing this thread:

At the top of the stack is the TS ts_wakeup()function, which is the time share
scheduling class-specific code for waking up a sleeping thread. Using the
args[1]->pr_fname data from the sched provider as an aggregation key (along
with stack()), we are able to see the ttcp process getting the wake-up and placed
on a run queue (sched:::enqueue). The stack trace includes key TCP/IP func-
tions such as ip_input() and tcp_rput_data().

solaris# dtrace -n 'mib:::tcpInDataInorderBytes { self->in = 1; } sched:::enqueue
/self->in/ { @[args[1]->pr_fname, stack()] = count(); self->in = 0; }'
dtrace: description 'mib:::tcpInDataInorderBytes ' matched 6 probes
^C
[...]
  ttcp

    TS`ts_wakeup+0x188
   genunix`sleepq_wakeall_chan+0x7c
   genunix`cv_broadcast+0x78
    genunix`strrput+0x56e
    unix`putnext+0x2f1
    ip`tcp_rcv_drain+0xf9
    ip`tcp_rput_data+0x2acf
   ip`squeue_enter_chain+0x2c0
    ip`ip_input+0xa42
    dls`i_dls_link_rx+0x2b9
    mac`mac_do_rx+0xba

     mac`mac_rx+0x1b
    nge`nge_receive+0x47
    nge`nge_intr_handle+0xbd
    nge`nge_chip_intr+0xca
   unix`av_dispatch_autovect+0x8c
   unix`dispatch_hardint+0x2f
   unix`switch_sp_and_call+0x13

             1345
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Mac OS X

Mac OS X does not currently have stable mib and sched providers, so the unstable
fbt provider was used to extract similar information:

The stack trace includes key TCP/IP functions such as ip_input() and tcp_
input().

FreeBSD

The stack trace on FreeBSD is derived similarly to Mac OS X (skipping the exec-
name in this case):

macosx# dtrace -n 'syscall:::entry { name[(uint64_t)curthread] = execname; } 
fbt::tcp_input:entry { self->tcp = 1; }
fbt::thread_unblock:entry /self->tcp && name[arg0] != NULL/ 
{ @[name[arg0], stack()] = count(); }'
dtrace: description 'syscall:::entry ' matched 429 probes
^C

  sshd
   mach_kernel`thread_go+0x2a
  mach_kernel`wait_queue_assert_wait64+0x24b
  mach_kernel`wait_queue_wakeup_all+0x8b

   mach_kernel`selwakeup+0x40
   mach_kernel`sowakeup+0x25
   mach_kernel`sorwakeup+0x23
   mach_kernel`tcp_input+0x1bbb
   mach_kernel`ip_rsvp_done+0x1c6
   mach_kernel`ip_input+0x17bd
   mach_kernel`ip_input+0x17f9
   mach_kernel`proto_input+0x92
  mach_kernel`ether_detach_inet+0x1c9

   mach_kernel`ifnet_input+0x2f8
   mach_kernel`ifnet_input+0xa51
   mach_kernel`ifnet_input+0xcaf
  mach_kernel`call_continuation+0x1c

               10

freebsd# dtrace -n 'fbt::tcp_input:entry { self->ok = 1; } 
fbt::thread_lock_unblock:entry /self->ok/ { @[stack()] = count(); }'
dtrace: description 'fbt::tcp_input:entry ' matched 2 probes
^C

    kernel`sched_add+0xf2
    kernel`sched_wakeup+0x69
    kernel`setrunnable+0x88
   kernel`sleepq_resume_thread+0xc8
   kernel`sleepq_broadcast+0x8b
   kernel`cv_broadcastpri+0x4d
    kernel`doselwakeup+0xe6
    kernel`selwakeuppri+0xe
    kernel`sowakeup+0x1f
   kernel`tcp_do_segment+0x946
    kernel`tcp_input+0x11c0
    kernel`ip_input+0x6aa

continues
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As on Mac OS X, this FreeBSD trace includes key TCP/IP functions such as ip_
input() and tcp_input() (and as mentioned earlier, similarities are not sur-
prising because of similar origins of the kernel code).

One-Liners

The following DTrace one-liners are grouped by provider. Not all providers may be
available on your operating system version, especially newer providers such as tcp
and udp.

syscall Provider

The following one-liners demonstrate the use of the syscall provider for observing
socket and network activity.

Socket accepts by process name:

Socket connections by process and user stack trace: 

Socket read, write, send, recv I/O count by syscall: 

   kernel`netisr_dispatch_src+0x89
   kernel`netisr_dispatch+0x20
    kernel`ether_demux+0x161
    kernel`ether_input+0x313
    kernel`em_rxeof+0x4fa
   kernel`em_handle_rxtx+0x27
   kernel`taskqueue_run+0x162
   kernel`taskqueue_thread_loop+0xbd

               30

dtrace -n 'syscall::accept*:entry { @[execname] = count(); }'

dtrace -n 'syscall::connect*:entry { trace(execname); ustack(); }' 

dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/ { @[probefunc] 
= count(); }' 

dtrace -n 'syscall::write*:entry /fds[arg0].fi_fs == "sockfs"/ { @[probefunc] 
= count();}' 

dtrace -n 'syscall::send*:entry /fds[arg0].fi_fs == "sockfs"/ { @[probefunc] 
= count(); }' 
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Socket read (write/send/recv) I/O count by process name: 

Socket reads (write/send/recv) I/O count by syscall and process name: 

Socket reads (write/send/recv) I/O count by process and user stack trace: 

Socket write requested bytes by process name: 

Socket read returned bytes by process name: 

Socket write requested I/O size distribution by process name: 

mib Provider

The following one-liners demonstrate the use of the mib provider for tracking net-
work events systemwide.

dtrace -n 'syscall::recv*:entry /fds[arg0].fi_fs == "sockfs"/ { @[probefunc] 
= count(); }' 

dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/ { @[execname] 
= count(); }' 

dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/ 
{ @[strjoin(probefunc, strjoin("() by ", execname))] = count(); }' 

dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/ { @[execname, ustack()] 
= count(); }' 

dtrace -n 'syscall::write:entry /fds[arg0].fi_fs == "sockfs"/ { @[execname] 
= sum(arg2); }' 

dtrace -n 'syscall::read:entry /fds[arg0].fi_fs == "sockfs"/ { self->ok = 1; } 
syscall::read:return /self->ok/ { @[execname] = sum(arg0); self->ok = 0; }' 

dtrace -n 'syscall::write:entry,syscall::send:entry /fds[arg0].fi_fs == "sockfs"/ 
{ @[execname] = quantize(arg2); }' 
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SNMP MIB event count:

IP event statistics:

IP event statistics with kernel function:

TCP event statistics:

TCP event statistics with kernel function:

UDP event statistics:

ICMP event trace:

ICMP event by kernel stack trace:

dtrace -n 'mib::: { @[probename] = count(); }' 

dtrace -n 'mib:::ip* { @[probename] = sum(arg0); }' 

dtrace -n 'mib:::ip* { @[strjoin(probefunc, strjoin("() -> ", probename))] 
= sum(arg0); }' 

dtrace -n 'mib:::tcp* /(int)arg0 > 0/ { @[probename] = sum(arg0); }' 

dtrace -n 'mib:::tcp* { @[strjoin(probefunc, strjoin("() -> ", probename))] 
= sum(arg0);}' 

dtrace -n 'mib:::udp* { @[probename] = sum(arg0); }' 

dtrace -Fn 'mib:::icmp* { trace(timestamp); }'
dtrace -Fn 'mib::icmp_*: { trace(timestamp); }'

dtrace -n 'mib:::icmp*  { stack(); }'
dtrace -n 'mib::icmp_*: { stack(); }'



ptg

Providers 425

ip Provider

The ip provider greatly enhances observing network activity, as shown in the fol-
lowing one-liners.

Received IP packets by host address: 

IP send payload size distribution by destination: 

tcp Provider

Variants are demonstrated where similar information can be fetched from differ-
ent args[] locations (see the one-liner examples for more discussion about this).

Watch inbound TCP connections by remote address (either): 

Inbound TCP connections by remote address summary: 

Inbound TCP connections by local port summary: 

Who is connecting to what:

Who isn’t connecting to what:

dtrace -n 'ip:::receive { @[args[2]->ip_saddr] = count(); }' 

dtrace -n 'ip:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }' 

dtrace -n 'tcp:::accept-established { trace(args[2]->ip_saddr); }'
dtrace -n 'tcp:::accept-established { trace(args[3]->tcps_raddr); }'

dtrace -n 'tcp:::accept-established { @addr[args[3]->tcps_raddr] = count(); }'

dtrace -n 'tcp:::accept-established { @port[args[3]->tcps_lport] = count(); }' 

dtrace -n 'tcp:::accept-established { @[args[3]->tcps_raddr, args[3]->tcps_lport] = 
count(); }' 

dtrace -n 'tcp:::accept-refused { @[args[2]->ip_daddr, args[4]->tcp_sport] = count(); }'
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What am I connecting to?

Outbound TCP connections by remote port summary: 

TCP received packets by remote address summary (either): 

TCP sent packets by remote address summary (either): 

TCP received packets by local port summary: 

TCP send packets by remote port summary: 

IP payload bytes for TCP send, size distribution by destination address:

TCP payload bytes for TCP send: 

dtrace -n 'tcp:::connect-established { @[args[3]->tcps_raddr , args[3]->tcps_rport] = 
count(); }'

dtrace -n 'tcp:::connect-established { @port[args[3]->tcps_rport] = count(); }' 

dtrace -n 'tcp:::receive { @addr[args[2]->ip_saddr] = count(); }' 
dtrace -n 'tcp:::receive { @addr[args[3]->tcps_raddr] = count(); }' 

dtrace -n 'tcp:::send { @addr[args[2]->ip_daddr] = count(); }'
dtrace -n 'tcp:::send { @addr[args[3]->tcps_raddr] = count(); }' 

dtrace -n 'tcp:::receive { @port[args[4]->tcp_dport] = count(); }' 

dtrace -n 'tcp:::send { @port[args[4]->tcp_dport] = count(); }' 

dtrace -n 'tcp:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }'

dtrace -n 'tcp:::send { @bytes = sum(args[2]->ip_plength - args[4]->tcp_offset); }' 
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TCP events by type summary: 

udp Provider

The following one-liners demonstrate the use of the udp provider.
UDP received packets by remote address summary (either):

UDP sent packets by remote port summary:

syscall Provider Examples

In this section, we provide some examples of using the syscall provider in DTrace
one-liners to observe network load and activity.

Socket Accepts by Process Name

By tracing the process name for the accept() system call, it is possible to iden-
tify which processes are accepting socket connections:

During this one-liner, the httpd processes called accept() 15 times, which is
likely in response to 15 inbound HTTP connections. These accept() calls may
have actually failed; to check for this, examine the return value and errno on the
accept*:return probes.

dtrace -n 'tcp::: { @[probename] = count(); }' 

dtrace -n 'udp:::receive { @[args[2]->ip_saddr] = count(); }'
dtrace -n 'udp:::receive { @[args[3]->udps_raddr] = count(); }'

dtrace -n 'udp:::send { @[args[4]->udp_dport] = count(); }'

solaris# dtrace -n 'syscall::accept*:entry { @[execname] = count(); }'
dtrace: description 'syscall::accept*:entry ' matched 1 probe 
^C

  sshd                     1 
  inetd                     2 
  httpd                     15
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Socket Connections by Process and User Stack Trace

It can be useful to know why applications are establishing socket connections. This
can be shown with a one-liner to print the process name and user stack trace for
the connect() system call, which was run on a Solaris client: 

This shows the user stack traces for processes named ssh (SSH client) and
firefox-bin (Mozilla Firefox Web browser), because they established connec-
tions. The stack traces may shed light on why applications are performing socket
connections (or, they may be inscrutable without access to source code to follow). 

Executing the same one-liner on Mac OS X yields the following: 

solaris# dtrace -n 'syscall::connect*:entry { trace(execname); ustack(); }' 
dtrace: description 'syscall::connect:entry ' matched 1 probe 
CPU     ID            FUNCTION:NAME 
  1  96749 connect:entry   ssh 

   libc.so.1`_so_connect+0x7
   ssh`timeout_connect+0x151
    ssh`ssh_connect+0x182 

     ssh`main+0x928 
    ssh`_start+0x7a 

  1  96749        connect:entry   firefox-bin 
   libc.so.1`_so_connect+0x7
   libnspr4.so`pt_Connect+0x13c
   libnspr4.so`PR_Connect+0x18

              libnecko.so`__1cRnsSocketTransportOInitiateSocket6M_I_+0x271
              libnecko.so`__1cNnsSocketEventLHandleEvent6FpnHPLEvent__pv_+0x2ce

  libxpcom_core.so`PL_HandleEvent+0x22
              libnecko.so`__1cYnsSocketTransportServiceNServiceEventQdD6M_i_+0x99

libnecko.so`__1cYnsSocketTransportServiceDRun6M_I_+0x9b0
 libxpcom_core.so`__1cInsThreadEMain6Fpv_v_+0x74

   libnspr4.so`_pt_root+0xd1
   libc.so.1`_thr_setup+0x52
    libc.so.1`_lwp_start 

[...]

macosx# dtrace -n 'syscall::connect*:entry { trace(execname); ustack(); }' 
dtrace: description 'syscall::connect*:entry ' matched 2 probes 
CPU     ID            FUNCTION:NAME 
  0  17914 connect:entry   ssh 

  libSystem.B.dylib`connect$UNIX2003+0xa
     ssh`0x32f99e59 
     ssh`0x32f985ce 

              0x2 

  1  18536   connect_nocancel:entry   firefox-bin 
 libSystem.B.dylib`connect$NOCANCEL$UNIX2003+0xa

  libnspr4.dylib`PR_GetSpecialFD+0x85d
   libnspr4.dylib`PR_Connect+0x1f
   XUL`XRE_GetFileFromPath+0x5c97f
   XUL`XRE_GetFileFromPath+0x5dba4

              XUL`std::vector<unsigned short, std::allocator<unsigned short> >::_M_fil
l_insert(__gnu_cxx::__normal_iterator<unsigned short*, >std::vector<unsigned short, st
d::allocator<unsigned short> > >, unsigned long, >unsigned short const&)+0x5129

  XUL`NS_GetComponentRegistrar_P+0x6f73
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The ssh stack trace shows hexadecimal addresses. These are shown if symbols
cannot be translated for some reason, such as the symbol information not being
available, or the process exited before DTrace could perform the translation (which
is done as a postprocessing step, just before the aggregation is printed).

Socket Read, Write, Send, Recv I/O Count by System Call

The type of socket I/O can be determined by checking which system calls are using
socket file descriptors. Here’s an example on Solaris: 

They were mostly read() system calls to sockets, with a couple of readv() sys-
tem calls. Similar one-liners can be used to investigate writes, sends, and receives: 

Using fds[] to Identify Socket I/O 

The fds (file descriptors) array was a feature added to DTrace after the initial release. This
allows the following predicates to be used to match socket I/O:

Solaris: /fds[arg0].fi_fs == "sockfs"/

Mac OS X: /fds[arg0].fi_name == "<socket>"/ 

FreeBSD: (fds[] array not yet supported)

              XUL`GetSecurityContext(JNIEnv_*, nsISecurityContext**)+0x2f91d
   XUL`XRE_GetFileFromPath+0x5faea
  XUL`NS_GetComponentRegistrar_P+0x6f73

              XUL`GetSecurityContext(JNIEnv_*, nsISecurityContext**)+0x2f91d
  XUL`NS_GetComponentRegistrar_P+0x71eb

   libnspr4.dylib`PR_Select+0x32c
  libSystem.B.dylib`_pthread_start+0x141
  libSystem.B.dylib`thread_start+0x22

[...]

solaris# dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/
 { @[probefunc] = count(); }' 
dtrace: description 'syscall::read*:entry ' matched 3 probes 
^C

  readv                     2 
  read                    2450

# dtrace -n 'syscall::write*:entry /fds[arg0].fi_fs == "sockfs"/ 
{ @[probefunc] = count(); }' 
# dtrace -n 'syscall::send*:entry /fds[arg0].fi_fs == "sockfs"/ 
{ @[probefunc] = count(); }' 
# dtrace -n 'syscall::recv*:entry /fds[arg0].fi_fs == "sockfs"/ 
{ @[probefunc] = count(); }' 
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The previous one-liners for socket I/O used the Solaris predicate; change to the Mac OS X
predicate if desired. Some of the scripts, such as socketio.d, test for both so that the
same script executes on both operating systems.

If you are using an early version of DTrace on Solaris 10 that doesn’t have the fds array,
you may be able to add it by writing scripts and copying the fds translator to the top of
your script (or upgrade to a newer version of Solaris):

For FreeBSD, you will need to dig this information out of the kernel, which won’t be easy
or stable (but it should be possible!), until fds[] is supported.

Socket Read (Write/Send/Recv) I/O Count by Process Name

Since the syscall probes fire in process context, socket I/O types can be identi-
fied by process by aggregating on execname:

 Here Xorg (a window manager) called the most socket reads, which we would
expect to be localhost I/O. This one-liner can be customized to trace other socket I/O
types: write/send/receive.

Socket Reads (Write/Send/Recv) I/O Count by System Call and Process Name

Counting both socket I/O type and process name in the same one-liner yields the
following:

inline fileinfo_t fds[int fd] = xlate <fileinfo_t> ( 
    fd >= 0 && fd < curthread->t_procp->p_user.u_finfo.fi_nfiles ? 
    curthread->t_procp->p_user.u_finfo.fi_list[fd].uf_file : NULL);

solaris# dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/
 { @[execname] = count(); }' 
dtrace: description 'syscall::read*:entry ' matched 3 probes 
^C

  FvwmButtons                    2 
  FvwmIconMan                    2 
  finger                     2 
  xbiff                     2 
  xclock                     2 
  xload                     8 
  gconfd-2                   10 
  opera                    16 
  firefox-bin                   44 
  soffice.bin                   89 
  ssh                     94 
  FvwmPager                     123 
  gnome-terminal                    762 
  fvwm2                    1898 
  realplay.bin                  2493 
  Xorg                     3785
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 The use of strjoin() in this one-liner is to make the output cleaner by keep-
ing the string elements together in one key of the aggregation.

Socket Reads (Write/Send/Recv) I/O Count by Process and User Stack Trace

User stack traces can show why I/O was performed, by showing the user level
functions which led to that I/O. This one-liner frequency counts the process name
and the user stack trace, in this case for reads: 

solaris# dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/
 { @[strjoin(probefunc, strjoin("() by ", execname))] = count(); }' 
dtrace: description 'syscall::read*:entry ' matched 3 probes 
^C

  read() by xbiff                      1 
  read() by xclock                     1 
  read() by FvwmIconMan                     2 
  read() by java                      2 
  read() by FvwmButtons                     4 
  read() by xterm                      4 
  readv() by soffice.bin                    4 
  read() by xload                      6 
  read() by FvwmAnimate                     8 
  readv() by opera                  16 
  readv() by fvwm2                  18 
  read() by pidgin                    26 
  read() by firefox-bin                    92 
  read() by soffice.bin                    122 
  read() by ssh                  132 
  read() by FvwmPager                   137 
  read() by gnome-terminal                    310 
  read() by realplay.bin                   1507 
  read() by fvwm2                    1933 
  read() by opera                   19309 
  read() by Xorg                    22396

solaris# dtrace -n 'syscall::read*:entry /fds[arg0].fi_fs == "sockfs"/
 { @[execname, ustack()] = count(); }' 
dtrace: description 'syscall::read*:entry ' matched 3 probes 
^C
[...]
  firefox-bin 

    libc.so.1`_read+0x7 
  libnspr4.so`pt_SocketRead+0x5d
   libnspr4.so`PR_Read+0x18 

             libnecko.so`__1cTnsSocketInputStreamERead6MpcIpI_I_+0xf8
             libnecko.so`__1cQnsHttpConnectionOOnWriteSegment6MpcIpI_I_+0x38
             libnecko.so`__1cRnsHttpTransactionQWritePipeSegment6FpnPnsIOutputStream_p
vpcIIpI_I_+0x48
             libxpcom_core.so`__1cSnsPipeOutputStreamNWriteSegments6MpFpnPnsIOutputStr
eam_pvpcIIpI_I3I5_I_+0x309
             libnecko.so`__1cRnsHttpTransactionNWriteSegments6MpnUnsAHttpSegmentWriter
_IpI_I_+0x61
             libnecko.so`__1cQnsHttpConnectionSOnInputStreamReady6MpnTnsIAsyncInputStr
eam__I_+0xc8
             libnecko.so`__1cTnsSocketInputStreamNOnSocketReady6MI_v_+0xca
             libnecko.so`__1cRnsSocketTransportNOnSocketReady6MpnKPRFileDesc_h_v_+0xe5

continues
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The previous firefox-bin stack shows some C++ signatures (mangled func-
tion names). These can be postprocessed by c++filt or gc++filt, revealing the
human-readable form: 

This stack shows that firefox-bin was performing socket I/O for the nsHttp-
Transaction module, most probably to fetch Web sites over the HTTP protocol. 

Socket Write Bytes by Process Name

The number of bytes of socket I/O can be examined to identify I/O throughput.
Here the write() system call on sockets is traced, to show the total number of
bytes written, by process name: 

             libnecko.so`__1cYnsSocketTransportServiceDRun6M_I_+0x742
libxpcom_core.so`__1cInsThreadEMain6Fpv_v_+0x74

   libnspr4.so`_pt_root+0xd1
   libc.so.1`_thr_setup+0x52
   libc.so.1`_lwp_start 

              28 
[...]

  Xorg 
    libc.so.1`_read+0xa 
  Xorg`_XSERVTransSocketRead+0xf
  Xorg`ReadRequestFromClient+0x14a

    Xorg`Dispatch+0x2fa 
    Xorg`main+0x495 
    Xorg`_start+0x6c 

             984 

firefox-bin
    libc.so.1`_read+0x7 
  libnspr4.so`pt_SocketRead+0x5d
   libnspr4.so`PR_Read+0x18 

             libnecko.so`unsigned nsSocketInputStream::Read(char*,unsigned,unsigned*)+
0xf8
             libnecko.so`unsigned nsHttpConnection::OnWriteSegment(char*,unsigned,unsi
gned*)+0x38
             libnecko.so`unsigned nsHttpTransaction::WritePipeSegment(nsIOutputStream*
,void*,char*,unsigned,unsigned,unsigned*)+0x48
             libxpcom_core.so`unsigned nsPipeOutputStream::WriteSegments(unsigned(*)(n
sIOutputStream*,void*,char*,unsigned,unsigned,unsigned*),void*,unsigned,unsigned*)+0x3
09
             libnecko.so`unsigned nsHttpTransaction::WriteSegments(nsAHttpSegmentWrite
r*,unsigned,unsigned*)+0x61
             libnecko.so`unsigned nsHttpConnection::OnInputStreamReady(nsIAsyncInputSt
ream*)+0xc8
             libnecko.so`void nsSocketInputStream::OnSocketReady(unsigned)+0xca
             libnecko.so`void nsSocketTransport::OnSocketReady(PRFileDesc*,short)+0xe5
             libnecko.so`unsigned nsSocketTransportService::Run()+0x742

libxpcom_core.so`void nsThread::Main(void*)+0x74
   libnspr4.so`_pt_root+0xd1
   libc.so.1`_thr_setup+0x52
   libc.so.1`_lwp_start 

              28 
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Many of these bytes may be for loopback socket connections; with further analy-
sis, DTrace can tell us whether this is the case. 

Socket Read Bytes by Process Name

When tracing socket reads by size, the file descriptor needed to identify socket I/O
is available on read:entry, while the number of bytes is available on read:
return. Both must be probed, and associated, to trace socket read bytes. Here we
show totals by process name: 

 The output shows the firefox-bin application read over 1MB over sockets,
using read(), during the sampling period.

Socket Write I/O Size Distribution by Process Name

To better understand socket I/O counts and sizes, distribution plots can be traced
for I/O size. Here plots are generated for socket write() and send() system calls,
by process name: 

solaris# dtrace -n 'syscall::write:entry /fds[arg0].fi_fs == "sockfs"/
 { @[execname] = sum(arg2); }' 
dtrace: description 'syscall::write:entry ' matched 1 probe 
^C

  xload                    100 
  FvwmButtons                  1172 
  FvwmAnimate                  1856 
  FvwmPager                   4048 
  FvwmIconMan                  6376 
  java                    6556 
  realplay.bin                 17540 
  gnome-terminal                   18192 
  fvwm2                   31436 
  xclock                  71900 
  soffice.bin                  90364

solaris# dtrace -n 'syscall::read:entry /fds[arg0].fi_fs == "sockfs"/ 
{ self->ok = 1; } syscall::read:return /self->ok/ 
{ @[execname] = sum(arg0); self->ok = 0; }' 
dtrace: description 'syscall::read:entry ' matched 2 probes 
^C

  FvwmAnimate                  124 
  xload                    128 
  soffice.bin                  288 
  opera                    384 
  FvwmPager                   1231 
  ssh                    1312 
  gnome-terminal                    5236 
  fvwm2                   22206 
  realplay.bin                360157 
  firefox-bin                1049057 
  Xorg                   1097685
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This output shows that the ssh command was writing in sizes of 32 to 63 bytes;
such a small size is expected because ssh will be sending encrypted keystrokes.
The Firefox browser is sending at least 256 bytes per socket write; for HTTP
requests, this will include the HTTP header. 

mib Provider Examples

In this section, we demonstrate use of the mib provider.

SNMP MIB Event Count

To get an idea of the various SNMP MIB probes available, they were frequency
counted on a host while various network I/O was occurring, including outbound
ICMP:

# dtrace -n 'syscall::write:entry,syscall::send:entry
/fds[arg0].fi_fs == "sockfs"/ { @[execname] = quantize(arg2); }' 
dtrace: description 'syscall::write:entry,syscall::send:entry ' matched 2 probes 
^C
[...]

  ssh 
           value ------------- Distribution ------------- count 
              16 |                   0 

32 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 44 
              64 |                   0 

[...]

  firefox-bin 
           value ------------- Distribution ------------- count 
             128 |                   0 

256 |@@@@@@@                          9 
 512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@             34 

            1024 |@@@@                 5 
            2048 |@                  1 
            4096 |                  0

solaris# dtrace -n 'mib::: { @[probename] = count(); }' 
dtrace: description 'mib::: ' matched 568 probes 
^C

  icmpInEchoReps                     1 
  icmpInMsgs                      1 
  rawipInDatagrams                     1 
  rawipOutDatagrams                    1 
  tcpInDataDupBytes                    1 
  tcpInDataDupSegs                     1 
  tcpInDupAck                    1 
  udpIfStatsNoPorts                    1 
  tcpActiveOpens                     2 
[...]
  tcpOutDataBytes                   1218 
  tcpOutDataSegs                    1218 
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The most frequent events are the ipIfStats* events, tracing IP stack events
to the network interface I/O. The icmp events can be seen at the top of the output,
firing once each.

IP Event Statistics 

This one-liner assumes that ip statistics from the mib provider begin with the let-
ters ip. If this was not entirely accurate, a script could be written to individually
name all the correct ip statistics from the mib provider. 

This shows IP statistics from the mib provider when receiving 10,240,000 TCP
bytes from a known network test load:

The byte count is shown in the ipIfStatsHCInOctets: IP Interface Statistics
High Capacity (64-bit) Inbound Octets (bytes) metric. The actual value of 10,597,089
is slightly larger than the 10,240,000 bytes sent because it includes network over-
head, such as packet headers, ACK packets, and so on.

For sent TCP bytes, the ipIfStatsHCOutOctets counter will be incremented.

IP Event Statistics with Kernel Function 

Similar to the previous one-liner, this includes the (unstable) probefunc member
of the probe name, which shows the function in the kernel that caused the mib
probe to fire: 

  tcpInDataInorderBytes                   1336 
  tcpInDataInorderSegs                  1336 
  ipIfStatsHCInDelivers                   1454 
  ipIfStatsHCInOctets                   1462 
  ipIfStatsHCInReceives                   1462 
  ipIfStatsHCOutOctets                  1548 
  ipIfStatsHCOutRequests                   1548 
  ipIfStatsHCOutTransmits                   1548 

solaris# dtrace -n 'mib:::ip* { @[probename] = sum(arg0); }' 
dtrace: description 'mib:::ip* ' matched 334 probes 
^C

  ipIfStatsForwProhibits                     1 
  ipIfStatsHCInBcastPkts                     4 
  ipIfStatsHCOutRequests                   1182 
  ipIfStatsHCOutTransmits                   1182 
  ipIfStatsHCInDelivers                   7413 
  ipIfStatsHCInReceives                   7418 
  ipIfStatsHCOutOctets                 48588 
  ipIfStatsHCInOctets                 10597089 
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This suggests that tcp_send_data() is likely to be a key function for sending
IP outbound traffic, because it will cause the ipIfStatsHCOutOctets probe to
fire.

TCP Event Statistics 

Some of the mib TCP events can return negative values in arg0,10 which, if
treated as an unsigned value, can be a very large number, producing confusing
results. This is checked in a predicate:

TCP Event Statistics with Kernel Function 

In the following example, we frequency count kernel functions updating TCP mib
statistics:

solaris# dtrace -n 'mib:::ip* 
{ @[strjoin(probefunc, strjoin("() -> ", probename))] = sum(arg0); }' 
dtrace: description 'mib:::ip* ' matched 334 probes 
^C

  ip_input() -> ipIfStatsHCInReceives               5040 
  ip_tcp_input() -> ipIfStatsHCInDelivers                  5040 
  tcp_send_data() -> ipIfStatsHCOutRequests                 10028 
  tcp_send_data() -> ipIfStatsHCOutTransmits                10028 
  ip_input() -> ipIfStatsHCInOctets              231531 
  tcp_send_data() -> ipIfStatsHCOutOctets           10641374

10. args[0] is supposed to be used with the mib provider; however, the tcp* wildcard matches
some probes where args[0] isn’t available, and so DTrace won’t allow args[0] to be used.
Using arg0 is a workaround.

solaris# dtrace -n 'mib:::tcp* /(int)arg0 > 0/ { @[probename] = sum(arg0); }' 
dtrace: description 'mib:::tcp* ' matched 94 probes 
^C

  tcpActiveOpens                     1 
  tcpInDupAck                    1 
  tcpTimRetrans                      1 
  tcpOutControl                      2 
  tcpOutAckDelayed                    11 
  tcpOutAck                      24 
  tcpInDataInorderSegs                    33 
  tcpInAckSegs                  5003 
  tcpRttUpdate                  5003 
  tcpOutDataSegs                   10002 
  tcpInDataInorderBytes                  24851 
  tcpInAckBytes                  10240157 
  tcpOutDataBytes                 14411804 
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UDP Event Statistics

UDP probes are also available in the mib provider:

ICMP Event Trace 

Because ICMP events are expected to be less frequent, the ICMP one-liners will
trace and print output per event, rather than summarize using aggregations.
Either of these will be used:

While the stable method for matching the ICMP probes is to use a wildcard in
the probename field (first one-liner), this doesn’t match raw IP packets used for
outbound ICMP, because their names start with rawip.11 The second one-liner is a
workaround, matching all mib probes that fire in icmp_* functions: 

solaris# dtrace -n 'mib:::tcp* /(int)arg0 > 0/ 
{ @[strjoin(probefunc, strjoin("() -> ", probename))] = sum(arg0); }' 
dtrace: description 'mib:::tcp* ' matched 94 probes 
^C

  tcp_output() -> tcpOutDataSegs                  1 
  tcp_rput_data() -> tcpInAckSegs                          1 
  tcp_set_rto() -> tcpRttUpdate                   1 
  tcp_ack_timer() -> tcpOutAck                   10 
  tcp_ack_timer() -> tcpOutAckDelayed                10 
  tcp_rput_data() -> tcpOutAck                   11 
  tcp_rput_data() -> tcpInDataInorderSegs                    33 
  tcp_output() -> tcpOutDataBytes                 108 
  tcp_rput_data() -> tcpInAckBytes                 108 
  tcp_rput_data() -> tcpInDataInorderBytes                  36847 

solaris# dtrace -n 'mib:::udp* { @[probename] = sum(arg0); }' 
dtrace: description 'mib:::udp* ' matched 20 probes 
^C

  udpIfStatsNoPorts                    2 
  udpHCOutDatagrams                   46 
  udpHCInDatagrams                    50 

dtrace -Fn 'mib:::icmp*  { trace(timestamp); }' 

dtrace -Fn 'mib::icmp_*: { trace(timestamp); }'

11. This seems like a bug.
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Here we have an inbound ICMP echo request: 

Time stamps are printed to measure latency and to check that the output is in
the correct order (multi-CPU systems may require post sorting). Flow indent was
used (the -F flag), in case you need to customize this one-liner by adding fbt
probes for the functions shown. Here’s an example: 

This suggests that all four mib probes fired in the duration of icmp_
inbound(). Further DTracing can confirm.

Here’s an outbound ICMP echo request: 

Probing the identified kernel functions from the previous output yields the
following:

solaris# dtrace -Fn 'mib::icmp_*: { trace(timestamp); }' 
dtrace: description 'mib::icmp_*: ' matched 89 probes 
CPU FUNCTION 
  1 | icmp_inbound:icmpInMsgs        5356002727524698 
  1 | icmp_inbound:icmpInEchos        5356002727527913 
  1 | icmp_inbound:icmpOutEchoReps      5356002727529442 
  1 | icmp_inbound:icmpOutMsgs        5356002727537901 
^C

solaris# dtrace -Fn 'mib::icmp_*:,fbt::icmp_inbound: { trace(timestamp); }' 
dtrace: description 'mib::icmp_*:,fbt::icmp_inbound: ' matched 91 probes 
CPU FUNCTION 
  1  -> icmp_inbound          5356036952771520 
  1   | icmp_inbound:icmpInMsgs       5356036952774471 
  1   | icmp_inbound:icmpInEchos       5356036952776885 
  1   | icmp_inbound:icmpOutEchoReps      5356036952778495 
  1   | icmp_inbound:icmpOutMsgs       5356036952786695 
  1  <- icmp_inbound          5356036952807373 
^C

solaris# dtrace -Fn 'mib::icmp_*: { trace(timestamp); }' 
dtrace: description 'mib::icmp_*: ' matched 89 probes 
CPU FUNCTION 
  1 | icmp_wput:rawipOutDatagrams       5356062980086596 
  1 | icmp_inbound:icmpInMsgs        5356062980226177 
  1 | icmp_inbound:icmpInEchoReps       5356062980227969 
  1 | icmp_input:rawipInDatagrams       5356062980232747 
^C

solaris# dtrace -Fn'mib::icmp_*:,fbt::icmp_wput:,fbt::icmp_inbound:
,fbt::icmp_input: { trace(timestamp); }'
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Here again, we can use the mib provider to correlate specific kernel functions to
network events of interest and use that information to build the next set of DTrace
scripts for further analysis.

ICMP Event by Kernel Stack Trace 

In addition to identifying the kernel functions that contain the MIB probes, we can
print a kernel stack trace and observe the entire code path to the MIB probe:

In the bottom stack frame, we see the icmp_inbound() kernel function caus-
ing the icmpInMsgs probe to fire, and the path through the kernel on this inbound
traffic originated in the network interface (nge) interrupt handler. The top stack
frame shows a send over ICMP.

dtrace: description 'mib::icmp_*:,fbt::icmp_wput:,fbt::icmp_inbound:,fbt::icmp_input:
' matched 95 probes 
CPU FUNCTION 
  1  -> icmp_wput           5356158150344413 
  1   | icmp_wput:rawipOutDatagrams      5356158150348528 
  1  <- icmp_wput           5356158150368629 
  1  -> icmp_inbound          5356158150552807 
  1   | icmp_inbound:icmpInMsgs       5356158150554112 
  1   | icmp_inbound:icmpInEchoReps      5356158150555917 
  1    -> icmp_input          5356158150560871 
  1     | icmp_input:rawipInDatagrams      5356158150563004 
  1    <- icmp_input          5356158150567422 
  1  <- icmp_inbound          5356158150569275

solaris# dtrace -n 'mib::icmp_*: { stack(); }' 
dtrace: description 'mib::icmp_*: ' matched 89 probes 
CPU     ID            FUNCTION:NAME 
  1  25849   icmp_wput:rawipOutDatagrams

    unix`putnext+0x2f1 
    genunix`strput+0x1cf 
   genunix`kstrputmsg+0x2bf 
   sockfs`sosend_dgram+0x2dd
   sockfs`sotpi_sendmsg+0x566
    sockfs`sendit+0x1b8 
    sockfs`sendto+0xb8 
    sockfs`sendto32+0x2d 
   unix`sys_syscall32+0x1fc 

  1  25612     icmp_inbound:icmpInMsgs
    ip`ip_proto_input+0x620
    ip`ip_input+0x9df 
    dls`i_dls_link_rx+0x2b9
    mac`mac_do_rx+0xba 
    mac`mac_rx+0x1b 
    nge`nge_receive+0x47 
   nge`nge_intr_handle+0xbd 
    nge`nge_chip_intr+0xca 
   unix`av_dispatch_autovect+0x8c
   unix`dispatch_hardint+0x2f
   unix`switch_sp_and_call+0x13

[...]
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ip Provider Examples

In this section, we demonstrate use of the ip provider.

Received IP Packets by Host Address

If the IP provider is present, summarizing received IP packets by host address is a
simple one-liner: 

This includes IPv4 and IPv6 hosts. 

IP Send Payload Size Distribution by Destination 

The send payload size is shown here by destination host. This may be useful to
detect hosts that are supposed to be using jumbo frames but are not:

The output shows that most of the packets sent to the 192.168.1.109 host were
in the 64-byte to 127-byte range.

# dtrace -n 'ip:::receive { @[args[2]->ip_saddr] = count(); }' 
dtrace: description 'ip:::receive ' matched 4 probes 
^C

  192.168.1.5                    1 
  192.168.1.185                      4 
  fe80::214:4fff:fe3b:76c8                    9 
  127.0.0.1                      14 
  192.168.1.109                     28

solaris# dtrace -n 'ip:::send 
{ @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }' 
dtrace: description 'ip:::send ' matched 11 probes 
^C

  192.168.2.27
           value ------------- Distribution ------------- count 
               8 |                   0 
              16 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@          7 
              32 |@@@@                  1 
              64 |@@@@                  1 
             128 |                   0 

  192.168.1.109
           value ------------- Distribution ------------- count 
               8 |                   0 
              16 |@@@@@                  5 
              32 |@@@                  3 

 64 |@@@@@@@@@@@@@@@@@@@@@@@@@@               24 
             128 |@                  1 
             256 |@                  1 
             512 |@@                  2 
            1024 |@                  1 
            2048 |                  0
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tcp Provider Examples

In this section, we show examples of using the tcp provider.

Inbound TCP Connections by Remote Address Summary

The accept-established probe traces passive TCP connection–established
events, which are typically for inbound connections to a server. This one-liner sum-
marizes which remote hosts are establishing TCP connections:

Since the accept-established probe fires in the context of the final ACK in
the TCP handshake, the source address in the IP header may also be used to refer
to the remote host, so this one-liner can be written as follows:

The development documentation for the TCP provider uses this approach for
writing one-liners, simply because tcps_raddr and tcps_laddr were not avail-
able in args[3] until later in the provider development.

Inbound TCP Connections by Local Port Summary

Tracing the local TCP port for connections will show which local services are
accepting connections:

While this one-liner was running, there was one connection to port 22 (SSH) and
seven connections to port 80 (HTTP).

solaris# dtrace -n 'tcp:::accept-established
{ @addr[args[3]->tcps_raddr] = count(); }'
dtrace: description 'tcp:::state-change' matched 1 probes
^C

  127.0.0.1                       1
  192.168.2.88                      1
  fe80::214:4fff:fe8d:59aa                    1
  192.168.1.109                     3

solaris# dtrace -n 'tcp:::accept-established { @addr[args[2]->ip_saddr] = count(); }'

solaris# dtrace -n 'tcp:::accept-established { @[args[3]->tcps_lport] = count(); }'
dtrace: description 'tcp:::accept-established' matched 1 probes
^C

    22                1
    80                7
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Who Is Connecting to What

Combining the previous two one-liners will count which remote hosts are connect-
ing to which local ports:

During tracing, 192.168.1.109 established three connections to local port 22
(SSH).

Who Isn’t Connecting to What

As well as tracing successful connections, tracing unsuccessful connections can be
extremely valuable when troubleshooting network issues.

This shows that the 192.168.1.109 host attempted two connections to local port
23 (telnet), which were rejected. This one-liner could be used to detect port scans,
which would appear as a host attempting to connect to numerous different ports.

What Am I Connecting To?

The connect-established probe traces active TCP connection established
events, which are typically from local software establishing a connection to a
remote server. Here a one-liner summarizes these events with remote host address
and remote port:

solaris# dtrace -n 'tcp:::accept-established
{ @[args[3]->tcps_raddr, args[3]->tcps_lport] = count(); }' 
dtrace: description 'tcp:::accept-established' matched 1 probes
^C

  192.168.2.88     40648                1
  fe80::214:4fff:fe8d:59aa      22                1
  192.168.1.109       22                3

solaris# dtrace -n 'tcp:::accept-refused
{ @[args[3]->tcps_raddr, args[3]->tcps_lport] = count(); }' 
dtrace: description 'tcp:::accept-refused ' matched 1 probes
^C

  192.168.1.109       23                2

solaris# dtrace -n 'tcp:::connect-established
{ @[args[3]->tcps_raddr , args[3]->tcps_rport] = count(); }'
dtrace: description 'tcp:::connect-established ' matched 1 probes
^C

  192.168.1.1        22                1
  192.168.1.3        80                2
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During tracing, there were two outbound connections to 192.168.1.3 port 80
(HTTP.)

TCP Received Packets by Remote Address Summary

This one one-liner counts packets received by remote host address. The receive
probe is used, and the remote host address is identified by the source address in
the IP header args[2]->ip_saddr. This could also be derived from the TCP state
information as args[3]->tcps_raddr.

While tracing, there were 3,722 TCP packets received from host 192.168.2.88.
There were also 14 TCP packets received from an IPv6 host, fe80::214:4fff:fe8d:59aa.

TCP Received Packets by Local Port Summary

Similar to the previous one-liner, but this time the local port is traced by examin-
ing the destination port in the TCP header, args[4]->tcp_dport. This is also
available in TCP state information as args[3]->tcps_lport.

While tracing, most of the received packets were for port 22 (SSH). The higher-
numbered ports may be used by outbound (TCP active) connections.

Sent IP Payload Size Distributions

This one-liner prints distribution plots of IP payload size by remote host for TCP
sends:

solaris# dtrace -n 'tcp:::receive { @addr[args[2]->ip_saddr] = count(); }'
dtrace: description 'tcp:::receive ' matched 5 probes
^C

  127.0.0.1                       7
  fe80::214:4fff:fe8d:59aa                   14
  192.168.2.30                     43
  192.168.1.109                     44
  192.168.2.88                  3722

solaris# dtrace -n 'tcp:::receive { @[args[4]->tcp_dport] = count(); }'
dtrace: description 'tcp:::receive ' matched 5 probes
^C

      42303            3
      42634            3
       2049            27
      40648            36
         22            162
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The distribution shows the IP payload size, which includes the TCP header and
the TCP data payload. To trace the actual TCP payload size, see the following one-liner.

Sent TCP Bytes Summary

This one-liner summarizes TCP sent payload bytes. This is determined by sub-
tracting the TCP header offset from the IP payload length:

While tracing, 1,004,482 bytes of TCP payload was sent.  This one-liner can be
combined with others to provide this data by host, by port, every second, and so on. 

TCP Events by Type Summary

This one-liner simply traces TCP probes by probe name:

solaris# dtrace -n 'tcp:::send 
{ @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }'
dtrace: description 'tcp:::send ' matched 3 probes
^C

  192.168.1.109
           value  ------------- Distribution ------------- count
              32 |              0
              64 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    14
             128 |@@@                1
             256 |              0

  192.168.2.30
           value  ------------- Distribution ------------- count
              16 |              0
              32 |@@@@@@@@@@@@@@@@@@@@               7
              64 |@@@@@@@@@            3
             128 |@@@                1
             256 |@@@@@@        2
             512 |@@@                1
            1024 |                  0

solaris# dtrace -n 'tcp:::send { @bytes = sum(args[2]->ip_plength - 
args[4]->tcp_offset); }'
dtrace: description 'tcp:::send ' matched 3 probes
^C
      1004482

solaris# dtrace -n 'tcp::: { @[probename] = count(); }'
dtrace: description 'tcp::: ' matched 41 probes 
^C

  accept-established                      2 
  state-change                     12 
  send                    103 
  receive                   105 
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This can be used to compare the number of established connections with the
number of sent and received TCP packets.

udp Provider Examples

The udp provider is demonstrated in the following examples.

UDP Sent Packets by Remote Port Summary

This one-liner counts UDP sent packets by the destination port:

During tracing, there were three sent UDP packets to remote port 53 (DNS).
The destination address args[2]->ip_daddr can be added to the aggregation to
include the remote host, which in this case will identify the remote DNS servers
queried.

Scripts

Table 6-9 summarizes the scripts that follow and the providers they use.

solaris# dtrace -n 'udp:::send { @[args[4]->udp_dport] = count(); }'
dtrace: description 'udp:::send ' matched 5 probes
^C

    53                3

Table 6-9 Network Script Summary

Script Protocol Description Provider

soconnect.d Socket Traces client socket connect()s showing 
process and host

syscall

soaccept.d Socket Traces server socket accept()s showing 
process and host

syscall

soclose.d Socket Traces socket connection duration: 
connect() to close()

syscall

socketio.d Socket Shows socket I/O by process and type syscall

socketiosort.d Socket Shows socket I/O by process and type, 
sorted by process

syscall

continues
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so1stbyte.d Socket Traces connection and first-byte latency at 
the socket layer

syscall

sotop.d Socket Status tool to show top busiest sockets syscall

soerror.d Socket Identifies socket errors syscall

ipstat.d IP IP statistics every second mib

ipio.d IP IP send/receive snoop ip

ipproto.d IP IP encapsulated prototype summary ip

ipfbtsnoop.d IP Trace IP packets: demonstration of fbt 
tracing

fbt

tcpstat.d TCP TCP statistics every second mib

tcpaccept.d TCP Summarizes inbound TCP connections tcp

tcpacceptx.d TCP Summarizes inbound TCP connections, 
resolve host names

tcp

tcpconnect.d TCP Summarizes outbound TCP connections tcp

tcpioshort.d TCP Traces TCP send/receives live with basic 
details

tcp

tcpio.d TCP Traces TCP send/receives live with flag 
translation

tcp

tcpbytes.d TCP Sums TCP payload bytes by client and 
local port

tcp

tcpsize.d TCP Shows TCP send/receive I/O size 
distribution

tcp

tcpnmap.d TCP Detects possible TCP port scan activity tcp

tcpconnlat.d TCP Measures TCP connection latency by 
remote host

tcp

tcp1stbyte.d TCP Measures TCP first byte latency by remote 
host

tcp

tcp_rwndclosed.d TCP Identifies TCP receive window zero events, 
with latency

tcp

tcpfbtwatch.d TCP Watches inbound TCP connections fbt

tcpsnoop.d TCP Traces TCP I/O with process details fbt

udpstat.d UDP UDP statistics every second mib

Table 6-9 Network Script Summary (Continued)

Script Protocol Description Provider
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The fbt provider is considered an “unstable” interface, because it instruments a
specific operating system version. For this reason, scripts that use the fbt provider
may require changes to match the version of the software you are using. These
scripts have been included here as examples of D programming and of the kind of
data that DTrace can provide for each of these topics. See Chapter 12, Kernel, for
more discussion about using the fbt provider.

Socket Scripts

Sockets are a standard interface of communication endpoints for application pro-
gramming. Since sockets are created, read, and written using the system call inter-
face, the syscall provider can be used to trace socket activity, which allows the
application process ID responsible for socket activity to be identified, because it is
still on-CPU during the system calls. The user stack backtrace can also be exam-
ined to show why an application is performing socket I/O. Figure 6-3 shows the
typical application socket I/O flow. 

The socket layer can be traced using the stable syscall provider, as shown in
the one-liners. In the future, there may also be a stable socket provider available.
The internals of the kernel socket implementation may be studied using the fbt
provider, which can provide the most detailed view, at the cost of stability of the D
scripts.

udpio.d UDP Traces UDP send/receives live with basic 
details

udp

icmpstat.d ICMP ICMP statistics every second mib

icmpsnoop.d ICMP Traces ICMP packets with details fbt

superping.d ICMP Improves accuracy of ping's round trip 
times

mib

xdrshow.d XDR Shows XDR calls and calling functions fbt

macops.d Ethernet Counts MAC layer operations by interface 
and type

fbt

ngesnoop.d Ethernet Traces nge Ethernet events live fbt

ngelink.d Ethernet Traces changes to nge link status fbt

Table 6-9 Network Script Summary (Continued)

Script Protocol Description Provider
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Figure 6-3 Socket flow diagram

Download at www.wowebook.com



ptg

Scripts 449

soconnect.d

Applications execute the connect() system call on sockets to connect with remote
peers. Tracing connect() calls on clients will show what network sessions are
being established, as well as details such as latency. It is intended to be run on the
client systems performing the connections. 

Script

The connect.d script traces the connect() socket call from the syscall pro-
vider and extracts connection details from the arguments to connect. Since arg1
may be a pointer to a struct sockaddr_in for AF_INET or sockaddr_in6 for AF_
INET6, which reside in user address space, to read the members, the entire struc-
ture must first be copied to kernel memory (copyin()). To know which structure
type it is, we start by assuming it is struct sockaddr_in, copy it in, and then
examine the address family. If this shows that it was AF_INET6, we recopy the
data in as sockaddr_in6. This trick works because the address family member is
at the start of both structs and is the same data type: a short. 

Table 6-10 Use DTrace to Answer

Question Scripts

1 What outbound connections are occurring? To which server and 
port? connect() time? Why are applications performing connec-
tions, stack trace? 

soconnect.d,

one-liners

2 What inbound connections are being established? soaccept.d

3 Connection errors soerror.d

4 What client socket I/O is occurring, read and write bytes?  By 
which process? What is performing the most socket I/O? 

socketio.d,
sotop.d

5 What server socket I/O is occurring, read and write bytes, by 
which processes? Client? Which process is performing the most 
socket I/O?

socketiod,
sotop.d

6 Socket I/O errors soerror.d

7 Who ends connections, and why? User-level stack trace? Exercises

8 What is the duration of connections, with server and port details? soclose.d

9 What is the time from connect to the first payload byte from the 
server? 

so1stbyte.d

10 What is the time from accept to the first payload byte from the 
client?

serv1stbyte.d
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1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   /* If AF_INET and AF_INET6 are "Unknown" to DTrace, replace with numbers: */ 
7   inline int af_inet = AF_INET; 
8   inline int af_inet6 = AF_INET6; 
9
10  dtrace:::BEGIN 
11  { 
12 /* Add translations as desired from /usr/include/sys/errno.h */ 
13          err[0]          = "Success"; 
14          err[EINTR]       = "Interrupted syscall"; 
15          err[EIO]         = "I/O error"; 
16          err[EACCES]       = "Permission denied"; 
17          err[ENETDOWN]     = "Network is down"; 
18          err[ENETUNREACH]  = "Network unreachable"; 
19          err[ECONNRESET]   = "Connection reset"; 
20          err[ECONNREFUSED] = "Connection refused"; 
21          err[ETIMEDOUT] = "Timed out"; 
22          err[EHOSTDOWN] = "Host down"; 
23          err[EHOSTUNREACH] = "No route to host"; 
24 err[EINPROGRESS]  = "In progress"; 
25
26 printf("%-6s %-16s %-3s %-16s %-5s %8s %s\n", "PID", "PROCESS", "FAM", 
27  "ADDRESS", "PORT", "LAT(us)", "RESULT"); 
28  } 
29
30  syscall::connect*:entry
31  { 
32 /* assume this is sockaddr_in until we can examine family */ 
33 this->s = (struct sockaddr_in *)copyin(arg1, sizeof (struct sockaddr)); 
34  this->f = this->s->sin_family;
35  } 
36
37  syscall::connect*:entry
38  /this->f == af_inet/ 
39  { 
40  self->family = this->f; 
41 self->port = ntohs(this->s->sin_port);
42 self->address = inet_ntop(self->family, (void *)&this->s->sin_addr);
43   self->start = timestamp; 
44  } 
45
46  syscall::connect*:entry
47  /this->f == af_inet6/ 
48  { 
49 /* refetch for sockaddr_in6 */ 
50          this->s6 = (struct sockaddr_in6 *)copyin(arg1, 
51    sizeof (struct sockaddr_in6)); 
52  self->family = this->f; 
53 self->port = ntohs(this->s6->sin6_port);
54          self->address = inet_ntoa6((in6_addr_t *)&this->s6->sin6_addr); 
55   self->start = timestamp; 
56  } 
57
58  syscall::connect*:return
59  /self->start/ 
60  { 
61          this->delta = (timestamp - self->start) / 1000; 
62 this->errstr = err[errno] != NULL ? err[errno] : lltostr(errno); 
63          printf("%-6d %-16s %-3d %-16s %-5d %8d %s\n", pid, execname, 
64    self->family, self->address, self->port, this->delta, this->errstr); 
65   self->family = 0; 
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Some operating system versions will have AF_INET and AF_INET6 defined for
use by DTrace (they were added for the network providers), which are needed for
this script. If they are not known (for example, on current Solaris 10, Mac OS X,
and FreeBSD), the script will produce the error “failed to resolve AF_INET:
Unknown variable name.” If that happens, edit lines 7 and 8 to replace AF_INET
and AF_INET6 to be the correct values for your operating system (or, use the
C-preprocessor to source them). These values may change; Table 6-11 shows recent
values as a hint, but these should be double-checked before use.

The use of this->f instead of just allocating self->family to begin with is to
avoid allocating a thread-local variable that would later need cleaning up if it
didn’t match the predicates on lines 38 and 47.

Connection latency is calculated as the time from syscall::connect*:entry
to syscall::connect*:return. Calculating delta times for socket operations at
the system call layer is easy, since the system call occurs in process/thread context
and thread-local variables (self->) can be used. The connect:return function
also allows the error status to be checked. A partial table of error codes to strings
is in the dtrace:::BEGIN block for translation.

On older versions of Solaris that do not have inet_ntop() available in DTrace,
and for Mac OS X that also currently lacks ntohs(), the syscall::connect*:entry
action can be rewritten like this:

66   self->address = 0; 
67          self->port = 0; 
68    self->start = 0; 
69  } 
Script soconnect.d

Table 6-11 Example AF_INET and AF_INET6 Values

Operating System AF_INET AF_INET6 Source

Solaris 10 2 26 /usr/include/sys/socket.h

OpenSolaris 2 26 /usr/include/sys/socket.h

Mac OS X 10.6 2 30 bsd/sys/socket.h

FreeBSD 8.0 2 28 sys/socket.h

37  syscall::connect*:entry
38  /this->f == af_inet/ 
39  { 
40  self->family = this->f; 
41
42          /* Convert port to host byte order without ntohs() being available. */ 

continues
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This replacement inet_ntop() code is for IPv4 address (address family is AF_
INET). It produces the IPv4 address string manually, without assuming that the
inet_ntop() function is available (it may not be, depending on your DTrace ver-
sion). Similar (and longer) code could be written for IPv6 to produce an eight 16-bit
number representation of the form x:x:x:x:x:x:x:x; compact form (see RFC1924) is
expected to be difficult to produce in this way (which is why the inet* functions
are needed).

The replacement ntohs() code is for little-endian systems such as Mac OS X on
Intel. For big-endian systems, conversion isn’t necessary.

See the ipfbtsnoop.d script in the “IP Scripts” section for another example of
IPv4 manual stringification, with a reusable macro.

Examples

The following examples demonstrate the use of the soconnect.d script.

Application Connect Snooping. The following example shows soconnect.d
executed on a Solaris client. The first four lines show two successful SSH connec-
tions and then two unsuccessful Telnet connections; the second was interrupted
(Ctrl-C) after waiting 2.8 seconds for it to connect. 

Then the Firefox Web browser loaded the www.sun.com Web site, and we can
see the DNS queries from the nscd process (Name Service Cache Daemon) to port
53, followed by HTTP requests from firefox-bin to port 80. 

43          self->port = (this->s->sin_port & 0xFF00) >> 8; 
44          self->port |= (this->s->sin_port & 0xFF) << 8; 
45
46          /* 
47           * Convert an IPv4 address into a dotted quad decimal string. 
48 * Until the inet_ntoa() functions are available from DTrace, this is 
49           * converted using the existing strjoin() and lltostr().  It's done in 
50           * two parts to avoid exhausting DTrace registers in one line of code. 
51           */ 
52          this->a = (uint8_t *)&this->s->sin_addr;
53  this->addr1 = strjoin(lltostr(this->a[0] + 0ULL), strjoin(".", 
54  strjoin(lltostr(this->a[1] + 0ULL), "."))); 
55  this->addr2 = strjoin(lltostr(this->a[2] + 0ULL), strjoin(".", 
56    lltostr(this->a[3] + 0ULL))); 
57          self->address = strjoin(this->addr1, this->addr2); 
58
59   self->start = timestamp; 
60  } 

Script soconnect_mac.d

client# soconnect.d
PID    PROCESS    FAM ADDRESS     PORT   LAT(us) RESULT 
54677  ssh              2 192.168.2.156    22        210 Success 
54730  ssh              2   192.168.1.3      22        436 Success 

www.sun.com
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The penultimate line was an SSH to an offline host, which took 225 seconds
before the connection timed out. 

Port Scanning. Here the nmap port scanner was used to perform a TCP Con-
nect scan on a local server: 

The connection attempts from nmap can be observed clearly in the output.

soaccept.d

Inbound socket connections can be traced on the server by probing accept().

54878  telnet  2   192.168.2.156  23   321 Connection refused 
54931  telnet  2   192.168.1.3      23     2835157 Interrupted syscall 
356    nscd     2   192.168.1.5  53          54 Success 
356    nscd     2   192.168.1.5  53          52 Success 
356    nscd     2   192.168.1.5  53          38 Success 
356    nscd     2   192.168.1.5  53          37 Success 
22642  firefox-bin      2  72.5.124.61      80        138 In progress 
22642  firefox-bin      2  72.5.124.61      80         64 In progress 
356    nscd     2   192.168.1.5  53          55 Success 
356    nscd     2   192.168.1.5  53          53 Success 
22642  firefox-bin      2  80.67.66.55      80        109 In progress 
22642  firefox-bin      2  80.67.66.55      80         45 In progress 
356    nscd     2   192.168.1.5  53          55 Success 
356    nscd     2   192.168.1.5  53          43 Success 
22642  firefox-bin      2   66.235.132.118   80        110 In progress 
10613  nfsmapid 2   192.168.1.5      53          56 Success 
356    nscd     2   192.168.1.5  53          55 Success 
356    nscd     2   192.168.1.5  53          53 Success 
5002   elinks   2   74.86.31.159     80         116 In progress 
55555  ssh              2   10.1.0.23        22       38003 Success 
55179  ssh              2   10.1.0.25        22    224659402 Timed out 
10613  nfsmapid 2   192.168.1.5      53          54 Success 
^C

client# soconnect.d
PID    PROCESS    FAM ADDRESS     PORT   LAT(us) RESULT 
911287 nmap   2   192.168.1.5 53          79 Success 
911287 nmap   2   192.168.2.145    443     67 In progress 
911287 nmap   2   192.168.2.145   22     51 In progress 
911287 nmap             2   192.168.2.145    3389      19 In progress 
911287 nmap   2   192.168.2.145    389     48 In progress 
911287 nmap   2   192.168.2.145   80     19 In progress 
911287 nmap             2   192.168.2.145    1723      37 In progress 
911287 nmap   2   192.168.2.145   23     19 In progress 
911287 nmap   2   192.168.2.145   21     19 In progress 
911287 nmap   2   192.168.2.145    113     41 In progress 
911287 nmap   2   192.168.2.145   53     20 In progress 
911287 nmap   2   192.168.2.145    636     26 In progress 
911287 nmap   2   192.168.2.145    554     19 In progress 
911287 nmap   2   192.168.2.145   25     36 In progress 
911287 nmap   2   192.168.2.145    256     36 In progress 
911287 nmap             2   192.168.2.145    14922     36 In progress 
911287 nmap             2   192.168.2.145    27471     35 In progress 
911287 nmap             2   192.168.2.145    11814     36 In progress 
911287 nmap             2   192.168.2.145    25072     35 In progress 
911287 nmap             2   192.168.2.145    48457     19 In progress 
[...]
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Script

Just as in soconnect.d, both IPv4 and IPv6 connections are processed by first
assuming IPv4, copying in the sockaddr, and checking the address family. If it
was IPv6 after all, the sockaddr is copied in again as sockaddr_in6.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   /* If AF_INET and AF_INET6 are "Unknown" to DTrace, replace with numbers: */ 
7   inline int af_inet = AF_INET; 
8   inline int af_inet6 = AF_INET6; 
9
10  dtrace:::BEGIN 
11  { 
12 /* Add translations as desired from /usr/include/sys/errno.h */ 
13          err[0]          = "Success"; 
14          err[EINTR]       = "Interrupted syscall"; 
15          err[EIO]         = "I/O error"; 
16          err[EAGAIN]       = "Resource temp unavail"; 
17          err[EACCES]       = "Permission denied"; 
18          err[ECONNABORTED] = "Connection aborted"; 
19          err[ECONNRESET]   = "Connection reset"; 
20          err[ETIMEDOUT] = "Timed out"; 
21 err[EINPROGRESS]  = "In progress"; 
22
23 printf("%-6s %-16s %-3s %-16s %-5s %8s %s\n", "PID", "PROCESS", "FAM", 
24  "ADDRESS", "PORT", "LAT(us)", "RESULT"); 
25  } 
26
27  syscall::accept*:entry 
28  { 
29   self->sa = arg1; 
30   self->start = timestamp; 
31  } 
32
33  syscall::accept*:return
34  /self->sa/ 
35  { 
36          this->delta = (timestamp - self->start) / 1000; 
37 /* assume this is sockaddr_in until we can examine family */ 
38          this->s = (struct sockaddr_in *)copyin(self->sa, 
39    sizeof (struct sockaddr_in)); 
40  this->f = this->s->sin_family;
41  } 
42
43  syscall::accept*:return
44  /this->f == af_inet/ 
45  { 
46 this->port = ntohs(this->s->sin_port);
47          this->address = inet_ntoa((ipaddr_t *)&this->s->sin_addr); 
48 this->errstr = err[errno] != NULL ? err[errno] : lltostr(errno); 
49          printf("%-6d %-16s %-3d %-16s %-5d %8d %s\n", pid, execname, 
50              this->f, this->address, this->port, this->delta, this->errstr);
51  } 
52
53  syscall::accept*:return
54  /this->f == af_inet6/ 
55  { 
56 /* refetch for sockaddr_in6 */ 
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To print IPv4 and IPv6 addresses as strings, the inet_ntoa() and inet_
ntoa6() DTrace functions were used. If currently unavailable in your version of
DTrace, process it manually (see soconnect.d). The PORT number printed is the
remote port, not the local port. 

Example

Here an inbound ssh connection was found, which used the remote port 44364.
The netstat command was used to see what local port that connected to: port 22. 

soclose.d

This script measures the duration of socket connections of the Internet Protocol
type and prints details including the target address and port. It is intended to be
run on the client host performing the connections. 

Script

The duration of the connection is measured from the connect() to the close()
of the socket file descriptor: 

57          this->s6 = (struct sockaddr_in6 *)copyin(self->sa, 
58    sizeof (struct sockaddr_in6)); 
59 this->port = ntohs(this->s6->sin6_port);
60          this->address = inet_ntoa6((in6_addr_t *)&this->s6->sin6_addr); 
61 this->errstr = err[errno] != NULL ? err[errno] : lltostr(errno); 
62          printf("%-6d %-16s %-3d %-16s %-5d %8d %s\n", pid, execname, 
63              this->f, this->address, this->port, this->delta, this->errstr);
64  } 
65
66  syscall::accept*:return
67  /self->start/ 
68  { 
69          self->sa = 0; self->start = 0; 
70  } 

Script soaccept.d

server# soaccept.d
PID    PROCESS    FAM ADDRESS     PORT   LAT(us) RESULT 
8491   httpd            26 192.168.1.109    45416       41 Success 
1111   sshd             26  192.168.1.109    63485       31 Success 
8494   httpd            26 192.168.1.109    38862       19 Success 
8490   httpd            26 192.168.1.109    55298       13 Success 
1161   httpd    2   192.168.1.109    0           49 Success 
1158   httpd    2   192.168.1.109    0           37 Success 
1111   sshd             26  192.168.1.109    44364       40 Success 
^C
server# netstat -an | grep 44364 
192.168.2.145.22  192.168.1.109.44364  49640   0 1049740      0 
ESTABLISHED
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Time stamps and other variables are keyed on the file descriptor, in case the
process opens multiple connections in parallel.

For readability, the duration is printed as “<seconds>.<milliseconds>” with up to
three decimal places. If floating-point operators existed in DTrace, this would just
require printing seconds as a float using a %.3f operand for printf(). printf()
supports the format operand, but the operator to calculate the float is not sup-
ported. As a workaround, lines 35 to 37 calculate both the seconds and millisec-
onds components as this->sec and this->ms; these are then printed—the
millisecond component with up to three leading zeros (%03d)—on line 38.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   /* If AF_INET and AF_INET6 are "Unknown" to DTrace, replace with numbers: */ 
7   inline int af_inet = AF_INET; 
8   inline int af_inet6 = AF_INET6; 
9
10  dtrace:::BEGIN 
11  { 
12          printf("  %-6s %-16s %-3s %-16s %-5s %s\n", "PID", "PROCESS", "FAM", 
13   "ADDRESS", "PORT", "DURATION(sec)"); 
14  } 
15
16  syscall::connect*:entry
17  { 
18 this->s = (struct sockaddr_in *)copyin(arg1, sizeof (struct sockaddr)); 
19  this->f = this->s->sin_family;
20  } 
21
22  syscall::connect*:entry
23  /this->f == af_inet || this->f == af_inet6/ 
24  { 
25  self->family[arg0] = this->f; 
26          self->port[arg0] = ntohs(this->s->sin_port);
27          self->address[arg0] = inet_ntop(this->s->sin_family,
28    (void *)&this->s->sin_addr);
29 self->start[arg0] = timestamp; 
30  } 
31
32  syscall::close:entry 
33  /self->start[arg0]/ 
34  { 
35          this->delta = (timestamp - self->start[arg0]) / 1000; 
36 this->sec = this->delta / 1000000; 
37          this->ms = (this->delta - (this->sec * 1000000)) / 1000; 
38 printf("  %-6d %-16s %-3d %-16s %-5d %d.%03d\n", pid, execname, 
39              self->family[arg0], self->address[arg0], self->port[arg0],
40     this->sec, this->ms); 
41   self->family[arg0] = 0; 
42   self->address[arg0] = 0; 
43   self->port[arg0] = 0; 
44  self->start[arg0] = 0; 
45  }

Script soclose.d
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This script can be modified similarly to soconnect.d so that it executes on
older Solaris versions or Mac OS X.

Example

The soclose.d script was executed on a Solaris desktop while several ssh com-
mands were run, and a Web site loaded in the Firefox Web browser: 

The duration of the ssh sessions of 3.625 and 10.957 seconds are indeed the
time that those ssh sessions were logged in. The long-duration connections from
firefox-bin are evidence of HTTP keep-alives. 

socketio.d

Summarizing the socket I/O calls that are occurring is a starting point for investi-
gating socket behavior and performance, and it may directly identify load-related
problems.

Script

socketio.d is a high-level script that may also be useful for further customizations:

client# soclose.d
  PID    PROCESS          FAM ADDRESS   PORT  DURATION(sec) 
  739286 ssh  2   192.168.1.188   22    3.625 
  708951 nscd 2   192.168.1.5   53    0.000 
  708951 nscd 2   192.168.1.5   53    0.316 
  708951 nscd 2   192.168.1.5   53    0.824 
  708951 nscd 2   192.168.1.5   53    0.382 
  608440 firefox-bin    2   66.235.132.118   80    15.964 
  708951 nscd 2   192.168.1.5   53    0.000 
  739475 ssh  2   192.168.1.3    22    10.957 
  608440 firefox-bin      2  72.5.124.61  80    63.464 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing Socket I/O... Hit Ctrl-C to end.\n"); 
8   } 
9
10  syscall::read*:entry, 
11  syscall::write*:entry, 
12  syscall::send*:entry, 
13  syscall::recv*:entry 
14  /fds[arg0].fi_fs == "sockfs" || fds[arg0].fi_name == "<socket>"/
15  { 
16 @[execname, pid, probefunc] = count(); 
17  } 

continues
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Line 14 has been written so that this script executes on both Solaris and Mac
OS X, by testing either method for identifying sockets in an OR (||) statement
(the statement is Solaris socket OR Mac OS X socket).

Example

This script was executed on a Solaris workstation with a Java application perform-
ing 10,000 TCP sends: 

The java application and socket I/O call was identified with the correct count.
All socket I/O was traced (this is not filtering on protocol family types AF_INET/
AF_INET6), including socket I/O from various daemons that drive the desktop
environment (FVWM2).

socketiosort.d

The previous output of socketio.d sorted the output by count. At times you may
find it useful to group applications together, but doing this in the output can be a

18
19  dtrace:::END 
20  { 
21 printf("  %-16s %-8s %-16s %10s\n", "PROCESS", "PID", "SYSCALL", 
22       "COUNT"); 
23          printa("  %-16s %-8d %-16s %@10d\n", @); 
24  } 

Script socketio.d

solaris# socketio.d
Tracing Socket I/O... Hit Ctrl-C to end. 
^C
  PROCESS          PID SYSCALL        COUNT 
  ssh  864116   write               1 
  sshd  942634   read               1 
  FvwmPager        701861   write             2 
  ssh  864116   read               4 
  xclock           785004   write              4 
  FvwmIconMan      701860   write             5 
  FvwmPager        701865   write             5 
  FvwmPager        701865   read             7 
  sshd  942634   write               7 
  firefox-bin      272642   write             8 
  soffice.bin      453667   read             8 
  soffice.bin      453667   write             8 
  fvwm2 701854   write              25 
  gnome-terminal   701876  write            37 
  firefox-bin      272642   read            40 
  fvwm2 701854   read              41 
  gnome-terminal   701876  read            49 
  Xorg   614773   writev              100 
  Xorg  614773   read              207 
  java   440474   send             10000 
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nontrivial task—something suited to postprocessing using, for example, Perl.
DTrace provides for changing the default sort key based on your needs.

Script

The first 13 lines are the same as socketio.d; and then the script changes on
line 14: 

DTrace has the aggsortpos option, which controls selecting which output col-
umn to sort by, provided it is an aggregation value. To group the processes
together, we need to sort by either the PID or the process name, which were aggre-
gation keys, not values. As a workaround, the PID column is changed into the
@pid aggregation, which allows sorting by PID. The extra pid key is discarded
and prevents the max() function from ignoring some PIDs. 

Example

The output is easier to read by process: 

14  /fds[arg0].fi_fs == "sockfs" || fds[arg0].fi_name == "<socket>"/
15  { 
16          @num[execname, probefunc, pid] = count(); 
17          @pid[execname, probefunc, pid] = max(pid); 
18          @pid["--------------", "------", pid] = max(pid); 
19  } 
20
21  dtrace:::END 
22  { 
23 printf("  %-8s %-16s %-16s %10s\n", "PID", "PROCESS", "SYSCALL", 
24       "COUNT"); 
25   setopt("aggsortpos", "0"); 
26          printa(" %@-8d %-16s %-16s %@10d\n", @pid, @num); 
27  } 

Script socketiosort.d

solaris# socketiosort.d
Tracing Socket I/O... Hit Ctrl-C to end. 
^C
  PID      PROCESS SYSCALL        COUNT 
  272642   -------------- ------           0 
  272642   firefox-bin  write            28 
  272642   firefox-bin   read            142 
  439751   -------------- ------           0 
  439751   java             send                  10000 
  453667   -------------- ------           0 
  453667   soffice.bin  read            24 
  453667   soffice.bin  write            24 
  614773   -------------- ------           0 
  614773   Xorg             writev                  109 
  614773   Xorg      read             368 
  701854   -------------- ------           0 
  701854   fvwm2      write              25 

continues
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so1stbyte.d

Connection latency and first-byte latency can identify different characteristics of net-
work connections. Connection latency was observed earlier with the soconnect.d
script; first-byte latency is the time from when a connection is established to when
the first data byte is read. This time includes service initialization and packet
round-trip time. 

Script

This script matches the first-byte event on line 37, which checks that the return
value of the read() or recv() syscall is greater than zero (arg0 > 0).

  701854   fvwm2      read              40 
  701860   -------------- ------           0 
  701860   FvwmIconMan  write            5 
  701861   -------------- ------           0 
  701861   FvwmPager   write             2 
  701865   -------------- ------           0 
  701865   FvwmPager   write             6 
  701865   FvwmPager    read             10 
  701876   -------------- ------           0 
  701876   gnome-terminal read                     60 
  701876   gnome-terminal write           62 
  785004   -------------- ------           0 
  785004   xclock     write             12 
  864116   -------------- ------           0 
  864116   ssh      write              1 
  864116   ssh      read              5 
  942634   -------------- ------           0 
  942634   sshd      read              1 
  942634   sshd      write              8 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8          printf("  %6s %-16s %6s  %14s %14s  %8s\n", "PID", "PROCESS", "PORT", 
9  "CONNECT(us)", "1stBYTE(us)", "BYTES"); 
10  } 
11
12  syscall::connect*:entry
13  { 
14 this->s = (struct sockaddr_in *)copyin(arg1, sizeof (struct sockaddr)); 
15          self->port = (this->s->sin_port & 0xFF00) >> 8; 
16          self->port |= (this->s->sin_port & 0xFF) << 8; 
17   self->start = timestamp; 
18   self->connected = 0; 
19  } 
20
21  syscall::connect*:return
22  { 
23          self->connection = (timestamp - self->start) / 1000; 
24    self->start = 0; 
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Examples

so1stbyte.d examples are presented in this section.

Loading a Web Site. On a Solaris workstation, the Web site www.solarisinternals
.com was loaded in the Firefox Web browser. The so1stbyte.d script showed vari-
ous first-byte latencies as components of the Web site loaded and DNS requests
handled by nscd (Name Service Cache Daemon): 

Experiments. The following experiments were performed to compare changes in
connect and first-byte latency. 

25  self->connected = timestamp; 
26  } 
27
28  syscall::read*:entry, syscall::recv*:entry 
39  /(fds[arg0].fi_fs == "sockfs" || fds[arg0].fi_name == "<socket>") && 
30      self->connected/ 
31  { 
32   self->socket = 1; 
33  } 
34
35  syscall::read*:return, syscall::recv*:return 
36  /self->socket && arg0 > 0/ 
37  { 
38          this->firstbyte = (timestamp - self->connected) / 1000; 
39          printf("  %6d %-16s %6d  %14d %14d  %8d\n", pid, execname, self->port, 
40   self->connection, this->firstbyte, arg0); 
41   self->connected = 0; 
42   self->socket = 0; 
43          self->port = 0; 
44  } 

Script so1stbyte.d

client# so1stbyte.d
     PID PROCESS       PORT     CONNECT(us)    1stBYTE(us)     BYTES 
  708951 nscd    53              54          44116        86 
  708951 nscd    53              54            578       102 
  708951 nscd    53             314           400       102 
  708951 nscd    53              38          28668       110 
  608440 firefox-bin     80             114         148059       637 
  708951 nscd    53              53          35862       136 
  708951 nscd    53              51          36211       254 
  608440 firefox-bin     80              98          40222       349 
  608440 firefox-bin     80              62          15248      2920 
  708951 nscd    53              54          59906        79 
  708951 nscd   53              52           732        92 
  708951 nscd   53              35           475        92 
  708951 nscd    53              27         102845       196 
  608440 firefox-bin     80 26         261675      3282 
  708951 nscd    53              53          44037       214 
  708951 nscd    53              52            439       214 
  608440 firefox-bin     80             102          71871      2705 
^C

www.solarisinternals.com
www.solarisinternals.com
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Here we compare ssh(1) vs. telnet(1).

The first three connections used ssh; the next three used telnet (see the PROCESS
column). Note the increase in first-byte latency for telnet. The extra latency is
likely because of telnet being serviced by inetd (inet daemon) spawning a new
process, in.telnetd, whereas the sshd (ssh daemon) is always running (this
chain of events can be DTraced directly on the remote host to confirm). Encryption
is unlikely to play a role in first-byte latency, because the first byte from ssh is the
unencrypted SSH version string. 

Here we compare Wi-Fi vs. Ethernet:

The first three connections were to a host over Wi-Fi; the second three were to
the same host but over Ethernet. The Wi-Fi connections have a dramatically
higher connection latency. 

Here we compare local vs. distant:

The first three ssh connections were to a local host in San Francisco. The last
three were to a host in Australia. Notice both connect and first-byte latencies
exceed 170 ms. This is the round-trip time to the remote host (measured using the
ping command).

client# so1stbyte.d
     PID PROCESS       PORT     CONNECT(us)    1stBYTE(us)     BYTES 
  712248 ssh    22             327         21259         1 
  712265 ssh    22             291         18631         1 
  712284 ssh    22             644         23384         1 
  713200 telnet        23            2103         135989         3 
  713249 telnet        23             339          89227         3 
  713278 telnet        23             345          97422         3 

client# so1stbyte.d
     PID PROCESS       PORT     CONNECT(us)    1stBYTE(us)     BYTES 
  716019 ssh     22          154559        20099         1 
  716034 ssh     22          385660        17957         1 
  716053 ssh     22          321607        17915         1 
  717879 ssh    22             527         19878         1 
  717896 ssh    22             633         18343         1 
  717913 ssh    22             658         68770         1 

client# so1stbyte.d
     PID PROCESS       PORT     CONNECT(us)    1stBYTE(us)     BYTES 
  721282 ssh    22             408         16345         1 
  721299 ssh    22             406         32970         1 
  721314 ssh    22             300         26488         1 
  721385 ssh      22          172992        175863         1 
  721402 ssh      22          174349        176329         1 
  721419 ssh      22          173050        176192         1 
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sotop.d

Socket top12 shows socket IOPS and throughput by process, along with CPU usage,
refreshing the screen every second. 

Script

12. top(1) is a popular process usage tool that was written by William LeFebvre. 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option destructive 
5
6   syscall::read*:entry, syscall::recv*:entry 
7   /fds[arg0].fi_fs == "sockfs" || fds[arg0].fi_name == "<socket>"/ 
8   { 
9          self->read = 1; 
10  } 
11
12  syscall::read*:return, syscall::recv*:return 
13  /self->read/ 
14  { 
15          this->size = (int)arg0 > 0 ? arg0 : 0; 
16  @rc[execname, pid] = count(); 
17 @rb[execname, pid] = sum(this->size); 
18          self->read = 0; 
19  } 
20
21  syscall::write*:entry, syscall::send*:entry 
22  /fds[arg0].fi_fs == "sockfs" || fds[arg0].fi_name == "<socket>"/ 
23  { 
24          /* this under-counts writev() size (assumes iov_len is 1) */ 
25          this->size = arg2; 
26  @wc[execname, pid] = count(); 
27 @wb[execname, pid] = sum(this->size); 
28  } 
29
30  profile:::profile-100hz
31  { 
32          /* will sum %CPUs on multi-core systems */ 
33 @cpu[execname, pid] = count(); 
34  } 
35
36  profile:::tick-1sec 
37  { 
38          normalize(@rb, 1024); normalize(@wb, 1024); 
39    system("clear"); 
40          printf("  %-16s %-8s %8s %8s %10s %10s %8s\n", "PROCESS", "PID", 
41              "READS", "WRITES", "READ_KB", "WRITE_KB", "CPU"); 
42          setopt("aggsortpos", "4"); setopt("aggsortrev", "4"); 
43          printa(" %-16s %-8d %@8d %@8d %@10d %@10d %@8d\n", 
44   @rc, @wc, @rb, @wb, @cpu); 
45          trunc(@rc); trunc(@rb); trunc(@wc); trunc(@wb); trunc(@cpu); 
46  } 

Script sotop.d
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Note that on line 42 we reverse sort the output by the CPU column. CPU shows
the number of times the application was on a CPU, sampled at 100 Hertz by the
profile-100hz probe. On multi-CPU systems with the application running on
multiple CPUs concurrently, that count may be greater than 100 during a single
second. This count could be converted into a percent CPU column (%CPU) if desired,
by using an additional normalize() function on line 38 to divide @cpu by the
online CPU count.13

The screen is cleared by calling system("clear"), which requires using the
destructive option, set on line 4.

Apart from utility, this script demonstrates a different style of formatting sta-
tus output (top(1)-like), which can be reused for other D scripts.

Example

While sotop.d was running, the ttcp tool was used to receive network traffic.
In the previous sample, ttcp was reading at 9.6MB/sec.

The top process, named sched, is the kernel (kernel_task on Mac OS X) and
is likely to be the idle thread. The previous output shows a system that would be
close to 51 percent idle.

13. The number of currently online CPUs should be provided as a stable built-in integer vari-
able to DTrace for use for times like this. Until that exists, there are a few other ways to
include this in a D script, including hard-coding it; passing it at the command line and using
the $1 macro variable; fetching it from a kernel variable (given that is an unstable inter-
face), such as `ncpus_online on Solaris.

solaris# sotop.d
  PROCESS          PID        READS   WRITES  READ_KB   WRITE_KB      CPU 
  sched            0         0        0     0          0       51 
  ttcp  158138      10462    0       9615       0       14 
  gnome-terminal   701876         61       52     2         18       10 
  Xorg 614773        422  197         51       0        8 
  firefox-bin      608440          0        0     0          0        8 
  operapluginwrapp 835656        132       95   3          1        4 
  java             958443          0    0          0        0        1 
  fsflush          3       0        0   0          0        1 
  elinks           955002          0        0     0          0        1 
  fvwm2 701854        107   68          2       17        0 
  FvwmPager        701865         23       15    0          1        0 
  soffice.bin      835606          2        2     0          0        0 
  opera            835641          2    0          0        0        0 
  FvwmIconMan      701860          0       16     0          2        0 
  FvwmPager        701861          0    6          0        0        0 
  xclock           785004          0        1     0          8        0 
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soerror.d

Errors are often interesting to monitor because they can reveal misconfigurations
or software bugs. This script traces errors reported by socket-based system calls,
by examining the return value for the system call. The output of this script simply
means that a system call returned an error. The application may have processed
this error correctly, and in some cases the error may have been expected and is
normal.

Script

The error codes and short descriptions have been sourced from /usr/include/
sys/errno.h. Only some of the errors are included in the following translation
table; more can be added if desired: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8 /* Add translations as desired from /usr/include/sys/errno.h */ 
9           err[0]          = "Success"; 
10          err[EACCES]       = "Permission denied"; 
11          err[ECONNABORTED] = "Connection abort"; 
12          err[ECONNREFUSED] = "Connection refused"; 
13          err[ECONNRESET]   = "Connection reset"; 
14          err[EHOSTDOWN] = "Host down"; 
15          err[EHOSTUNREACH] = "No route to host"; 
16 err[EINPROGRESS]  = "In progress"; 
17          err[EINTR]       = "Interrupted syscall"; 
18          err[EINVAL]       = "Invalid argument"; 
19          err[EIO]         = "I/O error"; 
20          err[ENETDOWN]     = "Network is down"; 
21          err[ENETUNREACH]  = "Network unreachable"; 
22          err[EPROTO]       = "Protocol error"; 
23          err[ETIMEDOUT] = "Timed out"; 
24 err[EWOULDBLOCK]  = "Would block"; 
25
26          printf("  %-6s %-16s %-10s %-4s %4s %4s %s\n", "PID", "PROCESS", 
27  "SYSCALL", "FD", "RVAL", "ERR", "RESULT"); 
28  } 
29
30  syscall::connect*:entry, syscall::accept*:entry, 
31  syscall::getsockopt:entry, syscall::setsockopt:entry
32  { 
33 self->fd = arg0; self->ok = 1; 
34  } 
35
36  syscall::read*:entry, syscall::write*:entry, 
37  syscall::send*:entry, syscall::recv*:entry 
38  /fds[arg0].fi_fs == "sockfs" || fds[arg0].fi_name == "<socket>"/ 
39  { 
40 self->fd = arg0; self->ok = 1; 
41  } 
42

continues



ptg

466 Chapter 6 � Network Lower-Level Protocols

All socket-related system calls, including read/write/send/recv to socket file
descriptions, are traced and checked for errors.

Lines 30 to 46 checks various system calls that operate on file descriptors to see
whether they are for sockets, setting a self->ok thread-local variable if they are.
That is then checked on line 52, along with the built-in errno variable that con-
tains the error code for the last system call. EAGAIN codes are skipped, because
they can be a normal part of socket operation, not an error type we are interested in.

Lines 59 to 66 checks all socket system calls by matching their name as so* and
checks that errno is set.

Example

Various socket errors are visible in the following output from soerror.d:

43  syscall::so*:entry 
44  { 
45          self->ok = 1; 
46  } 
47
48  syscall::connect*:return, syscall::accept*:return,
49  syscall::read*:return, syscall::write*:return, 
50  syscall::send*:return, syscall::recv*:return, 
51  syscall::getsockopt:return, syscall::setsockopt:return
52  /errno != 0 && errno != EAGAIN && self->ok/ 
53  { 
54 this->errstr = err[errno] != NULL ? err[errno] : lltostr(errno); 
55          printf("  %-6d %-16s %-10s %-4d %4d %4d  %s\n", pid, execname, probefunc, 
56  self->fd, arg0, errno, this->errstr); 
57  } 
58
59  syscall::so*:return 
60  /errno != 0/ 
61  { 
62          /* these syscalls (such as sockconfig) don't operate on socket fds */ 
63 this->errstr = err[errno] != NULL ? err[errno] : lltostr(errno); 
64          printf("  %-6d %-16s %-10s %-4s %4d %4d  %s\n", pid, execname, probefunc, 
65   "-", arg0, errno, this->errstr); 
66  } 
67
68  syscall::connect*:return, syscall::accept*:return,
69  syscall::read*:return, syscall::write*:return, 
70  syscall::send*:return, syscall::recv*:return, 
71  syscall::getsockopt:return, syscall::setsockopt:return,
72  syscall::so*:return 
73  { 
74          self->fd = 0; self->ok = 0; 
75  } 

Script soerror.d

solaris# soerror.d
  PID    PROCESS SYSCALL    FD  RVAL  ERR  RESULT 
  810779 telnet    connect    4   -1  146 Connection refused 
  808747 ssh      connect    4    -1    4  Interrupted syscall 
  608440 firefox-bin   connect    10    -1  150  In progress 
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Reference 

To understand these errors in more detail, consult the /usr/include/sys/
errno.h file for the error number to code translations and the system call man
page for the long descriptions: connect(3SOCKET), accept(3SOCKET), and so
on. errno.h has the following format: 

Table 6-12 lists some errors with their full descriptions.

  608440 firefox-bin   connect    38    -1  150  In progress 
  608440 firefox-bin   connect    10    -1  150  In progress 
  608440 firefox-bin   connect    10    -1  150  In progress 
  608440 firefox-bin   connect    10    -1  150  In progress 
  608440 firefox-bin   connect    10    -1  150  In progress 
  608440 firefox-bin   connect    10    -1  150  In progress 
  808889 ttcp    read       0    -1    4  Interrupted syscall 
  809183 ttcp     accept     3   -1    4  Interrupted syscall 
  809206 ttcp     accept     3   -1    4  Interrupted syscall 
[...]

/usr/include/sys/errno.h:
[...]
#define ENETDOWN     127 /* Network is down */ 
#define ENETUNREACH  128     /* Network is unreachable */ 
#define ENETRESET  129     /* Network dropped connection because */ 

             /* of reset */ 
#define ECONNABORTED 130     /* Software caused connection abort */ 
#define ECONNRESET  131     /* Connection reset by peer */ 
#define ENOBUFS         132    /* No buffer space available */ 
#define EISCONN   133     /* Socket is already connected */ 
#define ENOTCONN        134    /* Socket is not connected */ 
[...]

Table 6-12 Socket System Call Error Descriptions

System Call Error Code Description

connect() ECONNREFUSED The  attempt  to  connect was  forcefully rejected.  
The  calling  program should close(2) the socket 
descriptor and issue another socket(3SOCKET) call 
to obtain a new descriptor before attempting another 
connect() call. 

connect() EINPROGRESS The socket is nonblocking, and the connection cannot 
be completed immediately. You can use select(3C)
to complete the connection by selecting the socket for 
writing.

continues
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Refer to the man pages for the full list of error codes and descriptions.

connect() EINTR The connection attempt was  interrupted before any 
data arrived by the delivery of a signal. The connec-
tion, however, will be established asynchronously. 

connect() ENETUNREACH The network is not reachable from this host. 

connect() EHOSTUNREACH The remote host is not reachable from this host. 

connect() ETIMEDOUT The connection establishment timed out without 
establishing a connection. 

accept() ECONNABORTED The remote side aborted the connection before the 
accept() operation completed. 

accept() EINTR The accept() attempt was interrupted by the deliv-
ery of a signal. 

accept() EPROTO A protocol error has occurred; for example, the 
STREAMS protocol stack has not been initialized or the 
connection has already been released. 

accept() EWOULDBLOCK The socket is marked as nonblocking, and no connec-
tions are present to be accepted. 

read() EINTR A signal was caught during the read operation, and no 
data was transferred. 

write() EINTR A signal was caught during the write operation, and 
no data was transferred. 

send() EINTR The operation was interrupted by delivery of a signal 
before any data could be buffered to be sent. 

send() EMSGSIZE The socket requires that the message be sent atomi-
cally and the message is too long. 

send() EWOULDBLOCK The socket is marked nonblocking, and the requested 
operation would block. EWOULDBLOCK is also 
returned when sufficient memory is not immediately 
available to allocate a suitable buffer. In such a case, 
the operation can be retried later. 

recv() EINTR The operation is interrupted by the delivery of a signal 
before any data is available to be received. 

recv() ENOSR Insufficient STREAMS resources are available for the 
operation to complete. 

recv() EWOULDBLOCK The socket is marked nonblocking, and the requested 
operation would block. 

Table 6-12 Socket System Call Error Descriptions (Continued)

System Call Error Code Description
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IP Scripts

The Internet Protocol is the routing protocol in the TCP/IP stack responsible for
addressing and delivery of packets. Versions include IPv4 and IPv6. See Figure 6-4,
which illustrates where the IP layer resides relative to the network stack.

The IP layer is an ideal location for writing scripts with broad observability,
because most common packets are processed by IP. The following are providers
that can trace IP:

ip: The stable IP provider (if available), for tracing send and receive events

mib: For high-level statistics

fbt: For tracing all kernel IP functions and arguments

If available, the stable ip provider can be used to write packet-oriented scripts.
It currently provides probes for send, receive, and packet drop events. Listing the
ip probes on Solaris Nevada, circa June 2010: 

solaris# dtrace -ln ip::: 
   ID   PROVIDER    MODULE               FUNCTION NAME
14352         ip           ip   ire_send_local_v6 receive
14353         ip           ip  ill_input_short_v6 receive
14354         ip           ip  ill_input_short_v4 receive
14355         ip            ip        ip_output_process_local receive
14356         ip           ip   ire_send_local_v4 receive
14381         ip          ip    ip_drop_output drop-out
14382         ip         ip    ip_drop_input drop-in
14435         ip           ip    ire_send_local_v6 send
14436         ip            ip ip_output_process_local send
14437         ip           ip    ire_send_local_v4 send
14438         ip        ip                 ip_xmit send

Figure 6-4 IP location in the Solaris network stack 
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To provide ip:::send and ip:::receive probes, nine different places in the
kernel had to be traced (see the FUNCTION column). Without the ip provider, these
nine places could be traced using the fbt provider; however, this would make for a
fragile script because these functions can change between kernel versions. To illus-
trate this, consider the same listing of the ip provider on Solaris Nevada, circa
December 2009:

This version of Solaris Nevada needed to instrument 19 different locations for
just the ip send and receive probes, and these function locations are very differ-
ent.14 Since the ip provider is the same, scripts based on it work on both versions.
Scripts based on the fbt provider require substantial changes to keep functioning
on different kernel versions. The ipfbtsnoop.d script is provided later as a dem-
onstration of fbt tracing of IP.

The mib provider can be used for writing high-level statistics tools, which is
demonstrated with the ipstat.d script.

The scripts in this section will demonstrate the mib, ip, and fbt providers.

fbt provider

Using the fbt provider is difficult, because it exposes the complexity and kernel
implementation of the network stack, which may change from release to release.
The TCP/IP stack source code is typically only the domain of kernel engineers or
experienced users with knowledge of the kernel and the C programming language.

solaris# dtrace -ln ip::: 
   ID   PROVIDER   MODULE              FUNCTION NAME 
30941         ip          ip   ip_wput_local_v6 receive 
30942         ip         ip     ip_rput_v6 receive 
30943         ip         ip    ip_wput_local receive 
30944         ip        ip      ip_input receive 
30961         ip          ip    ip_inject_impl send 
30962         ip        ip      udp_xmit send 
30963         ip          ip   tcp_lsosend_data send 
30964         ip         ip    tcp_multisend send 
30965         ip         ip    tcp_send_data send 
30966         ip    ip      ip_multicast_loopback send 
30967         ip         ip     ip_xmit_v6 send 
30968         ip          ip    ip_wput_ire_v6 send 
30969         ip         ip     ip_xmit_v4 send 
30970         ip           ip   ip_wput_ipsec_out send 
30971         ip           ip  ip_wput_ipsec_out_v6 send 
30972         ip         ip     ip_wput_frag send 
30973         ip          ip   ip_wput_frag_mdt send 
30974         ip         ip     ip_wput_ire send 
30975         ip          ip    ip_fast_forward send

14. The reason is Erik Nordmark’s IP Datapath Refactoring project (PSARC 2009/331), which
reduced the number of ip functions in the Solaris TCP/IP stack, making the code much eas-
ier to follow and requiring fewer trace points for the ip provider.
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The fbt-based scripts in this section were based on OpenSolaris circa December
2009 and may not work on other OSs and releases without changes. Even if these
scripts no longer execute, they can still be treated as examples of D programming
and for the sort of data that DTrace can make available.

Solaris

To get an idea of the functions called, we will count IP probes that fire when send-
ing 10,000 1KB messages on a recent version of Solaris Nevada, over TCP. The sta-
ble IP provider probe ip:::send will also be traced for comparison:

The ip:::send probe confirms that more than 10,000 packets were sent, but it
isn’t clear which function is sending the packets: We do not see an ip_send func-
tion that was called more than 10,000 times, for example. There is ip_cksum()
and ip_ocsum(); however, they are for calculating checksums, not performing the
send.

solaris# dtrace -n 'fbt::ip_*:entry { @[probefunc] = count(); }
 ip:::send { @["ip:::send"] = count(); }'
dtrace: description 'fbt::ip_*:entry ' matched 536 probes
^C

  ip_accept_tcp                     1 
  ip_bind_connected_v4                     1 
  ip_bind_get_ire_v4                      1 
  ip_bind_laddr_v4                     1 
  ip_copymsg                      1 
  ip_create_helper_stream                    1 
  ip_free_helper_stream                    1 
  ip_ire_advise                     1 
  ip_massage_options                      1 
  ip_proto_bind_connected_v4                    1 
  ip_proto_bind_laddr_v4                     1 
  ip_squeue_get                     1 
  ip_squeue_random                     1 
  ip_wput_attach_llhdr                     1 
  ip_wput_ioctl                     1 
  ip_wput_ire                    1 
  ip_wput_local                     1 
  ip_xmit_v4                      1 
  ip_get_numlifs                     2 
  ip_ioctl_finish                     2 
  ip_process_ioctl                     2 
  ip_quiesce_conn                     2 
  ip_rput_process_broadcast                    2 
  ip_sioctl_get_lifnum                     2 
  ip_sioctl_copyin_setup                     3 
  ip_sioctl_lookup                     7 
  ip_wput_nondata                     7 
  ip_output                       8 
  ip_output_options                    8 
  ip_input                   1801 
  ip_tcp_input                  5020 
  ip:::send                10025 
  ip_cksum                  10025 
  ip_ocsum                  10025 
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Trying the lower layers of GLDv3 (DLD, DLS, and MAC) yields the following:

Based on the counts and function names, this has identified two likely func-
tions for the sending of ip packets: mac_tx() and str_mdata_fastpath_put().

A little more investigation with DTrace shows the relationship between these
functions:

solaris# dtrace -n 'fbt:dld::entry,fbt:dls::entry,fbt:mac::entry
{ @[probefunc] = count(); }'
dtrace: description 'fbt:dld::entry,fbt:dls::entry,fbt:mac::entry ' matched 303
probes
^C

  mac_soft_ring_intr_disable                    3 
  mac_soft_ring_intr_enable                    3 
  mac_soft_ring_poll                      3 
  dld_str_rx_unitdata                    6 
  str_unitdata_ind                     6 
  mac_hwring_disable_intr                   10 
  mac_hwring_enable_intr                    10 
  mac_rx_ring                   10 
  dls_accept                     15 
  dls_accept_common                   15 
  i_dls_head_hold                    15 
  i_dls_head_rele                    15 
  i_dls_link_rx                     15 
  i_dls_link_subchain                   15 
  mac_rx_deliver                    15 
  dls_devnet_rele_tmp                   16 
  dls_devnet_stat_update                    16 
  dls_stat_update                    16 
  mac_header_info                    21 
  mac_vlan_header_info                    21 
  dld_wput                   23 
  dls_header                     23 
  mac_client_vid                    23 
  mac_flow_get_desc                   23 
  mac_header                     23 
  mac_sdu_get                   23 
  proto_unitdata_req                     23 
  mac_stat_default                    24 
  mac_stat_get                    320 
  mac_rx_soft_ring_drain                    467 
  mac_soft_ring_worker_wakeup                  1972 
  mac_rx                   3439 
  mac_rx_common                    3439 
  mac_rx_soft_ring_process                  3439 
  mac_rx_srs_drain                   3439 
  mac_rx_srs_process                    3439 
  mac_rx_srs_proto_fanout                   3439 
  str_mdata_fastpath_put                  10024 
  mac_tx                  10047 

solaris# dtrace -n 'fbt::mac_tx:entry { @[probefunc, stack()] = count(); }'
[...]
  mac_tx

   dld`str_mdata_fastpath_put+0xa4
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So, str_mdata_fastpath_put() calls mac_tx(). This also shows that tcp_
send_data() calls the DLD layer directly, without calling ip functions. Shortcuts
like this are not uncommon in the TCP/IP code to improve performance. It does
make DTracing the functions a little confusing, as we saw when we were search-
ing at the ip layer for the send function.

ip Provider Development

As we’ve just seen, the IP layer is skipped entirely on Solaris for this particular code path. If
that’s the case, where does the ip:::send probe fire from? A stack backtrace will show:

It is firing from TCP, in the tcp_send() function. This led to consternation among kernel
engineers during development: Should an IP probe fire at all, if the IP layer was skipped?
Shouldn’t we expose what really happens? Or, is the skipping of IP a Solaris kernel imple-
mentation detail, which is subject to change, and, which should be hidden from custom-
ers in a stable ip provider?

The implementation-detail argument won, and the ip:::send probe always fires, even
if, to be technically accurate, the IP layer wasn’t involved because of fastpath. This makes
using the ip provider easier for end users (no need to worry about kernel implementation;
read the RFCs instead) and allows the ip provider to be implemented on non-Solaris ker-
nels such as Mac OS X and FreeBSD in the future.

    ip`tcp_send_data+0x94e 
    ip`tcp_send+0xb69 
    ip`tcp_wput_data+0x72c 
    ip`tcp_output+0x830 
    ip`squeue_enter+0x330 
    ip`tcp_sendmsg+0xfd 
    sockfs`so_sendmsg+0x1c7
   sockfs`socket_sendmsg+0x61
   sockfs`socket_vop_write+0x63
    genunix`fop_write+0xa4 
    genunix`write+0x2e2 
    genunix`write32+0x22 
   unix`sys_syscall32+0x101 

             5506

# dtrace -n 'ip:::send { @["ip:::send", stack(3)] = count(); }' 
dtrace: description 'ip:::send ' matched 15 probes 
[...]
  ip:::send

    ip`tcp_send+0xb69 
    ip`tcp_wput_data+0x72c 
    ip`tcp_rput_data+0x3342

9988
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Another way to learn the fbt probes is to map known mib events to the fbt func-
tions, as demonstrated in the “mib Provider” section. And of course, if the source is
available, it provides the best reference for the fbt probes and arguments.

Mac OS X

Here is the same 10,000 send packet experiment on Mac OS X:

ipstat.d

The ipstat.d script is covered in this section.

Script

This script retrieves IP statistics from five mib probes and sums their value in five
separate aggregations. They are later printed on the same line. The mib statistics
were chosen because they looked interesting and useful; this can be customized by
adding more of the available mib statistics as desired.

solaris# dtrace -n 'fbt::ip_*:entry { @[probefunc] = count(); }'
dtrace: description 'fbt::ip_*:entry ' matched 23 probes
^C

  ip_savecontrol                     1
  ip_freemoptions                     6
  ip_ctloutput                      7
  ip_slowtimo                   30
  ip_input                   1102
  ip_output_list                    1160
  ip_randomid                   7132

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7  LINES = 20; line = 0; 
8   } 
9
10  profile:::tick-1sec 
11  /--line <= 0/
12  { 
13          printf("  IP IF:  %12s %12s %12s %12s %12s\n", "out(bytes)", 
14              "outDiscards", "in(bytes)", "inDiscards", "inErrors"); 
15   line = LINES; 
16  } 
17
18  mib:::ipIfStatsHCInOctets       { @in = sum(arg0);      } 
19  mib:::ipIfStatsHCOutOctets      { @out = sum(arg0);     } 
20  mib:::ipIfStatsInDiscards       { @inDis = sum(arg0);   } 
21  mib:::ipIfStatsOutDiscards      { @outDis = sum(arg0);  } 
22  mib:::ipIfStatsIn*Errors        { @inErr = sum(arg0);   } 
23
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A variable called line is used to track when to reprint the header. This hap-
pens every 20 lines; without it, the screen could fill with numbers and become diffi-
cult to follow. 

Line 29 uses a multiple aggregation printa() to generate the output. If none of
those aggregations contained data at this point, no output would be generated
because printa() skips printing when all of its aggregations arguments are
empty. Once some IP events have occurred, the aggregations are cleared on line
28—and not truncated—so that they still contain data (albeit zero), which ensures
that printa() will print something out (and then continue to do so every second),
even if that is entirely zeros.

Example

ipstat.d was executed on a system that was receiving a large TCP transfer: 

The outDiscards error was unexpected and prompts further investigation
with DTrace (providing the error is repeatable), such as observing the kernel stack
trace when that probe fired.

ipio.d

Trace IPv4 and IPv6 send and receive events using the ip provider (if available).
On Solaris systems with the ip provider, this script is available in /usr/demo/dtrace.

24  profile:::tick-1sec 
25  { 
26          printa("       %@12d %@12d %@12d %@12d %@12d\n", 
27  @out, @outDis, @in, @inDis, @inErr); 
28 clear(@out); clear(@outDis); clear(@in); clear(@inDis); clear(@inErr);
29  } 

Script ipstat.d

solaris# ipstat.d
  IP IF:    out(bytes)  outDiscards    in(bytes)  inDiscards     inErrors 
                 41880          0 12153018 0            0 
                 40514          0 11676695 0            0 
                 36840          0 10670889 0            0 
                 46720          0 11853477 0            0 
                 45676          0 10768995 0            0 
                 46068          0  9895095  0            0 
                 63920          0 11829585 0            0 
                 46560          0  7968817  0            0 
                 79720          0 11850263 0            0 
                227556         1 9475738 0            0 
                 80000          0 11901382 0            0 
[...]
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Script

This is a simple script to print out data from the ip provider and could be the start-
ing point for more sophisticated scripts. 

The CPU ID is printed as a clue that DTrace may shuffle output on multi-CPU
systems. If this becomes a problem, print a time stamp and post-process, sorting on
the time value.

The delta time calculation (for this->delta) is simple: the time since the last
event, which is kept in the last scalar global variable.

Example

This example output shows tracing packets as they pass in and out of tunnels: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           printf(" %3s %10s %15s    %15s %8s %6s\n", "CPU", "DELTA(us)", 
9   "SOURCE", "DEST", "INT", "BYTES"); 
10   last = timestamp; 
11  } 
12
13  ip:::send 
14  { 
15          this->delta = (timestamp - last) / 1000; 
16 printf(" %3d %10d %15s -> %15s %8s %6d\n", cpu, this->delta, 
17 args[2]->ip_saddr, args[2]->ip_daddr, args[3]->if_name,
18      args[2]->ip_plength); 
19   last = timestamp; 
20  } 
21
22  ip:::receive 
23  { 
24          this->delta = (timestamp - last) / 1000; 
25 printf(" %3d %10d %15s <- %15s %8s %6d\n", cpu, this->delta, 
26 args[2]->ip_daddr, args[2]->ip_saddr, args[3]->if_name,
27      args[2]->ip_plength); 
28   last = timestamp; 
29  } 

Script ipio.d

# ipio.d
 CPU  DELTA(us)  SOURCE    DEST      INT  BYTES 
   1     598913   10.1.100.123 ->   192.168.10.75  ip.tun0     68 
   1         73   192.168.1.108 ->     192.168.5.1     nge0    140 
   1      18325  192.168.1.108 <-     192.168.5.1     nge0    140 
   1         69    10.1.100.123 <-   192.168.10.75  ip.tun0     68 
   0     102921   10.1.100.123 ->   192.168.10.75  ip.tun0     20 
   0         79   192.168.1.108 ->     192.168.5.1     nge0     92 
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Note that the delta time between output lines is printed. These may not neces-
sarily be related. They could be for different sessions; they may also become diffi-
cult to read if DTrace shuffles the output (it’s unclear what the 102921 us time
refers to). Even if they look likely to be related (lines 2 and 3, with a delta of 18325
us), they could be for two packets between the same hosts that happened to be in
flight, not necessarily a round-trip time (RTT) measurement. To measure RTT,
examine sequence numbers at the TCP layer. 

ipproto.d

The ipproto.d script summarizes IP traffic by the next-level protocol and packet
count and uses the ip provider. This is a simple but useful high-level view of IP
activity; anything suspicious can be examined more deeply with additional DTrace.

Script

This script is very simple, aggregating events and then printing them. This is the
intent of stable providers: to allow scripting to be easy and concise.

On line 13 the IP version was checked to determine where to read the next-level
protocol from (IPv4 or IPv6 header). 

Example

This example shows a variety of protocols and address. The hosts 192.168.1.108
and 192.168.1.109 were busy transferring packets in a TCP session: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  ip:::send, 
11  ip:::receive 
12  { 
13          this->protostr = args[2]->ip_ver == 4 ? 
14  args[4]->ipv4_protostr : args[5]->ipv6_nextstr; 
15 @num[args[2]->ip_saddr, args[2]->ip_daddr, this->protostr] = count(); 
16  } 
17
18  dtrace:::END 
19  { 
20          printf("   %-28s %-28s %6s %8s\n", "SADDR", "DADDR", "PROTO", "COUNT"); 
21          printa("   %-28s %-28s %6s %@8d\n", @num); 
22  } 

Script ipproto.d
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ipfbtsnoop.d

The previous examples used stable providers such as ip, which may not be avail-
able on your operating system. To demonstrate what is possible without these sta-
ble providers, the ipfbtsnoop.d script was written for Solaris using the unstable
fbt provider. It also avoids using DTrace convenience functions, which may also not
be available either, such as inet_ntoa() and ntohs().

This script is a demonstration of fbt tracing of IP, not as a script that is expected
to work anywhere. Since it hooks into the IP implementation, it is extremely brit-
tle and is expected to not work on most Solaris versions. (Depending on the extent
of kernel differences, some Solaris versions may only require minor updates for
this script to work.)

Script

The -C option is used with DTrace to run the preprocessor. This allows macros to
be defined that can be reused: Here IPV4_ADDR_TO_STR() and BSWAP_16() were
defined on the assumption that the DTrace functions inet_ntoa() and ntohs()
may not be available (they weren’t on very first releases of DTrace on Solaris15),
and, that this is a little-endian system16 (otherwise, ntohs() / BSWAP_16() are not
needed). This is just a demonstration of one way to achieve this; possible improve-
ments include checking endian-ness programatically with the preprocessor to check
whether using BSWAP_16() is necessary (as demonstrated in the tcpsnoop_snv.d

solaris# ipproto.d
Tracing... Hit Ctrl-C to end. 
^C
SADDR      DADDR            PROTO    COUNT 
192.168.1.108   192.168.155.32            UDP        1 
192.168.1.108   192.168.17.55            UDP        1 
192.168.1.108   192.168.228.54            UDP        1 
192.168.1.108      192.168.1.5   UDP        1 
192.168.1.108   192.168.2.27       ICMP        1 
192.168.1.200   192.168.3.255            UDP        1 
192.168.1.5        192.168.1.108   UDP        1 
192.168.2.27    192.168.1.108       ICMP        1 
fe80::214:4fff:fe3b:76c8    ff02::1      ICMPV6        1 
fe80::2e0:81ff:fe5e:8308   fe80::214:4fff:fe3b:76c8   ICMPV6        1 
fe80::2e0:81ff:fe5e:8308    ff02::1:2       UDP        1 
192.168.1.185   192.168.1.255            UDP        2 
192.168.1.211   192.168.1.255            UDP        3 
192.168.1.109   192.168.1.108            TCP      428 
192.168.1.108   192.168.1.109            TCP      789 

15. ntohs() was added in CR 6282214, “Byte Ordering Functions in libdtrace.”; inet_ntoa()
was added in CR 6558517, “need DTrace versions of IP address to string functions, like inet_
ntop().”

16. x86 systems are little-endian; SPARC is big-endian.
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script) and, using a #include statement to include sys/byteorder.h, to avoid
needing to define BSWAP_16() in the script.

This script only traces IPv4 traffic. It could be enhanced to handle IPv6 as well.

1   #!/usr/sbin/dtrace -Cs 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   #define ETHERTYPE_IP            (0x0800)        /* IP protocol */ 
7   #define ETHERTYPE_IPV6          (0x86dd)        /* IPv6 */ 
8
9   #define IPPROTO_IP              0 
10  #define IPPROTO_ICMP           1 
11  #define IPPROTO_IGMP           2 
12  #define IPPROTO_TCP             6 
13  #define IPPROTO_UDP             17 
14
15  #define DL_ETHER                0x4
16
17  #define IPH_HDR_VERSION(ipha) \
18          ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)
19
20  /* stringify an IPv4 address without inet*() being available */ 
21  #define IPV4_ADDR_TO_STR(string, addr)                          \
22          this->a = (uint8_t *)&addr;              \
23 this->addr1 = strjoin(lltostr(this->a[0] + 0ULL), strjoin(".",  \
24 strjoin(lltostr(this->a[1] + 0ULL), ".")));            \
25 this->addr2 = strjoin(lltostr(this->a[2] + 0ULL), strjoin(".",  \
26  lltostr(this->a[3] + 0ULL)));                \
27 string = strjoin(this->addr1, this->addr2); 
28
29  /* convert net to host byte order for little-endian systems  */ 
30  #define BSWAP_16(host, net)               \
31          host = (net & 0xFF00) >> 8;               \
32 host |= (net & 0xFF) << 8; 
33
34  dtrace:::BEGIN 
35  { 
36 /* selected protocols; see /usr/include/netinet/in.h for full list */ 
37  ipproto[IPPROTO_IP] = "IP"; 
38 ipproto[IPPROTO_ICMP] = "ICMP"; 
39 ipproto[IPPROTO_IGMP] = "IGMP"; 
40  ipproto[IPPROTO_TCP] = "TCP"; 
41  ipproto[IPPROTO_UDP] = "UDP"; 
42
43 printf("%-15s %-8s %-8s %-15s   %-15s %5s %5s\n", "TIME(us)", 
44              "ONCPU", "INT", "SOURCE", "DEST", "BYTES", "PROTO"); 
45  }
46
47  fbt::ip_input:entry 
48  { 
49   this->mp = args[2]; 
50   this->ill = args[0]; 
51 this->ipha = (ipha_t *)this->mp->b_rptr;
52 this->name = stringof(this->ill->ill_name);
53          this->ok = 1; 
54  } 
55
56  /* rewrite for dls_tx() on older Solaris kernels */ 
57  fbt::mac_tx:entry 

continues
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Various constants are defined on lines 6 to 15 to highlight what is used in the
remainder of the script. These constants can be included from their respective
header files instead, making the script a little more robust (in case of changes to
those values).

Example

The ipfbtsnoop.d script was executed for a short period: 

58  {
59          this->mc = (mac_client_impl_t *)args[0]; 
60  }
61
62  /* filter out non-Ethernet calls */ 
63  fbt::mac_tx:entry 
64  /this->mc->mci_mip->mi_info.mi_nativemedia == DL_ETHER/
65  { 
66   this->mp = args[1]; 
67          this->eth = (struct ether_header *)this->mp->b_rptr; 
68 this->type = this->eth->ether_type;
69  } 
70
71  /* filter out non-IP calls */ 
72  fbt::mac_tx:entry 
73  /this->type == ETHERTYPE_IP || this->type == ETHERTYPE_IPV6/ 
74  { 
75          this->ipha = (ipha_t *)&this->mp->b_rptr[sizeof (struct ether_header)];
76  this->name = this->mc->mci_name; 
77          this->ok = 1; 
78  } 
79
80  fbt::ip_input:entry, fbt::mac_tx:entry 
81  /this->ok && IPH_HDR_VERSION(this->ipha) == 4/ 
82  { 
83          BSWAP_16(this->pktlen, this->ipha->ipha_length);
84          IPV4_ADDR_TO_STR(this->src, this->ipha->ipha_src);
85          IPV4_ADDR_TO_STR(this->dst, this->ipha->ipha_dst);
86
87          this->proto = ipproto[this->ipha->ipha_protocol] != NULL ? 
88    ipproto[this->ipha->ipha_protocol] : 
89    lltostr(this->ipha->ipha_protocol);
90
91          printf("%-15d %-8.8s %-8.8s %-15s > %-15s %5d %5s\n", 
92              timestamp / 1000, execname, this->name, this->src, this->dst, 
93    this->pktlen, this->proto); 
94  } 

Script ipfbtsnoop.d

solaris# ipfbtsnoop.d
TIME(us)        ONCPU   INT      SOURCE  DEST     BYTES PROTO 
75612897006     sched   nge0     192.168.1.109   > 192.168.2.145  40   TCP 
75612904644     sched    nge0     192.168.2.53    > 192.168.2.145      84  ICMP 
75612904726     sched    nge0     192.168.2.145   > 192.168.2.53      84  ICMP 
75612944405     sched   nge0     192.168.1.109   > 192.168.2.145  40   TCP 
75613054289     sched   nxge5    0.0.0.0   > 255.255.255.255   328   UDP 
75613054200     sched   nge0     0.0.0.0   > 255.255.255.255   328   UDP 
75613084667     sched   nge0     192.168.2.53    > 192.168.2.145  88   TCP 
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To trace inbound and outbound IP packets, the ip_input() and mac_tx()
functions were traced, which seems to work. However, it is likely that certain
packet types will not be traced using these two functions alone, based on the fol-
lowing observation from the stable ip provider:

To trace ip:::receive, DTrace has had to enable four instances of the
ip:::send probe. To show where they are placed, run this:

Our script traces ip_input(), but we missed ip_wput_local() and the IPv6
functions.

TCP Scripts

The Transmission Control Protocol (RFC 793) is a reliable transmission protocol
and part of the TCP/IP stack and is shown in Figure 6-5.

On both client and server, use DTrace to answer the following.

How many outbound connections were established? By client, port?

How many inbound connections were accepted? By client, port?

How long did TCP connections take?

How much data was sent? I/O size? By client, port?

What was the round trip time? Average? Maximum? By client/destination?

How long were connections established? What was the average throughput?

75613097038     sched    nge0     192.168.1.109   > 192.168.2.145      40   TCP 
75613054265     sched    nxge1    0.0.0.0    > 255.255.255.255   328   UDP 
75613084666     sched nxge1    192.168.100.4   > 192.168.100.50     88   TCP 
75613084779     sched nxge1    192.168.100.4   > 192.168.100.50     88   TCP 
75613144674     sched nxge1    192.168.100.4   > 192.168.100.50     40   TCP 
75613144421     sched    nge0     192.168.1.109   > 192.168.2.145      40   TCP 
75613144631     sched    nge0     192.168.2.53    > 192.168.2.145      40   TCP 
^C

# dtrace -n 'ip:::receive { @ = count(); }'
dtrace: description 'ip:::receive ' matched 4 probes
[...]

# dtrace -ln 'ip:::receive' 
   ID   PROVIDER    MODULE               FUNCTION NAME 
30941         ip          ip   ip_wput_local_v6 receive 
30942         ip         ip     ip_rput_v6 receive 
30943         ip         ip    ip_wput_local receive 
30944         ip        ip      ip_input receive 
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TCP scripts can be written using the tcp provider (if available) for TCP events
and/or the mib and syscall providers for an overall idea of TCP usage across the
system. To examine the internal operation of the TCP layer in the network stack,
the unstable fbt provider can be used, with the same caveats as fbt tracing of IP
(as discussed for ipfbtsnoop.d).

Figure 6-5 shows a typical TCP session between a client and a server, along with
questions to consider, such as counting outbound connections. It should be noted
that the client-server and outbound-inbound terminology refer to a common model
for using TCP, but it’s not the only model. TCP connections can be local, for exam-
ple, over the loopback interface, so the terms inbound and outbound lose meaning.
The terms client and server may also be meaningless, depending on the type of
TCP connection. The terms used by TCP specification (RFC793) are active and pas-
sive, which typically refer to the client and server ends, respectively.

The TCP provider uses the probe name connect-established to refer to a
TCP active open (for example, a client connects to a server) and the probe name
accept-established to refer to a TCP passive open (for example, a server
accepts a client connection).

The scripts shown in this section demonstrate high-level TCP observability and
can be the starting point for more complex TCP scripts, such as scripts to examine
TCP congestion, window size changes, and so on.

tcp Provider

Listing probes from the tcp provider (Solaris Nevada, circa June 2010) yields the
following:

Figure 6-5 TCP handshake and I/O
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This TCP provider version traces sends and receives, connections, and TCP
state changes. The send and receive probes trace I/O at the TCP layer. For conve-
nience, this chapter will sometimes refer to this as tracing TCP packets; however,
technically they may not map one-to-one to packets as seen on the wire: For exam-
ple, IP will fragment large packets into MTU-sized packets (or return an ICMP
error).

The tcp provider is one of the newest (integrated into Solaris Nevada build 142)
and may not yet be available for your operating system version. If not, these tcp
provider-based scripts still serve as examples of what TCP data can be useful to
retrieve and could (with some effort) be reimplemented as fbt provider-based
scripts until the tcp provider is available.

fbt Provider

Using the fbt provider is difficult, because it exposes the complexity and kernel
implementation of the network stack, which may change from release to release.
The TCP/IP stack source code is typically only the domain of kernel engineers or
experienced users with knowledge of the kernel and the C programming language.

solaris# dtrace -ln tcp::: 
   ID   PROVIDER    MODULE    FUNCTION NAME
14143        tcp         ip tcp_input_data connect-refused
14153        tcp         ip tcp_input_data accept-established
14155        tcp         ip  tcp_input_data connect-
established
14174        tcp        ip  tcp_xmit_ctl accept-refused
14220        tcp          ip   tcp_input_data receive
14221        tcp           ip  tcp_input_listener receive
14222        tcp            ip       tcp_xmit_listeners_reset receive
14223        tcp          ip   tcp_fuse_output receive
14224        tcp           ip  tcp_input_listener send
14225        tcp         ip   tcp_ss_rexmit send
14226        tcp          ip   tcp_sack_rexmit send
14227        tcp           ip        tcp_xmit_early_reset send
14228        tcp         ip   tcp_xmit_ctl send
14229        tcp         ip   tcp_xmit_end send
14230        tcp        ip     tcp_send send
14231        tcp         ip   tcp_send_data send
14232        tcp         ip     tcp_output send
14233        tcp          ip   tcp_fuse_output send
14250        tcp         ip tcp_do_connect connect-request
14269        tcp        ip   tcp_bindi state-change
14270        tcp         ip tcp_input_data state-change
14271        tcp          ip        tcp_input_listener state-change
14272        tcp        ip  tcp_xmit_mp state-change
14273        tcp         ip  tcp_do_listen state-change
14274        tcp         ip tcp_do_connect state-change
14275        tcp         ip  tcp_do_unbind state-change
14276        tcp        ip   tcp_reinit state-change
14277        tcp           ip       tcp_disconnect_common state-change
14278        tcp         ip         tcp_closei_local state-change
14279        tcp         ip tcp_clean_death state-change
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Listing the fbt probes available for tcp functions on Solaris Nevada, circa
December 2009 (we deliberately switched to an older version before the tcp pro-
vider was available, where fbt was the only option apart from the mib provider):

On this version of the kernel, 504 probes were listed for tracing the internals of
TCP. The number will change with kernel updates to match the current kernel
implementation.

To get an idea of the tcp functions called, we’ll count probes that fire when send-
ing 10,000 1KB messages over TCP:

solaris# dtrace -ln 'fbt::tcp_*:'
   ID   PROVIDER   MODULE              FUNCTION NAME 
56671        fbt           ip  tcp_conn_constructor entry 
56672        fbt           ip  tcp_conn_constructor return 
56673        fbt          ip  tcp_conn_destructor entry 
56674        fbt          ip  tcp_conn_destructor return 
56902        fbt          ip   tcp_set_ws_value entry 
56903        fbt          ip   tcp_set_ws_value return 
56904        fbt           ip  tcp_time_wait_remove entry 
56905        fbt           ip  tcp_time_wait_remove return 
56906        fbt           ip  tcp_time_wait_append entry 
56907        fbt           ip  tcp_time_wait_append return 
56908        fbt          ip  tcp_close_detached entry 
56909        fbt          ip  tcp_close_detached return 
56910        fbt           ip  tcp_bind_hash_remove entry 
56911        fbt           ip  tcp_bind_hash_remove return 
56912        fbt        ip     tcp_accept entry 
56913        fbt        ip     tcp_accept return 
[...truncated...]

solaris# dtrace -n 'fbt::tcp_*:entry { @[probefunc] = count(); }'
dtrace: description 'fbt::tcp_*:entry ' matched 252 probes
^C

  tcp_acceptor_hash_remove                    1
  tcp_adapt_ire                      1
  tcp_bind                    1
[...truncated...]
  tcp_timeout                   140
  tcp_clrqfull                   157
  tcp_setqfull                   157
  tcp_send                   4532
  tcp_set_rto                   5093
  tcp_parse_options                   5132
  tcp_rput_data                     5152
  tcp_fill_header                    9998
  tcp_output                  10109
  tcp_wput                  10111
  tcp_send_data                    10151
  tcp_send_find_ire                  10151
  tcp_send_find_ire_ill                  10151
  tcp_wput_data                    12630
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The functions with higher counts (in the 10,000s) are likely to be those process-
ing I/O, and those with lower counts (less than 10) are those that initiate the con-
nection. Perform this experiment in the opposite direction (or trace on the remote
host) to see the TCP receive side.

The relationship between these functions can be illustrated by examining stack
traces, as shown in the “fbt Provider” section. Another way to learn the fbt probes
is to map known mib events to the fbt functions, as demonstrated in the “mib Pro-
vider” section. And of course, if the source is available, it provides the best refer-
ence for the fbt probes and arguments.

The fbt-based scripts later in this section were based on OpenSolaris circa
December 2009 and may not work on other OSs and releases without changes.
Even if these scripts no longer execute, they can still be treated as examples of D
programming and for the sort of data that DTrace can make available.

tcpstat.d

The tcpstat.d is an example of using the mib provider to track statistics for a
specific protocol.

Script

Various TCP statistics are traced from the mib provider on Solaris and printed
every second, in a similar fashion to the ipstat.d script:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN { LINES = 20; line = 0; } 
6
7   profile:::tick-1sec 
8   /--line <= 0/ 
9   { 
10          printf(" TCP bytes:  %6s %12s %12s %12s %12s\n", 
11              "out", "outRetrans", "in", "inDup", "inUnorder"); 
12   line = LINES; 
13  } 
14  mib:::tcpOutDataBytes, mib:::tcpRetransBytes, mib:::tcpInDataInorderBytes,
15  mib:::tcpInDataDupBytes, mib:::tcpInDataUnorderBytes
16  { 
17          /* some of these probes can return -1 */ 
18          this->bytes = (int)arg0 > 0 ? arg0 : 0; 
19  } 
20
21  mib:::tcpOutDataBytes           { @out = sum(this->bytes);   } 
22  mib:::tcpRetransBytes { @outRe = sum(this->bytes); } 
23  mib:::tcpInDataInorderBytes     { @in = sum(this->bytes);    } 
24  mib:::tcpInDataDupBytes { @inDup = sum(this->bytes); } 
25  mib:::tcpInDataUnorderBytes     { @inUn = sum(this->bytes);  } 

continues
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A variable called line is used to track when to reprint the header. This hap-
pens every 20 lines; without it, the screen could fill with numbers and become diffi-
cult to follow. 

Line 29 uses a multiple aggregation printa() to generate the output. If none of
those aggregations contained data at this point, no output will be generated
because printa() skips printing when all of its aggregations arguments are
empty. Once some TCP events have occurred, the aggregations are cleared on line
31—and not truncated—so that they still contain data (albeit zero), which ensures
that printa() will print something out (and then continue to do so every second),
even if that is entirely zeros.

Example

This example output shows steady, TCP-inbound data after the third line of output.

tcpaccept.d

tcpaccept.d summarizes which clients have established connections to which
TCP ports, using the tcp provider.

Script

The script is basically a one-liner with output formatting, again illustrating the
point of stable providers, to allow powerful scripts to be written simply: 

26
27  profile:::tick-1sec 
28  { 
29          printa("     %@12d %@12d %@12d %@12d %@12d\n", 
30  @out, @outRe, @in, @inDup, @inUn); 
31 clear(@out); clear(@outRe); clear(@in); clear(@inDup); clear(@inUn); 
32  } 

Script tcpstat.d

solaris# tcpstat.d
  TCP bytes:     out   outRetrans in inDup    inUnorder 
               18100        0        19941        0            0 
               16812        0        21440        0            0 
               16752         0      3260812        0            0 
               16946         0     11605173       0            0 
               16704         0     11358911       0            0 
               16812         0     10718226       0            0 
               17400         0     11500106       0            0 
               17864         0     11459260       0            0 
               16704         0     11460956       0            0 
[...]
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The tcp provider has the source IP address available as the string args[2]->
ip_saddr, which can contain either IPv4 or IPv6 address strings. For the accept-
established probe, args[3]->tcps_raddr would also work because it is the
remote address string.

Example

Several inbound TCP connections were established as the tcpaccept.d script
was running: 

This shows that a single client, 192.168.1.109, was responsible for most of the
connections. It made three connections to port 22 (ssh) and six to port 61360 (an
RPC port). An IPv6 client, fe80::214:4fff:fe3b:76c8, performed one connection to
port 22 (ssh).

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 

4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  tcp:::accept-established
11  { 
12          @num[args[2]->ip_saddr, args[4]->tcp_dport] = count(); 
13  } 
14
15  dtrace:::END 
16  { 
17          printf("  %-26s %-8s %8s\n", "HOST", "PORT", "COUNT"); 
18          printa("   %-26s %-8d %@8d\n", @num); 
19  } 

Script tcpaccept.d

solaris# tcpaccept.d
Tracing... Hit Ctrl-C to end. 
^C
   HOSTNAME       PORT        COUNT 
   192.168.1.109         23              1 
   192.168.1.109         80              1 
   fe80::214:4fff:fe3b:76c8   22              1 
   192.168.1.109         22              3 
   192.168.1.109          61360           6 
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tcpacceptx.d

This is the same as tcpaccept.d but has been enhanced to use extra formatting
characters that are not yet available in most versions of DTrace.17 The characters
are as follows: 

%I Resolve IP addresses to host names 

%P Resolve ports to names 

Script

Example

This time the tcpacceptx.d script shows the fully qualified host names and port
names for inbound TCP connections: 

17. These are currently only implemented on the Oracle Sun ZFS Storage 7000 series, which at
times has implemented features before they are integrated into mainstream OpenSolaris
and Solaris.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  tcp:::accept-established
11  { 
12          @num[args[2]->ip_saddr, args[4]->tcp_dport] = count(); 
13  } 
14
15  dtrace:::END 
16  { 
17          printf(" %-26s %-8s %8s\n", "HOSTNAME", "PORT", "COUNT"); 
18          printa("   %-26I %-8P %@8d\n", @num); 
19  } 

Script tcpacceptx.d

solaris# tcpacceptx.d
Tracing... Hit Ctrl-C to end. 
^C
   HOSTNAME       PORT        COUNT 
   deimos.sf.fishworks.com    telnet          1 
   deimos.sf.fishworks.com    http            1 
   phobos6.sf.fishworks.com   ssh             1 
   deimos.sf.fishworks.com    ssh             3 
   deimos.sf.fishworks.com    61360           7 
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phobos6 is a host name for an IPv6 address. Port 61360 wasn’t translated; an
investigation found that it was dynamically allocated for RPC:

It was for mountd, NFS mounts.

tcpconnect.d

The tcpaccept.d scripts traced inbound TCP connections. tcpconnect.d traces
outbound TCP connections. 

Script

The tcp provider has the destination IP address available as the string
args[2]->ip_daddr, which can contain both IPv4 and IPv6 address strings. For
the connect-established probe, args[3]->tcps_raddr would also work because
it’s the remote address string.

Example

Two outbound TCP connections were made to 72.5.124.61 port 80.

solaris# rpcinfo -p | grep 61360 
    100005    1   tcp  61360  mountd 
    100005    2   tcp  61360  mountd 
    100005    3   tcp  61360  mountd 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  tcp:::connect-established
11  { 
12          @num[args[2]->ip_daddr, args[4]->tcp_dport] = count(); 
13  } 
14
15  dtrace:::END 
16  { 
17          printf("  %-26s %-8s %8s\n", "HOST", "PORT", "COUNT"); 
18          printa("   %-26s %-8d %@8d\n", @num); 
19  } 

Script tcpconnect.d
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tcpioshort.d

This is a short version of the tcpio.d script to demonstrate the basics of the tcp
provider. It traces TCP sends and receives, with source and destination addresses,
the port, and IP payload bytes. 

Script

Example

This is a quick way to identify TCP traffic. The tcpio.d script traces the same
probes but formats neatly. The output to tcpioshort.d can scroll quickly because
this is running an ssh session, and it is tracing TCP events caused by itself print-
ing output, which is a feedback loop.

solaris# tcpconnect.d
Tracing... Hit Ctrl-C to end. 
^C
   HOST         PORT        COUNT 
   192.168.1.109         22              1 
   72.5.124.61    80              2 

1  #!/usr/sbin/dtrace -s 
2
3  tcp:::send, tcp:::receive 
4  { 
5          printf("%15s:%-5d  ->  %15s:%-5d %d bytes", 
6   args[2]->ip_saddr, args[4]->tcp_sport, 
7   args[2]->ip_daddr, args[4]->tcp_dport, 
8     args[2]->ip_plength); 
9  }

Script tcpioshort.d

solaris# tcpioshort.d
dtrace: script './tcpioshort.d' matched 8 probes 
CPU    ID       FUNCTION:NAME 
  0 31437    tcp_send_data:send  192.168.2.145:2049  ->   192.168.2.8:1021  100 bytes 
  6 31079 tcp_rput_data:receive  192.168.100.4:44091 -> 192.168.100.50:3260  20 bytes 
  6 31437    tcp_send_data:send  192.168.2.145:215   ->  192.168.1.109:54575 20 bytes 
  8 31079 tcp_rput_data:receive   192.168.2.53:36395 ->  192.168.2.145:3260  68 bytes 
  8 31079 tcp_rput_data:receive   192.168.2.53:36395 ->  192.168.2.145:3260  20 bytes 
  8 31079 tcp_rput_data:receive  192.168.1.109:54575 ->  192.168.2.145:215   617 bytes 
  8 31079 tcp_rput_data:receive  192.168.1.109:54575 ->  192.168.2.145:215   201 bytes 
  8 31079 tcp_rput_data:receive  192.168.1.109:54575 ->  192.168.2.145:215   20 bytes 
  8 31079 tcp_rput_data:receive    192.168.2.8:1021  ->  192.168.2.145:2049  260 bytes 
  8 31079 tcp_rput_data:receive    192.168.2.8:1021  ->  192.168.2.145:2049  252 bytes 
 11 31437    tcp_send_data:send  192.168.2.145:3260  ->   192.168.2.53:36395 68 bytes 
 11 31437    tcp_send_data:send 192.168.100.50:3260  ->  192.168.100.4:44091 68 bytes 
 12 31437    tcp_send_data:send  192.168.2.145:22    ->  192.168.1.109:36683 100 bytes 
 12 31437    tcp_send_data:send  192.168.2.145:22    ->  192.168.1.109:36683 164 bytes 
 12 31437    tcp_send_data:send  192.168.2.145:22    ->  192.168.1.109:36683 164 bytes 
[...]
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tcpio.d

The tpcio.d script traces tcp send and receives, showing various details from the
TCP and IP headers formatted into columns. 

Script

Rather than printing the IP payload bytes that would include the TCP header,
lines 14 and 22 of this script calculate the actual TCP payload bytes (which
tcpioshort.d did, including the length of the TCP header). Lines 31 to 40 print
TCP flags at the end of the line; 40 prints a backspace (\b) to move the cursor back
over any extra pipe (|) character (which is then overwritten using the ) character).

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8 printf("%-3s %15s:%-5s  %15s:%-5s %6s %s\n", "CPU", 
9 "LADDR", "LPORT", "RADDR", "RPORT", "BYTES", "FLAGS"); 
10  } 
11
12  tcp:::send 
13  { 
14          this->length = args[2]->ip_plength - args[4]->tcp_offset; 
15 printf("%-3d %15s:%-5d  ->  %15s:%-5d %6d (", cpu, 
16   args[2]->ip_saddr, args[4]->tcp_sport, 
17 args[2]->ip_daddr, args[4]->tcp_dport, this->length);
18  } 
19
20  tcp:::receive 
21  { 
22          this->length = args[2]->ip_plength - args[4]->tcp_offset; 
23 printf("%-3d %15s:%-5d  <-  %15s:%-5d %6d (", cpu, 
24   args[2]->ip_daddr, args[4]->tcp_dport, 
25 args[2]->ip_saddr, args[4]->tcp_sport, this->length);
26  } 
27
28  tcp:::send, 
29  tcp:::receive 
30  { 
31 printf("%s", args[4]->tcp_flags & TH_FIN ? "FIN|" : ""); 
32 printf("%s", args[4]->tcp_flags & TH_SYN ? "SYN|" : ""); 
33 printf("%s", args[4]->tcp_flags & TH_RST ? "RST|" : ""); 
34          printf("%s", args[4]->tcp_flags & TH_PUSH ? "PUSH|" : ""); 
35 printf("%s", args[4]->tcp_flags & TH_ACK ? "ACK|" : ""); 
36 printf("%s", args[4]->tcp_flags & TH_URG ? "URG|" : ""); 
37 printf("%s", args[4]->tcp_flags & TH_ECE ? "ECE|" : ""); 
38 printf("%s", args[4]->tcp_flags & TH_CWR ? "CWR|" : ""); 
39          printf("%s", args[4]->tcp_flags == 0 ? "null " : ""); 
40    printf("\b)\n"); 
41  } 

Script tcpio.d
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Examples

Several examples follow including tracing a TCP handshake, port closed, and loop-
back traffic.

Tracing a TCP Handshake. The output includes a FLAGS column for TCP flags,
allowing TCP state to be inferred:

The output includes an outbound TCP connection to 192.168.1.3 port 22 (SSH);
the TCP handshake is visible in the FLAGS column: SYN, SYN|ACK, ACK.

Capturing an IPv6 TCP handshake (just to show that IPv6 addresses are
printed properly) yields the following:

solaris# tcpio.d
CPU           LADDR:LPORT     RADDR:RPORT  BYTES FLAGS 
13    192.168.2.145:22    ->    192.168.1.109:36683    112 (PUSH|ACK) 
8     192.168.2.145:22   <-    192.168.1.109:36683      0 (ACK) 
13    192.168.2.145:22    ->    192.168.1.109:36683    112 (PUSH|ACK) 
6     192.168.2.145:215   ->    192.168.1.109:54340      0 (ACK) 
8     192.168.2.145:22   <-    192.168.1.109:36683      0 (ACK) 
8     192.168.2.145:215   <-    192.168.1.109:54340    597 (PUSH|ACK) 
8     192.168.2.145:215   <-    192.168.1.109:54340    181 (PUSH|ACK) 
9     192.168.2.145:215   ->    192.168.1.109:54340    500 (PUSH|ACK) 
8     192.168.2.145:55190 ->      192.168.1.3:22         0 (SYN) 
8     192.168.2.145:55190  <-      192.168.1.3:22         0 (SYN|ACK) 
8     192.168.2.145:55190 ->      192.168.1.3:22         0 (ACK) 
4     192.168.2.145:55190 ->      192.168.1.3:22        20 (PUSH|ACK) 
4     192.168.2.145:55190 ->      192.168.1.3:22       504 (PUSH|ACK) 
8     192.168.2.145:55190 <-      192.168.1.3:22        20 (PUSH|ACK) 
8     192.168.2.145:55190 ->      192.168.1.3:22         0 (ACK) 
8     192.168.2.145:55190 <-      192.168.1.3:22         0 (ACK) 
8     192.168.2.145:55190 <-      192.168.1.3:22         0 (ACK) 
8     192.168.2.145:215   <-    192.168.1.109:33837    597 (PUSH|ACK) 
6     192.168.2.145:215   ->    192.168.1.109:33837      0 (ACK) 
8     192.168.2.145:215   <-    192.168.1.109:33837    181 (PUSH|ACK) 
8     192.168.2.145:215   <-    192.168.1.109:33837      0 (ACK) 
13    192.168.2.145:215   ->    192.168.1.109:33837    500 (PUSH|ACK) 
4     192.168.2.145:55190 ->      192.168.1.3:22        24 (PUSH|ACK) 
8     192.168.2.145:55190 <-      192.168.1.3:22       376 (PUSH|ACK) 
8     192.168.2.145:55190 ->      192.168.1.3:22         0 (ACK) 
[...]

solaris# tcpio.d
CPU           LADDR:LPORT     RADDR:RPORT  BYTES FLAGS 
8   fe80::214:4fff:feed:d41c:22    <- fe80::214:4fff:fe3b:76c8:45528    0 (SYN) 
8   fe80::214:4fff:feed:d41c:22    ->  fe80::214:4fff:fe3b:76c8:45528    0 (SYN|ACK) 
8   fe80::214:4fff:feed:d41c:22    <- fe80::214:4fff:fe3b:76c8:45528    0 (ACK) 
8   fe80::214:4fff:feed:d41c:22    <- fe80::214:4fff:fe3b:76c8:45528    0 (ACK) 
8   fe80::214:4fff:feed:d41c:22    <-  fe80::214:4fff:fe3b:76c8:45528   20 (PUSH|ACK)
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Unfortunately, the IPv6 addresses are so long that they cause the output to
overflow a width of 80 characters.18

Port Closed. Here a remote host attempted to connect to TCP port 123, which
was closed: 

The server returned a TCP reset (RST).

Loopback Traffic. The following shows tcpio.d tracing a loopback connection
to port 22: 

Since it is tracing at the TCP layer, it doesn’t matter whether this TCP traffic is
sent over a physical network interface: Everything can be observed.19

18.  Staying within 80 characters is a strict tradition among Solaris kernel engineers.

solaris# tcpio.d
CPU           LADDR:LPORT     RADDR:RPORT  BYTES FLAGS 
8     192.168.2.145:123    <-    192.168.1.109:50708      0 (SYN) 
8     192.168.2.145:123    ->    192.168.1.109:50708   0 (RST|ACK) 

solaris# tcpio.d
CPU           LADDR:LPORT     RADDR:RPORT  BYTES FLAGS 
0         127.0.0.1:41736  ->        127.0.0.1:22         0 (SYN)
0         127.0.0.1:22     <- 127.0.0.1:41736     0 (SYN)
0         127.0.0.1:22     -> 127.0.0.1:41736    0 (SYN|ACK)
0         127.0.0.1:41736  <-        127.0.0.1:22         0 (SYN|ACK)
0         127.0.0.1:41736  ->        127.0.0.1:22         0 (ACK)
0         127.0.0.1:22     <- 127.0.0.1:41736     0 (ACK)
0         127.0.0.1:22     ->  127.0.0.1:41736     20 (ACK)
0         127.0.0.1:41736  <-        127.0.0.1:22        20 (ACK)
0         127.0.0.1:41736  ->        127.0.0.1:22        20 (ACK)
0         127.0.0.1:22     <-  127.0.0.1:41736     20 (ACK)
0         127.0.0.1:41736  -> 127.0.0.1:22       504 (ACK)
0         127.0.0.1:22     <-   127.0.0.1:41736    504 (ACK)
[...]
0         127.0.0.1:41736  ->        127.0.0.1:22        32 (ACK)
0         127.0.0.1:22     <-  127.0.0.1:41736     32 (ACK)
0         127.0.0.1:41736  ->        127.0.0.1:22         0 (FIN|ACK)
0         127.0.0.1:22     <- 127.0.0.1:41736    0 (FIN|ACK)
0         127.0.0.1:22     -> 127.0.0.1:41736     0 (ACK)
0         127.0.0.1:41736  <-        127.0.0.1:22         0 (ACK)
^C

19. Development versions of the tcp provider used different probes for TCP fusion, which is a
Solaris performance feature that bypasses the TCP/IP stack for data packets on established
TCP sessions. The final version of the provider rolled these into tcp:::send and
tcp:::receive, since the provider interface should not expose Solaris implementation
details to end users.
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tcpbytes.d

This script shows which remote clients and local ports are performing how much I/O,
in terms of TCP payload bytes. 

Script

TCP payload bytes are calculated by taking the IP payload bytes and subtracting
the TCP header. The size of the TCP header is available as args[4]->tcp_offset,
which is the offset (in bytes) of the packet where TCP payload data begins.

Example

Here port 2049 (NFS) was the busiest, transferring about 40MB over TCP while
this script was tracing.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7 printf("Tracing TCP payload bytes... Hit Ctrl-C to end.\n"); 
8   } 
9
10  tcp:::receive 
11  { 
12          @bytes[args[2]->ip_saddr, args[4]->tcp_dport] = 
13  sum(args[2]->ip_plength - args[4]->tcp_offset); 
14  } 
15
16  tcp:::send 
17  { 
18          @bytes[args[2]->ip_daddr, args[4]->tcp_sport] = 
19  sum(args[2]->ip_plength - args[4]->tcp_offset); 
20  } 
21
22  dtrace:::END 
23  { 
24          printf(" %-32s %-6s %16s\n", "REMOTE", "LPORT", "BYTES"); 
25          printa("  %-32s %-6d %@16d\n", @bytes); 
26  } 

Script tcpbytes.d

# tcpbytes.d
Tracing TCP payload bytes... Hit Ctrl-C to end. 
^C
  REMOTE        LPORT          BYTES 
  fe80::214:4fff:fe3b:76c8        23            111 
  192.168.2.8            2049              164 
  192.168.1.109           22              192 
  192.168.100.4           3260             384 
  192.168.100.5           3260             384 
  192.168.2.53           3260             768 
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tcpsize.d

The tcpsize.d script shows the size of TCP sends and receives by client
address and port. This could be used to identify whether a client was transferring
data using many small I/Os or fewer larger I/Os. 

Script

All tcp sends and receives are included in the output, including those for TCP
packets that did not transfer data (ACKs, for example): 

Example

The output has captured a couple of NFS clients performing I/O. The 192.168.100.4
client is performing TCP send/receives with sizes as large as 4KB to 8KB, whereas
the 192.168.2.53 client reaches only between 1KB and 2KB. The difference here is
known; the 192.168.100.4 client is using jumbo frames, whereas the other client is
not. (Another reason for larger packets seen at the TCP level can be TCP large
send offload, where TCP sends a large packet for the network card to fragment.)
The counts seen for 0 bytes is an indication of how many TCP nonpayload packets
were used.

  192.168.2.55           3260             768 
  192.168.2.156          1001             840 
  fe80::214:4fff:fe3b:76c8        22            5000 
  192.168.1.109           215             20727 
  192.168.2.53            2049           44048464 

1   #!/usr/sbin/dtrace -s 
2
3   tcp:::receive 
4   { 
5           @bytes[args[2]->ip_saddr, args[4]->tcp_dport] = 
6  quantize(args[2]->ip_plength - args[4]->tcp_offset); 
7   } 
8
9   tcp:::send 
10  { 
11          @bytes[args[2]->ip_daddr, args[4]->tcp_sport] = 
12  quantize(args[2]->ip_plength - args[4]->tcp_offset); 
13  } 

Script tcpsize.d

server# tcpsize.d
dtrace: script './tcpsize.d' matched 8 probes 
^C
[...]

continues
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tcpnmap.d

This is an example of examining event data to produce more information than just
event counts. The tcpnmap.d script examines TCP events and flags to detect pos-
sible port scans from nmap20 or similar port scanners.

The nmap port scanner is a powerful security tool for the analysis of host vul-
nerabilities. By varying TCP flags, you can perform various network port scans,
including Xmas and null scans. The tcpnmap.d tool examines these flags to find
traffic that may be scan events. However, they may also be normal traffic (as with
the connect() scan). The differentiator is the volume of these suspicious events. 

Script

This is a simple script, identifying different packet and event types and then popu-
lating a count aggregation with a descriptive string as the key.

  192.168.100.4              2049 
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |              13
               1 |              0
               2 |              0
               4 |              0
               8 |              0
              16 |              0
              32 |              0
              64 |              8
             128 |@@@@@@@@@@@@@@@@@@@@               3230
             256 |              0
             512 |              0
            1024 |              0
            2048 |              0
            4096 |@@@@@@@@@@@@@@@@@@@@          3220
            8192 |              0

  192.168.2.53              2049 
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@@@               14903
               1 |              0
               2 |              0
               4 |              0
               8 |              0
              16 |              0
              32 |              0
              64 |              4
             128 |@@@@@@@@@@@@@             29778
             256 |              0
             512 |              0
            1024 |@@@@@@@@@@@@@@@@@@@@                44661
            2048 |              0

20. http://nmap.org

http://nmap.org
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Example

The tcpnmap.d script was run for ten seconds: 

Here all our scan types had counts of more than 100, which (for this 10-second
sample) is evidence of scanning.

tcpconnlat.d

This script measures TCP outbound connection latency. This is the time from the
outbound SYN to the returned SYN|ACK and is a measure of network latency and

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           printf("Tracing for possible nmap scans... Hit Ctrl-C to end.\n"); 
8   } 
9
10  tcp:::accept-refused 
11  { 
12          @num["TCP_connect()_scan", args[2]->ip_daddr] = count(); 
13  } 
14
15  tcp:::receive 
16  /args[4]->tcp_flags == 0/ 
17  { 
18          @num["TCP_null_scan", args[2]->ip_saddr] = count(); 
19  } 
20
21  tcp:::receive 
22  /args[4]->tcp_flags == (TH_URG|TH_PUSH|TH_FIN)/ 
23  { 
24          @num["TCP_Xmas_scan", args[2]->ip_saddr] = count(); 
25  } 
26
27  dtrace:::END 
28  { 
29 printf("Possible scan events:\n\n"); 
30          printf("  %-24s %-28s %8s\n", "TYPE", "HOST", "COUNT"); 
31          printa("   %-24s %-28s %@8d\n", @num); 
32  } 

Script tcpnmap.d

solaris# tcpnmap.d
Tracing for possible nmap scans... Hit Ctrl-C to end. 
^C
Possible scan events:

   TYPE       HOST                 COUNT 
   TCP_null_scan    192.168.1.109             208 
   TCP_Xmas_scan    192.168.1.109             304 
   TCP_connect()_scan     192.168.1.109              388 
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remote host TCP processing time (time for the remote kernel to create the new
TCP session and reply to the SYN). 

Script

This script associates the tcp:::connect-request probe to the tcp:::connect-
established probe through args[1]->cs_cid, which is a unique identifier for
the connection.

Example

While the tcpconnlat.d script was running, several outbound TCP connections
were performed. 

Connections to the nearby host 192.168.1.109 mostly completed with times
between 0.13 ms and 0.26 ms. Connections to the Internet host 72.5.124.61 took
longer, between 8 ms and 16 ms. 

1   #!/usr/sbin/dtrace -s 
2
3   tcp:::connect-request
4   { 
5 start[args[1]->cs_cid] = timestamp; 
6   } 
7
8   tcp:::connect-established
9   /start[args[1]->cs_cid]/
10  { 
11          @latency["Connect Latency (ns)", args[2]->ip_daddr] = 
12  quantize(timestamp - start[args[1]->cs_cid]);
13  start[args[1]->cs_cid] = 0; 
14  } 

Script tcpconnlat.d

solaris# tcpconnlat.d
dtrace: script './tcpconnlat.d' matched 2 probes 
^C

  Connect Latency (ns)  192.168.1.109
           value  ------------- Distribution ------------- count
           65536 |             0
          131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  62
          262144 |@               1
          524288 |                0

  Connect Latency (ns)         72.5.124.61
           value  ------------- Distribution ------------- count
         4194304 |               0
         8388608 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 4
        16777216 |                0
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This DTrace script can be modified to provide the data in different ways, such as
averages, or to print details of every connection as it occurs. 

tcp1stbyte.d

This script is similar to tcpconnlat.d but measures TCP first-byte latency,
which is the time from when the connection is established to when the first appli-
cation data bytes arrive. This is a measure of both network latency and remote
application load. 

Script

This script is written in terms of the client initiating the connection, by beginning with
the tcp:::connect-established probe. It could be modified for use on the server
accepting the connection by changing the probe to tcp:::accept-established.

The first-byte event is identified as the first tcp:::receive containing TCP
payload bytes.

Example

Here connections to the same two remote hosts were performed as with tcpconn-
lat.d but with different results: 

1   #!/usr/sbin/dtrace -s 
2
3   tcp:::connect-established
4   { 
5 start[args[1]->cs_cid] = timestamp; 
6   } 
7
8   tcp:::receive 
9   /start[args[1]->cs_cid] && (args[2]->ip_plength - args[4]->tcp_offset) > 0/ 
10  { 
11          @latency["1st Byte Latency (ns)", args[2]->ip_saddr] = 
12  quantize(timestamp - start[args[1]->cs_cid]);
13  start[args[1]->cs_cid] = 0; 
14  } 

Script tcp1stbyte.d

solaris# tcp1stbyte.d
dtrace: script 'tcp1stbyte.d' matched 6 probes 
^C

  1st Byte Latency (ns)         72.5.124.61
           value  ------------- Distribution ------------- count
         8388608 |               0
        16777216 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5
        33554432 |             0

continues
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The Internet host consistently takes 16 ms to 32 ms to return the first applica-
tion data. The nearby host (192.168.1.109) often returns data faster than half a
millisecond, but on a couple of occasions it took longer than 32 milliseconds. 

The reasons why a target application sometimes returns slowly could be investi-
gated using DTrace on the remote host. 

tcp_rwndclosed.d

This script measures the time spent after the TCP receive window is advertised as
zero. This stops the remote host from sending data, so high latency or low through-
put suffered by this connection may be our own fault. The cause can be investi-
gated further with DTrace; this script identifies whether zero-size received
windows are being advertised and the time spent after a zero-size advertisement
to when new data was received. This script and example were written by Alan
Maguire, who has been developing other interesting and advanced scripts based on
the tcp provider.21

Script

  1st Byte Latency (ns)           192.168.1.109 
           value  ------------- Distribution ------------- count
          131072 |                0
          262144 |@@@@@@@@@@@@@@@@@@@                   12
          524288 |@@@@@@@@@@             6
         1048576 |@@@@@              3
         2097152 |               0
         4194304 |@@               1
         8388608 |@@               1
        16777216 |             0
        33554432 |@@@              2
        67108864 |             0

21. This script is currently at http://blogs.sun.com/amaguire/entry/dtrace_tcp_provider_and_
tcp along with its companion for the send side; also see his blog, currently at http://
blogs.sun.com/amaguire.

 1  #!/usr/sbin/dtrace -s
 2
 3  #pragma D option quiet
 4
 5  tcp:::send
 6  / args[4]->tcp_window == 0 && (args[4]->tcp_flags & TH_RST) == 0 /
 7  {
 8        rwndclosed[args[1]->cs_cid] = timestamp;
 9        rwndrnxt[args[1]->cs_cid] = args[3]->tcps_rnxt;
10 @numrwndclosed[args[2]->ip_daddr, args[4]->tcp_dport] = count();
11  }
12

http://blogs.sun.com/amaguire/entry/dtrace_tcp_provider_and_tcp
http://blogs.sun.com/amaguire/entry/dtrace_tcp_provider_and_tcp
http://blogs.sun.com/amaguire
http://blogs.sun.com/amaguire
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Example

Here, a high-resolution YouTube video was loaded in a browser:

This caused the receive window size to be advertised as zero and then the
remote host to wait for 0.269 seconds before sending new data.

tcpfbtwatch.d

Monitoring inbound TCP connections can be useful for identifying how a server is
being used and was achieved earlier with tcpaccept.d and tcpacceptx.d. The
tcpfbtwatch.d script traces TCP accepts live and is an example of doing so via
the fbt provider, should the tcp provider not be available. 

This was written for a recent version of Solaris Nevada and is provided as an
example of fbt tracing; it is not expected to run on other Solaris kernel versions. 

Script (tcp Provider) 

For comparison, this is how the script looks if the tcp provider is available: 

13  tcp:::receive
14  / rwndclosed[args[1]->cs_cid] && args[4]->tcp_seq >= rwndrnxt[args[1]->cs_cid] /
15  {
16        @meantimeclosed[args[2]->ip_saddr, args[4]->tcp_sport] =
17 avg(timestamp - rwndclosed[args[1]->cs_cid]);
18        @stddevtimeclosed[args[2]->ip_saddr, args[4]->tcp_sport] =
19 stddev(timestamp - rwndclosed[args[1]->cs_cid]);
20 rwndclosed[args[1]->cs_cid] = 0;
21 rwndrnxt[args[1]->cs_cid] = 0;
22  }
23
24  END
25  {
26        printf("%-20s %-8s %-25s %-8s %-8s\n",
27            "Remote host", "Port", "TCP Avg RwndClosed(ns)", "StdDev",
28            "Num");
29        printa("%-20s %-8d %@-25d %@-8d %@-8d\n", @meantimeclosed,
30   @stddevtimeclosed, @numrwndclosed);
31  }

Script tcp_rwndclosed.d

solaris# dtrace -s tcp_rwndclosed.d
^C
Remote host Port     TCP Avg RwndClosed(ns)    StdDev   Num
92.122.127.159       80      26914620        0        1

1  #!/usr/sbin/dtrace -s 
2
3  #pragma D option quiet 
4  #pragma D option switchrate=10hz 

continues
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Script (fbt Provider) 

With the fbt provider, our DTracing job becomes much more difficult. On the plus
side, there is only one place in the kernel code that completes accepting a TCP con-
nection: It happens inside tcp_rput_data(). However, another function needs to
be traced to dig out the IPv6 details correctly: tcp_find_pktinfo().

The inet_ntoa(), inet_ntoa6(), and ntohs() functions were used; if they, too,
are unavailable, see how they can be performed manually, as in ipfbtsnoop.d:

5
6  dtrace:::BEGIN 
7  { 
8          printf("%-20s  %-24s %-24s %6s\n", "TIME", "REMOTE", "LOCAL", "LPORT"); 
9  } 
10
11  tcp:::accept-established
12  { 
13          printf("%-20Y  %-24s %-24s %6d\n", walltimestamp, 
14              args[2]->ip_saddr, args[2]->ip_daddr, args[4]->tcp_dport);
15  } 

Script tcpwatch.d (tcp provider)

1   #!/usr/sbin/dtrace -Cs 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   #define IPH_HDR_VERSION(ipha) \
7           ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 
8
9   #define TCPS_SYN_RCVD   -1 
10
11  #define conn_tcp      conn_proto_priv.cp_tcp
12  #define conn_lport    u_port.tcpu_ports.tcpu_lport
13
14  dtrace:::BEGIN 
15  { 
16 printf("%-20s  %-24s %-24s %6s\n", "TIME", "REMOTE", "LOCAL", "LPORT"); 
17  } 
18
19  fbt::tcp_rput_data:entry
20  { 
21  self->connp = (conn_t *)arg0; 
22  self->tcp = self->connp->conn_tcp;
23   self->mp = args[1]; 
24 self->ipha = (ipha_t *)self->mp->b_rptr;
25  self->in_tcp_rput_data = 1; 
26  } 
27
28  fbt::tcp_rput_data:entry
29  /self->tcp->tcp_state == TCPS_SYN_RCVD && IPH_HDR_VERSION(self->ipha) == 4/ 
30  { 
31          this->src = inet_ntoa(&self->ipha->ipha_src);
32          this->dst = inet_ntoa(&self->ipha->ipha_dst);
33          this->lport = ntohs(self->connp->conn_lport);
34          printf("%-20Y  %-24s %-24s %6d\n", walltimestamp, this->src, 
35     this->dst, this->lport); 
36  } 
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Lines 10 and 11 are from the header definition for conn_t in the source code
(uts/common/inet/ipclassifier.h) and are how the tcp_t and local port
information are fetched when starting from a conn_t. The tcp_t is used to
retrieve the current TCP session state, as tested on lines 29 and 39.

When the tcp_rput_data() or tcp_find_pktinfo() functions change in the
kernel code, it’s likely that this script will need adjustments to match the changes
to continue working. 

Example

While tracing, several inbound TCP connections were established, mostly to port
22 (ssh). One connection was using the IPv6 protocol. 

tcpsnoop.d

The tcpsnoop.d script traces TCP sends and receives with process details. It was
written to produce output similar to the Solaris snoop(1M) utility (tcpdump(1) on
other operating systems), which traces packets on a given interface. tcpsnoop.d
includes details of the processes responsible for sending or receiving those packets.

37
38  fbt::tcp_find_pktinfo:return
39  /self->in_tcp_rput_data && self->tcp->tcp_state == TCPS_SYN_RCVD && 
40      IPH_HDR_VERSION(self->ipha) == 6/ 
41  { 
42   this->mp = args[1]; 
43          this->ip6h = (struct ip6_hdr *)this->mp->b_rptr;
44          this->src = inet_ntoa6(&this->ip6h->ip6_src);
45          this->dst = inet_ntoa6(&this->ip6h->ip6_dst);
46          this->lport = ntohs(self->connp->conn_lport);
47          printf("%-20Y  %-24s %-24s %6d\n", walltimestamp, this->src, 
48     this->dst, this->lport); 
49  } 
50
51  fbt::tcp_rput_data:return
52  { 
53          self->connp = 0; self->tcp = 0; self->mp = 0; 
54          self->ipha = 0; self->in_tcp_rput_data = 0; 
55  } 

Script tcpfbtwatch.d

solaris# tcpfbtwatch.d
TIME    REMOTE        LOCAL              LPORT 
2010 Jan 17 07:44:50 192.168.1.109    192.168.2.145           22 
2010 Jan 17 07:44:51 fe80::214:4fff:fe3b:76c8 fe80::214:4fff:feed:d41c     22 
2010 Jan 17 07:44:55 192.168.1.109    192.168.2.145           80 
2010 Jan 17 07:44:59 192.168.1.109    192.168.2.145           22 
2010 Jan 17 07:45:02  192.168.1.109     192.168.2.145           215 
2010 Jan 17 07:45:08 192.168.1.188    192.168.2.145           22 
^C
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When tcpsnoop.d was first written, this was difficult for a number of
reasons:22

No stable network providers existed; only fbt was available.

Packets are not received in process context (see the “Common Mistakes” 
section).

Packets are often not sent in process context because of buffering.

The Solaris TCP/IP stack often uses advanced programming features such 
as function pointers, which can make reading and understanding code more 
difficult.

The Solaris TCP/IP stack is a large body of code to wade through: more than 
100,000 lines.

Network packets can be processed by many different code paths in TCP/IP.

The Solaris TCP/IP stack implementation changes regularly with kernel 
updates.

Since the fbt provider can trace all of the kernel functions, it should still be pos-
sible to write tcpsnoop despite these difficulties.

The final result is best shown with the following example:

22. And there was an eighth reason:  tcpsnoop.d was first written without access to the source
code because OpenSolaris was not yet public.

solaris# tcpsnoop.d
  UID    PID LADDR       LPORT DR RADDR        RPORT  SIZE CMD 
  100  20892 192.168.1.5     36398 -> 192.168.1.1      79    54 finger 
  100  20892 192.168.1.5     36398 <- 192.168.1.1      79    66 finger 
  100  20892 192.168.1.5     36398 -> 192.168.1.1      79    54 finger 
  100  20892 192.168.1.5     36398 -> 192.168.1.1      79    56 finger 
  100  20892 192.168.1.5     36398 <- 192.168.1.1      79    54 finger 
  100  20892 192.168.1.5     36398 <- 192.168.1.1      79   606 finger 
  100  20892 192.168.1.5     36398 -> 192.168.1.1      79    54 finger 
  100  20892 192.168.1.5     36398 <- 192.168.1.1      79    54 finger 
  100  20892 192.168.1.5     36398 -> 192.168.1.1      79    54 finger 
  100  20892 192.168.1.5     36398 -> 192.168.1.1      79    54 finger 
  100  20892 192.168.1.5     36398 <- 192.168.1.1      79    54 finger 
    0    242 192.168.1.5        23 <- 192.168.1.1     54224    54 inetd 
    0    242 192.168.1.5        23 -> 192.168.1.1     54224    54 inetd 
    0    242 192.168.1.5        23 <- 192.168.1.1     54224    54 inetd 
    0    242 192.168.1.5        23 <- 192.168.1.1     54224    78 inetd 
    0    242 192.168.1.5        23 -> 192.168.1.1     54224    54 inetd 
    0  20893 192.168.1.5        23 -> 192.168.1.1     54224   57 in.telnetd 
    0  20893 192.168.1.5        23 <- 192.168.1.1     54224   54 in.telnetd 
    0  20893 192.168.1.5        23 -> 192.168.1.1     54224   78 in.telnetd 
    0  20893 192.168.1.5        23 <- 192.168.1.1     54224   57 in.telnetd 
    0  20893 192.168.1.5        23 -> 192.168.1.1     54224   54 in.telnetd 
    0  20893 192.168.1.5        23 <- 192.168.1.1     54224   54 in.telnetd 
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We matched the correct process for the outbound finger command, and for the
inbound telnet connection, even as the socket file descriptor is passed from inetd
to in.telnetd.

Soon after tcpsnoop.d was written, a kernel update changed some of the
underlying functions it was tracing, and it stopped working. It was fixed but
stopped working again after another kernel update. So far, it has been broken sev-
eral times because of kernel updates.23 We have pointed out the dangers of using
the unstable fbt provider throughout this book; tcpsnoop.d is a prime example of
those dangers.

tcpsnoop.d has now been rewritten using the stable tcp provider and is shown
at the end of this script section. Until your operating system has the tcp provider,
treat the fbt-based tcpsnoop.d not as a script you can use as is but as a project with
sample solutions provided. The DTraceToolkit contains two versions: tcpsnoop.d
(which is currently still the fbt-based version) for some early versions of Solaris 10,
and tcpsnoop_snv.d (also fbt based) for recent versions of Solaris Nevada (snv).
There are plenty of Solaris 10 and OpenSolaris versions for which neither fbt-
based tcpsnoop.d version will work.

Here we will explain the tcpsnoop_snv.d script line by line, as an example of
advanced DTrace. Be warned: This is the longest, most difficult, and most brittle
script I’ve ever written; if any of those attributes are unacceptable, wait until the
tcp provider is available on your operating system, and use the tcp provider–based
version of this script instead.

Script: fbt Based

This is the full script for tcpsnoop_snv.d, with some comments from the header
truncated to save space. Because of its length and complexity, the script is pre-
sented in multiple sections. See the DTraceToolkit for the full version (and other
versions):

    0  20893 192.168.1.5       23 -> 192.168.1.1    54224    60 in.telnetd 
    0  20893 192.168.1.5       23 <- 192.168.1.1    54224    63 in.telnetd 
    0  20893 192.168.1.5       23 -> 192.168.1.1    54224    54 in.telnetd 
    0  20893 192.168.1.5       23 <- 192.168.1.1    54224    60 in.telnetd 
    0  20893 192.168.1.5       23 -> 192.168.1.1    54224    60 in.telnetd 
    0  20893 192.168.1.5       23 <- 192.168.1.1    54224    60 in.telnetd 
    0  20893 192.168.1.5       23 -> 192.168.1.1    54224    72 in.telnetd 
[...]

23. Many thanks to the DTrace community on dtrace-discuss@opensolaris.org who have posted
updates to tcpsnoop.d to keep it working on various kernel versions.
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The goal of lines 84 to 110 is to store process information (execname, pid, uid)
that can be retrieved during TCP function calls. A TCP connection event begins as
a network interrupt, at which point the accepting process is not on-CPU (it is
sleeping). Once the packet has been processed, the kernel switches to the target
process thread that was accepting the connection. At that point, the process infor-
mation (execname, pid, uid) for the connection is valid and can be stored for later
lookup. To wait for this to occur, tracing is performed in the socket layer, which is
assumed to be after the context switch back to the accepting thread:

1  #!/usr/sbin/dtrace -Cs 
[...]
19   * $Id: tcpsnoop_snv.d 69 2007-10-04 13:40:00Z brendan $ 
[...]
64   */ 
65
66  #pragma D option quiet 
67  #pragma D option switchrate=10hz 
68
69  #include <sys/file.h> 
70  #include <inet/common.h> 
71  #include <sys/byteorder.h>
72
73  /* 
74   * Print header 
75   */ 
76  dtrace:::BEGIN 
77  { 
78  /* print main headers */ 
79          printf("%5s %6s %-15s %5s %2s %-15s %5s %5s %s\n", 
80              "UID", "PID", "LADDR", "LPORT", "DR", "RADDR", "RPORT", 
81      "SIZE", "CMD"); 
82  } 
83

Script tcpsnoop_snv.d

84   /* 
85    * TCP Process inbound connections 
86    * 
87    * 0x00200000 has been hardcoded. It was SS_TCP_FAST_ACCEPT, but was 
88    * renamed to SS_DIRECT around build 31. 
89    */ 
90   fbt:sockfs:sotpi_accept:entry
91   /(arg1 & FREAD) && (arg1 & FWRITE) && (args[0]->so_state & 0x00200000)/ 
92   { 
93   self->sop = args[0]; 
94   } 
95
96   fbt:sockfs:sotpi_create:return
97   /self->sop/ 
98   { 
99 self->nsop = (struct sonode *)arg1; 
100  } 
101
102  fbt:sockfs:sotpi_accept:return
103  /self->nsop/ 
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The socket accept function is traced: sotpi_accept(). During sotpi_
accept(), a call to sotpi_create() will return a struct sonode for the socket,
which contains useful data. We can retrieve it by tracing sotpi_create:return
and saving the return value, arg1.

The useful data of struct sonode can be seen on lines 105 and 106, where a
conn_t pointer is retrieved from the socket node. The conn_t pointer is used as a
unique ID; specifically, the memory address of the conn_t is used as a unique ID.
No other conn_ts will refer (or can refer) to the same memory address at the same
time. conn_t is available in TCP functions, so it functions as a unique ID that can
bridge socket and TCP events.

This ID is used as a key in three associative arrays: tname, tpid, and tuid.
These translate the conn_t pointer address to the process execname, pid, and
uid, which will be retrieved from TCP later.

This stores the same associative arrays as before but for outbound TCP events.
This is a different code path and scenario and is approached differently. Here, we
assume that the correct process is still on-CPU by the time we reach tcp_connect().
At that point, the process information can be cached with the available conn_t
pointer. Processing socket events wasn’t needed (although if tcp_connect()

104  { 
105 this->tcpp = (tcp_t *)self->nsop->so_priv;
106          self->connp = (conn_t *)this->tcpp->tcp_connp;
107 tname[(int)self->connp] = execname; 
108  tpid[(int)self->connp] = pid; 
109  tuid[(int)self->connp] = uid; 
110  }

Script tcpsnoop_snv.d (continued)

111
112  fbt:sockfs:sotpi_accept:return
113  {
114    self->nsop = 0; 
115          self->sop = 0; 
116  }
117
118  /* 
119   * TCP Process outbound connections 
120   */ 
121  fbt:ip:tcp_connect:entry
122  {
123  this->tcpp = (tcp_t *)arg0; 
124          self->connp = (conn_t *)this->tcpp->tcp_connp;
125 tname[(int)self->connp] = execname; 
126  tpid[(int)self->connp] = pid; 
127  tuid[(int)self->connp] = uid; 
128  } 
Script tcpsnoop_snv.d (continued)
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changes in an update and can then occur outside process context, process informa-
tion will need to be passed from socket to TCP as for TCP inbound connections).

Lines 138 to 144 convert ports from network byte order to host byte order. This
was necessary for the script to work on both Solaris x86 and Solaris SPARC. We
can now use DTrace’s ntohs() function to do this.

129
130  /* 
131   * TCP Data translations 
132   */ 
133  fbt:sockfs:sotpi_accept:return,
134  fbt:ip:tcp_connect:return
135  /self->connp/ 
136  {
137  /* fetch ports */ 
138  #if defined(_BIG_ENDIAN)
139          self->lport = self->connp->u_port.tcpu_ports.tcpu_lport;
140          self->fport = self->connp->u_port.tcpu_ports.tcpu_fport;
141  #else 
142          self->lport = BSWAP_16(self->connp->u_port.tcpu_ports.tcpu_lport);
143          self->fport = BSWAP_16(self->connp->u_port.tcpu_ports.tcpu_fport);
144  #endif

Script tcpsnoop_snv.d (continued)

145
146 /* fetch IPv4 addresses */ 
147   this->fad12 =
148 (int)self->connp->connua_v6addr.connua_faddr._S6_un._S6_u8[12];
149   this->fad13 =
150 (int)self->connp->connua_v6addr.connua_faddr._S6_un._S6_u8[13];
151   this->fad14 =
152 (int)self->connp->connua_v6addr.connua_faddr._S6_un._S6_u8[14];
153   this->fad15 =
154 (int)self->connp->connua_v6addr.connua_faddr._S6_un._S6_u8[15];
155   this->lad12 =
156 (int)self->connp->connua_v6addr.connua_laddr._S6_un._S6_u8[12];
157   this->lad13 =
158 (int)self->connp->connua_v6addr.connua_laddr._S6_un._S6_u8[13];
159   this->lad14 =
160 (int)self->connp->connua_v6addr.connua_laddr._S6_un._S6_u8[14];
161   this->lad15 =
162 (int)self->connp->connua_v6addr.connua_laddr._S6_un._S6_u8[15];
163
164          /* convert type for use with lltostr() */ 
165 this->fad12 = this->fad12 < 0 ? 256 + this->fad12 : this->fad12; 
166 this->fad13 = this->fad13 < 0 ? 256 + this->fad13 : this->fad13; 
167 this->fad14 = this->fad14 < 0 ? 256 + this->fad14 : this->fad14; 
168 this->fad15 = this->fad15 < 0 ? 256 + this->fad15 : this->fad15; 
169 this->lad12 = this->lad12 < 0 ? 256 + this->lad12 : this->lad12; 
170 this->lad13 = this->lad13 < 0 ? 256 + this->lad13 : this->lad13; 
171 this->lad14 = this->lad14 < 0 ? 256 + this->lad14 : this->lad14; 
172 this->lad15 = this->lad15 < 0 ? 256 + this->lad15 : this->lad15; 
173
174 /* stringify addresses */ 
175          self->faddr = strjoin(lltostr(this->fad12), "."); 
176 self->faddr = strjoin(self->faddr, strjoin(lltostr(this->fad13), ".")); 
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Lines 147 to 182 retrieve and stringify IPv4 addresses. This script was written
before the inet_ntoa() function existed for DTrace, and so these conversions are
performed manually.

The stringified addresses and port numbers are saved in more associative
arrays for lookup later. The self-> (thread-local) variables aren’t used outside
this clause and really should be this-> (clause-local) variables. However, the ini-
tial version of DTrace didn’t allow clause-local variables to contain strings, so
thread-local variables were used instead.

Remember that we cached the addresses and ports for later lookup.

177 self->faddr = strjoin(self->faddr, strjoin(lltostr(this->fad14), ".")); 
178          self->faddr = strjoin(self->faddr, lltostr(this->fad15 + 0)); 
179          self->laddr = strjoin(lltostr(this->lad12), "."); 
180 self->laddr = strjoin(self->laddr, strjoin(lltostr(this->lad13), ".")); 
181 self->laddr = strjoin(self->laddr, strjoin(lltostr(this->lad14), ".")); 
182          self->laddr = strjoin(self->laddr, lltostr(this->lad15 + 0)); 

Script tcpsnoop_snv.d (continued)

183
184          /* fix direction and save values */
185 tladdr[(int)self->connp] = self->laddr;
186 tfaddr[(int)self->connp] = self->faddr;
187 tlport[(int)self->connp] = self->lport;
188 tfport[(int)self->connp] = self->fport;

Script tcpsnoop_snv.d (continued)

189
190          /* all systems go */
191  tok[(int)self->connp] = 1;

Script tcpsnoop_snv.d (continued)

192  }
193
194  /*
195   * TCP Clear connp
196   */
197  fbt:ip:tcp_get_conn:return
198  {
199    /* Q_TO_CONN */
200 this->connp = (conn_t *)arg1;
201  tok[(int)this->connp] = 0;
202  tpid[(int)this->connp] = 0;

continues
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conn_ts can be reused, which would leave stale data in the associative arrays
that are keyed by their addresses. To prevent this, the associative arrays are
cleared whenever conn_ts are first retrieved.

203  tuid[(int)this->connp] = 0;
204  tname[(int)this->connp] = 0;
205  }

Script tcpsnoop_snv.d (continued)

206
207  /*
208   * TCP Process "port closed"
209   */
210  fbt:ip:tcp_xmit_early_reset:entry
211  {
212 this->queuep = args[7]->tcps_g_q;
213          this->connp = (conn_t *)this->queuep->q_ptr;
214          this->tcpp = (tcp_t *)this->connp->conn_tcp;
215
216  /* split addresses */
217          this->ipha = (ipha_t *)args[1]->b_rptr;
218          this->fad15 = (this->ipha->ipha_src & 0xff000000) >> 24;
219          this->fad14 = (this->ipha->ipha_src & 0x00ff0000) >> 16;
220          this->fad13 = (this->ipha->ipha_src & 0x0000ff00) >> 8;
221          this->fad12 = (this->ipha->ipha_src & 0x000000ff);
222          this->lad15 = (this->ipha->ipha_dst & 0xff000000) >> 24;
223          this->lad14 = (this->ipha->ipha_dst & 0x00ff0000) >> 16;
224          this->lad13 = (this->ipha->ipha_dst & 0x0000ff00) >> 8;
225          this->lad12 = (this->ipha->ipha_dst & 0x000000ff);
226
227  /* stringify addresses */
228          self->faddr = strjoin(lltostr(this->fad12), ".");
229 self->faddr = strjoin(self->faddr, strjoin(lltostr(this->fad13), "."));
230 self->faddr = strjoin(self->faddr, strjoin(lltostr(this->fad14), "."));
231          self->faddr = strjoin(self->faddr, lltostr(this->fad15 + 0));
232          self->laddr = strjoin(lltostr(this->lad12), ".");
233 self->laddr = strjoin(self->laddr, strjoin(lltostr(this->lad13), "."));
234 self->laddr = strjoin(self->laddr, strjoin(lltostr(this->lad14), "."));
235          self->laddr = strjoin(self->laddr, lltostr(this->lad15 + 0));
236
237   self->reset = 1;
238  }
239
240  /*
241   * TCP Fetch "port closed" ports
242   */
243  fbt:ip:tcp_xchg:entry
244  /self->reset/
245  {
246  #if defined(_BIG_ENDIAN)
247  self->lport = (uint16_t)arg0;
248  self->fport = (uint16_t)arg1;
249  #else
250          self->lport = BSWAP_16((uint16_t)arg0);
251          self->fport = BSWAP_16((uint16_t)arg1);
252  #endif
253 self->lport = BE16_TO_U16(arg0);
254 self->fport = BE16_TO_U16(arg1);
255  }
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Lines 210 to 277 process inbound connections to closed ports (TCP returns RST).
This code exists only so that tcpsnoop.d can see attempted connections to closed
ports and print the inbound request and the outbound reset. These lines have bro-
ken in the past because of kernel updates where the tcp_xchg() function was
changed. A simple workaround was to delete these lines from tcpsnoop.d, if you
don’t care about seeing TCP RSTs. Another problem was only spotted during
review of this chapter; lines 253 and 254 overwrite the previous (correct) port val-
ues and should be dropped. (This may be evidence that long and complex D scripts
aren’t just difficult to maintain; they are difficult to get right in the first place.
This would have been easier to spot in a much shorter script.)

256
257  /*
258   * TCP Print "port closed"
259   */
260  fbt:ip:tcp_xmit_early_reset:return
261  {
262   self->name = "<closed>";
263          self->pid = 0;
264          self->uid = 0;
265          self->size = 54;  /* should check trailers */
266          self->dir = "<-";
267          printf("%5d %6d %-15s %5d %2s %-15s %5d %5d %s\n",
268              self->uid, self->pid, self->laddr, self->lport, self->dir,
269 self->faddr, self->fport, self->size, self->name);
270          self->dir = "->";
271          printf("%5d %6d %-15s %5d %2s %-15s %5d %5d %s\n",
272              self->uid, self->pid, self->laddr, self->lport, self->dir,
273 self->faddr, self->fport, self->size, self->name);
274   self->reset = 0;
275    self->size = 0;
276    self->name = 0;
277  }

Script tcpsnoop_snv.d (continued)

278
279  /* 
280   * TCP Process Write 
281   */ 
282  fbt:ip:tcp_send_data:entry
283  { 
284          self->conn_p = (conn_t *)args[0]->tcp_connp;
285  } 
286
287  fbt:ip:tcp_send_data:entry
288  /tok[(int)self->conn_p]/
289  { 
290          self->dir = "->"; 
291          self->size = msgdsize(args[2]) + 14;    /* should check trailers */ 
292 self->uid = tuid[(int)self->conn_p];
293          self->laddr = tladdr[(int)self->conn_p];
294          self->faddr = tfaddr[(int)self->conn_p];
295          self->lport = tlport[(int)self->conn_p];
296          self->fport = tfport[(int)self->conn_p];

continues
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Lines 282 to 306 process TCP sends. The tcp_send_data() function can
retrieve the conn_t pointer from its first argument, the args[0] tcp_t. Using
the conn_t pointer, the process information is retrieved from various associative
arrays and saved as thread-local variables for later printing.

Some minor notes: The comment on line 291 mentions checking trailers; this
should be mentioning padding, not trailers. And the + 14 adds the size of the
Ethernet header, which may be better coded as sizeof (struct ether_header),
because it both returns 14 and makes it obvious in the D program what this is
referring to. (However, the Ethernet header may be bigger with VLANs, which this
does not check for.)

There’s some special casing for inetd on lines 300 to 303 so that the process
that inetd hands to the connection is followed.

The +14 (line 314) adds the assumed size of the Ethernet header again so that
the output of tcpsnoop.d matches the output of snoop -S.

297    self->ok = 2; 
298
299          /* follow inetd -> in.* transitions */ 
300  self->name = pid && (tname[(int)self->conn_p] == "inetd") ? 
301   execname : tname[(int)self->conn_p];
302          self->pid = pid && (tname[(int)self->conn_p] == "inetd") ? 
303   pid : tpid[(int)self->conn_p];
304 tname[(int)self->conn_p] = self->name; 
305 tpid[(int)self->conn_p] = self->pid; 
306  } 

Script tcpsnoop_snv.d (continued)

   307 
   308  /* 
   309   * TCP Process Read 
   310   */ 
   311  fbt:ip:tcp_rput_data:entry
   312  { 
   313   self->conn_p = (conn_t *)arg0; 
   314  self->size = msgdsize(args[1]) + 14;    /* should check trailers */ 

Script tcpsnoop_snv.d (continued)

315  }
316
317  fbt:ip:tcp_rput_data:entry
318  /tok[(int)self->conn_p]/
319  {
320          self->dir = "<-";
321 self->uid = tuid[(int)self->conn_p];
322          self->laddr = tladdr[(int)self->conn_p];
323          self->faddr = tfaddr[(int)self->conn_p];
324          self->lport = tlport[(int)self->conn_p];
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For TCP receives, lines 311 to 335 retrieve the process and IP data for this con-
nection and store it in thread-local variables ready to print. It can be retrieved
since tcp_rput_data() has the conn_t as arg0, which is the key to various
associative arrays containing that data.

Some special casing exists for inetd on lines 329 to 332 so that we can follow
the process to which inetd hands the connection.

Lines 340 to 352 are a special case for the final ACK in an outbound TCP con-
nection. Since the packet is sent before the conn_t is fully initialized by the ker-
nel, this packet will not be picked up by the usual tracing based on conn_t. It is
printed here separately.

325          self->fport = tfport[(int)self->conn_p];
326    self->ok = 2;
327
328          /* follow inetd -> in.* transitions */
329  self->name = pid && (tname[(int)self->conn_p] == "inetd") ?
330   execname : tname[(int)self->conn_p];
331          self->pid = pid && (tname[(int)self->conn_p] == "inetd") ?
332    pid : tpid[(int)self->conn_p];
333 tname[(int)self->conn_p] = self->name;
334 tpid[(int)self->conn_p] = self->pid;
335  }

Script tcpsnoop_snv.d (continued)

336
337  /* 
338   * TCP Complete printing outbound handshake 
339   */ 
340  fbt:ip:tcp_connect:return
341  /self->connp/ 
342  { 
343 self->name = tname[(int)self->connp];
344 self->pid = tpid[(int)self->connp];
345 self->uid = tuid[(int)self->connp];
346          self->size = 54;  /* should check trailers */ 
347          self->dir = "->"; 
348 /* this packet occured before connp was fully established */ 
349          printf("%5d %6d %-15s %5d %2s %-15s %5d %5d %s\n", 
350              self->uid, self->pid, self->laddr, self->lport, self->dir, 
351 self->faddr, self->fport, self->size, self->name); 
352  } 

Script tcpsnoop_snv.d (continued)

353
354  /* 
355   * TCP Complete printing inbound handshake 
356   */ 
357  fbt:sockfs:sotpi_accept:return
358  /self->connp/ 

continues
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Lines 357 to 377 traces the TCP handshake for inbound connections, which
became a complex problem: The accepting process doesn’t step on-CPU until the
handshake is complete. Since that’s the case, how do we print out earlier lines for
the TCP packets if we don’t yet have the process information cached from the
socket layer?

The answer was to cheat: A complete three-way handshake is printed when the
third packet is received, and sotpi_accept() returns. Since we know that this
connection was established, we can guess that the earlier two packets were the
SYN and SYN|ACK and print them with the now-available process information.

Lines 387 to 389 print a line of output for this TCP I/O. Most of the TCP send/
receives are printed by this section of code.

Finally, we clean up variables used earlier. 

359  { 
360 self->name = tname[(int)self->connp];
361 self->pid = tpid[(int)self->connp];
362 self->uid = tuid[(int)self->connp];
363          self->size = 54;  /* should check trailers */ 
364          /* these packets occured before connp was fully established */ 
365          self->dir = "<-"; 
366          printf("%5d %6d %-15s %5d %2s %-15s %5d %5d %s\n", 
367              self->uid, self->pid, self->laddr, self->lport, self->dir, 
368 self->faddr, self->fport, self->size, self->name); 
369          self->dir = "->"; 
370          printf("%5d %6d %-15s %5d %2s %-15s %5d %5d %s\n", 
371              self->uid, self->pid, self->laddr, self->lport, self->dir, 
372 self->faddr, self->fport, self->size, self->name); 
373          self->dir = "<-"; 
374          printf("%5d %6d %-15s %5d %2s %-15s %5d %5d %s\n", 
375              self->uid, self->pid, self->laddr, self->lport, self->dir, 
376 self->faddr, self->fport, self->size, self->name); 
377  } 

Script tcpsnoop_snv.d (continued)

378
379  /* 
380   * Print output 
381   */ 
382  fbt:ip:tcp_send_data:entry,
383  fbt:ip:tcp_rput_data:entry
384  /self->ok == 2/ 
385  { 
386  /* print output line */ 
387          printf("%5d %6d %-15s %5d %2s %-15s %5d %5d %s\n", 
388              self->uid, self->pid, self->laddr, self->lport, self->dir, 
389 self->faddr, self->fport, self->size, self->name); 
390  } 

Script tcpsnoop_snv.d (continued)
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As you can see, we’ve gone to a lot of effort to ensure that tcpsnoop.d traces
every packet, even those that may not be interesting (TCP handshakes, RSTs) so
that the output matches, line by line, the output of snoop. Was the effort worth it?
Some of the extra code has made tcpsnoop.d more brittle during kernel updates.
The key problem that tcpsnoop.d can solve is to identify processes responsible
for network packets, which it can do without tracing TCP handshakes or TCP
RSTs. 

Script: tcp-Based

The following is tcpsnoop.d, written using the stable tcp provider. This version is
shipped under /usr/demo/dtrace in Solaris Nevada (which will become OpenSolaris):

391
392  /* 
393   * TCP Clear connect variables 
394   */ 
395  fbt:sockfs:sotpi_accept:return,
396  fbt:ip:tcp_connect:return
397  /self->connp/ 
398  { 
399   self->faddr = 0; 
400   self->laddr = 0; 
401   self->fport = 0; 
402   self->lport = 0; 
403   self->connp = 0; 
404    self->name = 0; 
405          self->pid = 0; 
406          self->uid = 0; 
407  } 
408
409  /* 
410   * TCP Clear r/w variables 
411   */ 
412  fbt:ip:tcp_send_data:entry,
413  fbt:ip:tcp_rput_data:entry
414  { 
415    self->ok = 0; 
416          self->dir = 0; 
417          self->uid = 0; 
418          self->pid = 0; 
419    self->size = 0; 
420    self->name = 0; 
421   self->lport = 0; 
422   self->fport = 0; 
423   self->laddr = 0; 
424   self->faddr = 0; 
425   self->conn_p = 0; 
426  }

Script tcpsnoop_snv.d

1  #!/usr/sbin/dtrace -s
2  /*
[...header truncated...]
36  */

continues
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Obviously this is a much shorter script and one that will continue to work with
kernel updates. Note that this version does not trace the inetd process hand-off.
In the six years that have passed since the original tcpsnoop.d was written, the
inetd process has become less frequently used in production systems (for exam-
ple, sshd instead of in.telnetd, proftpd instead of in.ftpd, and so on), and
the extra complexity of tracing inetd may no longer be important. It can always
be added again if needed.

Another difference is that the execname is lost from the output, which only con-
tains the PID. There currently isn’t a simple and stable way to fix this, such as a D
function or array for converting a PID to the execname; if and when there is, this
script can be updated. If this was desired in the meantime, other techniques can be
used (such as caching pid to execname mappings in an associative array or dig-
ging it out of kernel structures).

37
38 #pragma D option quiet
39 #pragma D option switchrate=10hz
40
41 dtrace:::BEGIN
42 {
43         printf("%6s %6s %15s:%-5s  %15s:%-5s %6s %s\n",
44             "TIME", "PID", "LADDR", "PORT", "RADDR", "PORT", "BYTES", "FLAGS");
45 }
46
47 tcp:::send
48 {
49         this->length = args[2]->ip_plength - args[4]->tcp_offset;
50         printf("%6d %6d %15s:%-5d  ->  %15s:%-5d %6d (",
51 timestamp/1000, args[1]->cs_pid, args[2]->ip_saddr,
52             args[4]->tcp_sport, args[2]->ip_daddr, args[4]->tcp_dport,
53      this->length);
54 }
55
56 tcp:::receive
57 {
58         this->length = args[2]->ip_plength - args[4]->tcp_offset; 
59         printf("%6d %6d %15s:%-5d  <-  %15s:%-5d %6d (",
60 timestamp/1000, args[1]->cs_pid, args[2]->ip_daddr,
61             args[4]->tcp_dport, args[2]->ip_saddr, args[4]->tcp_sport,
62      this->length);
63 }
64
65 tcp:::send,
66 tcp:::receive
67 {
68 printf("%s", args[4]->tcp_flags & TH_FIN ? "FIN|" : "");
69 printf("%s", args[4]->tcp_flags & TH_SYN ? "SYN|" : "");
70 printf("%s", args[4]->tcp_flags & TH_RST ? "RST|" : "");
71 printf("%s", args[4]->tcp_flags & TH_PUSH ? "PUSH|" : "");
72 printf("%s", args[4]->tcp_flags & TH_ACK ? "ACK|" : "");
73 printf("%s", args[4]->tcp_flags & TH_URG ? "URG|" : "");
74 printf("%s", args[4]->tcp_flags & TH_ECE ? "ECE|" : "");
75 printf("%s", args[4]->tcp_flags & TH_CWR ? "CWR|" : "");
76         printf("%s", args[4]->tcp_flags == 0 ? "null " : "");
77         printf("\b)\n");
78 }

Script tcpsnoop.d
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UDP Scripts

The User Datagram Protocol (RFC 768) is a simple protocol for use by applications
that do not require the reliability (and overhead) that TCP (or SCTP) provides.
Scripts can be written to trace UDP using the udp provider (if available) and the
mib and syscall providers for an idea of UDP usage across the system. To examine
the internal operation of UDP in the network stack, the unstable fbt provider can
be used.

udp provider

Listing udp provider probes (Solaris Nevada, circa June 2010) yields the following:

The provider is simple, like UDP itself: It has probes only for send and receive.
An example of using these is given in the scripts that follow.

The udp provider is one of the newest (integrated into Solaris Nevada build 142)
and may not be available in your operating system. If not, UDP events can be
traced in the kernel using the mib provider (if available) and the fbt provider. 

fbt Provider

fbt is an unstable interface: It exports kernel functions and data structures that
may change from release to release. However, it does offer complete observability
into the internals of UDP in the network stack and may be used if the udp pro-
vider is not available or does not provide the visibility desired.

Listing the fbt probes for udp functions on Solaris Nevada, circa December 2009
(we are deliberately switching to an older Solaris version, before the udp provider
was available):

solaris# dtrace -ln udp::: 
   ID   PROVIDER   MODULE              FUNCTION NAME
14125        udp        ip                udp_send send
14126        udp          ip    udp_output_newdst send
14127        udp        ip                udp_wput send
14128        udp          ip   udp_output_lastdst send
14129        udp           ip  udp_output_connected send
14130        udp           ip  udp_output_ancillary send
14138        udp        ip     udp_input receive

solaris# dtrace -ln 'fbt::udp_*:' 
   ID   PROVIDER    MODULE               FUNCTION NAME 
56675        fbt           ip  udp_conn_constructor entry 
56676        fbt           ip  udp_conn_constructor return 
56677        fbt          ip  udp_conn_destructor entry 
56678        fbt          ip  udp_conn_destructor return 
57272        fbt           ip        udp_get_next_priv_port entry 

continues
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One hundred fifty-four probes were listed for tracing the internals of UDP on
this kernel version.

To get an idea of the udp functions at play, we’ll count probes that fire with a
load of 10,000 1KB UDP writes:

The functions with higher counts (in the 10,000s) are likely to be those process-
ing I/O and those with lower counts (less than 10) are those that initiate the ses-
sion. Perform this experiment in the opposite direction (or trace on the remote
host) to see the UDP receive side.

The relationship between these functions can be illustrated by examining stack
traces, as shown in the “fbt Provider” section. Another way to learn the fbt probes
is to map known mib events to the fbt functions, as demonstrated in the “mib Pro-
vider” section. And of course, if the source is available, it provides the best refer-
ence for the fbt probes and arguments.

udpstat.d

Various UDP statistics are traced from the mib provider and printed every second,
similarly to the ipstat.d script:

57273        fbt           ip        udp_get_next_priv_port return 
57274        fbt           ip  udp_bind_hash_report entry 
57275        fbt           ip  udp_bind_hash_report return 
[...truncated...]

solaris# dtrace -n 'fbt::udp_*:entry { @[probefunc] = count(); }' 
dtrace: description 'fbt::udp_*:entry ' matched 77 probes 
^C

  udp_bind                    1 
  udp_bind_ack                      1 
  udp_bind_hash_insert                     1 
  udp_bind_result                     1 
  udp_update_next_port                     1 
  udp_capability_req                      2 
  udp_copy_info                      2 
  udp_bind_hash_remove                     4 
  udp_close                       4 
  udp_close_free                     4 
  udp_conn_constructor                     4 
  udp_conn_destructor                    4 
  udp_open                    4 
  udp_openv4                      4 
  udp_quiesce_conn                     4 
  udp_rcv_drain                      4 
  udp_set_rcv_hiwat                    4 
  udp_wput_iocdata                     9 
  udp_wput_other                    16 
  udp_output_v4                   10006 
  udp_send_data                   10006 
  udp_xmit                  10006 
  udp_wput                  10022 
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Script

A variable called line is used to track when to reprint the header. This happens
every 20 lines; without it, the screen could fill with numbers and become difficult
to follow.

Line 29 uses a multiple aggregation printa() to generate the output. If none of
those aggregations contained data at this point, no output will be generated:
printa() skips printing when all of its aggregations arguments are empty. Once
some UDP events have occurred, the aggregations are cleared on line 29—and not
truncated—so that they still contain data (albeit zero), which ensures that
printa() will print something out (and then continue to do so every second), even
if that is entirely zeros.

Example

This example output caught a Web browser loading a Web site and the UDP-based
DNS queries that were performed:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7  LINES = 20; line = 0; 
8   } 
9
10  profile:::tick-1sec 
11  /--line <= 0/ 
12  { 
13          printf("  UDP:    %12s %12s %12s %12s %12s\n", "out(bytes)", 
14  "outErrors", "in(bytes)", "inErrors", "noPort"); 
15   line = LINES; 
16  } 
17
18  mib:::udp*InDatagrams   { @in = sum(arg0);      } 
19  mib:::udp*OutDatagrams  { @out = sum(arg0);     } 
20  mib:::udpInErrors   { @inErr = sum(arg0);   } 
21  mib:::udpInCksumErrs  { @inErr = sum(arg0);   } 
22  mib:::udpOutErrors   { @outErr = sum(arg0);  } 
23  mib:::udpNoPorts    { @noPort = sum(arg0);  } 
24
25  profile:::tick-1sec 
26  { 
27          printa("       %@12d %@12d %@12d %@12d %@12d\n", 
28  @out, @outErr, @in, @inErr, @noPort); 
29 clear(@out); clear(@outErr); clear(@in); clear(@inErr); clear(@noPort); 
30  } 

Script udpstat.d



ptg

520 Chapter 6 � Network Lower-Level Protocols

udpio.d

The udpio.d script demonstrates the udp provider send and receive probes. 

Script

This D script is about as simple as they come: probes and printf() statements.

Example

This system has an older prototype of the UDP provider. To get this script to work,
the arguments had to be adjusted (args[1] instead of args[2] and args[2]
instead of args[4]). A dtrace -lvn udp::: will show what version of the pro-
vider you have (if you have the udp provider): 

solaris# udpstat.d
  UDP:      out(bytes)  outErrors    in(bytes)  inErrors       noPort 
                     0          0            1           0            0 
                     6          0            6           0            0 
                     2          0            2           0            0 
                     0          0            0           0            0 
                     0          0            0           0            0 
                     4          0            4           0            0 
                     0          0            1           0            0 
                     0          0            0           0            0 
[...]

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8 printf("%-3s  %15s:%-5s   %15s:%-5s  %6s\n", "CPU", 
9  "LADDR", "PORT", "RADDR", "PORT", "IPLEN"); 
10  } 
11
12  udp:::send 
13  { 
14          printf("%-3d  %15s:%-5d  -> %15s:%-5d  %6d\n", cpu, 
15   args[2]->ip_saddr, args[4]->udp_sport, 
16              args[2]->ip_daddr, args[4]->udp_dport, args[2]->ip_plength);
17  } 
18
19  udp:::receive 
20  { 
21          printf("%-3d  %15s:%-5d  <- %15s:%-5d  %6d\n", cpu, 
22   args[2]->ip_daddr, args[4]->udp_dport, 
23              args[2]->ip_saddr, args[4]->udp_sport, args[2]->ip_plength);
24  } 

Script udpio.d



ptg

Scripts 521

Various UDP packets were observed, beginning with a DNS query to host
192.168.1.5 port 53 (DNS). The inbound UDP packets to the IPv4 broadcast
address 255.255.255.255 are DHCP/BOOTP discover. 

This script does support IPv6 (it’s the udp provider that does), but the output
can get shuffled with the longer IPv6 address names.

ICMP Scripts

The Internet Control Message Protocol (ICMP) communicates errors and control
messages between hosts to serve a variety of needs of the IP protocol, including
sending information about invalid routes. There is currently no stable ICMP pro-
vider; however, one is planned in the Network Providers collection. Until a stable
ICMP provider exists, ICMP can be traced using the fbt provider.

icmpstat.d

The icmpstat.d script prints ICMP statistics every second, gathered from what
is available in the mib provider. 

Script

ICMP probes are identified on line 5 by matching all mib probes that are in func-
tions beginning with icmp_. This works well for now; however, if ICMP is pro-
cessed outside of icmp functions, this technique will not match them. The only
certain way to match every mib ICMP probe is to list their probe names one by
one.

solaris# udpio.d
CPU            LADDR:PORT      RADDR:PORT    IPLEN 
0      192.168.2.145:48912  ->      192.168.1.5:53         37 
8      192.168.2.145:48912  <-      192.168.1.5:53        209 
0      192.168.2.145:62535  ->      192.168.1.5:53         37 
8      192.168.2.145:62535  <-      192.168.1.5:53        209 
0    255.255.255.255:67     <-  0.0.0.0:68        308 
7    255.255.255.255:67     <-  0.0.0.0:68        308 
8    255.255.255.255:67     <-  0.0.0.0:68        308 
8      192.168.2.145:34032  <-      192.168.1.5:53        117 
8      192.168.2.145:58650  <-      192.168.1.5:53        102 
8      192.168.2.145:62397  <-      192.168.1.5:53         96 
12     192.168.2.145:34032  ->      192.168.1.5:53         42 
12     192.168.2.145:58650  ->      192.168.1.5:53         58 
12     192.168.2.145:62397  ->      192.168.1.5:53         55 
8      192.168.3.255:137    <-    192.168.1.137:59351      58 
8      192.168.3.255:137    <-    192.168.1.137:52788      58 
8      192.168.3.255:137    <-    192.168.1.137:59351      58 
8      192.168.3.255:137    <-    192.168.1.137:52788      58 
8      192.168.3.255:137    <-    192.168.1.137:59351      58 
8      192.168.3.255:137    <-    192.168.1.137:52788      58 
^C
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Example

The first output at 03:23:38 shows the mib probes that fired during an outbound
ping request; the second at 03:23:39 is an inbound ping.

icmpsnoop.d

The icmpsnoop.d script traces ICMP events live. It uses the fbt provider, which
instruments a particular operating system and version, and so this script may
require modifications to match the version you are using. This script was written
for OpenSolaris, circa December 2009.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   mib::icmp_*: 
6   { 
7  @icmp[probename] = sum(arg0); 
8   } 
9
10  profile:::tick-1sec 
11  { 
12 printf("\n%Y:\n\n", walltimestamp);
13          printf("  %32s %8s\n", "STATISTIC", "VALUE"); 
14          printa("  %32s %@8d\n", @icmp); 
15          trunc(@icmp); 
16  } 

Script icmpstat.d

solaris# icmpstat.d

2010 Jan  6 03:23:38: 

        STATISTIC    VALUE 
    icmpInEchoReps        1 

      icmpInMsgs        1 
  rawipInDatagrams       1 

  rawipOutDatagrams       1 

2010 Jan  6 03:23:39: 

        STATISTIC    VALUE 
     icmpInEchos        1 
      icmpInMsgs        1 

   icmpOutEchoReps        1 
     icmpOutMsgs        1 

2010 Jan  6 03:23:40: 

        STATISTIC    VALUE 
^C
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Script

While an ICMP receive function exists, icmp_inbound(), on this version of Open-
Solaris there is no equivalent for sending (no icmp_outbound()). To see the sent
ICMP packets, the type of protocol is checked in one of the later functions in the IP
code path (later so that more of the fields are populated). This function, ip_xmit_
v4(), is bypassed for faster TCP traffic, so this script isn’t tracing all sends to pick
out ICMP, only the slow path ones:

1   #!/usr/sbin/dtrace -Cs 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   #define IPPROTO_ICMP            1 
7   #define IPH_HDR_LENGTH(iph)     (((struct ip *)(iph))->ip_hl << 2) 
8
9   dtrace:::BEGIN 
10  { 
11          /* See RFC792 and ip_icmp.h */ 
12  icmptype[0] = "ECHOREPLY";
13   icmptype[3] = "UNREACH"; 
14   icmpcode[3, 0] = "NET"; 
15   icmpcode[3, 1] = "HOST"; 
16  icmpcode[3, 2] = "PROTOCOL"; 
17   icmpcode[3, 3] = "PORT"; 
18  icmpcode[3, 4] = "NEEDFRAG"; 
19  icmpcode[3, 5] = "SRCFAIL"; 
20  icmpcode[3, 6] = "NET_UNKNOWN"; 
21  icmpcode[3, 7] = "HOST_UNKNOWN"; 
22  icmpcode[3, 8] = "ISOLATED"; 
23  icmpcode[3, 9] = "NET_PROHIB"; 
24  icmpcode[3, 10] = "HOST_PROHIB"; 
25  icmpcode[3, 11] = "TOSNET"; 
26  icmpcode[3, 12] = "TOSHOST"; 
27  icmpcode[3, 13] = "FILTER_PROHIB"; 
28 icmpcode[3, 14] = "HOST_PRECEDENCE";
29 icmpcode[3, 15] = "PRECEDENCE_CUTOFF";
30  icmptype[4] = "SOURCEQUENCH";
31   icmptype[5] = "REDIRECT"; 
32   icmpcode[5, 0] = "NET"; 
33   icmpcode[5, 0] = "HOST"; 
34  icmpcode[5, 0] = "TOSNET"; 
35  icmpcode[5, 0] = "TOSHOST"; 
36   icmptype[8] = "ECHO"; 
37  icmptype[9] = "ROUTERADVERT";
38  icmpcode[9, 0] = "COMMON"; 
39  icmpcode[9, 16] = "NOCOMMON"; 
40 icmptype[10] = "ROUTERSOLICIT";
41  icmptype[11] = "TIMXCEED"; 
42  icmpcode[11, 0] = "INTRANS"; 
43  icmpcode[11, 1] = "REASS"; 
44  icmptype[12] = "PARAMPROB"; 
45 icmpcode[12, 1] = "OPTABSENT"; 
46 icmpcode[12, 2] = "BADLENGTH"; 
47  icmptype[13] = "TSTAMP"; 
48  icmptype[14] = "TSTAMPREPLY"; 
49  icmptype[15] = "IREQ"; 

continues
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Most of this script is the icmptype and icmpcode associative arrays. Once a
stable ICMP provider exists, these should be part of a translator in /usr/lib/
dtrace/icmp.d, which will also pick out IP addresses and other fields of inter-
est, making the icmpsnoop.d script much, much shorter (probably fewer than ten
lines).

An icmp provider will also make this script much more stable. This script cur-
rently traces the IP implementation using fbt, and the IP implementation changes
fairly frequently. This script will require regular maintenance to keep it working
after software updates. 

50  icmptype[16] = "IREQREPLY"; 
51  icmptype[17] = "MASKREQ"; 
52  icmptype[18] = "MASKREPLY"; 
53
54          printf("%-20s  %-12s %1s %-15s %-15s %s\n", "TIME", "PROCESS", "D", 
55    "REMOTE", "TYPE", "CODE"); 
56  } 
57
58  fbt::icmp_inbound:entry
59  { 
60   this->mp = args[1]; 
61 this->ipha = (ipha_t *)this->mp->b_rptr;
62          /* stringify manually if inet_ntoa() unavailable */ 
63          this->addr = inet_ntoa(&this->ipha->ipha_src);
64    this->dir = "<"; 
65  } 
66
67  fbt::ip_xmit_v4:entry 
68  /arg4 && args[4]->conn_ulp == IPPROTO_ICMP/ 
69  { 
70   this->mp = args[0]; 
71 this->ipha = (ipha_t *)this->mp->b_rptr;
72          /* stringify manually if inet_ntoa() unavailable */ 
73          this->addr = inet_ntoa(&this->ipha->ipha_dst);
74    this->dir = ">"; 
75  } 
75
77  fbt::icmp_inbound:entry,
78  fbt::ip_xmit_v4:entry 
79  /this->dir != NULL/ 
80  { 
81          this->iph_hdr_length = IPH_HDR_LENGTH(this->ipha);
82  this->icmph = (icmph_t *)&this->mp->b_rptr[(char)this->iph_hdr_length];
83 this->type = this->icmph->icmph_type;
84 this->code = this->icmph->icmph_code;
85          this->typestr = icmptype[this->type] != NULL ? 
86   icmptype[this->type] : lltostr(this->type); 
87          this->codestr = icmpcode[this->type, this->code] != NULL ? 
88 icmpcode[this->type, this->code] : lltostr(this->code);
89
90          printf("%-20Y  %-12.12s %1s %-15s %-15s %s\n", walltimestamp, execname, 
91              this->dir, this->addr, this->typestr, this->codestr); 
92  } 

Script icmpsnoop.d
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Example

Here the icmpsnoop.d script picked up various ICMP packets that were received
and sent on any of the interfaces on the system: 

Note that in the final two lines for a loopback ping, only inbound packets were
observed. This is one peculiarity of loopback tracing: The kernel will skip code
paths, because it knows it can deliver locally.

There are a few advantages of using DTrace for this data, instead of a packet
sniffer like tcpdump(1) or snoop(1M).

Trace across all network interfaces simultaneously, including loopback.

Process name available for sent packets. 

Output can be customized.

Packet sniffers trace all packets sent and received (and all packets seen by 
the interface when using promiscuous mode), which can adversely affect per-
formance.

solaris# icmpsnoop.d
TIME  PROCESS      D REMOTE          TYPE            CODE 
2010 Jan 16 08:29:18  ping         > 192.168.1.3   ECHO            0 
2010 Jan 16 08:29:18  sched       < 192.168.1.3   ECHOREPLY       0 
2010 Jan 16 08:29:19  ping         > 192.168.1.3   ECHO            0 
2010 Jan 16 08:29:19  sched       < 192.168.1.3   ECHOREPLY       0 
2010 Jan 16 08:29:21  sched        < 10.1.2.3    UNREACH         HOST 
2010 Jan 16 08:29:22  sched        < 10.1.2.3    UNREACH         HOST 
2010 Jan 16 08:29:25 in.routed    < 10.1.2.3        ECHOREPLY       0 
2010 Jan 16 08:29:25 in.routed    < 10.1.2.3        ECHOREPLY       0 
2010 Jan 16 08:29:25 in.routed    < 10.1.2.3        ECHOREPLY       0 
2010 Jan 16 08:29:25 in.routed    < 10.1.2.3        ECHOREPLY       0 
2010 Jan 16 08:29:25 in.routed    < 10.1.2.3        ECHOREPLY       0 
2010 Jan 16 08:29:27  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:27  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:27  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:27  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:27  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:30  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:30  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:30  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:30  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:30  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:33  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:33  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:33  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:33  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:33  in.routed    > 224.0.0.2     ROUTERSOLICIT   0 
2010 Jan 16 08:29:51 sched        < 192.168.1.109   ECHO          0 
2010 Jan 16 08:29:51  sched        < 192.168.1.109   ECHOREPLY       0 
2010 Jan 16 08:40:39  ping         < 127.0.0.1   ECHO            0 
2010 Jan 16 08:40:39  ping       < 127.0.0.1    ECHOREPLY       0 
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superping.d

The superping.d script provides a closer measure of network round-trip time
(latency) for ICMP echo request/reply. It does this by piggybacking on the ping
command and measuring packet times within the network stack and by doing so
excluding the extra time spent context switching and thread scheduling the ping
application. This extra time is normally included in the times that ping reports,
which can lead to erratic results: 

(This is the Solaris version of ping, which requires -s for it to continually ping
the target.) 

manta is a nearby host; is the network latency really between 0.2 ms and 1.0 ms?
DTrace can be used to check how ping gets its times. It’s likely to be calling one

of the standard system time functions, like gethrtime() or gettimeofday():

solaris# ping -ns manta 
PING manta (192.168.1.188): 56 data bytes 
64 bytes from 192.168.1.188: icmp_seq=0. time=1.040 ms 
64 bytes from 192.168.1.188: icmp_seq=1. time=0.235 ms 
64 bytes from 192.168.1.188: icmp_seq=2. time=0.950 ms 
64 bytes from 192.168.1.188: icmp_seq=3. time=0.249 ms 
64 bytes from 192.168.1.188: icmp_seq=4. time=0.236 ms 
[...]

solaris# dtrace -x switchrate=10hz -n 'BEGIN { self->last = timestamp; } 
pid$target::gettimeofday:entry { trace(timestamp - self->last); ustack(); 
self->last = timestamp; }' -c 'ping -ns manta' 
dtrace: description 'BEGIN ' matched 3 probes 
PING manta (192.168.1.188): 56 data bytes 
[...]

64 bytes from 192.168.1.188: icmp_seq=3. time=0.184 ms 
  8  95992   gettimeofday:entry       999760002 

    libc.so.1`gettimeofday 
    ping`pinger+0x140 
   ping`send_scheduled_probe+0x1a1
   ping`sigalrm_handler+0x2a
   libc.so.1`__sighndlr+0x15
  libc.so.1`call_user_handler+0x2af

   libc.so.1`sigacthandler+0xdf
    libc.so.1`__pollsys+0x7
    libc.so.1`pselect+0x199
    libc.so.1`select+0x78 
   ping`recv_icmp_packet+0xec
    ping`main+0x947 
    ping`_start+0x7d 

  8  95992 gettimeofday:entry       184488 
    libc.so.1`gettimeofday 
    ping`check_reply+0x27 
   ping`recv_icmp_packet+0x216
    ping`main+0x947 
    ping`_start+0x7d 

[...]
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Here the output from ping and DTrace are mixed. The ping output claimed the
ICMP echo time was 0.184 ms; this was measured from DTrace as 184488 ns,
which is consistent (the 999760002 ns time was the pause time between pings). We
can see the user stack trace that led to ping calling gettimeofday().

The point here is that ping isn’t measuring the time from when the ICMP echo
request left the interface to when an ICMP echo reply arrived; rather, ping is mea-
suring the time from when it sent the ICMP packet on the TCP/IP stack to when
the ping command was rescheduled and put back on-CPU to receive the reply. 

Script

This is a simple script based on the mib provider on Solaris, which works on the
following assumption: The first ICMP packet received after ping sends an ICMP
packet must be the reply (it doesn’t check to confirm): 

The script does not explicitly print out the @a and @q aggregations; that will
happen automatically when the script ends.

Example

A host on the local LAN was pinged. Here, ping is executed standalone for
comparison:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   mib:::rawipOutDatagrams
7   /pid == $target/ 
8   { 
9   start = timestamp; 
10  } 
11
12  mib:::icmpInEchoReps 
13  /start/ 
14  { 
15          this->delta = (timestamp - start) / 1000; 
16          printf("dtrace measured: %d us\n", this->delta); 
17          @a["\n  ICMP packet delta average (us):"] = avg(this->delta); 
18          @q["\n  ICMP packet delta distribution (us):"] = 
19   lquantize(this->delta, 0, 1000000, 100); 
20          start = 0; 
21  } 

Script superping.d

solaris# ping -ns manta 10 10 
PING manta (192.168.1.188): 10 data bytes 
18 bytes from 192.168.1.188: icmp_seq=0. time=0.243 ms 

continues
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ping reported that the average round-trip time (on the last line) was 267 us.
Now the superping.d script is used. The -c option runs the ping command

and provides the process ID as $target for use on line 7: 

Disregard the output from ping in this case, which is mixed up with the output
of DTrace. ping also now reports the average time as 477 us, because DTrace is
adding to the overhead; this is why we ran ping standalone earlier. 

superping.d showed that the average time from outbound ICMP to inbound
ICMP was 124 us. The ping command earlier showed the average was 267 us (see

18 bytes from 192.168.1.188: icmp_seq=1. time=0.268 ms 
18 bytes from 192.168.1.188: icmp_seq=2. time=0.275 ms 
18 bytes from 192.168.1.188: icmp_seq=3. time=0.308 ms 
18 bytes from 192.168.1.188: icmp_seq=4. time=0.278 ms 
18 bytes from 192.168.1.188: icmp_seq=5. time=0.268 ms 
18 bytes from 192.168.1.188: icmp_seq=6. time=0.345 ms 
18 bytes from 192.168.1.188: icmp_seq=7. time=0.241 ms 
18 bytes from 192.168.1.188: icmp_seq=8. time=0.243 ms 
18 bytes from 192.168.1.188: icmp_seq=9. time=0.205 ms 

----manta PING Statistics----
10 packets transmitted, 10 packets received, 0% packet loss 
round-trip (ms) min/avg/max/stddev = 0.205/0.267/0.345/0.039

solaris# superping.d -c 'ping -s manta 56 8' 
PING manta: 56 data bytes 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=0. time=0.571 ms 
dtrace measured: 192 us 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=1. time=0.232 ms 
dtrace measured: 190 us 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=2. time=0.475 ms 
dtrace measured: 144 us 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=3. time=0.499 ms 
dtrace measured: 155 us 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=4. time=0.535 ms 
dtrace measured: 150 us 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=5. time=0.554 ms 
dtrace measured: 194 us 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=6. time=0.513 ms 
dtrace measured: 187 us 
64 bytes from manta.sf.fishpong.com (192.168.1.188): icmp_seq=7. time=0.436 ms 

----manta PING Statistics----
8 packets transmitted, 8 packets received, 0% packet loss 
round-trip (ms) min/avg/max/stddev = 0.232/0.477/0.571/0.108
dtrace measured: 108 us 

  ICMP packet delta average (us):               165 

  ICMP packet delta distribution (us):
           value  ------------- Distribution ------------- count
               0 |              0
             100 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 8
             200 |                   0 
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the last line beginning in round-trip). This means there is about 100 us of over-
head included in the time as reported by ping.

To get a more accurate reading, the commands were repeated with a count of
1,000 echo requests, instead of 10. Standalone ping averaged 697 us: 

The ping’s average time of 697 us was inflated by a few long responses; the
maximum shown in the summary was 106.262 ms. This long latency is likely
because of higher-priority threads running on all CPUs, leaving the ping com-
mand waiting on a dispatcher queue. DTrace can trace dispatcher queue activity if
desired.

XDR Scripts

As shown in the seven-layer OSI model in Figure 6-1, a Presentation layer exists
between Session and Application. In this book, there are many examples of Ses-
sion tracing (sockets) and Application tracing (NFS, CIFS, and so on). This section
shows the Presentation layer tracing of XDR using the (unstable) fbt provider.
XDR is used in particular by NFS/RPC.

xdrshow.d 

The xdrshow.d script counts XDR function calls on Solaris and shows the process
name along with the calling function from the kernel.

Script

On this version of Solaris, XDR function calls begin with xdr_, which makes
matching them in a probe definition easy:

----manta PING Statistics----
1000 packets transmitted, 1000 packets received, 0% packet loss 
round-trip (ms)  min/avg/max/stddev = 0.088/0.697/106.262/4.606
superping.d averaged 115 us: 
  ICMP packet delta average (us):                115 

  ICMP packet delta distribution (us): 
           value ------------- Distribution ------------- count 
             < 0 |                   0 
               0 |@@@@@@@@@@@@               307 

 100 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@             690 
             200 |                   3 
             300 |                   0

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 

continues
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This script demonstrates func(caller) on line 12, which returns the kernel func-
tion name for the function that called the current one (next function on the stack).

Example

A client performed a streaming read over NFSv3, while xdrshow.d traced which
XDR functions were called and by whom: 

At the bottom of the output we see unsigned int (xdr_u_int) and unsigned
longlong (xdr_u_longlong_t) XDR functions being called by nfs READ3args

4
5   dtrace:::BEGIN 
6   { 
7  printf("Tracing XDR calls... Hit Ctrl-C to end.\n"); 
8   } 
9
10  fbt::xdr_*:entry 
11  { 
12          @num[execname, func(caller), probefunc] = count(); 
13  } 
14
15  dtrace:::END 
16  { 
17 printf(" %-12s %-28s %-25s %9s\n", "PROCESS", "CALLER", "XDR_FUNCTION", 
18       "COUNT"); 
19          printa(" %-12.12s %-28a %-25s %@9d\n", @num); 
20  } 

Script xdrshow.d

server# xdrshow.d
Tracing XDR calls... Hit Ctrl-C to end. 
^C
 PROCESS      CALLER                     XDR_FUNCTION         COUNT 
 nfsd         nfs`xdr_READ3res xdr_bytes              1 
 nfsd         genunix`xdr_bytes            xdr_opaque             1 
 nfsd         genunix`xdr_bytes            xdr_u_int             1 
 nfsd         rpcmod`svc_cots_krecv xdr_callmsg          13802 
 nfsd         nfs`xdr_nfs_fh3_server xdr_decode_nfs_fh3        13802 
 nfsd         nfs`xdr_READ3args     xdr_nfs_fh3_server          13802 
 nfsd rpcsec`svc_authany_wrap     xdr_READ3args            13802 
 nfsd         nfs`xdr_decode_nfs_fh3    xdr_inline_decode_nfs_fh3     13803 
 nfsd         rpcmod`xdr_replymsg xdr_void            13816 
 nfsd         rpcmod`svc_cots_ksend xdr_replymsg          13816 
 nfsd         nfs`xdr_post_op_attr         xdr_bool           13816 
 nfsd         nfs`xdr_post_op_attr xdr_fattr3           13816 
 nfsd         nfs`xdr_READ3res xdr_enum            13816 
 nfsd         nfs`xdr_READ3res     xdr_post_op_attr          13816 
 nfsd rpcsec`svc_authany_wrap     xdr_READ3res            13816 
 nfsd         genunix`xdr_enum xdr_int            13816 
 nfsd rpcmod`svc_cots_kfreeargs   xdr_READ3args           13817 
 nfsd         nfs`xdr_READ3args  xdr_nfs_fh3           13817 
 nfsd         nfs`xdr_READ3res xdr_bool            13817 
 nfsd         nfs`xdr_READ3res  xdr_u_int            13818 
 nfsd         nfs`xdr_READ3args  xdr_u_int            27620 
 nfsd         nfs`xdr_READ3args    xdr_u_longlong_t          27620 
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(request arguments) and READ3res (completion result), to process the request and
completion of the NFS reads. They were called 27,620 times during this trace.

This example was necessary to show that DTrace can see every layer of the OSI
network model (and the TCP/IP model). But is this data useful at all? 

What caught my eye in the previous output was xdr_fattr3(). This sounds
like something to do with file attributes. We know the workload is performing
streaming reads from large files, so why are file attribute operations so frequent?
One reason could be the updating of file access time stamps; however, they have
been disabled on this file system.

Reading the source code confirmed that xdr_fattr3() processed file attri-
butes. A quick check with snoop showed that these are part of the NFS protocol: 

 So, XDR is encoding and decoding these file attributes for NFS, in this case, to
place the attribute information in the server response to file reads. That’s every
server response—even though the attributes haven’t changed at all. It’s possible
that sending this unchanged information could be avoided by changing how the
NFS protocol is implemented. That would save the CPU cycles needed to calculate
the postoperation attributes and the network overhead of sending them. 

Although this may sound like a promising way to improve performance, DTrace
analysis often unearths many potential ways to improve performance. It’s impor-
tant to quantify each so that you understand those that are worth investigating
and those that aren’t. 

To check the cost of xdr_fattr3(), the worst-case workload was applied: maxi-
mum possible NFS IOPS. If the cost of xdr_fattr3() is negligible for such a

solaris# snoop -v 
[...]
NFS:  ----- Sun NFS ----- 
NFS:
NFS:  Proc = 6 (Read from file) 
NFS:  Status = 0 (OK) 
NFS:  Post-operation attributes: 
NFS:    File type = 1 (Regular File) 
NFS:    Mode = 0644 
NFS:     Setuid = 0, Setgid = 0, Sticky = 0 
NFS:     Owner's permissions = rw- 
NFS:     Group's permissions = r-- 
NFS:     Other's permissions = r-- 
NFS:    Link count = 1, User ID = 0, Group ID = 0 
NFS:    File size = 10485760, Used = 10488320 
NFS:    Special: Major = 4294967295, Minor = 4294967295 
NFS:    File system id = 781684113449, File id = 21 
NFS:    Last access time      = 16-Jan-10 03:41:29.659625951 GMT 
NFS:    Modification time     = 16-Jan-10 03:41:29.715684188 GMT 
NFS:    Attribute change time = 16-Jan-10 03:41:29.715684188 GMT 
NFS:
NFS:  Count = 512 bytes read 
NFS:  End of file = False 
NFS:
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workload, then it should be negligible for all workloads. xdrshow.d was run for
five seconds by adding a probe definition:

Since xdr_fattr3() is being called more frequently, it should have a greater
impact on the workload. That impact can be measured through the vtimestamp
variable to sum CPU cycles for the xdr_fattr3() function: 

CPU time for xdr_fattr3() was about 110 ms every second. If this was a sin-
gle CPU server, that would be more than 10 percent of our CPU horsepower. Since
this server has 15 online CPUs, 110 ms of on-CPU time represents 0.73 percent of
available CPU cycles per second. We are looking at roughly a 1 percent win for
max IOPS. Workloads with fewer xdr_fattr3() calls will be less than 1 percent. 

The NFS server I’m testing is a high-end system that has already been tuned
for maximum performance.24 Although 1 percent isn’t much, it would be a sur-
prise if this particular system still had 1 percent left untuned and unnoticed—and
in XDR, of all places. As a final test to quantify this, we compiled a version of NFS
with a tunable, which could make xdr_fattr3() return early, without processing
the file attributes. Turning on and off the tunable on a live system would allow me
to see the processing cost. The results were measured as ten-minute averages of
NFSv3 IOPS: 

solaris# xdrshow.d -n 'tick-5sec { exit(0); }' 
Tracing XDR calls... Hit Ctrl-C to end. 
 PROCESS      CALLER                     XDR_FUNCTION         COUNT 
 nfsd         rpcmod`xdr_sizeof  xdr_fattr4_fsid            1 
[...]
 nfsd         nfs`xdr_post_op_attr         xdr_bool          901961 
 nfsd         nfs`xdr_post_op_attr xdr_fattr3          901961 
 nfsd         nfs`xdr_READ3res xdr_enum           901961 
[...]

solaris# dtrace -n 'fbt::xdr_fattr3:entry { self->start = vtimestamp; } 
 fbt::xdr_fattr3:return /self->start/ { @ = sum(vtimestamp - self->start); } 
 tick-1sec { normalize(@, 1000000); printa("%@d ms", @); clear(@); }' 
dtrace: description 'fbt::xdr_fattr3:entry ' matched 3 probes 
CPU     ID            FUNCTION:NAME 
 11  19148   :tick-1sec 111 ms 
 11  19148   :tick-1sec 109 ms 
 11  19148   :tick-1sec 109 ms 
 11  19148   :tick-1sec 111 ms 
 11  19148   :tick-1sec 109 ms 
 11  19148   :tick-1sec 112 ms 
[...]

24. In the past, it has generated max IOPS results that were used by Sun marketing.
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With xdr_fattr3(): 279,662 NFS IOPS 

Without xdr_fattr3(): 286,791 NFS IOPS 

In our test, this delivered a 2.5 percent improvement to maximum NFS IOPS to
a system that was already believed to be tuned to the limit.25 The lesson here is to
check everything with DTrace, even areas that may appear rudimentary such as
XDR.

Ethernet Scripts

Figure 6-6 shows the lower-level network stack for Solaris, which will be used as
the target OS for this Ethernet section. See Figure 6-1 for the complete diagram,
and Solaris Internals (McDougall and Mauro, 2006), section 18.8, “Solaris Device
Driver Framework,” for full descriptions.

25. Although this is a possible area for improvement, to implement a fix for a 2.5 percent win for
max NFS IOPS workloads only and some wins much less than 2.5 percent for lighter work-
loads.  That’s assuming that a fix can, indeed, be implemented. 

Figure 6-6 Solaris lower-level network stack
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Tracing Ethernet is possible at different locations in this stack, such as: 

Mac: Generic layer and interface through which all Ethernet passes

Network interface (e1000g, hxge, ...): To examine specific driver internals

This section uses the fbt provider to trace mac and network driver calls.26 Since
the fbt provider examines kernel and driver source implementation, these scripts
are considered unstable and will need updates as the underlying source code
changes. In the future, a stable Ethernet provider may exist in mac (or higher in
GLDv3) as part of the Network Providers collection, allowing stable scripts to be
written. Even if these scripts do not execute, they can still be treated as examples
of D programming and for the sort of data that DTrace can make available for
Ethernet analysis.

Another source of network interface activity probes is the mib provider, which
has interface probes placed higher in the stack. These can be useful for activity
counts but can’t be used to inspect Ethernet in detail.

Mac Tracing with fbt

DTrace was introduced in Solaris 10, and in the first Solaris 10 update a new net-
work device driver architecture was introduced: GLDv3. GLDv3 provided many
enhancements, including a direct function call interface for processing packets
while still supporting the older, STREAMS-based interface (DLPI).27 We start our
DTrace analysis with GLDv3.

Figure 6-8 shows how GLDv3 handles both older and newer interfaces: DLPI
and DFCI. Since we’d like to DTrace all I/O, tracing it further down in the stack at
dls or mac should be easier; we now have one place to trace rather than two. Mac
is easier because it begins to map to the GLDv3 device driver interface (DDI),
which as a standard interface can make tracing simpler and more robust; the
interface is less likely to change.

macops.d

The macops.d script traces key mac interface functions by network interface and
prints a summary of their count.

26. This is true even if the driver is closed source.

27. The STREAMS implementation has left its mark throughout the network stack, even if it is on its
way out.  Many network stack functions still transfer data using STREAMS message blocks:
mblk_ts.  DTrace even has convenience functions for them: msgsize() and msgdsize().
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Script

The first argument to these mac functions is either a mac_client_impl_t or
mac_impl_t, either of which can be used to retrieve the interface name (along
with other interesting members). A translation table of media type number to
string is declared in the BEGIN section:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7 /* See /usr/include/sys/dlpi.h */ 
8  mediatype[0x0] = "CSMACD"; 
9   mediatype[0x1] = "TPB"; 
10   mediatype[0x2] = "TPR"; 
11   mediatype[0x3] = "METRO"; 
12   mediatype[0x4] = "ETHER"; 
13   mediatype[0x05] = "HDLC"; 
14   mediatype[0x06] = "CHAR"; 
15   mediatype[0x07] = "CTCA"; 
16   mediatype[0x08] = "FDDI"; 
17   mediatype[0x10] = "FC"; 
18   mediatype[0x11] = "ATM"; 
19  mediatype[0x12] = "IPATM"; 
20   mediatype[0x13] = "X25"; 
21   mediatype[0x14] = "ISDN"; 
22  mediatype[0x15] = "HIPPI"; 
23  mediatype[0x16] = "100VG"; 
24  mediatype[0x17] = "100VGTPR"; 
25  mediatype[0x18] = "ETH_CSMA"; 
26  mediatype[0x19] = "100BT"; 
27   mediatype[0x1a] = "IB"; 
28  mediatype[0x0a] = "FRAME"; 
29  mediatype[0x0b] = "MPFRAME"; 
30  mediatype[0x0c] = "ASYNC"; 
31  mediatype[0x0d] = "IPX25"; 
32   mediatype[0x0e] = "LOOP"; 
33  mediatype[0x09] = "OTHER"; 
34
35  printf("Tracing MAC calls... Hit Ctrl-C to end.\n"); 
36  } 
37
38  /* the following are not complete lists of mac functions; add as needed */ 
39
40  /* mac functions with mac_client_impl_t as the first arg */ 
41  fbt::mac_promisc_add:entry,
42  fbt::mac_promisc_remove:entry,
43  fbt::mac_multicast_add:entry,
44  fbt::mac_multicast_remove:entry,
45  fbt::mac_unicast_add:entry,
46  fbt::mac_unicast_remove:entry,
47  fbt::mac_tx:entry 
48  { 
49          this->macp = (mac_client_impl_t *)arg0; 
50          this->name = stringof(this->macp->mci_name);
51          this->media = this->macp->mci_mip->mi_info.mi_media;
52          this->type = mediatype[this->media] != NULL ? 

continues
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The mediatype table on lines 8 to 33 could be trimmed to only the types
expected, such as ETHER and IB (the full list is not supported on current GLDv3
anyway).

Example

The macops.d script was executed for several seconds:

53  mediatype[this->media] : lltostr(this->media); 
54          this->dir = probefunc == "mac_tx" ? "->" : "."; 
55          @[this->name, this->type, probefunc, this->dir] = count(); 
56  } 
57
58  /* mac functions with mac_impl_t as the first arg */ 
59  fbt::mac_stop:entry, 
60  fbt::mac_start:entry, 
61  fbt::mac_stat_get:entry,
62  fbt::mac_ioctl:entry, 
63  fbt::mac_capab_get:entry,
64  fbt::mac_set_prop:entry,
65  fbt::mac_get_prop:entry,
66  fbt::mac_rx:entry 
67  { 
68 this->mip = (mac_impl_t *)arg0; 
69 this->name = stringof(this->mip->mi_name);
70 this->media = this->mip->mi_info.mi_media;
71          this->type = mediatype[this->media] != NULL ? 
72  mediatype[this->media] : lltostr(this->media); 
73          this->dir = probefunc == "mac_rx" ? "<-" : "."; 
74          @[this->name, this->type, probefunc, this->dir] = count(); 
75  } 
76
77  dtrace:::END 
78  { 
79          printf("  %-16s %-16s %-16s %-4s %14s\n", "INT", "MEDIA", "MAC", 
80      "DATA", "CALLS"); 
81          printa(" %-16s %-16s %-16s %-4s %@14d\n", @); 
82  } 

Script macops.d

solaris# macops.d
Tracing MAC calls... Hit Ctrl-C to end. 
^C
  INT  MEDIA MAC  DATA          CALLS 
  nxge1 ETHER            mac_rx           <-              9 
  nxge5 ETHER            mac_rx           <-              9 
  nge0  ETHER mac_tx           ->              64 
  nge0  ETHER mac_rx           <-              72 
  nge0             ETHER            mac_stat_get   .               100 
  nge1             ETHER            mac_stat_get   .               100 
  nge2             ETHER            mac_stat_get   .               100 
  nge3             ETHER            mac_stat_get   .               100 
  nxge0  ETHER   mac_stat_get     .             100 
  nxge1  ETHER   mac_stat_get     .             100 
  nxge4  ETHER   mac_stat_get     .             100 
  nxge5  ETHER   mac_stat_get     .             100 
  e1000g0          ETHER            mac_tx           ->             103 
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The output includes 64 transmit calls on nge0 (mac_tx()) and 103 transmit
calls on e1000g0. e1000g0? We didn’t know this system had one. Checking what it
is for yields the following: 

This is strange; e1000g0 isn’t configured, yet it is transmitting packets. Digging
deeper yields the following: 

Oh...that e1000g! (We had forgotten this system had a cluster card interconnect
that uses e1000g, which the akd process manages.) The previous one-liner checked
the process name, kernel, and user stack traces for e1000g_m_tx(). The process
name and user stack trace will often be invalid because TCP buffering of sends;
however, the previous stack appears to have caught it correctly (since the send
went straight from the system call).

Network Device Driver Tracing with fbt

The fbt provider can examine the operation of network device drivers. Here we
examine the nge driver (Nvidia Gigabit Ethernet) as an example of what can be
done.

solaris# ifconfig e1000g0 
ifconfig: status: SIOCGLIFFLAGS: e1000g0: no such interface 

solaris# dtrace -n 'fbt::e1000g_m_tx:entry { @[execname, stack(), ustack()] = count(); }'
dtrace: description 'fbt::e1000g_m_tx:entry ' matched 1 probe 
^C

  akd
    mac`mac_tx+0x2c4 
   dld`proto_unitdata_req+0x1ca
    dld`dld_wput+0x14d 
    unix`putnext+0x21e 
    genunix`strput+0x19d 
    genunix`strputmsg+0x29a
    genunix`msgio32+0x202 
    genunix`putmsg32+0x78 
   unix`sys_syscall32+0x101 

    libc.so.1`__putmsg+0x7 
  libdlpi.so.1`i_dlpi_strputmsg+0x62

   libdlpi.so.1`dlpi_send+0x124
  libak.so.1`ak_ciodlpi_transmit+0x8b
  libak.so.1`ak_cio_link_transmit_one+0x32

   libak.so.1`ak_cio_link_tx+0x225
   libak.so.1`ak_thread_start+0x7d
   libc.so.1`_thrp_setup+0x9b
    libc.so.1`_lwp_start 

               27 
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We demonstrate two approaches: tracing the internal operation of the driver
with whatever functions the programmer chose to write and tracing the interface
to GLDv3, which is well defined and common to other drivers.

Driver Internals

You can start examining the internal execution of the device driver by performing
lists of probes and frequency counts. Listing probes for the nge driver (on Solaris)
yields the following: 

This shows that there are 144 functions in nge available to probe. Instead of
turning to the source code right now (if available), we can narrow down this list to
probes of interest, such as the send/receive probes. 

Sometimes guesswork pays off. What would the programmer have called the
send and receive functions?

solaris# dtrace -ln 'fbt:nge::entry' 
   ID   PROVIDER   MODULE              FUNCTION NAME 
    4        fbt           nge   nge_set_loop_mode entry 
    6        fbt           nge  nge_fini_send_ring entry 
    8        fbt           nge  nge_init_send_ring entry 
   10        fbt           nge  nge_reinit_send_ring entry 
   12        fbt           nge  nge_init_recv_ring entry 
   14        fbt           nge  nge_reinit_recv_ring entry 
   16        fbt           nge  nge_fini_buff_ring entry 
   18        fbt           nge  nge_init_buff_ring entry 
   20        fbt           nge  nge_reinit_buff_ring entry 
[...]
solaris# dtrace -ln 'fbt:nge::entry' | wc 
     145     725   10874 

solaris# dtrace -ln 'fbt:nge::entry' | egrep 'send|receive|recv|read|write|tx|rx'
91777        fbt         nge  nge_fini_send_ring entry
91779        fbt         nge  nge_init_send_ring entry
91781        fbt          nge nge_reinit_send_ring entry
91783        fbt         nge  nge_init_recv_ring entry
91785        fbt          nge nge_reinit_recv_ring entry
91857        fbt        nge    nge_rx_setup entry
91859        fbt        nge    nge_tx_setup entry
91901        fbt         nge   nge_recv_packet entry
91903        fbt         nge   nge_rxsta_handle entry
91905        fbt        nge   nge_recv_ring entry
91907        fbt         nge   nge_tx_dmah_pop entry
91909        fbt         nge   nge_tx_dmah_push entry
91911        fbt         nge   nge_tx_desc_sync entry
91913        fbt        nge    nge_tx_alloc entry
91915        fbt        nge    nge_tx_start entry
91917        fbt        nge   nge_send_copy entry
91919        fbt         nge   nge_send_mapped entry
91921        fbt       nge      nge_send entry
91943        fbt         nge  nge_tx_recycle_all entry
91951        fbt         nge   nge_sum_rxd_check entry
91953        fbt         nge   nge_sum_txd_check entry
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We used the egrep(1) command to search for various likely terms. Here it has
matched functions from nge with promising names such as nge_recv_packet(),
nge_send(), and nge_receive(). (We happen to know that nge_m_tx() is also
promising, because drivername_m_tx() has become the convention for the mac
interface transmit function.)

Performing a frequency count test of all that are called is another way to nar-
row down potential probes of interest: 

Although this one-liner was running, the c character was typed 17 times to
cause some network read and writes (this was performed over an ssh session).

91971        fbt         nge    nge_tx_recycle entry
91989        fbt          nge    nge_hot_rxd_check entry
91991        fbt          nge    nge_hot_txd_check entry
91999        fbt         nge    nge_sum_rxd_fill entry
92001        fbt         nge    nge_sum_txd_fill entry
92005        fbt        nge              nge_receive entry
92035        fbt         nge    nge_hot_rxd_fill entry
92037        fbt         nge    nge_hot_txd_fill entry
92049        fbt       nge                nge_m_tx entry
92053        fbt         nge    nge_recv_recycle entry

solaris# dtrace -n 'fbt:nge::entry { @[probefunc] = count(); }' 
dtrace: description 'fbt:nge::entry ' matched 144 probes 
ccccccccccccccccc^C

  nge_tx_recycle                     1 
  nge_hot_txd_check                    6 
  nge_atomic_shl32                    12 
  nge_check_copper                    12 
  nge_chip_cyclic                    12 
  nge_chip_factotum                   12 
  nge_factotum_link_check                   12 
  nge_factotum_stall_check                   12 
  nge_interrupt_optimize                    12 
  nge_wake_factotum                   12 
  nge_hot_txd_fill                    17 
  nge_send                   17 
  nge_tx_alloc                     17 
  nge_tx_start                     17 
  nge_m_tx                   18 
  nge_tx_desc_sync                    18 
  nge_hot_rxd_fill                    39 
  nge_intr_handle                    54 
  nge_receive                   54 
  nge_recv_ring                    54 
  nge_reg_put32                    83 
  nge_reg_put16                    90 
  nge_hot_rxd_check                   93 
  nge_chip_intr                    94 
  nge_reg_get8                    180 
  nge_reg_put8                    180 
  nge_m_stat                   228 
  nge_reg_get32                    275 
  nge_reg_get16                    577 
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This showed that nge_send() fired 17 times, and nge_receive() fired 54 times:
This rate coincides with what we saw with other system tools (netstat -i). Note
that nge_recv_packet() never fired, so we can drop that from our investigation.

Checking how nge_send() and nge_receive() are called to get a better
insight into the driver yields the following: 

nge_send() is called from nge_m_tx(), which was called by mac_tx(). That’s
a function from the mac layer that was traced earlier. We expected this given that
nge_m_tx() is the conventional name for the mac interface function; however, if
we didn’t know that, we would have still discovered it by examining the previous
stack trace. The stacks also show that  nge_receive() was called from a hard-
ware interrupt. 

The definition for nge_m_tx() can be read from uts/common/io/nge/nge_
tx.c:

solaris# dtrace -n 'fbt::nge_send:entry,fbt::nge_receive:entry
{ @[probefunc,  stack()] = count(); }' 
dtrace: description 'fbt::nge_send:entry,fbt::nge_receive:entry ' matched 2 probes 
^C
[...]
  nge_send

    nge`nge_m_tx+0x60 
    mac`mac_tx+0x2c4 
   dld`str_mdata_fastpath_put+0xa4
    ip`tcp_send_data+0x94e 
    ip`tcp_output+0x7fa 
    ip`squeue_enter+0x330 
    ip`tcp_sendmsg+0xfd 
    sockfs`so_sendmsg+0x1c7
   sockfs`socket_sendmsg+0x61
   sockfs`socket_vop_write+0x63
    genunix`fop_write+0xa4 
    genunix`write+0x2e2 
    genunix`write32+0x22 
   unix`sys_syscall32+0x101 

                5 
  nge_receive

   nge`nge_intr_handle+0xd5 
    nge`nge_chip_intr+0x81 
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

               32 

/*
 * nge_m_tx : Send a chain of packets. 
 */ 
mblk_t * 
nge_m_tx(void *arg, mblk_t *mp) 
{

nge_t *ngep = arg; 
[...]



ptg

Scripts 541

The first argument is an nge_t to describe the network interface; the second is
an mblk_t to contain the packets to send. 

Examining nge_t from uts/common/io/nge/nge.h yields the following: 

Some interesting structure members are apparent: ifname has the interface
name as a string, and the *_state members convey different error states of the
interface. For example, ifname could be traced this way (remember arg0 was
actually a void *, so it will need to be cast to a type): 

The other argument to nge_m_tx() was an mblk_t pointer, and DTrace
already has convenience functions for those (on Solaris): 

typedef struct nge { 
        /* 
         * These fields are set by attach() and unchanged thereafter ... 
         */ 
        dev_info_t         *devinfo;   /* device instance      */ 
        mac_handle_t           mh;       /* mac module handle    */ 
        chip_info_t           chipinfo; 
        ddi_acc_handle_t      cfg_handle;     /* DDI I/O handle       */ 
        ddi_acc_handle_t      io_handle;      /* DDI I/O handle       */ 
        void             *io_regs;     /* mapped registers     */ 
[...]
        char              ifname[8];      /* "nge0" ... "nge999" */ 

        enum nge_mac_state      nge_mac_state;  /* definitions above    */ 
        enum nge_chip_state     nge_chip_state; /* definitions above    */ 
[...]

solaris# dtrace -n 'fbt::nge_m_tx:entry
{ this->n = (nge_t *)arg0; trace(stringof(this->n->ifname)); }' 
dtrace: description 'fbt::nge_m_tx:entry ' matched 1 probe 
CPU     ID            FUNCTION:NAME 
  8    276        nge_m_tx:entry  nge0
  0    276        nge_m_tx:entry  nge0
  0    276        nge_m_tx:entry  nge0
  0    276        nge_m_tx:entry  nge0
  0    276        nge_m_tx:entry  nge0
  0    276        nge_m_tx:entry  nge0
^C

solaris# dtrace -n 'fbt::nge_m_tx:entry
{ this->n = (nge_t *)arg0; printf("%s %d bytes", 
stringof(this->n->ifname), msgdsize(args[1])); }' 
dtrace: description 'fbt::nge_m_tx:entry ' matched 1 probe 

CPU     ID            FUNCTION:NAME 
  0    276        nge_m_tx:entry nge0 102 bytes 
  5    276        nge_m_tx:entry nge0 198 bytes 
  5    276        nge_m_tx:entry nge0 150 bytes 
  6    276        nge_m_tx:entry nge0 150 bytes 

continues
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Now we have a one-liner that can trace sends from the network device driver,
bearing in mind that each send may be a chain of packets, as noted by the nge_m_
tx() comment shown earlier. From here, we can continue digging into nge to
gather more information. By using such DTrace one-liners, we’ve narrowed 144 fbt
provider probes down to a few of interest, which we know fire at rates that seem
plausible. Examining the previous stack traces has also given us an idea of the
code path.

Driver Interface

Although we can dtrace device drivers via their internal functions, we can also
trace their operation via the mac device driver interface. This is a becoming a well-
defined and documented interface.28 It needs to be, so that third-party vendors can
quickly learn and write new drivers that interface to mac.

The actual driver interface is achieved by declaring a list of driver functions
that mac will call. This includes the nge_m_tx() function seen earlier: 

This structure maps to mac_callbacks_t, which is the device driver interface
into GLDv3 via mac: 

  4    276        nge_m_tx:entry nge0 290 bytes 
  4    276        nge_m_tx:entry nge0 494 bytes 
  4    276        nge_m_tx:entry nge0 102 bytes 
  6    276        nge_m_tx:entry nge0 150 bytes 
  8    276        nge_m_tx:entry nge0 42 bytes 
  8    276        nge_m_tx:entry nge0 42 bytes 
  8    276        nge_m_tx:entry nge0 66 bytes 
^C

28. See PSARC 2009/638 for the interface description.

uts/common/io/nge/nge_main.c:

static mac_callbacks_t nge_m_callbacks = { 
 NGE_M_CALLBACK_FLAGS, 

        nge_m_stat, 
        nge_m_start, 
        nge_m_stop, 
        nge_m_promisc, 
        nge_m_multicst, 
        nge_m_unicst, 
        nge_m_tx, 
        nge_m_ioctl, 
        nge_m_getcapab, 
        NULL, 
        NULL, 
        nge_m_setprop, 
        nge_m_getprop 
};
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The mac function prototypes are defined in uts/common/sys/mac_provider.h:

Each of these arguments can also be examined using the fbt provider. 

typedef struct mac_callbacks_s { 
        uint_t mc_callbacks;   /* Denotes which callbacks are set */ 
        mac_getstat_t   mc_getstat;     /* Get the value of a statistic */ 
        mac_start_t     mc_start;   /* Start the device */ 
        mac_stop_t     mc_stop;  /* Stop the device */ 
        mac_setpromisc_t mc_setpromisc; /* Enable or disable promiscuous mode */ 
        mac_multicst_t  mc_multicst;    /* Enable or disable a multicast addr */ 
        mac_unicst_t    mc_unicst;      /* Set the unicast MAC address */ 
        mac_tx_t      mc_tx;    /* Transmit a packet */ 
        mac_ioctl_t    mc_ioctl; /* Process an unknown ioctl */ 
        mac_getcapab_t  mc_getcapab;    /* Get capability information */ 
        mac_open_t     mc_open;  /* Open the device */ 
        mac_close_t     mc_close;   /* Close the device */ 

mac_set_prop_t  mc_setprop; 
mac_get_prop_t  mc_getprop; 

} mac_callbacks_t; 

/*
 * MAC driver entry point types. 
 */ 
typedef int  (*mac_getstat_t)(void *, uint_t, uint64_t *); 
typedef int      (*mac_start_t)(void *); 
typedef void      (*mac_stop_t)(void *); 
typedef int    (*mac_setpromisc_t)(void *, boolean_t); 
typedef int (*mac_multicst_t)(void *, boolean_t, const uint8_t *); 
typedef int  (*mac_unicst_t)(void *, const uint8_t *); 
typedef void  (*mac_ioctl_t)(void *, queue_t *, mblk_t *); 
typedef void     (*mac_resources_t)(void *); 
typedef mblk_t   *(*mac_tx_t)(void *, mblk_t *); 
typedef boolean_t    (*mac_getcapab_t)(void *, mac_capab_t, void *); 
typedef int      (*mac_open_t)(void *); 
typedef void     (*mac_close_t)(void *); 
typedef int (*mac_set_prop_t)(void *, const char *, mac_prop_id_t,

 uint_t, const void *); 
typedef int (*mac_get_prop_t)(void *, const char *, mac_prop_id_t,

       uint_t, uint_t, void *, uint_t *); 

Tip

As discussed before, the fbt provider exposes the kernel source code, which is considered
an unstable interface. This means scripts written for it are likely to break whenever the ker-
nel is updated and functions change.

However, the functions listed in the nge_m_callbacks struct are an interface defined by
GLDv3, which is followed by multiple vendors writing third-party drivers. This interface,
specifically the arguments, return values, the number of functions, and their role, is there-
fore unlikely to change frequently.

Keep a lookout for other such interfaces; DTracing them may answer your questions and
provide reasonably robust scripts, despite using the unstable fbt provider. 
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ngesnoop.d

This script traces nge driver send and receive and prints details from the Ether-
net header. This could be a starting point for further customization, such as print-
ing events from other areas of the system alongside Ethernet events. 

This uses the fbt provider to examine the operation of nge and mac. This script
will need changes to work on different versions of the nge driver and for updates to
the Solaris GLD interface. 

While DTrace is tracing, the interfaces are not put into promiscuous mode,
because they can be with network sniffers. 

Script

We selected the nge_send() and mac_rx() functions to probe for the send and
receive events. The script populates two clause-local variables: this->nge with an
nge_t pointer for interface information and this->mp for the message block
pointer for frame/packet information: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           printf("%-15s  %-8s %-2s %-17s  %-17s %-5s %5s\n", "TIME(us)", 
9 "INT", "D", "SOURCE", "DEST", "PROTO", "BYTES"); 
10  } 
11
12  fbt::nge_recv_ring:entry
13  { 
14   self->ngep = args[0]; 
15  } 
16
17  fbt::mac_rx:entry 
18  /self->ngep/ 
19  { 
20   this->mp = args[2]; 
21   this->nge = self->ngep; 
22   this->dir = "<-"; 
23          self->ngep = 0; 
24  } 
25
26  fbt::nge_send:entry 
27  { 
28  this->nge = (nge_t *)arg0; 
29   this->mp = args[1]; 
30   this->dir = "->"; 
31  } 
32
33  fbt::mac_rx:entry, 
34  fbt::nge_send:entry 
35  /this->mp/ 
36  { 
37          this->eth = (struct ether_header *)this->mp->b_rptr; 
38          this->s = (char *)&this->eth->ether_shost;
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Lines 43 to 46 print the Ethernet addresses as a series of bytes in hexadecimal,
separated by colons. Each byte is accessed using array operators, this->s[0] for
the first byte, and so on.

Line 40 used the ntohs() built-in to convert endian from network to host order,
and line 47 used the msdsize() built-in to determine the size in bytes of a mes-
sage (STREAMS).

Example

The output shows which Ethernet frames are being processed by any nge interface
on the system: 

The TIME column is printed in case the output is shuffled and requires postsort-
ing; it is the time since boot in microseconds. It could also be examined for packet
latency, by comparing the delta between two lines. 

The previous ngesnoop.d script prints Ethernet header details including
SOURCE and DESTination addresses. It may be desirable to print these differently,
in terms of local and remote addresses. After customizing the script, we get this: 

39          this->d = (char *)&this->eth->ether_dhost;
40 this->t = ntohs(this->eth->ether_type);
41 printf("%-15d  %-8s %2s ", timestamp / 1000, this->nge->ifname,
42       this->dir); 
43  printf("%02x:%02x:%02x:%02x:%02x:%02x  ", this->s[0], this->s[1], 
44 this->s[2], this->s[3], this->s[4], this->s[5]); 
45  printf("%02x:%02x:%02x:%02x:%02x:%02x  ", this->d[0], this->d[1], 
46 this->d[2], this->d[3], this->d[4], this->d[5]); 
47          printf(" %-04x %5d\n", this->t, msgdsize(this->mp)); 
48  } 

Script ngesnoop.d

solaris# ngesnoop.d
TIME(us)         INT     D  SOURCE             DEST      PROTO BYTES 
64244351306      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64244385653      nge0    <- 00:14:4f:ca:fb:04  ff:ff:ff:ff:ff:ff  0800   342 
64244409073      nge0    <- 00:14:4f:3b:76:c8  00:14:4f:ed:d4:1c 0800    60 
64244451504      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64244451616      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64244451637      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64244451711      nge0    <- 00:14:4f:3b:76:c8  00:14:4f:ed:d4:1c 0800    60 
64244509203      nge0    <- 00:14:4f:3b:76:c8  00:14:4f:ed:d4:1c 0800    60 
64244618499      nge0    -> 00:14:4f:ed:d4:1c  00:1b:24:93:8a:6e  0800   102 
64244618645      nge0    -> 00:14:4f:ed:d4:1c  00:1b:24:93:8a:6e  0800   102 
64244551065      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64244551098      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   262 
64244551121      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   262 
64244551245      nge0    <- 00:14:4f:3b:76:c8  00:14:4f:ed:d4:1c 0800    60 
[...]
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A series of packets transmitted between two hosts is more easily identifiable as
the LOCAL and REMOTE columns contain the same addresses. 

ngelink.d

This script traces link status events on the nge interface, such as negotiating dif-
ferent Ethernet speeds. 

Script

This version of the nge driver calls nge_check_copper() in response to inter-
rupts, in case a state has changed. The ngelink.d script traces the calls to nge_
check_copper() and prints nge state details if one of the nge properties did
change:

solaris# ngesnoop2.d
TIME(us)         INT     D  LOCAL  REMOTE      PROTO BYTES 
64424890458      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64424946171      nge0    <- 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8 0800    60 
64424990648      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64424990759      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64424990851      nge0    <- 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8 0800    60 
64425081306      nge0    <- 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   651 
64425150070      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8 0800    54 
64425090329      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64425090355      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   182 
64425090382      nge0    -> 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   262 
64425090459      nge0    <- 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8 0800    60 
64425136345      nge0    <- 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8 0800    60 
64425150208      nge0    <- 00:14:4f:ed:d4:1c  00:14:4f:3b:76:c8  0800   235 
[...]

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate 
5
6   int seen[nge_t *]; 
7   int up[nge_t *]; 
8   int speed[nge_t *]; 
9   int duplex[nge_t *]; 
10  int last[nge_t *]; 
11
12  dtrace:::BEGIN 
13  { 
14          printf("%-20s  %-10s %6s %8s %8s   %s\n", "TIME", "INT", "UP", 
15   "SPEED", "DUPLEX", "DELTA(ms)"); 
16  } 
17
18  fbt::nge_check_copper:entry
19  { 
20   self->ngep = args[0]; 
21  } 
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A seen[] associative array is used to show interface status when the script
begins tracing. The predicate on lines 24 to 27 checks the seen[] array for print-
ing the first set of output and checks for state changes for the nge properties,
which are remembered in separate associative arrays.

Example

For this example, we unplugged the network cable briefly: 

The DELTA(ms) column is showing the time between events (lines of output).
The time that the nge0 interface was offline can be seen: 2.1 seconds. And the time
it took us to walk to the server in our server room and unplug the cable after run-
ning the script was 43 seconds. 

22
23  fbt::nge_check_copper:return
24  /self->ngep && (!seen[self->ngep] || 
25      (up[self->ngep] != self->ngep->param_link_up || 
26      speed[self->ngep] != self->ngep->param_link_speed || 
27      duplex[self->ngep] != self->ngep->param_link_duplex))/
28  { 
29 this->delta = last[self->ngep] ? timestamp - last[self->ngep] : 0; 
30 this->name = stringof(self->ngep->ifname);
31          printf("%-20Y  %-10s %6d %8d %8d   %d\n", walltimestamp, this->name, 
32 self->ngep->param_link_up, self->ngep->param_link_speed,
33 self->ngep->param_link_duplex, this->delta / 1000000); 
34   seen[self->ngep] = 1; 
35  last[self->ngep] = timestamp; 
36  } 
37
38  fbt::nge_check_copper:return
39  /self->ngep/ 
40  { 
41 up[self->ngep] = self->ngep->param_link_up;
42          speed[self->ngep] = self->ngep->param_link_speed;
43          duplex[self->ngep] = self->ngep->param_link_duplex;
44          self->ngep = 0; 
45  } 

Script ngelink.d

solaris# ngelink.d
TIME    INT UP    SPEED  DUPLEX   DELTA(ms) 
2010 Jan 13 02:44:35  nge2            0     0        0   0 
2010 Jan 13 02:44:35  nge0          1 1000        2   0 
2010 Jan 13 02:44:35  nge3            0     0        0   0 
2010 Jan 13 02:44:36  nge1            0     0        0   0 
2010 Jan 13 02:45:18  nge0            0    0        0   43000 
2010 Jan 13 02:45:20  nge0          1 1000        2   2109 
^C
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Common Mistakes

These are some common mistakes and sources of confusion for DTracing network I/O.

Receive Context

Receive context refers to the execution context of the system when receiving pack-
ets and how it applies to using DTrace to track received packets.

Incorrect

Let’s say we’d like to trace the process name of the application that is receiving
TCP packets. The mib provider allows TCP receive to be traced, so this sounds like it
could be answered with a one-liner to show the current process name (execname):

A known workload was applied using the ttcp tool to test this one-liner. The
following was run on local and remote hosts, both Solaris:

The ttcp process on the localhost should receive 10,240,000 bytes of data
(10,000 1KB I/O), which is our known load. Testing the one-liner yields the following:

This shows all packets have arrived in kernel context, sched, not the ttcp
application. To illustrate why this didn’t identify the application, Figure 6-7 shows
how networking would need to work for this one-liner to identify the correct context.

1. The socket receive buffer is checked and found to be empty. 

2. Wait for packet while on-CPU.

3. Receive in application context. 

solaris# dtrace -n 'mib:::tcpInDataInorderBytes { @[execname] = sum(args[0]); }'

localhost# ttcp -r -l1024 -n10000 -s

remotehost# ttcp -t -s -l1024 -n10000 localhost < /dev/zero

solaris# dtrace -n 'mib:::tcpInDataInorderBytes { @[execname] = sum(args[0]); }' 
dtrace: description 'mib:::tcpInDataInorderBytes ' matched 3 probes 
^C

  sched                  10240048 
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For the receive to occur in application context, the application thread would
need to stay on-CPU while waiting for the packet. What would the thread do while
it waited on-CPU? Spin loop?

This would not be an efficient operating system design. What actually happens
in this case is that the application thread context-switches off-CPU to allow other
threads to be run (even the idle thread).

More Accurate

Packets are received in interrupt context (kernel), processed by the TCP/IP stack,
and then the application thread is context-switched back on-CPU to receive the
data, as shown in Figure 6-8.

Figure 6-7 Receive context (wrong)

Figure 6-8 Receive context
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The socket receive buffer is empty; the read will block. 

Receive in network interrupt context. 

Receive in application context. 

Examining the kernel stacks when receiving TCP data yields the following:

This is similar to the stack trace we saw before for read packets, with igb as the
network interface instead of nge. Further up the stack (not visible here), a context
switch occurs, and the application is brought back on-CPU to receive the TCP data. 

To further complicate things, there are at least two scenarios where the applica-
tion context switch may not occur directly after receiving the packet.

A context switch to a different higher-priority thread may occur first.
The application thread may already be running on a different CPU, reading

from the socket buffer. Instead of context switching, the network interrupt simply
tops up the socket buffer.

If it isn’t clear by now, DTracing TCP/IP internals is very difficult. With the
future introduction of stable network providers, this should become easier.

See the “TCP Scripts” section for further tracing of receive packets.

Send Context

Send context refers to the execution context of the system when sending network
packets and how it applies to using DTrace to track and observe network packet
sends.

solaris# dtrace -n 'mib:::tcpInDataInorderBytes
{ @[execname, stack()] = sum(args[0]); }'
dtrace: description 'mib:::tcpInDataInorderBytes ' matched 3 probes
^C
[...]

  sched
    ip`squeue_enter+0x330
    ip`ip_input+0xe31
  mac`mac_rx_soft_ring_process+0x184

   mac`mac_rx_srs_proto_fanout+0x46f
   mac`mac_rx_srs_drain+0x235
   mac`mac_rx_srs_process+0x1db
    mac`mac_rx_common+0x94

     mac`mac_rx+0xac
    mac`mac_rx_ring+0x4c
    igb`igb_intr_rx+0x67
   unix`av_dispatch_autovect+0x7c
   unix`dispatch_hardint+0x33
   unix`switch_sp_and_call+0x13

         10231928
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Incorrect

Tracing the process name when sending packets sounds like this could be easier
than for receives, because the application thread may context switch off-CPU after
the packet is sent. Figure 6-9 shows this assumption.

To test this, the same ttcp workload as before was applied, this time with
DTrace on the target host to examine the process name when TCP packets are
sent:

According to this DTrace one-liner, the ttcp application sent only 1,649,664
bytes, which is 16 percent of the expected value (10,240,000). sched, the kernel,
sent 8,590,444 bytes. Summing sched and ttcp gives 10,240,108 bytes, the cor-
rect value (plus other TCP bytes from unrelated apps).

The application is still on-CPU some of the time during TCP send, but most of
the time a kernel thread was doing the sending. This could mean that the requests
were queued or buffered and processed later.

More Accurate

By including stack() in the aggregation key, we can examine the kernel stack
backtraces for TCP sends and see why the kernel is performing them:

Figure 6-9 Send context (simple) 

solaris# dtrace -qn 'mib:::tcpOutDataBytes { @[execname] = sum(args[0]); }'
^C

  ssh                     48
  sshd                    1904
  ttcp                   1649664
  sched                   8590444
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This shows that the kernel TCP send is originating from a network interrupt
(nge). A packet is received, which is handed to tcp_rput_data(), which then
calls tcp_wput_data() to send the next packet. Examining the tcp_rput_
data() source shows that it checks whether this is more data to send from the
TCP window buffer and, if so, sends it. This is shown in Figure 6-10.

Send from application context (thread1 is still on-CPU).

Fetch next data from buffer to send.

Send from network interrupt context. 

On Mac OS X, the stack for kernel sends from the TCP buffer looks like this:

solaris# dtrace -n 'mib:::tcpOutDataBytes { @[execname, stack()] = sum(args[0]); }'
dtrace: description 'mib:::tcpOutDataBytes ' matched 4 probes
^C
[...]
  ttcp

    ip`tcp_wput_data+0x75a
    ip`tcp_output+0x7c5
    ip`squeue_enter+0x416
    ip`tcp_wput+0xf8
   sockfs`sostream_direct+0x168
   sockfs`socktpi_write+0x179
    genunix`fop_write+0x69
    genunix`write+0x208
    genunix`write32+0x1e
    unix`sys_syscall32+0x1fc

          1351680
  sched

    ip`tcp_wput_data+0x75a
    ip`tcp_rput_data+0x3042
   ip`squeue_enter_chain+0x2c0
    ip`ip_input+0xa42
    dls`i_dls_link_rx+0x2b9
    mac`mac_do_rx+0xba

     mac`mac_rx+0x1b
    nge`nge_receive+0x47
    nge`nge_intr_handle+0xbd
    nge`nge_chip_intr+0xca
   unix`av_dispatch_autovect+0x8c
   unix`dispatch_hardint+0x2f
   unix`switch_sp_and_call+0x13

          8839168

solaris# dtrace -n 'ether_frameout:entry { @[execname, stack()] = count() }'
dtrace: description 'ether_frameout:entry ' matched 1 probe
^C
[...]
  kernel_task

   mach_kernel`ifnet_input+0xe43
   mach_kernel`ifnet_output+0x4d
   mach_kernel`ip_output_list+0x1d9f
   mach_kernel`tcp_setpersist+0x16e
   mach_kernel`tcp_output+0x17ab
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tcp_input() calls tcp_output(), for the same reason as on Solaris.

Packet Size

Although over-the-network interface data may be sent in packets of size 1,500
bytes or so (maximum transmission unit), the size can vary throughout the net-
work stack. A single socket write may be split into many IP sends by the time the
data is sent to the network interface driver. Since this can occur after the TCP
layer, tracing tcp functions may not be a one-to-one mapping to packets; TCP could
send data that was then split by IP.

Some network cards and drivers increase the size of network I/O beyond jumbo
frames to improve performance. TCP Large Send Offload is an example of this,
where oversized packets (more than 50KB) can be sent to the network card, which
splits them into MTU-sized packets in hardware.

   mach_kernel`tcp_input+0x3848
   mach_kernel`ip_rsvp_done+0x1c6
   mach_kernel`ip_input+0x17bd
   mach_kernel`ip_input+0x17f9
   mach_kernel`proto_input+0x92
  mach_kernel`ether_detach_inet+0x1c9

   mach_kernel`ifnet_input+0x2f8
   mach_kernel`ifnet_input+0xa51
   mach_kernel`ifnet_input+0xcaf
  mach_kernel`call_continuation+0x1c

             6980

Figure 6-10 Send context (buffering)
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Stack Reuse

When we find functions such as ip_output(), we may be tempted to assume that
there is a one-to-one mapping of such functions to packets. The factors mentioned
previously could inflate the number of actual IP packets from the observed IP and
TCP function counts. However, there are cases where the actual IP packets may be
half (or fewer) of what the function counts suggest. 

Take a careful look at the following stack traces, aggregated on the ip:::send
probe, traced on an OpenSolaris system:

solaris# dtrace -x stackframes=200 -n 'ip:::send { @[stack()] = count(); }' 
dtrace: description 'ip:::send ' matched 4 probes 
^C

    ip`ip_output+0xead 
    ip`tcp_send_data+0xa13 
    ip`tcp_rput_data+0x35b4
    ip`tcp_input+0x74 
   ip`squeue_enter_chain+0x2e8

              ip`ip_input+0x9db
    ip`ip_rput+0x185 
    unix`putnext+0x31a 
    tun`tun_rdata_v4+0x642 
    tun`tun_rdata+0x1a5 
    tun`tun_rproc+0x139 
    tun`tun_rput+0x29 
    unix`putnext+0x31a 
   ip`ip_fanout_proto+0xba2 
    ip`ip_proto_input+0xd9c
   ip`ip_fanout_proto_again+0x375
    ip`ip_proto_input+0xbec

              ip`ip_input+0x97a
    ip`ip_rput+0x185 

     unix`put+0x28c 
   nattymod`natty_rput_pkt+0x3ca
   nattymod`natty_rput_other+0x103
   nattymod`natty_rput+0x37 
    unix`putnext+0x31a 
    ip`udp_input+0x116e 
   ip`udp_input_wrapper+0x25
    ip`udp_conn_recv+0x89 
    ip`ip_udp_input+0x703 

              ip`ip_input+0x914
    dls`i_dls_link_rx+0x2dc
    mac`mac_rx+0x7a 
    e1000g`e1000g_intr+0xf6
   unix`av_dispatch_autovect+0x97
    unix`intr_thread+0x50 

                6 

              ip`ip_output+0x25dd
    ip`ip_wput+0x5a 
    unix`putnext+0x31a 
   tun`tun_wputnext_v4+0x2bb
   tun`tun_wproc_mdata+0xca 
    tun`tun_wproc+0x38 
    tun`tun_wput+0x29 
    unix`putnext+0x31a 
    ip`ip_xmit_v4+0x786 
    ip`ip_wput_ire+0x228a 
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Notice that the ip_input() function appeared three times in the first stack
trace, and ip_output() appeared twice in the second. These stacks show how the
kernel prepared to send single packets.

This was traced on a system with IPSec tunneling and Network Address Trans-
lation (NAT) configured. Features such as these can resubmit IP packets back into
the network stack for reprocessing. For IPSec, it means that both physical net-
work interface and virtual tunnel interface packets may be traced.

Summary

This chapter showed many ways to observe network I/O details using DTrace from
within different layers of the TCP/IP stack. Before DTrace, much of this was typi-
cally performed by capturing every packet on the wire (network interface promis-
cuous mode) and passing it to user-land software for analysis. The scripts in this
chapter demonstrated tracing only the events of interest and summarizing infor-
mation in-kernel before handing to user-land processes, minimizing performance
overhead. We also demonstrated the ability to show context information from the
system that isn’t present in the transmitted packet, such as the process ID for the
connection. And, we also demonstrated tracing other stack events, such as net-
work interfaces changing negotiated state, which may not generate packets at all.

              ip`ip_output+0xead
    ip`tcp_send_data+0xa13 
    ip`tcp_output+0x7d2 
    ip`squeue_enter+0x469 
    ip`tcp_wput+0xfb 
   sockfs`sostream_direct+0x176
   sockfs`socktpi_write+0x18d
    genunix`fop_write+0x43 
    genunix`write+0x21d 
    genunix`write32+0x20 
   unix`sys_syscall32+0x1ff 

               15 
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7
Application-Level
Protocols

This chapter is a continuation of Chapter 6, Network Lower-Level Protocols, and
covers several common application-level network protocols, including HTTP and
Network File System (NFS). Using DTrace, you can answer questions about appli-
cation protocols such as the following.

What NFS clients are performing the most I/O?

What files are NFS clients performing I/O to?

What is the latency for HTTP requests?

These can be answered with DTrace. As an example, nfsv3rwsnoop.d is a
DTrace-based tool to trace NFSv3 reads and writes on the NFS server, showing the
client and I/O details:

server# nfsv3rwsnoop.d
TIME(us)         CLIENT  OP OFFSET(KB)  BYTES PATHNAME 
687663304921     192.168.1.109       R 0       4096 /export/fs1/2g-a-128k 
687663305729     192.168.1.109       R 4       28672 /export/fs1/2g-a-128k 
687663308909     192.168.1.109       R 32      32768 /export/fs1/2g-a-128k
687663309083     192.168.1.109       R 64      32768 /export/fs1/2g-a-128k
687663309185     192.168.1.109       R 96      32768 /export/fs1/2g-a-128k
687663309240     192.168.1.109       R 128      32768 /export/fs1/2g-a-128k
687663309274     192.168.1.109       R 160      32768 /export/fs1/2g-a-128k
687663315282     192.168.1.109       R 192      32768 /export/fs1/2g-a-128k
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Although network sniffing tools can examine similar protocol data, they can
examine only the information in the protocol headers and provide limited output
formats. DTrace can access this information alongside events from anywhere in
the operating system stack, showing not just what packets were sent but also why
they were sent. DTrace also allows this data to be filtered and summarized in-kernel,
resulting in less overhead than would be incurred when network-sniffing tools cap-
ture and postprocess every packet.

The “Strategy” and “Checklist” sections for application protocol I/O are similar to
those shown in the previous chapter for network stack I/O, with these key differences:

Application protocols may be processed by user-land daemons, whereas the 
network stack is typically kernel-only.

The difference between tracing server- or client-side is more evident for appli-
cation protocols, because it may involve tracing completely different bodies of 
software.

Many common application-level network protocols are covered in this chapter;
however, there are far more than we can cover here. It should be possible to use
DTrace to examine all network protocols implemented by software, since DTrace
can examine the operation of all software. For any given application protocol, see
the “Strategy” and “Checklist” sections that follow for tips to get you started. The
scripts included here for other protocols may also provide useful ideas that can be
applied in other ways.

Capabilities

See Figures 6.1 and 6.2 from Chapter 6.

Strategy

To get started using DTrace to examine application protocol I/O, follow these steps
(the target of each step is in bold):

1. Try the DTrace one-liners and scripts listed in the sections that follow.

2. In addition to those DTrace tools, familiarize yourself with existing net-
work statistic tools. For example, you can use nfsstat for NFS statistics, 
and you can use tcpdump or snoop for packet details including the applica-
tion protocol. The metrics that these print can be treated as starting points 
for customization with DTrace.
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3. Locate or write tools to generate known network I/O, which could be as 
simple as using ftp to transfer a large file of a known size. When testing over 
NFS and other network shares, regular file system benchmark tools includ-
ing Filebench can be applied to a mounted share to generate network I/O. It 
is extremely helpful to have known workloads to examine while developing 
DTrace scripts.

4. Check which stable providers exist and are available on your operating sys-
tem to examine the protocol, such as the nfsv3 provider for examining 
NFSv3. You can use these to write stable one-liners and scripts that should 
continue to work for future operating system updates.

5. If no stable provider is available, first check whether the protocol is kernel-
based (for example, most NFS server and client drivers) or user-land-based 
(for example, the iSCSI daemon iscsitgtd). For kernel-based protocols, 
check what probes are available in the sdt and fbt providers; for user-land-
based protocols, check the pid and syscall providers. Simple ways to check 
include listing the probes and using grep and frequency counting events with 
a known workload.

6. If the source code is available, it can be examined to find suitable probe 
points for either the fbt or pid provider and to see what arguments may be 
available for these probes. If the source code isn’t available, program flow 
may be determined by tracing entry and return probes with the flowindent
pragma and also by examining stack backtraces.

Checklist

Consider Table 7-1 to be a checklist of application protocol issue types that can be
examined using DTrace.

Table 7-1 Network I/O Checklist

Issue Description

Volume A server may be accepting a high volume of network I/O from unexpected 
clients, which may be avoidable by reconfiguring the client environment. 
Applications may also be performing a high volume of network I/O that 
could be avoided by modifying their behavior. DTrace can be used to 
examine network I/O by client, port, and application stack trace to identify 
who is using the network, how much, and why.

continues
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Providers

Table 7-2 shows providers of interest when tracing application protocol network I/O.

Latency There are different latencies to examine for application protocol I/O:

• Operation latency, client side: The time from an operation request to 
its completion includes the network latency and target server latency.

• Operation latency, server side: The time from receiving an operation 
request to sending its completion represents the latency, which the 
server is responsible for.

If the latency as measured on the client is much higher than that mea-
sured on the server, then the missing latency may be from the network, 
especially if the client is several routing hops away from the server. 

Queueing If the application protocol implements a queue for outstanding operations, 
DTrace can be used to examine details of the queue. This may include the 
average queue length and the latency while waiting on the queue. Queue-
ing can have a significant effect on performance.

Errors Various errors could be encountered and conveyed by application proto-
cols, but the end user may not necessarily be informed that they have 
occurred. DTrace can check whether errors are occurring and provide 
details including stack backtraces to understand their nature.

Configuration If an application protocol can be configured to behave in different ways, 
such as enabling performance-enhancing features, DTrace can be used to 
confirm that the intended configuration is taking effect.

Table 7-2 Providers for Network I/O

Provider Description

nfsv3, nfsv4 Stable providers for tracing the NFSv3 and NFSv4 protocols on the server. 
Details include client information, filenames, and I/O sizes.

smb Stable provider for tracing the CIFS protocol on the server.

iscsi Stable provider for tracing the iSCSI protocol on the target server.

fc Stable provider for tracing Fibre Channel on the target server.

http Stable USDT provider for tracing HTTP, implemented as a mod_dtrace 
plug-in for the Apache Web server.

ftp Stable provider for tracing the FTP protocol, USDT-based.

Table 7-1 Network I/O Checklist (Continued)

Issue Description
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Check your operating system version to see which of these providers are avail-
able. Protocol providers are described in the “Scripts” section along with the proto-
col scripts; the fbt and pid providers are introduced in the following sections as
they apply to multiple protocols.

fbt Provider

The fbt provider can be used to examine all the functions for kernel-based proto-
cols, the function arguments, the return codes, the return instruction offsets, and
both the elapsed time and the on-CPU time. See the “fbt Provider” chapter of the
DTrace Guide for the full reference,1 and see the “fbt Provider” section in Chapter
12, Kernel.

To navigate the available probes, begin by listing them and search for the proto-
col name. Here’s an example for NFS:

syscall Trace entry and return of operating system calls, arguments, and return val-
ues. Network I/O usually begins as application syscalls, making this a use-
ful provider to consider. It also fires in application context where the user 
stack trace can be examined.

sdt Kernel-based application protocols may have sdt probes of interest.

fbt Any kernel-based application protocol can be examined using the fbt pro-
vider. As this traces kernel functions, the interface is considered unstable 
and may change between releases of the operating system and drivers, 
meaning that scripts based on fbt may need to be slightly rewritten for 
each such update.

pid Any user-land-based application protocol can be examined using the pid 
provider. As this traces functions in the user-land software, the interface is 
considered unstable and may change between versions of the protocol 
software.

1. http://wikis.sun.com/display/DTrace/fbt+Provider

solaris# dtrace -ln fbt::: | grep nfs
 4137        fbt          nfs    nfs3_attr_cache entry
 4138        fbt         nfs   nfs3_attr_cache return
 4139        fbt          nfs    nfs_getattr_cache entry
 4140        fbt          nfs   nfs_getattr_cache return
 4141        fbt          nfs    free_async_args entry

continues

Table 7-2 Providers for Network I/O (Continued)

Provider Description

http://wikis.sun.com/display/DTrace/fbt+Provider
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The function names may match the protocol operations, simply because it can be
easy to design the code that way. Another way to quickly navigate fbt probes is to
perform a known workload and to frequency count fired probes.

Using the fbt provider should be considered a last resort as it is tracing the
source code implementation, which is considered an unstable interface. Check for
the availability of stable providers first, for example, the nfsv3 and iscsi providers.

pid Provider

The pid provider can be used to examine all the functions for user-land based pro-
tocols, the function arguments, the return codes, the return instruction offsets, and
both the elapsed time and the on-CPU time. See the “pid Provider” chapter of the
DTrace Guide for the full reference,2 and see the “pid Provider” section in Chapter
9, Applications.

To navigate the available probes, begin by listing them and search for the proto-
col name. Here’s an example for the RIP protocol implemented by the in.routed
daemon on Solaris:

This has discovered promising function names such as rip_bcast() and rip_
query(), which can be traced using DTrace. If available, the source code can be
examined to see what the arguments to these functions are.

 4142        fbt         nfs   free_async_args return
 4143        fbt         nfs   nfs_async_start entry
 4144        fbt        nfs     nfs_mi_init entry
 4145        fbt        nfs     nfs_mi_init return
...

2. http://wikis.sun.com/display/DTrace/pid+Provider

solaris# dtrace -ln 'pid$target:::entry' -p `pgrep in.routed` | grep -i rip
 7572     pid927  in.routed    rip_bcast entry
 7573     pid927  in.routed    rip_query entry
 7666     pid927   in.routed   rip_strerror entry
 7700     pid927  in.routed    trace_rip entry
85717     pid927  libc.so.1   strip_quotes entry
98532     pid927   in.routed  ripv1_mask_net entry
98533     pid927   in.routed  ripv1_mask_host entry
98549     pid927     in.routed      read_rip entry
98560     pid927  in.routed  open_rip_sock entry
98561     pid927     in.routed               rip_off entry
98562     pid927  in.routed   rip_mcast_on entry
98563     pid927  in.routed  rip_mcast_off entry
98564     pid927     in.routed      rip_on entry
...

http://wikis.sun.com/display/DTrace/pid+Provider
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As with the fbt provider, the pid provider has the capability to trace the unsta-
ble source code implementation and should be considered a last resort if stable pro-
viders are not available.

One-Liners

The following one-liners are grouped by provider. Not all providers are available on
all operating system versions, especially newer providers, such as nfsv3, nfsv4,
smb, iscsi, and fc. See the “Scripts” section for each provider for more details on
provider availability.

syscall Provider

HTTP files opened by the httpd server:

SSH logins by UID and home directory:

nfsv3 Provider

NFSv3 frequency of NFS operations by type:

NFSv3 count of operations by client address:

NFSv3 count of operations by file path name:

dtrace -n 'syscall::open*:entry /execname == "httpd"/ { @[copyinstr(arg0)] = count(); }'

dtrace -n 'syscall::chdir:entry /execname == "sshd"/ { printf("UID:%d %s", uid, 
copyinstr(arg0)); }'

dtrace -n 'nfsv3::: { @[probename] = count(); }'

dtrace -n 'nfsv3:::op-*-start { @[args[0]->ci_remote] = count(); }'

dtrace -n 'nfsv3:::op-*-start { @[args[1]->noi_curpath] = count(); }'
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NFSv3 total read payload bytes, requested:

NFSv3 total read payload bytes, completed:

NFSv3 read I/O size distribution:

NFSv3 total write payload bytes, requested:

NFSv3 total write payload bytes, completed:

NFSv3 write I/O size distribution:

NFSv3 error frequency by type:

nfsv4 Provider

NFSv4 frequency of NFS operations and compound operations by type:

dtrace -n 'nfsv3:::op-read-start { @ = sum(args[2]->count); }'

dtrace -n 'nfsv3:::op-read-done { @ = sum(args[2]->res_u.ok.data.data_len); }'

dtrace -n 'nfsv3:::op-read-start { @ = quantize(args[2]->count); }'

dtrace -n 'nfsv3:::op-write-start { @ = sum(args[2]->data.data_len); }'

dtrace -n 'nfsv3:::op-write-done { @ = sum(args[2]->res_u.ok.count); }'

dtrace -n 'nfsv3:::op-write-start { @ = quantize(args[2]->data.data_len); }'

dtrace -n 'nfsv3:::op-*-done { @[probename, args[2]->status] = count(); }'

dtrace -n 'nfsv4::: { @[probename] = count(); }'
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NFSv4 count of operations by client address:

NFSv4 count of operations by file path name:

NFSv4 total read payload bytes, requested:

NFSv4 total read payload bytes, completed:

NFSv4 read I/O size distribution:

NFSv4 total write payload bytes, requested:

NFSv4 total write payload bytes, completed:

NFSv4 write I/O size distribution:

dtrace -n 'nfsv4:::op-*-start { @[args[0]->ci_remote] = count(); }'

dtrace -n 'nfsv4:::op-*-start { @[args[1]->noi_curpath] = count(); }'

dtrace -n 'nfsv4:::op-read-start { @ = sum(args[2]->count); }'

dtrace -n 'nfsv4:::op-read-done { @ = sum(args[2]->data_len); }'

dtrace -n 'nfsv4:::op-read-start { @ = quantize(args[2]->count); }'

dtrace -n 'nfsv4:::op-write-start { @ = sum(args[2]->data_len); }'

dtrace -n 'nfsv4:::op-write-done { @ = sum(args[2]->count); }'

dtrace -n 'nfsv4:::op-write-start { @ = quantize(args[2]->data_len); }'
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NFSv4 error frequency by type:

smb Provider

CIFS frequency of operations by type:

CIFS count of operations by client address:

CIFS count of operations by file path name:

CIFS total read payload bytes:

CIFS read I/O size distribution:

CIFS total write payload bytes:

CIFS write I/O size distribution:

dtrace -n 'nfsv4:::op-*-done { @[probename, args[2]->status] = count(); }'

dtrace -n 'smb::: { @[probename] = count(); }'

dtrace -n 'smb:::op-*-start { @[args[0]->ci_remote] = count(); }'

dtrace -n 'smb:::op-*-done { @[args[1]->soi_curpath] = count(); }'

dtrace -n 'smb:::op-Read*-start { @ = sum(args[2]->soa_count); }'

dtrace -n 'smb:::op-Read*-start { @ = quantize(args[2]->soa_count); }'

dtrace -n 'smb:::op-Write*-start { @ = sum(args[2]->soa_count); }'

dtrace -n 'smb:::op-Write*-start { @ = quantize(args[2]->soa_count); }'
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http Provider

HTTP frequency count requested URIs:

HTTP frequency count response codes:

HTTP summarize user agents:

iscsi Provider

iSCSI command type frequency: 

iSCSI count of operations by client address: 

iSCSI payload bytes by operation type:

iSCSI payload size distribution by operation type: 

dtrace -n 'http*:::request-start { @[args[1]->hri_uri] = count(); }'

dtrace -n 'http*:::request-done { @[args[1]->hri_respcode] = count(); }'

dtrace -n 'http*:::request-start { @[args[1]->hri_useragent] = count(); }'

dtrace -n 'iscsi*::: { @[probename] = count(); }' 

dtrace -n 'iscsi*::: { @[args[0]->ci_remote] = count(); }' 

dtrace -n 'iscsi*::: { @[probename] = sum(args[1]->ii_datalen); }' 

dtrace -n 'iscsi*::: { @[probename] = quantize(args[1]->ii_datalen); }' 
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fc Provider

FC command type frequency: 

FC count of operations by client address: 

FC bytes transferred:

FC transfer size distribution: 

The following sections demonstrate selected one-liners from these categories.

syscall Provider Examples

 HTTP Files Opened by the httpd Server

Files opened by httpd processes are typically those that were requested by HTTP
clients, so frequency counting these gives a sense of what is being served by the
HTTP server:

dtrace -n 'fc::: { @[probename] = count(); }' 

dtrace -n 'fc::: { @[args[0]->ci_remote] = count(); }' 

dtrace -n 'fc:::xfer-start { @ = sum(args[4]->fcx_len); }'

dtrace -n 'fc:::xfer-start { @ = quantize(args[4]->fcx_len); }'

server# dtrace -n 'syscall::open*:entry /execname == "httpd"/ { @[copyinstr(arg0)] = 
count(); }'
dtrace: description 'syscall::open*:entry ' matched 4 probes
dtrace: error on enabled probe ID 3 (ID 14361: syscall::openat:entry): invalid 
address
 (0xffd19652) in action #2 at DIF offset 28
[...output truncated...]
  /usr/lib/ak/htdocs/wiki/index.php                 10
  /usr/lib/ak/htdocs/wiki/languages/DynamicPageList2.i18n.php      10
  /usr/lib/ak/htdocs/wiki/languages/DynamicPageList2Include.php    10
  /usr/lib/ak/htdocs/wiki/languages/Language.php            10
  /usr/lib/ak/htdocs/wiki/languages/LoopFunctions.i18n.php        10
  /usr/lib/ak/htdocs/wiki/languages/Names.php                  10
  /usr/lib/ak/htdocs/wiki/languages/messages/MessagesEn.php        10
  /var/php/5.2/pear/DynamicPageList2.i18n.php                  10
  /var/php/5.2/pear/DynamicPageList2Include.php                 10
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While tracing, a wiki page was loaded from the HTTP server. The previous
(truncated) output shows the various files that were read to serve this request and
the counts. The output also contains an error as the open* probe definition
matched openat() by accident, which does not contain a string as the first argu-
ment; this could be improved by rewriting as a script and listing the desired vari-
ants of open() only.

SSH Logins by UID and Home Directory

This one-liner traces successful SSH logins showing the UID and home directory.
It works by relying on how the SSH server daemon (sshd) processes a login: Both
the current Solaris and Mac OS X versions execute chdir() to the home directory
after setting the UID to the logged-in user, which is traced:

This captured a login by UID 130948, with the home directory /home/brendan.

NFSv3 Provider Examples

NFSv3 Frequency of NFS Operations by Type

Frequency counting NFSv3 operation types gives an idea of the current NFSv3
workload:

  /var/php/5.2/pear/LoopFunctions.i18n.php              10
  /var/php/5.2/sessions/sess_t2v0ioigsrupgrap4lib43vve3            10
  /usr/lib/ak/htdocs/wiki/includes/SkinTemplate.php              12
  /usr/lib/ak/htdocs/wiki/DynamicPageList2.i18n.php              20
  /usr/lib/ak/htdocs/wiki/DynamicPageList2Include.php              20
  /usr/lib/ak/htdocs/wiki/LoopFunctions.i18n.php            20
  /.htaccess                    63
  /usr/.htaccess                     63
  /usr/lib/.htaccess                     63
  /usr/lib/ak/.htaccess                    63

server# dtrace -n 'syscall::chdir:entry /execname == "sshd"/ { printf("UID:%d %s", 
uid, copyinstr(arg0)); }'
dtrace: description 'syscall::chdir:entry ' matched 1 probe
CPU     ID            FUNCTION:NAME
  9  14265         chdir:entry UID:130948 /home/brendan

server# dtrace -n nfsv3::: { @[probename] = count(); }'
dtrace: description 'nfsv3::: ' matched 44 probes
^C

  op-lookup-done                     1
  op-lookup-start                     1
  op-readdirplus-done                    1

continues
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As this one-liner executed, there were 1,961 NFSv3 reads and 2 NFSv3 writes,
along with some other operation types. This one-liner traces both the start and
done events for each operation.

NFSv3 Count of Operations by Client Address

This is a quick way to determine which clients are using an NFSv3 server and how
many operations there are:

The host 192.168.2.30 performed 2888 NFSv3 operations while the one-liner
was tracing.

NFSv3 Count of Operations by File Path Name

The filename for all NFSv3 operations can be easily traced from the provider
arguments:

The hottest file was /export/fs1/100g, which had 1,131 NFSv3 operations
while tracing.

  op-readdirplus-start                     1
  op-setattr-done                     1
  op-setattr-start                     1
  op-access-done                     2
  op-access-start                     2
  op-write-done                      2
  op-write-start                     2
  op-getattr-done                     6
  op-getattr-start                     6
  op-read-done                  1961
  op-read-start                     1961

server# dtrace -n nfsv3:::op-*-start { @[args[0]->ci_remote] = count(); }'
dtrace: description 'nfsv3:::op-*-start ' matched 22 probes
^C

  192.168.2.40                     42
192.168.2.30                  2888

server# dtrace -n 'nfsv3:::op-*-start { @[args[1]->noi_curpath] = count(); }'
dtrace: description 'nfsv3:::op-*-start ' matched 22 probes
^C

  /export/fs2                    1
  /export/fs1                    2
  /export/fs1/1k 5
  /export/fs2/100g                    42
/export/fs1/100g                   1131
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NFSv3 Read I/O Size Distribution

The size of NFS I/O can have a significant impact on performance, especially
unusually large or small I/O sizes. The distribution can be examined with the
DTrace quantize() function:

This shows that most of the NFSv3 reads were between 2KB and 8KB in size.

NFSv4 Provider Examples

Most of the NFSv4 one-liners produce output similar to that demonstrated for
NFSv3.

NFSv4 Frequency of NFS Operations and Compound Operations by Type

Frequency counting NFSv4 provider event types gives an idea of the current
NFSv4 workload:

server# dtrace -n 'nfsv3:::op-read-start { @ = quantize(args[2]->count); }'
dtrace: description 'nfsv3:::op-read-start ' matched 1 probe
^C

           value  ------------- Distribution ------------- count
             256 |              0
             512 |              54
            1024 |@@                414
            2048 |@@@@@@@@@@@@@       2873
            4096 |@@@@@@@@@@@@@@@@@@@@@               4713
            8192 |@@@@              1012

   16384 |               0 

server# dtrace -n 'nfsv4::: { @[probename] = count(); }'
dtrace: description 'nfsv4::: ' matched 81 probes
^C

  op-access-done                     1
  op-access-start                     1
  op-commit-done                     1
  op-commit-start                     1
  op-lookup-done                     1
  op-lookup-start                     1
  op-nverify-done                     1
  op-nverify-start                     1
  op-write-done                     1
  op-write-start                     1
  op-close-done                     2
  op-close-start                     2
  op-open-done                      2
  op-open-start                     2
  op-restorefh-done                    2
  op-restorefh-start                      2
  op-savefh-done                     2

continues
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Unlike the NFSv3 example, this now contains counts for compound operations:
compound-start and compound-done. This particular example shows the ratio
between normal to compound operations to be about 2x.

smb Provider Examples

CIFS Frequency of Operations by Type

Frequency counting CIFS operations gives an idea of the current CIFS workload:

While this one-liner was running, there were 803 ReadX operations.

CIFS Count of Operations by Client Address

This is a quick way to determine which clients are using a CIFS server and how
many operations there are:

  op-savefh-start                     2
  op-getfh-done                      3
  op-getfh-start                     3
  op-getattr-done                     8
  op-getattr-start                     8
  op-read-done                   115
  op-read-start                     115
  compound-done                     125
  compound-start                     125
  op-putfh-done                     125
op-putfh-start                    125

server# dtrace -n 'smb::: { @[probename] = count(); }'
dtrace: description 'smb::: ' matched 120 probes
^C

  op-Close-done                      3
  op-Close-start                     3
  op-NtCreateX-done                    3
  op-NtCreateX-start                      3
  op-WriteX-done                     16
  op-WriteX-start                     16
  op-Transaction2-done                   158
  op-Transaction2-start                    158
  op-ReadX-done                     803
op-ReadX-start                    803

server# dtrace -n 'smb:::op-*-start { @[args[0]->ci_remote] = count(); }'
dtrace: description 'smb:::op-*-start ' matched 60 probes
^C

  192.168.3.103                     867
192.168.3.102                    2162
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The client 192.168.3.102 performed 2,162 CIFS operations while the one-liner
was tracing.

CIFS Count of Operations by File Path Name

While this one-liner was tracing, the /export/fs1/100g file had 1,163 CIFS
operations. The filename is printed only if available for that operation type and
known; otherwise, it is listed as <unknown>, which was the case for eight opera-
tions. Further DTracing can examine them in more detail if desired. 

CIFS Read I/O Size Distribution

This shows that most of the CIFS read I/O while tracing was between 4KB and
8KB in size.

http Provider Examples

HTTP Summarize User Agents

This is a quick way to see what software HTTP clients are using to browse your Web
server. The most popular browser while this one-liner was tracing was Mozilla/Firefox.

server# dtrace -n 'smb:::op-*-done { @[args[1]->soi_curpath] = count(); }'
dtrace: description 'smb:::op-*-done ' matched 60 probes
^C

  <unknown>                       8
  /export/fs1/8k                     164
/export/fs1/100g                   1163

server# dtrace -n 'smb:::op-Read*-start { @ = quantize(args[2]->soa_count); }'
dtrace: description 'smb:::op-Read*-start ' matched 3 probes
^C

           value  ------------- Distribution ------------- count
            1024 |              0
            2048 |@@@               98
            4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    1031

8192 |                      0

server# dtrace -n 'http*:::request-start { @[args[1]->hri_useragent] = count(); }'
dtrace: description 'http*:::request-start ' matched 10 probes
^C

  Lynx/2.8.5rel.1 libwww-FM/2.14                   2
  ELinks/0.11.6 (textmode; SunOS 5.11 i86pc; 96x41-3)               11

continues
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More examples of http provider one-liners are in the “http Scripts” section.

Scripts

Table 7-3 summarizes the scripts that follow and the providers they use. For net-
work file system protocols such as NFS, Chapter 5, File Systems, contains addi-
tional scripts for client-side tracing.

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.1.9) Gecko/20100315
Firefox/3.5.9         43 

Table 7-3 Network Script Summary

Script Protocol Description Provider

nfsv3rwsnoop.d NFSv3 NFSv3 read/write snoop, showing client, 
path name, and bytes

nfsv3

nfsv3ops.d NFSv3 Shows who is calling what NFSv3 opera-
tions

nfsv3

nfsv3fileio.d NFSv3 Shows NFSv3 read and write bytes by file-
name

nfsv3

nfsv3rwtime.d NFSv3 Measures NFSv3 read and write latency nfsv3

nfsv3syncwrite.d NFSv3 Identifies synchronous NFSv3 writes and 
commits

nfsv3

nfsv3commit.d NFSv3 Shows NFSv3 commit operation details nfsv3

nfsv3errors.d NFSv3 Traces NFSv3 errors live nfsv3

nfsv3fbtrws.d NFSv3 fbt provider version of nfsv3rwsnoop.d fbt

nfsv3disk.d NFSv3 Reads/writes throughput at the NFS, ZFS, 
and disk layers

nfsv3, io, 
sdt

nfsv4rwsnoop.d NFSv4 NFSv4 read/write snoop, showing client, 
pathname, and bytes

nfsv4

nfsv4ops.d NFSv4 Shows who is calling what NFSv4 
operations

nfsv4

nfsv4fileio.d NFSv4 Shows NFSv4 read and write bytes by 
filename

nfsv4

nfsv4rwtime.d NFSv4 Measures NFSv4 read and write latency nfsv4

nfsv4syncwrite.d NFSv4 Identifies synchronous NFSv4 writes and 
commits

nfsv4

nfsv4commit.d NFSv4 Shows NFSv4 commit operation details nfsv4
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nfsv4errors.d NFSv4 Traces NFSv4 errors live nfsv4

nfsv4deleg.d NFSv4 Trace NFSv4 write delegation events fbt

cifsrwsnoop.d CIFS CIFS read/write snoop, showing client, path 
name, and bytes

smb

cifsops.d CIFS Shows who is calling what CIFS operations smb

cifsfileio.d CIFS Shows CIFS read and write bytes by 
filename

smb

cifsrwtime.d CIFS Measures CIFS read and write latency smb

cifserrors.d CIFS Traces CIFS errors live smb

cifsfbtnofile.d CIFS Traces CIFS no such file errors with path 
name and share

fbt

httpclients.d HTTP Summarizes HTTP client throughput http

httperrors.d HTTP Summarizes HTTP errors http

httpio.d HTTP Shows HTTP send/receive size distribution http

httpdurls.d HTTP Counts HTTP GET requests by URL syscall

weblatency.d HTTP Shows client HTTP GETs by Web server and 
latency

syscall

getaddrinfo.d DNS Show latency of client getaddrinfo() 
lookups

pid

dnsgetname.d DNS Traces DNS queries on a BIND server pid

ftpdxfer.d FTP Traces FTP data transfers with client, path, 
and other details

ftp

ftpdfileio.d FTP Summarizes FTP data bytes by filename ftp

proftpdcmd.d FTP Traces proftpd FTP commands pid

tnftpdcmd.d FTP Traces tnftpd FTP commands pid

proftpdtime.d FTP Shows FTP command latency pid

proftpdio.d FTP FTP server iostat, for FTP operations pid

iscsiwho.d iSCSI Shows iSCSI clients and probe counts from 
the target server

iscsi

iscsirwsnoop.d iSCSI Traces iSCSI events on the target server iscsi

iscsirwtime.d iSCSI Measures iSCSI read/write latency from the 
target server

iscsi

iscsicmds.d iSCSI Show iSCSI commands by SCSI command 
type

iscsi

continues

Table 7-3 Network Script Summary (Continued)

Script Protocol Description Provider
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The fbt, sdt, and pid providers are considered “unstable” interfaces, because
they instrument a specific operating system or application version. For this rea-
son, scripts that use these providers may require changes to match the version of
the software you are using. These scripts have been included here as examples of
D programming and of the kind of data that DTrace can provide for each of these
topics. See Chapter 12 for more discussion about using the fbt provider.

NFSv3 Scripts 

NFS is the Network File System protocol for sharing files over the network using a
file system interface. The scripts in this section are for tracing NFS version 3
(NFSv3) events on an NFS server. For NFSv3 client-side tracing, see Chapter 5.

Most of these scripts use the nfsv3 provider, which is fully documented in the
nfsv3 provider section of the DTrace Guide.3 It is currently available in Open-
Solaris4 and Solaris Nevada.5 Listing the nfsv3 probes on Solaris Nevada, circa
June 2010, yields the following:

iscsiterr.d iSCSI Trace iSCSI errors on the target server fbt

fcwho.d FC Shows FC clients and probe counts from 
the target server

fc

fcerror.d FC Traces FC errors with various details fbt

sshcipher.d SSH Measures SSH client encryption/compres-
sion overhead

pid

sshdactivity.d SSH Identifies active SSH activity service side syscall

sshconnect.d SSH Identifies SSH client connect latency syscall

scpwatcher.d SSH Monitor scp progress systemwide syscall

nismatch.d NIS Traces NIS map match requests on the NIS 
server

pid

ldapsyslog.d LDAP Traces OpenLDAP requests on the LDAP 
server

pid

3. http://wikis.sun.com/display/DTrace/nfsv3+Provider

4. PSARC 2008/050, CR 6660173, was integrated into Solaris Nevada in February 2008 
(snv_84).

5. It is also shipped as part of the Oracle Sun ZFS Storage Appliance, where it powers NFSv3
Analytics.

Table 7-3 Network Script Summary (Continued)

Script Protocol Description Provider

http://wikis.sun.com/display/DTrace/nfsv3+Provider
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NFSv3 operations can be traced with the op-*-start and op-*-done probes.
Each provides arguments for the operation, including client address and filename
(when appropriate). The previous listing also highlights the locations of the probes
in the nfssrv kernel module by showing the kernel functions that contain them
(FUNCTION column). These can be treated as starting points if you need to exam-
ine the source code.

If the nfsv3 provider is not available, the fbt provider can be used instead, bear-
ing in mind that fbt-based scripts may only execute on the kernel version they were
written for. Finding the right kernel functions to trace using the fbt provider can
sometimes be a challenge. However, if the kernel version you are using is anything

solaris# dtrace -ln nfsv3:::
   ID   PROVIDER    MODULE    FUNCTION NAME
11363      nfsv3     nfssrv  rfs3_commit op-commit-done
11365      nfsv3     nfssrv  rfs3_commit op-commit-start
11366      nfsv3     nfssrv rfs3_pathconf op-pathconf-done
11368      nfsv3     nfssrv rfs3_pathconf op-pathconf-start
11369      nfsv3     nfssrv  rfs3_fsinfo op-fsinfo-done
11371      nfsv3     nfssrv  rfs3_fsinfo op-fsinfo-start
11372      nfsv3     nfssrv  rfs3_fsstat op-fsstat-done
11374      nfsv3     nfssrv  rfs3_fsstat op-fsstat-start
11375      nfsv3      nfssrv       rfs3_readdirplus op-readdirplus-done
11377      nfsv3      nfssrv       rfs3_readdirplus op-readdirplus-start
11378      nfsv3     nfssrv rfs3_readdir op-readdir-done
11380      nfsv3     nfssrv rfs3_readdir op-readdir-start
11381      nfsv3    nfssrv   rfs3_link op-link-done
11384      nfsv3    nfssrv   rfs3_link op-link-start
11385      nfsv3     nfssrv  rfs3_rename op-rename-done
11387      nfsv3     nfssrv  rfs3_rename op-rename-start
11388      nfsv3     nfssrv   rfs3_rmdir op-rmdir-done
11390      nfsv3    nfssrv  rfs3_rmdir op-rmdir-start
11391      nfsv3     nfssrv  rfs3_remove op-remove-done
11393      nfsv3     nfssrv  rfs3_remove op-remove-start
11394      nfsv3     nfssrv   rfs3_mknod op-mknod-done
11396      nfsv3    nfssrv  rfs3_mknod op-mknod-start
11397      nfsv3     nfssrv rfs3_symlink op-symlink-done
11399      nfsv3     nfssrv rfs3_symlink op-symlink-start
11400      nfsv3     nfssrv   rfs3_mkdir op-mkdir-done
11402      nfsv3    nfssrv  rfs3_mkdir op-mkdir-start
11403      nfsv3     nfssrv  rfs3_create op-create-done
78882      nfsv3     nfssrv  rfs3_create op-create-start
78883      nfsv3     nfssrv   rfs3_write op-write-done
78885      nfsv3    nfssrv  rfs3_write op-write-start
78888      nfsv3    nfssrv   rfs3_read op-read-done
78890      nfsv3    nfssrv   rfs3_read op-read-start
78891      nfsv3     nfssrv rfs3_readlink op-readlink-done
78894      nfsv3     nfssrv rfs3_readlink op-readlink-start
78895      nfsv3     nfssrv  rfs3_access op-access-done
78897      nfsv3     nfssrv  rfs3_access op-access-start
78898      nfsv3     nfssrv  rfs3_lookup op-lookup-done
78900      nfsv3     nfssrv  rfs3_lookup op-lookup-start
78901      nfsv3     nfssrv rfs3_setattr op-setattr-done
78903      nfsv3     nfssrv rfs3_setattr op-setattr-start
78904      nfsv3     nfssrv rfs3_getattr op-getattr-done
78905      nfsv3     nfssrv rfs3_getattr op-getattr-start
78940      nfsv3     nfssrv  rpc_null_v3 op-null-done
78941      nfsv3     nfssrv  rpc_null_v3 op-null-start
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like the Solaris Nevada version shown earlier, the function names may be similar
to the operation names, making them easy to find. An example of fbt provider trac-
ing of NFSv3 is included in this section: nfsv3fbtrws.d.

nfsv3rwsnoop.d

This script traces NFSv3 read and write requests, printing a line of output for each
operation as they occur.

Script

Examples

To become familiar with this script, different workloads are traced.

Streaming Read. Here a large file was read sequentially over NFSv3, creating a
streaming read workload: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           printf("%-16s %-18s %2s %-10s %6s %s\n", "TIME(us)", 
9               "CLIENT", "OP", "OFFSET(KB)", "BYTES", "PATHNAME");
10  } 
11
12  nfsv3:::op-read-start 
13  { 
14 printf("%-16d %-18s %2s %-10d %6d %s\n", timestamp / 1000,
15 args[0]->ci_remote, "R", args[2]->offset / 1024,
16   args[2]->count, args[1]->noi_curpath);
17  } 
18
19  nfsv3:::op-write-start 
20  { 
21 printf("%-16d %-18s %2s %-10d %6d %s\n", timestamp / 1000,
22 args[0]->ci_remote, "W", args[2]->offset / 1024, 
23  args[2]->data.data_len, args[1]->noi_curpath);
24  } 

Script nfsv3rwsnoop.d

server# nfsv3rwsnoop.d
TIME(us)         CLIENT  OP OFFSET(KB)  BYTES PATHNAME 
687663304921     192.168.1.109       R 0       4096 /export/fs1/2g-a-128k 
687663305729     192.168.1.109       R 4       28672 /export/fs1/2g-a-128k 
687663308909     192.168.1.109       R 32      32768 /export/fs1/2g-a-128k
687663309083     192.168.1.109       R 64      32768 /export/fs1/2g-a-128k
687663309185     192.168.1.109       R 96      32768 /export/fs1/2g-a-128k
687663309240     192.168.1.109       R 128      32768 /export/fs1/2g-a-128k
687663309274     192.168.1.109       R 160      32768 /export/fs1/2g-a-128k
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We can see that this is a sequential streaming workload: The offsets are printed
in KB, and comparing them with the I/O size in the BYTES column shows that the
requested offsets are sequential. The I/O size also quickly increases to 32KB, evi-
dence of a streaming workload. 

Random Read 

Now the same file is read by a program that performs random reads, with an I/O
size of 512 bytes: 

The offsets look random. Note that there were 4,096 bytes per I/O, despite
requesting 512 bytes from the application. This kind of information can be used to
tune the network stack to better handle the application workload. 

Application Writes. Here the DTraceToolkit was installed into the share. The
order that the files were written is clearly visible in the output:

687663315282     192.168.1.109       R 192      32768 /export/fs1/2g-a-128k
687663318259     192.168.1.109       R 224      32768 /export/fs1/2g-a-128k
687663320669     192.168.1.109       R 256      32768 /export/fs1/2g-a-128k
687663323752     192.168.1.109       R 288      32768 /export/fs1/2g-a-128k
[...]

server# nfsv3rwsnoop.d
TIME(us)         CLIENT  OP OFFSET(KB)  BYTES PATHNAME 
687710632217     192.168.1.109       R 1224048     4096 /export/fs1/2g-a-128k
687710632915     192.168.1.109       R 1794396     4096 /export/fs1/2g-a-128k
687710633549     192.168.1.109       R 1164408     4096 /export/fs1/2g-a-128k
687710634181     192.168.1.109       R 723352      4096 /export/fs1/2g-a-128k
687710634855     192.168.1.109       R 135364      4096 /export/fs1/2g-a-128k
687710635516     192.168.1.109       R 1164108     4096 /export/fs1/2g-a-128k
687710636189     192.168.1.109       R 2049512     4096 /export/fs1/2g-a-128k
687710636859     192.168.1.109       R 1406584     4096 /export/fs1/2g-a-128k
687710637522     192.168.1.109       R 142280      4096 /export/fs1/2g-a-128k
687710638260     192.168.1.109       R 1000848     4096 /export/fs1/2g-a-128k
687710638925     192.168.1.109       R 1458220     4096 /export/fs1/2g-a-128k
[...]

server# nfsv3rwsnoop.d
TIME(us)     CLIENT    OP OFFSET(KB) BYTES PATHNAME 
688264719673 192.168.1.109  W 0          2716 /export/fs1/DTT/JavaScript/js_objgc.d
688264723221 192.168.1.109  W 0          2373 /export/fs1/DTT/JavaScript/js_flowinfo.d
688264726587 192.168.1.109  W 0          1461 /export/fs1/DTT/JavaScript/js_objnew.d
688264729517 192.168.1.109  W 0          2439 /export/fs1/DTT/JavaScript/Readme
688264736644 192.168.1.109  W 0          3396 /export/fs1/DTT/JavaScript/js_calltime.d
688264739802 192.168.1.109  W 0          2327 /export/fs1/DTT/JavaScript/js_stat.d
688264806739 192.168.1.109  W 0          2602 /export/fs1/DTT/JavaScript/js_cpudist.d
688264809810 192.168.1.109  W 0          1366 /export/fs1/DTT/JavaScript/js_execs.d
688264814143 192.168.1.109  W 0          1458 /export/fs1/DTT/JavaScript/js_who.d
688264817147 192.168.1.109  W 0          1915 /export/fs1/DTT/JavaScript/js_flow.d
[...]
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nfsv3ops.d

The nfsv3ops.d script is presented in this section.

Script

This script shows who is calling what NFSv3 operations. An output summary is
printed every five seconds. 

Example

This script identifies a read/write workload from the client 192.168.1.109, with
writes dominating in the first five-second interval. Each of the NFS operations can
be investigated in more detail with DTrace.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           trace("Tracing NFSv3 operations... Interval 5 secs.\n"); 
8   } 
9
10  nfsv3:::op-*-start
11  { 
12          @ops[args[0]->ci_remote, probename] = count(); 
13  } 
14
15  profile:::tick-5sec, 
16  dtrace:::END 
17  { 
18 printf("\n   %-32s %-28s %8s\n", "Client", "Operation", "Count"); 
19          printa("   %-32s %-28s %@8d\n", @ops); 
20          trunc(@ops); 
21  }

Script nfsv3ops.d

server# nfsv3ops.d
Tracing NFSv3 operations... Interval 5 secs. 

   Client            Operation                 Count 
   192.168.1.109 op-readlink-start            2 
   192.168.1.109           op-readdirplus-start          8 
   192.168.1.109 op-access-start            40 
   192.168.1.109 op-getattr-start           86 
   192.168.1.109 op-read-start            934 
   192.168.1.109 op-write-start           1722 

   Client            Operation                 Count 
   192.168.100.3 op-access-start             1 
   192.168.100.3           op-readdirplus-start          1 
   192.168.110.3 op-access-start             1 
   192.168.110.3           op-readdirplus-start          1 
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nfsv3fileio.d

The nfsv3fileio.d is a simple script to trace NFSv3 reads and writes, generat-
ing a report by filename when Ctrl-C ends tracing. 

Script

If the script produces too many lines of output (because of too many different files
being accessed), it could be enhanced with trunc() to print only the top N read or
written files.

Example

While this script was tracing, about 200MB were written to the /export/fs1/
db1 file via NFSv3.

   192.168.100.3 op-getattr-start            2 
   192.168.110.3 op-getattr-start            2 
   192.168.1.109 op-read-start            1473 
   192.168.1.109  op-write-start            1477 
[...]

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           trace("Tracing... Hit Ctrl-C to end.\n");
8   } 
9
10  nfsv3:::op-read-done 
11  { 
12  @readbytes[args[1]->noi_curpath] = sum(args[2]->res_u.ok.data.data_len);
13  } 
14
15  nfsv3:::op-write-done 
16  { 
17          @writebytes[args[1]->noi_curpath] = sum(args[2]->res_u.ok.count);
18  } 
19
20  dtrace:::END 
21  { 
22          printf("\n%12s %12s  %s\n", "Rbytes", "Wbytes", "Pathname"); 
23          printa("%@12d %@12d  %s\n", @readbytes, @writebytes); 
24  }

Script nfsv3fileio.d

server# nfsv3fileio.d
Tracing... Hit Ctrl-C to end. 
^C

continues
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nfsv3rwtime.d 

The nfsv3rwtime.d script measures NFSv3 read and write operation latency, as
observed on the server. This latency includes time querying the underlying file sys-
tem cache and for disk I/O if required. Latency distribution plots are printed, along
with summaries by host and file. 

Script

Line 15 saves a time stamp when the I/O starts, which is retrieved during the done
probe on line 22 so that the elapsed time for the I/O can be calculated. It is saved
in an associative array called start, which is keyed on args[1]->noi_xid—the
transaction identifier for the NFS I/O—so that the done probe is retrieving correct
start time stamp for the current I/O.

      Rbytes    Wbytes  Pathname 
           0    206864384  /export/fs1/db1 
     1277952       0  /export/fs1/small 
    49655808      0  /export/fs1/2g-e-8k 

56111104    0  /export/fs1/2g-e-128k

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   inline int TOP_FILES = 10; 
6
7   dtrace:::BEGIN 
8   { 
9           printf("Tracing... Hit Ctrl-C to end.\n"); 
10  } 
11
12  nfsv3:::op-read-start, 
13  nfsv3:::op-write-start 
14  { 
15 start[args[1]->noi_xid] = timestamp; 
16  } 
17
18  nfsv3:::op-read-done, 
19  nfsv3:::op-write-done 
20  /start[args[1]->noi_xid] != 0/ 
21  { 
22          this->elapsed = timestamp - start[args[1]->noi_xid];
23          @rw[probename == "op-read-done" ? "read" : "write"] = 
24   quantize(this->elapsed / 1000); 
25          @host[args[0]->ci_remote] = sum(this->elapsed);
26          @file[args[1]->noi_curpath] = sum(this->elapsed); 
27  start[args[1]->noi_xid] = 0; 
28  } 
29
30  dtrace:::END 
31  { 
32          printf("NFSv3 read/write distributions (us):\n"); 
33          printa(@rw); 
34
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Example

The latency for the reads and writes can be seen in the distribution plots: Reads
were usually between 12 and 63 microseconds, as were writes. Such fast times sug-
gest that these reads and writes are returning from cache. DTrace can be used to
investigate further.

35          printf("\nNFSv3 read/write by host (total us):\n"); 
36   normalize(@host, 1000); 
37          printa(@host); 
38
39          printf("\nNFSv3 read/write top %d files (total us):\n", TOP_FILES);
40   normalize(@file, 1000); 
41   trunc(@file, TOP_FILES); 
42          printa(@file); 
43  }

Script nfsv3rwtime.d

server# nfsv3rwtime.d
Tracing... Hit Ctrl-C to end. 
^C
NFSv3 read/write distributions (us): 

  read
           value  ------------- Distribution ------------- count
               4 |              0
               8 |@@               762
              16 |@@@@@@@@@@@@@@@@@@                7915
              32 |@@@@@@@@@@@@@@@@@                 7117
              64 |@@@                 1385
             128 |              53
             256 |              0

  write
           value  ------------- Distribution ------------- count
              16 |              0

32 |@@@@@@@@@@@@@@@@@@@@@@@@@@      14821
64 |@@@@@@@@@         5195

             128 |@@@@@                2575
             256 |              41
             512 |              4
            1024 |              0
            2048 |              1
            4096 |              0

NFSv3 read/write by host (total us): 

  192.168.1.109                2350760 

NFSv3 read/write top 10 files (total us): 

  /export/fs1/2g-e-8k                  275704 
  /export/fs1/2g-e-128k                 341566 
  /export/fs1/db1                 1733489 
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nfsv3syncwrite.d

When capacity planning NFS servers, it’s important to know whether applications
are performing asynchronous or synchronous writes and how much of each. If they
are performing synchronous writes, technologies such as flash memory–based sep-
arate intent log devices may be added to improve performance. These devices can
be expensive, so it’s important to know whether they will be needed.

Synchronous writes occur if the NFS write has a stable flag set or if NFS is
sending frequent commit operations. The nfsv3syncwrite.d script measures
these.

Script

To convert from the numeric stable_how protocol codes into human-readable
strings, a translation table is created on lines 9 to 10 using an associative array.

Example

To test this script, writes will be performed to two files: Default asynchronous
writes will be performed to defaultwrite, and synchronous writes (O_DSYNC)
will be performed to syncwrite. The script shows the following: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7  /* See /usr/include/nfs/nfs.h */ 
8  stable_how[0] = "Unstable"; 
9  stable_how[1] = "Data_Sync"; 
10  stable_how[2] = "File_Sync"; 
11 printf("Tracing NFSv3 writes and commits... Hit Ctrl-C to end.\n"); 
12  } 
13
14  nfsv3:::op-write-start 
15  { 
16 @["write", stable_how[args[2]->stable], args[1]->noi_curpath] = count();
17  } 
18
19  nfsv3:::op-commit-start
20  { 
21          @["commit", "-", args[1]->noi_curpath] = count(); 
22  } 
23
24  dtrace:::END 
25  { 
26 printf(" %-7s %-10s %-10s %s\n", "OP", "TYPE", "COUNT", "PATH"); 
27          printa(" %-7s %-10s %@-10d %s\n", @); 
28  }

Script nfsv3syncwrite.d
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The writes to the syncwrite file were all of type File_Sync, and to the
defaultwrite file they were all of type Unstable. This also picked up some com-
mits to the defaultwrite file, which will cause some synchronous behavior. 

nfsv3commit.d

NFS commit operations can have a dramatic effect on write performance. The
nfsv3commit.d script provides details of commits including size and time
between commits. 

Script

server# nfsv3syncwrite.d
Tracing NFSv3 writes and commits... Hit Ctrl-C to end. 
^C
 OP      TYPE    COUNT      PATH 
 commit  - 36  /export/fs1/defaultwrite 
 write   File_Sync  22755      /export/fs1/syncwrite 
 write   Unstable   32768  /export/fs1/defaultwrite

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   /* From /usr/include/nfs/nfs.h */ 
6   inline int UNSTABLE = 0; 
7   int last[string]; 
8
9   dtrace:::BEGIN 
10  { 
11 printf("Tracing NFSv3 writes and commits... Hit Ctrl-C to end.\n");
12  } 
13
14  nfsv3:::op-write-start 
15  /args[2]->stable == UNSTABLE/ 
16  { 
17          @write[args[1]->noi_curpath] = sum(args[2]->count); 
18  } 
19
20  nfsv3:::op-write-start 
21  /args[2]->stable != UNSTABLE/ 
22  { 
23          @syncwrite[args[1]->noi_curpath] = sum(args[2]->count); 
24  } 
25
26  nfsv3:::op-commit-start
27  /(this->last = last[args[1]->noi_curpath])/
28  { 
29          this->delta = (timestamp - this->last) / 1000; 
30          @time[args[1]->noi_curpath] = quantize(this->delta); 
31  } 
32
33  nfsv3:::op-commit-start
34  { 

continues
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You can customize this script to show information by client instead of by path
name. 

This script has a small problem: The associative array called last is never
freed. This means that the script can be run only for short durations (depends on
how quickly different files are accessed), before the array will become so large that
DTrace will drop data. If you see warning messages while running this script, it’s
been running too long. 

Example

Two 1GB files were written to an NFSv3 share from two Solaris clients, using the
default mount options and open() flags. The only difference between the clients is
their kernel tunables: one uses the defaults, and the other is tuned.6

35          @committed[args[1]->noi_curpath] = sum(args[2]->count); 
36          @commit[args[1]->noi_curpath] = quantize(args[2]->count / 1024); 
37          last[args[1]->noi_curpath] = timestamp; 
38  } 
39
40  dtrace:::END 
41  { 
42   normalize(@write, 1024); 
43  normalize(@syncwrite, 1024); 
44  normalize(@committed, 1024); 
45 printf("\nCommited vs uncommited written Kbytes by path:\n\n"); 
46 printf(" %-10s %-10s %-10s %s\n", "WRITE", "SYNCWRITE", "COMMITTED", 
47              "PATH"); 
48 printa(" %@-10d %@-10d %@-10d %s\n", @write, @syncwrite, @committed); 
49          printf("\n\nCommit Kbytes by path:\n"); 
50    printa(@commit); 
51          printf("\nTime between commits (us) by path:\n"); 
52          printa(@time); 
53  }

Script nfsv3commit.d

server# nfsv3commit.d
Tracing NFSv3 writes and commits... Hit Ctrl-C to end. 
^C

Commited vs uncommited written Kbytes by path: 

 WRITE      SYNCWRITE  COMMITTED  PATH 
 1048576    0   1048576  /export/fs1/tuned-client 
 1048576    0   1048576 /export/fs1/untuned-client

Commit Kbytes by path: 

6. tune_t_fsflushr=5 and autoup=300 were set in /etc/system, causing the client to scan
and flush dirty memory pages less frequently. 
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The runtime for creating the 1GB files on the clients was noticeably different,
with the tuned client completing about four times quicker. The reason becomes
clear with DTrace: The tuned client is making fewer, larger, less-frequent com-
mits, whereas the untuned client is committing smaller sizes and more frequently. 

A large time between commits isn’t always because of tuning: The client may
simply have stopped writing to the file for a while. 

  /export/fs1/tuned-client
           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@@@@@@@@@@@@@@         1
            1024 |              0
            2048 |              0
            4096 |              0
            8192 |              0
           16384 |             0
           32768 |             0
           65536 |             0
          131072 |                0
          262144 |                0
          524288 |@@@@@@@@@@@@@@@@@@@@                   1

    1048576 |           0

  /export/fs1/untuned-client 
           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@             2
            2048 |@@@@@@@@@@@@@@                   20
            4096 |@@@@@@@@              11
            8192 |@@@@@@@@@@@                    16
           16384 |@             2
           32768 |@@               3
           65536 |@             1
          131072 |@               1
          262144 |@               1
          524288 |                0

Time between commits (us) by path: 

  /export/fs1/tuned-client
           value  ------------- Distribution ------------- count
          524288 |                0
         1048576 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
         2097152 |               0

  /export/fs1/untuned-client 
           value  ------------- Distribution ------------- count
           65536 |             0
          131072 |@@@@@@@@@@@@@@@@                 22
          262144 |@@@@@@@@              11
          524288 |@@@@@@@@@@@             15
         1048576 |@               2
         2097152 |@@@               4
         4194304 |@               1
         8388608 |               0
        16777216 |@               1

 33554432 |               0 
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nfsv3errors.d

One of the network issue types we mentioned in Table 7-1 at the start of this chap-
ter was errors. It may sound obvious to check for errors, but this is sometimes
overlooked, especially if the system tools don’t show them clearly to start with.
While writing a DTrace script to examine NFS errors, we created known NFS
errors to test the script. We also ran the supplied system tool nfsstat:

Even knowing what our errors were, we couldn’t find them identified by the output
of nfsstat. And even if we could, they would be single statistics without further
information, such as which client encountered the error, what file it was for, and so on.

The nfsv3errors.d script traces NFSv3 errors as they occur, with client and
filename information. 

Script

The nfs provider makes this a very simple script. The bulk of code declares an asso-
ciative array to translate from error codes to strings, based on the defines in /usr/
include/sys/nfs.h:

server# nfsstat
Server rpc: 
Connection oriented: 
calls      badcalls   nullrecv   badlen     xdrcall   dupchecks  dupreqs
899043     0  0          0          0        765544   0
Connectionless:
calls      badcalls   nullrecv   badlen     xdrcall   dupchecks  dupreqs
0          0          0       0          0    0          0

Server NFSv2: 
calls     badcalls
0         0

Server NFSv3: 
calls     badcalls
898959    0
[...]
Version 3: (897963 calls) 
null        getattr  setattr     lookup  access      readlink
42 0%       4660 0% 4344 0%     1848 0%     1542 0%     0 0%
read        write  create      mkdir  symlink     mknod
121088 13%  759873 84%  857 0%      46 0%       5 0%        0 0%
remove      rmdir   rename      link     readdir     readdirplus 
336 0%      23 0%       0 0%        0 0%        0 0%        60 0%
fsstat      fsinfo  pathconf    commit
47 0%       42 0%  704 0%      2446 0%
[...]

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
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Example

The first error caught was ACCES (that spelling is from the nfs.h file), because
the 192.168.1.109 client attempted to enter a directory it did not have permissions
for. The remaining errors occurred because that client was reading a file that was
deleted, causing outstanding reads to error as the file handle had became stale. 

6   dtrace:::BEGIN 
7   { 
8           /* See NFS3ERR_* in /usr/include/nfs/nfs.h */ 
9   nfs3err[0] = "NFS3_OK"; 
10   nfs3err[1] = "PERM"; 
11   nfs3err[2] = "NOENT"; 
12          nfs3err[5] = "IO"; 
13   nfs3err[6] = "NXIO"; 
14   nfs3err[13] = "ACCES"; 
15   nfs3err[17] = "EXIST"; 
16   nfs3err[18] = "XDEV"; 
17   nfs3err[19] = "NODEV"; 
18   nfs3err[20] = "NOTDIR"; 
19   nfs3err[21] = "ISDIR"; 
20   nfs3err[22] = "INVAL"; 
21   nfs3err[27] = "FBIG"; 
22   nfs3err[28] = "NOSPC"; 
23   nfs3err[30] = "ROFS"; 
24   nfs3err[31] = "MLINK"; 
25  nfs3err[63] = "NAMETOOLONG";
26   nfs3err[66] = "NOTEMPTY"; 
27   nfs3err[69] = "DQUOT"; 
28   nfs3err[70] = "STALE"; 
29   nfs3err[71] = "REMOTE"; 
30  nfs3err[10001] = "BADHANDLE"; 
31  nfs3err[10002] = "NOT_SYNC"; 
32  nfs3err[10003] = "BAD_COOKIE"; 
33  nfs3err[10004] = "NOTSUPP"; 
34  nfs3err[10005] = "TOOSMALL"; 
35  nfs3err[10006] = "SERVERFAULT"; 
36  nfs3err[10007] = "BADTYPE"; 
37  nfs3err[10008] = "JUKEBOX"; 
38
39          printf(" %-18s %5s %-12s %-16s %s\n", "NFSv3 EVENT", "ERR", "CODE",
40     "CLIENT", "PATHNAME"); 
41  } 
42
43  nfsv3:::op-*-done 
44  /args[2]->status != 0/ 
45  { 
46  this->err = args[2]->status;
47 this->str = nfs3err[this->err] != NULL ? nfs3err[this->err] : "?";
48 printf(" %-18s %5d %-12s %-16s %s\n", probename, this->err, 
49 this->str, args[0]->ci_remote, args[1]->noi_curpath); 
50  }

Script nfsv3errors.d

server# nfsv3errors.d
NFSv3 EVENT ERR CODE         CLIENT           PATHNAME 
op-lookup-done        13 ACCES        192.168.1.109 /export/fs1/secret
op-read-done  70 STALE  192.168.1.109   <unknown> 
op-read-done  70 STALE  192.168.1.109   <unknown> 

continues
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nfsv3fbtrws.d 

Should the nfs provider not be available or if you want customization beyond what
the NFS provider can do, the fbt provider can be used. As a demonstration of this,
the nfsv3rwsnoop.d script was rewritten to use the fbt provider. Since it now
traces kernel functions directly, it is not expected to execute without adjustments
to match the operating system kernel you are using.

This script was also rewritten to avoid later DTrace features, such as the
inet*() functions to convert IP addresses to strings, to demonstrate ways these
can be accomplished if those later features are not available.

Script

Compare the length and complexity of this script with the nfsv3 provider-based
nfsv3rwsnoop.d script. With fbt, DTrace makes it possible; with stable provid-
ers, DTrace makes it both possible and easy.

op-read-done  70 STALE  192.168.1.109   <unknown> 
op-read-done  70 STALE  192.168.1.109   <unknown> 
op-read-done  70 STALE  192.168.1.109   <unknown> 
[...]

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           printf("%-16s %-18s %2s %-10s %6s %s\n", "TIME(us)", 
9               "CLIENT", "OP", "OFFSET(KB)", "BYTES", "PATHNAME"); 
10  } 
11
12  fbt::rfs3_read:entry 
13  { 
14   self->in_rfs3 = 1; 
15 /* args[0] is READ3args */ 
16          self->offset = args[0]->offset / 1024; 
17  self->count = args[0]->count;
18   self->req = args[3]; 
19    self->dir = "R"; 
20  } 
21
22  fbt::rfs3_write:entry 
23  { 
24   self->in_rfs3 = 1; 
25 /* args[0] is WRITE3args */ 
26          self->offset = args[0]->offset / 1024; 
27  self->count = args[0]->count;
28   self->req = args[3]; 
29    self->dir = "W"; 
30  } 
31
32  /* trace nfs3_fhtovp() to retrieve the vnode_t */ 
33  fbt::nfs3_fhtovp:return
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Because we’re using the fbt provider, the script is highly dependent on the
source implementation of NFS; in this case, it was written for a particular version
of the OpenSolaris kernel. 

Examples

Two examples follow.

Tracing NFSv3 I/O with fbt

The output is the same as the nfsv3rwsnoop.d script, as intended.

34  /self->in_rfs3/ 
35  { 
36   this->vp = args[1]; 
37      this->socket = (struct sockaddr_in 

   *)self->req->rq_xprt->xp_xpc.xpc_rtaddr.buf;
38          /* DTrace 1.0: no inet functions, no this->strings */ 
39          this->a = (uint8_t *)&this->socket->sin_addr.S_un.S_addr;
40  self->addr1 = strjoin(lltostr(this->a[0] + 0ULL), strjoin(".", 
41  strjoin(lltostr(this->a[1] + 0ULL), "."))); 
42  self->addr2 = strjoin(lltostr(this->a[2] + 0ULL), strjoin(".", 
43    lltostr(this->a[3] + 0ULL))); 
44          self->address = strjoin(self->addr1, self->addr2); 
45
46 printf("%-16d %-18s %2s %-10d %6d %s\n", timestamp / 1000, 
47  self->address, self->dir, self->offset, self->count, 
48              this->vp->v_path != NULL ? stringof(this->vp->v_path) : "<?>"); 
49
50    self->addr1 = 0; 
51    self->addr2 = 0; 
52   self->address = 0; 
53    self->dir = 0; 
54    self->req = 0; 
55   self->offset = 0; 
56    self->count = 0; 
57   self->in_rfs3 = 0; 
58  }

Script nfsv3fbtrws.d

server# nfsv3fbtrws.d
TIME(us)         CLIENT  OP OFFSET(KB)  BYTES PATHNAME 
762366360517     192.168.110.3       R 64      32768 /export/fs11/50g-a-128k
762366348344     192.168.110.3       R 64      32768 /export/fs11/500m-cl-128k
762366360452     192.168.110.3       R 32      32768 /export/fs11/50g-a-128k
762366360522     192.168.110.3       R 160      32768 /export/fs11/50g-a-128k
762366348287     192.168.110.3       R 96      32768 /export/fs11/500m-cl-128k
762366359851     192.168.110.3       R 4       28672 /export/fs11/50g-a-128k 
762366348340     192.168.110.3       R 160      32768 /export/fs11/500m-cl-128k
762366348260     192.168.110.3       R 32      32768 /export/fs11/500m-cl-128k
762366349761     192.168.110.3       R 0       4096 /export/fs11/50g-a-128k 
762378489720     192.168.110.3       W 1536       32768 /export/fs11/test 
762378490160     192.168.110.3       W 1600       32768 /export/fs11/test 
762378490976     192.168.110.3       W 1696       32768 /export/fs11/test 
762378491763     192.168.110.3       W 1792       32768 /export/fs11/test 
[...]
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fbt Is “Unstable.” Now this script was executed on a recent version of Solaris
instead of OpenSolaris: 

This is an example of fbt’s “unstable” interface. On this Solaris version, the
rfs3_read() function has a different name. For this script to execute, it would
need to be adjusted to match the kernel functions used by this Solaris version.

NFSv4 Scripts 

The NFSv4 protocol includes features such as compound operations, allowing cli-
ents to group together NFS operations for improved performance. The scripts in
this section are for tracing NFSv4 events on the NFS server. For NFSv4 client-side
tracing, see Chapter 5.

A stable provider exists for NFSv4 with an almost identical interface to the
NFSv3 provider. Because of this, many of the previous NFSv3 scripts require only
small changes to work on NFSv4. Rather than repeating largely identical scripts,
examples, and descriptions, here we will show only the changes. To see full descrip-
tions and examples, refer to the earlier “NFSv3 Scripts” section. 

Most of these scripts use the nfsv4 provider, which is fully documented in the
nfsv4 provider section of the DTrace Guide.7 It is currently available in Open-
Solaris8 and Solaris Nevada.9 Listing the nfsv4 probes on Solaris Nevada, circa
June 2010, yields the following:

server# nfsv3fbtrws.d
dtrace: failed to compile script nfsv3fbtrws.d: line 12: probe description fbt::rfs3_
read:entry does not match any probes 

7. http://wikis.sun.com/display/DTrace/nfsv4+Provider

8. PSARC 2007/665, CR 6635086, was integrated into Solaris Nevada in December 2007 (snv_80).

9. It is also shipped as part of the Oracle Sun ZFS Storage Appliance, where it powers NFSv4 Analytics.

solaris# dtrace -ln nfsv4:::
   ID   PROVIDER    MODULE          FUNCTION NAME
11212      nfsv4    nfssrv      rfs4_dispatch null-done
11213      nfsv4    nfssrv      rfs4_dispatch null-start
11220      nfsv4    nfssrv     rfs4_op_readdir op-readdir-done
11221      nfsv4    nfssrv    rfs4_op_readdir op-readdir-start
11224      nfsv4 nfssrv    rfs4_do_cb_recall cb-recall-done
11225      nfsv4 nfssrv    rfs4_do_cb_recall cb-recall-start
11230      nfsv4    nfssrv      rfs4_op_lockt op-lockt-done
11261      nfsv4    nfssrv      rfs4_op_lockt op-lockt-start
11262      nfsv4    nfssrv      rfs4_op_locku op-locku-done
11263      nfsv4    nfssrv      rfs4_op_locku op-locku-start
11264      nfsv4    nfssrv      rfs4_op_lock op-lock-done

http://wikis.sun.com/display/DTrace/nfsv4+Provider
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11265      nfsv4    nfssrv      rfs4_op_lock op-lock-start
11266      nfsv4    nfssrv      rfs4_op_close op-close-done
11267      nfsv4    nfssrv      rfs4_op_close op-close-start
11268      nfsv4    nfssrv  rfs4_op_setclientid_confirm op-setclientid-confirm-done
11269      nfsv4    nfssrv    rfs4_op_setclientid_confirm op-setclientid-confirm-start
11270      nfsv4 nfssrv  rfs4_op_setclientid op-setclientid-done
11271      nfsv4 nfssrv  rfs4_op_setclientid op-setclientid-start
11272      nfsv4 nfssrv         rfs4_op_open_downgrade op-open-downgrade-done
11273      nfsv4 nfssrv         rfs4_op_open_downgrade op-open-downgrade-start
11274      nfsv4 nfssrv rfs4_op_open_confirm op-open-confirm-done
11275      nfsv4 nfssrv rfs4_op_open_confirm op-open-confirm-start
11276      nfsv4    nfssrv      rfs4_op_open op-open-done
11277      nfsv4    nfssrv      rfs4_op_open op-open-start
11282      nfsv4    nfssrv      rfs4_compound compound-done
11283      nfsv4    nfssrv      rfs4_compound compound-start
11284      nfsv4    nfssrv      rfs4_op_write op-write-done
11285      nfsv4    nfssrv      rfs4_op_write op-write-start
11286      nfsv4    nfssrv     rfs4_op_nverify op-nverify-done
11287      nfsv4    nfssrv     rfs4_op_nverify op-nverify-start
11288      nfsv4    nfssrv     rfs4_op_verify op-verify-done
11289      nfsv4    nfssrv     rfs4_op_verify op-verify-start
11290      nfsv4    nfssrv     rfs4_op_setattr op-setattr-done
11292      nfsv4    nfssrv     rfs4_op_setattr op-setattr-start
11293      nfsv4    nfssrv     rfs4_op_savefh op-savefh-done
11294      nfsv4    nfssrv     rfs4_op_savefh op-savefh-start
11295      nfsv4    nfssrv   rfs4_op_restorefh op-restorefh-done
11296      nfsv4    nfssrv   rfs4_op_restorefh op-restorefh-start
11299      nfsv4    nfssrv     rfs4_op_rename op-rename-done
11301      nfsv4    nfssrv     rfs4_op_rename op-rename-start
11302      nfsv4    nfssrv     rfs4_op_remove op-remove-done
11305      nfsv4    nfssrv     rfs4_op_remove op-remove-start
11306      nfsv4    nfssrv    rfs4_op_release_lockowner op-release-lockowner-done
11307      nfsv4  nfssrv      rfs4_op_release_lockowner op-release-lockowner-start
11308      nfsv4    nfssrv    rfs4_op_readlink op-readlink-done
11310      nfsv4    nfssrv   rfs4_op_readlink op-readlink-start
11311      nfsv4    nfssrv   rfs4_op_putrootfh op-putrootfh-done
11312      nfsv4    nfssrv   rfs4_op_putrootfh op-putrootfh-start
11313      nfsv4    nfssrv      rfs4_op_putfh op-putfh-done
11314      nfsv4    nfssrv      rfs4_op_putfh op-putfh-start
11315      nfsv4    nfssrv    rfs4_op_putpubfh op-putpubfh-done
11317      nfsv4    nfssrv   rfs4_op_putpubfh op-putpubfh-start
11318      nfsv4    nfssrv      rfs4_op_read op-read-done
11319      nfsv4    nfssrv      rfs4_op_read op-read-start
11320      nfsv4    nfssrv    rfs4_op_openattr op-openattr-done
11321      nfsv4    nfssrv   rfs4_op_openattr op-openattr-start
11322      nfsv4    nfssrv     rfs4_op_lookupp op-lookupp-done
11323      nfsv4    nfssrv     rfs4_op_lookupp op-lookupp-start
11324      nfsv4    nfssrv     rfs4_op_lookup op-lookup-done
11325      nfsv4    nfssrv     rfs4_op_lookup op-lookup-start
11327      nfsv4    nfssrv      rfs4_op_link op-link-done
11328      nfsv4    nfssrv      rfs4_op_link op-link-start
11329      nfsv4    nfssrv      rfs4_op_getfh op-getfh-done
11333      nfsv4    nfssrv      rfs4_op_getfh op-getfh-start
11334      nfsv4    nfssrv     rfs4_op_getattr op-getattr-done
11335      nfsv4    nfssrv     rfs4_op_getattr op-getattr-start
11337      nfsv4 nfssrv  rfs4_op_delegreturn op-delegreturn-done
11338      nfsv4 nfssrv  rfs4_op_delegreturn op-delegreturn-start
11339      nfsv4 nfssrv   rfs4_op_delegpurge op-delegpurge-done
11340      nfsv4 nfssrv   rfs4_op_delegpurge op-delegpurge-start
11341      nfsv4    nfssrv     rfs4_op_create op-create-done
11342      nfsv4    nfssrv     rfs4_op_create op-create-start
11343      nfsv4    nfssrv     rfs4_op_commit op-commit-done
11344      nfsv4    nfssrv     rfs4_op_commit op-commit-start
11345      nfsv4    nfssrv     rfs4_op_access op-access-done
11348      nfsv4    nfssrv     rfs4_op_access op-access-start
11349      nfsv4    nfssrv     rfs4_op_secinfo op-secinfo-done
11350      nfsv4    nfssrv     rfs4_op_secinfo op-secinfo-start
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Both the compound operation can be traced with the compound-start and
compound-done probes, as well as the individual NFS operations with the
op-*-start and op-*-done probes. Each provide arguments for the operation,
including client address and filename (when appropriate). The previous listing also
highlights the locations of the probes in the nfssrv kernel module by showing the
kernel functions that contain them (FUNCTION column). These can be treated as
starting points if you need to examine the source code.

If the nfsv4 provider is not available, the fbt provider can be used, bearing in
mind that fbt-based scripts may only execute on the kernel version they were writ-
ten for. Finding the right kernel functions to trace using the fbt provider can some-
times be a challenge. However, if the kernel version you are using is anything like
the Solaris Nevada version shown previously, the function names may be similar
to the operation names, making them easy to find. An example of fbt provider trac-
ing of NFSv4 is included in this section: nfsv4deleg.d.

nfsv4rwsnoop.d 

This script traces NFSv4 reads and writes live, with client, I/O size, and path
name details. 

The script is identical to the nfsv3rwsnoop.d script, with the following differ-
ent lines: 

nfsv4ops.d

This script shows NFSv4 operation counts and prints a summary every five seconds.
The script is identical to the nfsv3ops.d script, with the following different lines: 

nfsv4fileio.d

This script summarizes NFSv4 read and write bytes by filename. The script is
identical to the nfsv3fileio.d script, with the following different lines: 

12  nfsv4:::op-read-start 
19  nfsv4:::op-write-start 
23   args[2]->data_len, args[1]->noi_curpath);

7          trace("Tracing NFSv4 operations... Interval 5 secs.\n");
10  nfsv4:::op-*-start

10  nfsv4:::op-read-done 
12          @readbytes[args[1]->noi_curpath] = sum(args[2]->data_len);
15  nfsv4:::op-write-done 
17          @writebytes[args[1]->noi_curpath] = sum(args[2]->count);
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nfsv4rwtime.d 

This script shows NFSv4 read and write latency and top clients and files. The
script is identical to the nfsv3rwtime.d script, with the following different lines:

nfsv4syncwrite.d

This script identifies synchronous write workloads. The script is identical to the
nfsv3syncwrite.d script, with the following different lines: 

nfsv4commit.d

This script summarizes details of NFSv4 commit operations. The script is identi-
cal to the nfsv3commit.d script, with the following different lines: 

nfsv4errors.d

This script traces NFSv4 errors live, with details. This script is very different from
the NFSv3 version, and so is shown in its entirety here. 

Script

The nfsv4errors.d script is similar in operation to nfsv3errors.d but with a
different error translation table and logic to skip NFSv4 lookup SAME errors. 

12  nfsv4:::op-read-start, 
13  nfsv4:::op-write-start 
18  nfsv4:::op-read-done, 
19  nfsv4:::op-write-done 
32          printf("NFSv4 read/write distributions (us):\n"); 
35          printf("\nNFSv4 read/write by host (total us):\n"); 
39          printf("\nNFSv4 read/write top %d files (total us):\n", TOP_FILES);

7           /* See /usr/include/nfs/nfs4_kprot.h */ 
11 printf("Tracing NFSv4 writes and commits... Hit Ctrl-C to end.\n");
14  nfsv4:::op-write-start 
19  nfsv4:::op-commit-start

 5  /* From /usr/include/nfs/nfs4_kprot.h */ 
11 printf("Tracing NFSv4 writes and commits... Hit Ctrl-C to end.\n"); 
14  nfsv4:::op-write-start 
17          @write[args[1]->noi_curpath] = sum(args[2]->data_len);
20  nfsv4:::op-write-start 
23          @syncwrite[args[1]->noi_curpath] = sum(args[2]->data_len);
26  nfsv4:::op-commit-start
33  nfsv4:::op-commit-start
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1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           /* See NFS4ERR_* in /usr/include/nfs/nfs4_kprot.h */ 
9   nfs4err[0] = "NFS4_OK"; 
10   nfs4err[1] = "PERM"; 
11   nfs4err[2] = "NOENT"; 
12          nfs4err[5] = "IO"; 
13   nfs4err[6] = "NXIO"; 
14   nfs4err[13] = "ACCESS"; 
15   nfs4err[17] = "EXIST"; 
16   nfs4err[18] = "XDEV"; 
17   nfs4err[20] = "NOTDIR"; 
18   nfs4err[21] = "ISDIR"; 
19   nfs4err[22] = "INVAL"; 
20   nfs4err[27] = "FBIG"; 
21   nfs4err[28] = "NOSPC"; 
22   nfs4err[30] = "ROFS"; 
23   nfs4err[31] = "MLINK"; 
24  nfs4err[63] = "NAMETOOLONG";
25   nfs4err[66] = "NOTEMPTY"; 
26   nfs4err[69] = "DQUOT"; 
27   nfs4err[70] = "STALE"; 
28  nfs4err[10001] = "BADHANDLE"; 
29  nfs4err[10003] = "BAD_COOKIE"; 
30  nfs4err[10004] = "NOTSUPP"; 
31  nfs4err[10005] = "TOOSMALL"; 
32  nfs4err[10006] = "SERVERFAULT"; 
33  nfs4err[10007] = "BADTYPE"; 
34   nfs4err[10008] = "DELAY"; 
35   nfs4err[10009] = "SAME"; 
36  nfs4err[10010] = "DENIED"; 
37  nfs4err[10011] = "EXPIRED"; 
38  nfs4err[10012] = "LOCKED"; 
39   nfs4err[10013] = "GRACE"; 
40  nfs4err[10014] = "FHEXPIRED"; 
41  nfs4err[10015] = "SHARE_DENIED"; 
42  nfs4err[10016] = "WRONGSEC"; 
43  nfs4err[10017] = "CLID_INUSE"; 
44  nfs4err[10018] = "RESOURCE"; 
45   nfs4err[10019] = "MOVED"; 
46  nfs4err[10020] = "NOFILEHANDLE"; 
47 nfs4err[10021] = "MINOR_VERS_MISMATCH";
48  nfs4err[10022] = "STALE_CLIENTID"; 
49  nfs4err[10023] = "STALE_STATEID"; 
50  nfs4err[10024] = "OLD_STATEID"; 
51  nfs4err[10025] = "BAD_STATEID"; 
52  nfs4err[10026] = "BAD_SEQID"; 
53  nfs4err[10027] = "NOT_SAME"; 
54  nfs4err[10028] = "LOCK_RANGE"; 
55  nfs4err[10029] = "SYMLINK"; 
56  nfs4err[10030] = "RESTOREFH"; 
57  nfs4err[10031] = "LEASE_MOVED"; 
58  nfs4err[10032] = "ATTRNOTSUPP"; 
59  nfs4err[10033] = "NO_GRACE"; 
60  nfs4err[10034] = "RECLAIM_BAD"; 
61 nfs4err[10035] = "RECLAIM_CONFLICT";
62  nfs4err[10036] = "BADXDR"; 
63  nfs4err[10037] = "LOCKS_HELD"; 
64  nfs4err[10038] = "OPENMODE"; 
65  nfs4err[10039] = "BADOWNER"; 
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Example

Here’s an example of this script running on an NFS home directory server:

nfsv4deleg.d

If the nfsv4 provider is unavailable, the fbt provider can be used. It can also
extend the observability of the stable nfsv4 provider, albeit in an unstable manner.
Here the fbt provider is used to examine NFSv4 delegation events, beyond what is
available in the nfsv4 provider. Because the fbt provider is tracing kernel func-
tions directly, this script is not expected to execute without adjustments to match
the operating system kernel you are using.

Script

Writing this script involved applying a known (assumed) workload to trigger
NFSv4 write delegations and using DTrace to frequency count all NFSv4 func-
tions that fired. This identified many functions containing the word delegation or

66  nfs4err[10040] = "BADCHAR"; 
67  nfs4err[10041] = "BADNAME"; 
68  nfs4err[10042] = "BAD_RANGE"; 
69  nfs4err[10043] = "LOCK_NOTSUPP"; 
70  nfs4err[10044] = "OP_ILLEGAL"; 
71  nfs4err[10045] = "DEADLOCK"; 
72  nfs4err[10046] = "FILE_OPEN"; 
73  nfs4err[10047] = "ADMIN_REVOKED"; 
74  nfs4err[10048] = "CB_PATH_DOWN"; 
75
76          printf(" %-18s %5s %-12s %-16s %s\n", "NFSv4 EVENT", "ERR", "CODE", 
77     "CLIENT", "PATHNAME"); 
78  } 
79
80  nfsv4:::op-*-done 
81  /args[2]->status != 0 && args[2]->status != 10009/ 
82  { 
83  this->err = args[2]->status;
84 this->str = nfs4err[this->err] != NULL ? nfs4err[this->err] : "?"; 
85 printf(" %-18s %5d %-12s %-16s %s\n", probename, this->err, 
86 this->str, args[0]->ci_remote, args[1]->noi_curpath); 
87  } 

server# nfsv4errors.d
 NFSv4 EVENT      ERR CODE         CLIENT           PATHNAME 
 op-lookup-done   2 NOENT     192.168.1.110  /export/home/bmc/.mozilla/firefox/j89zrwbl.default 
 op-lookup-done   2 NOENT        192.168.1.110  /export/home/bmc 
 op-lookup-done   2 NOENT     192.168.1.110  /export/home/bmc/.mozilla/firefox/j89zrwbl.default 
 op-verify-done   10027 NOT_SAME 192.168.1.110  /export/home/bmc/.mozilla/firefox/j89zrwbl.default/
                                                places.s...
 op-lookup-done   2 NOENT     192.168.1.110  /export/home/bmc/.mozilla/firefox/j89zrwbl.default 
 op-lookup-done   2 NOENT     192.168.1.110  /export/home/bmc/.mozilla/firefox/j89zrwbl.default 
 op-lookup-done   2 NOENT     192.168.1.109  /export/home/brendan/.mozilla/firefox/
                                                tafu5y0e.default
 op-write-done    13 ACCESS     192.168.1.109  /export/home/brendan/.mozilla/firefox/
                                                tafu5y0e.default/Cach...
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deleg; these functions were then read from the NFSv4 source to further under-
stand them and to see what arguments they provided. This script traces the func-
tions that were found and the arguments that were identified in the source code:

Example

Here two clients wrote in turn to the same file, newfile:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8   deleg[0] = "none"; 
9   deleg[1] = "read"; 
10   deleg[2] = "write"; 
11   deleg[-1] = "any"; 
12
13          printf("Tracing NFSv4 delegation events...\n"); 
14          printf("%-21s %-20s %s\n", "TIME", "EVENT", "DETAILS"); 
15  } 
16
17  fbt::rfs4_grant_delegation:entry
18  { 
19          this->path = stringof(args[1]->rs_finfo->rf_vp->v_path);
20          this->client = args[1]->rs_owner->ro_client->rc_clientid;
21          this->type = deleg[arg0] != NULL ? deleg[arg0] : "<?>"; 
22 printf("%-21Y %-20s %-8s %s\n", walltimestamp, "Grant Delegation",
23     this->type, this->path); 
24  } 
25
26  fbt::rfs4_recall_deleg:entry
27  { 
28          this->path = stringof(args[0]->rf_vp->v_path);
29 printf("%-21Y %-20s %-8s %s\n", walltimestamp, "Recall Delegation",
30     ".", this->path); 
31  } 
32
33  fbt::rfs4_deleg_state_expiry:entry
34  { 
35          this->dsp = (rfs4_deleg_state_t *)arg0; 
36          this->path = stringof(this->dsp->rds_finfo->rf_vp->v_path);
37 printf("%-21Y %-20s %-8s %s\n", walltimestamp, "Delegation Expiry",
38     ".", this->path); 
39  }

Script nfsv4deleg.d

server# nfsv4deleg.d
Tracing NFSv4 delegation events... 
TIME EVENT                DETAILS 
2010 Jan 12 05:17:59  Grant Delegation     any      /export/fs1/newfile 
2010 Jan 12 05:18:05  Recall Delegation    .      /export/fs1/newfile 
2010 Jan 12 05:18:06  Grant Delegation     none     /export/fs1/newfile 
2010 Jan 12 05:18:50  Delegation Expiry    .      /export/fs1/newfile 
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The next step would be to enhance the script to include client information, such
as their IP address.

CIFS Scripts

The Common Internet File System (CIFS) protocol, also known as Server Message
Block (SMB), is commonly used by Microsoft Windows clients. It can be examined
using DTrace in a similar way and for similar reasons to the NFS protocol, as
shown in the previous section.

The scripts in this section are for tracing CIFS events on the CIFS server. For
CIFS client-side tracing, see Chapter 5.

Most of these scripts use the smb provider, which was developed for and
included in the Oracle Sun ZFS Storage Appliance. It’s not currently available
elsewhere; however, we hope that it has been included in Solaris (at least) by the
time you are reading this.10 Listing the smb provider probes yields the following:

# dtrace -ln smb:::
   ID   PROVIDER  MODULE           FUNCTION NAME
  100        smb      smbsrv      smb_post_write_raw op-WriteRaw-done
  101        smb     smbsrv     smb_pre_write_raw op-WriteRaw-start
  102        smb      smbsrv     smb_post_write_andx op-WriteX-done
  103        smb      smbsrv      smb_pre_write_andx op-WriteX-start
  104        smb        smbsrv      smb_post_write_and_unlock op-WriteAndUnlock-done
  105        smb        smbsrv       smb_pre_write_and_unlock op-WriteAndUnlock-start
  106        smb        smbsrv       smb_post_write_and_close op-WriteAndClose-done
  107        smb        smbsrv        smb_pre_write_and_close op-WriteAndClose-start
  108        smb     smbsrv        smb_post_write op-Write-done
  109        smb    smbsrv        smb_pre_write op-Write-start
  114        smb smbsrv     smb_post_unlock_byte_range op-UnlockByteRange-done
  115        smb     smbsrv  smb_pre_unlock_byte_range op-UnlockByteRange-start
  116        smb        smbsrv       smb_post_tree_disconnect op-TreeDisconnect-done
  117        smb        smbsrv        smb_pre_tree_disconnect op-TreeDisconnect-start
[...]
  149        smb      smbsrv      smb_post_read_andx op-ReadX-done
  150        smb     smbsrv      smb_pre_read_andx op-ReadX-start
  151        smb     smbsrv      smb_post_read_raw op-ReadRaw-done
  152        smb     smbsrv      smb_pre_read_raw op-ReadRaw-start
  153        smb        smbsrv         smb_post_lock_and_read op-LockAndRead-done
  154        smb      smbsrv   smb_pre_lock_and_read op-LockAndRead-start
  155        smb     smbsrv smb_post_read op-Read-done
  156        smb    smbsrv        smb_pre_read op-Read-start
[...]
  171        smb      smbsrv      smb_post_open_andx op-OpenX-done
  172        smb     smbsrv      smb_pre_open_andx op-OpenX-start
  173        smb     smbsrv smb_post_open op-Open-done
  174        smb    smbsrv        smb_pre_open op-Open-start
[...]

10. This is likely; other providers including ip and tcp also began life in the Oracle Sun ZFS
Storage Appliance before being ported elsewhere: first to Solaris Nevada and, from that,
OpenSolaris.
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The previous output has been truncated to include just the read, write, open,
transaction, and close probes. The full listing of the smb provider probes would
span a few pages.

CIFS operations can be traced with the op-*-start and op-*-done probes.
Each provide arguments for the operation, including client address and filename
(when appropriate). The previous listing also highlights the locations of the probes
in the smbsrv kernel module, by showing the kernel functions that contain them
(FUNCTION column). These can be treated as starting points should you need to
examine the source code.

If the smb provider is not available, the pid provider or fbt provider can be used;
pid can be used if the CIFS software is user-land based (for example, Samba11),
and fbt can be used if it is kernel-based (for example, smbsrv). Bear in mind that
pid or fbt-based scripts may only execute on the software version they were writ-
ten for. An example of fbt provider tracing of CIFS (smbsrv) is included in this sec-
tion: cifsfbtnofile.d.

cifsrwsnoop.d 

This script traces CIFS reads and writes live, with client, I/O size, and path name
details (if available). 

Script

The script probes CIFS Read and ReadX (large read—supports 64-bit offsets),
Write, and WriteX operations: 

  237        smb      smbsrv    smb_post_transaction op-Transaction-done
  238        smb     smbsrv     smb_pre_transaction op-Transaction-start
[...]
  241        smb    smbsrv        smb_post_close op-Close-done
  242        smb    smbsrv smb_pre_close op-Close-start

11. www.samba.org

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           printf("%-16s %-18s %2s %-10s %6s %s\n", "TIME(us)", 
9              "CLIENT", "OP", "OFFSET(KB)", "BYTES", "PATHNAME"); 
10  } 
11

www.samba.org
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Unlike the nfsv3rwsnoop.d script, this is measuring when the events have
completed—their “done” probes fire. 

Example

Here a 1MB file was created from a remote client to a CIFS share: 

Note that the output is shuffled just a little; examine the TIME(us) column.
This is expected behavior for DTrace scripts that print live output from multiple
CPU buffers and is why the TIME column is printed: for postsorting. 

12  smb:::op-Read-done, smb:::op-ReadX-done 
13  { 
14    this->dir = "R"; 
15  } 
16
17  smb:::op-Write-done, smb:::op-WriteX-done 
18  { 
19    this->dir = "W"; 
20  } 
21
22  smb:::op-Read-done, smb:::op-ReadX-done, 
23  smb:::op-Write-done, smb:::op-WriteX-done 
24  { 
25 printf("%-16d %-18s %2s %-10d %6d %s\n", timestamp / 1000, 
26 args[0]->ci_remote, this->dir, args[2]->soa_offset / 1024,
27   args[2]->soa_count, args[1]->soi_curpath);
28  } 

Script cifsrwsnoop.d

server# cifsrwsnoop.d
TIME(us)         CLIENT  OP OFFSET(KB)  BYTES PATHNAME 
999489329684     192.168.2.51        W 0 61440 /export/fs8/1m-file 
999489330579     192.168.2.51        W 60       61440 /export/fs8/1m-file 
999489331504     192.168.2.51        W 120       61440 /export/fs8/1m-file 
999489332372     192.168.2.51        W 180       61440 /export/fs8/1m-file 
999489334219     192.168.2.51        W 300       61440 /export/fs8/1m-file 
999489333319     192.168.2.51        W 240       61440 /export/fs8/1m-file 
999489335192     192.168.2.51        W 360       61440 /export/fs8/1m-file 
999489336098     192.168.2.51        W 420       61440 /export/fs8/1m-file 
999489337041     192.168.2.51        W 480       61440 /export/fs8/1m-file 
999489337898     192.168.2.51        W 540       61440 /export/fs8/1m-file 
999489338837     192.168.2.51        W 600       61440 /export/fs8/1m-file 
999489339822     192.168.2.51        W 660       61440 /export/fs8/1m-file 
999489340787     192.168.2.51        W 720       61440 /export/fs8/1m-file 
999489341706     192.168.2.51        W 780       61440 /export/fs8/1m-file 
999489342650     192.168.2.51        W 840       61440 /export/fs8/1m-file 
999489343565     192.168.2.51        W 900       61440 /export/fs8/1m-file 
999489344430     192.168.2.51        W 960       61440 /export/fs8/1m-file 
999489344664     192.168.2.51        W 1020       4096 /export/fs8/1m-file
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cifsops.d

This script shows CIFS operation counts and prints a summary every five seconds.

Script

All smb provider events are traced and counted in the @ops aggregation, which is
printed and then cleared every five seconds: 

Example

This script quickly identifies CIFS clients, with an idea of their usage: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           trace("Tracing CIFS operations... Interval 5 secs.\n"); 
8   } 
9
10  smb:::op-* 
11  { 
12          @ops[args[0]->ci_remote, probename] = count(); 
13  } 
14
15  profile:::tick-5sec, 
16  dtrace:::END 
17  { 
18 printf("\n   %-32s %-30s %8s\n", "Client", "Operation", "Count");
19          printa("   %-32s %-30s %@8d\n", @ops); 
20          trunc(@ops); 
21  } 

Script cifsops.d

server# cifsops.d
Tracing CIFS operations... Interval 5 secs. 

   Client            Operation                   Count 
   192.168.2.51              op-Close-done              2 
   192.168.2.51              op-Close-start             2 
   192.168.2.51 op-NtCreateX-done             2 
   192.168.2.51  op-NtCreateX-start             2 
   192.168.2.51  op-Transaction2-done                4 
   192.168.2.51  op-Transaction2-start                4 
   192.168.2.51              op-WriteX-done             18 
   192.168.2.51              op-WriteX-start             18 

   Client            Operation                   Count 
   192.168.2.51 op-NtCreateX-done             1 
   192.168.2.51  op-NtCreateX-start             1 
   192.168.2.51  op-Transaction2-done                4 
   192.168.2.51  op-Transaction2-start                4 
   192.168.2.51 op-ReadX-done            18113 
   192.168.2.51  op-ReadX-start            18113 
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In the first five-second output, 192.168.2.51 wrote a file and performed some
other operations; it then began a read workload of more than 18,000 events every
five seconds (3,600 IOPS). 

cifsfileio.d

This script summarizes CIFS read and write bytes by filename.

Script

We can track file path names, as well as the number of bytes read or written per file.

Example

This example uses a known workload.
Here we wrote a 100MB file and read a 10MB file to confirm byte counts are

measured correctly:

   Client            Operation                   Count 
   192.168.2.51         op-ReadX-done                     18549 

192.168.2.51        op-ReadX-start               18549

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7           trace("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  smb:::op-Read-done, smb:::op-ReadX-done 
11  { 
12          @readbytes[args[1]->soi_curpath] = sum(args[2]->soa_count);
13  } 
14
15  smb:::op-Write-done, smb:::op-WriteX-done 
16  { 
17          @writebytes[args[1]->soi_curpath] = sum(args[2]->soa_count);
18  } 
19
20  dtrace:::END 
21  { 
22          printf("\n%12s %12s  %s\n", "Rbytes", "Wbytes", "Pathname");
23          printa("%@12d %@12d  %s\n", @readbytes, @writebytes); 
24  } 

Script cifsfileio.d

server# cifsfileio.d
Tracing... Hit Ctrl-C to end. 
^C

continues
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cifsrwtime.d 

This script shows CIFS read and write latency and top clients and files. 

Script

In the current implementation of CIFS for which the smb provider is written, the
operation start probes fire in the same thread as the done probes. This allows
timing between them to be tracked using thread-local variables (self->), instead
of saving start times in an associative array keyed on a unique I/O ID. 

      Rbytes    Wbytes  Pathname 
           0    104857600  /export/fs8/100m 

10485760     0  /export/fs8/10m

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   inline int TOP_FILES = 10;
6
7   dtrace:::BEGIN
8   {
9           printf("Tracing... Hit Ctrl-C to end.\n");
10  }
11
12  smb:::op-Read-start, smb:::op-ReadX-start,
13  smb:::op-Write-start, smb:::op-WriteX-start
14  {
15          /* currently the done event fires in the same thread as start */
16   self->start = timestamp;
17  }
18
19  smb:::op-Read-done, smb:::op-ReadX-done   { this->dir = "read"; }
20  smb:::op-Write-done, smb:::op-WriteX-done { this->dir = "write"; }
21
22  smb:::op-Read-done, smb:::op-ReadX-done,
23  smb:::op-Write-done, smb:::op-WriteX-done
24  /self->start/
25  {
26          this->elapsed = timestamp - self->start;
27          @rw[this->dir] = quantize(this->elapsed / 1000);
28          @host[args[0]->ci_remote] = sum(this->elapsed);
29          @file[args[1]->soi_curpath] = sum(this->elapsed);
30    self->start = 0;
31  }
32
33  dtrace:::END
34  {
35          printf("CIFS read/write distributions (us):\n");
36          printa(@rw);
37
38          printf("\nCIFS read/write by host (total us):\n");
39   normalize(@host, 1000);
40          printa(@host);
41
42          printf("\nCIFS read/write top %d files (total us):\n", TOP_FILES);
43   normalize(@file, 1000);
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Example

Here the cifsrwtime.d script measured the read and write latency of some test
workloads:

Most of the reads were between 8 us and 15 us, suggesting hitting from file sys-
tem cache. The writes took longer, 64 us to 127 us, which may be because of flush-
ing to disk. DTrace can be used to confirm both of these scenarios by tracing into
the local file system that CIFS is exporting. 

cifserrors.d

This script traces CIFS errors live, with details. 

44   trunc(@file, TOP_FILES);
45          printa(@file);
46  }

Script cifsrwtime.d

server# cifsrwtime.d
Tracing... Hit Ctrl-C to end. 
^C
CIFS read/write distributions (us): 

  write
           value  ------------- Distribution ------------- count
               4 |              0
               8 |              1
              16 |@@         8
              32 |              1
              64 |@@@@@@@@@@@@@@@@@@@@               89
             128 |@@@@@@@@@@@@@@@@@          78
             256 |@              3
             512 |              0

  read
           value  ------------- Distribution ------------- count
               4 |              0
               8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     21036
              16 |@@@@@@@         4367
              32 |               170
              64 |              25
             128 |              1
             256 |              1
             512 |              0

CIFS read/write by host (total us): 

  192.168.2.51                409718 

CIFS read/write top 10 files (total us): 

  /export/fs8/10m-file                 24981 
  /export/fs8/100m                 384737 
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Script

When CIFS operations fail, a struct smb_error contains various details: 

This script fetches the status code and prints it if it was unsuccessful. Some
error code translation is also provided; however, there are hundreds of codes to
translate from, so to keep this script short, only the most likely CIFS error codes
are processed here: 

typedef struct { 
        uint32_t severity; 
        uint32_t status; 
        uint16_t errcls; 
        uint16_t errcode; 
} smb_error_t;

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   {
8           /* 
9            * These are some of over 500 NT_STATES_* error codes defined in
10 * uts/common/smbsrv/ntstatus.h.  For more detail see MSDN and 
11  * ntstatus.h in the MS DDK. 
12           */ 
13   ntstatus[0] = "SUCCESS"; 
14  ntstatus[1] = "UNSUCCESSFUL";
15  ntstatus[2] = "NOT_IMPLEMENTED";
16  ntstatus[5] = "ACCESS_VIOLATION";
17 ntstatus[15] = "NO_SUCH_FILE";
18  ntstatus[17] = "END_OF_FILE"; 
19  ntstatus[23] = "NO_MEMORY"; 
20 ntstatus[29] = "ILLEGAL_INSTRUCTION";
21 ntstatus[34] = "ACCESS_DENIED";
22 ntstatus[50] = "DISK_CORRUPT_ERROR";
23  ntstatus[61] = "DATA_ERROR"; 
24  ntstatus[62] = "CRC_ERROR"; 
25 ntstatus[68] = "QUOTA_EXCEEDED";
26  ntstatus[127] = "DISK_FULL"; 
27 ntstatus[152] = "FILE_INVALID";
28 ntstatus[186] = "FILE_IS_A_DIRECTORY";
29 ntstatus[258] = "FILE_CORRUPT_ERROR";
30 ntstatus[259] = "NOT_A_DIRECTORY";
31 ntstatus[291] = "FILE_DELETED";
32    /* ...etc... */ 
33
34          printf(" %-24s %3s %-19s %-16s %s\n", "CIFS EVENT", "ERR", "CODE",
35     "CLIENT", "PATHNAME"); 
36  } 
37
38  smb:::op-*-start, smb:::op-*-done 
39  /(this->sr = (struct smb_request *)arg0) && this->sr->smb_error.status != 0/
40  { 
41 this->err = this->sr->smb_error.status;
42 this->str = ntstatus[this->err] != NULL ? ntstatus[this->err] : "?";
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Since the error status is not currently a member of the stable smb provider, it
had to be fetched from outside the stable provider interface. This was achieved by
accessing arg0 on line 39, which for these probes is a struct smb_request pointer
and is the input to the provider translators (as defined in /usr/lib/dtrace/smb.d)
that turn it into (conninfo_t *)args[0] and (smbopinfo_t *)args[1]. By
accessing it pretranslation (and casting it, since arg0 is technically a uint64_t),
we can access any internal variable from the kernel, including the error status as
is checked on line 39 and saved on line 41. This also makes the script unstable—
should the smbsrv kernel code change, the smb provider could also change such
that arg0 points to a different struct entirely, and the casting on line 39 would be
invalid, causing the script to print invalid data as the error status. Be careful to
double-check this (and all) unstable scripts before use.

Example

A couple of CIFS errors were caught while running this script: 

The path name for these error operations was unavailable, and so <unknown>
was printed. The path name printed by the CIFS provider is the local file system
path name, which is retrieved from the vnode object. If the requested file doesn’t
exist, neither does a file system vnode, so the path name is <unknown>.

With more DTrace scripting of the CIFS implementation via the unstable fbt
provider, the full path name could be retrieved as requested via the SMB protocol. 

cifsfbtnofile.d

If the smb provider is not be available on your OS, you can still investigate CIFS
operations using the fbt provider. To demonstrate fbt provider tracing, this script
pulls out the requested path names for lookups that failed, which can be the sign
of a misconfigured application. In the cifserrors.d script shown previously,
these were showing up as <unknown> because there was no file system vnode for a
missing file. 

43 printf(" %-24s %3d %-19s %-16s %s\n", probename, this->err, 
44 this->str, args[0]->ci_remote, args[1]->soi_curpath); 
45  }

Script cifserrors.d

server# cifserrors.d
 CIFS EVENT       ERR CODE     CLIENT        PATHNAME 
 op-Transaction2-done 15 NO_SUCH_FILE  192.168.2.51    <unknown> 
 op-NtCreateX-done  259 NOT_A_DIRECTORY 192.168.2.51     <unknown> 
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Since fbt is an unstable provider, this may work only on a particular version of
the kernel smb module. For it to execute on other versions, it will need to be
adjusted to match the kernel functions it traces.

Script

To develop this script, a known workload of failed lookups was applied while
DTrace traced which functions were called. These functions were then examined in
the source code to determine how to extract the path name, error, and client details
from these function calls.

IPv4 and IPv6 addresses were printed using the inet*() functions, which may
not be available on your version of DTrace; if so, rewrite using manual IP address
translation as demonstrated earlier (soconnect.d section). 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           /* a few likely codes are included from ntstatus.h */ 
9   ntstatus[0] = "SUCCESS"; 
10  ntstatus[1] = "UNSUCCESSFUL";
11 ntstatus[15] = "NO_SUCH_FILE";
12 ntstatus[186] = "FILE_IS_A_DIR";
13
14          printf(" %-16s %3s %-13s %s\n", "CLIENT", "ERR", "ERROR", "PATHNAME");
15  } 
16
17  fbt::smb*find_first*:entry  { self->in_find_first = 1; } 
18  fbt::smb*find_first*:return { self->in_find_first = 0; } 
19
20  /* assume smb_odir_open() checks relevant path during find_entries */ 
21  fbt::smb_odir_open:entry
22  /self->in_find_first/ 
23  { 
24   self->sr = args[0]; 
25   self->path = args[1]; 
26  } 
27
28  /* assume smbsr_set_error() will set relevant error during find_entries */ 
29  fbt::smbsr_set_error:entry
30  /self->in_find_first/ 
31  { 
32  self->err = args[1]->status;
33  } 
34
35  /* if an error was previously seen during find_entries, print cached details */
36  fbt::smb*find_entries:return
37  /self->sr && self->err/ 
38  { 
39 this->str = ntstatus[self->err] != NULL ? ntstatus[self->err] : "?"; 
40          this->remote = self->sr->session->ipaddr.a_family == AF_INET ? 
41 inet_ntoa(&self->sr->session->ipaddr.au_addr.au_ipv4) : 
42  inet_ntoa6(&self->sr->session->ipaddr.au_addr.au_ipv6);
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Example

To test this script, a known workload was applied to read invalid filenames with a
random component. The script picked up the errors correctly: 

Unlike the smb provider–based scripts, here we can see that the CIFS share
name accessed rpool_fs8. 

HTTP Scripts

The Hypertext Transfer Protocol (HTTP) is currently the most common protocol for
Web browsers. Browsers such as Firefox support plug-ins that allow a certain
degree of analysis of HTTP from the client. DTrace can extend HTTP analysis by
examining it in the same context as browser and system execution, as well as
server-side analysis.

Use DTrace to answer the following:

Client HTTP requests, by Web server, by URL

Inbound HTTP requests, by client, by URL

First-byte latency

43 printf(" %-16s %3d %-13s %s%s\n", this->remote, self->err, this->str,
44 self->sr->tid_tree->t_sharename, stringof(self->path));
45  } 
46
47  fbt::smb*find_entries:return
48  /self->sr/ 
49  { 
50          self->sr = 0; self->path = 0; self->err = 0; 
51  } 

Script cifsfbtnofile.d

server# cifsfbtnofile.d
 CLIENT           ERR ERROR         PATHNAME 
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_15627
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_17623
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_17755
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_14952
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_28375
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_3690
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_28705
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_29068
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_10849
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_12502
 192.168.2.51      15 NO_SUCH_FILE  rpool_fs8\whereismyfile_8457
[...]
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The HTTP protocol is usually served from user-land Web servers and processed
by user-land Web browsers. Because of this, the scripts that follow will use user-
level providers such as syscall and pid. The syscall provider allows the HTTP pro-
tocol to be examined at the socket level, and the pid provider allows complete
instrumentation of processing in the user code, albeit an unstable interface that is
dependent on the software implementation.

Since HTTP is a popular protocol to analyze, specific user-level stable providers
have been written to provide HTTP-level events for easy tracing and analysis. So
far, these have been implemented as stable USDT providers from a pluggable
Apache module. David Pacheco of Oracle12 and Ryan Matteson of Prefetch Technol-
ogies13 have both independently written USDT-based mod_dtrace plug-ins for
Apache. If you intend to DTrace HTTP on Apache, your options are as follows:

Choose a mod_dtrace plug-in to use 

Write your own mod_dtrace plug-in 

Use the pid provider on httpd

Try clever uses of the syscall provider 

Figure 7-1 HTTP flow diagram

12. http://blogs.sun.com/dap/entry/writing_a_dtrace_usdt_provider discusses how to write
USDT providers. This http provider is used by the Oracle Sun ZFS Storage Appliance.

13. http://prefetch.net/projects/apache_modtrace includes the mod_dtrace.c source and many
ready-to-use scripts.

http://blogs.sun.com/dap/entry/writing_a_dtrace_usdt_provider
http://prefetch.net/projects/apache_modtrace
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The interface for the existing mod_dtrace plug-in providers are slightly differ-
ent. As an example, the following lists the probes for the Oracle http provider:

Here a single probe definition (in this case http*:::) has matched probes
across multiple processes (in this case, multiple httpd processes). This is one
advantage of having a USDT-based provider; the pid provider can also be used to
inspect user-land software internals. However, the probes can match only one pro-
cess at a time (pid<PID>:::). This becomes particularly cumbersome for Apache,
which can run many httpd processes.

The argument types for the request-start and request-done probes shown
previously are as follows:

args[0]: conninfo_t *

args[1]: http_reqinfo_t *

These are defined in the /usr/lib/dtrace translator files. Basic connection infor-
mation is in conninfo_t, which is shared by other providers (nfs, smb, iscsi, ftp):

Information about the HTTP request is in http_reqinfo_t:

server# dtrace -ln 'http*:::'
   ID   PROVIDER    MODULE               FUNCTION NAME
 9434   http7846 mod_dtrace.so    mod_dtrace_postrequest request-done
 9435   http7846 mod_dtrace.so     mod_dtrace_prerequest request-start
 9489   http8883 mod_dtrace.so    mod_dtrace_postrequest request-done
 9490   http8883 mod_dtrace.so     mod_dtrace_prerequest request-start
70442   http8885     mod_dtrace.so   mod_dtrace_postrequest request-done
70443   http8885     mod_dtrace.so    mod_dtrace_prerequest request-start
73672   http8887     mod_dtrace.so   mod_dtrace_postrequest request-done
73673   http8887     mod_dtrace.so    mod_dtrace_prerequest request-start
73674   http8888     mod_dtrace.so   mod_dtrace_postrequest request-done
73675   http8888     mod_dtrace.so    mod_dtrace_prerequest request-start
82093   http8889     mod_dtrace.so   mod_dtrace_postrequest request-done
82094   http8889     mod_dtrace.so    mod_dtrace_prerequest request-start

/*
 * The conninfo_t structure should be used by all application protocol
 * providers as the first arguments to indicate some basic information
 * about the connection. This structure may be augmented to accomodate
 * the particularities of additional protocols in the future.
 */
typedef struct conninfo {
      string ci_local;      /* local host address */
      string ci_remote; /* remote host address */
      string ci_protocol;     /* protocol (ipv4, ipv6, etc) */
} conninfo_t;
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This allows powerful one-liners and scripts to be constructed easily. Two exam-
ples follow:

Frequency counting the URI component of HTTP requests (the text after 
http://hostname):

This quickly identifies the most popular files while tracing. In this case, it’s 
JavaDTraceAPI.gif.

Frequency counting HTTP response codes:

This output caught a few errors, along with many successful HTTP requests.
This section includes three scripts that use this (mod_dtrace plug-in based) http

provider and scripts using the syscall provider.

httpclients.d

This script summarizes throughput load from HTTP clients, measured on the
server. This information can also be retrieved from the httpd access log; however,

typedef struct {
      string hri_uri;    /* uri requested */
      string hri_user;   /* authenticated user */
      string hri_method;            /* method name (GET, POST, ...) */
      string hri_useragent;         /* "User-agent" header (browser) */
      uint64_t hri_request;        /* request id, unique at a given time */
      uint64_t hri_bytesread;       /* bytes SENT to the client */
      uint64_t hri_byteswritten;    /* bytes RECEIVED from the client */
      uint32_t hri_respcode; /* response code */
} http_reqinfo_t;

server# dtrace -n 'http*:::request-start { @[args[1]->hri_uri] = count(); }'
dtrace: description 'http*:::request-start ' matched 11 probes
^C

  /shares/export/javadoc/dtrace/                  1
  /shares/export/javadoc/dtrace/html/                 1
  /shares/export/javadoc/dtrace/html/fast.html                  2
  /shares/export/javadoc/dtrace/html/JavaDTraceAPI.html                7
  /shares/export/javadoc/dtrace/images/JavaDTraceAPI.gif                9

server# dtrace -n 'http*:::request-done { @[args[1]->hri_respcode] = count(); }'
dtrace: description 'http*:::request-done ' matched 9 probes
^C

      403            1
      404            2
      200               39
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extra software would need to be executed to summarize the log data. DTrace does
the summary on the fly, and this script can be enhanced to include information
beyond what is available in the log.

Script

This is a simple script that demonstrates the http provider described earlier:

Example

While tracing, the 192.168.56.1 client was performing the most HTTP I/O in terms
of throughput, downloading 1.2MB during the second ten-second summary.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7 trace("Tracing... output every 10 seconds, or Ctrl-C.\n");
8   }
9
10  http*:::request-done
11  {
12          @rbytes[args[0]->ci_remote] = sum(args[1]->hri_bytesread);
13          @wbytes[args[0]->ci_remote] = sum(args[1]->hri_byteswritten);
14  }
15
16  profile:::tick-10sec,
17  dtrace:::END
18  {
19   normalize(@rbytes, 1024);
20   normalize(@wbytes, 1024);
21 printf("\n %-32s %10s %10s\n", "HTTP CLIENT", "FROM(KB)", "TO(KB)");
22          printa(" %-32s %@10d %@10d\n", @rbytes, @wbytes);
23          trunc(@rbytes);
24          trunc(@wbytes);
25  }

Script httpclients.d

server# httpclients.d
Tracing... output every 10 seconds, or Ctrl-C.

 HTTP CLIENT    FROM(KB)     TO(KB)
 192.168.56.2     0          1
 192.168.56.31    2          9
 192.168.56.1      26        322

 HTTP CLIENT    FROM(KB)     TO(KB)
 192.168.56.31     2         11
 192.168.56.1      51       1222
[...]



ptg

614 Chapter 7 � Application-Level Protocols

httperrors.d

This is a similar summary script to httpclients.d, using the http provider to
summarize client and server HTTP errors.

Script

To match for HTTP errors, line 11 matches when the HTTP response code is
between 400 and 600, which covers client and server errors.

Example

To test this script, a nonexistent /not_there.html file was requested six times by
the 192.168.1.109 client, each returning 404 (file not found). The private.html
file returned 403 (permission denied).

httpio.d

This is a simple http provider–based script to show the distribution of sent and
received bytes for HTTP requests. Larger sent sizes indicate that larger files are
being retrieved from the Web server.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7  trace("Tracing HTTP errors... Hit Ctrl-C for report.\n");
8   }
9
10  http*:::request-done
11  /args[1]->hri_respcode >= 400 && args[1]->hri_respcode < 600/
12  {
13 @[args[0]->ci_remote, args[1]->hri_respcode,
14  args[1]->hri_method, args[1]->hri_uri] = count();
15  }
16
17  dtrace:::END
18  {
19 printf("%8s  %-16s %-4s %-6s %s\n", "COUNT", "CLIENT", "CODE",
20      "METHOD", "URI");
21          printa("%@8d  %-16s %-4d %-6s %s\n", @);
22  }

Script httperrors.d

server# httperrors.d
Tracing HTTP errors... Hit Ctrl-C for report.
^C
   COUNT  CLIENT       CODE METHOD URI
       1  192.168.1.109    403  get   /shares/export/fs1/private.html
       6  192.168.1.109   404  get    /not_there.html
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Script

This is a simple but powerful script. As with the earlier scripts, the use of http*
will match HTTP probes from all processes supporting this provider, which allows
the entire pool of httpd processes to be traced from one script:

Example

Most of the HTTP requests returned between 1KB and 32KB of data, shown ear-
lier in the “sent bytes” distribution plot. The “received bytes” distribution shows
the size of the client requests, which were all between 1KB and 2KB.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7          trace("Tracing HTTP... Hit Ctrl-C for report.\n");
8   }
9
10  http*:::request-done
11  {
12          @["received bytes"] = quantize(args[1]->hri_bytesread);
13          @["sent bytes"] = quantize(args[1]->hri_byteswritten);
14  }

Script httpio.d

server# httpio.d
Tracing HTTP... Hit Ctrl-C for report.
^C

  received bytes
           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 23
            2048 |              0

  sent bytes
           value  ------------- Distribution ------------- count
             128 |              0
             256 |@@                1
             512 |@@                1
            1024 |@@@@@@@@@                     5
            2048 |@@@@@@@              4
            4096 |@@@               2
            8192 |@@@@@@@              4
           16384 |@@@@@@@@@             5
           32768 |             0
           65536 |@@               1
          131072 |                  0 
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httpdurls.d

Where an http provider is not available, the syscall provider can be used in clever
ways to answer similar observability questions. This script is a quick usage tool for
Web servers, frequency counting which URLs are being accessed via the HTTP GET
method.

Script

This script is built upon four assumptions.

The Web server process name is httpd (configurable on line 6).

The Web server reads client HTTP requests via the read() syscall. 

Client HTTP requests as read by http will begin with GET.

No other reads will occur that begin with the letters GET.

These assumptions are fairly safe, and they allow the script to be written using
the syscall provider alone.14 This should be a reasonably robust script while these
assumptions stand.

14. This is a clever trick I wish I had thought of myself; I first saw HTTP processed in this way
in scripts written by Bryan Cantrill and Ryan Matteson.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   inline string WEB_SERVER_PROCESS_NAME = "httpd"; 
6
7   dtrace:::BEGIN 
8   { 
9          printf("Tracing GET from %s processes... Hit Ctrl-C to end.\n", 
10     WEB_SERVER_PROCESS_NAME);
11  } 
12
13  syscall::read:entry 
14  /execname == WEB_SERVER_PROCESS_NAME/ 
15  { 
16   self->buf = arg1; 
17  } 
18
19  syscall::read:return 
20  /self->buf && arg1 > 10/ 
21  { 
22          this->req = (char *)copyin(self->buf, arg1); 
23          this->get = strstr(this->req, "GET") != NULL; 
24  } 
25
26  syscall::read:return 
27  /self->buf && this->get/ 
28  { 
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Line 20 checks that the returned bytes were longer than ten characters;
requests shorter than this are unlikely to be valid HTTP requests. 

This script can be enhanced; for example, during read:entry, the file descriptor
could be checked in the fds[] array to ensure that it is a socket by adding another
conditional check in the predicate (line 14):

Example

The httpdurls.d script was run on a local Web server for several minutes to see
what URLs were being accessed: 

29 this->line = strtok(this->req, "\r"); 
30          this->word0 = this->line != NULL ? strtok(this->line, " ") : ""; 
31 this->word1 = this->line != NULL ? strtok(NULL, " ") : ""; 
32 this->word2 = this->line != NULL ? strtok(NULL, " ") : ""; 
33  } 
34
35  syscall::read:return 
36  /this->word0 != NULL && this->word1 != NULL && this->word2 != NULL && 
37 this->word0 == "GET"/ 
38  {
39          @[stringof(this->word2), stringof(this->word1)] = count(); 
40  } 
41
42  syscall::read:return 
43  { 
44    self->buf = 0; 
45  } 
46
47  dtrace:::END 
48  { 
49          printf("  %-10s %-54s %10s\n", "PROTOCOL", "URL", "COUNT"); 
50          printa("  %-10s %-54s %@10d\n", @); 
51  } 

Script httpdurls.d

      /execname == WEB_SERVER_PROCESS_NAME && fds[arg0].fi_fs == “sockfs”/

server# httpdurls.d
Tracing GET from httpd processes... Hit Ctrl-C to end. 
^C
  PROTOCOL   URL          COUNT 
  HTTP/1.1   /twiki-pub/TWiki/PatternSkin/striped_blue.gif                   1
  HTTP/1.1   /wik                         1 
  HTTP/1.1   /wiki                         1 
  HTTP/1.1   /icons/movesm.png                        2 
  HTTP/1.1   /icons/trash.png                        2 
[...]
  HTTP/1.1   /           775 
  HTTP/1.1   /wiki/index.php/Main_Page             859 
  HTTP/1.1   /icons/light_dis.png                     904 
  HTTP/1.1   /wiki/images/analytics_fc.png           1105 
  HTTP/1.1   /twiki-pub/TWiki/TWikiDocGraphics/pdf.gif                 1520 

continues
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This particular Web server hosts a wiki. The most-accessed file while the
httpdurls.d script was tracing was gradient_blue.jpg. Information like this
may be immediately useful; performance of this Web server could be improved by
resaving that JPEG at a higher compression level. A typo can also be seen in the
output: Someone attempted to load /wik instead of /wiki.

weblatency.d 

Client-side HTTP activity can be interesting to measure, because it can show why
some Web sites take longer to load than others. This script shows which Web
server hosts were accessed by stripping their name out of the requested URL and
also shows the first-byte latency of the HTTP GETs. 

Script

The httpdurls.d script used strtok() to process the HTTP GET request; how-
ever, strtok() wasn’t available in the first release of Solaris 10 DTrace. Since I
wrote weblatency.d to run correctly on all Solaris versions, I needed to avoid
using strtok(). I achieved similar functionality using an unrolled loop of
strlen() and dirname(). Although this script could be shortened (lines 102
through 126), it’s included here as an example of unrolled loops and for anyone
using early versions of DTrace. 

When this script was included in Mac OS X (/usr/bin/weblatency.d),
DTrace had strtok() available, and the script was rewritten to take advantage of it.

  HTTP/1.1   /wiki/index.php/Configuration:SAN           2003 
  HTTP/1.1   /twiki-pub/TWiki/PatternSkin/colors.css                    2092 
  HTTP/1.1   /twiki-pub/TWiki/PatternSkin/pattern.js                    2920 
  HTTP/1.1   /twiki-pub/TWiki/PatternSkin/TWiki_header.gif         3361 
  HTTP/1.1   /icons/light_warn.png             3464 
  HTTP/1.1   /wiki/index.php/User_Interface:CLI           4004 
  HTTP/1.1   /twiki-pub/TWiki/TWikiDocGraphics/else.gif                   5564 
  HTTP/1.1   /twiki-bin/view/FishPublic/WebHome           6687 
  HTTP/1.1   /twiki-pub/TWiki/PatternSkin/gradient_yellow.jpg        7401 
  HTTP/1.1   /twiki-pub/TWiki/PatternSkin/bullet-down.gif                 8355 
  HTTP/1.1   /twiki-pub/TWiki/PatternSkin/gradient_blue.jpg        18475 

1    #!/usr/sbin/dtrace -s 
[...]
55   #pragma D option quiet 
56
57   /* browser's execname */ 
58   inline string BROWSER = "mozilla-bin"; 
59
60   /* maximum expected hostname length + "GET http://" */ 
61   inline int MAX_REQ = 64; 
62
63   dtrace:::BEGIN 
64   { 



ptg

Scripts 619

65           printf("Tracing... Hit Ctrl-C to end.\n"); 
66   } 
67
68   /* 
69    * Trace browser request 
70    * 
71    * This is achieved by matching writes for the browser's execname that 
72    * start with "GET", and then timing from the return of the write to 
73    * the return of the next read in the same thread. Various stateful flags
74    * are used: self->fd, self->read. 
75    * 
76    * For performance reasons, I'd like to only process writes that follow a
77    * connect(), however this approach fails to process keepalives. 
78    */ 
79   syscall::write:entry 
80   /execname == BROWSER/ 
81   { 
82           self->buf = arg1; 
83   self->fd = arg0 + 1; 
84           self->nam = ""; 
85   } 
86
87   syscall::write:return 
88   /self->fd/ 
89   { 
90           this->str = (char *)copyin(self->buf, MAX_REQ); 
91   this->str[4] = '\0'; 
92           self->fd = stringof(this->str) == "GET " ? self->fd : 0; 
93   } 
94
95   syscall::write:return 
96   /self->fd/ 
97   { 
98  /* fetch browser request */ 
99           this->str = (char *)copyin(self->buf, MAX_REQ); 
100  this->str[MAX_REQ] = '\0'; 
101
102          /* 
103           * This unrolled loop strips down a URL to it's hostname. 
104           * We ought to use strtok(), but it's not available on Sol 10 3/05,
105           * so instead I used dirname(). It's not pretty - it's done so that
106           * this works on all Sol 10 versions. 
107           */ 
108  self->req = stringof(this->str); 
109          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
110  self->req = dirname(self->req); 
111          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
112  self->req = dirname(self->req); 
113          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
114  self->req = dirname(self->req); 
115          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
116  self->req = dirname(self->req); 
117          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
118  self->req = dirname(self->req); 
119          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
120  self->req = dirname(self->req); 
121          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
122  self->req = dirname(self->req); 
123          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
124  self->req = dirname(self->req); 
125          self->nam = strlen(self->req) > 15 ? self->req : self->nam; 
126  self->nam = basename(self->nam); 
127
128  /* start the timer */ 

continues
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Change line 58 to match your browser process name. The DTrace team at Apple
changed it to match Safari. 

129 start[pid, self->fd - 1] = timestamp; 
130          host[pid, self->fd - 1] = self->nam; 
131          self->buf = 0; 
132          self->fd  = 0; 
133          self->req = 0; 
134          self->nam = 0; 
135  } 
136
137  /* this one wasn't a GET */ 
138  syscall::write:return 
139  /self->buf/ 
140  { 
141          self->buf = 0; 
142          self->fd  = 0; 
143  } 
144
145  syscall::read:entry 
146  /execname == BROWSER && start[pid, arg0]/ 
147  { 
148  self->fd = arg0 + 1; 
149  } 
150
151  /* 
152   * Record host details 
153   */ 
154  syscall::read:return 
155  /self->fd/ 
156  { 
157  /* fetch details */ 
158          self->host = stringof(host[pid, self->fd - 1]); 
159          this->start = start[pid, self->fd - 1]; 
160
161   /* save details */ 
162          @Avg[self->host] = avg((timestamp - this->start)/1000000); 
163          @Max[self->host] = max((timestamp - this->start)/1000000); 
164  @Num[self->host] = count(); 
165
166  /* clear vars */ 
167 start[pid, self->fd - 1] = 0; 
168 host[pid, self->fd - 1] = 0; 
169    self->host = 0; 
170    self->fd = 0; 
171  } 
172
173  /* 
174   * Output report 
175   */ 
176  dtrace:::END 
177  { 
178          printf("%-32s %11s\n", "HOST", "NUM"); 
179 printa("%-32s %@11d\n", @Num); 
180
181          printf("\n%-32s %11s\n", "HOST", "AVGTIME(ms)"); 
182 printa("%-32s %@11d\n", @Avg); 
183
184          printf("\n%-32s %11s\n", "HOST", "MAXTIME(ms)"); 
185 printa("%-32s %@11d\n", @Max); 
186  } 

Script weblatency.d
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Example

Here we run weblatency.d while a Mozilla browser loads the www.planet-
solaris.org Web site. After the Web site was loaded, Ctrl-C was hit to print the fol-
lowing report:

This gives us insight into which hosts were responsible for the time it took to
load the Web site. It turns out that requests to www.planetsolaris.org were the
slowest, with a maximum time of 3.7 seconds (probably the first request, which
incurred a DNS lookup). 

DNS Scripts

The Domain Name System (DNS) is a hierarchical naming system that maps
human-readable host names to IP addresses. DNS is frequently queried as a result
of using network software, such as Web browsers, and the time needed for DNS
lookups can cause noticeable latency in such software. DTrace allows queries and
latency to be analyzed, on the client and server sides.

The scripts that follow demonstrate DNS tracing using the pid provider, because
a stable DNS provider is not yet available. Because of this, these scripts were writ-
ten to match a particular version of software and may need adjustments for them
to execute on other versions.

The pid provider is not the only way to monitor DNS activity. DNS requests can
be traced at the network level, such as by watching for packets to and from port 53
(DNS). This is made easier if the udp provider is available.

client# weblatency.d
Tracing... Hit Ctrl-C to end. 
C^
HOST                   NUM 
static.flickr.com                    1 
images.pegasosppc.com                  1 
www.planetsolaris.org                  5 
blogs.sun.com                      7 

HOST              AVGTIME(ms) 
static.flickr.com                    65 
blogs.sun.com                     285 
images.pegasosppc.com                 491 
www.planetsolaris.org                 757 

HOST              MAXTIME(ms) 
static.flickr.com                    65 
images.pegasosppc.com                 491 
blogs.sun.com                     962 
www.planetsolaris.org                3689

www.planetsolaris.org
www.planetsolaris.org
www.planetsolaris.org
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getaddrinfo.d

The getaddrinfo() call is the standard POSIX function for retrieving an address
from a node name. By tracing it with DTrace, host name lookups via this function
can be observed along with the time to return the address. This can be a starting
point for investigating DNS performance on the client, because getaddrinfo()
calls may be satisfied by DNS queries. It’s up to the system configuration to decide
whether to use DNS when responding to getaddrinfo().

Although the use of getaddrinfo() is common, software can be written to
resolve hosts via DNS without calling it. For example, the resolver library could be
called directly (libresolv), for which the getaddrinfo.d script could be modified
to trace the function calls used. It’s also possible that software could query a DNS
server directly with UDP, which would need to be DTraced differently, such as by
socket operations or the udp provider, if available.

Script

The script uses the pid provider and so needs to be directed at a process to trace
(dtrace options -c or -p). An advantage of tracing the POSIX API is that this
script is expected to be more stable than would normally be the case when using
the pid provider, which can trace unstable implementation details from user-land
software.

The prototype of getaddrinfo() has the node to look up in the first argument,
which DTrace provides as arg0. Since this will be a string in user-land, it needs to
be retrieved by DTrace using copyinstr().

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7 printf("%-20s  %-12s %s\n", "TIME", "LATENCY(ms)", "HOST");
8   }
9
10  pid$target::getaddrinfo:entry
11  {
12  self->host = copyinstr(arg0);
13   self->start = timestamp;
14  }
15
16  pid$target::getaddrinfo:return
17  /self->start/
18  {
19          this->delta = (timestamp - self->start) / 1000000;
20 printf("%-20Y  %-12d %s\n", walltimestamp, this->delta, self->host);
21          self->host = 0;
22    self->start = 0;
23  }

Script getaddrinfo.d
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Example

The getaddrinfo.d was used to measure host name lookup time from the ping
command, as executed on Solaris:

The time to resolve phobos was 218 ms, which for this system included the
DNS query time. Repeated calls to getaddrinfo.d show that the time becomes
much quicker:

This is because the Name Service Cache Daemon (nscd) is running, which
improves the performance of frequently requested lookups by caching the results.
While getaddrinfo() traced the request, it returned from cache and did not
become a DNS query.

dnsgetname.d

The dnsgetname.d script monitors DNS lookups from a DNS server. This can be
executed at any time without restarting the DNS server or changing its configura-
tion.

Script

This script is written using the pid provider to trace the internal operation of
Berkeley Internet Name Daemon (BIND) version 9, the most commonly used DNS
server software. Since this traces BIND internals, this script will require updates
to match changes in the BIND software.

client# getaddrinfo.d -c 'ping phobos'
TIME       LATENCY(ms)  HOST
2010 May 22 06:40:18  218          phobos
no answer from phobos

client# getaddrinfo.d -c 'ping phobos'
TIME       LATENCY(ms)  HOST
2010 May 22 06:55:08  1            phobos
no answer from phobos

1   #!/usr/sbin/dtrace -Cs
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   typedef struct dns_name {
7          unsigned int                magic;
8          unsigned char *               ndata;

continues
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On this version of BIND, retrieving a text version of the DNS request turned out
to be a little difficult. Ideally, there would be a function call containing the request
as a char * argument, which DTrace would fetch using copyinstr(). A func-
tion like this does exist, dns_name_totext(), but this isn’t called for every
request.

The getname() function is called for every request and has dns_name_t * as
the first argument. dns_name_t is a struct containing a member that points to the
name request data, ndata. For DTrace to be able to navigate this struct, it is
declared on lines 6 to 10 (at least, enough of it for DTrace to find the ndata mem-
ber), and the -C option is used on line 1 to allow such declarations in the DTrace
script. That struct is later fetched using copyin() on line 20.

This approach can be used to fetch other data of interest from the DNS server;
however, the script will be come longer and more brittle, as it becomes more tied to
implementation details. To keep things simple, only the lookup query is returned
in this script.

Example

Here the dnsgetname.d script was executed on a 32-bit build of named (BIND),
requiring the use of the -32 option to dtrace to trace correctly. Since the name
printed contains binary characters (part of the DNS protocol), a Perl one-liner was
added to replace these characters with periods, to aid readability:

9          /* truncated */
10  } dns_name_t;
11
12  pid$target::getname:entry
13  {
14          self->arg0 = arg0;
15  }
16
17  pid$target::getname:return
18  /self->arg0/
19  {
20          this->name = (dns_name_t *)copyin(self->arg0, sizeof (dns_name_t));
21          printf("%s\n", copyinstr((uintptr_t)this->name->ndata));
22          self->arg0 = 0;
23  }

Script dnsgetname.d

server# dnsgetname.d -32 -p `pgrep named` | perl -ne '$|=1;$_ =~ s/[^:\w ]/./g; 
print "$_\n"'
._nfsv4idmapdomain.sf.test.com.
.mars.sp.sf.test.com.
.140.3.168.192.in.addr.arpa.
.phobos.sf.test.com.
.phobos.test.com.
.phobos.
.phobos.sf.test.com.
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The script prints out DNS queries in real time. The script can be enhanced to
include additional information such as query time.

FTP Scripts

The FTP protocol can be traced in a number of places: via a stable ftp provider (if
available), via syscalls, at the socket layer, in the TCP/IP stack, and either in the
server or client software directly. The ftp provider is currently available only in the
Oracle Sun ZFS Storage Appliance where it is used by FTP Analytics; we hope
that it is available elsewhere by the time you are reading this book.

If the ftp provider is not available, the pid provider can be used to trace the
activity of the user-land FTP server processes. This is demonstrated in this sec-
tion for ProFTPD15 on Solaris and for tnftpd16 on Mac OS X. Use of the pid pro-
vider ties the scripts to a particular version of the FTP software and will need
adjustments to execute on other versions.

ftpdxfer.d 

The ftpdxfer.d script uses the ftp provider to trace FTP data transfer opera-
tions that occurred while processing FTP commands. 

Script

Short and powerful scripts like this demonstrate the value of stable providers:

._nfsv4idmapdomain.sf.test.com.

.105.1.168.192.in.addr.arpa.

._nfsv4idmapdomain.sf.test.com.

._nfsv4idmapdomain.sf.test.com.

.188.1.168.192.in.addr.arpa.

._nfsv4idmapdomain.sf.test.com.

15. www.proftpd.org

16. http://freshmeat.net/projects/tnftpd

1   #!/usr/sbin/dtrace -Zs 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8          printf("%-20s %-8s %9s %-5s %-6s %s\n", "CLIENT", "USER", "LAT(us)", 
9   "DIR", "BYTES", "PATH"); 
10  } 

continues

www.proftpd.org
http://freshmeat.net/projects/tnftpd
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The -Z option is used with DTrace so that the script can begin tracing even if no
ftpd processes are running yet. Since it uses a USDT provider, it will probe ftpd
processes as they are instantiated.

Example

A client read a 1MB file 1m and then wrote another 1MB file called 1m2. The ftpdxfer.d
script shows each read and write data transfer that occurred by ftpd:

The client address is printed in the IPv4 encapsulated in IPv6 format. What’s
interesting is that the reads were 49,152 bytes each (until the end of the file was
reached), whereas the writes have variable size. 

ftpdfileio.d

This script summarizes bytes read and written over FTP by filename. 

11
12  ftp*:::transfer-start 
13  { 
14   self->start = timestamp; 
15  } 
16
17  ftp*:::transfer-done 
18  /self->start/ 
19  { 
20          this->delta = (timestamp - self->start) / 1000; 
21 printf("%-20s %-8s %9d %-5s %-6d %s\n", args[0]->ci_remote, 
22 args[1]->fti_user, this->delta, args[1]->fti_cmd, 
23  args[1]->fti_nbytes, args[1]->fti_pathname);
24    self->start = 0; 
25  }

Script ftpdxfer.d

server# ftpdxfer.d
CLIENT     USER       LAT(us) DIR   BYTES  PATH 
::ffff:192.168.2.51  brendan        205 RETR  49152  /export/fs1/1m 
::ffff:192.168.2.51  brendan        118 RETR  49152  /export/fs1/1m 
::ffff:192.168.2.51  brendan        135 RETR  49152  /export/fs1/1m 
::ffff:192.168.2.51  brendan        116 RETR  49152  /export/fs1/1m 
::ffff:192.168.2.51  brendan        117 RETR  49152  /export/fs1/1m 
[...]
::ffff:192.168.2.51  brendan        111 RETR  49152  /export/fs1/1m 
::ffff:192.168.2.51  brendan        108 RETR  49152  /export/fs1/1m 
::ffff:192.168.2.51 brendan         53 RETR  16384  /export/fs1/1m 
::ffff:192.168.2.51 brendan         60 STOR  2896  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         26 STOR  4344  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         30 STOR  2896  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         28 STOR  2896  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         24 STOR  3352  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         31 STOR  2896  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         31 STOR  2896  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         30 STOR  4344  /export/fs1/1m2 
::ffff:192.168.2.51 brendan         29 STOR  1448  /export/fs1/1m2
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Script

Example

Testing some known-sized file transfers (one transfer per file) yields the following: 

This can be a quick way to determine which files are hot and are causing the
most FTP data bytes to be transferred. 

proftpdcmd.d

This script traces FTP commands processed by proftpd, on the FTP server, pro-
viding latency details for each executed command. Unlike ftpdxfer.d, which
traced data transfers, the proftpdcmd.d script traces entire FTP commands,
which may consist of many data transfers.

Since this uses the pid provider, it needs to be passed a process ID to execute.
This means that these pid provider-based FTP scripts must be run on each ftpd
PID to see their behavior, which may be tricky if the ftpds are short-lived. (This is
another advantage of the stable ftp provider: It can examine FTP activity from any
process without needing to know the PID beforehand.)

1   #!/usr/sbin/dtrace -Zs 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing... Hit Ctrl-C to end.\n"); 
8   } 
9
10  ftp*:::transfer-done 
11  { 
12  @[args[1]->fti_cmd, args[1]->fti_pathname] = sum(args[1]->fti_nbytes);
13  } 
14
15  dtrace:::END 
16  { 
17          printf("\n%8s %12s  %s\n", "DIR", "BYTES", "PATHNAME"); 
18  printa("%8s %@12d  %s\n", @); 
19  } 

Script ftpdfileio.d

server# ftpdfileio.d
Tracing... Hit Ctrl-C to end. 
^C

     DIR     BYTES  PATHNAME 
    RETR 10485760  /export/fs1/10m 
    STOR 10485760  /export/fs1/10m2 
    RETR 104857600  /export/fs1/100m
    RETR   1048576000  /export/fs1/1000m
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Script

The pid provider was used to examine the execution of the proftpd source (this is
ProFTPD Version 1.3.2e): specifically, the pr_netio_telnet_gets() function.
This was chosen because it returned a pointer to the FTP command string that
was read from the client.

Latency for these FTP commands is calculated in an unusual way. Most laten-
cies in DTrace are calculated as the time from entry to return or from start to
done. Here the time is from return to entry. 

We do this because, when the pr_netio_telnet_gets() returns, it is hand-
ing the FTP command string to proftpd to process; when it is next called, it is
called because the proftpd has finished processing that command and is ready to
read the next one. So, command processing latency is the time from pr_netio_
telnet_gets() return to entry. This entry to return time is actually the wait
time for the FTP client command, which, for interactive FTP sessions, would span
the keystroke latency as a human typed the FTP command. 

Example

The proftpdcmd.d script is executed just after an FTP connection is established
but before authentication. This was executed on Solaris, which has the pgrep com-

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8 printf("%-20s %10s %s\n", "TIME", "LAT(us)", "FTP CMD"); 
9   } 
10
11  /* on this proftpd version, pr_netio_telnet_gets() returns the FTP cmd */
12  pid$target:proftpd:pr_netio_telnet_gets:return
13  { 
14  self->cmd = copyinstr(arg1);
15   self->start = timestamp; 
16  } 
17
18  pid$target:proftpd:pr_netio_telnet_gets:entry
19  /self->start/ 
20  { 
21          this->delta = (timestamp - self->start) / 1000; 
22          /* self->cmd already contains "\r\n" */ 
23 printf("%-20Y %10d  %s", walltimestamp, this->delta, self->cmd);
24    self->start = 0; 
25    self->cmd = 0; 
26  } 

Script proftpdcmd.d
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mand17 available to find the most recent PID matching the string given (easier
than ps -ef | grep | awk ...): 

To put the script to the test, several “gets” and “puts” were executed by a client,
on files of varying sizes. The latency for each transfer corresponds to the size of the
file, as shown earlier. 

By default, many FTP clients use active sessions to transfer files, which creates
data ports for file transfers as shown previously. The following shows passive FTP
transfers:

Note that the output examples include the username and password of the cli-
ent.18 See the “Security” section for the implications of this.

17. pgrep was written by Mike Shapiro, co-inventor of DTrace. 

server# proftpdcmd.d -p `pgrep -n proftpd` 
TIME        LAT(us)  FTP CMD 
2010 Jan 12 18:39:48    390428  USER brendan 
2010 Jan 12 18:39:51    1758793  PASS test123 
2010 Jan 12 18:39:51        80  SYST 
2010 Jan 12 18:39:51       68  TYPE I 
2010 Jan 12 18:39:57     400  CWD export/fs1 
2010 Jan 12 18:40:01        181  PORT 192,168,2,51,141,91 
2010 Jan 12 18:40:01     98850  RETR 10m 
2010 Jan 12 18:40:03        192  PORT 192,168,2,51,226,19 
2010 Jan 12 18:40:04    937522  RETR 100m 
2010 Jan 12 18:40:06        216  PORT 192,168,2,51,202,212 
2010 Jan 12 18:40:15    9592626  RETR 1000m 
2010 Jan 12 18:40:18        211  PORT 192,168,2,51,166,0 
2010 Jan 12 18:40:18    104173  STOR 10m2 
2010 Jan 12 18:40:22        202  PORT 192,168,2,51,145,65 
2010 Jan 12 18:40:23    923753  STOR 100m2 
2010 Jan 12 18:40:25        212  PORT 192,168,2,51,147,50 
2010 Jan 12 18:40:34    9457777  STOR 1000m2 
2010 Jan 12 18:40:38     538  MKD newdir 

server# proftpdcmd.d -p `pgrep -n proftpd` 
TIME        LAT(us)  FTP CMD 
2010 Jan 12 18:41:33    389572  USER brendan 
2010 Jan 12 18:41:35    1765402  PASS test123 
2010 Jan 12 18:41:35       221  SYST 
2010 Jan 12 18:41:35       73  TYPE I 
2010 Jan 12 18:41:48       399  PASV 
2010 Jan 12 18:41:48       93  RETR 10m 
2010 Jan 12 18:41:52     393  CWD export/fs1 
2010 Jan 12 18:41:55      2082  PASV 
2010 Jan 12 18:41:55     102000  RETR 10m 
2010 Jan 12 18:42:02       394  PASV 
2010 Jan 12 18:42:02     930729  RETR 100m

18. No, that’s not my real password.
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tnftpdcmd.d

This is the same script as proftpdcmd.d, written for tnftpd on Mac OS X. The
design and output is the same; the only difference is the source code function that
was probed: 

proftpdtime.d

Building on proftpdcmd.d, this script prints linear distribution plots for the com-
mand times. 

Script

lquantize() is used on line 22 with a max of 1000 ms and a step of 10 ms. This
can be adjusted as desired. 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8 printf("%-20s %10s %s\n", "TIME", "LAT(us)", "FTP CMD"); 
9   } 
10
11  pid$target:ftpd:getline:return
12  /arg1 && arg1 != 1/ 
13  { 
14  self->line = copyinstr(arg1); 
15   self->start = timestamp; 
16  } 
17
18  pid$target:ftpd:getline:entry
19  /self->start/ 
20  { 
21          this->delta = (timestamp - self->start) / 1000; 
22          /* self->line already contains "\r\n" */ 
23 printf("%-20Y %10d  %s", walltimestamp, this->delta, self->line);
24    self->start = 0; 
25          self->line = 0; 
26  }

Script tnftpdcmd.d

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8          printf("Tracing... Hit Ctrl-C to end.\n"); 
9   } 
10
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Example

Here a 10MB file was fetched many times, and a 100MB file was fetched a few times:

11  /* on this proftpd version, pr_netio_telnet_gets() returns the FTP cmd */ 
12  pid$target:proftpd:pr_netio_telnet_gets:return
13  { 
14  self->cmd = copyinstr(arg1);
15   self->start = timestamp; 
16  } 
17
18  pid$target:proftpd:pr_netio_telnet_gets:entry
19  /self->start/ 
20  { 
21          this->delta = (timestamp - self->start) / 1000000; 
22          @[self->cmd] = lquantize(this->delta, 0, 1000, 10); 
23    self->start = 0; 
24    self->cmd = 0; 
25  } 
26
27  dtrace:::END 
28  { 
29 printf("FTP command times (ms):\n"); 
30          printa(@); 
31  } 

Script proftpdtime.d

server# proftpdtime.d -p `pgrep -n proftpd` 
Tracing... Hit Ctrl-C to end. 
^C
FTP command times (ms): 

  PORT 192,168,2,51,145,88 

           value  ------------- Distribution ------------- count
             < 0 |              0
               0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
              10 |              0
[...]

  RETR 100m 

           value  ------------- Distribution ------------- count
             920 |              0
             930 |@@@@@@@@@@@@@@@@@@@@@@@@@@@              2
             940 |@@@@@@@@@@@@@                   1
             950 |              0

  RETR 10m 

           value  ------------- Distribution ------------- count
              80 |              0
              90 |@@@@@@        4
             100 |@@@@@               3
             110 |@@                1
             120 |@@@@@@        4
             130 |@@@@@@@@                     5
             140 |@@@@@@        4
             150 |@@                1
             160 |@@@@@               3
             170 |@@                1
             180 |                   0
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The distribution plots give a good idea of the latency for clients fetching these
files. The 10MB file was fetched between 90 ms and 180 ms, while the 100MB file
returned more consistently between 930 ms and 950 ms. 

proftpdio.d

Apart from digging deeper into proftpd, we can also use DTrace to shower
higher-level summaries. This tool is based on iostat and shows operations per
second, throughput, and command latency. It outputs a one-line summary every
five seconds; these settings could be customized. 

Script

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8           interval = 5; 
9           printf("Tracing... Output every %d seconds.\n", interval);
10          printf("  FTPD %4s %8s %8s %8s %8s %10s\n", 
11              "r/s", "w/s", "kr/s", "kw/s", "cmd/s", "cmd_t(ms)"); 
12   tick = interval; 
13          @readb = sum(0);      /* trigger output */ 
14  } 
15
16  pid$target:proftpd:pr_netio_read:return
17  /arg1 > 0/ 
18  { 
19   @writes = count(); 
20   @writeb = sum(arg1); 
21  } 
22
23  pid$target:proftpd:pr_netio_write:entry
24  /arg2 > 0/ 
25  { 
26          @reads = count(); 
27          @readb = sum(arg2); 
28  } 
29
30  pid$target:proftpd:pr_netio_telnet_gets:return
31  { 
32    @cmds = count(); 
33   self->start = timestamp; 
34  } 
35
36  pid$target:proftpd:pr_netio_telnet_gets:entry
37  { 
38          this->delta = (timestamp - self->start) / 1000000; 
39   @svct = avg(this->delta); 
40  } 
41
42  profile:::tick-1sec 
43  /--tick == 0/ 
44  { 
45  normalize(@reads, interval); 
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Example

In this example, an FTP client read (get) a 1GB file and then wrote (put) it back: 

The command time average (cmd_t) may be confusing: A five-second interval
showed an average cmd_t of 9.46 seconds. This is because the command began
earlier and completed during that five-second interval.

iSCSI Scripts 

Figure 7-2 presents an iSCSI functional diagram.
The Internet Small Computer System Interface (iSCSI) protocol provides SCSI

disk access over IP. Unlike NFS and CIFS, which provide access to files on a file sys-
tem, the iSCSI protocol provides block access for reading and writing to disk devices,
without knowledge of what those blocks are used for. Clients may install a file sys-
tem on iSCSI devices, but all the file system processing is performed on the clients.

The upshot of this is that DTrace on the iSCSI server can see which clients,
disks, and blocks have I/O but can’t see the operation of the file system that is
causing that I/O. To see the file system activity, run DTrace on the client (covered
in Chapter 5). 

46          normalize(@readb, interval * 1024); 
47  normalize(@writes, interval); 
48 normalize(@writeb, interval * 1024); 
49   normalize(@cmds, interval); 
50
51          printa("   %@8d %@8d %@8d %@8d %@8d %@10d\n", 
52 @reads, @writes, @readb, @writeb, @cmds, @svct); 
53
54          clear(@reads); clear(@readb); clear(@writes); clear(@writeb);
55  clear(@cmds); clear(@svct);
56   tick = interval; 
57  } 

Script proftpdio.d

server# proftpdio.d -p `pgrep -n proftpd` 
Tracing... Output every 5 seconds. 
  FTPD  r/s      w/s kr/s     kw/s   cmd/s  cmd_t(ms) 
          0        0        0        0        0          0 
         43  0     2048        0       0         48 
        423 1    19612        0      1          2 
       2386 0   114556        0      0          0 
       1529        1    72678       0        1       1654 
          0     7340 0    57222        0          0 
          0    14674 0   108936        0          0 
          0     3555  0    38641        0       9460 
         14        0        0        0        0          2 
          0        0        0        0        0          0 
^C
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Providers

The client iSCSI initiator is usually implemented as a kernel disk device driver
and can be traced using the io provider for stable I/O events or using the fbt pro-
vider to examine kernel internals. The iSCSI target server can be traced with the
iscsi provider if it is available in your iSCSI target software version. If it isn’t
available, your options depend on the iSCSI software used.

The iSCSI target was first implemented as a user-land daemon, iscsitgtd,
which could be traced using the pid provider. Some versions of iscsitgtd came
with a USDT provider called iscsi.

Later, the COMSTAR19 project reimplemented the iSCSI target software in the
kernel, which can be traced using the fbt provider. Some versions come with an
SDT provider also called iscsi, which has a similar interface to the previous iscsi
provider for iscsitgtd (the iscsiwho.d script that follows works on both). The
newer iscsi provider is fully documented in the iscsi provider section of the DTrace
Guide.20 It is currently available in OpenSolaris21 and Solaris Nevada22 and is
used by most of the scripts in this section. There is also an example of an fbt pro-
vider–based script, iscsiterr.d.

Figure 7-2 iSCSI functional diagram

19. See http://hub.opensolaris.org/bin/view/Project+comstar/, which is COMSTAR: Common
Multiprotocol SCSI Target.

20. http://wikis.sun.com/display/DTrace/iscsi+Provider

21. PSARC 2009/318, CR 6809997, was integrated into Solaris Nevada in May 2009 (snv_116).

22. It is also shipped as part of the Oracle Sun ZFS Storage Appliance, where it powers iSCSI
Analytics.

http://hub.opensolaris.org/bin/view/Project+comstar/
http://wikis.sun.com/display/DTrace/iscsi+Provider
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iscsi Provider

Listing iscsi provider probes for COMSTAR iSCSI in Solaris Nevada, circa June
2010, yields the following:

The previous listing also highlights the locations of the probes in the kernel, by
showing the kernel functions that contain them (FUNCTION column). These can be
treated as starting points should it becomes necessary to examine the source code
or to trace using the fbt provider.

fbt Provider 

To investigate the fbt provider for both the iSCSI target server and the iSCSI cli-
ent initiator, we conducted a quick experiment. Every related fbt probe was fre-
quency counted while a client performed 1,234 iSCSI reads. 

On the iSCSI Target Server. Although the function names will be foreign (unless
you have already studied the iSCSI kernel code), this one-liner still serves as a
quick way to gauge iSCSI target server activity: 

solaris# dtrace -ln iscsi:::
   ID   PROVIDER    MODULE               FUNCTION NAME
14213      iscsi      iscsit iscsit_op_scsi_cmd xfer-done
14214      iscsi     iscsit        iscsit_op_scsi_cmd xfer-start
14215      iscsi     iscsit        iscsit_op_scsi_cmd scsi-command
14221      iscsi         idm       idm_so_buf_rx_from_ini xfer-start
14222      iscsi        idm        idm_so_buf_tx_to_ini xfer-start
14223      iscsi       idm   idm_sotx_thread xfer-done
14224      iscsi         idm idm_so_buf_tx_to_ini xfer-done
14225      iscsi        idm  idm_so_rx_dataout xfer-done
14226      iscsi         idm idm_so_free_task_rsrc xfer-done
14230      iscsi      idm    idm_pdu_rx login-command
14231      iscsi      idm    idm_pdu_rx logout-command
14232      iscsi         idm       idm_pdu_rx_forward_ffp data-receive
14233      iscsi      idm    idm_pdu_rx data-receive
14234      iscsi         idm       idm_pdu_rx_forward_ffp task-command
14235      iscsi      idm    idm_pdu_rx task-command
14236      iscsi         idm       idm_pdu_rx_forward_ffp nop-receive
14237      iscsi      idm    idm_pdu_rx nop-receive
14238      iscsi         idm       idm_pdu_rx_forward_ffp text-command
14239      iscsi      idm    idm_pdu_rx text-command
14240      iscsi      idm    idm_pdu_tx login-response
14241      iscsi     idm   idm_pdu_tx logout-response
14242      iscsi      idm    idm_pdu_tx async-send
14243      iscsi      idm    idm_pdu_tx scsi-response
14244      iscsi      idm    idm_pdu_tx task-response
14245      iscsi         idm       idm_so_send_buf_region data-send
14246      iscsi      idm    idm_pdu_tx data-send
14247      iscsi      idm    idm_pdu_tx data-request
14248      iscsi      idm    idm_pdu_tx nop-send
14249      iscsi      idm    idm_pdu_tx text-response
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These probes fired close to the known client read count of 1234, suggesting that
these are related to the processing of iSCSI I/O. The functions iscsit_op_scsi_
cmd() and iscsit_xfer_scsi_data() look like promising places to start trac-
ing, just based on their names. This one-liner traced all the function calls from the
iscsit module; the idm module can also be examined for iSCSI activity. 

On the iSCSI Client Initiator. This one-liner shows the probes that fired for the
iscsi module on the client; it also gives a sense of activity: 

server# dtrace -n 'fbt:iscsit::entry { @[probefunc] = count(); }' 
dtrace: description 'fbt:idm::entry,fbt:iscsit::entry ' matched 350 probes 
^C
[...]
  iscsit_buf_xfer_cb                    1242 
  iscsit_build_hdr                   1242 
  iscsit_dbuf_alloc                  1242 
  iscsit_dbuf_free                   1242 
  iscsit_xfer_scsi_data                   1242 
  iscsit_cmd_window                  1245 
  iscsit_lport_task_free                   1245 
  iscsit_op_scsi_cmd                    1245 
  iscsit_set_cmdsn                   1245 
[...]

client# dtrace -n 'fbt:iscsi::entry { @[probefunc] = count(); }' 
dtrace: description 'fbt:iscsi::entry ' matched 470 probes 
^C
[...]
  iscsi_rx_process_data_rsp                  1242 
  iscsi_cmd_state_active                   1245 
  iscsi_cmd_state_completed                  1245 
  iscsi_cmd_state_free                  1245 
  iscsi_cmd_state_pending                   1245 
  iscsi_dequeue_pending_cmd                  1245 
  iscsi_enqueue_cmd_head                   1245 
  iscsi_enqueue_completed_cmd                  1245 
  iscsi_enqueue_pending_cmd                  1245 
  iscsi_iodone                  1245 
  iscsi_net_sendmsg                  1245 
  iscsi_net_sendpdu                  1245 
  iscsi_sess_release_itt                   1245 
  iscsi_sess_reserve_itt                   1245 
  iscsi_tran_destroy_pkt                   1245 
  iscsi_tran_init_pkt                   1245 
  iscsi_tran_start                   1245 
  iscsi_tx_cmd                  1245 
  iscsi_tx_scsi                    1245 
  iscsi_net_recvdata                    1247 
  iscsi_net_recvhdr                  1247 
  iscsi_rx_process_hdr                  1247 
  iscsi_rx_process_itt_to_icmdp                 1247 
  iscsi_sna_lt                  1247 
  iscsi_update_flow_control                  1247 
[...]
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Many probes could be used to trace activity; one in particular is able to trace
both read and write I/O on completion: iscsi_iodone(). It can be seen in the
stack backtrace for the io:::done probe, measured here with both read and write
I/O:

This is from uts/common/io/scsi/adapters/iscsi/iscsi_io.c:

The iscsi_sess_t struct has various members of interest, including the ses-
sion name: 

io Provider 

Since the client iSCSI initiator is a disk driver, it can be examined from the io pro-
vider. To demonstrate this, the iosnoop script from Chapter 4, Disk I/O, was run
on a client while it wrote a series of 1MB I/O, beginning at an offset of 100MB: 

client# dtrace -n 'io:::done { @[stack()] = count(); }'
dtrace: description 'io:::done ' matched 4 probes 
^C

    sd`sd_buf_iodone+0x62 
   sd`sd_mapblockaddr_iodone+0x48
   sd`sd_return_command+0x158
    sd`sdintr+0x521 
   scsi_vhci`vhci_intr+0x688

----->  iscsi`iscsi_iodone+0xc9 
  iscsi`iscsi_cmd_state_completed+0x36
  iscsi`iscsi_cmd_state_machine+0xbf

   iscsi`iscsi_ic_thread+0x119
   iscsi`iscsi_threads_entry+0x15
   genunix`taskq_thread+0x1a7
    unix`thread_start+0x8 

             4620

void
iscsi_iodone(iscsi_sess_t *isp, iscsi_cmd_t *icmdp) 
[...]

client# dtrace -n 'fbt::iscsi_iodone:entry { trace(stringof(args[0]->sess_name)); }' 
dtrace: description 'fbt::iscsi_iodone:entry ' matched 1 probe 
CPU     ID         FUNCTION:NAME 
  5  61506          iscsi_iodone:entry iqn.1986-03.com.sun:02:a9877ea7-64d2-ecf4-fe12-
daafa92c015c
  5  61506          iscsi_iodone:entry iqn.1986-03.com.sun:02:a9877ea7-64d2-ecf4-fe12-
daafa92c015c
  0  61506          iscsi_iodone:entry iqn.1986-03.com.sun:02:ea02ce08-d6cb-c810-8540-
b4237b3f8128
  0  61506  iscsi_iodone:entry iqn.1986-03.com.sun:02:32bd3316-53
[...]
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sd19 on the client is the iSCSI device. The block offset for the writes begins with
block 204800, because the io provider’s block offset is usually given in terms of 512
bytes (204800 x 512 = 100MB). The starting time stamp was printed so that the
output could be post sorted if it was shuffled (multi-CPU client). 

See Chapter 4 for more examples of the io provider. 

iscsiwho.d

The iscsiwho.d script summarizes accesses by client IP address and iSCSI
event. It is executed on the iSCSI target server. 

Script

On line 10, the provider is matched using iscsi*. This matches both the iscsit-
gtd and COMSTAR versions of the iscsi provider (which have names iscsi<PID>
and iscsi, respectively). Along with using common arguments, this script will
execute on both provider versions: 

client# iosnoop -se 
STIME          DEVICE   UID   PID D    BLOCK  SIZE       COMM PATHNAME 
2845748137     sd19 0  1039 R        0  512         dd <none> 
2845748471     sd19 0  1039 R        0  512         dd <none> 
2845748806     sd19 0  1039 R        0  512         dd <none> 
2845751576     sd19   0  1039 W   204800 1048576        dd <none> 
2845779437     sd19   0  1039 W   206848 1048576        dd <none> 
2845809122     sd19   0  1039 W   208896 1048576        dd <none> 
2845838194     sd19   0  1039 W   210944 1048576        dd <none> 
2845867094     sd19   0  1039 W   212992 1048576        dd <none> 
^C

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing iSCSI... Hit Ctrl-C to end.\n"); 
8   } 
9
10  iscsi*::: 
11  { 
12          @events[args[0]->ci_remote, probename] = count(); 
13  } 
14
15  dtrace:::END 
16  { 
17          printf("   %-26s %14s %8s\n", "REMOTE IP", "iSCSI EVENT", "COUNT"); 
18          printa("   %-26s %14s %@8d\n", @events); 
19  } 

Script iscsiwho.d
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Example

The iscsiwho.d script was run on both versions of the iSCSI target server soft-
ware, while a client performed a streaming read to an iSCSI device. Here’s an
example for the iscsitgtd iSCSI software: 

And here’s an example for the COMSTAR iSCSI software: 

The clients performed more than 5,000 reads while tracing, shown earlier in the
iSCSI event counts. The iSCSI provider probe names are shown in the output of
iscsiwho.d, so a client read is a data-send from the iSCSI server’s perspective. 

COMSTAR iSCSI added xfer-start and xfer-done probes because it sup-
ports iSER: iSCSI over remote DMA (RDMA). iSER is able to perform faster data
transfers by bypassing the usual kernel code paths (using RDMA). Although that’s
good for performance, it’s bad for DTrace observability since the data-send/data-
receive probes do not fire. The xfer-start/xfer-done probes were added to
ensure that these operations have some visibility, because they always fire
whether or not iSER is used. 

server# iscsiwho.d
Tracing iSCSI... Hit Ctrl-C to end. 
^C
   REMOTE IP iSCSI EVENT    COUNT 
   192.168.100.5 nop-receive        1 
   192.168.100.5  nop-send        1 
   192.168.100.7 nop-receive        1 
   192.168.100.7  nop-send        1 
   192.168.100.5           scsi-response        3 
   192.168.2.30       nop-receive        3 
   192.168.2.30        nop-send        3 
   192.168.2.55       nop-receive        3 
   192.168.2.55        nop-send        3 
   192.168.100.5   data-send     5315 
   192.168.100.5       scsi-command     5318 

server# iscsiwho.d
Tracing iSCSI... Hit Ctrl-C to end. 
^C
   REMOTE IP iSCSI EVENT    COUNT 
   192.168.100.5 nop-receive        1 
   192.168.100.5  nop-send        1 
   192.168.2.55       nop-receive        2 
   192.168.2.55        nop-send        2 
   192.168.2.53     scsi-response        7 
   192.168.2.53         data-send     5933 
   192.168.2.53         xfer-done     5933 
   192.168.2.53        xfer-start     5933 
   192.168.2.53       scsi-command     5936
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iscsirwsnoop.d 

The iscsirwsnoop.d script traces iSCSI send and receive probes on the iSCSI
target server, printing client details as it occurs. 

Script

This version is for the USDT iscsitgtd provider: 

This may work on COMSTAR iSCSI (if DTrace complains about insufficient reg-
isters, delete the *s). However, COMSTAR iSCSI supports RDMA I/O, which bypasses
the data-send and data-receive probes. Because of this, iscsirwsnoop.d has
been rewritten for COMSTAR iSCSI.

This version is for the SDT kernel iscsi provider: 

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8          printf("%-16s %-18s %2s %-8s %6s\n", "TIME(us)", "CLIENT", "OP", 
9      "BYTES", "LUN"); 
10  } 
11
12  iscsi*:::data-send 
13  { 
14          printf("%-16d %-18s %2s %-8d %6d\n", timestamp / 1000, 
15              args[0]->ci_remote, "R", args[1]->ii_datalen, args[1]->ii_lun);
16  } 
17
18  iscsi*:::data-receive 
19  { 
20          printf("%-16d %-18s %2s %-8d %6d\n", timestamp / 1000, 
21              args[0]->ci_remote, "W", args[1]->ii_datalen, args[1]->ii_lun);
22  } 

Script iscsirwsnoop.d

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8 printf("%-16s %-18s %2s %-8s %6s\n", "TIME(us)", "CLIENT", "OP",
9      "BYTES", "LUN"); 
10  } 
11
12  iscsi:::xfer-start 
13  { 
14          printf("%-16d %-18s %2s %-8d %6d\n", timestamp / 1000, 
15              args[0]->ci_remote, arg8 ? "R" : "W", args[2]->xfer_len, 
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Examples

Here a client created a UFS file system on an iSCSI device. The events were traced
on the iSCSI server using iscsirwsnoop.d:

The smaller writes early on are likely to be for the ZFS uberblocks, and later the
larger writes are likely for the inode tables. See the one-liners to examine the off-
set of these operations. 

The OP (operation) column shows what operation the client performed. So, a cli-
ent read is traced by the iSCSI server probe data-send.

iscsirwtime.d 

This script traces iSCSI read and write times from the iSCSI target server, print-
ing results as distribution plots and by client and target.

Script

This uses the xfer-start/xfer-done probes to measure the time of iSCSI data
transfers. To calculate transfer time, the starting time stamp is saved in the start

16      args[1]->ii_lun); 
17  } 

Script iscsirwsnoop.d, SDT version

server# iscsirwsnoop.d
TIME(us)         CLIENT  OP BYTES       LUN 
23897801387      192.168.100.5       R 36            0 
23897801642      192.168.100.5       R 36            0 
23897801991      192.168.100.5       R 512           0 
23897802287      192.168.100.5       R 512           0 
23897802635      192.168.100.5       R 512           0 
23897803137      192.168.100.5       R 36            0 
23897803353      192.168.100.5       R 36            0 
23897803696      192.168.100.5       R 512           0 
23897804033      192.168.100.5       R 512           0 
23897804360      192.168.100.5       R 512           0 
23897804608      192.168.100.5       R 36            0 
23897804830      192.168.100.5       R 36            0 
23897805140      192.168.100.5       R 512           0 
23897805480      192.168.100.5       R 512           0 
23897805826      192.168.100.5       R 512           0 
[...]
23900186904      192.168.100.5       R 8192          0 
23900186943      192.168.100.5       R 8192          0 
23900186972      192.168.100.5       R 8192          0 
23900186998      192.168.100.5       R 8192          0 
23900187041      192.168.100.5       R 8192          0 
23900187075      192.168.100.5       R 8192          0 
23900187102      192.168.100.5       R 8192          0 
23900187250      192.168.100.5       R 8192          0 
[...]
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associative array keyed on arg1, and arg1 is unique for each data transfer and is
used on the xfer-done probe to retrieve the starting time from the start associa-
tive array so that the transfer time can be calculated.

Example

While iscsirwtime.d was tracing, a client was performing both small and large
reads:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   inline int TOP_TARGETS = 10; 
6
7   dtrace:::BEGIN 
8   { 
9          printf("Tracing iSCSI target... Hit Ctrl-C to end.\n"); 
10  } 
11
12  iscsi:::xfer-start 
13  { 
14   start[arg1] = timestamp; 
15  } 
16
17  iscsi:::xfer-done 
18  /start[arg1] != 0/ 
19  { 
20          this->elapsed = timestamp - start[arg1]; 
21 @rw[arg8 ? "read" : "write"] = quantize(this->elapsed / 1000); 
22          @host[args[0]->ci_remote] = sum(this->elapsed);
23          @targ[args[1]->ii_target] = sum(this->elapsed);
24    start[arg1] = 0; 
25  } 
26
27  dtrace:::END 
28  { 
29          printf("iSCSI read/write distributions (us):\n"); 
30          printa(@rw); 
31
32          printf("\niSCSI read/write by client (total us):\n"); 
33   normalize(@host, 1000); 
34          printa(@host); 
35
36          printf("\niSCSI read/write top %d targets (total us):\n", TOP_TARGETS);
37   normalize(@targ, 1000); 
38  trunc(@targ, TOP_TARGETS); 
39          printa(@targ); 
40  } 

Script iscsirwtime.d

server# iscsirwtime.d
Tracing iSCSI target... Hit Ctrl-C to end. 
^C
iSCSI read/write distributions (us): 
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The read distribution shows two groups, one of faster I/O between 256 us and 511
us and one slower between 2 ms and 8 ms. The slower is likely to be for the larger-
sized I/O, which can also be identified with DTrace (see the iSCSI one-liners).

iscsicmds.d

Since the iSCSI protocol encapsulates SCSI, it can be interesting to examine the
SCSI commands that are being performed. The iscsicmds.d script does this,
showing SCSI command by client. 

Script

This borrows the SCSI command translation table from scsicmds.d in Chapter 4,
Disk I/O: 

  read
           value  ------------- Distribution ------------- count
               8 |              0
              16 |              6
              32 |              4
              64 |              0
             128 |              0
             256 |@@@@@@@@@@       357
             512 |@              43
            1024 |              1
            2048 |@@@@@@@@@@@@@@@@@                  591
            4096 |@@@@@@@@@@@       391
            8192 |              0

iSCSI read/write by client (total us): 

  192.168.2.53                3705661 

iSCSI read/write top 10 targets (total us): 

  iqn.1986-03.com.sun:02:a9877ea7-64d2-ecf4-fe12-daafa92c015c      1839570
  iqn.1986-03.com.sun:02:32bd3316-538a-ca45-89de-d0ff00d7a2d1      1866091

1    #!/usr/sbin/dtrace -s 
2
3    #pragma D option quiet 
4
5    string scsi_cmd[uchar_t]; 
6
7    dtrace:::BEGIN 
8    { 
9           /* 
10           * The following was generated from the SCSI_CMDS_KEY_STRINGS 
11  * definitions in /usr/include/sys/scsi/generic/commands.h using sed.
12           */ 
13 scsi_cmd[0x00] = "test_unit_ready";
14  scsi_cmd[0x01] = "rezero/rewind"; 
15  scsi_cmd[0x03] = "request_sense"; 
16  scsi_cmd[0x04] = "format"; 

continues
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Example

While tracing, a client created a UFS file system on an iSCSI target: 

While tracing, client 192.168.2.53 performed 4,277 write(10) SCSI operations
over iSCSI. 

iscsiterr.d 

The iscsi provider currently doesn’t provide probes for tracing iSCSI errors. This
can be extracted from fbt for the COMSTAR iSCSI target software. Because this

17 scsi_cmd[0x05] = "read_block_limits";
18  scsi_cmd[0x07] = "reassign"; 
19   scsi_cmd[0x08] = "read"; 
20   scsi_cmd[0x0a] = "write"; 
21   scsi_cmd[0x0b] = "seek"; 
[...see scsicmds.d...] 
88  scsi_cmd[0xAF] = "verify(12)"; 
89 scsi_cmd[0xb5] = "security_protocol_out";
90
91          printf("Tracing... Hit Ctrl-C to end.\n"); 
92   } 
93
94   iscsi:::scsi-command 
95   { 
96  this->code = *args[2]->ic_cdb; 
97          this->cmd = scsi_cmd[this->code] != NULL ? 
98   scsi_cmd[this->code] : lltostr(this->code); 
99          @[args[0]->ci_remote, this->cmd] = count(); 
100  } 
101
102  dtrace:::END 
103  { 
104          printf("  %-24s %-36s %s\n", "iSCSI CLIENT", "SCSI COMMAND", "COUNT");
105          printa("  %-24s %-36s  %@d\n", @); 
106  } 

Script iscsicmds.d

server# iscsicmds.d
Tracing... Hit Ctrl-C to end. 
^C
  iSCSI CLIENT  SCSI COMMAND               COUNT 
  192.168.100.4   synchronize_cache              5 
  192.168.2.53   synchronize_cache              7 
  192.168.100.4   test_unit_ready               9 
  192.168.100.4  mode_sense                15 
  192.168.2.53   test_unit_ready               18 
  192.168.2.53  mode_sense                27 
  192.168.100.4    read                   28 
  192.168.100.4     read(10)                  38 
  192.168.2.53             read                 56 
  192.168.2.53 read(10)                79 
  192.168.100.4     write(10)                 2138 
  192.168.2.53 write(10)               4277 
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script is fbt provider–based, for this to keep working, it will need adjustments to
match the underlying iSCSI implementation as it changes. 

Script

1   #!/usr/sbin/dtrace -Cs 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   typedef enum idm_status { 
7   IDM_STATUS_SUCCESS = 0, 
8    IDM_STATUS_FAIL, 
9   IDM_STATUS_NORESOURCES, 
10    IDM_STATUS_REJECT, 
11          IDM_STATUS_IO, 
12    IDM_STATUS_ABORTED, 
13   IDM_STATUS_SUSPENDED, 
14   IDM_STATUS_HEADER_DIGEST, 
15   IDM_STATUS_DATA_DIGEST, 
16   IDM_STATUS_PROTOCOL_ERROR,
17   IDM_STATUS_LOGIN_FAIL 
18  } idm_status_t; 
19
20  dtrace:::BEGIN 
21  { 
22  status[IDM_STATUS_FAIL] = "FAIL"; 
23          status[IDM_STATUS_NORESOURCES] = "NORESOURCES"; 
24 status[IDM_STATUS_REJECT] = "REJECT"; 
25  status[IDM_STATUS_IO] = "IO"; 
26          status[IDM_STATUS_ABORTED] = "ABORTED"; 
27 status[IDM_STATUS_SUSPENDED] = "SUSPENDED"; 
28          status[IDM_STATUS_HEADER_DIGEST] = "HEADER_DIGEST"; 
29          status[IDM_STATUS_DATA_DIGEST] = "DATA_DIGEST"; 
30          status[IDM_STATUS_PROTOCOL_ERROR] = "PROTOCOL_ERROR"; 
31          status[IDM_STATUS_LOGIN_FAIL] = "LOGIN_FAIL"; 
32
33          printf("%-20s  %-20s %s\n", "TIME", "CLIENT", "ERROR"); 
34  } 
35
36  fbt::idm_pdu_complete:entry
37  /arg1 != IDM_STATUS_SUCCESS/ 
38  { 
39  this->ic = args[0]->isp_ic;
40          this->remote = (this->ic->ic_raddr.ss_family == AF_INET) ? 
41  inet_ntoa((ipaddr_t *)&((struct sockaddr_in *)& 
42    this->ic->ic_raddr)->sin_addr) : 
43   inet_ntoa6(&((struct sockaddr_in6 *)& 
44    this->ic->ic_raddr)->sin6_addr);
45
46 this->err = status[arg1] != NULL ? status[arg1] : lltostr(arg1); 
47 printf("%-20Y  %-20s %s\n", walltimestamp, this->remote, this->err);
48  } 

Script iscsiterr.d



ptg

646 Chapter 7 � Application-Level Protocols

Example

For this example, a client performed large iSCSI I/O and was then rebooted while
I/O was in progress. The iSCSI target server encountered a FAIL error for that client:

The script is tracing iSCSI errors. Since iSCSI encapsulates SCSI, examining
SCSI errors as well may be of interest. See the scsireasons.d script from Chap-
ter 4. 

Fibre Channel Scripts 

As with iSCSI block I/O, Fibre Channel (FC) block I/O can also be traced on the
server and client if DTrace is available. An fc provider exists for FC target tracing,
which is fully documented in the fc provider section of the DTrace Guide.23 It is
currently available in OpenSolaris24 and Solaris Nevada.25 Listing the fc provider
probes on Solaris Nevada, circa June 2010, yields the following:

If the fc provider is not available, FC may still be traced using the fbt provider,
as demonstrated in fcerror.d.

server# iscsiterr.d
TIME CLIENT               ERROR 
2010 Jan 15 23:28:22  192.168.100.4        FAIL 

23. http://wikis.sun.com/display/DTrace/fibre+channel+Provider

24. PSARC 2009/291, CR 6809580, was integrated into Solaris Nevada in May 2009 (snv_115).

25. It is also shipped as part of the Oracle Sun ZFS Storage Appliance, where it powers FC 
Analytics.

solaris# dtrace -ln fc::: 
   ID   PROVIDER  MODULE            FUNCTION NAME
65315         fc        fct        fct_process_plogi rport-login-end
65316         fc        fct        fct_process_plogi rport-login-start
65317         fc      fct fct_do_flogi fabric-login-end
65318         fc      fct fct_do_flogi fabric-login-start
65319         fc    fct fct_handle_local_port_event link-up
65320         fc    fct fct_handle_local_port_event link-down
78607         fc fct   fct_handle_rcvd_abts abts-receive
78608         fc fct   fct_send_scsi_status scsi-response
78609         fc   fct   fct_scsi_data_xfer_done xfer-done
78610         fc fct     fct_xfer_scsi_data xfer-start
78611         fc        fct        fct_post_rcvd_cmd scsi-command
78612         fc        fct fct_rscn_verify rscn-receive
78613         fc       fct        fct_process_logo rport-logout-end
78614         fc       fct        fct_process_logo rport-logout-start

http://wikis.sun.com/display/DTrace/fibre+channel+Provider
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Because FC and iSCSI can be DTraced in similar ways, refer to the “iSCSI
Scripts” section for FC script ideas. If the fc provider is available, porting the
scripts should be straightforward since the providers have similar interfaces.

fcwho.d

This traces Fibre Channel events on the FC target server and counts which clients
and which probe events occurred. 

Script

Example

Here’s an example of fcwho.d tracing activity from a single client:

fcerror.d 

This script traces Fibre Channel packet errors on Solaris Nevada, circa June 2010.
It does this using the fbt provider to trace kernel function calls, and so to keep
working, it will need adjustments to match the kernel version you are using.

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          printf("Tracing FC... Hit Ctrl-C to end.\n"); 
8   } 
9
10  fc::: 
11  { 
12          @events[args[0]->ci_remote, probename] = count(); 
13  } 
14
15  dtrace:::END 
16  { 
17          printf("   %-26s %14s %8s\n", "REMOTE IP", "FC EVENT", "COUNT");
18          printa("   %-26s %14s %@8d\n", @events); 
19  } 

Script fcwho.d

server# fcwho.d
Tracing FC... Hit Ctrl-C to end. 
^C
   REMOTE IP FC EVENT    COUNT 
   192.168.101.2      scsi-response       11
   192.168.101.2  xfer-done       22
   192.168.101.2  xfer-start       22
   192.168.101.2 scsi-command       23
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Script

The following code is from uts/common/io/fibre-channel/impl/fctl.c:

Functions like this are a gift in DTrace; information may already be available as
translated strings there for the printing. Since this function populates these char-
acter pointers, the messages can be printed out only on the return probe: 

static char *fctl_undefined = "Undefined"; 
[...]
/*
 * Return number of successful translations. 
 *      Anybody with some userland programming experience would have 
 *      figured it by now that the return value exactly resembles that 
 *      of scanf(3c). This function returns a count of successful 
 *      translations. It could range from 0 (no match for state, reason, 
 *      action, expln) to 4 (successful matches for all state, reason, 
 *      action, expln) and where translation isn't successful into a 
 *      friendlier message the relevent field is set to "Undefined" 
 */ 
static int 
fctl_pkt_error(fc_packet_t *pkt, char **state, char **reason, 
    char **action, char **expln) 
{
[...]
        *state = *reason = *action = *expln = fctl_undefined; 
[...]

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4   #pragma D option switchrate=10hz 
5
6   dtrace:::BEGIN 
7   { 
8          printf("%-20s %-12s %-12s %-12s %-12s\n", "TIME", "STATE", "REASON",
9    "ACTION", "EXPLANATION"); 
10  } 
11
12  fbt::fctl_pkt_error:entry
13  { 
14   self->state = args[1]; 
15  self->reason = args[2]; 
16  self->action = args[3]; 
17   self->expln = args[4]; 
18  } 
19
20  fbt::fctl_pkt_error:entry
21  /self->state/ 
22  { 
23          printf("%-20Y %-12s %-12s %-12s %-12s\n", walltimestamp, 
24  stringof(*self->state), stringof(*self->reason),
25  stringof(*self->action), stringof(*self->expln));
26
27 self->state = 0; self->reason = 0; self->action = 0; self->expln = 0;
28  }

Script fcerror.d
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NULL checking isn’t needed since the strings are set to Undefined by default in
the function.

SSH Scripts

SSH is the Secure Shell, an encrypted protocol used for remote shell access, file
transfers, and port forwarding. It is typically implemented as a server process
called sshd (SSH daemon) and client commands including ssh (Secure Shell) and
scp (Secure Copy).

DTrace can be used to examine details of SSH I/O and connections, including
the negotiation of encryption algorithms, host key exchanges, and authentication.
However, many of these details are already available from OpenSSH, a popular
software distribution of SSH, by turning on debug options (for example, ssh -vvv
hostname). The scripts that follow show how DTrace can fetch additional informa-
tion about the activity of the ssh and sshd software. See Chapter 11, Security, for
an additional SSH-based script, sshkeysnoop.d.

sshcipher.d

You can use the sshcipher.d script to analyze the CPU cost of encryption ciphers
used by SSH. The script can be enhanced to include the CPU cost of compression
(if enabled) and other details including the buffer length at encryption time.

Script

This script uses the pid provider to examine the entry and return for any func-
tions containing crypt in their name, in the libcrypto library. Since it uses the pid
provider, the script needs to be fed a PID of either ssh or sshd to analyze, via the
-p or -c dtrace option.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7 printf("Tracing PID %d ... Hit Ctrl-C for report.\n", $target);
8   }
9
10  pid$target:libcrypto*:*crypt*:entry
11  {
12 self->crypt_start[probefunc] = vtimestamp;
13  }
14
15  pid$target:libcrypto*:*crypt*:return
16  /self->crypt_start[probefunc]/
17  {

continues



ptg

650 Chapter 7 � Application-Level Protocols

Some ciphers have crypt functions that call crypt subfunctions, such as 3DES
(DES_encrypt3() calls DES_encrypt2()). Because of this, the thread-local vari-
able to record the start time is keyed on the function name, on line 12. This
ensures that the subfunction calls don’t overwrite the start time saved for the par-
ent function.

Example

For the following examples, an scp process was executed to copy a large file to a
remote host. scp runs an ssh subprocess to do the encryption, which is traced here.

Default cipher. The following scp command line was executed. The cipher algo-
rithm is not specified so that SSH uses the default:

The process ID of ssh was fetched using the Solaris pgrep, and sshcipher.d
traced it for ten seconds by adding a dtrace action at the command line:

18          this->oncpu = vtimestamp - self->crypt_start[probefunc];
19          @cpu[probefunc, "CPU (ns):"] = quantize(this->oncpu);
20          @totals["encryption (ns)"] = sum(this->oncpu);
21  self->crypt_start[probefunc] = 0;
22  }
23
24  dtrace:::END
25  {
26  printa(@cpu); printa(@totals);
27  }

Script sshcipher.d

client# scp /export/fs1/1g brendan@deimos:/var/tmp

client# sshcipher.d -p `pgrep -xn ssh` -n 'tick-10sec { exit(0); }'
Tracing PID 3164 ... Hit Ctrl-C for report.

  AES_encrypt                                         CPU (ns):                                         

           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@@@@@@@@@@@@        220347
            2048 |@               10573
            4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@             517175
            8192 |              775
           16384 |             96
           32768 |             0
           65536 |             1
          131072 |                0

  encryption (ns)                 3558297733
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This shows that the default algorithm is AES, for this version of SSH. Since no
decrypt functions are shown in the output, either no decryption was performed
while tracing, or that function has a name that doesn’t contain crypt and isn’t
matched by this script, or the AES_encrypt() function is used for both encrypt
and decrypt.

The output also showed the CPU time for encryption for each packet, which
mostly took between 4 us and 8 us.

Blowfish. The same scp command was repeated, this time selecting the Blow-
fish cipher:

Running sshcpiher.d yields the following:

A key advantage of the Blowfish algorithm is speed, which can be seen by com-
paring the encryption time of AES to Blowfish, as measured by sshcipher.d.

client# scp -c blowfish /export/fs1/1g brendan@deimos:/var/tmp

client# sshcipher.d -p `pgrep -n ssh` -n 'tick-10sec { exit(0); }'
Tracing PID 3145 ... Hit Ctrl-C for report.

  BF_decrypt             CPU (ns): 
           value ------------- Distribution ------------- count 
             128 |                   0 
             256 |                   3 
             512 |@@@@@@@@@@@@@@@@@@@@@@@@                 242 
            1024 |@@@@@@@@@@@@@              132 
            2048 |@@                 23 
            4096 |@                 11 
            8192 |                  0 

  BF_encrypt             CPU (ns): 
           value ------------- Distribution ------------- count 
             128 |                   0 
             256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@        1136090 
             512 |@@@@@@@                  260700 
            1024 |                  129 
            2048 |                  153 
            4096 |                  282 
            8192 |                  400 
           16384 |                 164 
           32768 |                  1 
           65536 |                  0 

  encryption (ns)                 718476213
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Enhancements

The script can be modified to provide additional information relative to the usage
of the cipher interfaces.

Compression. If compression is enabled when using SSH, the CPU overhead
can be measured similarly way to encryption by adding the following to the script:

The additions to the @cpu and @total aggregations will be printed by the exist-
ing dtrace:::END action. It may also be desirable to add -Z to the first line so
that dtrace can execute even if it can’t match the probes. This allows the script to
be executed when compression is not used, because SSH may not load the compres-
sion library, and so the probes may not be available.

To test this addition, the following scp command was executed:

Running sshcipher2.d (sshcipher.d plus the previous code) yields the
following:

24  pid$target:libz*:inflate:entry,
25  pid$target:libz*:deflate:entry
26  {
27  self->compress_start = vtimestamp;
28  }
29
30  pid$target:libz*:inflate:return,
31  pid$target:libz*:deflate:return
32  /self->compress_start/
33  {
34          this->oncpu = vtimestamp - self->compress_start;
35          @cpu[probefunc, "CPU (ns):"] = quantize(this->oncpu);
36          @totals["compression (ns)"] = sum(this->oncpu);
37   self->compress_start = 0;
38  }

Script addition to sshcipher.d

client# scp -C /export/fs1/1g brendan@deimos:/var/tmp

client# sshcipher2.d -n 'tick-10sec { exit(0); }' -p `pgrep -xn ssh`
Tracing PID 5395 ... Hit Ctrl-C for report.

  inflate                                             CPU (ns):                                         

           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@@@@@@@@@@           113
            1024 |@@@@@@@@@@@@@@@@@                  117
            2048 |@@@@             30
            4096 |@@                16
            8192 |              0
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The totals allow the CPU cost of compression to be compared to encryption for
these algorithms. In this case, encryption was about four times more costly.

Cipher Buffer Size. For this version of ssh, buffers are encrypted by the func-
tion cipher_crypt(), which has the following prototype:

The length of the buffer that is encrypted is the len arg, available in DTrace as
arg3. This can be added to the script to provide details of cipher packet size. The
following addition also replaces the dtrace:::END action:

  deflate                                             CPU (ns):                                         
           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@@@@@@@@@@@@@@@@@@                2051
            1024 |              8
            2048 |@@@@@@@@        670
            4096 |              21
            8192 |              10
           16384 |             0
           32768 |             0
           65536 |             0
          131072 |                0
          262144 |                0
          524288 |                0
         1048576 |@@@@@@@@              690
         2097152 |               0

  AES_encrypt                                         CPU (ns):                                         

           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@@@@@@@@@@@@        210918
            2048 |@               18820
            4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@             476608
            8192 |               1172
           16384 |              383
           32768 |             1
           65536 |             0

  compression (ns)                 876913379
  encryption (ns)                 3125429187

void
cipher_crypt(CipherContext *cc, u_char *dest, const u_char *src, u_int len)

40  pid$target:ssh:cipher_crypt:entry
41  {
42          @bytes["cipher average buffer size (bytes)"] = avg(arg3);
43          @totals["cipher total (bytes)"] = sum(arg3);
44  }
45

continues
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The summaries at the end of the output now include the average size of each
buffer encrypted and the total bytes encrypted. Here we repeat the original AES
example:

The average buffer size is 11KB. This was repeated for Blowfish with the same
result.

Now that the script gathers the total bytes encrypted and the total on-CPU
encryption time, we can calculate a metric to describe the cipher overhead: CPU
nanoseconds per byte, for the different ciphers. Table 7-4 summarizes this result
from scp tests; this is by no means an authoritative comparison, just a little fun
with DTrace.

46  dtrace:::END
47  {
48          printa(@cpu); printa(@bytes); printa(@totals);
49  }

Script addition to sshcipher.d

client# sshcipher3.d -n 'tick-10sec { exit(0); }' -p `pgrep -xn ssh`
Tracing PID 5421 ... Hit Ctrl-C for report.

  AES_encrypt                                         CPU (ns):                                         

           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@@@@@@@@@@@@@@@@@@           345238
            2048 |@               17844
            4096 |@@@@@@@@@@@@@@@@@@@@@               418995
            8192 |              822
           16384 |              318
           32768 |             2
           65536 |             3
          131072 |                0

  cipher average buffer size (bytes)               11704

  cipher total (bytes)                 12546752
  encryption (ns)                 3016275111

Table 7-4 Summary of the Results of the scp Tests

Cipher CPU Nanoseconds/Byte

Blowfish 67

AES 242

3DES 1457
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Blowfish wins, in terms of CPU time. The 3DES result was halved to avoid dou-
ble counting CPU time since it was implemented by DES_encrypt3() calling
DES_encrypt2(), both of which are traced by sshcipher.d.

sshdactivity.d

When administrating a system, it can be important to know whether other users
are actively using it before certain actions are taken, such as rebooting. Apart from
existing operating system tools, which can check the keystroke idle time of logged-
in users (such as w), the sshdactivity.d script shows if any sshd processes are
actively performing network I/O. This can identify cases where a user has executed a
long-running command (for example, a source code build) and is still actively using
the system despite their session being considered idle.

Script

The script identifies active SSH sessions by tracing for any sshd socket writes and
new sshd connections:

See the One-Liners section for a different method of tracing new sshd connec-
tions, based on an assumption of chdir() behavior.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option defaultargs
5   #pragma D option switchrate=10hz
6
7   dtrace:::BEGIN
8   {
9          printf("%-20s  %-8s %-8s %-8.8s %s\n", "TIME", "UID", "PID",
10     "ACTION", "ARGS");
11    my_sshd = $1;
12  }
13
14  syscall::write*:entry
15  /execname == "sshd" && fds[arg0].fi_fs == "sockfs" && pid != my_sshd/
16  {
17          printf("%-20Y  %-8d %-8d %-8.8s %d bytes\n", walltimestamp, uid, pid,
18      probefunc, arg2);
19  }
20
21  syscall::accept*:return
22  /execname == "sshd"/
23  {
24 printf("%-20Y  %-8d %-8d %-8.8s %s\n", walltimestamp, uid, pid,
25   probefunc, "CONNECTION STARTED");
26  }

Script sshdactivity.d
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Example

When first run, the sshdactivity.d script may capture activity from itself if it
was run over an SSH session (feedback loop):

This happens because the dtrace command prints the header (script line 9),
which becomes an sshd write, which is traced by the script and printed (line 17).
Printing this line causes another sshd write, another line to be printed, and so on.

To work around this, an sshd PID to ignore can be provided as an optional
argument. Having a DTrace script accept optional arguments in this way is possi-
ble only when using the defaultargs pragma (line 4). The PID to ignore was
seen when the script was first run (3190 in the previous output). Adding this yields
the following:

Now sshdactivity.d is only capturing events from other sshd processes. Out-
put can be seen every five seconds, which suggests another user is running a tool
that updates the screen at this interval (for example, vmstat 5). What exactly
they are running can be investigated at the command line now that an ancestor
PID is known. Solaris can do this easily with the ptree command, ptree PID, to
show all children (and ancestors) from a given PID:

server# sshdactivity.d
TIME                  UID      PID    ACTION   ARGS
2010 May 18 21:53:49  0        3190   write    96 bytes
2010 May 18 21:53:49  0        3190   write    96 bytes
2010 May 18 21:53:49  0        3190   write    96 bytes
2010 May 18 21:53:49  0        3190   write    96 bytes
2010 May 18 21:53:49  0        3190   write    96 bytes
2010 May 18 21:53:49  0        3190   write    96 bytes
. . .

server# sshdactivity.d 3190
TIME                  UID      PID    ACTION   ARGS
2010 May 18 21:55:04  0        3196   write    176 bytes
2010 May 18 21:55:09  0        3196   write    176 bytes
2010 May 18 21:55:14  0        3196   write    176 bytes
2010 May 18 21:55:14  0        3196   write    112 bytes
2010 May 18 21:55:14  0        3196   write    112 bytes
2010 May 18 21:55:19  0        3196   write    176 bytes
...

server# ptree 3196
1514  /usr/lib/ssh/sshd
  3195  /usr/lib/ssh/sshd
    3196  /usr/lib/ssh/sshd
      3203  -bash
        3225  iostat -xnz 5
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The user was running iostat -xnz 5.
This script can be extended to include other details as desired. A useful addi-

tion would be to list the SSH client IP address. One way to do this would be to
fetch the host information from the accept() syscall, as demonstrated in the
soaccept.d script in Chapter 6, Network Lower-Level Protocols.

sshconnect.d

When using ssh to connect to a remote host, there can be a significant lag between
hitting Enter on the ssh command and when the password prompt appears. This
lag (or latency) can be several seconds long, which for an interactive command can
be frustrating for the end user. A number of potential sources of latency could be
responsible, in order of execution:

1. ssh process initialization time (on-CPU)

2. Reading config files (file system I/O)

3. Target name resolution (typically DNS lookup)

4. TCP connect time (connect())

5. SSH protocol establishment (network I/O)

6. SSH encryption establishment (on-CPU)

The sshconnect.d script traces ssh commands on the client, providing a sum-
mary to identify the source of SSH connection latency.

Script

The aim is to identify which of the six possible causes for latency listed earlier is
contributing the most. The following is an example strategy for tracing them using
the syscall provider, as implemented by the script. The pid provider could be used
instead to examine ssh internals. However, such a script will be tied closely to a
particular version of the ssh software; the syscall based-script is likely to be more
robust.

Latencies 1 and 6 are issues of CPU time, which can be examined using vtime-
stamp deltas. The CPU time between the process starting and calling connect()
will be measured to answer 1, and the CPU time after connect() until the pass-
word prompt is printed will be measured to answer 6.

Latencies 2 and 4 can be answered by tracing syscall time using time stamp del-
tas. Latency 2 includes the syscall time to perform open() and read() on the con-
fig files, and 4 is the syscall time for connect() itself.

Latency 3 is also syscall time, although which syscall depends on the library
implementation of name resolution (calls such as getaddrinfo()). On Solaris,
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this could be the doorfs() syscall, called on the name-service-cache daemon; or it
could be read() on local files. The most likely syscalls will be traced along with
argument information to identify this latency. Since doorfs() is probed in the
script but doesn’t exist on Mac OS X, the -Z option is used on line 1 to allow the
script to execute on Mac OS X despite listing a nonexistent probe. 

Latency 5 is syscall time. This version of ssh performs network I/O using a
series of syscalls: first to write a request, then to wait for the socket file descriptor
to contain the response, and finally to read the response. The syscalls differ
between Solaris and Mac OS X:

Solaris: write()->pollsys()->read()

Mac OS X: write()->select()->read()

Most of the network latency occurs during the pollsys() or select(), which
is waiting for the network I/O. There may also be additional pollsys()->read()
or select()->read() iterations to complete the I/O. To identify the network
latency from both OSs, the time from either pollsys() or select() to read()
completion will be measured.

1   #!/usr/sbin/dtrace -Zs
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN { trace("Tracing next ssh connect...\n"); }
6
7   /*
8    * Tracing begins here: ssh process executed
9    */
10  proc:::exec-success
11  /execname == "ssh"/
12  {
13   self->start = timestamp;
14  self->vstart = vtimestamp;
15  }
16  syscall:::entry
17  /self->start/
18  {
19  self->syscall = timestamp;
20    self->arg = "";
21  }
22
23  /*
24   * Include syscall argument details when potentially interesting
25   */
26  syscall::read*:entry,
27  syscall::ioctl*:entry,
28  syscall::door*:entry,
29  syscall::recv*:entry
30  /self->start/
31  {
32  self->arg = fds[arg0].fi_pathname;
33  }
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34
35  /*
36   * Measure network I/O as pollsys/select->read() time after connect()
37   */
38  syscall::connect:entry
39  /self->start && !self->socket/
40  {
41   self->socket = arg0;
42          self->connect = 1;
43  self->vconnect = vtimestamp;
44  }
45  syscall::pollsys:entry,
46  syscall::select:entry
47  /self->connect/
48  {
49   self->wait = timestamp;
50  }
51  syscall::read*:return
52  /self->wait/
53  {
54          @network = sum(timestamp - self->wait);
55          self->wait = 0;
56  }
57
58  syscall:::return
59  /self->syscall/
60  {
61          @time[probefunc, self->arg] = sum(timestamp - self->syscall);
62          self->syscall = 0; self->network = 0; self->arg = 0;
63  }
64
65  /*
66   * Tracing ends here: writing of the "Password:" prompt (10 chars)
67   */
68  syscall::write*:entry
69  /self->connect && arg0 != self->socket && arg2 == 10 &&
70      stringof(copyin(arg1, 10)) == "Password: "/
71  {
72    trunc(@time, 5);
73   normalize(@time, 1000000);
74  normalize(@network, 1000000);
75          this->oncpu1 = (self->vconnect - self->vstart) / 1000000;
76          this->oncpu2 = (vtimestamp - self->vconnect) / 1000000;
77          this->elapsed = (timestamp - self->start) / 1000000;
78
79  printf("\nProcess : %s\n", curpsinfo->pr_psargs);
80          printf("Elapsed     : %d ms\n", this->elapsed);
81          printf("on-CPU pre  : %d ms\n", this->oncpu1);
82          printf("on-CPU post : %d ms\n", this->oncpu2);
83          printa("Network I/O : %@d ms\n", @network);
84 printf("\nTop 5 syscall times\n");
85 printa("%@8d ms : %s %s\n", @time);
86
87          exit(0);
88  }
89
90  proc:::exit
91  /self->start/
92  {
93          printf("\nssh process aborted: %s\n", curpsinfo->pr_psargs);
94 trunc(@time); trunc(@network); exit(0);
95  }

Script sshconnect.d
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The writing of the password prompt is identified via four tests in the predicate.

self->connect: This write() has occurred after the connect().

arg0 != self->socket: This is not a write to the network socket file 
descriptor.

arg2 == 10: This checks the length of the write() to see if it is consistent 
with writing the Password: prompt, which is ten characters (includes the 
space). If this is true, the final test is executed.

stringof(copyin(arg1, 10)) == "Password: ": This checks the con-
tent of the first ten characters to see whether it matches "Password: ".
Since this copies the data from user-land to the kernel (copyin()), it can be 
an expensive operation relative to the others and is performed only if all the 
other tests are positive.

Examples

Examples include host name lookup latency and remote host latency.

Host Name Lookup Latency. When using ssh on Solaris to connect to the host
mars.dtrace.com, it takes about a full second for the Password: prompt to
appear. Here the sshconnect.d script is used to identify the reason for the
latency:

The elapsed time is 846 ms, consistent with the experienced latency between
running the command and the password prompt. The longest period of latency is
identified by the top five syscall listing: doorfs() on /var/run/name_service_
door, taking 515 ms. These door calls are usually issued to perform host name
lookups via the Solaris nscd (Name Service Cache Daemon), so the longest period
of latency is due to resolving mars.dtrace.com.

client# sshconnect.d
Tracing next ssh connect...

Process : ssh mars.dtrace.com
Elapsed     : 846 ms
on-CPU pre  : 12 ms
on-CPU post : 54 ms
Network I/O : 159 ms

Top 5 syscall times
       8 ms : open64
      23 ms : read <unknown>
      29 ms : connect
     159 ms : pollsys
     515 ms : doorfs /var/run/name_service_door
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Remote Host Latency. In this example, the ssh connection to host turbot waited
almost 20 seconds before printing the password prompt. sshconnect.d was used
to identify the latency source:

In this case, the time for the password prompt to appear was 17.5 seconds. This
was identified in the output by the “Network I/O” summary, showing 17340 ms.
Much of the network I/O latency was encountered during the pollsys() syscall,
causing it to show up in the top five syscall times as well. Although this script
didn’t identify the underlying reason for the latency, it did identify what it isn’t: It
isn’t caused by the client (such as by name services seen in example 1). This means
we can focus our analysis on network I/O latency.

Network I/O latency includes the time to route IP packets and the time for the
remote SSH daemon (sshd) to respond to the SSH requests. Between these, a
latency of 17 seconds is most likely caused by the remote host’s sshd, which can be
the next target of DTrace analysis.

scpwatcher.d

This short script is an example of clever DTrace scripting (thanks to Bryan
Cantrill for the original idea). The problem arises when scp processes have been
executed by other users on the system and are taking a long time while consum-
ing network bandwidth. You’d like to know their progress to determine whether to
leave them running or to kill them.

Script

There are many ways this script could be written. One may be to use the pid pro-
vider to examine scp internals and to dig out progress counters from the scp code.
Another may be to attack this from the file system level when scp is sending files
and to trace VFS calls to vnodes to determine the progress via the file offset vs. the
file size.

client# sshconnect.d
Tracing next ssh connect...

Process : ssh root@turbot
Elapsed     : 17523 ms
on-CPU pre  : 11 ms
on-CPU post : 53 ms
Network I/O : 17340 ms

Top 5 syscall times
       6 ms : connect
       8 ms : open64
       9 ms : doorfs /var/run/kcfd_door
      14 ms : doorfs <unknown>
   17394 ms : pollsys
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The way chosen here is simple: scp processes are already writing status infor-
mation to STDOUT, connected to the other users’ terminals; we just can’t see it.
This DTrace script fetches the STDOUT writes from scp processes and reprints it
on our screen:

Adding a newline on line 8 was a conscious choice to accommodate tracing mul-
tiple simultaneous scp sessions to differentiate their output lines. It changes the
output from updating a single status line to printing a scrolling update.

Example

A file is copied to a remote host. The following is the output from the user’s screen
for reference:

The status line is frequently updated by scp. scpwatcher.d traces the writing
of this status line for any running scp processes on the system:

1   #!/usr/sbin/dtrace -qs
2
3   inline int stdout = 1;
4
5   syscall::write:entry
6   /execname == "scp" && arg0 == stdout/
7   {
8  printf("%s\n", copyinstr(arg1));
9   }

Script scpwatcher.d

client# scp 100m brendan@192.168.56.1:
Password:
100m          81% |************************************ | 82944 KB   00:02 ETA

client# scpwatcher.d
100m          0% |           |    0      --:-- ETA
100m          8% |***  |  8320 KB   00:11 ETA
100m         16% |*******       | 16640 KB   00:10 ETA
100m         24% |**********      | 24832 KB   00:09 ETA
100m         32% |************** | 33408 KB   00:08 ETA
100m         40% |******************          | 41856 KB   00:07 ETA
100m         48% |*********************     | 49280 KB   00:06 ETA
100m         56% |*************************      | 57984 KB   00:05 ETA
100m         64% |****************************    | 66304 KB   00:04 ETA
100m         72% |******************************** | 74624 KB   00:03 ETA
100m         81% |************************************ | 82944 KB   00:02 ETA
100m         89% |****************************************     | 91520 KB   00:01 ETA
100m         97% |*******************************************  | 99840 KB   00:00 ETA
100m        100% |*********************************************|   100 MB   00:12 
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The output shows what is being written to the user’s screen, with newline char-
acters separating each status line update to produce a scrolling output instead of a
single line. If desired, scpwatched.d could be enhanced to include UID and PID
details, as well as the full path of the files being copied.

NIS Scripts

The Network Information Service (NIS) provides centralized configuration and
authentication services for network hosts and was originally developed by Sun
Microsystems.

nismatch.d

This script traces NIS map lookups (the same as those from the ypmatch command).

Script

This simple script demonstrates basic NIS tracing. As with the dnsgetname.d
script, this uses the pid provider to examine the server software internals, with the
trade-off that this script is now tied to a particular version of the NIS server soft-
ware (ypserv).

finddatum() takes a datum struct as arg1; as a shortcut, it’s treated as a string
pointer on line 20 since the first member is a char *. It’s printed using %S to avoid
printing binary characters pulled in by copyinstr(); this could be improved by
using the length member from the datum struct to copy in just the key text.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7          printf("%-20s  %-16s %-16s %s\n", "TIME", "DOMAIN", "MAP", "KEY");
8   }
9
10  pid$target::ypset_current_map:entry
11  {
12  self->map = copyinstr(arg0);
13 self->domain = copyinstr(arg1);
14  }
15
16  pid$target::finddatum:entry
17  /self->map != NULL/
18  {
19          printf("%-20Y  %-16s %-16s %S\n", walltimestamp, self->domain,
20    self->map, copyinstr(arg1));
21  }

Script nismatch.d
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Example

The nismatch.d script was executed on a Solaris NIS server using the -p option
to match the PID of the NIS server, which was found using the Solaris pgrep com-
mand. The script traced NIS lookups during an SSH login to an NIS client:

The role of the YP_SECURE key is described in the ypserv(1M) man page as a
special key to alter the way ypserv operates and “causes ypserv to answer only
questions coming from clients on reserved ports.”

This script could be enhanced to include client details, either via the pid pro-
vider to examine more internal functions of ypserv or via the syscall provider to
examine socket connections (see the socket scripts in Chapter 6, Network Lower-
Level Protocols).

LDAP Scripts

The Lightweight Directory Access Protocol (LDAP) providers a hierarchal and
secure system of centralized configuration and authentication services for network
hosts.

ldapsyslog.d

The ldapsyslog.d script shows LDAP requests on an OpenLDAP server, by trac-
ing calls to syslog(), even if syslogd (the system log daemon) is configured to
ignore these messages.

Script

As with nismatch.d and dnsgetname.d, the internals of the server are exam-
ined using the pid provider, with the trade-off that this script is now tied to a par-
ticular version of OpenLDAP.

server# nismatch.d -p `pgrep ypserv`
TIME    DOMAIN           MAP              KEY
2010 May 22 20:34:12 newcastle passwd.byname   YP_SECURE\0
2010 May 22 20:34:12 newcastle passwd.byname   brendany\b\0
2010 May 22 20:34:12  newcastle        auto.home        YP_SECURE\0
2010 May 22 20:34:12  newcastle        auto.home        brendan\b\b0
2010 May 22 20:34:13 newcastle passwd.byname   YP_SECURE\0
2010 May 22 20:34:13  newcastle        passwd.byname  YP_MASTER_NAME\0
2010 May 22 20:34:13 newcastle passwd.byname   YP_SECURE\0
2010 May 22 20:34:13 newcastle passwd.byname   brendan\b\b\0
2010 May 22 20:34:14 newcastle passwd.byname   YP_SECURE\0
2010 May 22 20:34:14 newcastle passwd.byname   brendan\b\b\0
2010 May 22 20:34:15  newcastle        passwd.byuid     YP_SECURE\0
2010 May 22 20:34:15  newcastle        passwd.byuid     138660n\b\b\0
...
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When developing this script, it appeared that a short example would not be possi-
ble from the OpenLDAP code. Software is not typically designed for postdebugging
with tools such as DTrace, and information in string format suitable for DTrace to
fetch and print can sometimes be hard to extract. We found a solution, although it
serves more as an example of resourceful tracing than of examining LDAP.

When hunting for strings in code, one trick is to look for any logging functions,
which typically write to text-based logs. Logging functions are sometimes written
with a test at the top to exit early if logging is not enabled, skipping the actual act
of writing to a log file; however, what’s important to DTrace is that the function
was called regardless, and so the function arguments can be examined whether
logging or not is enabled.

OpenLDAP makes syslog() calls, which syslogd may be ignoring. syslog()
does take text arguments, but they are variable:

DTrace does not currently have a clean way of dealing with variable argument
lists. As a workaround, the ldapsyslog.d script waits until the system libraries
have converted the variable argument list into a full string and then fetches that
string. We found that this could be done by tracing last strlen call while in sys-
log() (there may well be other ways to do this):

void syslog(int priority, const char *message, .../* arguments */);

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN { printf("Tracing PID %d...\n", $target); }
6
7   pid$target::syslog:entry
8   {
9   self->in_syslog = 1;
10  }
11
12  pid$target::strlen:entry
13  /self->in_syslog/
14  {
15    self->buf = arg0;
16  }
17
18  pid$target::syslog:return
19  /self->buf/
20  {
21   trace(copyinstr(self->buf));
22          self->in_syslog = 0;
23    self->buf = 0;
24  }

Script ldapsyslog.d
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The result is a script that traces OpenLDAP syslog() calls, whether they are
logged or not. Since only generic functions were traced, this script may work on
other software as well.

Example

This was executed on a Solaris LDAP server running OpenLDAP, while a user
logged into SSH on a remote LDAP client. The output shows the LDAP requests:

Multiscripts

The scripts in the previous sections demonstrated DTrace for a particular proto-
col. Since DTrace can observe all layers of the software stack, these protocol scripts
can be enhanced by tracing at other layers at the same time. The following script
demonstrates this ability.

nfsv3disk.d

This script examines read and write operations at the NFSv3 protocol level and at
the disk level, as well as ZFS cache hits. It is written for Oracle Solaris.

Script

Statistics from different providers are printed out on the same line, but to keep
this script simple, it doesn’t try to associate the activity. This means that the disk

server# ldapsyslog.d -p `pgrep slapd`
Tracing PID 100709...
May 22 23:03:40 slapd[100709]: [ID 848112 FACILITY_AND_PRIORITY] conn=5692 fd=15 ACCEP
T from IP=192.168.2.145:64621 (IP=0.0.0.0:389)
May 22 23:03:40 slapd[100709]: [ID 848112 FACILITY_AND_PRIORITY] conn=5693 fd=15 ACCEP
T from IP=192.168.2.145:43336 (IP=0.0.0.0:389)
May 22 23:03:40 slapd[100709]: [ID 998954 FACILITY_AND_PRIORITY] conn=5692 op=0 SRCH b
ase="ou=people,dc=developers,dc=sf,dc=com" scope=1 deref=3 filter="(&(objectClass=posi
xAccount)(uid=brendan))"
May 22 23:03:40 slapd[100709]: [ID 706578 FACILITY_AND_PRIORITY] conn=5692 op=0 SRCH a
ttr=cn uid uidnumber gidnumber gecos description homedirectory loginshell
May 22 23:03:40 slapd[100709]: [ID 362707 FACILITY_AND_PRIORITY] conn=5692 op=0 SEARCH 
 RESULT tag=101 err=32 nentries=0 text=
May 22 23:03:40 slapd[100709]: [ID 338319 FACILITY_AND_PRIORITY] conn=5692 op=1 UNBIND
May 22 23:03:40 slapd[100709]: [ID 952275 FACILITY_AND_PRIORITY] conn=5692 fd=15 close
d
May 22 23:03:40 slapd[100709]: [ID 998954 FACILITY_AND_PRIORITY] conn=5693 op=0 SRCH b
ase="ou=people,dc=developers,dc=sf,dc=com" scope=1 deref=3 filter="(&(objectClass=posi
xAccount)(uid=brendan))"
May 22 23:03:40 slapd[100709]: [ID 706578 FACILITY_AND_PRIORITY] conn=5693 op=0 SRCH a
ttr=cn uid uidnumber gidnumber gecos description homedirectory loginshell
May 22 23:03:40 slapd[100709]: [ID 362707 FACILITY_AND_PRIORITY] conn=5693 op=0 SEARCH
 RESULT tag=101 err=32 nentries=0 text=
May 22 23:03:40 slapd[100709]: [ID 338319 FACILITY_AND_PRIORITY] conn=5693 op=1 UNBIND
May 22 23:03:40 slapd[100709]: [ID 952275 FACILITY_AND_PRIORITY] conn=5693 fd=15 close
d
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I/O reported may be because of other system activity, not NFSv3. A more complex
DTrace script could be written to identify only disk and file system I/O for serving
the NFSv3 protocol.

To trace the ZFS hit rate, sdt provider probes are used. Since the sdt provider is
not a committed interface, these probes may vanish or change in future versions of
the Solaris kernel.

Examples

To test this script, an NFSv3 client performed a streaming disk read of a large file,
the first portion of which was cached in DRAM by the ZFS file system on the NFS
server:

1   #!/usr/sbin/dtrace -s 
2
3   #pragma D option quiet 
4
5   dtrace:::BEGIN 
6   { 
7          interval = 5; 
8          printf("Tracing... Interval %d secs.\n", interval); 
9          tick = interval; 
10  } 
11
12  /* NFSv3 read/write */ 
13  nfsv3:::op-read-done { @nfsrb = sum(args[2]->res_u.ok.data.data_len); } 
14  nfsv3:::op-write-done { @nfswb = sum(args[2]->res_u.ok.count); } 
15
16  /* Disk read/write */ 
17  io:::done /args[0]->b_flags & B_READ/ { @diskrb = sum(args[0]->b_bcount); }
18  io:::done /args[0]->b_flags & B_WRITE/ { @diskwb = sum(args[0]->b_bcount); }
19
20  /* Filesystem hit rate: ZFS */ 
21  sdt:zfs::arc-hit { @fshit = count(); } 
22  sdt:zfs::arc-miss { @fsmiss = count(); } 
23
24  profile:::tick-1sec 
25  /--tick == 0/ 
26  { 
27          normalize(@nfsrb, 1024 * interval); 
28          normalize(@nfswb, 1024 * interval); 
29 normalize(@diskrb, 1024 * interval); 
30 normalize(@diskwb, 1024 * interval); 
31  normalize(@fshit, interval); 
32  normalize(@fsmiss, interval); 
33          printf("\n   %10s %10s %10s %10s    %10s %10s\n", "NFS kr/s", 
34              "ZFS hit/s", "ZFS miss/s", "Disk kr/s", "NFS kw/s", "Disk kw/s");
35          printa("   %@10d %@10d %@10d %@10d    %@10d %@10d\n", @nfsrb, @fshit,
36   @fsmiss, @diskrb, @nfswb, @diskwb); 
37          trunc(@nfsrb); trunc(@nfswb); trunc(@diskrb); trunc(@diskwb); 
38  trunc(@fshit); trunc(@fsmiss);
39   tick = interval; 
40  } 

Script nfsv3disk.d
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The first output shows 100 percent read from cache, the last shows 100 percent
read from disk. Where the cached portion of the file was exhausted, disk reads
begin to occur as well as ZFS misses. Despite disks being much slower than
DRAM, the throughput to the application doesn’t drop by much, from about
105MB/sec to 95MBs/sec. 

The output shows something unexpected: When the file is being entirely read
from disk (96705KB/sec from disk, 96358KB/sec over NFS), ZFS hits are still
occurring. What’s happening can be understood by more DTrace: ZFS identifies
this workload as a streaming read and prefetches the file. Sometime later the
application requests the data that was previously prefetched and hits from cache.
Without prefetch, the throughput is unlikely to have remained so high when the
workload hits from disks instead of DRAM. 

Summary

This chapter demonstrated tracing of some common application-level protocols, as
an extension of the previous chapter on network lower-level protocols. DTrace is
able to answer high-level questions, identifying which clients are accessing a server
and which files are being accessed, as well as lower-level details as required. Sta-
ble providers exist for some of these protocols, making them easy to trace when
that provider is available, such as the nfs providers on Solaris Nevada, as demon-
strated in this chapter. Tracing when stable providers are not available was also
demonstrated for various protocols, by using the unstable fbt and pid providers.

server# nfsv3disk.d
Tracing... Interval 5 secs. 

     NFS kr/s  ZFS hit/s ZFS miss/s  Disk kr/s    NFS kw/s  Disk kw/s 
       109824       2069       9          0          0          0 

     NFS kr/s  ZFS hit/s ZFS miss/s  Disk kr/s    NFS kw/s  Disk kw/s 
       109747       1900       0          0          0          0 

     NFS kr/s  ZFS hit/s ZFS miss/s  Disk kr/s    NFS kw/s  Disk kw/s 
       109900       1898       0          0          0         83 

     NFS kr/s  ZFS hit/s ZFS miss/s  Disk kr/s    NFS kw/s  Disk kw/s 
       107468       1877       0          0          0          0 

     NFS kr/s  ZFS hit/s ZFS miss/s  Disk kr/s    NFS kw/s  Disk kw/s 
       102528       1761      209      25446        0          1 

     NFS kr/s  ZFS hit/s ZFS miss/s  Disk kr/s    NFS kw/s  Disk kw/s 
        97971       1098       770      98227         0         91 

     NFS kr/s  ZFS hit/s ZFS miss/s  Disk kr/s    NFS kw/s  Disk kw/s 
        96358       1048       758      96705         0          0 
^C
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8
Languages

Programmers have a large number of programming languages to choose from
when undertaking a software development project, each offering its own unique set
of features. Many languages were initially designed to address a specific problem
space but over time have evolved to become usable as general-purpose languages.
Today’s complex application environments are often built using several different
languages that each suit specific areas of the application workflow.

The execution environment of the software generated by the programmer gener-
ally falls into one of three categories—native code, compiled byte codes, and inter-
preted code. C and C++ programs are compiled into native machine code that
executes directly on the hardware. Some languages are referred to as scripting lan-
guages, meaning the code is executed under an interpreter, which handles the com-
pilation and execution of the scripts. Perl and shell are examples of scripting
languages. Somewhere in the middle, there are languages that get compiled by a
language-specific compiler, not into native code but into byte codes, with the result-
ing byte codes executed by a virtual machine or byte code interpreter. Java is an
example of such a language.

Among the many appealing features of DTrace is that it gives us the capability
to use a single tool for analysis, regardless of which language or languages the tar-
get application was developed with. The general methodology and use of DTrace is
consistent even when observing software written in different languages, although
the details, and the actual amount and type of information that can be made avail-
able using DTrace, will vary depending on the target language. DTrace was
designed to instrument native code, but because the interpreters for scripting and
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byte code languages execute as native code, DTrace’s visibility into the interpret-
ers is a powerful mechanism for observing and analyzing software that runs under
an interpreter. Additionally, many popular languages in use today that execute
under an interpreter have been enhanced with their own language-specific DTrace
provider, greatly enhancing visibility into the software when using DTrace. 

DTrace allows programming language execution to be traced, including the exe-
cution of function and method calls, object allocation, and, for some languages, line
execution. To understand software in intricate detail, the implementation of the
programming language can also be studied with DTrace, such as examining when
a language interpreter allocates memory. You can answer questions such as the
following.

What functions are being called the most? By which stack trace?

When is the software calling libc’s malloc()? For what sizes? And by which 
stack traces?

Which functions are returning errors? What were their entry arguments?

What functions are slow and causing latency?

As an example, the js_flowinfo.d script traces the function flow of Java-
Script programs, indenting the function name as each is entered:

Details including delta time, source file, and line number were printed. Should
this JavaScript program have a performance issue, a large delta time may be visi-
ble that can be immediately associated with a source file and line number. (js_
flowinfo.d is listed and explained in more detail later in this chapter.)

# js_flowinfo.d
  C    PID  DELTA(us)            FILE:LINE TYPE     -- FUNC 
  0  11651          2          .:0  func     -> start 
  0  11651  75   func_clock.html:30   func       -> getElementById 
  0  11651  51   func_clock.html:-    func       <- getElementById 
  0  11651        479   func_clock.html:31   func      -> func_a 
  0  11651 25   func_clock.html:21   func        -> getElementById 
  0  11651 23   func_clock.html:-   func    <- getElementById 
  0  11651      30611   func_clock.html:25   func         -> func_b 
  0  11651 79   func_clock.html:13   func          -> getElementById 
  0  11651 51   func_clock.html:-  func     <- getElementById 
  0  11651      33922   func_clock.html:17 func           -> func_c 
  0  11651         75   func_clock.html:6 func     -> getElementById 
  0  11651         50   func_clock.html:- func     <- getElementById 
  0  11651      50481   func_clock.html:- func           <- func_c 
  0  11651  24   func_clock.html:-    func         <- func_b 
  0  11651         10   func_clock.html:-    func      <- func_a 
  0  11651         39   func_clock.html:32   func     -> setTimeout 
  0  11651 118   func_clock.html:-    func    <- setTimeout 
  0  11651         11 func_clock.html:-    func     <- start 
^C
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These are the advantages of using DTrace for tracing JavaScript or any other
language.

Multiple layers of the software stack can be examined together in one tool.

Observability tools can be customized.

Extra debugging software need not be installed (where languages are shipped 
with DTrace providers built in).

DTrace can examine programs without needing to restart them in debug 
mode.

Something DTrace cannot do by itself is show source code alongside execution,
which some software debuggers and developer environments can do. DTrace could
certainly be used by such debuggers to enhance their capabilities, providing
insight into other software stack layers.

Developers often get very good at analyzing their layer of the software stack but
don’t have insight into other layers. For example, DTrace has been used to identify
bugs in the operating system library libc, which were encountered by a Java
application.

Previous chapters focused mostly on kernel tracing, either via stable providers
or tracing the C code using fbt. In this chapter, multiple languages are covered for
user-land applications, including numerous examples of using the DTrace pro-
vider available for the target language. This is primarily intended for application
developers when the language source code is available. Chapter 9, Applications,
continues the analysis of software for end users who may not have access to the
source code.

Capabilities

DTrace is capable of tracing every layer of the software stack (see Figure 8-1).
Use DTrace to answer the following questions.

1. What functions were called? Why (stack trace)? What were their arguments?

2. What functions errored?

3. What did the function return?

4. What subfunctions did that function call?

5. How long did it take for the function to complete?

6. How long was the function on-CPU?

7. How long was the function waiting off-CPU?
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8. Why did the function/thread leave CPU?

9. What triggered the thread to return to CPU?

Figure 8-2 shows an example of function execution. Two example function
returns are illustrated: an early return (2) because of an error (invalid function
arguments) and the normal function return (3).

Strategy

To get started using DTrace to examine programming languages, follow these
steps (the target of each step is in bold):

Try the DTrace one-liners and scripts listed in the sections that follow.

In addition to those DTrace tools, familiarize yourself with existing lan-
guage debuggers and language profilers, such as Oracle Solaris Studio 
12.1 These are worth fully exploring, because they have been custom-built for 

Figure 8-1 Software stack

1. See Gove (2007).
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analyzing the target language. The metrics that these retrieve can also show 
what types of information may be useful to then investigate further with 
DTrace.

In the target programming language, write tools to generate known work-
loads, such as performing a function a known number of times or with 
expected high latency. It is extremely helpful to have known programs to 
check your debuggers against. Samples are provided in the “Scripts” section 
for each language.

Customize and write your own one-liners and scripts that use specific lan-
guage providers (for example, the perl provider), referring to the documen-
tation in the “Providers” section.

To dig deeper than specific providers allow, familiarize yourself with how the 
software operates by examining stack backtraces (see the “One-Liners” sec-
tion) from various events, including system calls for I/O.

Examine software internals using the pid provider and referring to source 
code if available. For all languages (with the exception of C and C++), this is 
expected to be difficult, requiring familiarity with the software implementa-
tion of the language.

Figure 8-2 Program execution flow
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Checklist

Table 8-1 suggests different types of issues that can be examined using DTrace.
This can also serve as a checklist to ensure that all obvious types of issues are
considered.

Table 8-1 Languages Checklist

Issue Description

On-CPU time Functions may be using CPU resources and taking time to complete 
because of long and complex code paths. This can be identified with 
DTrace by sampling user stack traces with the profile provider and 
by measuring the vtimestamp delta between function entry and 
return.

Off-CPU time Functions may be taking a long time to complete because of I/O wait 
time or lock contention. Long latencies cause performance issues and 
can be identified using DTrace to measure the time stamp delta from 
function entry to return.

Volume Function execution can be counted, which can identify whether a call 
is being made too frequently.

Locks Waiting on locks can occur both on-CPU (spin) and off-CPU (wait). 
Locks are used for synchronization of multithreaded applications and, 
when poorly used, can cause application latency and thread serializa-
tion. Use DTrace to examine lock usage by user stack trace. 

Memory allocation Memory allocation via the standard system libraries (malloc(), and 
so on) can be examined using the pid provider, along with entry and 
return arguments, and user stack trace to explain the code path to 
the event. Languages may implement their own layer of memory allo-
cation, the workings of which can also be traced using DTrace (for 
example, Java garbage collection).

Errors Error state can be examined, whether it is passed as a return value 
from functions or members of a more complex struct (for example, 
the io provider args[0]->b_error). Errors can be examined from 
any layer: the application, libraries, system calls, and within the 
kernel.
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Providers

Table 8-2 shows providers of interest to trace programming languages.
If a language you are interested in is not listed here, check whether a provider

has been developed since this book was written. New providers are written over
time, and existing providers are sometimes enhanced.

If the provider you are interested in is listed here but is not available on your
software version, you can try upgrading to the DTrace-enabled version. The lan-
guage sections in this chapter show the software versions that introduced DTrace
providers.

For most of these languages, there are other options if the specific language pro-
vider is unavailable: If the source code is open, you can consider writing your own
provider (see Appendix E for an example of writing a USDT provider). Or, you can
try using the pid provider to trace the internals of the language software. For
example, the pid provider can be used to trace the internal operation of /usr/
bin/perl and libperl, providing insight into the operation of Perl programs
that are being executed. Although possible, such an approach typically requires
familiarity with the software source code and is not recommended unless you
already have such familiarity or are prepared to spend significant time gaining it.
Because of their complexity, understanding the source code implementation of lan-
guages such as Perl is also an advanced programming task. Also note that the pid
provider is considered an “unstable” interface because it instruments a specific

Table 8-2 Programming Language Providers

Provider Description

javascript JavaScript provider

profile Samples which functions or stacks are on-CPU

PHP PHP provider

pid Traces C and C++ functions and instructions

perl Perl provider

python Python provider

hotspot Java HotSpot VM provider

hotspot_jni Java HotSpot JNI provider

ruby Ruby provider

sched Trace when functions or stacks switch CPU

sh Bourne shell provider

tcl Tcl provider
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software version, meaning that scripts written that use pid are likely to need
updating to work on new versions of the Perl software. See the “pid Provider” sec-
tion in Chapter 9 for further discussion.

The pid provider can also be used to extend the language provider by examin-
ing the operation of the language software in the context of the program being exe-
cuted, for example, to see when the libc malloc() function is called during the
execution of programs.

Languages

The sections that follow demonstrate tracing of these languages (in alphabetical
order):

Assembly

C

C++

Java

JavaScript

Perl

PHP

Python

Ruby

Shell

Tcl

There is a focus on the language provider for each language (if one exists; see
Table 8-2). All languages can be examined using DTrace without a language pro-
vider by treating the execution of the program, whether it is a language inter-
preter or compiled code, like any other application. See Chapter 9, which has a
case study that includes JavaScript execution tracing without the JavaScript
provider.

The sections that follow show how to retrieve context of these languages within
DTrace: the functions and methods being called, from which source files, and other
related events such as allocation and garbage collection (if relevant). The rest of
the operating system can then be traced in this context by enhancing these scripts
with additional probes.

A little extra attention is given to the “Perl” section so that additional script
ideas could be demonstrated (the “See Also” scripts). The other sections refer to the
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Perl additions as a source of ideas; these additional scripts have been rewritten for
many of the other languages and are available in the DTraceToolkit.

To trace any given language, familiarity with that language and its operation is
assumed. Numerous books cover each of these languages that can be used for
reference.

Assembly

The pid provider is used in various places in this book to trace function execution
via the entry and return probes. It also supports instruction offset probes, which
allow the tracing of individual instructions in between entry and return. This is
tracing at the assembly language level and is possible only for user-land software
with the pid provider. 

Examining instruction execution is usually only of interest to software develop-
ers when debugging code and often only then for particularly nasty bugs that need
step-by-step analysis at the instruction level. That this is possible with DTrace is
interesting and worth noting, but you can expect to use it rarely. It could be used,
for example, to check code path for a function in production, where a debugger can-
not be attached to the production code.

The probe specification for instruction tracing is pid$target:module:function:
offset, where $target can either be a literal process ID or be specified via either
the -p PID or -c command dtrace(1M) command-line option. The offset is in
hexadecimal.

The contents of registers can be examined via the uregs[] array, as docu-
mented in the “uregs[] Array” section of the “User Process Tracing” chapter of
the DTrace Guide.2 For example, the variable uregs[R_EAX] is the %eax register
on x86.

Example: x86

To demonstrate instruction tracing, the following shows an mdb(1) dissassembly
of the strcpy() function on an x86 server running Oracle Solaris:

2. http://wikis.sun.com/display/DTrace/User+Process+Tracing

> strcpy::dis
libc_hwcap2.so.1`strcpy:        pushl  %edi
libc_hwcap2.so.1`strcpy+1:      movl   0xc(%esp),%ecx
libc_hwcap2.so.1`strcpy+5:      movl   0x8(%esp),%edi
libc_hwcap2.so.1`strcpy+9:      movl   %ecx,%eax
libc_hwcap2.so.1`strcpy+0xb:    subl   %edi,%ecx
libc_hwcap2.so.1`strcpy+0xd:    andl   $0x3,%eax
libc_hwcap2.so.1`strcpy+0x10:   je     +0x17    <libc_hwcap2.so.1`strcpy+0x29>

http://wikis.sun.com/display/DTrace/User+Process+Tracing
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The instruction offsets can be seen in the mdb output after the +. All offsets can
be traced by leaving the probe name field blank (wildcard), here during execution
of date(1):

A jump in instruction offset has been labeled in the previous code. By inspect-
ing the dissassembly, this can be identified as a je instructions (jump if equal).
The source code explains:

libc_hwcap2.so.1`strcpy+0x12:   subl   $0x4,%eax
libc_hwcap2.so.1`strcpy+0x15:   movb   (%edi,%ecx),%dl
libc_hwcap2.so.1`strcpy+0x18:   movb   %dl,(%edi)
libc_hwcap2.so.1`strcpy+0x1a:   incl   %edi
libc_hwcap2.so.1`strcpy+0x1b:   testb  %dl,%dl
libc_hwcap2.so.1`strcpy+0x1d:   je     +0x3b    <libc_hwcap2.so.1`strcpy+0x5a>
libc_hwcap2.so.1`strcpy+0x1f:   incl   %eax
libc_hwcap2.so.1`strcpy+0x20:   jne    -0xd     <libc_hwcap2.so.1`strcpy+0x15>
libc_hwcap2.so.1`strcpy+0x22:   jmp    +0x5     <libc_hwcap2.so.1`strcpy+0x29>
libc_hwcap2.so.1`strcpy+0x24:   movl   %eax,(%edi)
libc_hwcap2.so.1`strcpy+0x26:   addl   $0x4,%edi
libc_hwcap2.so.1`strcpy+0x29:   movl   (%edi,%ecx),%eax
libc_hwcap2.so.1`strcpy+0x2c:   leal   0xfefefeff(%eax),%edx
[...output truncated...]

# dtrace -n 'pid$target:libc:strcpy:' -c date
dtrace: description 'pid$target:libc:strcpy:' matched 41 probes
Mon Jul 12 01:51:39 UTC 2010
dtrace: pid 928 has exited
CPU     ID            FUNCTION:NAME
  8   1414            strcpy:entry 
  8   1415              strcpy:0 
  8   1416              strcpy:1 
  8   1417              strcpy:5 
  8   1418              strcpy:9 
  8   1419              strcpy:b 
  8   1420              strcpy:d 
  8   1421           strcpy:10 <--- jump from 0x10 to 0x29
  8   1433              strcpy:29 
  8   1434              strcpy:2c 
[...output truncated...]

usr/src/lib/libc/i386/gen/strcpy.s:
[...]
    57       ENTRY(strcpy)
    58          push %edi        / save reg as per calling cvntn
    59 mov     12(%esp), %ecx            / src ptr
    60          mov     8(%esp), %edi                 / dst ptr
    61 mov     %ecx, %eax              / src
    62          sub     %edi, %ecx            / src - dst
    63 and     $3, %eax               / check src alignment
    64          jz      load
    65    sub     $4, %eax
[...]
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The assembly is available in this form (with comments!) since these string func-
tions are written by hand and not autogenerated by a compiler (although a com-
piler has changed it slightly; the jz had become a je).

To demonstrate tracing an individual instruction and register, the 0xd instruc-
tion is traced, and the %eax register is fetched using the uregs[] array. A bitwise-
AND with 3 is applied to match the previous source, showing whether the address
is aligned:

This shows that five of the seven calls were aligned. Unaligned addresses exe-
cute extra instructions, so identifying them may be of interest for performance
analysis. 

Finally, the string referenced by %eax can be retrieved using copyinstr():

C

The C programming language is popular and widely used for writing native code.
Its power, flexibility, and relatively simple syntax, along with the broad availabil-
ity of compilers and debuggers, have made C the language of choice for software
development for many years. Several newer languages are based on C at some
level, notably C++ and Objective-C. 

C code can be traced using the pid provider for user-land software applications
and the fbt provider for the kernel (which is mostly written in C). These require

# dtrace -n 'pid$target:libc:strcpy:d { @[uregs[R_EAX] & 3] = count(); }' -c date
dtrace: description 'pid$target:libc:strcpy:d ' matched 1 probe
Mon Jul 12 02:11:22 UTC 2010
dtrace: pid 944 has exited

                2                2
                0                5

# dtrace -n 'pid$target:libc:strcpy:d { trace(copyinstr(uregs[R_EAX])); }' -c date
dtrace: description 'pid$target:libc:strcpy:d ' matched 1 probe
Mon Jul 12 02:23:56 UTC 2010
dtrace: pid 948 has exited
CPU     ID            FUNCTION:NAME
  8   1413  strcpy:d   SUNW_OST_OSCMD
  8   1413  strcpy:d   SUNW_OST_OSCMD
  8   1413             strcpy:d   UTC
  8   1413             strcpy:d   UTC
  8   1413             strcpy:d   UTC
  8   1413             strcpy:d   Mon
  8   1413             strcpy:d   Jul
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certain symbol information to still be present in the binary executable so that
DTrace can determine which addresses to dynamically trace.

DTrace allows the entry and return of C functions to be traced and can examine
their arguments and return values. Complex arguments such as pointers to struc-
tures can be navigated in the same way as other C language constructs, as demon-
strated in this section.

This section summarizes tracing C code with DTrace and in particular will
explain the difference between tracing user-land C and kernel C. Throughout the
book there are many examples of tracing C code, although they are not described
as specific C examples. Look for any examples that use the pid or fbt provider. A
table of these appears at the end of this section (Table 8-4).

User-Land C

The term user-land refers to the address space for software executed by users on
the system. This is any software that runs with a process ID, which is where the
name of the provider comes from. Listing pid provider probes for an example user-
land program, date(1):

The provider name is pid followed by the process ID: Here it was pid22793 for
the executed date(1) command. The module field shows the address space object
for the functions: The first five show date as the module name (which is the
a.out segment); the last shown are from the libc library.3

# dtrace -ln 'pid$target:::entry,pid$target:::return' -c date
   ID   PROVIDER    MODULE             FUNCTION NAME
96091  pid22793       date      _start entry
96092  pid22793       date       __fsr entry
96093  pid22793       date                 main entry
96094  pid22793        date      setdate entry
96095  pid22793        date      get_adj entry
96096  pid22793  LM1`ld.so.1              avl_walk entry
[...6797 lines truncated...]
102893  pid22793   libc.so.1      coll_conv_input_real return
102894  pid22793 libc.so.1          __strxfrm_sb return
102895  pid22793  libc.so.1       coll_str2weight_sb return
102896  pid22793  libc.so.1       coll_chr2weight_sb return

3. For an understanding of these segments, see the “Linker and Libraries Guide” from the Ora-
cle Solaris Developer Manual collection.
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Kernel C

This example lists fbt provider probes for an example kernel module, ZFS:

The ability to trace kernel functions is sometimes used as an introduction to the
power of DTrace. The following counts these probes using wc(1) on Oracle Solaris:

This shows 70,138 available probes (subtracting the header line), which will be
for 35069 kernel functions (one probe for function entry, one for return).

Probes and Arguments

Table 8-3 presents C probes and arguments.

# dtrace -ln fbt:zfs::
   ID   PROVIDER    MODULE               FUNCTION NAME
44368        fbt       zfs                buf_hash entry
44369        fbt       zfs      buf_hash return
44370        fbt          zfs  buf_discard_identity entry
44371        fbt          zfs buf_discard_identity return
44372        fbt        zfs    buf_hash_find entry
44373        fbt        zfs   buf_hash_find return
[...4531 lines truncated...]
48904        fbt        zfs              sa_set_userp entry
48905        fbt        zfs    sa_set_userp return
48906        fbt            zfs zfs_ereport_free_checksum entry
48907        fbt           zfs       zfs_ereport_free_checksum return

solaris# dtrace -ln fbt::: | wc -l
   70139

Table 8-3 C Probes and Arguments

Description Probe Arguments

User function 
entry

pid$target:segment:
function:entry

arg0..argN: function 
arguments

User function 
return

pid$target:segment:
function:entry

arg0: return offset, 
arg1: return value

Kernel function 
entry

fbt:module:function:entry arg0..argN: function 
arguments

Kernel function 
return

fbt:module:function:return arg0: return offset, 
arg1: return value
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The arguments arg0..argN are of uint64_t. For kernel functions on Oracle
Solaris, they may also be available as args[0..N], which are cast to match the cor-
rect type.

Struct Types

For kernel tracing, C struct types may already be known to DTrace, allowing
immediate navigation of struct members. In Oracle Solaris, this is possible
through a facility called Compact C Type Format (CTF), which builds type informa-
tion into the kernel for debuggers to read. Other operating systems have similar
facilities that DTrace uses to understand kernel types.

For example, the zfs_read() function has a vnode_t pointer as the first argument,
available in DTrace as args[0]. See how this one-liner retrieves the v_path
member from the struct by simply dereferencing it (then stringof() turns the
char pointer into the string):

As a more complex example, the scsicmds.d script from Chapter 4, Disk I/O,
retrieves the device nodename from deep within kernel structures:

The argument to scsi_transport() is a struct scsi_pkt pointer, which is
walked on line 96 to retrieve a tran_hba_dip member, which is then recast as a
struct dev_info pointer and then walked. All of these types are already known
to DTrace, allowing the script to navigate structures in the same way as the ker-
nel code it is tracing.

There are other examples of structure navigation in the /usr/lib/dtrace
translators. For example, /usr/lib/dtrace/io.d translates the mountpoint
from struct buf using (from Oracle Solaris):

solaris# dtrace -n 'fbt::zfs_read:entry { @[stringof(args[0]->v_path)] = count(); }'
dtrace: description 'fbt::zfs_read:entry ' matched 1 probe
^C

  /lib/ld.so.1                      4
  /usr/bin/ls                    5
  /etc/group                      6
  /etc/security/policy.conf                    6
  /etc/passwd                   14
  /etc/svc/repository.db                     47

94 fbt::scsi_transport:entry
95 {
96       this->dev = (struct dev_info *)args[0]->pkt_address.a_hba_tran->tran_hba_dip;
97       this->nodename = this->dev != NULL ?
98           stringof(this->dev->devi_node_name) : "<unknown>";
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For user-land tracing of arbitrary software, there may be no built-in structure
information for DTrace to use, so struct types must be declared before they can be
used. The -C option to DTrace executes the preprocessor, allowing types to be
defined and header files included in the same way as C so that structs can be navi-
gated. Each dereference requires copyin() statements to bring data into the ker-
nel where DTrace is executing.

Includes and the Preprocessor

Header files can be included in D programs using the -C option for the preproces-
sor. An example of this can be seen in the mmap.d script from Chapter 5, File Sys-
tems, which includes the C header file sys/mman.h so that mmap() flag
definitions can be used in the script.

An example that includes more preprocessor directives is in kstat_types.d
from the DTraceToolkit, which has the following:

Line 1 has the -C option, allowing line 41 to include the C header file sys/isa_
defs.h, which has the definition of _MULTI_DATAMODEL used by the preprocessor
on line 53.

translator fileinfo_t < struct buf *B > {
[...]
        fi_mount = B->b_file == NULL ? "<none>" :
            B->b_file->v_vfsp->vfs_vnodecovered == NULL ? "/" :
            B->b_file->v_vfsp->vfs_vnodecovered->v_path == NULL ? "<unknown>" :
            cleanpath(B->b_file->v_vfsp->vfs_vnodecovered->v_path);

 1      #!/usr/sbin/dtrace -Cs
[...]
41 #include <sys/isa_defs.h>
[...]
50
51 fbt::read_kstat_data:entry
52      {
53 #ifdef _MULTI_DATAMODEL
54            self->uk = (kstat32_t *)copyin((uintptr_t)arg1, sizeof (kstat32_t));
55      #else
56            self->uk = (kstat_t *)copyin((uintptr_t)arg1, sizeof (kstat_t));
57      #endif
58            printf("%-16s %-16s %-6s %s:%d:%s\n", execname,
59                self->uk->ks_class == "" ? "." : self->uk->ks_class,
[...]
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C One-Liners

Here we present several one-liners that provide a solid starting point for observ-
ing your executing C programs.

pid Provider

These are mostly demonstrated on the libc library on Oracle Solaris; you can mod-
ify the examples as needed. Also, substitute -p PID with -c command to execute a
new command rather than attaching to an already running process.

Count function calls from a segment (for example, libc):

Trace a specific function (for example, fopen()):

Trace function entry arguments (for example, fdopen()):

Trace function return value (for example, fclose()):

Trace segment functions with flow indent (for example, a.out):

Trace single-function instructions (for example, strlen()):

dtrace -n 'pid$target:libc::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'pid$target:libc:fopen:entry' -p PID

dtrace -n 'pid$target:libc:fdopen:entry { trace(arg0); }' -p PID

dtrace -n 'pid$target:libc:fclose:return { trace(arg1); }' -p PID

dtrace -Fn 'pid$target:a.out::entry,pid$target:a.out::return' -p PID

dtrace -n 'pid$target:libc:strlen:' -p PID
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Show user stack trace on function call (for example, fopen()):

Count user stack traces for a function call (for example, fopen()):

fbt Provider

Count kernel module function calls (for example, zfs on Oracle Solaris):

Count kernel function calls beginning with... (for example, hfs_):

Trace a specific kernel function (for example, arc_read()):

Trace kernel function entry arguments (for example, the zfs_open() filename):

Trace kernel function return value (for example, zfs_read()):

Trace kernel module functions with flow indent (for example, zfs on Oracle
Solaris):

dtrace -n 'pid$target:libc:fopen:entry { ustack(); }' -p PID

dtrace -n 'pid$target:libc:fopen:entry { @[ustack()] = count(); }' -p PID

dtrace -n 'fbt:zfs::entry { @[probefunc] = count(); }'

dtrace -n 'fbt::hfs_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::arc_read:entry'

dtrace -n 'fbt::zfs_open:entry { trace(stringof(arg0)); }'

dtrace -n 'fbt::zfs_read:return { trace(arg1); }'

dtrace -Fn 'fbt:zfs::'
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Show kernel stack trace on function call (for example, arc_read()):

Count kernel stack traces for a function call (for example, arc_read()):

profile Provider

The profile provider can sample and count stack traces, which typically includes
many stack frames for C code (frames from C++ and assembly may also be present
in the stack trace).

Sample user stack trace at 101 Hertz, for a given PID:

Sample user stack trace at 101 Hertz, for processes named example:

Sample user function at 101 Hertz, for a given PID:

Sample kernel stack trace at 1001 Hertz:

Sample kernel stack trace at 1001 Hertz, for 10 seconds:

dtrace -n 'fbt::arc_read:entry { stack(); }'

dtrace -n 'fbt::arc_read:entry { @[stack()] = count(); }'

dtrace -n 'profile-101 /pid == $target/ { @[ustack()] = count(); }' -p PID

dtrace -n 'profile-101 /execname == "example"/ { @[ustack()] = count(); }'

dtrace -n 'profile-101 /pid == $target && arg1/ { @[ufunc(arg1)] = count(); }' -p PID

dtrace -n 'profile-1001 { @[stack()] = count(); }'

dtrace -n 'profile-1001 { @[stack()] = count(); } tick-10sec { exit(0); }'
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Sample kernel function at 1001 Hertz:

C One-Liners Selected Examples

Here we show examples of using several of the one-liners.

Trace Function Entry Arguments

Here the argument to libc’s strlen() is traced. Since it is a pointer to a user-land
address, it must be copied to the kernel address space for DTrace to print it, which
we do using copyinstr():

Each string that the date(1) command checked is visible, showing the full
string in the output.

Show User Stack Trace on Function Call

Continuing with the previous example, the reason for date(1) calling strlen()
can be determined by examining the user stack trace, fetched using ustack():

dtrace -n 'profile-1001 /arg0/ { @[func(arg0)] = count(); }'

# dtrace -n 'pid$target:libc:strlen:entry { trace(copyinstr(arg0)); }' -c date
dtrace: description 'pid$target:libc:strlen:entry ' matched 1 probe
Mon Jul 12 03:41:40 UTC 2010
dtrace: pid 22835 has exited
CPU     ID            FUNCTION:NAME
  0  96091        strlen:entry  SUNW_OST_OSCMD
  0  96091      strlen:entry   UTC
  0  96091           strlen:entry /usr/share/lib/zoneinfo
  0  96091      strlen:entry   UTC
  0  96091           strlen:entry /usr/share/lib/zoneinfo
  0  96091      strlen:entry   UTC
  0  96091      strlen:entry   UTC
  0  96091      strlen:entry   UTC
  0  96091           strlen:entry /usr/share/lib/zoneinfo
  0  96091      strlen:entry   UTC
  0  96091           strlen:entry /usr/share/lib/zoneinfo
  0  96091      strlen:entry   UTC
  0  96091           strlen:entry Mon Jul 12 03:41:40 UTC 2010

# dtrace -n 'pid$target:libc:strlen:entry { ustack(); }' -c date
dtrace: description 'pid$target:libc:strlen:entry ' matched 1 probe
Mon Jul 12 03:55:24 UTC 2010
dtrace: pid 122838 has exited
CPU     ID            FUNCTION:NAME
[...output truncated...]
  3  96091            strlen:entry 

continues
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The output has been truncated so that only the last two stacks are shown. This
shows that the last strlen() of UTC happened during strftime(), which was
checking the time zone.

Count Kernel Function Calls Beginning With...

The ZFS file system is implemented as a C kernel module. This one-liner counts
ZFS function calls beginning with zfs_:

The most frequently called function was zfs_lookup(), called 3,656 times
while tracing.

See Also

For more one-liner examples, see Chapters 9 and 12 and other chapters for any
one-liners that use the pid, fbt, and profile providers.

    libc.so.1`strlen
   libc.so.1`_ndoprnt+0x2370
    libc.so.1`snprintf+0x66
   libc.so.1`load_zoneinfo+0xc8
    libc.so.1`ltzset_u+0x177
    libc.so.1`mktime+0x1d9
   libc.so.1`__strftime_std+0x66
    libc.so.1`strftime+0x33

     date`main+0x1e5
    date`_start+0x7d

  3  96091            strlen:entry 
    libc.so.1`strlen
    libc.so.1`puts+0xdd

     date`main+0x1f2
    date`_start+0x7d

# dtrace -n 'fbt::zfs_*:entry { @[probefunc] = count(); }'
dtrace: description 'fbt::zfs_*:entry ' matched 427 probes
^C

  zfs_copy_fuid_2_ace                    2
  zfs_pathconf                      2
  zfs_groupmember                     4
  zfs_ioctl                       4
  zfs_ioc_objset_stats                     5
  zfs_range_unlock_reader                    6
  zfs_read                    6
  zfs_seek                    6
  zfs_getpage                   10
[...]
  zfs_ace_fuid_size                   1894
  zfs_acl_next_ace                   2442
  zfs_fastaccesschk_execute                   3578
  zfs_lookup                   3656
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C Scripts

Many scripts in this book can examine C code execution; look in particular for
those that use the fbt (kernel) and pid (user-land) providers. These include the
scripts listed in Table 8-4.

C++

C++ is an object-oriented, general-purpose programming language developed ini-
tially to enhance the C language with new features such as objects and classes.
C++ code is compiled into native, binary code for execution; like C, C++ code does
not execute under an interpreter. C++ is a popular language and is used in many
industries for software creation, both commercial software and customer-specific

Table 8-4 C Script Summary

Script Description Provider Chapter

scsirw.d Shows SCSI read/write stats, traced in the 
kernel

fbt 4

zfssnoop.d Traces ZFS operations via kernel zfs module fbt 5

nfsv3fbtrws.d Traces NFSv3 operations via kernel nfs 
module

fbt 7

getaddrinfo.d Shows latency of client getaddrinfo()
lookups

pid 7

uoncpu.d Profiles application on-CPU user stacks profile 9

uoffcpu.d Counts application off-CPU user stacks by 
time

sched 9

plockstat User-level mutex and read/write lock 
statistics

plockstat 9

mysqld_pid_
qtime.d

Traces mysqld and show query time 
distribution

pid 10

libmysql_
snoop.d

Snoops client queries by tracing 
libmysqlclient

pid 10

cuckoo.d Captures serial line sessions by tracing 
cnwrite()

fbt 11

koncpu.d Profiles kernel on-CPU stacks profile 12

koffcpu.d Counts kernel off-CPU stacks by time sched 12

putnexts.d Streams putnext() tracing with stack back 
traces

fbt 12
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custom applications. As native code, C++ lends itself well to instrumentation with
DTrace; however, some of the features of C++, such as function name overloading,
result in mangled function names when observing C++ code flow. Utilities, such as
c++filt (part of the SunStudio compilers), can be used to improve the readability of
the function names.

The tracing of C++ is the same as with C, with a couple of differences: Probe
function names are C++ method signatures, and C++ objects cannot be walked as
easily as C structures.

Function Names

C++ method names are represented as C++ signature strings in the probe func-
tion field. You can use wildcards to match only on the method name without speci-
fying the entire signature string. For example, this matches the DoURILoad()
C++ method from Mozilla Firefox 3.0:

These signature strings can be passed to c++filt (or gc++filt) for readability:

DTrace on Mac OS X post-processes the C++ signatures automatically.

Object Arguments

The arguments to C++ methods can be quite difficult to access from DTrace. The
function entry probes provide the arg0..N variables, but the way these map to the
the C++ arguments is up to the C++ compiler. arg0 may be used for this (object
pointer), and arg1 onward are the method arguments (making them appear
shifted compared to C). The compiler may also insert extra arguments for its own
reasons.

Accessing data from within objects can be even trickier. If the offset is known
(find out using a C++ debugger), it can be used to find the members. For user-land

solaris# dtrace -ln 'pid$target::*DoURILoad*:entry' -p `pgrep firefox-bin` 
   ID   PROVIDER    MODULE               FUNCTION NAME
118123  pid343704     libxul.so __1cKnsDocShellJDoURILoad6MpnGnsIURI_2ipnLnsISuppo
rts_pkcpnOnsIInputStream_8ippnLnsIDocShell_ppnKnsIRequest_ii_I_ entry

solaris# dtrace -ln 'pid$target::*DoURILoad*:entry' -p `pgrep firefox-bin` | c++filt
   ID   PROVIDER    MODULE               FUNCTION NAME
118123  pid343704     libxul.so unsigned nsDocShell::DoURILoad(nsIURI*,nsIURI*,int
,nsISupports*,const char*,nsIInputStream*,nsIInputStream*,int,nsIDocShell**,nsIRequest
**,int,int) entry
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C++, this will involve calling copyin() on argN variables + custom offsets. Or, try
to find a function entry probe where the member of interest is available as an
argN variable directly.

This is a case where DTrace makes something possible, but it isn’t necessarily
easy!

Java

The Java programming language is an object-oriented language that gets com-
piled into byte codes that are interpreted and executed by a Java virtual machine
(JVM). The Java software development environment is extremely rich, with a large
number of class libraries and extensions available, along with support on every
conceivable platform—from cell phones and handheld devices to desktops and
server systems running one of any mainstream available operating systems.

Starting with Java SE 6, the HotSpot VM makes available the hotspot and
hotspot_jni providers to monitor JVM internal state and activities as well as the
Java application that is running. All of the probes are USDT probes and are
accessed using the process ID of the JVM process. The hotspot provider exposes
the following types of probes:

VM life-cycle probes

Thread life-cycle probes

Class-loading probes

Garbage collection probes

Method compilation probes

Monitor probes

Application-tracking probes

The Java SE 6 documentation4 provides a full reference of all the probes and
their arguments. It should be noted that string arguments are not guaranteed to
be NULL-terminated. When string values are provided, they are always present as
a pair: a pointer to the unterminated string and its length. Because of this, it is
necessary to use copyin() with the correct length instead of copyinstr() for
Java strings.

4. http://download.oracle.com/javase/6/docs/technotes/guides/vm/dtrace.html

http://download.oracle.com/javase/6/docs/technotes/guides/vm/dtrace.html
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If you want to observe Java-code-to-native-code interactions, you can use the
hotspot_jni provider. This provider exposes probes for the entry/return points of all
JNI functions. The name of the probe is the name of the JNI method, appended
with -entry for entry probes and -return for return probes. The probe argu-
ments correspond to the arguments provided to the JNI function5 (in the case of
the *-entry probes) or the return value (in the case of the *-return probes). 

For the most part, the JVM probes exposed by hotspot and hotspot_jni provid-
ers are very lightweight and can be used on production machines. However, cer-
tain hotspot probes are expensive and turned off by default. These are the Java
method-entry/method-return, object-alloc, and Java monitor probes. These
probes require changes in the hotspot byte code interpreter and hotspot compiler
(byte-code-to-machine-code compiler) and are comparatively costly even when dis-
abled. To expose them all, the hotspot provider requires that the JVM be started
with the java -XX:+ExtendedDTraceProbes command-line option:

This facility can be turned on and off dynamically at runtime as well, using the
jinfo utility. Here’s an example:

The method-entry/method-return, object-alloc, and monitor probes can
also be selectively enabled via the Java command-line with the -XX:+DTrace-
MethodProbes, -XX:+DTraceAllocProbes, and -XX:+DTraceMonitorProbes
options, respectively.

To see whether the hotspot provider is available, attempt to list probes using
DTrace:

5. The Invoke* methods are an exception. They omit the arguments that are passed to the Java
method.

java -XX:+ExtendedDTraceProbes -jar <jar file>

jinfo -flag +ExtendedDTraceProbes <target JVM PID>

# dtrace -ln 'hotspot*:::'
   ID   PROVIDER    MODULE  FUNCTION NAME
93669 hotspot_jni2642    libjvm.so jni_GetStaticBooleanField GetStaticBooleanField-return
93670 hotspot_jni2642    libjvm.so    jni_GetStaticByteField GetStaticByteField-entry
93671 hotspot_jni2642    libjvm.so   jni_GetStaticByteField GetStaticByteField-return
93672 hotspot_jni2642    libjvm.so    jni_GetStaticCharField GetStaticCharField-entry
93673 hotspot_jni2642    libjvm.so   jni_GetStaticCharField GetStaticCharField-return
93674 hotspot_jni2642    libjvm.so  jni_GetStaticDoubleField GetStaticDoubleField-entry
93675 hotspot_jni2642    libjvm.so jni_GetStaticDoubleField GetStaticDoubleField-return
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More than 500 probes were listed, showing that the Java providers are avail-
able for PID 2642.

Example Java Code

The one-liners and scripts that follow are executed on the following example Java
program.

Func_abc.java

This program demonstrates method flow: func_a() calls func_b(), which calls
func_c(). Each method also sleeps for one second, providing known method
latency that can be examined.

Java One-Liners

The Java one-liners here are organized by provider.

93676 hotspot_jni2642    libjvm.so jni_GetStaticFieldID GetStaticFieldID-entry
93677 hotspot_jni2642    libjvm.so      jni_GetStaticFieldID GetStaticFieldID-return
[...]

 1 public class Func_abc {
 2 public static void func_c() {
 3    System.out.println("Function C");
 4              try {
 5      Thread.currentThread().sleep(1000);
 6    } catch (Exception e) { }
 7          }
 8 public static void func_b() {
 9    System.out.println("Function B");
10              try {
11      Thread.currentThread().sleep(1000);
12    } catch (Exception e) { }
13     func_c();
14          }
15 public static void func_a() {
16    System.out.println("Function A");
17              try {
18      Thread.currentThread().sleep(1000);
19    } catch (Exception e) { }
20              func_b();
21          }
22
23          public static void main(String[] args) {
24              func_a();
25          }
26      }
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hotspot Provider

Count Java events:

Show Java activity by PID and UID:

Much more is possible with the hotspot provider in D scripts, where strings can
be retrieved, NULL terminated, and printed properly.

profile Provider

Profile Java stacks at 101 Hertz:

Profile bigger Java stacks at 101 Hertz:

Java One-Liners Selected Examples

This section provides selected one-liner Java examples.

Count Java events

Here the Func_abc example program was executed, without the Extended-
DTraceProbes option to begin with:

dtrace -Zn 'hotspot*::: { @[probename] = count(); }'

dtrace -Zn 'hotspot*:::Call*-entry { @[pid, uid] = count(); }'

dtrace -Zn 'profile-101 /execname == "java"/ { @[jstack()] = count(); }'

dtrace -x jstackstrsize=2048 -Zn 'profile-101 /execname == "java"/ { @[jstack()] = 
count(); }'

# dtrace -Zn 'hotspot*::: { @[probename] = count(); }'
dtrace: description 'hotspot*::: ' matched 507 probes
^C

  AttachCurrentThread-entry                    1
  AttachCurrentThread-return                    1
  CallIntMethod-entry                    1
  CallIntMethod-return                     1
[…output truncated...]
  GetStringLength-entry                    65
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There is still substantial visibility into the execution of Java. For this example,
there were 327 class-loaded events.

Now here it is with +ExtendedDTraceProbes:

Now method execution and object allocation are visible, with more than 13,000
method calls for this example.

Show Java Activity by PID and UID

Although this system is supposed to be idle, this one-liner has still counted 12 Java
calls from PID 102642, UID 101. That process ID can now be examined with more
DTrace or with other tools (for example, pargs(1)).

The probes that this one-liner uses are active even if the ExtendedDTraceProbes
option has not been enabled.

  GetStringLength-return                     65
  GetObjectField-entry                   67
  GetObjectField-return                    67
  DeleteLocalRef-entry                   112
  DeleteLocalRef-return                    112
  class-loaded                   327

# dtrace -Zn 'hotspot*::: { @[probename] = count(); }'
dtrace: description 'hotspot*::: ' matched 507 probes
^C

  AttachCurrentThread-entry                    1
  AttachCurrentThread-return                    1
  CallIntMethod-entry                    1
  CallIntMethod-return                     1
[...output truncated...]
  GetStringLength-entry                    65
  GetStringLength-return                     65
  GetObjectField-entry                   67
  GetObjectField-return                    67
  DeleteLocalRef-entry                   112
  DeleteLocalRef-return                    112
  class-loaded                   327
  object-alloc                  5499
  method-return                   13432
  method-entry                 13439

# dtrace -Zn 'hotspot*:::Call*-entry { @[pid, uid] = count(); }'
dtrace: description 'hotspot*:::Call*-entry ' matched 90 probes
^C

   102642      101             12
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Java Scripts

The scripts included in Table 8-5 are from or based on scripts in the DTraceToolkit
and have had comments trimmed to save space.

j_calls.d

This script counts various Java events, including method calls, object allocation,
thread starts, and method compilation. Method calls and object allocation will be
visible only if the ExtendedDTraceProbes option is set on the JVM.

Script

After copying in various strings, they are manually NULL terminated to the length
provided by the probes (for example, lines 101, 103, and so on).

Table 8-5 Java Script Summary

Script Description Provider

j_calls.d Counts various Java events: method calls, object allocation, 
and so on

hotspot

j_flow.d Traces method flow with indented output and time stamps hotspot

j_calltime.d Shows inclusive and exclusive method call times hotspot

j_thread.d Traces Java thread execution hotspot

   1  #!/usr/sbin/dtrace -Zs
[...]
  48  #pragma D option quiet
  49
  50  dtrace:::BEGIN
  51  {
  52        printf("Tracing... Hit Ctrl-C to end.\n");
  53  }
  54 
  55  hotspot*:::method-entry
  56  {
  57        this->class = (char *)copyin(arg1, arg2 + 1);
  58  this->class[arg2] = '\0';
  59        this->method = (char *)copyin(arg3, arg4 + 1);
  60  this->method[arg4] = '\0';
  61        this->name = strjoin(strjoin(stringof(this->class), "."),
  62     stringof(this->method));
  63        @calls[pid, "method", this->name] = count();
  64  }
  65 
  66  hotspot*:::object-alloc
  67  {
  68        this->class = (char *)copyin(arg1, arg2 + 1);
  69  this->class[arg2] = '\0';
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The TYPE column prints the event type:

cload: Class load

method: Method call

mcompile: Method compile

mload: Compiled method load

oalloc: Object allocation

thread: Thread start

  70        @calls[pid, "oalloc", stringof(this->class)] = count();
  71  }
  72 
  73  hotspot*:::class-loaded
  74  {
  75        this->class = (char *)copyin(arg0, arg1 + 1);
  76  this->class[arg1] = '\0';
  77        @calls[pid, "cload", stringof(this->class)] = count();
  78  }
  79 
  80  hotspot*:::thread-start
  81  {
  82        this->thread = (char *)copyin(arg0, arg1 + 1);
  83  this->thread[arg1] = '\0';
  84        @calls[pid, "thread", stringof(this->thread)] = count();
  85  }
  86
  87  hotspot*:::method-compile-begin
  88  {
  89        this->class = (char *)copyin(arg0, arg1 + 1);
  90  this->class[arg1] = '\0';
  91        this->method = (char *)copyin(arg2, arg3 + 1);
  92  this->method[arg3] = '\0';
  93        this->name = strjoin(strjoin(stringof(this->class), "."),
  94     stringof(this->method));
  95        @calls[pid, "mcompile", this->name] = count();
  96  }
  97
  98  hotspot*:::compiled-method-load
  99  {
 100        this->class = (char *)copyin(arg0, arg1 + 1);
 101  this->class[arg1] = '\0';
 102        this->method = (char *)copyin(arg2, arg3 + 1);
 103  this->method[arg3] = '\0';
 104        this->name = strjoin(strjoin(stringof(this->class), "."),
 105     stringof(this->method));
 106        @calls[pid, "mload", this->name] = count();
 107  }
 108
 109  dtrace:::END
 110  {
 111        printf(" %6s %-8s %-52s %8s\n", "PID", "TYPE", "NAME", "COUNT");
 112        printa(" %6d %-8s %-52s %@8d\n", @calls);
 113  }
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Example

The j_calls.d script was used to trace Java events from the example Func_abc
program:

More than 1,000 lines of output were truncated. The most frequent event was
1,960 method calls for java/lang/String.charAt and 1,076 object allocations of
type [C.

j_flow.d

This script traces Java execution showing method flow as an indented output, with
time stamps. Since this traces method calls, the ExtendedDTraceProbes option
must be set on the JVM for this script to work.

Script

A stack depth variable, self->depth, is maintained so that indentation can be
printed. Apart from being a thread-local variable, it is also keyed on the Java

# j_calls.d
Tracing... Hit Ctrl-C to end.
^C

    PID TYPE     NAME                          COUNT
 311334 cload    Func_abc                 1
 311334 cload    java/io/BufferedInputStream               1
 311334 cload    java/io/BufferedOutputStream               1
 311334 cload    java/io/BufferedReader              1
 311334 cload    java/io/BufferedWriter              1
 311334 cload    java/io/Closeable               1
 311334 cload    java/io/Console                1
[...output truncated...]
 311334 method   java/lang/String.substring              94
 311334 method   java/util/Arrays.copyOfRange             107
 311334 method   java/lang/String.getChars                         156
 311334 method   java/lang/System.getSecurityManager                       174
 311334 method   java/lang/String.<init>                          175
 311334 method   java/lang/String.equals                          202
 311334 method   java/lang/Math.min              208
 311334 method   java/lang/String.hashCode                         213
 311334 method   java/lang/String.indexOf                         302
 311334 oalloc   [Ljava/lang/Object;              326
 311334 method   java/lang/System.arraycopy             360
 311334 oalloc   [I                          374
 311334 oalloc   java/lang/Class               395
 311334 oalloc   [B                          406
 311334 oalloc   [S                          486
 311334 method   java/lang/StringBuilder.append              533
 311334 oalloc   [[I                          541
 311334 method   java/lang/AbstractStringBuilder.append                    549
 311334 method   java/lang/Object.<init>                          823
 311334 oalloc   java/lang/String               931
 311334 oalloc   [C                         1076
 311334 method   java/lang/String.charAt                         1960
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thread identifier (arg0) to maintain a separate indentation between different run-
ning Java threads. If desired, the script could be enhanced to include this thread
identifier as a column in the output.

Example

This traces the example Func_abc program:

  1  #!/usr/sbin/dtrace -Zs
[...]
51  /* increasing bufsize can reduce drops */
52  #pragma D option bufsize=16m
53  #pragma D option quiet
54  #pragma D option switchrate=10
55
56  self int depth[int];
57
58  dtrace:::BEGIN
59  {
60        printf("%3s %6s %-16s -- %s\n", "C", "PID", "TIME(us)", "CLASS.METHOD");
61  }
62
63  hotspot*:::method-entry
64  {
65        this->class = (char *)copyin(arg1, arg2 + 1);
66 this->class[arg2] = '\0';
67        this->method = (char *)copyin(arg3, arg4 + 1);
68 this->method[arg4] = '\0';
69
70        printf("%3d %6d %-16d %*s-> %s.%s\n", cpu, pid, timestamp / 1000,
71            self->depth[arg0] * 2, "", stringof(this->class),
72    stringof(this->method));
73  self->depth[arg0]++;
74  }
75
76  hotspot*:::method-return
77  {
78        this->class = (char *)copyin(arg1, arg2 + 1);
79 this->class[arg2] = '\0';
80        this->method = (char *)copyin(arg3, arg4 + 1);
81 this->method[arg4] = '\0';
82
83 self->depth[arg0] -= self->depth[arg0] > 0 ? 1 : 0;
84        printf("%3d %6d %-16d %*s<- %s.%s\n", cpu, pid, timestamp / 1000,
85            self->depth[arg0] * 2, "", stringof(this->class),
86    stringof(this->method));
87  }

# j_flow.d
  C    PID TIME(us)      -- CLASS.METHOD
  0 311403 4789112583163   -> java/lang/Object.<clinit>
  0 311403 4789112583207    -> java/lang/Object.registerNatives
  0 311403 4789112583323    <- java/lang/Object.registerNatives
  0 311403 4789112583333   <- java/lang/Object.<clinit>
  0 311403 4789112583343   -> java/lang/String.<clinit>
  0 311403 4789112583732      -> java/lang/String$CaseInsensitiveComparator.<init>
  0 311403 4789112583743       -> java/lang/String$CaseInsensitiveComparator.<init>
  0 311403 4789112583752  -> java/lang/Object.<init>

continues
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The output was more than 1,000 lines long. To see the functions from the Func_
abc program, the output was saved to a file that was filtered using grep(1):

This shows the expected function flow and time stamp jumps. (Note that small
time stamp jumps of less than 10 us may be dominated by the DTrace probe effect
of both tracing the method probes and calling copyin() for the class and method
names.)

The time stamps can also be used for postsorting the output, which may become
shuffled on multi-CPU systems.

See Also: j_classflow.d

The DTraceToolkit contains a variant of j_flow.d called j_classflow.d (not
included here), which only traces the given class. Here’s an example:

This avoids the need to output to a file for later filtering, if desired.

  0 311403 4789112583760  <- java/lang/Object.<init>
  0 311403 4789112583767       <- java/lang/String$CaseInsensitiveComparator.<init>
  0 311403 4789112583774      <- java/lang/String$CaseInsensitiveComparator.<init>
  0 311403 4789112583783   <- java/lang/String.<clinit>
  0 311403 4789112583849   -> java/lang/System.<clinit>
  0 311403 4789112583859    -> java/lang/System.registerNatives
  0 311403 4789112583878    <- java/lang/System.registerNatives
  0 311403 4789112583887    -> java/lang/System.nullInputStream
  0 311403 4789112583895        -> java/lang/System.currentTimeMillis
  0 311403 4789112583905        <- java/lang/System.currentTimeMillis
[…]

# grep Func_abc outputfile
  0 311403 4789112982182    -> Func_abc.main
  0 311403 4789112982193     -> Func_abc.func_a
  0 311403 4789113990080      -> Func_abc.func_b
  0 311403 4789115000081   -> Func_abc.func_c
  0 311403 4789116010073   <- Func_abc.func_c
  0 311403 4789116010080      <- Func_abc.func_b
  0 311403 4789116010086     <- Func_abc.func_a
  0 311403 4789116010093    <- Func_abc.main

# j_classflow.d Func_abc
  C    PID TIME(us)      -- CLASS.METHOD
  0 311425 4789778117827    -> Func_abc.main
  0 311425 4789778117844     -> Func_abc.func_a
  0 311425 4789779120071      -> Func_abc.func_b
  0 311425 4789780130070   -> Func_abc.func_c
  0 311425 4789781140067   <- Func_abc.func_c
  0 311425 4789781140079      <- Func_abc.func_b
  0 311425 4789781140087     <- Func_abc.func_a
  0 311425 4789781140095    <- Func_abc.main
^C
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j_calltime.d

This script traces the time taken by Java methods and garbage collection, and
prints a report. The times for functions are as follows:

Inclusive: Showing the elapsed time for methods

Exclusive: Showing which excludes time spent in other called methods

This can be used for performance analysis of Java programs to identify what is
responsible for latency. 

Script

To associate method entries to returns so that delta times can be calculated, the
self->exclude and self->method variables are keyed on both the Java thread
ID and our own maintained stack depth, self->depth.

 1  #!/usr/sbin/dtrace -Zs
[...]
42  #define TOP 10        /* default output truncation */
43  #define B_FALSE   0
44
45  #pragma D option quiet
46  #pragma D option defaultargs
47
48  dtrace:::BEGIN
49  {
50        printf("Tracing... Hit Ctrl-C to end.\n");
51        top = $1 != 0 ? $1 : TOP;
52  }
53
54  hotspot*:::method-entry
55  {
56  self->depth[arg0]++;
57        self->exclude[arg0, self->depth[arg0]] = 0;
58        self->method[arg0, self->depth[arg0]] = timestamp;
59  }
60
61  hotspot*:::method-return
62  /self->method[arg0, self->depth[arg0]]/
63  {
64        this->elapsed_incl = timestamp - self->method[arg0, self->depth[arg0]];
65        this->elapsed_excl = this->elapsed_incl -
66  self->exclude[arg0, self->depth[arg0]];
67        self->method[arg0, self->depth[arg0]] = 0;
68        self->exclude[arg0, self->depth[arg0]] = 0;
69
70        this->class = (char *)copyin(arg1, arg2 + 1);
71 this->class[arg2] = '\0';
72        this->method = (char *)copyin(arg3, arg4 + 1);
73 this->method[arg4] = '\0';
74        this->name = strjoin(strjoin(stringof(this->class), "."),
75    stringof(this->method));
76
77        @num[pid, "method", this->name] = count();

continues
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Example

The example program Func_abc was traced:

78        @num[0, "total", "-"] = count();
79        @types_incl[pid, "method", this->name] = sum(this->elapsed_incl);
80        @types_excl[pid, "method", this->name] = sum(this->elapsed_excl);
81        @types_excl[0, "total", "-"] = sum(this->elapsed_excl);
82
83  self->depth[arg0]--;
84 self->exclude[arg0, self->depth[arg0]] += this->elapsed_incl;
85  }
86
87  hotspot*:::gc-begin
88  {
89        self->gc = timestamp;
90        self->full = (boolean_t)arg0;
91  }
92
93  hotspot*:::gc-end
94  /self->gc/
95  {
96        this->elapsed = timestamp - self->gc;
97        self->gc = 0;
98
99        @num[pid, "gc", self->full == B_FALSE ? "GC" : "Full GC"] = count();
100        @types[pid, "gc", self->full == B_FALSE ? "GC" : "Full GC"] =
101     sum(this->elapsed);
102        self->full = 0;
103  }
104
105  dtrace:::END
106  {
107   trunc(@num, top);
108        printf("\nTop %d counts,\n", top);
109        printf("   %6s %-10s %-48s %8s\n", "PID", "TYPE", "NAME", "COUNT");
110        printa("  %6d %-10s %-48s %@8d\n", @num);
111
112  trunc(@types, top);
113  normalize(@types, 1000);
114        printf("\nTop %d elapsed times (us),\n", top);
115        printf("   %6s %-10s %-48s %8s\n", "PID", "TYPE", "NAME", "TOTAL");
116        printa("  %6d %-10s %-48s %@8d\n", @types);
117
118  trunc(@types_excl, top);
119 normalize(@types_excl, 1000);
120        printf("\nTop %d exclusive method elapsed times (us),\n", top);
121        printf("   %6s %-10s %-48s %8s\n", "PID", "TYPE", "NAME", "TOTAL");
122        printa("  %6d %-10s %-48s %@8d\n", @types_excl);
123
124  trunc(@types_incl, top);
125 normalize(@types_incl, 1000);
126        printf("\nTop %d inclusive method elapsed times (us),\n", top);
127        printf("   %6s %-10s %-48s %8s\n", "PID", "TYPE", "NAME", "TOTAL");
128        printa("  %6d %-10s %-48s %@8d\n", @types_incl);
129  }

# j_calltime.d
Tracing... Hit Ctrl-C to end.
^C
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The difference between inclusive and exclusive method times is demonstrated
by the example program: func_a() had 3.03 seconds of inclusive time in total but
did not make the top ten exclusive times when its subcalls (Thread.sleep())
were excluded. The top exclusive time was Thread.sleep(), where the actual
time was spent waiting.

For this example, there was nothing in the “Top 10 elapsed times (us)” sum-
mary, which only includes garbage collect events.

Note

j_calltime.d traces all method-entry and method-return probes, which can
be CPU expensive when fired frequently, slowing down the target application (for
example, by 10x!). This is most evident for Java programs that call many thou-
sands of methods per second, where the results from j_calltime.d can be

Top 10 counts,
      PID TYPE       NAME           COUNT
   347032 method     java/lang/String.equals                        221
   347032 method java/lang/String.hashCode              230
   347032 method  java/lang/Math.min               233
   347032 method java/lang/String.indexOf             314
   347032 method java/lang/System.arraycopy              397
   347032 method  java/lang/StringBuilder.append             658
   347032 method     java/lang/AbstractStringBuilder.append                676
   347032 method     java/lang/Object.<init>                        874
   347032 method java/lang/String.charAt                        2285
        0 total      -                      13428

Top 10 elapsed times (us),
      PID TYPE       NAME           TOTAL

Top 10 exclusive method elapsed times (us),
      PID TYPE       NAME           TOTAL
   347032 method  java/lang/System.initProperties            3490
   347032 method java/util/Arrays.copyOf                        3777
   347032 method java/lang/String.charAt                        3919
   347032 method java/lang/AbstractStringBuilder.append               4784
   347032 method java/lang/String.<init>                        5860
   347032 method  java/lang/StringBuilder.append           11556
   347032 method  sun/net/www/ParseUtil.decode                       14009
   347032 method  java/io/UnixFileSystem.normalize           14635
   347032 method java/lang/Thread.sleep            3019529
        0 total      -                     3307655

Top 10 inclusive method elapsed times (us),
      PID TYPE       NAME           TOTAL
   347032 method  sun/misc/Launcher$AppClassLoader.loadClass      103271
   347032 method java/lang/ClassLoader.loadClassInternal       103597
   347032 method  sun/misc/URLClassPath.getLoader           122309
   347032 method  java/security/AccessController.doPrivileged     267620
   347032 method  java/lang/ClassLoader.loadClass           276966
   347032 method     Func_abc.func_c                  1010318
   347032 method     Func_abc.func_b                  2020055
   347032 method java/lang/Thread.sleep            3019529
   347032 method     Func_abc.func_a                  3029564
   347032 method  Func_abc.main             3029591
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noticeably inflated by the probe overhead from DTrace. Also, methods that call
many thousands of submethods will be slowed down further than methods that do
not, which means the results are not only inflated but also skewed. Use the profile
provider and jstack() to double-check any findings (see the one-liners).

See Also: j_calldist.d

There is a variant of j_calltime.d in the DTraceToolkit called j_calldist.d
(not included here), which prints times as distribution plots by subroutine name.
Its functionality is similar to the Perl version, pl_calltime.d, which is demon-
strated in the “Perl Scripts” section under pl_callinfo.d.

See Also: j_cputime.d, j_cpudist.d

Also in the DTraceToolkit are variants of the previous two scripts that trace on-
CPU time instead of elapsed time. This time serves a different role: Elapsed time
latency can include I/O wait time for system resources (disk, network), whereas
latency that is on-CPU time is reflective of the time to process the Java code. Their
functionality is similar to the Perl versions: pl_cputime.d is demonstrated in the
“Perl Scripts” section under pl_calltime.d.

Since the vtimestamps that these tools use attempt to negate the DTrace probe
effect, the times reported may be more accurate than j_calltime.d, especially
when methods are called frequently.

j_thread.d

This script traces Java thread execution, showing time, PID, TID, and thread name.

Script

Here’s the script, with the heading comment truncated to save space:

 1  #!/usr/sbin/dtrace -Zs
[...]
42  #pragma D option quiet
43  #pragma D option switchrate=10
44
45  dtrace:::BEGIN
46  {
47        printf("%-20s  %6s/%-5s -- %s\n", "TIME", "PID", "TID", "THREAD");
48  }
49
50  hotspot*:::thread-start
51  {
52        this->thread = (char *)copyin(arg0, arg1 + 1);
53 this->thread[arg1] = '\0';
54        printf("%-20Y  %6d/%-5d => %s\n", walltimestamp, pid, tid,
55    stringof(this->thread));
56  }
57



ptg

JavaScript 705

Example

Java thread execution from the example Func_abc program was examined using
j_thread.d:

The threads started (=>) can be seen in the output for PID 346986, which was
the Func_abc program. Only one thread exit is seen (<=), because the JVM exited
when the program stopped so that the thread stop probes were not fired.

See Also

There are other scripts in the DTraceToolkit for tracing Java in the /Java directory:

j_stat.d: A stat-style tool for Java events

j_package.d: Count Java class loads by package

j_objnew.d: Object allocation report

JavaScript

JavaScript is an object-oriented scripting language that initially evolved to facili-
tate embedding executable code in Web pages to add new features and functional-
ity to Web sites. Because of this history, much of the JavaScript code you will find
comes in the form of client-side programs that execute within a Web browser. How-
ever, JavaScript applications are increasingly popular outside the context of Web
browsing.

58  hotspot*:::thread-stop
59  {
60        this->thread = (char *)copyin(arg0, arg1 + 1);
61 this->thread[arg1] = '\0';
62        printf("%-20Y  %6d/%-5d <= %s\n", walltimestamp, pid, tid,
63    stringof(this->thread));
64  }

# j_thread.d
TIME        PID/TID   -- THREAD
2010 Jul 11 04:21:33  346986/4  => Reference Handler
2010 Jul 11 04:21:33 346986/5     => Finalizer
2010 Jul 11 04:21:33  346986/6  => Signal Dispatcher
2010 Jul 11 04:21:33  346986/7 => CompilerThread0
2010 Jul 11 04:21:33  346986/8 => CompilerThread1
2010 Jul 11 04:21:33  346986/9  => Low Memory Detector
2010 Jul 11 04:21:36  346986/6  <= Signal Dispatcher
^C
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The Spider Monkey JavaScript engine for Mozilla Firefox has been instru-
mented with a javascript DTrace provider6 as part of a suite of DTrace providers
for Mozilla.7 It was integrated into the Mozilla source for “Bug 388564 – (jsdtrace)
[RFE] JavaScript Tracing Framework”8 in October 2007. Firefox must be compiled
with the --enable-dtrace option for the provider to be present; you’ll need to be
familiar with source code compilation to do this yourself. Firefox packages with the
javascript provider enabled are available for Oracle Solaris, from the Sun contrib-
uted builds site.9

To check that the javascript provider is available, attempt to list probes while a
browser is running:

This output shows that there is a javascript provider for process ID 26526 and
shows the probe names (NAME column) along with their location in the libmozjs
source (FUNCTION column). 

6. This was originally written by Brendan Gregg and later developed as part of a Mozilla
DTrace provider suite by engineers from both Sun and Mozilla.

7. This is currently at www.opensolaris.org/os/project/mozilla-dtrace.  Also see “Bug 370906 –
(dtrace) [RFE] Dynamic Tracing Framework for Mozilla” at https://bugzilla.mozilla.org/
show_bug.cgi?id=370906.

8. https://bugzilla.mozilla.org/show_bug.cgi?id=388564

9. http://releases.mozilla.com/sun/solaris10/

# dtrace -ln 'javascript*:::'
   ID   PROVIDER MODULE           FUNCTION NAME
10982 javascript26526 libmozjs.so       js_Interpret function-info
10983 javascript26526   libmozjs.so       jsdtrace_function_return function-return
10984 javascript26526 libmozjs.so       js_Interpret function-return
10985 javascript26526 libmozjs.so jsdtrace_function_rval function-rval
10986 javascript26526 libmozjs.so       js_Interpret function-rval
10987 javascript26526 libmozjs.so jsdtrace_object_create object-create
10988 javascript26526   libmozjs.so     js_NewObjectWithGivenProto object-create
10989 javascript26526   libmozjs.so    jsdtrace_object_create_done object-create-done
55235 javascript26526 libmozjs.so  jsdtrace_execute_done execute-done
55236 javascript26526 libmozjs.so js_Execute execute-done
88079 javascript26526   libmozjs.so     js_NewObjectWithGivenProto object-create-done
88080 javascript26526 libmozjs.so   jsdtrace_object_create_start object-create-start
88081 javascript26526 libmozjs.so     js_NewObjectWithGivenProto object-create-start
88082 javascript26526   libmozjs.so       jsdtrace_object_finalize object-finalize
88083 javascript26526   libmozjs.so    js_FinalizeObject object-finalize
93947 javascript26526 libmozjs.so jsdtrace_execute_start execute-start
93948 javascript26526 libmozjs.so js_Execute execute-start
93949 javascript26526 libmozjs.so jsdtrace_function_args function-args
93950 javascript26526 libmozjs.so       js_Interpret function-args
93951 javascript26526  libmozjs.so jsdtrace_function_entry function-entry
93952 javascript26526 libmozjs.so       js_Interpret function-entry
93953 javascript26526 libmozjs.so jsdtrace_function_info function-info

www.opensolaris.org/os/project/mozilla-dtrace
https://bugzilla.mozilla.org/show_bug.cgi?id=370906
https://bugzilla.mozilla.org/show_bug.cgi?id=370906
https://bugzilla.mozilla.org/show_bug.cgi?id=388564
http://releases.mozilla.com/sun/solaris10/
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The DTrace javascript provider interface is as follows:

If this interface has changed for the javascript provider version you are using,
update the one-liners and scripts that follow accordingly.

This section demonstrates the javascript provider as shipped in Mozilla Firefox
3.0 and executed on Oracle Solaris by the Sun contributed build of Firefox 3.0,
which enables the DTrace javascript provider by default. 

Example JavaScript Code

The one-liners and scripts that follow are executed on the following example
JavaScript program.

func_clock.html

This program demonstrates function flow and on-CPU time: func_a() calls
func_b(), which calls func_c(). Each function executes code in a loop a differ-
ent number of times so that the time spent on-CPU executing of code can be exam-
ined and compared.

provider javascript {
    probe function-entry(file, class, func)
    probe function-info(file, class, func, lineno, runfile, runlineno)
    probe function-args(file, class, func, argc, argv, argv0, argv1,

argv2, argv3, argv4)
    probe function-rval(file, class, func, lineno, rval, rval0)
    probe function-return(file, class, func)
    probe object-create-start(file, class)
    probe object-create(file, class, *object, rlineno)
    probe object-create-done(file, class)
    probe object-finalize(NULL, class, *object)
    probe execute-start(file, lineno)
    probe execute-done(file, lineno)
};

1      <HTML>
2      <HEAD>
3      <TITLE>func_clock, JavaScript</TITLE>
4      <SCRIPT type="text/javascript">
5      function func_c() {
6            document.getElementById('now').innerHTML += "Function C<br>"
7            for (i = 0; i < 30000; i++) {
8                  j = i + 1
9            }
10      }
11
12 function func_b() {
13            document.getElementById('now').innerHTML += "Function B<br>"
14            for (i = 0; i < 20000; i++) {

continues
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This is similar to other example programs in this chapter; however, here func_
a() is executed every second from the start() function timer, because the script
updates an on-screen clock. This allows the JavaScript program to be left running
in the browser and analyzed with DTrace, as demonstrated by examples in this
section, without needing to reload the page. Reloading a page can fire numerous
JavaScript routines built into Firefox, which would clutter every example (this is
demonstrated in the one-liner examples for reference).

JavaScript One-Liners

This section provide JavaScript one-liners.

javascript Provider

Trace program execution showing filename and line number:

Trace function calls showing function name:

15        j = i + 1
16            }
17            func_c()
18      }
19
20 function func_a() {
21            document.getElementById('now').innerHTML += "Function A<br>"
22            for (i = 0; i < 10000; i++) {
23        j = i + 1
24            }
25            func_b()
26      }
27
28 function start() {
29    now = new Date()
30            document.getElementById('now').innerHTML = now + "<br>"
31            func_a()
32            var timeout = setTimeout('start()', 1000)
33      }
34      </SCRIPT>
35      </HEAD>
36 <BODY onload="start()">
37 <DIV id="now"></DIV>
38      </BODY>
39      </HTML>

dtrace -n 'javascript*:::execute-start { printf("%s:%d", copyinstr(arg0), arg1); }'

dtrace -n 'javascript*:::function-entry { trace(copyinstr(arg2)); }'
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Count function calls by function name:

Count function calls by function filename:

Count object creation by object class:

Object entropy stat:

JavaScript One-Liners Selected Examples

This section provides selected JavaScript one-liner examples.

Trace Program Execution Showing Filename and Line Number

This one-liner was used to trace the execution of func_clock.html:

A line of output was printed every second as the func_clock.html JavaScript
executed line 32: the timeout function start().

dtrace -n 'javascript*:::function-entry { @[copyinstr(arg2)] = count(); }'

dtrace -n 'javascript*:::function-entry { @[copyinstr(arg0)] = count(); }'

dtrace -n 'javascript*:::object-create { @[copyinstr(arg1)] = count(); }'

dtrace -n 'javascript*:::object-create { @ = sum(1); } javascript*:::object-finalize
{ @ = sum(-1); } tick-10s { printa("%@d", @); }'

# dtrace -n 'javascript*:::execute-start { printf("%s:%d", copyinstr(arg0), arg1); }'
dtrace: description 'javascript*:::execute-start ' matched 2 probes
CPU    ID            FUNCTION:NAME
  1 55232 jsdtrace_execute_start:execute-start file:///home/brendan/js/func_clock.html
:32
  1 55232 jsdtrace_execute_start:execute-start file:///home/brendan/js/func_clock.html
:32
  1 55232 jsdtrace_execute_start:execute-start file:///home/brendan/js/func_clock.html
:32
^C
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Trace Function Calls Showing Function Name

The execution of func_clock.html is traced using this one-liner:

The output repeats for every update of the clock, showing the functions that
were executed.

Count Function Calls by Function Filename

The filename for function calls was counted by this one-liner, which was executed
for three seconds:

This has identified func_clock.html as the source of all the function calls,
along with the full URL (it was accessed locally). The function names (nine per sec-
ond) were traced earlier by the previous one-liner.

Now the same JavaScript program in func_clock.html was traced, but
instead of analyzing it while it is already running, the page is reloaded by clicking
the browser reload button:

# dtrace -n 'javascript*:::function-entry { trace(copyinstr(arg2)); }'
dtrace: description 'javascript*:::function-entry ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1  55236 jsdtrace_function_entry:function-entry   start 
  1  55236 jsdtrace_function_entry:function-entry   getElementById
  1  55236 jsdtrace_function_entry:function-entry func_a
  1  55236 jsdtrace_function_entry:function-entry   getElementById
  1  55236 jsdtrace_function_entry:function-entry func_b
  1  55236 jsdtrace_function_entry:function-entry   getElementById
  1  55236 jsdtrace_function_entry:function-entry func_c
  1  55236 jsdtrace_function_entry:function-entry   getElementById
  1  55236 jsdtrace_function_entry:function-entry  setTimeout
[...]

# dtrace -n 'javascript*:::function-entry { @[copyinstr(arg0)] = count(); }'
dtrace: description 'javascript*:::function-entry ' matched 2 probes
^C

  file:///home/brendan/js/func_clock.html              27

# dtrace -n 'javascript*:::function-entry { @[copyinstr(arg0)] = count(); }'
dtrace: description 'javascript*:::function-entry ' matched 2 probes
^C

  chrome://global/content/bindings/text.xml              1
  chrome://global/content/viewZoomOverlay.js              1
  chrome://global/content/bindings/findbar.xml                  2
  chrome://global/content/bindings/textbox.xml                  2
  chrome://global/content/bindings/autocomplete.xml               4
  chrome://global/content/bindings/toolbar.xml                  4
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The execution of JavaScript for chrome has been traced, which is the user inter-
face for Mozilla Firefox10 and was triggered by clicking the reload button. This is
why a continually running clock has been used for the examples in this section: Its
execution can be traced without reloading and hence without cluttering the exam-
ple with Chrome events.

Object Entropy Stat

For this example, we traced a Web browser with numerous tabs open, running var-
ious JavaScript programs from the Web. The source of the JavaScript can be iden-
tified by the previous one-liners; here, we are interested in object creation, in
particular, the leaking of objects. This one-liner increments an aggregation when-
ever an object is created and decrements it when an object is freed (finalized): 

  chrome://global/content/bindings/general.xml                  5
  chrome://global/content/bindings/popup.xml              5
  file:///opt/sfw/lib/firefox3/components/nsContentPrefService.js          5
  file:///opt/sfw/lib/firefox3/components/nsLoginManager.js                5
  file:///opt/sfw/lib/firefox3/modules/utils.js                  5
  file:///opt/sfw/lib/firefox3/modules/XPCOMUtils.jsm              6
  chrome://global/content/bindings/button.xml                  8
  file:///opt/sfw/lib/firefox3/components/nsSessionStore.js                8
  chrome://reporter/content/reporterOverlay.js                  9
  chrome://global/content/bindings/progressmeter.xml              12
  XStringBundle                     14
  chrome://global/content/bindings/browser.xml                 22
  file:///home/brendan/js/func_clock.html              36
  chrome://browser/content/tabbrowser.xml              42
  chrome://browser/content/browser.js               120

10. https://developer.mozilla.org/en/Chrome

# dtrace -n 'javascript*:::object-create { @ = sum(1); } javascript*:::object-
finalize
{ @ = sum(-1); } tick-10s { printa("%@d", @); }'
dtrace: description 'javascript*:::object-create ' matched 5 probes
CPU     ID            FUNCTION:NAME
  1  91387    :tick-10s 2591
  1  91387    :tick-10s 4738
  1  91387    :tick-10s 7324
  1  91387             :tick-10s 15
  1  91387    :tick-10s 2603
  1  91387    :tick-10s 4744
  1  91387    :tick-10s 7334
  1  91387             :tick-10s 14
  1  91387    :tick-10s 2600
  1  91387    :tick-10s 4752
  1  91387    :tick-10s 7332
  1  91387             :tick-10s -5
  1  91387    :tick-10s 2498
[...]

https://developer.mozilla.org/en/Chrome
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The count has become negative because the one-liner was executed after some
objects had already been created, which were then freed. The output shows that
objects are being freed every 40 seconds and that there does not appear to be an
upward trend (leak).

JavaScript Scripts

The scripts included in Table 8-6 are from or based on scripts in the DTraceToolkit
and have had comments trimmed to save space.

js_calls.d

This script counts JavaScript events: function calls, program execution, and object
creation and destruction.

Script

Table 8-6 JavaScript Script Summary

Script Description Provider

js_calls.d Counts function calls by subroutine name javascript

js_flowinfo.d Traces function flow with indented output javascript

js_calltime.d Shows inclusive and exclusive function call times javascript

 1  #!/usr/sbin/dtrace -Zs
 2
 3  #pragma D option quiet
 4
 5  dtrace:::BEGIN
 6  {
 7          printf("Tracing JavaScript... Hit Ctrl-C to end.\n");
 8  }
 9
10  javascript*:::function-entry
11  {
12        this->name = copyinstr(arg2);
13  @calls[basename(copyinstr(arg0)), "func", this->name] = count();
14  }
15
16  javascript*:::execute-start
17  {
18        this->filename = basename(copyinstr(arg0));
19          @calls[this->filename, "exec", "."] = count();
20  }
21
22  javascript*:::object-create-start
23  {
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Example

Here the js_calls.d script traced the execution of JavaScript for five seconds by
providing a tick-5sec action at the command line (-n):

The output shows five updates to the clock: capturing the execution of Java-
Script code from func_clock.html five times (TYPE "exec") and the functions
from that program. Five Date objects were also created while tracing, and none
were freed.

js_flowinfo.d

This program traces JavaScript function flow, printing various details.

Script

This script uses the function-info probe so that the file and line number from
which functions were executed can be printed (arg4, arg5). This is different from
the source file and line number where the functions were declared (which func-
tion-info provides as arg0 and arg3).

24        this->name = copyinstr(arg1);
25        this->filename = basename(copyinstr(arg0));
26          @calls[this->filename, "obj-new", this->name] = count();
27  }
28
29  javascript*:::object-finalize
30  {
31        this->name = copyinstr(arg1);
32          @calls["<null>", "obj-free", this->name] = count();
33  }
34
35  dtrace:::END
36  {
37 printf(" %-24s %-10s %-30s %8s\n", "FILE", "TYPE", "NAME", "CALLS");
38          printa(" %-24s %-10s %-30s %@8d\n", @calls);
39  }

# js_calls.d -n 'tick-5sec { exit(0); }'
Tracing JavaScript... Hit Ctrl-C to end.
 FILE  TYPE       NAME             CALLS
 func_clock.html   exec       .                        5
 func_clock.html func       func_a              5
 func_clock.html func       func_b              5
 func_clock.html func       func_c              5
 func_clock.html  func       setTimeout             5
 func_clock.html func       start              5
 func_clock.html obj-new    Date              5
 func_clock.html   func       getElementById            20
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The TYPE column will only ever contain function for JavaScript functions. It’s
been included in case you want to enhance this script to include other event types,
such as internal libmosjs execution, libxul execution (main Firefox library), sys-
tem calls, and so on, which can then be examined in the context of the JavaScript
program.

Example

The func_clock.html program was traced using js_flowinfo.d:

 1  #!/usr/sbin/dtrace -Zs
[...]
50  #pragma D option quiet
51  #pragma D option switchrate=10
52
53  self int depth;
54
55  dtrace:::BEGIN
56  {
57        printf("%3s %6s %10s  %16s:%-4s %-8s -- %s\n", "C", "PID", "DELTA(us)",
58  "FILE", "LINE", "TYPE", "FUNC");
59  }
60
61  javascript*:::function-info,
62  javascript*:::function-return
63  /self->last == 0/
64  {
65 self->last = timestamp;
66  }
67
68  javascript*:::function-info
69  {
70        this->delta = (timestamp - self->last) / 1000;
71        printf("%3d %6d %10d  %16s:%-4d %-8s %*s-> %s\n", cpu, pid,
72            this->delta, basename(copyinstr(arg4)), arg5, "func",
73            self->depth * 2, "", copyinstr(arg2));
74        self->depth++;
75 self->last = timestamp;
76  }
77
78  javascript*:::function-return
79  {
80        this->delta = (timestamp - self->last) / 1000;
81        self->depth -= self->depth > 0 ? 1 : 0;
82        printf("%3d %6d %10d  %16s:-    %-8s %*s<- %s\n", cpu, pid,
83   this->delta, basename(copyinstr(arg0)), "func", self->depth * 2,
84    "", copyinstr(arg2));
85 self->last = timestamp;
86  }

# js_flowinfo.d
  C    PID  DELTA(us)            FILE:LINE TYPE     -- FUNC
  1  43704          2 func_clock.html:32   func     -> start
  1  43704         40   func_clock.html:30   func     -> getElementById
  1  43704         56   func_clock.html:-    func     <- getElementById
  1  43704        486   func_clock.html:31   func      -> func_a
  1  43704 14   func_clock.html:21   func        -> getElementById
  1  43704 19   func_clock.html:-   func    <- getElementById
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As each function is entered, the last columns are indented by two spaces. This shows
which function is calling which: The start() function called getElementById(),
which finished, and then the start() function called func_a(), and so on.

The DELTA(us) column shows time from that line to the previous line and so
can be a bit tricky to read. The line with a delta time of 5602 us reads as “the time
after getElementById() from line 21 finished to when func_b() on line 25 was
executed, took 5602 us.” Inspection of the code shows that these lines include a
10,000-iteration loop. Elsewhere in the code are 20,000- and 30,000-iteration loops,
which can be seen in the output of js_flowinfo.d as taking 11197 and 16714 us,
respectively. The delta time matches expectation from the code—the more itera-
tions, the longer it takes.

The LINE column shows the line in the file that was being executed.
If the output looks shuffled, check the CPU C column—the output can shuffle

when the CPU ID changes from one line to the next. If this becomes a problem, a
time stamp column can be included in the output for postsorting. 

See Also: js_flowtime.d

The js_flowtime.d script from the DTraceToolkit has similar functionality to
js_flowinfo.d and does include a TIME(us) column. It is similar to the Perl
version, pl_flowtime.d, which is demonstrated in the “Perl Scripts” section
under pl_flowinfo.d.

js_calltime.d

This script traces the time taken by JavaScript functions and object creation and
prints a report. The times for functions are as follows:

Inclusive: Showing the elapsed time for functions

Exclusive: Showing which excludes time spent in other called functions

This can be used for performance analysis of JavaScript programs to identify
what is causing latency. 

  1  43704       5602   func_clock.html:25   func         -> func_b
  1  43704 12   func_clock.html:13   func          -> getElementById
  1  43704 19   func_clock.html:-  func     <- getElementById
  1  43704      11197   func_clock.html:17   func          -> func_c
  1  43704         15   func_clock.html:6 func     -> getElementById
  1  43704         23   func_clock.html:- func     <- getElementById
  1  43704      16714   func_clock.html:-    func          <- func_c
  1  43704  12   func_clock.html:-    func         <- func_b
  1  43704          9 func_clock.html:-    func       <- func_a
  1  43704         11   func_clock.html:32   func      -> setTimeout
  1  43704        181   func_clock.html:-    func      <- setTimeout
  1  43704         10 func_clock.html:-    func     <- start
^C
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Script

Here’s the script, with the heading comment truncated to save space:

   1  #!/usr/sbin/dtrace -Zs
[...]
  40  #pragma D option quiet
  41
  42  dtrace:::BEGIN
  43  {
  44        printf("Tracing... Hit Ctrl-C to end.\n");
  45  }
  46
  47  javascript*:::function-entry
  48  {
  49        self->depth++;
  50 self->exclude[self->depth] = 0;
  51        self->function[self->depth] = timestamp;
  52  }
  53
  54  javascript*:::function-return
  55  /self->function[self->depth]/
  56  {
  57        this->elapsed_incl = timestamp - self->function[self->depth];
  58 this->elapsed_excl = this->elapsed_incl - self->exclude[self->depth];
  59 self->function[self->depth] = 0;
  60 self->exclude[self->depth] = 0;
  61 this->file = basename(copyinstr(arg0));
  62  this->name = copyinstr(arg2);
  63
  64        @num[this->file, "func", this->name] = count();
  65        @num["-", "total", "-"] = count();
  66 @types_incl[this->file, "func", this->name] = sum(this->elapsed_incl);
  67 @types_excl[this->file, "func", this->name] = sum(this->elapsed_excl);
  68        @types_excl["-", "total", "-"] = sum(this->elapsed_excl);
  69
  70        self->depth--;
  71        self->exclude[self->depth] += this->elapsed_incl;
  72  }
  73
  74  javascript*:::object-create-start
  75  {
  76  self->object = timestamp;
  77  }
  78
  79  javascript*:::object-create-done
  80  /self->object/
  81  {
  82        this->elapsed = timestamp - self->object;
  83   self->object = 0;
  84 this->file = basename(copyinstr(arg0));
  85  this->name = copyinstr(arg1);
  86
  87        @num[this->file, "obj-new", this->name] = count();
  88        @num["-", "total", "-"] = count();
  89        @types[this->file, "obj-new", this->name] = sum(this->elapsed);
  90        @types["-", "total", "-"] = sum(this->elapsed);
  91
  92        self->exclude[self->depth] += this->elapsed;
  93  }
  94
  95  dtrace:::END
  96  {
  97   printf("\nCount,\n");
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Example

The execution of the example program func_clock.html was traced for three
seconds:

  98        printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "COUNT");
  99        printa("  %-20.20s %-10s %-32s %@8d\n", @num);
 100
 101  normalize(@types, 1000);
 102 printf("\nElapsed times (us),\n");
 103        printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
 104        printa("  %-20.20s %-10s %-32s %@8d\n", @types);
 105
 106  normalize(@types_excl, 1000);
 107        printf("\nExclusive function elapsed times (us),\n");
 108        printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
 109        printa(" %-20.20s %-10s %-32s %@8d\n", @types_excl);
 110
 111  normalize(@types_incl, 1000);
 112        printf("\nInclusive function elapsed times (us),\n");
 113        printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
 114        printa(" %-20.20s %-10s %-32s %@8d\n", @types_incl);
 115  }

# js_calltime.d
Tracing... Hit Ctrl-C to end.
^C

Count,
   FILE TYPE       NAME                    COUNT
   func_clock.html  func       func_a              3
   func_clock.html  func       func_b              3
   func_clock.html  func       func_c              3
   func_clock.html      func       setTimeout                   3
   func_clock.html func       start              3
   func_clock.html  obj-new    Date              3
   func_clock.html func       getElementById                        12
   - total      -                       30

Elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   - total      -                       15
   func_clock.html  obj-new    Date              15

Exclusive function elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   func_clock.html      func       setTimeout                  233
   func_clock.html func       getElementById                       246
   func_clock.html  func       start             2455
   func_clock.html      func       func_a                  16916
   func_clock.html      func       func_b                  33720
   func_clock.html      func       func_c                  49760
   -  total      -                     103332

Inclusive function elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   func_clock.html      func       setTimeout                  233
   func_clock.html func       getElementById                       246
   func_clock.html      func       func_c                  49812
   func_clock.html      func       func_b                  83571
   func_clock.html      func       func_a                  100524
   func_clock.html      func       start                  103348
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The difference between inclusive and exclusive function times is demonstrated
by the example program: func_a() had 100 ms of inclusive time in total but only
17 ms of exclusive time—when its subfunction calls are excluded.

See Also: js_calldist.d

There is a variant of js_calltime.d in the DTraceToolkit called js_calldist.d
(not included here), which prints times as distribution plots by subroutine name.
Its functionality is similar to the Perl version, pl_calltime.d, which is demon-
strated in the “Perl Scripts” section under pl_callinfo.d.

See Also: js_cputime.d, js_cpudist.d

Also in the DTraceToolkit are variants of the previous two scripts that trace on-
CPU time instead of elapsed time. This time serves a different role: Elapsed time
latency can include I/O wait time for system resources (network), whereas latency
that is on-CPU time reflects the time to process the JavaScript code. Their func-
tionality is similar to the Perl versions: pl_cputime.d is demonstrated in the
“Perl Scripts” section under pl_calltime.d.

See Also

There are other scripts in the DTraceToolkit for tracing JavaScript in the /JavaScript
directory. These include js_stat.d.

js_stat.d

This counts JavaScript events and prints per-second totals. It accepts an interval
as an optional argument, similar to other *stat tools. Here it is tracing an idle
browser that has many tabs open:

# js_stat.d 10
TIME    EXEC/s FUNC/s OBJNEW/s OBJFRE/s
2010 Jul 10 23:25:08        5   653      214        0
2010 Jul 10 23:25:18        5   779      258        0
2010 Jul 10 23:25:28        5    631      213      945
2010 Jul 10 23:25:38        5   782      259        0
2010 Jul 10 23:25:48        5   654      214        0
2010 Jul 10 23:25:58        5   766      250        0
2010 Jul 10 23:26:08        5    651      222      946
2010 Jul 10 23:26:18        5   748      248        0
2010 Jul 10 23:26:28        5   684      225        0
^C
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Perl

The Perl programming language is a general-purpose interpreted programming
language. Originally developed for text manipulation, it has undergone a massive
number of enhancements, broadening its popularity and extending its use for a
wide variety of programming tasks.

The scripts in this section use the perl DTrace provider,11 which is currently not
included by default in most Perl binary distributions. It has been in the Perl source
since 5.10.1, which must be compiled with Configure -Dusedtrace. It was also
available as a patch for 5.8.8, which required patching and compiling the source.
Getting either of these to work requires familiarity with source compilation. Once
a version of Perl that includes the perl DTrace provider has been compiled (or
found), programs must be run using it for the perl provider to be visible to DTrace.

To check that the perl provider is available, attempt to list probes while a Perl
program is executing:

This output shows that a perl provider is available, for process ID 117305, with
the probes sub-entry and sub-return. The internal locations of these DTrace
probes in the Perl source can be seen in the FUNCTION column.

Since the DTrace perl provider may be developed further, there is a chance that
it has changed slightly by the time you are reading this, causing the scripts in this
section to break or behave oddly. The following was the state of the provider when
these scripts were written; check for changes and update the scripts accordingly:

11. This was originally written by Alan Burlison, was later rewritten by Richard Dawe, and now
is being enhanced by Sven Dowideit with extra probes included for memory allocation
events.

# dtrace -ln 'perl*:::'
   ID   PROVIDER    MODULE               FUNCTION NAME
160934 perl117305  libperl.so  Perl_pp_sort sub-entry
160935 perl117305  libperl.so        Perl_pp_dbstate sub-entry
160936 perl117305   libperl.so        Perl_pp_entersub sub-entry
160937 perl117305  libperl.so  Perl_pp_last sub-return
160938 perl117305  libperl.so        Perl_pp_return sub-return
160939 perl117305  libperl.so Perl_dounwind sub-return
160940 perl117305        libperl.so     Perl_pp_leavesublv sub-return
160941 perl117305   libperl.so        Perl_pp_leavesub sub-return

provider perl { 
      probe sub-entry(subroutine, file, lineno) 
      probe sub-return(subroutine, file, lineno) 
};
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The scripts in this section were written for and demonstrated on Perl 5.12.1 on
Oracle Solaris, compiled with the fix for Perl bug #73630.12

Example Perl Code

The one-liners and scripts that follow are executed on the following example Perl
program.

func_abc.pl

This program demonstrates function flow: func_a() calls func_b(), which calls
func_c(). Each function also sleeps for one second, providing known function
latency that can be examined.

Perl One-Liners

Perl one-liners follow.

perl Provider

Trace subroutine calls:

12. See http://rt.perl.org/rt3/Public/Bug/Display.html?id=73630, which includes a fix by Peter
Bray.

 1  #!./perl -w
 2 
 3  sub func_c { 
 4      print "Function C\n"; 
 5      sleep 1; 
 6  } 
 7 
 8  sub func_b { 
 9      print "Function B\n"; 
10      sleep 1; 
11      func_c(); 
12  } 
13
14  sub func_a { 
15 print "Function A\n"; 
16      sleep 1; 
17      func_b(); 
18  } 
19
20  func_a();

dtrace -Zn 'perl*:::sub-entry { trace(copyinstr(arg0)); }'

http://rt.perl.org/rt3/Public/Bug/Display.html?id=73630
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Count subroutine calls:

Count subroutine calls by file:

Perl One-Liners Selected Examples

Perl one-liner selected examples follow.

Trace Subroutine Calls

Here the one-liner traced the execution of func_abc.pl:

Note that the first line reads matched 0 probes. This was because the one-
liner was executed before func_abc.pl or any other Perl program was running
and so before there were perl probes for DTrace to see. The -Z option allowed this
to execute; otherwise, DTrace would complain about not finding the probes.

Count Subroutine Calls by File

This time a more complex Perl program is executed, counting while file subrou-
tines are executed from:

dtrace -Zn 'perl*:::sub-entry { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'perl*:::sub-entry { @[copyinstr(arg1)] = count(); }'

# dtrace -Zn 'perl*:::sub-entry { trace(copyinstr(arg0)); }'
dtrace: description 'perl*:::sub-entry ' matched 0 probes
CPU     ID            FUNCTION:NAME
  6 160960       Perl_pp_entersub:sub-entry   func_a
  6 160960       Perl_pp_entersub:sub-entry   func_b
  6 160960       Perl_pp_entersub:sub-entry   func_c
^C

# dtrace -Zn 'perl*:::sub-entry { @[copyinstr(arg1)] = count(); }'
dtrace: description 'perl*:::sub-entry ' matched 0 probes
^C

  /opt/perl-5.12.1/lib/Carp.pm                   2
  /opt/perl-5.12.1/lib/Config_heavy.pl                2
  /opt/perl-5.12.1/lib/warnings.pm                 2
  /opt/perl-5.12.1/lib/overload.pm                 3
  /opt/perl-5.12.1/lib/DynaLoader.pm                 4
  /opt/perl-5.12.1/lib/Exporter/Heavy.pm               4

continues
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The most popular file was the Perl program itself, chaosreader, calling 375
subroutines. The most popular library file was Getopt/Long.pm—the
Getopt::Long module—which had subroutines called from it 72 times.

Perl Scripts

The scripts included in Table 8-7 are from or based on scripts in the DTraceToolkit
and have had comments trimmed to save space.

pl_who.d

This script shows who (UID and PID) is executing which subroutines (source file-
name) and how many times.

Script

The -Z option is used so that this script can begin running before any instances of
Perl—and so before there are any perl probes available to trace.

  /opt/perl-5.12.1/lib/Time/HiRes.pm                 4
  /opt/perl-5.12.1/lib/AutoLoader.pm                 6
  /opt/perl-5.12.1/lib/Benchmark.pm                 9
  /opt/perl-5.12.1/lib/warnings/register.pm              9
  /opt/perl-5.12.1/lib/vars.pm                  11
  /opt/perl-5.12.1/lib/Config.pm                 12
  /opt/perl-5.12.1/lib/Exporter.pm                 14
  /opt/perl-5.12.1/lib/constant.pm                 21
  /opt/perl-5.12.1/lib/strict.pm                 32
  /opt/perl-5.12.1/lib/Getopt/Long.pm               72
  /export/home/brendan/bin/chaosreader               375

 1  #!/usr/sbin/dtrace -Zs
 2
 3  #pragma D option quiet
 4
 5  dtrace:::BEGIN
 6  {
 7          printf("Tracing... Hit Ctrl-C to end.\n");
 8  }

Table 8-7 Perl Script Summary

Script Description Provider

pl_who.d Counts who is calling subroutines perl

pl_calls.d Counts subroutine calls by subroutine name perl

pl_flowinfo.d Traces subroutine flow with indented output perl

pl_calltime.d Shows inclusive and exclusive subroutine call times perl
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Example

This has caught the execution of the three subroutines from func_abc.pl, show-
ing the file path name and the user that executed it: UID 0, root.

pl_calls.d

This script counts Perl subroutine calls from any running Perl process instru-
mented with the perl provider.

Script

 9
10  perl*:::sub-entry
11  {
12 @lines[pid, uid, copyinstr(arg1)] = count();
13  }
14
15  dtrace:::END
16  {
17          printf("   %6s %6s %6s %s\n", "PID", "UID", "SUBS", "FILE");
18          printa("   %6d %6d %@6d %s\n", @lines);
19  }

# pl_who.d
Tracing... Hit Ctrl-C to end.
^C
      PID   UID   SUBS FILE
   120512      0     3 /opt/DTT/Code/Perl/func_abc.pl

 1  #!/usr/sbin/dtrace -Zs
 2
 3  #pragma D option quiet
 4
 5  dtrace:::BEGIN
 6  {
 7          printf("Tracing Perl... Hit Ctrl-C to end.\n");
 8  }
 9
10  perl*:::sub-entry
11  {
12          @subs[pid, basename(copyinstr(arg1)), copyinstr(arg0)] = count();
13  }
14
15  dtrace:::END
16  {
17 printf("%-6s %-30s %-30s %8s\n", "PID", "FILE", "SUB", "CALLS");
18          printa("%-6d %-30s %-30s %@8d\n", @subs);
19  }
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Examples

The following are some examples.

Known Program. The func_abc.pl program was traced using pl_calls.d,
with the output matching expectations:

The PID shows the process ID of the Perl program. pl_calls.d will trace all
Perl programs that are running on the system, so long as the Perl versions run-
ning have the DTrace perl provider.

Complex Program. Here a much more complicated Perl program was traced,
chaosreader, which parses and reassembles information network packet captures:

The output has been truncated to fit: It was a couple of pages long, showing
counts of every Perl subroutine called by chaosreader. The most frequently called
subroutine was Read_Snoop_Record, which was called 123 times while tracing.

# pl_calls.d
Tracing Perl... Hit Ctrl-C to end.
^C
PID    FILE                 SUB           CALLS
18542  func_abc.pl              func_a               1
18542  func_abc.pl              func_b               1
18542  func_abc.pl              func_c               1

# pl_calls.d
Tracing Perl... Hit Ctrl-C to end.
^C
PID    FILE                 SUB           CALLS
11854  Benchmark.pm              clearallcache              1
11854  Benchmark.pm              disablecache              1
11854  Benchmark.pm             import                       1
11854  Benchmark.pm             init                1
11854  Config.pm                AUTOLOAD               1
11854  Config.pm                TIEHASH                1
11854  Config.pm               import                1
11854  Config_heavy.pl             BEGIN               1
11854  Config_heavy.pl            fetch_string                          1
11854  DynaLoader.pm               bootstrap               1
[...output truncated...]
11854  strict.pm               import                9
11854  strict.pm                unimport               11
11854  strict.pm               bits                12
11854  constant.pm              import                       13
11854  Long.pm             BEGIN                       24
11854  Long.pm ParseOptionSpec             39
11854  chaosreader Process_TCP_Packet            66
11854  chaosreader Generate_SessionID            70
11854  chaosreader             Generate_IP_ID             72
11854  chaosreader  Read_Snoop_Record            123
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See Also: pl_syscalls.d

A similar script in the DTraceToolkit is pl_syscalls.d (not included here),
which counts subroutines and system calls from a Perl program that is either pro-
vided as -p PID or -c command-to-run:

Having the Perl subroutines listed next to system calls can help explain how
Perl is interacting with the operating system.

pl_flowinfo.d

This program traces Perl subroutine flow, printing various details.

Script

The TYPE column will only ever contain sub, for Perl subroutine. It’s been included
in case you want to enhance this script to include other event types such as libperl
execution, system calls, disk I/O, and so on, which can then be examined in the
context of the Perl program.

# pl_syscalls.d -c /opt/DTT/Code/Perl/func_abc.pl
Tracing... Hit Ctrl-C to end.
Function A
Function B
Function C

Calls for PID 20533,

 FILE          TYPE    NAME             COUNT
 func_abc.pl           sub    func_a               1
 func_abc.pl           sub    func_b               1
 func_abc.pl           sub    func_c               1
 perl           syscall  fcntl              1
 perl            syscall   getrlimit             1
 perl          syscall mmap              1
 perl           syscall  rexit              1
 perl           syscall  schedctl             1
 perl            syscall    sigpending             1
 perl           syscall  sysi86              1
 perl           syscall  getgid              2
 perl           syscall  getpid              2
 perl           syscall  getuid              2
 perl            syscall   nanosleep             3
 perl          syscall read              3
 perl            syscall    setcontext             3
 perl            syscall   sysconfig             3
 perl           syscall  write              3
 perl           syscall  close              4
 perl           syscall  llseek              4
 perl           syscall  open64              4
 perl           syscall  ioctl              6
 perl           syscall  gtime              7
 perl          syscall brk              24
 perl            syscall    sigaction             53
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Example

Here the example program func_abc.pl was traced by executing it in another
shell window while pl_flowinfo.d was running:

As each subroutine is entered, the last columns are indented by two spaces. This
shows which subroutine is calling which: The previous output begins by showing
that func_a() began and then called func_b().

 1  #!/usr/sbin/dtrace -Zs 
[...]
50  #pragma D option quiet 
51  #pragma D option switchrate=10 
52
53  self int depth; 
54
55  dtrace:::BEGIN 
56  { 
57          printf("%s %6s %10s  %16s:%-4s %-8s -- %s\n", "C", "PID", "DELTA(us)", 
58   "FILE", "LINE", "TYPE", "SUB"); 
59  } 
60
61  perl*:::sub-entry, 
62  perl*:::sub-return 
63  /self->last == 0/ 
64  { 
65   self->last = timestamp; 
66  } 
67
68  perl*:::sub-entry 
69  { 
70          this->delta = (timestamp - self->last) / 1000; 
71          printf("%d %6d %10d  %16s:%-4d %-8s %*s-> %s\n", cpu, pid, this->delta, 
72              basename(copyinstr(arg1)), arg2, "sub", self->depth * 2, "", 
73      copyinstr(arg0)); 
74          self->depth++; 
75   self->last = timestamp; 
76  } 
77
78  perl*:::sub-return 
79  { 
80          this->delta = (timestamp - self->last) / 1000; 
81          self->depth -= self->depth > 0 ? 1 : 0; 
82          printf("%d %6d %10d  %16s:%-4d %-8s %*s<- %s\n", cpu, pid, this->delta, 
83              basename(copyinstr(arg1)), arg2, "sub", self->depth * 2, "", 
84      copyinstr(arg0)); 
85   self->last = timestamp; 
86  } 

# pl_flowinfo.d
C    PID  DELTA(us)            FILE:LINE TYPE     -- SUB
0 118425          8  func_abc.pl:15   sub     -> func_a
2 118425    1000406    func_abc.pl:9    sub        -> func_b
2 118425    1000289   func_abc.pl:4    sub         -> func_c
2 118425    1000303   func_abc.pl:4    sub         <- func_c
2 118425         51       func_abc.pl:9    sub      <- func_b
2 118425         12  func_abc.pl:15   sub     <- func_a
^C
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The DELTA(us) column shows the time from that line to the previous line, so it
can be a bit tricky to read. For example, the second line of data output (skipping
the header) reads as “the time from func_a() beginning to func_b() beginning
was 1000406 us, or 1.00 seconds.” 

The LINE column shows the line in the file that was being executed.
If the output looks shuffled, check the CPU C column—the output can shuffle

when the CPU ID changes from one line to the next. If this becomes a problem, a
time stamp column can be included in the output for post sorting. 

See Also: pl_flowtime.d

The pl_flowtime.d script (not included here) from the DTraceToolkit has simi-
lar functionality to pl_flowinfo.d and does include a TIME(us) column:

The output can be sent to a file for post sorting (for example, using sort(1)),
either by shell redirection > filename or by using the dtrace(1M) option -o
filename (which appends, not overwrites).

See Also: pl_syscolors.d

Also in the DTraceToolkit is a variant of pl_flowinfo.d (not included here) that
includes system calls in the output and uses terminal escape sequences to high-
light different event types in different colors (the colors are not reproduced here):

# pl_flowtime.d
  C TIME(us)   FILE     DELTA(us)  -- SUB
  0 883815809567 func_abc.pl       7 -> func_a
  0 883816809823  func_abc.pl  1000255   -> func_b
  0 883817810037 func_abc.pl        1000214     -> func_c
  0 883818810284 func_abc.pl        1000246     <- func_c
  0 883818810334     func_abc.pl    49   <- func_b
  0 883818810349 func_abc.pl      15 <- func_a
^C

# pl_syscolors.d -c func_abc.pl
C    PID  DELTA(us)            FILE:LINE TYPE     -- NAME
1 120544         10         ":-    syscall  -> mmap
1 120544         83         ":-    syscall  <- mmap
1 120544        175        ":-   syscall  -> setcontext
1 120544         17         ":-    syscall  <- setcontext
1 120544         17         ":-    syscall  -> getrlimit
1 120544         17         ":-    syscall  <- getrlimit
1 120544         15         ":-    syscall  -> getpid
1 120544         11         ":-    syscall  <- getpid
[...]
1 120547         74  func_abc.pl:15   sub     -> func_a
1 120547         87        ":-  syscall    -> write
1 120547         87        ":-  syscall    <- write
1 120547         32        ":-  syscall    -> gtime
1 120547         15        ":-  syscall    <- gtime



ptg

728 Chapter 8 � Languages

The write() syscalls can be seen to occur during the subroutine calls, since
they wrote output to the screen. The output of the Perl program is mixed with the
output of DTrace: The text Function B is seen, and later the output of DTrace
shows the write() calls in func_b()—shown later since the DTrace output is
buffered and printed later.

pl_calltime.d

This script traces the time taken by Perl subroutines (functions) to execute and
prints a report. The times measured are as follows:

Inclusive: Showing the elapsed time for subroutines

Exclusive: Showing which excludes time spent in other called subroutines

This can be used for performance analysis of Perl software to identify which sub-
routines are responsible for latency. 

Script

Here’s the script, with the heading comment truncated to save space:

1 120547         26              ":-    syscall   -> nanosleep
1 120547    1000065            ":-    syscall  <- nanosleep
Function B
1 120547         74        ":-  syscall    -> gtime
1 120547         36        ":-  syscall    <- gtime
1 120547         74       func_abc.pl:9    sub      -> func_b
1 120547         70              ":-    syscall      -> write
1 120547         86              ":-    syscall      <- write
[...]

 1  #!/usr/sbin/dtrace -Zs
[...]
40  #pragma D option quiet
41
42  dtrace:::BEGIN
43  {
44          printf("Tracing... Hit Ctrl-C to end.\n");
45  }
46
47  perl*:::sub-entry
48  {
49          self->depth++;
50  self->exclude[self->depth] = 0;
51 self->sub[self->depth] = timestamp;
52  }
53
54  perl*:::sub-return
55  /self->sub[self->depth]/
56  {
57          this->elapsed_incl = timestamp - self->sub[self->depth];
58  this->elapsed_excl = this->elapsed_incl - self->exclude[self->depth];
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Example

The execution of the example program func_abc.pl was traced:

59  self->sub[self->depth] = 0;
60  self->exclude[self->depth] = 0;
61 this->file = basename(copyinstr(arg1));
62  this->name = copyinstr(arg0);
63
64          @num[this->file, "sub", this->name] = count();
65 @num["-", "total", "-"] = count();
66  @types_incl[this->file, "sub", this->name] = sum(this->elapsed_incl);
67  @types_excl[this->file, "sub", this->name] = sum(this->elapsed_excl);
68          @types_excl["-", "total", "-"] = sum(this->elapsed_excl);
69
70          self->depth--;
71          self->exclude[self->depth] += this->elapsed_incl;
72  }
73
74  dtrace:::END
75  {
76    printf("\nCount,\n");
77          printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "COUNT");
78          printa("   %-20s %-10s %-32s %@8d\n", @num);
79
80  normalize(@types_excl, 1000);
81          printf("\nExclusive subroutine elapsed times (us),\n");
82          printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
83          printa("  %-20s %-10s %-32s %@8d\n", @types_excl);
84
85  normalize(@types_incl, 1000);
86          printf("\nInclusive subroutine elapsed times (us),\n");
87          printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
88          printa("  %-20s %-10s %-32s %@8d\n", @types_incl);
89  }

# pl_calltime.d
Tracing... Hit Ctrl-C to end.
^C

Count,
   FILE TYPE       NAME                    COUNT
   func_abc.pl sub        func_a              1
   func_abc.pl sub        func_b              1
   func_abc.pl sub        func_c              1
   -                    total      -                       3

Exclusive subroutine elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   func_abc.pl  sub        func_c                   1000215
   func_abc.pl  sub        func_a                   1000269
   func_abc.pl  sub        func_b                   1000649
   -  total      -                    3001135

Inclusive subroutine elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   func_abc.pl  sub        func_c                   1000215
   func_abc.pl  sub        func_b                   2000865
   func_abc.pl  sub        func_a                   3001135
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The difference between inclusive and exclusive function times is demonstrated
well by the example program: func_a() had three seconds of inclusive time but
only one second of exclusive time when the subroutines that it has called are
excluded.

See Also: pl_calldist.d

There is a variant of pl_calltime.d in the DTraceToolkit called pl_calldist.d
(not included here), which prints times as distribution plots by subroutine name:

This excerpt shows the Read_Snoop_Record subroutine was relatively fast,
usually taking between 4 us and 15 us to complete.

See Also: pl_cputime.d, pl_cpudist.d

Also in the DTraceToolkit are variants of the previous two scripts that trace on-
CPU time instead of elapsed time. This serves a different role: Elapsed time
latency can include I/O wait time for system resources (disks, network), whereas
latency that is on-CPU time is reflective of the time to process the Perl code. Modi-
fying the script to measure on-CPU time instead of elapsed time was simply a mat-
ter of measuring deltas of the vtimestamp variable instead of the time stamp.

This is the pl_cputime.d script showing the on-CPU times of the example
program:

Inclusive subroutine elapsed times (us),
[...]
   chaosreader, sub, Read_Snoop_Record 
           value  ------------- Distribution ------------- count
               2 |              0
               4 |@@@@@@@@@@@@@@           43
               8 |@@@@@@@@@@@@@@@@@@@@@@@@             73
              16 |@@              5
              32 |@              2
              64 |                0

   chaosreader, sub, Process_TCP_Packet 
           value  ------------- Distribution ------------- count
              16 |              0
              32 |@@@@@@@@@@@@@@@@@@@@@@                 37
              64 |@@@@@@@@@@@@@@@@          26
             128 |@@                3
             256 |              0
[...]

# pl_cputime.d
Tracing... Hit Ctrl-C to end.
^C

Count,
   FILE TYPE       NAME                    COUNT
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Since these functions do little actual Perl code, the on-CPU times are fast—
shorter than a millisecond.

PHP

PHP is a scripting language originally designed as a Web development language to
produce dynamic Web pages. Web servers include a PHP processor module for exe-
cuting embedded PHP code. A stand-alone interpreter enables the creation and use
of scripts in PHP that can execute outside the context of a Web browser.

A PHP DTrace provider was originally developed13 as an extension for PHP 5,
which can be found on the pecl/dtrace module page.14 This version involved
adding a dtrace.so extension directive to php.ini and provided function-
entry and function-return probes.

An enhanced PHP provider, including more probes and arguments, was later
developed and added to the PHP source.15 It was distributed as part of Oracle Sun
Web Stack (previously known as Cool Stack16) and was recently added to the main
PHP code (version PHP 5.3.99—development).17

To see whether your distribution of PHP has the DTrace php provider available,
the compile options can be checked using php -i to see whether --enable-dtrace

   func_abc.pl sub        func_a              1
   func_abc.pl sub        func_b              1
   func_abc.pl sub        func_c              1
   -                    total      -                       3

Exclusive subroutine on-CPU times (us),
   FILE TYPE       NAME                    TOTAL
   func_abc.pl sub        func_c                           146
   func_abc.pl sub        func_b                           184
   func_abc.pl sub        func_a                           234
   - total      -                      565

Inclusive subroutine on-CPU times (us),
   FILE TYPE       NAME                    TOTAL
   func_abc.pl sub        func_c                           146
   func_abc.pl sub        func_b                           330
   func_abc.pl sub        func_a                           565

13. This is by PHP core developer Wez Furlong.

14. http://pecl.php.net/package/DTrace

15. This is by David Soria Parra.

16. http://hub.opensolaris.org/bin/view/Project+webstack/sunwebstack

17. http://blog.experimentalworks.net/2010/04/php-5-3-99-dev-and-dtrace-part-i/

http://pecl.php.net/package/DTrace
http://hub.opensolaris.org/bin/view/Project+webstack/sunwebstack
http://blog.experimentalworks.net/2010/04/php-5-3-99-dev-and-dtrace-part-i/
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is part of the output. Another way is to run a PHP program and attempt to list
probes while it is running:

This output shows that there is a php provider for process ID 121990 and shows
the probe names in the NAME column. The php provider matched here is from mod_
php5.so, and that process ID is for an Apache Web server daemon:

Since the probe specification used php*, all Apache process IDs will be matched.
This allows PHP to be traced systemwide.

The latest version of the PHP provider interface is as follows:

# dtrace -ln 'php*:::'
   ID   PROVIDER MODULE            FUNCTION NAME
161102  php121990 mod_php5.so    dtrace_compile_file compile-file-entry
161103  php121990  mod_php5.so     dtrace_compile_file compile-file-
return
161104  php121990    mod_php5.so           zend_error error
161105  php121990  mod_php5.so  ZEND_CATCH_SPEC_HANDLER exception-caught
161106  php121990 mod_php5.so     zend_throw_exception_internal exception-thrown
161107  php121990    mod_php5.so  dtrace_execute_internal execute-entry
161108  php121990 mod_php5.so        dtrace_execute execute-entry
161109  php121990    mod_php5.so  dtrace_execute_internal execute-return
161110  php121990 mod_php5.so        dtrace_execute execute-return
161111  php121990 mod_php5.so        dtrace_execute function-entry
161112  php121990 mod_php5.so        dtrace_execute function-return
161113  php121990 mod_php5.so       _object_and_properties_init object-create
161114  php121990 mod_php5.so       zend_objects_destroy_object object-destroy
161115  php121990 mod_php5.so   php_request_shutdown request-shutdown
[...]

# ps -fp 121990
     UID    PID  PPID   C    STIME TTY         TIME CMD
webservd 121990 112686   0 00:20:05 ?           0:00 /usr/apache2/current/bin/httpd -f 
/var/run/ak/httpd.conf -k start

provider php {
    probe function-entry(function, file, lineno, classname, scope)
    probe function-return(function, file, lineno, classname, scope)
    probe exception-caught(classname)
    probe exception-thrown(classname)
    probe request-startup(file, uri, method)
    probe request-shutdown(file, uri, method)
    probe compile-file-entry(file, translated)
    probe compile-file-return(file, translated)
    probe error(errormsg, file, lineno)
    probe execute-entry(file, lineno)
    probe execute-return(file, lineno)
};
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This is demonstrated in the one-liners and scripts that follow. It was executed
on PHP 5.2 from Oracle Sun Web Stack (SUNWphp52r, which is now the web/
php-52 software package).

Example PHP Code

The one-liners and scripts that follow trace the following example PHP programs.

func_abc.php

This script demonstrates function flow: func_a() calls func_b(), which calls
func_c(). Each function also sleeps for one second, providing known function
latency that can be examined.

broken.php

Here’s broken.php:

 1      <?php
 2      function func_c()
 3      {
 4    echo "Function C\n";
 5            sleep(1);
 6      }
 7
 8      function func_b()
 9      {
10    echo "Function B\n";
11            sleep(1);
12            func_c();
13      }
14
15      function func_a()
16      {
17    echo "Function A\n";
18            sleep(1);
19            func_b();
20      }
21
22      func_a();
23      ?>

1  <?php
2  echo "Example PHP program with error\n";
3  bogus text here
4  echo "Done\n";
5  ?>
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PHP One-Liners

PHP one-liners are presented in this section.

php Provider

Trace function calls showing function name:

Trace program execution filename:

Count function calls by function name:

Count function calls by filename:

Count program execution by filename:

Count line execution by filename and line number:

Trace PHP errors:

dtrace -Zn 'php*:::function-entry { trace(copyinstr(arg0)); }'

dtrace -Zn 'php*:::request-startup { trace(copyinstr(arg0)); }'

dtrace -Zn 'php*:::function-entry { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'php*:::function-entry { @[copyinstr(arg1)] = count(); }'

dtrace -Zn 'php*:::request-startup { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'php*:::execute-entry { @[copyinstr(arg0), arg1] = count(); }'

dtrace -Zn 'php*:::error { printf("%s:%d: \"%s\"", copyinstr(arg1), arg2,
 copyinstr(arg0)); }'
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Count all PHP events

PHP One-Liners Selected Examples

PHP one-liner selected examples are presented in this section.

Trace Function Calls Showing Function Name

The execution of func_abc.php is traced using this one-liner.

Count Function Calls by Filename

Here we loaded a Web site that uses the MediaWiki wiki software,18 which is PHP
based:

dtrace -Zn 'php*::: { @[probename] = count(); }'

# dtrace -Zn 'php*:::function-entry { trace(copyinstr(arg0)); }'
dtrace: description 'php*:::function-entry ' matched 18 probes
CPU     ID            FUNCTION:NAME
  3  96371    dtrace_execute:function-entry   func_a
  3  96371    dtrace_execute:function-entry   func_b
  3  96371    dtrace_execute:function-entry   func_c
^C

18. www.mediawiki.org/wiki/MediaWiki

# dtrace -Zn 'php*:::function-entry { @[copyinstr(arg1)] = count(); }'
dtrace: description 'php*:::function-entry ' matched 15 probes
^C

  /var/htdocs/wiki/includes/normal/UtfNormal.php          1
  /var/htdocs/wiki/StartProfiler.php              2
  /var/htdocs/wiki/includes/DefaultSettings.php          2
  /var/htdocs/wiki/LocalSettings.php              4
[...]
  /var/htdocs/wiki/index.php                46
  /var/htdocs/wiki/includes/GlobalFunctions.php              66
  /var/htdocs/wiki/includes/BagOStuff.php           72
  /var/htdocs/wiki/includes/User.php             81
  /var/htdocs/wiki/includes/Wiki.php             92
  /var/htdocs/wiki/includes/StubObject.php          131
  /var/htdocs/wiki/includes/IP.php             140
  /var/htdocs/wiki/includes/AutoLoader.php          148
  /var/htdocs/wiki/includes/Setup.php            190
  /var/htdocs/wiki/includes/Database.php          214
  /var/htdocs/wiki/includes/LoadBalancer.php         248
  /var/htdocs/wiki/includes/MessageCache.php         372
  /var/htdocs/wiki/languages/Language.php          390
  /var/htdocs/wiki/includes/Parser.php            473
  /var/htdocs/wiki/includes/MagicWord.php          549

www.mediawiki.org/wiki/MediaWiki
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The output shows the source files and function counts while a single page was
loaded. The includes/MagicWord.php file was the source for 549 function calls.
The names of these functions can be examined via the arg0 variable.

Trace PHP Errors

The example broken.php program was executed while tracing for errors:

This has correctly identified the file, line number, and type of error. Similar
capability can be found by searching for PHP errors in the Web server log file; an
advantage of the DTrace probe is that it could be included as part of a larger
script, perhaps recording the function flow that led to the error.

PHP Scripts

The scripts included in Table 8-8 are from or based on scripts in the DTraceToolkit
and have had comments trimmed to save space.

php_calls.d

This script counts PHP function calls from any PHP program on the system instru-
mented with the php provider.

Script

Instead of displaying the full path name to the file, it is processed by basename()
to remove the directory component.

# dtrace -Zn 'php*:::error { printf("%s:%d: \"%s\"", copyinstr(arg1), arg2, 
copyinstr(arg0)); }'
dtrace: description 'php*:::error ' matched 19 probes
CPU     ID            FUNCTION:NAME
  7  96190  zend_error:error /var/htdocs/wiki/broken.php:3: "syntax error, unexpected 
T_STRING"
^C

Table 8-8 PHP Script Summary

Script Description Provider

php_calls.d Counts function calls by function name php

php_flowinfo.d Traces function flow with indented output php
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Examples

Here are some examples.

Example Program. The func_abc.php program was traced using php_
calls.d, which showed the expected number of function calls:

 MediaWiki. This script traces a MediaWiki page loading, and the output has
been truncated to fit. All of the functions called and their source files can be seen,
with the execution count.

   1  #!/usr/sbin/dtrace -Zs
   2
   3  #pragma D option quiet
   4
   5  dtrace:::BEGIN
   6  {
   7          printf("Tracing PHP... Hit Ctrl-C to end.\n");
   8  }
   9
  10  php*:::function-entry
  11  {
  12          @funcs[basename(copyinstr(arg1)), copyinstr(arg0)] = count();
  13  }
  14
  15  dtrace:::END
  16  {
  17          printf(" %-32s %-32s %8s\n", "FILE", "FUNC", "CALLS");
  18          printa(" %-32s %-32s %@8d\n", @funcs);
  19  }

# php_calls.d
Tracing PHP... Hit Ctrl-C to end.
^C
 FILE          FUNC                     CALLS
 func_abc.php          func_a                      1
 func_abc.php          func_b                      1
 func_abc.php          func_c                      1

# php_calls.d
Tracing PHP... Hit Ctrl-C to end.
^C
 FILE          FUNC                     CALLS
 Article.php             addGoodLinkObj              1
 Article.php             checkLastModified             1
 Article.php            checkTouched              1
 Article.php            getArticleID              1
[...]
 LoadBalancer.php        isOpen                    255
 Language.php            isMultibyte             261
 MessageCache.php         wfProfileIn                  338
 MessageCache.php          wfProfileOut            338
 MagicWord.php          getMagic             345

continues
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php_flowinfo.d

This program traces PHP function flow, showing time stamps.

Script

This script was written for an earlier version of the PHP provider, which some-
times passed a NULL pointer as the function name. Lines 69 and 80 check that the
function name pointer is valid (not NULL).

 MagicWord.php           __construct                          350
 MagicWord.php            load               350
 Parser.php            get                       372

 1  #!/usr/sbin/dtrace -Zs
[...]
50  #pragma D option quiet
51  #pragma D option switchrate=10
52
53  self int depth;
54
55  dtrace:::BEGIN
56  {
57          printf("%s %6s/%-4s %10s %16s:%-4s %-8s -- %s\n", "C", "PID", "TID",
58 "DELTA(us)", "FILE", "LINE", "TYPE", "FUNC");
59  }
60
61  php*:::function-entry,
62  php*:::function-return
63  /self->last == 0/
64  {
65   self->last = timestamp;
66  }
67
68  php*:::function-entry
69  /arg0/
70  {
71          this->delta = (timestamp - self->last) / 1000;
72          printf("%d %6d/%-4d %10d %16s:%-4d %-8s %*s-> %s\n", cpu, pid, tid,
73  this->delta, basename(copyinstr(arg1)), arg2, "func",
74   self->depth * 2, "", copyinstr(arg0));
75          self->depth++;
76   self->last = timestamp;
77  }
78
79  php*:::function-return
80  /arg0/
81  {
82          this->delta = (timestamp - self->last) / 1000;
83          self->depth -= self->depth > 0 ? 1 : 0;
84          printf("%d %6d/%-4d %10d %16s:%-4d %-8s %*s<- %s\n", cpu, pid, tid,
85  this->delta, basename(copyinstr(arg1)), arg2, "func",
86   self->depth * 2, "", copyinstr(arg0));
87   self->last = timestamp;
88  }
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The TYPE column will only contain func for PHP function; this script can be
enhanced to include other types, such as php library internal functions, system
calls, and so on.

Example

The func_abc.php program was traced using php_flowinfo.d:

As each function is entered, the last columns are indented by two spaces. This
shows which function is calling which: the previous output begins by showing that
func_a() began and then called func_b().

The DELTA(us) column shows time from that line to the previous line. This
shows the sleep commands are taking around 1.01 seconds, as expected. 

If the output looks shuffled, check the CPU C column—the output can shuffle
when the CPU ID changes from one line to the next. If this becomes a problem, a
time stamp column can be included in the output for postsorting. 

See Also: php_flowtime.d, php_syscolors.d

The php_flowtime.d script from the DTraceToolkit is similar to php_flow-
info.d, including a time stamp column that can be postsorted if the output is
shuffled. Another similar script from the DTraceToolkit is php_syscolors.d,
which includes system calls in the output and uses terminal escape sequences to
highlight different event types in different colors. They are similar to the Perl ver-
sions, pl_flowtime.d and pl_syscolors.d, which are demonstrated in the
“Perl Scripts” section under pl_flowinfo.d.

See Also

The DTraceToolkit has other scripts for the php provider, including php_
calltime.d for a report of inclusive and exclusive function time, and variants.
See the Perl versions of these scripts in the “Perl Scripts” section for similar exam-
ple output.

# php_flowinfo.d
C    PID/TID   DELTA(us)   FILE:LINE TYPE     -- FUNC
7 122231/1   10      func_abc.php:22   func     -> func_a
7 122231/1       1000145      func_abc.php:19   func       -> func_b
7 122231/1       1000140     func_abc.php:12   func         -> func_c
7 122231/1       1000111     func_abc.php:12   func         <- func_c
7 122231/1  56      func_abc.php:19  func       <- func_b
7 122231/1   15      func_abc.php:22   func     <- func_a
^C
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Python

The Python programming language is a general-purpose, interpreted language
that was built around code readability through clean syntax, offering the program-
mer choices in terms of which method of development they prefer (object-oriented,
procedural, and so on). Python is therefore often described as a multiparadigm lan-
guage, because it supports several different programming paradigms. 

The scripts in this section use the python DTrace provider.19 Patches for differ-
ent Python versions are available on the Python bugs page for “Issue 4111: Add
Systemtap/DTrace probes,”20 which requires familiarity with source compilation to
get working. Some distributions already have these built in, such as Python 2.6.4
on OpenSolaris. Once a version of Python including the python DTrace provider
has been found (or compiled), programs must be run using it for the provider to be
visible to DTrace.

To check that the python provider is available, attempt to list probes while a
Python program is executing:

This output shows that there is a python provider for process ID 120694, with
the probes function-entry and function-return.

Since the DTrace Python provider may be developed further, there is a chance
that it has changed slightly by the time you are reading this, causing these scripts
in this section to break or behave oddly. The following was the state of the pro-
vider when these scripts were written—check for changes and update the scripts
accordingly:

The scripts in this section were written for and demonstrated on Python 2.6.4
on Oracle Solaris, which includes the python provider.

19. This was originally written by John Levon.

20. http://bugs.python.org/issue4111

# dtrace -ln 'python*:::'
   ID   PROVIDER     MODULE             FUNCTION NAME
160958 python120694 libpython2.6.so.1.0    PyEval_EvalFrameEx function-entry
160959 python120694 libpython2.6.so.1.0   dtrace_entry function-entry
160960 python120694 libpython2.6.so.1.0    PyEval_EvalFrameEx function-return
160961 python120694 libpython2.6.so.1.0       dtrace_return function-return

provider python {
    probe function-entry(file, subroutine, lineno)
    probe function-return(file, subroutine, lineno)
};

http://bugs.python.org/issue4111
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Example Python Code

The one-liners and scripts that follow trace the following example Python program.

func_abc.py

This program demonstrates function flow: func_a() calls func_b(), which calls
func_c(). Each function also sleeps for one second, providing known function
latency that can be examined.

Python One-Liners

Python one-liners are presented in this section.

python Provider

Trace function calls:

Count function calls:

Count subroutine calls by file:

 1      #!/usr/bin/python
 2
 3      import time
 4
 5      def func_c():
 6  print "Function C"
 7            time.sleep(1)
 8
 9      def func_b():
10    print "Function B"
11     time.sleep(1)
12            func_c()
13
14      def func_a():
15    print "Function A"
16     time.sleep(1)
17            func_b()
18
19      func_a()

dtrace -Zn 'python*:::function-entry { trace(copyinstr(arg1)); }'

dtrace -Zn 'python*:::function-entry { @[copyinstr(arg1)] = count(); }'

dtrace -Zn 'python*:::function-entry { @[copyinstr(arg0)] = count(); }'
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Profile Python stack traces at 123 Hertz:

Python One-Liners Selected Examples

Python one-liner selected examples are presented in this section.

Trace Function Calls

The execution of func_abc.py is traced using this one-liner:

Note that the first line reads matched 0 probes. This was because the one-
liner was executed before func_abc.py or any other Python program was run-
ning and so before there were python probes for DTrace to see. The -Z option
allowed this to execute; otherwise, DTrace would complain about not finding the
probes.

Count Function Calls by File

dtrace -n 'profile-123 /pid == $target/ { @[jstack()] = count(); }' -p PID

# dtrace -Zn 'python*:::function-entry { trace(copyinstr(arg1)); }'
dtrace: description 'python*:::function-entry ' matched 0 probes
CPU     ID            FUNCTION:NAME
  7 160959      dtrace_entry:function-entry   <module>
[...]
  7 160959      dtrace_entry:function-entry   Codec
  7 160959      dtrace_entry:function-entry   IncrementalEncoder
  7 160959      dtrace_entry:function-entry   IncrementalDecoder
  7 160959      dtrace_entry:function-entry StreamWriter
  7 160959      dtrace_entry:function-entry StreamReader
  7 160959      dtrace_entry:function-entry StreamConverter
  7 160959      dtrace_entry:function-entry   getregentry
  7 160959      dtrace_entry:function-entry   __new__
  7 160959      dtrace_entry:function-entry   <module>
  7 160959      dtrace_entry:function-entry   func_a
  7 160959      dtrace_entry:function-entry   func_b
  7 160959      dtrace_entry:function-entry   func_c
^C

# dtrace -Zn 'python*:::function-entry { @[copyinstr(arg0)] = count(); }'
dtrace: description 'python*:::function-entry ' matched 0 probes
^C

  /usr/lib/python2.6/encodings/aliases.py               1
  /usr/lib/python2.6/linecache.py                  1
  /usr/lib/python2.6/types.py                    3
  /opt/DTT/Code/Python/func_abc.py                  4
  /usr/lib/python2.6/encodings/__init__.py               4
  /usr/lib/python2.6/warnings.py                  5
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The most popular file was posixpath.py, from which 119 functions were
called. The func_abc.py program is in the output, with four functions called: the
three from the program and the import of the time module.

Profile Python Stack Traces

The python provider also enhances the DTrace jstack() action to incorporate
Python functions into the user stack trace. Here the stack trace was sampled at
123 Hertz:

The Python insertions have been highlighted in this stack trace. This provides a
remarkable insight into how Python code is executed internally by Python.

  /usr/lib/python2.6/copy_reg.py                  7
  /usr/lib/python2.6/encodings/ascii.py                8
  /usr/lib/python2.6/UserDict.py                  9
  /usr/lib/python2.6/genericpath.py                 11
  <string>                    11
  /usr/lib/python2.6/codecs.py                   12
  /usr/lib/python2.6/os.py                   14
  /usr/lib/python2.6/stat.py                   15
  /usr/lib/python2.6/_abcoll.py                  31
  /usr/lib/python2.6/site.py                   41
  /usr/lib/python2.6/abc.py                    85
  /usr/lib/python2.6/posixpath.py                 119

# dtrace -n 'profile-123 /pid == $target/ { @[jstack()] = count(); }' 
-c ./func_slow.py 
dtrace: description 'profile-123 ' matched 1 probe
[...]

 libpython2.6.so.1.0`PyEval_EvalFrameEx+0x2da
                [ ./func_slow.py:3 (func_c) ]

  libpython2.6.so.1.0`fast_function+0x108
  libpython2.6.so.1.0`call_function+0xee
 libpython2.6.so.1.0`PyEval_EvalFrameEx+0x3029

                [ ./func_slow.py:16 (func_b) ]
  libpython2.6.so.1.0`fast_function+0x108
  libpython2.6.so.1.0`call_function+0xee
 libpython2.6.so.1.0`PyEval_EvalFrameEx+0x3029

                [ ./func_slow.py:24 (func_a) ]
  libpython2.6.so.1.0`fast_function+0x108
  libpython2.6.so.1.0`call_function+0xee
 libpython2.6.so.1.0`PyEval_EvalFrameEx+0x3029

                [ ./func_slow.py:26 (<module>) ]
 libpython2.6.so.1.0`PyEval_EvalCodeEx+0x91c

  libpython2.6.so.1.0`PyEval_EvalCode+0x32
   libpython2.6.so.1.0`run_mod+0x3a
  libpython2.6.so.1.0`PyRun_FileExFlags+0x6b
 libpython2.6.so.1.0`PyRun_SimpleFileExFlags+0x189
 libpython2.6.so.1.0`PyRun_AnyFileExFlags+0x6e

   libpython2.6.so.1.0`Py_Main+0xa94
    isapython2.6`main+0x63
    isapython2.6`_start+0x7d

                6
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Python Scripts

The scripts included in Table 8-9 are from or based on scripts in the DTraceToolkit
and have had comments trimmed to save space. 

py_who.d

This script shows who (UID and PID) is executing which functions (source file-
name) and how many times.

Script

The -Z option is used so that this script can begin running before any instances of
Python and so before there are any python probes available to trace.

Example

This has caught the execution of four functions from func_abc.py, showing the
file path name (it’s shipped in the DTraceToolkit) and the user who executed it:
UID 0, root.

Table 8-9 Python Script Summary

Script Description Provider

py_who.d Counts who is calling functions python

py_calls.d Counts function calls by function name python

py_flowinfo.d Traces function flow with indented output python

py_calltime.d Shows inclusive and exclusive function call times python

 1  #!/usr/sbin/dtrace -Zs
 2
 3  #pragma D option quiet
 4
 5  dtrace:::BEGIN
 6  {
 7          printf("Tracing... Hit Ctrl-C to end.\n");
 8  }
 9
10  python*:::function-entry
11  {
12 @lines[pid, uid, copyinstr(arg0)] = count();
13  }
14
15  dtrace:::END
16  {
17          printf(" %6s %6s %6s %s\n", "PID", "UID", "FUNCS", "FILE");
18          printa("   %6d %6d %@6d %s\n", @lines);
19  }
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py_calls.d

This script counts Python function calls from any running python process instru-
mented with the python provider.

Script

Example

The func_abc.py program was traced using py_calls.d:

# py_who.d
Tracing... Hit Ctrl-C to end.
^C
      PID   UID  FUNCS FILE
   120704      0    1 /usr/lib/python2.6/encodings/aliases.py
   120704      0     1 /usr/lib/python2.6/linecache.py
   120704      0     3 /usr/lib/python2.6/types.py
   120704      0     4 /opt/DTT/Code/Python/func_abc.py
   120704      0    4 /usr/lib/python2.6/encodings/__init__.py
   120704      0     5 /usr/lib/python2.6/warnings.py
   120704      0     7 /usr/lib/python2.6/copy_reg.py
   120704      0    8 /usr/lib/python2.6/encodings/ascii.py
   120704      0     9 /usr/lib/python2.6/UserDict.py
   120704      0    11 /usr/lib/python2.6/genericpath.py
   120704      0     11 <string>
   120704      0    12 /usr/lib/python2.6/codecs.py
   120704      0     14 /usr/lib/python2.6/os.py
   120704      0     15 /usr/lib/python2.6/stat.py
   120704      0    31 /usr/lib/python2.6/_abcoll.py
   120704      0     41 /usr/lib/python2.6/site.py
   120704      0     85 /usr/lib/python2.6/abc.py
   120704      0    119 /usr/lib/python2.6/posixpath.py

 1  #!/usr/sbin/dtrace -Zs
 2
 3  #pragma D option quiet
 4
 5  dtrace:::BEGIN
 6  {
 7          printf("Tracing Python... Hit Ctrl-C to end.\n");
 8  }
 9
10  python*:::function-entry
11  {
12          @funcs[pid, basename(copyinstr(arg0)), copyinstr(arg1)] = count();
13  }
14
15  dtrace:::END
16  {
17 printf("%-6s %-30s %-30s %8s\n", "PID", "FILE", "FUNC", "CALLS");
18          printa("%-6d %-30s %-30s %@8d\n", @funcs);
19  }



ptg

746 Chapter 8 � Languages

The PID shows the process ID of the Python program. py_calls.d will trace
all Python programs that are running on the system, so long as the python ver-
sions running have the DTrace python provider.

py_flowinfo.d

This program traces Python function flow, printing various details.

Script

The TYPE column will only ever contain func, for Python functions. You can
enhance this script to include other event types such as libpython execution, sys-
tem calls, disk I/O, and so on, which can then be examined in the context of the
Python program.

# py_calls.d
Tracing Python... Hit Ctrl-C to end.
^C
PID    FILE                 FUNC               CALLS
120731 UserDict.py              <module>               1
120731 UserDict.py              DictMixin               1
120731 UserDict.py             IterableUserDict            1
[...]
120731 stat.py                S_ISDIR                7
120731 _abcoll.py __subclasshook__            10
120731 abc.py   __subclasscheck__             10
120731 abc.py               register               10
120731 genericpath.py            isdir                      10
120731 os.py               _exists                       10
120731 <string>              <module>              11
120731 posixpath.py              normcase              14
120731 site.py              makepath              14
120731 abc.py  abstractmethod              15
120731 abc.py              __new__                      16
120731 posixpath.py               join                20
120731 posixpath.py               abspath                       27
120731 posixpath.py               isabs                27
120731 posixpath.py              normpath              27
120731 abc.py               <genexpr>               31

 1  #!/usr/sbin/dtrace -Zs
[...]
50  #pragma D option quiet
51  #pragma D option switchrate=10
52
53  self int depth;
54
55  dtrace:::BEGIN
56  {
57          printf("%s %6s %10s  %16s:%-4s %-8s -- %s\n", "C", "PID", "DELTA(us)",
58   "FILE", "LINE", "TYPE", "FUNC");
59  }
60
61  python*:::function-entry,
62  python*:::function-return
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Example

While tracing, the func_abc.py program was executed in another shell window:

The output of py_flowinfo.d has been truncated to fit. The functions called
(and modules loaded) when initializing Python have been traced, followed by the
execution of the program.

63  /self->last == 0/
64  {
65   self->last = timestamp;
66  }
67
68  python*:::function-entry
69  {
70          this->delta = (timestamp - self->last) / 1000;
71          printf("%d %6d %10d  %16s:%-4d %-8s %*s-> %s\n", cpu, pid, this->delta, 
72              basename(copyinstr(arg0)), arg2, "func", self->depth * 2, "",
73      copyinstr(arg1));
74          self->depth++;
75   self->last = timestamp;
76  }
77
78  python*:::function-return
79  {
80          this->delta = (timestamp - self->last) / 1000;
81          self->depth -= self->depth > 0 ? 1 : 0;
82          printf("%d %6d %10d  %16s:%-4d %-8s %*s<- %s\n", cpu, pid, this->delta, 
83              basename(copyinstr(arg0)), arg2, "func", self->depth * 2, "",
84      copyinstr(arg1));
85   self->last = timestamp;
86  }

# py_flowinfo.d
C    PID  DELTA(us)            FILE:LINE TYPE     -- FUNC
4 120737          8     site.py:59   func     -> <module>
4 120737        952    os.py:22   func       -> <module>
4 120737       1086     posixpath.py:11   func         -> <module>
4 120737        325       stat.py:4    func           -> <module>
4 120737         45        stat.py:94   func           <- <module>
4 120737        247  genericpath.py:5 func           -> <module>
[...]
4 120737         45   ascii.py:41   func      <- <module>
4 120737         60  ascii.py:41   func     -> getregentry
4 120737         28 codecs.py:77   func       -> __new__
4 120737         24 codecs.py:87   func       <- __new__
4 120737         21  ascii.py:49   func     <- getregentry
4 120737         33 __init__.py:154  func   <- search_function
4 120737        879 func_abc.py:3    func     -> <module>
4 120737       1917      func_abc.py:14   func       -> func_a
4 120737    1000293   func_abc.py:9    func         -> func_b
4 120737    1000211  func_abc.py:5    func         -> func_c
4 120737    1000223  func_abc.py:7    func         <- func_c
4 120737         62       func_abc.py:12   func       <- func_b
4 120737         14 func_abc.py:17   func      <- func_a
4 120737         13  func_abc.py:19   func     <- <module>
^C
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As each function is entered, the last columns are indented by two spaces. This
shows which function is calling which: The previous output begins by showing that
func_a() began and then called func_b().

The DELTA(us) column shows time from that line to the previous line so can be
a bit tricky to read. For example, the line showing a time of 1000293 us reads as
“the time from func_a() beginning to func_b() beginning was 1000293 us, or
1.00 seconds.” 

The LINE column shows the line in the file what was being executed.
If the output looks shuffled, check the CPU C column—the output can shuffle

when the CPU ID changes from one line to the next. If this becomes a problem, a
time stamp column can be included in the output for postsorting. 

See Also: py_flowtime.d

The py_flowtime.d script from the DTraceToolkit has similar functionality to
py_flowinfo.d and does include a TIME(us) column. Its functionality is similar
to the Perl version, pl_flowtime.d, which is demonstrated in the “Perl Scripts”
section under pl_flowinfo.d.

See Also: py_syscolors.d

Also in the DTraceToolkit is a variant called py_syscolors.d that includes sys-
tem calls in the output and uses terminal escape sequences to highlight different
event types in different colors. Its functionality is similar to the Perl version,
pl_syscolors.d, which is demonstrated in the “Perl Scripts” section under pl_
flowinfo.d.

py_calltime.d

This script traces the time taken by Python functions to execute and prints a
report. The times measured are as follows:

Inclusive: Showing the elapsed time for subroutines

Exclusive: Showing which excludes time spent in other called subroutines

This can be used for performance analysis of Perl software to identify which sub-
routines are responsible for latency. 

Script

Here’s the script, with the heading comment truncated to save space:
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Example

The execution of the example program func_abc.py was traced:

 1      #!/usr/sbin/dtrace -Zs
[...]
40      #pragma D option quiet
41
42      dtrace:::BEGIN
43      {
44 printf("Tracing... Hit Ctrl-C to end.\n");
45      }
46
47 python*:::function-entry
48      {
49     self->depth++;
50   self->exclude[self->depth] = 0;
51  self->function[self->depth] = timestamp;
52      }
53
54 python*:::function-return
55 /self->function[self->depth]/
56      {
57            this->elapsed_incl = timestamp - self->function[self->depth];
58            this->elapsed_excl = this->elapsed_incl - self->exclude[self->depth];
59   self->function[self->depth] = 0;
60   self->exclude[self->depth] = 0;
61 this->file = basename(copyinstr(arg0));
62  this->name = copyinstr(arg1);
63
64            @num[this->file, "func", this->name] = count();
65  @num["-", "total", "-"] = count();
66            @types_incl[this->file, "func", this->name] = sum(this->elapsed_incl);
67            @types_excl[this->file, "func", this->name] = sum(this->elapsed_excl);
68            @types_excl["-", "total", "-"] = sum(this->elapsed_excl);
69
70     self->depth--;
71            self->exclude[self->depth] += this->elapsed_incl;
72      }
73
74      dtrace:::END
75      {
76    printf("\nCount,\n");
77 printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "COUNT");
78            printa("   %-20s %-10s %-32s %@8d\n", @num);
79
80   normalize(@types_excl, 1000);
81            printf("\nExclusive function elapsed times (us),\n");
82 printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
83            printa("   %-20s %-10s %-32s %@8d\n", @types_excl);
84
85   normalize(@types_incl, 1000);
86            printf("\nInclusive function elapsed times (us),\n");
87 printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
88            printa("   %-20s %-10s %-32s %@8d\n", @types_incl);
89      }

# py_calltime.d
Tracing... Hit Ctrl-C to end.
^C

continues
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The output has been truncated to fit. The difference between inclusive and
exclusive function times is demonstrated well by the example program: func_a()
had three seconds of inclusive time but only one second of exclusive time—when its
subfunction calls are excluded.

 See Also py_calldist.d

There is a variant of pl_calltime.d in the DTraceToolkit called py_calldist.d
(not included here), which prints times as distribution plots by function name. Its
functionality is similar to the Perl version, pl_calltime.d, which is demon-
strated in the “Perl Scripts” section under pl_callinfo.d.

See Also: py_cputime.d, py_cpudist.d

Also in the DTraceToolkit are variants of the previous two scripts that trace on-
CPU time instead of elapsed time. This serves a different role: Elapsed time
latency can include I/O wait time for system resources (disks, network), whereas

Count,
   FILE TYPE       NAME                    COUNT
   UserDict.py func       <module>              1
[...]
   posixpath.py func       abspath              27
   posixpath.py func       isabs              27
   posixpath.py  func       normpath              27
   abc.py               func       <genexpr>                   31
   - total      -                      381

Exclusive function elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   site.py              func       setencoding                         3
[...]
   os.py                func       _exists                   1756
   __init__.py  func       <module>            1855
   abc.py               func       __new__                   2079
   func_abc.py  func       <module>            2109
   os.py func       <module>            2376
   func_abc.py  func       func_c            1000214
   func_abc.py  func       func_a            1000292
   func_abc.py  func       func_b            1000683
   -  total      -                    3032947

Inclusive function elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   site.py              func       setencoding                         3
[...]
   UserDict.py  func       <module>            7071
   site.py   func       main              9115
   os.py func       <module>            15402
   site.py              func       <module>                  25720
   func_abc.py  func       func_c            1000214
   func_abc.py  func       func_b            2000898
   func_abc.py  func       func_a            3001191
   func_abc.py   func       <module>            3003301
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latency that is on-CPU time reflects the time to process the Python code. Their
functionality is similar to the Perl versions: pl_cputime.d is demonstrated in the
“Perl Scripts” section under pl_calltime.d.

Ruby

Ruby is a general-purpose, interpreted, object-oriented programming language.
Like Python, Ruby supports multiple programming paradigms and was designed
for programming productivity and code readability. 

These scripts trace activity of the Ruby programming language and require the
DTrace ruby provider.21 The ruby provider was made available as a separate
download either in patch, source, or binary form from the “Ruby DTrace” page on
Joyent.22 The Ruby distribution shipped with Mac OS X Leopard integrated the
Joyent ruby provider, and a similar version is available in MacRuby.23 There is
also a Ruby interface for DTrace available,24 ruby-dtrace, allowing DTrace
scripts to be executed from a Ruby program.

To check that the DTrace ruby provider is available, attempt to list probes while
a Ruby program is executing:

This output shows that there is a ruby provider for process ID 11649 and shows
the probe names (NAME column) along with their location in the Ruby source
(FUNCTION column).

21. This was written by Scott Barron of Joyent.

22. https://dtrace.joyent.com/projects/ruby-dtrace/wiki/Ruby+DTrace

23. www.macruby.org/trac/wiki/WhatsNewInLeopard

24. http://ruby-dtrace.rubyforge.org/

# dtrace -ln 'ruby*:::'
   ID   PROVIDER    MODULE            FUNCTION NAME
20406  ruby11649   libruby.1.dylib     rb_call0 function-entry
20407  ruby11649   libruby.1.dylib     rb_call0 function-return
20408  ruby11649   libruby.1.dylib       garbage_collect gc-begin
20409  ruby11649   libruby.1.dylib       garbage_collect gc-end
20410  ruby11649   libruby.1.dylib            rb_eval line
20411  ruby11649   libruby.1.dylib       rb_obj_alloc object-create-done
20412  ruby11649   libruby.1.dylib       rb_obj_alloc object-create-start
20413  ruby11649   libruby.1.dylib      garbage_collect object-free
20414  ruby11649   libruby.1.dylib         rb_longjmp raise
20415  ruby11649   libruby.1.dylib            rb_eval rescue
20416  ruby11649   libruby.1.dylib     ruby_dtrace_probe ruby-probe

https://dtrace.joyent.com/projects/ruby-dtrace/wiki/Ruby+DTrace
www.macruby.org/trac/wiki/WhatsNewInLeopard
http://ruby-dtrace.rubyforge.org/
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The DTrace Ruby provider interface is as follows:

Note that while Ruby calls its functions methods, the provider traces them with
function-entry and function-return probes. If this interface has changed for
the ruby provider version you are using, update the one-liners and scripts that fol-
low accordingly.

This section demonstrates the ruby provider as shipped in ruby 1.8.7 on Mac OS
X version 10.6.

Example Ruby Code

The one-liners and scripts that follow trace the following example Ruby program.

func_abc.rb

This program demonstrates method flow: func_a() calls func_b(), which calls
func_c(). Each method also sleeps for one second, providing known method
latency that can be examined.

provider ruby {
    probe function-entry(class, method, file, lineno);
    probe function-return(class, method, file, lineno);
    probe raise(errinfo, file, lineno);
    probe rescue(file, lineno);
    probe line(file, lineno);
    probe gc-begin();
    probe gc-end();
    probe object-create-start(object, file, lineno);
    probe object-create-done(object, file, lineno);
    probe object-free(object);
};

 1  #!/usr/bin/ruby -w
 2
 3  def func_c
 4    print "Function C\n"
 5    sleep 1
 6  end
 7
 8  def func_b
 9    print "Function B\n"
10    sleep 1
11    func_c
12  end
13
14  def func_a
15    print "Function A\n"
16    sleep 1
17    func_b
18  end
19
20  func_a
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Ruby One-Liners

Ruby one-liners follow.

ruby Provider

Trace method calls showing class and method:

Count method calls by method name:

Count method calls by filename:

Count line execution by filename and line number:

Count object creation by object class name:

Trace garbage collection events with nanosecond time stamps:

Ruby One-Liners Selected Examples

Ruby one-liner selected examples follow.

dtrace -Zn 'ruby*:::function-entry { printf("%s::%s", copyinstr(arg0), 
copyinstr(arg1)); }'

dtrace -Zn 'ruby*:::function-entry { @[copyinstr(arg1)] = count(); }'

dtrace -Zn 'ruby*:::function-entry { @[copyinstr(arg2)] = count(); }'

dtrace -Zn 'ruby*:::line { @[basename(copyinstr(arg0)), arg1] = count(); }'

dtrace -Zn 'ruby*:::object-create-done { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'ruby*:::gc-* { trace(timestamp); }'
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Trace Method Calls Showing Class and Method

The execution of func_abc.rb is traced using this one-liner, which prints class
and method names separated by a period:

Note that the first line reads matched 0 probes. This was because the one-
liner was executed before func_abc.rb or any other Ruby program was running
and so before there were ruby probes for DTrace to see. The -Z option allowed this
to execute; otherwise, DTrace would complain about not finding the probes.

All methods can be seen in the output: the methods from func_abc.rb, as well
as calls to IO.write to write the output text.

Count Method Calls by Filename

The filename from which the methods are called is traced by this one-liner:

All methods were invoked from func_abc.rb program.

Count Line Execution by Filename and Line Number

This one-liner uses the line probe to trace filename and line number:

# dtrace -Zn 'ruby*:::function-entry { printf("%s.%s", copyinstr(arg0), 
copyinstr(arg1)); }'
dtrace: description 'ruby*:::function-entry ' matched 0 probes
CPU     ID            FUNCTION:NAME
  0  73153   rb_call0:function-entry Module.method_added
  0  73153   rb_call0:function-entry Module.method_added
  0  73153   rb_call0:function-entry Module.method_added
  0  73153   rb_call0:function-entry Object.func_a
  0  73153    rb_call0:function-entry Object.print
  0  73153    rb_call0:function-entry IO.write
  0  73153    rb_call0:function-entry Object.sleep
  0  73153   rb_call0:function-entry Object.func_b
  0  73153    rb_call0:function-entry Object.print
  0  73153    rb_call0:function-entry IO.write
  0  73153    rb_call0:function-entry Object.sleep
  0  73153   rb_call0:function-entry Object.func_c
  0  73153    rb_call0:function-entry Object.print
  0  73153    rb_call0:function-entry IO.write
  0  73153    rb_call0:function-entry Object.sleep
^C

# dtrace -Zn 'ruby*:::function-entry { @[copyinstr(arg2)] = count(); }'
dtrace: description 'ruby*:::function-entry ' matched 0 probes
^C

  /opt/DTT/Code/Ruby/func_abc.rb                  15
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The output indicates that the func_slow.rb program (not included in this
book) executed lines 7 and 8 some 300,000 times each. This matches the source,
which executed those lines in a loop:

Ruby Scripts

The scripts included in Table 8-10 are from or based on scripts in the DTraceTool-
kit and have had comments trimmed to save space. 

rb_who.d

This script shows who (UID and PID) is executing how many lines of Ruby from
which filename.

# dtrace -Zn 'ruby*:::line { @[basename(copyinstr(arg0)), arg1] = count(); }'
dtrace: description 'ruby*:::line ' matched 0 probes
^C

  func_slow.rb  3                1
  func_slow.rb  4                1
  func_slow.rb  5                1
  func_slow.rb  6                1
[...]
  func_slow.rb             26           100000
  func_slow.rb             27           100000
  func_slow.rb             16           200000
  func_slow.rb             17           200000
  func_slow.rb 7           300000
  func_slow.rb 8           300000

     6    while i < 300000
     7       i = i + 1
     8       j = i + 1
     9    end

Table 8-10 Ruby Script Summary

Script Description Provider

rb_who.d Counts who is calling methods ruby

rb_calls.d Counts method calls by method name ruby

rb_flowinfo.d Traces method flow with indented output ruby

rb_calltime.d Shows inclusive and exclusive method call times ruby
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Script

The -Z option is used so that this script can begin running before any instances of
Ruby, so before there are any ruby probes available to trace.

Example

While tracing, the func_abc.rb program was executed in another shell window,
which was found to run 12 lines of Ruby:

rb_calls.d

This script counts Ruby method calls from any running ruby process instru-
mented with the ruby provider.

Script

 1      #!/usr/sbin/dtrace -Zs
 2
 3      #pragma D option quiet
 4
 5      dtrace:::BEGIN
 6      {
 7 printf("Tracing... Hit Ctrl-C to end.\n");
 8      }
 9
10      ruby*:::line
11      {
12            @lines[pid, uid, copyinstr(arg0)] = count();
13      }
14
15      dtrace:::END
16      {
17            printf("  %6s %6s %10s %s\n", "PID", "UID", "LINES", "FILE");
18            printa("   %6d %6d %@10d %s\n", @lines);
19      }

# rb_who.d
Tracing... Hit Ctrl-C to end.
^C
      PID    UID      LINES FILE
    11711    501      12 /opt/DTT/Code/Ruby/func_abc.rb

 1      #!/usr/sbin/dtrace -Zs
 2
 3      #pragma D option quiet
 4
 5      dtrace:::BEGIN
 6      {
 7 printf("Tracing Ruby... Hit Ctrl-C to end.\n");
 8      }
 9
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Example

The func_abc.rb program was traced using rb_calls.d:

The PID shows the process ID of the Ruby program. rb_calls.d will trace all
Ruby programs that are running on the system that have the DTrace ruby provider.

rb_flowinfo.d

This program traces Ruby method flow, printing various details.

Script

The TYPE column will only ever contain method for Ruby methods. This script can
be enhanced to include other event types such as libruby execution, system calls, disk
I/O, and so on, which can then be examined in the context of the Ruby program.

10 ruby*:::function-entry
11      {
12 @funcs[pid, basename(copyinstr(arg2)), copyinstr(arg0),
13     copyinstr(arg1)] = count();
14      }
15
16      dtrace:::END
17      {
18              printf("%-6s %-28.28s %-16s %-16s %8s\n", "PID", "FILE", "CLASS",
19      "METHOD", "CALLS");
20 printa("%-6d %-28.28s %-16s %-16s %@8d\n", @funcs);
21      }

# rb_calls.d
Tracing Ruby... Hit Ctrl-C to end.
^C
PID    FILE                CLASS      METHOD          CALLS
11722  func_abc.rb          Object         func_a              1
11722  func_abc.rb          Object         func_b              1
11722  func_abc.rb          Object         func_c              1
11722  func_abc.rb         IO  write                   3
11722  func_abc.rb           Module    method_added         3
11722  func_abc.rb         Object        print              3
11722  func_abc.rb         Object        sleep              3

 1      #!/usr/sbin/dtrace -Zs
[...]
50      #pragma D option quiet
51      #pragma D option switchrate=10
52
53      self int depth;
54
55      dtrace:::BEGIN
56      {

continues
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Example

The func_abc.rb program was traced using rb_flowinfo.d:

57 printf("%s %6s %10s %16s:%-4s %-8s -- %s\n", "C", "PID", "DELTA(us)",
58    "FILE", "LINE", "TYPE", "NAME");
59      }
60
61 ruby*:::function-entry,
62 ruby*:::function-return
63      /self->last == 0/
64      {
65   self->last = timestamp;
66      }
67
68 ruby*:::function-entry
69      {
70            this->delta = (timestamp - self->last) / 1000;
71   this->name = strjoin(strjoin(copyinstr(arg0), "::"), copyinstr(arg1));
72            printf("%d %6d %10d  %16s:%-4d %-8s %*s-> %s\n", cpu, pid, this->delta, 
73                basename(copyinstr(arg2)), arg3, "method", self->depth * 2, "",
74       this->name);
75     self->depth++;
76   self->last = timestamp;
77      }
78
79 ruby*:::function-return
80      {
81            this->delta = (timestamp - self->last) / 1000;
82            self->depth -= self->depth > 0 ? 1 : 0;
83   this->name = strjoin(strjoin(copyinstr(arg0), "::"), copyinstr(arg1));
84            printf("%d %6d %10d  %16s:%-4d %-8s %*s<- %s\n", cpu, pid, this->delta, 
85                basename(copyinstr(arg2)), arg3, "method", self->depth * 2, "",
86       this->name);
87   self->last = timestamp;
88      }

# rb_flowinfo.d
C    PID  DELTA(us)            FILE:LINE TYPE     -- NAME
0  11801          2  func_abc.rb:3    method   -> Module::method_added
0  11801         41 func_abc.rb:3    method   <- Module::method_added
0  11801         37 func_abc.rb:8    method   -> Module::method_added
0  11801         25 func_abc.rb:8    method   <- Module::method_added
0  11801         29  func_abc.rb:14   method   -> Module::method_added
0  11801         25  func_abc.rb:14   method   <- Module::method_added
0  11801         33   func_abc.rb:20   method   -> Object::func_a
0  11801         24 func_abc.rb:15   method    -> Object::print
0  11801         24 func_abc.rb:15   method      -> IO::write
0  11801        164 func_abc.rb:15   method      <- IO::write
0  11801         23 func_abc.rb:15   method    <- Object::print
0  11801         24 func_abc.rb:16   method    -> Object::sleep
0  11801    1000074     func_abc.rb:16   method     <- Object::sleep
0  11801         44 func_abc.rb:17   method    -> Object::func_b
0  11801         33       func_abc.rb:9    method     -> Object::print
0  11801         24      func_abc.rb:9    method     -> IO::write
0  11801         28      func_abc.rb:9    method     <- IO::write
0  11801         21       func_abc.rb:9    method     <- Object::print
0  11801         23 func_abc.rb:10   method     -> Object::sleep
0  11801    1000062    func_abc.rb:10   method       <- Object::sleep
0  11801         45 func_abc.rb:11   method     -> Object::func_c
0  11801         32      func_abc.rb:4   method    -> Object::print
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The output of py_flowinfo.d is truncated to fit. The functions called (and
modules loaded) when initializing Ruby have been traced, followed by the execu-
tion of the program.

As each function is entered, the last columns are indented by two spaces. This
shows which function is calling which: The previous output begins by showing that
func_a() began and then called func_b().

The DELTA(us) column shows time from that line to the previous line and so
can be a bit tricky to read. This example is particularly easy because it has traced
the entry to return of the sleep() methods, each taking about 1.00 seconds.

If the output looks shuffled, check the CPU C column—the output can shuffle
when the CPU ID changes from one line to the next. If this becomes a problem, a
time stamp column can be included in the output for postsorting. 

See Also: rb_flowtime.d

The rb_flowtime.d script from the DTraceToolkit has similar functionality to
rb_flowinfo.d and does include a TIME(us) column. It is similar to the Perl
version, pl_flowtime.d, which is demonstrated in the “Perl Scripts” section
under pl_flowinfo.d.

See Also: rb_syscolors.d

Also in the DTraceToolkit is a variant called rb_syscolors.d, which includes
system calls in the output and uses terminal escape sequences to highlight different
event types in different colors. It is similar to the Perl version, pl_syscolors.d,
which is demonstrated in the “Perl Scripts” section under pl_flowinfo.d.

rb_calltime.d

This script traces the time taken by Ruby methods, object creation, and garbage
collection and prints a report.  The times for methods are as follows:

Inclusive: Showing the elapsed time for methods

Exclusive: Showing which excludes time spent in other called methods

0  11801         46      func_abc.rb:4   method      -> IO::write
0  11801         28      func_abc.rb:4   method      <- IO::write
0  11801         21      func_abc.rb:4    method     <- Object::print
0  11801         23      func_abc.rb:5    method     -> Object::sleep
0  11801    1000063   func_abc.rb:5    method        <- Object::sleep
0  11801         38       func_abc.rb:5    method     <- Object::func_c
0  11801         24 func_abc.rb:11   method    <- Object::func_b
0  11801         24   func_abc.rb:17   method   <- Object::func_a
^C
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This can be used for performance analysis of Ruby software to identify what is
responsible for latency. 

Script

 1      #!/usr/sbin/dtrace -Zs
[...]
40      #pragma D option quiet
41
42      dtrace:::BEGIN
43      {
44 printf("Tracing... Hit Ctrl-C to end.\n");
45      }
46
47 ruby*:::function-entry
48      {
49     self->depth++;
50   self->exclude[self->depth] = 0;
51  self->function[self->depth] = timestamp;
52      }
53
54 ruby*:::function-return
55 /self->function[self->depth]/
56      {
57            this->elapsed_incl = timestamp - self->function[self->depth];
58            this->elapsed_excl = this->elapsed_incl - self->exclude[self->depth];
59   self->function[self->depth] = 0;
60   self->exclude[self->depth] = 0;
61 this->file = basename(copyinstr(arg2));
62   this->name = strjoin(strjoin(copyinstr(arg0), "::"), copyinstr(arg1));
63
64            @num[this->file, "func", this->name] = count();
65  @num["-", "total", "-"] = count();
66            @types_incl[this->file, "func", this->name] = sum(this->elapsed_incl);
67            @types_excl[this->file, "func", this->name] = sum(this->elapsed_excl);
68            @types_excl["-", "total", "-"] = sum(this->elapsed_excl);
69
70     self->depth--;
71            self->exclude[self->depth] += this->elapsed_incl;
72      }
73
74 ruby*:::object-create-start
75      {
76   self->object = timestamp;
77      }
78
79 ruby*:::object-create-done
80      /self->object/
81      {
82 this->elapsed = timestamp - self->object;
83    self->object = 0;
84 this->file = basename(copyinstr(arg1));
85            this->file = this->file != NULL ? this->file : ".";
86  this->name = copyinstr(arg0);
87
88            @num[this->file, "obj-new", this->name] = count();
89            @types[this->file, "obj-new", this->name] = sum(this->elapsed);
90
91 self->exclude[self->depth] += this->elapsed;
92      }
93
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Example

The execution of the example program func_abc.rb was traced:

94      ruby*:::gc-begin
95      {
96    self->gc = timestamp;
97      }
98
99      ruby*:::gc-end
100      /self->gc/
101      {
102 this->elapsed = timestamp - self->gc;
103     self->gc = 0;
104  @num[".", "gc", "-"] = count();
105 @types[".", "gc", "-"] = sum(this->elapsed);
106 self->exclude[self->depth] += this->elapsed;
107      }
108
109      dtrace:::END
110      {
111    printf("\nCount,\n");
112 printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "COUNT");
113            printa("   %-20s %-10s %-32s %@8d\n", @num);
114
115    normalize(@types, 1000);
116  printf("\nElapsed times (us),\n");
117 printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
118            printa("   %-20s %-10s %-32s %@8d\n", @types);
119
120   normalize(@types_excl, 1000);
121            printf("\nExclusive function elapsed times (us),\n");
122 printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
123            printa("   %-20s %-10s %-32s %@8d\n", @types_excl);
124
125   normalize(@types_incl, 1000);
126            printf("\nInclusive function elapsed times (us),\n");
127 printf("   %-20s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "TOTAL");
128            printa("   %-20s %-10s %-32s %@8d\n", @types_incl);
129      }

# rb_calltime.d
Tracing... Hit Ctrl-C to end.
^C

Count,
   FILE TYPE       NAME                    COUNT
   .    obj-new    NoMemoryError              1
   .     obj-new    SystemStackError              1
   .    obj-new    ThreadGroup               1
   .  obj-new    fatal              1
   func_abc.rb   func       Object::func_a                          1
   func_abc.rb   func       Object::func_b                          1
   func_abc.rb   func       Object::func_c                          1
   .  obj-new    Object              3
   func_abc.rb  func       IO::write              3
   func_abc.rb          func       Module::method_added                    3
   func_abc.rb  func       Object::print                          3
   func_abc.rb  func       Object::sleep                          3
   - total      -                       15

continues
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The output has been truncated to fit. The difference between inclusive and
exclusive function times is demonstrated well by the example program: func_a()
had three seconds of inclusive time but only one second of exclusive time—when its
subfunction calls are excluded.

See Also: rb_calldist.d

There is a variant of rb_calltime.d in the DTraceToolkit called rb_calld-
ist.d (not included here), which prints times as distribution plots by subroutine
name. Its functionality is similar to the Perl version, pl_calltime.d, which is
demonstrated in the “Perl Scripts” section under pl_callinfo.d.

See Also: rb_cputime.d, rb_cpudist.d

Also in the DTraceToolkit are variants of the previous two scripts that trace on-
CPU time instead of elapsed time. This serves a different role: elapsed time
latency can include I/O wait time for system resources (disks, network), whereas
latency that is on-CPU time is reflective of the time to process the Ruby code.
Their functionality is similar to the Perl versions: pl_cputime.d is demonstrated
in the “Perl Scripts” section under pl_calltime.d.

See Also

Other Ruby scripts are in the DTraceToolkit in the /Ruby directory.

Elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   .     obj-new    SystemStackError              4
   .  obj-new    fatal              9
   .    obj-new    NoMemoryError              9
   .    obj-new    ThreadGroup                          11
   .   obj-new    Object              27

Exclusive function elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   func_abc.rb          func       Module::method_added                   10
   func_abc.rb  func       IO::write                          115
   func_abc.rb   func       Object::func_c                        392
   func_abc.rb   func       Object::func_b                        444
   func_abc.rb   func       Object::print                         473
   func_abc.rb   func       Object::func_a                        521
   func_abc.rb          func       Object::sleep               3000324
   -  total      -                    3002281

Inclusive function elapsed times (us),
   FILE TYPE       NAME                    TOTAL
   func_abc.rb          func       Module::method_added                   10
   func_abc.rb  func       IO::write                          115
   func_abc.rb   func       Object::print                         588
   func_abc.rb          func       Object::func_c              1000523
   func_abc.rb          func       Object::func_b              2001179
   func_abc.rb          func       Object::sleep               3000324
   func_abc.rb          func       Object::func_a              3002271
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rb_stat.d

This counts Ruby events from all running Ruby software on the system and prints
per-second totals. It accepts an interval as an optional argument, similar to other
*stat tools.

rb_malloc.d

This script uses the pid provider in addition to the ruby provider to trace libc malloc()
calls on Oracle Solaris so that memory allocations can be seen in the context of
Ruby code:

The script can be modified to run on other operating systems by adjusting the
probe name for the malloc() routine.

# rb_stat.d
TIME                   EXEC/s METHOD/s OBJNEW/s OBJFRE/s RAIS/s RESC/s   GC/s
2010 Jul  9 22:41:32        0     0        0 0      0      0      0
2010 Jul  9 22:41:33        1  90550        7        0      0      0      0
2010 Jul  9 22:41:34        0 551264        0        0      0      0      0
2010 Jul  9 22:41:35        0 556786        0        0      0      0      0
2010 Jul  9 22:41:36        0 559991        0        0      0      0      0
2010 Jul  9 22:41:37        0  41419        0        0      0      0      0
2010 Jul  9 22:41:38        0     0        0 0      0      0      0
^C

# rb_malloc.d -c ./func_abc.rb
Tracing... Hit Ctrl-C to end.
Function A
Function B
Function C
Ruby malloc byte distributions by recent Ruby operation,
[...]
   func_abc.rb, method, IO::write 
           value  ------------- Distribution ------------- count
            2048 |              0
            4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
            8192 |              0

   ., objnew, SystemStackError 
           value  ------------- Distribution ------------- count
               1 |              0
               2 |              3
               4 |@@@@             32
               8 |@@              15

16 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@   279
              32 |@@@        30
              64 |              2
             128 |              0
[...]
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Shell

A DTrace provider for the Bourne shell (sh) has been written,25 which can be used
for the analysis of shell script operation. Provider documentation, source patch,
and binary versions of sh for x86 and SPARC are available on the DTrace Providers
for Various Shells site.26 It is not yet shipped by default on any operating system.

To check that the sh provider is available, try to list probes while a Bourne shell
is running:

This output shows that there is a sh provider for process ID 121038 and shows
the probe names in the NAME column. The Bourne shell provider interface is
described by PSARC 2008/00827 and is as follows:

25. This is by Alan Hargreaves.

26. http://hub.opensolaris.org/bin/view/Community+Group+dtrace/shells

# dtrace -ln 'sh*:::'
   ID   PROVIDER    MODULE               FUNCTION NAME
160958   sh121038         sh    execute builtin-entry
160959   sh121038         sh    execute builtin-return
160960   sh121038         sh    execute command-entry
160961   sh121038         sh    execute command-return
160962   sh121038         sh    execute function-entry
160963   sh121038         sh    execute function-return
160964   sh121038          sh      execute line
160965   sh121038         sh     exfile script-done
160966   sh121038         sh     exitsh script-done
160967   sh121038         sh     exfile script-start
160968   sh121038         sh    execute subshell-entry
160969   sh121038         sh    execute subshell-return

provider sh {
    probe function-entry(file, function, lineno);
    probe function-return(file, function, rval);
    probe builtin-entry(file, function, lineno);
    probe builtin-return(file, function, rval);
    probe command-entry(file, function, lineno);
    probe command-return(file, function, rval);
    probe script-start(file);
    probe script-done(file, rval);
    probe subshell-entry(file, childpid);
    probe subshell-return(file, rval);
    probe line(file, lineno);
    probe variable-set(file, variable, value);
    probe variable-unset(file, variable);
};

27. http://arc.opensolaris.org/caselog/PSARC/2008/008/

http://hub.opensolaris.org/bin/view/Community+Group+dtrace/shells
http://arc.opensolaris.org/caselog/PSARC/2008/008/
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This section demonstrates the sh provider on Oracle Solaris, using the sh exe-
cutable from the Providers for Various Shells site.

Example Shell Code

The one-liners and scripts that follow trace this example shell script.

func_abc.sh

This script demonstrates function flow: func_a() calls func_b(), which calls
func_c(). Each function also sleeps for one second, providing known function
latency that can be examined.

Shell One-Liners

Shell one-liners follow.

sh Provider

Trace function calls showing function name:

 1  #!/usr/bin/sh
 2
 3  func_c()
 4  {
 5          echo "Function C"
 6          sleep 1
 7  }
 8
 9  func_b()
10  {
11   echo "Function B"
12          sleep 1
13          func_c
14  }
15
16  func_a()
17  {
18   echo "Function A"
19          sleep 1
20          func_b
21  }
22
23  func_a

dtrace -Zn 'sh*:::function-entry { trace(copyinstr(arg1)); }'
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Trace command execution showing command name:

Trace built-in calls showing builtin name:

Count function calls by function name:

Count function calls by filename:

Count line execution by filename and line number:

Shell One-Liners Selected Examples

Shell one-liner selected examples follow.

Trace Function Calls Showing Function Name

The execution of func_abc.sh is traced using this one-liner.

Note that the first line reads matched 0 probes. This was because the one-
liner was executed before func_abc.sh or any other (instrumented) Bourne shell

dtrace -Zn 'sh*:::command-entry { trace(copyinstr(arg1)); }'

dtrace -Zn 'sh*:::builtin-entry { trace(copyinstr(arg1)); }'

dtrace -Zn 'sh*:::function-entry { @[copyinstr(arg1)] = count(); }'

dtrace -Zn 'sh*:::function-entry { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'sh*:::line { @[basename(copyinstr(arg0)), arg1] = count(); }'

# dtrace -Zn 'sh*:::function-entry { trace(copyinstr(arg1)); }'
dtrace: description 'sh*:::function-entry ' matched 0 probes
CPU     ID            FUNCTION:NAME
  6 160962   execute:function-entry func_a
  6 160962   execute:function-entry func_b
  6 160962   execute:function-entry func_c
^C
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was running and so before there were sh probes for DTrace to see. The -Z option
allowed this to execute; otherwise, DTrace would complain about not finding the
probes.

Count Function Calls by Filename

All three functions are invoked from the func_abc.sh script.

Count Line Execution by Filename and Line Number

This one-liner uses the line probe to trace the filename and line number:

The output indicates that the func_slow.sh program (not included in this
book) executed line 7 exactly 301 times and line 9 exactly 300 times. This matches
the source, which executed those lines in a loop:

The output also indicated that line 1 was executed 600 times; this is not line 1 of
the shell script, which is the interpreter line but is line 1 of shell code run in com-
mand substitution subshells (the code between ` on line 9). This could be differen-
tiated a number of ways, including using the subshell-entry and subshell-
return probes or by including the PID in the output.

# dtrace -Zn 'sh*:::function-entry { @[copyinstr(arg0)] = count(); }'
dtrace: description 'sh*:::function-entry ' matched 0 probes
^C

  /opt/DTT/Code/Shell/func_abc.sh                  3

# dtrace -Zn 'sh*:::line { @[basename(copyinstr(arg0)), arg1] = count(); }'
dtrace: description 'sh*:::line ' matched 0 probes
^C

  func_slow.sh  5                1
[...]
  func_slow.sh   19              200
  func_slow.sh   17              201
  func_slow.sh            9              300
  func_slow.sh            7              301
  func_slow.sh            1              600

 6          i=0
 7  while [ $i -lt 300 ]
 8          do
 9       i=`expr $i + 1`
10          done
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Shell Scripts

The scripts included in Table 8-11 are from or based on scripts in the DTraceTool-
kit and have had comments trimmed to save space. 

sh_who.d

This script shows who (UID and PID) is executing how many lines of shell from
which filename.

Script

The -Z option is used so that this script can begin running before any instances of
the instrumented Bourne shell—and so before there are any sh probes available to
trace.

Examples

Example sh_who.d scripts follow.

 1      #!/usr/sbin/dtrace -Zs
 2
 3      #pragma D option quiet
 4
 5      dtrace:::BEGIN
 6      {
 7 printf("Tracing... Hit Ctrl-C to end.\n");
 8      }
 9
10      sh*:::line
11      {
12            @lines[pid, uid, copyinstr(arg0)] = count();
13      }
14
15      dtrace:::END
16      {
17            printf("  %6s %6s %6s %s\n", "PID", "UID", "LINES", "FILE");
18 printa("   %6d %6d %@6d %s\n", @lines);
19      }

Table 8-11 Shell Script Summary

Script Description Provider

sh_who.d Counts who is calling how many lines of shell sh

sh_calls.d Counts function/builtin/command calls sh

sh_flowinfo.d Traces function flow with indented output sh
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Example Script. While tracing, the func_abc.sh program was executed in
another shell window:

This has traced func_abc.sh executing nine lines of shell. 

Production Script. Here we trace an instance of starting Mozilla Firefox:

Firefox itself (PID 13677) ran 75 lines of code. There are also instances of
firefox running a single line of code with a different PID each time, which are
calls to subshells.

sh_calls.d

This script counts shell function and built-in and command calls from any run-
ning Bourne shells on the system that are instrumented with the sh provider.

Script

# sh_who.d
Tracing... Hit Ctrl-C to end.
^C
      PID   UID  LINES FILE
   121791      0     9 /opt/DTT/Code/Shell/func_abc.sh

# sh_who.d
Tracing... Hit Ctrl-C to end.
^C
      PID   UID  LINES FILE
    13678    100      1 firefox
    13679    100      1 firefox
    13680    100      1 firefox
    13681    100      1 firefox
    13683    100      1 firefox
    13685    100      1 firefox
    13686    100      1 firefox
    13687    100      1 firefox
    13690    100      1 firefox
    13693    100     1 /usr/lib/firefox/run-mozilla.sh
    13694    100     1 /usr/lib/firefox/run-mozilla.sh
    13695    100     1 /usr/lib/firefox/run-mozilla.sh
    13692    100    55 /usr/lib/firefox/run-mozilla.sh
    13677 100     75 firefox

 1      #!/usr/sbin/dtrace -Zs
 2
 3      #pragma D option quiet
 4

continues
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Examples

Example scripts follow.

Example Script. The func_abc.sh script was traced using sh_calls.d:

The three functions are visible, along with three calls to the echo shell built in
and three calls to the sleep(1) command.

Production Script. The following traced the Mozilla Firefox start script:

 5      dtrace:::BEGIN
 6      {
 7 printf("Tracing... Hit Ctrl-C to end.\n");
 8      }
 9
10  sh*:::function-entry
11      {
12            @calls[basename(copyinstr(arg0)), "func", copyinstr(arg1)] = count();
13      }
14
15      sh*:::builtin-entry
16      {
17            @calls[basename(copyinstr(arg0)), "builtin", copyinstr(arg1)] = count();
18      }
19
20      sh*:::command-entry
21      {
22            @calls[basename(copyinstr(arg0)), "cmd", copyinstr(arg1)] = count();
23      }
24
25  sh*:::subshell-entry
26      /arg1 != 0/
27      {
28            @calls[basename(copyinstr(arg0)), "subsh", "-"] = count();
29      }
30
31      dtrace:::END
32      {
33            printf(" %-22s %-10s %-32s %8s\n", "FILE", "TYPE", "NAME", "COUNT");
34            printa(" %-22s %-10s %-32s %@8d\n", @calls);
35      }

# sh_calls.d
Tracing... Hit Ctrl-C to end.
^C
 FILE TYPE       NAME                    COUNT
 func_abc.sh  func       func_a              1
 func_abc.sh  func       func_b              1
 func_abc.sh  func       func_c              1
 func_abc.sh  builtin    echo              3
 func_abc.sh cmd        sleep                      3
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The Firefox start script called run-mozilla.sh, which can be seen both as a
cmd call in the previous output from the firefox script and as additional calls
from the run-mozilla.sh script.

The built-in called [ is the test built-in and was called 20 times by run-
mozilla.sh and 18 times by firefox. The firefox script also called 20 sub-
shells.

sh_flowinfo.d

This program traces Shell function flow, printing various details.

Script

Here’s the script, with header comment truncated to save space:

# sh_calls.d
Tracing... Hit Ctrl-C to end.
^C
 FILE TYPE       NAME                    COUNT
 firefox    builtin    .                1
 firefox    builtin    break               1
 firefox    builtin    exit               1
 firefox    builtin    pwd               1
 firefox    builtin    test               1
 firefox     cmd        /usr/lib/firefox/run-mozilla.sh       1
 run-mozilla.sh   builtin    break              1
 run-mozilla.sh  builtin    exit              1
 run-mozilla.sh   builtin    return              1
 run-mozilla.sh   builtin    shift              1
 run-mozilla.sh  builtin    type              1
 run-mozilla.sh         cmd        /usr/lib/firefox/firefox-bin        1
 run-mozilla.sh func       moz_run_program                        1
 run-mozilla.sh func       moz_test_binary                        1
 firefox    builtin    echo               2
 firefox    func       moz_pis_startstop_scripts              2
 firefox    builtin    cd               3
 firefox                builtin    export                    3
 run-mozilla.sh   builtin    export              3
 firefox    builtin    :                6
 firefox   func       moz_spc_verbose_echo                    6
 run-mozilla.sh  subsh      -                9
 firefox    builtin    [               18
 firefox   subsh      -                20
 run-mozilla.sh  builtin    [               20

 1  #!/usr/sbin/dtrace -Zs
[...]
46
47  #pragma D option quiet
48  #pragma D option switchrate=10
49
50  self int depth;
51

continues
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52  dtrace:::BEGIN
53  {
54    self->depth = 0;
55          printf("%3s %6s %10s  %16s:%-4s %-8s -- %s\n", "C", "PID", "DELTA(us)",
56   "FILE", "LINE", "TYPE", "NAME");
57  }
58
59  sh*:::function-entry,
60  sh*:::function-return,
61  sh*:::builtin-entry,
62  sh*:::builtin-return,
63  sh*:::command-entry,
64  sh*:::command-return,
65  sh*:::subshell-entry,
66  sh*:::subshell-return
67  /self->last == 0/
68  {
69   self->last = timestamp;
70  }
71
72  sh*:::function-entry
73  {
74          this->delta = (timestamp - self->last) / 1000;
75 printf("%3d %6d %10d %16s:%-4d %-8s %*s-> %s\n", cpu, pid,
76  this->delta, basename(copyinstr(arg0)), arg2, "func",
77   self->depth * 2, "", copyinstr(arg1));
78          self->depth++;
79   self->last = timestamp;
80  }
81
82  sh*:::function-return
83  {
84          this->delta = (timestamp - self->last) / 1000;
85          self->depth -= self->depth > 0 ? 1 : 0;
86          printf("%3d %6d %10d  %16s:- %-8s %*s<- %s\n", cpu, pid,
87              this->delta, basename(copyinstr(arg0)), "func", self->depth * 2,
88      "", copyinstr(arg1));
89   self->last = timestamp;
90  }
91
92  sh*:::builtin-entry
93  {
94          this->delta = (timestamp - self->last) / 1000;
95 printf("%3d %6d %10d %16s:%-4d %-8s %*s-> %s\n", cpu, pid,
96 this->delta, basename(copyinstr(arg0)), arg2, "builtin",
97   self->depth * 2, "", copyinstr(arg1));
98          self->depth++;
99   self->last = timestamp;
100  }
101
102  sh*:::builtin-return
103  {
104          this->delta = (timestamp - self->last) / 1000;
105          self->depth -= self->depth > 0 ? 1 : 0;
106          printf("%3d %6d %10d  %16s:-    %-8s %*s<- %s\n", cpu, pid,
107 this->delta, basename(copyinstr(arg0)), "builtin",
108   self->depth * 2, "", copyinstr(arg1));
109   self->last = timestamp;
110  }
111
112  sh*:::command-entry
113  {
114          this->delta = (timestamp - self->last) / 1000;
115 printf("%3d %6d %10d  %16s:%-4d %-8s %*s-> %s\n", cpu, pid,
116 this->delta, basename(copyinstr(arg0)), arg2, "cmd",
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Example

The func_abc.sh program was traced using sh_flowinfo.d:

117   self->depth * 2, "", copyinstr(arg1));
118          self->depth++;
119   self->last = timestamp;
120  }
121
122  sh*:::command-return
123  {
124          this->delta = (timestamp - self->last) / 1000;
125          self->depth -= self->depth > 0 ? 1 : 0;
126          printf("%3d %6d %10d  %16s:-    %-8s %*s<- %s\n", cpu, pid,
127  this->delta, basename(copyinstr(arg0)), "cmd",
128   self->depth * 2, "", copyinstr(arg1));
129   self->last = timestamp;
130  }
131
132  sh*:::subshell-entry
133  /arg1 != 0/
134  {
135          this->delta = (timestamp - self->last) / 1000;
136          printf("%3d %6d %10d  %16s:-    %-8s %*s-> pid %d\n", cpu, pid,
137  this->delta, basename(copyinstr(arg0)), "subsh",
138    self->depth * 2, "", arg1);
139          self->depth++;
140   self->last = timestamp;
141  }
142
143  sh*:::subshell-return
144  /self->last/
145  {
146          this->delta = (timestamp - self->last) / 1000;
147          self->depth -= self->depth > 0 ? 1 : 0;
148          printf("%3d %6d %10d  %16s:-    %-8s %*s<- = %d\n", cpu, pid,
149  this->delta, basename(copyinstr(arg0)), "subsh",
150    self->depth * 2, "", arg1);
151   self->last = timestamp;
152  }

# sh_flowinfo.d
  C    PID  DELTA(us)            FILE:LINE TYPE     -- NAME
  0 121880          7   func_abc.sh:23   func     -> func_a
  0 121880         72   func_abc.sh:18 builtin    -> echo
  0 121880        109   func_abc.sh:- builtin    <- echo
  0 121880       8997       func_abc.sh:19 cmd        -> sleep
  0 121880    1012848      func_abc.sh:- cmd        <- sleep
  0 121880        113       func_abc.sh:20  func       -> func_b
  0 121880         48  func_abc.sh:11   builtin      -> echo
  0 121880         96  func_abc.sh:-    builtin      <- echo
  0 121880       8486      func_abc.sh:12   cmd          -> sleep
  0 121880    1014084     func_abc.sh:-    cmd          <- sleep
  0 121880        118       func_abc.sh:13   func         -> func_c
  0 121880         48 func_abc.sh:5 builtin        -> echo
  0 121880         94 func_abc.sh:- builtin        <- echo
  0 121880       7852      func_abc.sh:6   cmd            -> sleep
  0 121880    1012783    func_abc.sh:-    cmd           <- sleep
  0 121880         91 func_abc.sh:-    func       <- func_c
  0 121880         46  func_abc.sh:-    func       <- func_b
  0 121880         10   func_abc.sh:-    func     <- func_a
^C
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As each function is entered, the last columns are indented by two spaces. This
shows which function is calling which: The previous output begins by showing that
func_a() began and then called func_b().

The DELTA(us) column shows time from that line to the previous line. This
shows that the sleep commands are taking around 1.01 seconds, as expected. 

If the output looks shuffled, check the CPU C column—the output can shuffle
when the CPU ID changes from one line to the next. If this becomes a problem, a
time stamp column can be included in the output for postsorting. 

See Also: sh_flowtime.d, sh_syscolors.d

The sh_flowtime.d script from the DTraceToolkit has similar functionality to
sh_flowinfo.d and does include a TIME(us) column. Another similar script is
sh_syscolors, which includes system calls in the output, highlighted in differ-
ent colors using terminal escape sequences. They are similar to the Perl versions,
pl_flowtime.d and pl_syscolors.d, which are demonstrated in the “Perl
Scripts” section under pl_flowinfo.d.

See Also

The DTraceToolkit has other scripts for the sh provider, including sh_call-
time.d for a report of inclusive and exclusive function time, and variants. Their
functionality is similar to the Perl versions, which can be seen under pl_call-
time.d in the “Perl Scripts” section.

Tcl

Tcl (often pronounced “tickle”) is a scripting language, so TCL programs are exe-
cuted under an interpreter. Tcl evolved as a popular language to enable rapid soft-
ware prototyping, including GUI development with the use of the tk GUI toolkit,
where it is often used to add value to other applications.

These scripts trace activity of the Tcl programming language, making use of the
Tcl DTrace provider,28 which was integrated into the Tcl source in version tcl8.4.16
and 8.5b1. See “DTrace” on the Tcl wiki for details.29

28. This was written by Daniel Steffen.

29. http://wiki.tcl.tk/19923

http://wiki.tcl.tk/19923
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For the Tcl DTrace provider to be available, the Tcl source must be compiled
with the --enable-dtrace option. Getting this working requires familiarity with
source compilation.

To check that the tcl provider is available, attempt to list probes while a Tcl pro-
gram is executing:

This output shows that there is a tcl provider for process ID 807 and shows the
probe names in the NAME column. The DTrace Tcl provider interface is described
on the wiki and in the source file generic/tclDTrace.d. It is as follows:

This section demonstrates the Tcl provider on Oracle Solaris, using Tcl 8.4.16.

# dtrace -ln 'tcl*:::'
   ID   PROVIDER    MODULE               FUNCTION NAME
63285     tcl807  libtcl8.4.so       TclEvalObjvInternal cmd-args
63286     tcl807  libtcl8.4.so       TclEvalObjvInternal cmd-entry
63287     tcl807 libtcl8.4.so      TclEvalObjvInternal cmd-result
63288     tcl807 libtcl8.4.so      TclEvalObjvInternal cmd-return
63289     tcl807 libtcl8.4.so       TclExecuteByteCode inst-done
63290     tcl807 libtcl8.4.so      TclExecuteByteCode inst-start
63291     tcl807      libtcl8.4.so  TclPtrSetVar obj-create
63292     tcl807      libtcl8.4.so Tcl_ConcatObj obj-create
[...output truncated...]
63343     tcl807 libtcl8.4.so CallCommandTraces obj-free
63344     tcl807 libtcl8.4.so TclRenameCommand obj-free
63345     tcl807 libtcl8.4.so TclObjInterpProc proc-args
63346     tcl807 libtcl8.4.so TclObjInterpProc proc-entry
63347     tcl807 libtcl8.4.so TclObjInterpProc proc-result
63348     tcl807 libtcl8.4.so TclObjInterpProc proc-return
63349     tcl807      libtcl8.4.so   DTraceObjCmd tcl-probe

provider tcl {
    probe proc-entry(procname, argc, argv);
    probe proc-return(procname, retcode);
    probe proc-result(procname, retcode, retval, retobj);
    probe proc-args(procname, args, ...);
    probe cmd-entry(cmdname, argc, argv);
    probe cmd-return(cmdname, retval);
    probe cmd-result(cmdname, retcode, retval, retobj);
    probe cmd-args(procname, args, ...);
    probe inst-start(instname, depth, stackobj);
    probe inst-done(instname, depth, stackobj);
    probe obj-create(object);
    probe obj-free(object);
    probe tcl-probe(strings, ...);
};
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Example Tcl Code

The one-liners and scripts that follow trace the following example Tcl program.

func_abc.tcl

This script demonstrates procedure flow: func_a() calls func_b(), which calls
func_c(). Each procedure also sleeps for one second, providing known procedure
latency that can be examined.

Tcl One-Liners

Tcl one-liners follow.

tcl Provider

Trace procedure calls showing procedure name:

Trace command calls showing command name:

 1      #!./tclsh
 2
 3      proc func_c {} {
 4    puts "Function C"
 5            after 1000
 6      }
 7
 8      proc func_b {} {
 9    puts "Function B"
10            after 1000
11            func_c
12      }
13
14      proc func_a {} {
15    puts "Function A"
16            after 1000
17            func_b
18      }
19
20      func_a

dtrace -Zn 'tcl*:::proc-entry { trace(copyinstr(arg0)); }'

dtrace -Zn 'tcl*:::cmd-entry { trace(copyinstr(arg0)); }'
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Count procedure calls by procedure name:

Count command calls by command name:

Count object allocation by object name:

Count all Tcl events:

Tcl One-Liners Selected Examples

Tcl one-liner selected example follow.

Trace Procedure Calls Showing Procedure Name

The execution of func_abc.sh is traced using this one-liner.

Note that the first line reads matched 0 probes. This was because the one-
liner was executed before func_abc.tcl or any other Tcl program was running
and so before there were tcl probes for DTrace to see. The -Z option allowed this to
execute; otherwise, DTrace would complain about not finding the probes.

The first function was tclInit(), which is part of Tcl initialization for pro-
gram execution.

dtrace -Zn 'tcl*:::proc-entry { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'tcl*:::proc-entry { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'tcl*:::object-create { @[copyinstr(arg0)] = count(); }'

dtrace -Zn 'tcl*::: { @[probename] = count(); }'

# dtrace -Zn 'tcl*:::proc-entry { trace(copyinstr(arg0)); }'
dtrace: description 'tcl*:::proc-entry ' matched 0 probes
CPU     ID            FUNCTION:NAME
  0  63346      TclObjInterpProc:proc-entry   tclInit
  0  63346      TclObjInterpProc:proc-entry   func_a
  0  63346      TclObjInterpProc:proc-entry   func_b
  0  63346      TclObjInterpProc:proc-entry   func_c
^C
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Trace Command Calls Showing Command Name

This is tracing func_abc.tcl and shows the execution of all the built-in Tcl com-
mands, as well as the procedure calls.

Tcl Scripts

The scripts included in Table 8-12 are from or based on scripts in the DTraceTool-
kit and have had comments trimmed to save space. 

tcl_who.d

This script shows who is executing how much Tcl, in terms of Tcl commands.

Script

The -Z option is used so that this script can begin running before any instances of
Tcl—and so before there are any tcl probes available to trace.

Table 8-12 Tcl Script Summary

Script Description Provider

tcl_who.d Counts who is calling how many Tcl commands tcl

tcl_calls.d Counts procedure and command calls tcl

tcl_procflow.d Traces procedure flow with indented output tcl

# dtrace -Zn 'tcl*:::cmd-entry { trace(copyinstr(arg0)); }'
dtrace: description 'tcl*:::cmd-entry ' matched 0 probes
CPU     ID            FUNCTION:NAME
  1  63286    TclEvalObjvInternal:cmd-entry   if
  1  63286    TclEvalObjvInternal:cmd-entry   info
  1  63286    TclEvalObjvInternal:cmd-entry   proc
  1  63286    TclEvalObjvInternal:cmd-entry   tclInit
[...output truncated...]
  1  63286    TclEvalObjvInternal:cmd-entry   func_a
  1  63286    TclEvalObjvInternal:cmd-entry   puts
  1  63286    TclEvalObjvInternal:cmd-entry   after
  0  63286    TclEvalObjvInternal:cmd-entry   func_b
  0  63286    TclEvalObjvInternal:cmd-entry   puts
  0  63286    TclEvalObjvInternal:cmd-entry   after
  0  63286    TclEvalObjvInternal:cmd-entry   func_c
  0  63286    TclEvalObjvInternal:cmd-entry   puts
  0  63286    TclEvalObjvInternal:cmd-entry   after
  0  63286    TclEvalObjvInternal:cmd-entry   exit

 1      #!/usr/sbin/dtrace -Zs
 2
 3      #pragma D option quiet
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Examples

While tracing, the func_abc.tcl program was executed in another shell window:

This has traced the func_abc.tcl performing 82 commands. If multiple Tcl
programs were running on the system, this script could identify the busiest, in
terms of calls executed.

tcl_calls.d

This script counts Tcl procedure and command calls from any running Tcl pro-
gram on the system, which has the tcl provider.

Script

 4
 5      dtrace:::BEGIN
 6      {
 7            printf("Tracing Tcl... Hit Ctrl-C to end.\n");
 8      }
 9
10      tcl*:::cmd-entry
11      {
12            @calls[pid, uid, curpsinfo->pr_psargs] = count();
13      }
14
15      dtrace:::END
16      {
17            printf("  %6s %6s %6s %-55s\n", "PID", "UID", "CMDS "ARGS");
18 printa("   %6d %6d %@6d %-55.55s\n", @calls);
19      }

# tcl_who.d
Tracing Tcl... Hit Ctrl-C to end.
^C
      PID    UID   CMDS ARGS
   123172    100  82 ./tclsh /opt/DTT/Code/Tcl/func_abc.tcl

 1      #!/usr/sbin/dtrace -Zs
 2
 3      #pragma D option quiet
 4
 5      dtrace:::BEGIN
 6      {
 7            printf("Tracing Tcl... Hit Ctrl-C to end.\n");
 8      }
 9
10      tcl*:::proc-entry
11      {
12            @calls[pid, "proc", copyinstr(arg0)] = count();
13      }
14

continues
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Examples

The func_abc.tcl program was traced using tcl_calls.d:

The output has been truncated to fit; the procedure calls from the program can
be seen as both executed commands (TYPE "cmd") and procedures (TYPE
"proc"), along with tclInit() to initialize the Tcl program. The commands that
are not procedures are Tcl built-ins.

tcl_procflow.d

This program traces Tcl procedure flow, showing time stamps.

Script

Here’s the script, with heading comment truncated to save space:

15      tcl*:::cmd-entry
16      {
17 @calls[pid, "cmd", copyinstr(arg0)] = count();
18      }
19
20      dtrace:::END
21      {
22            printf(" %6s %-8s %-52s %8s\n", "PID", "TYPE", "NAME", "COUNT");
23 printa(" %6d %-8s %-52s %@8d\n", @calls);
24      }

# tcl_calls.d
Tracing... Hit Ctrl-C to end.
^C
    PID TYPE     NAME                          COUNT
  16021 cmd      concat                 1
  16021 cmd      exit                  1
  16021 cmd      func_a                 1
  16021 cmd      func_b                 1
  16021 cmd      func_c                 1
[...]
  16021 proc     func_a                          1
  16021 proc     func_b                          1
  16021 proc     func_c                          1
  16021 proc     tclInit                          1
[...]
  16021 cmd      if                          8
  16021 cmd      info                  11
  16021 cmd      file                  12
  16021 cmd      proc                  12

 1      #!/usr/sbin/dtrace -Zs
[...]
48      #pragma D option quiet
49      #pragma D option switchrate=10
50
51      self int depth;
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Example

The func_abc.sh program was traced using tcl_procflow.d:

As each procedure starts, the last column is indented by two spaces. This shows
which procedure is calling which. The previous output begins with an init proce-
dure and then shows that func_a began and then called func_b.

The columns are for CPU, PID, time since boot, indicator (-> for procedure
entry, and <- for procedure return), and procedure name.

If the output looks shuffled, check the CPU C and TIME columns, and postsort
based on TIME if necessary.

By examining the TIME(us) column, latency in procedure flow can be identi-
fied as jumps in time. The script could be enhanced to show this as an extra col-
umn for the delta time between lines of output. 

See Also: tcl_flowtime.d, tcl_syscolors.d

The tcl_flowtime.d script from the DTraceToolkit is similar to tcl_procflow.d,
tracing both commands and procedures with a DELTA(us) column to help identify
sources of latency. Another similar script from the DTraceToolkit is tcl_syscolors.d,

52
53      dtrace:::BEGIN
54      {
55  printf("%3s %6s %-16s -- %s\n", "C", "PID", "TIME(us)", "PROCEDURE");
56      }
57
58      tcl*:::proc-entry
59      {
60  printf("%3d %6d %-16d %*s-> %s\n", cpu, pid, timestamp / 1000,
61   self->depth * 2, "", copyinstr(arg0));
62     self->depth++;
63      }
64
65      tcl*:::proc-return
66      {
67            self->depth -= self->depth > 0 ? 1 : 0;
68  printf("%3d %6d %-16d %*s<- %s\n", cpu, pid, timestamp / 1000,
69   self->depth * 2, "", copyinstr(arg0));
70      }

# tcl_procflow.d
  C    PID TIME(us)       -- PROCEDURE
  0  16073 3904971507502    -> tclInit
  0  16073 3904971509096    <- tclInit
  0  16073 3904971509305    -> func_a
  0  16073 3904972511039      -> func_b
  0  16073 3904973521023       -> func_c
  0  16073 3904974530998       <- func_c
  0  16073 3904974531008      <- func_b
  0  16073 3904974531014    <- func_a
^C
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which includes system calls in the output and uses terminal escape sequences to
highlight different event types in different colors. They are similar to the Perl ver-
sions, pl_flowtime.d and pl_syscolors.d, which are demonstrated in the
“Perl Scripts” section under pl_flowinfo.d.

See Also

The DTraceToolkit has other scripts for the tcl provider, including tcl_calltime.d
for a report of inclusive and exclusive function time, and variants. See the Perl ver-
sions of these scripts in the “Perl Scripts” section for similar example output.

tcl_insflow.d

A script that is unique to the Tcl collection from the DTraceToolkit is tcl_insflow.d,
which shows the flow of Tcl instructions for the processing of commands and
procedures:

The output includes timing for latency analysis.

Summary

With the availability of language providers, software execution can be traced using
DTrace, allowing the identification of frequently called or slow functions, object
allocation, and errors and also as a way to study software flow. DTrace also allows
events from across the software stack to be examined in the same context of the
application, including disk and network I/O, CPU cross calls, and memory alloca-
tion. Chapter 9 continues the analysis of software, without the assumption that
source code is available.

# tcl_insflow.d
  C    PID TIME(us)     DELTA(us)  TYPE -- CALL
  0 174829 4436207514685            3   cmd -> if
  0 174829 4436207514793         107  inst   -> push1
  0 174829 4436207514805          11  inst   <- push1
[...]
  0 174829 4436207522723  8   cmd -> func_a
  0 174829 4436207522742          18  proc   -> func_a
  0 174829 4436207522752          10  inst     -> push1
  0 174829 4436207522757           5  inst     <- push1
  0 174829 4436207522763           5  inst     -> push1
  0 174829 4436207522769           5  inst     <- push1
  0 174829 4436207522775          5 inst     -> invokeStk1
  0 174829 4436207522781            6  cmd       -> puts
  0 174829 4436207523212        430   cmd       <- puts
  0 174829 4436207523266         54 inst     <- invokeStk1
  0 174829 4436207523275           8  inst     -> pop
[...]
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9
Applications

DTrace has the ability to follow the operation of applications from within the
application source code, through system libraries, through system calls, and into
the kernel. This visibility allows the root cause of issues (including performance
issues) to be found and quantified, even if it is internal to a kernel device driver or
something else outside the boundaries of the application code. Using DTrace, ques-
tions such as the following can be answered.

What transactions are occurring? With what latency?

What disk I/O is the application performing? What network I/O?

Why is the application on-CPU?

As an example, the following one-liner frequency counts application stack traces
when the Apache Web server (httpd) performs the read() system call:

# dtrace -n 'syscall::read:entry /execname == "httpd"/ { @[ustack()] = count(); }'
dtrace: description 'syscall::read:entry ' matched 1 probe
[...]

    libc.so.1`__read+0x7
  libapr-1.so.0.3.9`apr_socket_recv+0xb0
 libaprutil-1.so.0.3.9`socket_bucket_read+0x5b

   httpd`ap_core_input_filter+0x294
  mod_ssl.so`bio_filter_in_read+0xbc

   libcrypto.so.0.9.8`BIO_read+0xaf
  libssl.so.0.9.8`ssl3_get_record+0xb5

   libssl.so.0.9.8`ssl3_read_n+0x144
continues
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The output has been truncated to show only the last stack trace. This stack
trace was responsible for calling read() 31 times and shows the application code
path through libssl (the Secure Sockets Layer library, because this was an HTTPS
read). Each of the functions shown by the stack trace can be traced separately
using DTrace, including function arguments, return value, and time.

The previous chapter focused on the programming languages of application soft-
ware, particularly for developers who have access to the source code. This chapter
focuses on application analysis for end users, regardless of language or layer in the
software stack.

Capabilities

DTrace is capable of tracing every layer of the software stack, including examin-
ing the interactions of the various layers (see Figure 9-1).

Strategy

To get started using DTrace to examine applications, follow these steps (the target
of each step is in bold):

1. Try the DTrace one-liners and scripts listed in the sections that follow and 
from the other chapters in the “See Also” section (which includes disk, file 
system, and network I/O).

2. In addition to those DTrace tools, familiarize yourself with any existing 
application logs and statistics that are available and also by any add-ons. 
(For example, before diving into Mozilla Firefox performance, try add-ons for 
performance analysis.) The information that these retrieve can show what is 
useful to investigate further with DTrace.

  libssl.so.0.9.8`ssl3_read_bytes+0x161
  libssl.so.0.9.8`ssl3_read_internal+0x66

   libssl.so.0.9.8`ssl3_read+0x16
   libssl.so.0.9.8`SSL_read+0x42
   mod_ssl.so`ssl_io_input_read+0xf0
  mod_ssl.so`ssl_io_filter_input+0xd0

   httpd`ap_rgetline_core+0x66
   httpd`ap_read_request+0x1d1
  httpd`ap_process_http_connection+0xe4
  httpd`ap_run_process_connection+0x28

    httpd`child_main+0x3d8
    httpd`make_child+0x86
    httpd`ap_mpm_run+0x410
    httpd`main+0x812
    httpd`_start+0x7d

               31
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3. Check whether any application USDT providers are available (for example, 
the mozilla provider for Mozilla Firefox).

4. Examine application behavior using the syscall provider, especially if the 
application has a high system CPU time. This is often an effective way to get 
a high-level picture of what the application is doing by examining what it is 
requesting the kernel to do. System call entry arguments and return errors 
can be examined for troubleshooting issues, and system call latency can be 
examined for performance analysis.

5. Examine application behavior in the context of system resources, such as 
CPUs, disks, file systems, and network interfaces. Refer to the appropriate 
chapter in this book.

6. Write tools to generate known workloads, such as performing a client 
transaction. It can be extremely helpful to have a known workload to refer to 
while developing DTrace scripts.

7. Familiarize yourself with application internals. Sources may include applica-
tion documentation and source code, if available. DTrace can also be used to 
learn the internals of an application, such as by examining stack traces
whenever the application performs I/O (see the example at the start of this 
chapter).

8. Use a language provider to trace application code execution, if one exists 
and is available (for example, perl). See Chapter 8, Languages.

Figure 9-1 Software stack
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9. Use the pid provider to trace the internals of the application software and 
libraries it uses, referring to the source code if available. Write scripts to 
examine higher-level details first (operation counts), and drill down deeper 
into areas of interest.

Checklist

Consider Table 9-1 a checklist of application issue types that can be examined
using DTrace. This is similar to the checklist in Chapter 8 but is in terms of appli-
cations rather than the language.

Table 9-1 Applications Checklist

Issue Description

on-CPU time An application is hot on-CPU, showing high %CPU in top(1) or 
prstat(1M). DTrace can identify the reason by sampling user stack traces 
with the profile provider and by tracing application functions with vtime-
stamps. Reasons for high on-CPU time may include the following:

•  Compression

•  Encryption

•  Dataset iteration (code path loops)

•  Spin lock contention

•  Memory I/O

The actual make-up of CPU time, whether it is cycles on core (for example, 
for the Arithmetic Logic Unit) or cycles while stalled (for example, waiting 
for memory bus I/O) can be investigated further using the DTrace cpc pro-
vider, if available.

off-CPU time Applications will spend time off-CPU while waiting for I/O, waiting for locks 
(not spinning), and while waiting to be dispatched on a CPU after returning 
to the ready to run state. These events can be examined and timed with 
DTrace, such as by using the sched provider to look at thread events. Time 
off-CPU during I/O, especially disk or network I/O, is a common cause of 
performance issues (for example, an application performing file system reads 
served by slow disks, or a DNS lookup during client login, waiting on net-
work I/O to the DNS server). When interpreting off-CPU time, it is impor-
tant to differentiate between time spent off-CPU because of the following:

•  Waiting on I/O during an application transaction

•  Waiting for work to do

Applications may spend most of their time waiting for work to do, which is 
not typically a problem.
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Providers

Table 9-2 shows providers of most interest when tracing applications.

Volume Applications may be calling a particular function or code path too fre-
quently; this is the simplest type of issue to DTrace: frequency count func-
tion calls. Examining function arguments may identify other inefficiencies, 
such as performing I/O with small byte sizes when larger sizes should be 
possible.

Locks Waiting on locks can occur both on-CPU (spin) and off-CPU (wait). Locks 
are used for synchronization of multithreaded applications and, when 
poorly used, can cause application latency and thread serialization. Use 
DTrace to examine lock usage using the plockstat provider if available or 
using pid or profile.

Memory 
Allocation

Memory allocation can be examined in situations when applications con-
sume excessive amounts of memory. Calls to manage memory (such as 
malloc()) can be traced, along with entry and return arguments.

Errors Applications can encounter errors in their own code and from system 
libraries and system calls that they execute. Encountering errors is normal 
for software, which should be written to handle them correctly. However, it 
is possible that errors are being encountered but not handled correctly by 
the application. DTrace can be used to examine whether errors are occur-
ring and, if so, their origin.

Table 9-2 Providers for Applications

Provider Description

proc Trace application process and thread creation and destruction and signals.

syscall Trace entry and return of operating system calls, arguments, and return values. 

profile Sample application CPU activity at a custom rate.

sched Trace application thread scheduling events.

vminfo Virtual memory statistic probes, based on vmstat(1M) statistics.

sysinfo Kernel statistics probes, based on mpstat(1M) statistics.

plockstat Trace user-land lock events.

cpc CPU Performance Counters provider, for CPU cache hit/miss by function.

pid Trace internals of the application including calls to system libraries.

language Specific language provider: See Chapter 8.

Table 9-1 Applications Checklist (Continued)

Issue Description
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You can find complete lists of provider probes and arguments in the DTrace
Guide.1

pid Provider

The Process ID (pid) provider instruments user-land function execution, providing
probes for function entry and return points and for every instruction in the func-
tion. It also provides access to function arguments, return codes, return instruc-
tion offsets, and register values. By tracing function entry and return, the elapsed
time and on-CPU time during function execution can also be measured. It is avail-
able on Solaris and Mac OS X and is currently being developed for FreeBSD.2

The pid provider is associated with a particular process ID, which is part of the
provider name: pid<PID>. The PID can be written literally, such as pid123, or
specified using the macro variable $target, which provides the PID when either
the -p PID or -c command option is used.

Listing pid provider function entry probes for the bash shell (running as PID
1122) yields the following:

1. This is currently at http://wikis.sun.com/display/DTrace/Documentation.

2. This is by Rui Paulo for the DTrace user-land project: http://freebsdfoundation.blogspot.com/
2010/06/dtrace-userland-project.html.

# dtrace -ln 'pid$target:::entry' -p 1122
   ID   PROVIDER    MODULE               FUNCTION NAME
12539    pid1122        bash       _start entry
12540    pid1122        bash       __fsr entry
12541    pid1122        bash       main entry
12542    pid1122       bash parse_long_options entry
12543    pid1122       bash parse_shell_options entry
12544    pid1122         bash     exit_shell entry
12545    pid1122        bash      sh_exit entry
12546    pid1122          bash   execute_env_file entry
12547    pid1122       bash  run_startup_files entry
12548    pid1122       bash shell_is_restricted entry
12549    pid1122        bash maybe_make_restricted entry
12550    pid1122        bash       uidget entry
12551    pid1122       bash  disable_priv_mode entry
12552    pid1122         bash     run_wordexp entry
12553    pid1122          bash   run_one_command entry
[...]
15144    pid1122    libcurses.so.1              addstr entry
15145    pid1122    libcurses.so.1             attroff entry
15146    pid1122    libcurses.so.1              attron entry
15147    pid1122    libcurses.so.1             attrset entry
15148    pid1122    libcurses.so.1               beep entry
15149    pid1122    libcurses.so.1               bkgd entry
[...]
15704    pid1122 libsocket.so.1       endnetent entry
15705    pid1122 libsocket.so.1   getnetent_r entry
15706    pid1122 libsocket.so.1    str2netent entry
15707    pid1122  libsocket.so.1  getprotobyname entry

http://wikis.sun.com/display/DTrace/Documentation
http://freebsdfoundation.blogspot.com/2010/06/dtrace-userland-project.html
http://freebsdfoundation.blogspot.com/2010/06/dtrace-userland-project.html
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There were 8,003 entry probes listed. The previous truncated output shows a
sample of the available probes from the bash code segment and three libraries: lib-
curses, libsocket, and libc. The probe module name is the segment name.

Listing all pid provider probes for the libc function fputc()yields the following:

The probes listed are the entry and return probes for the fputc() function, as well
as probes for each instruction offset in hexadecimal (0, 1, 3, 4, 7, c, d, and so on).

Be careful when using the pid provider, especially in production environments.
Application processes vary greatly in size, and many production applications have
large text segments with a large number of instrumentable functions, each with
tens to hundreds of instructions and with each instruction another potential probe
target for the pid provider. The invocation dtrace -n 'pid1234::::' will instruct
DTrace to instrument every function entry and return and to instrument every
instruction in process PID 1234. Here’s an example:

15708    pid1122  libsocket.so.1         getprotobynumber entry
15709    pid1122 libsocket.so.1            getprotoent entry
[...]
19019    pid1122    libc.so.1                fopen entry
19020    pid1122  libc.so.1          _freopen_null entry
19021    pid1122 libc.so.1              freopen entry
19022    pid1122 libc.so.1              fgetpos entry
19023    pid1122 libc.so.1              fsetpos entry
19024    pid1122    libc.so.1                fputc entry
[...]

# dtrace -ln 'pid$target::fputc:' -p 1122
   ID   PROVIDER    MODULE               FUNCTION NAME
19024    pid1122    libc.so.1                fputc entry
20542    pid1122    libc.so.1      fputc return
20543    pid1122    libc.so.1                fputc 0
20544    pid1122    libc.so.1                fputc 1
20545    pid1122    libc.so.1                fputc 3
20546    pid1122    libc.so.1                fputc 4
20547    pid1122    libc.so.1                fputc 7
20548    pid1122    libc.so.1                fputc c
20549    pid1122    libc.so.1                fputc d
20550    pid1122    libc.so.1                fputc 13
20551    pid1122    libc.so.1                fputc 16
20552    pid1122    libc.so.1                fputc 19
20553    pid1122    libc.so.1                fputc 1c
20554    pid1122    libc.so.1                fputc 21
20555    pid1122    libc.so.1                fputc 24
20556    pid1122    libc.so.1                fputc 25
20557    pid1122    libc.so.1                fputc 26

solaris# dtrace -n 'pid1471:::'
dtrace: invalid probe specifier pid1471:::: failed to create offset probes in 
'__1cFStateM_sub_Op_ConI6MpknENode__v_': Not enough space 

solaris# dtrace -n 'pid1471:::entry'
dtrace: description 'pid1471:::entry' matched 26847 probes
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Process PID 1471 was a Java JVM process. The first DTrace command
attempted to insert a probe at every instruction location in the JVM but was
unable to complete. The Not enough space error means the default number of
250,000 pid provider probes was not enough to complete the instrumentation. The
second invocation in the example instruments the same process, but this time with
the entry string in the name component of the probe, instructing DTrace to insert
a probe at the entry point of every function in the process. In this case, DTrace
found 26,847 instrumentation points.

Once a process is instrumented with the pid provider, depending on the number
of probes and how busy the process is, using the pid provider will induce some
probe effect, meaning it can slow the execution speed of the target process, in some
cases dramatically.

Stability

The pid provider is considered an unstable interface, meaning that the provider
interface (which consists of the probe names and arguments) may be subject to
change between application software versions. This is because the interface is
dynamically constructed based on the thousands of compiled functions that make
up a software application. It is these functions that are subject to change, and
when they do, so does the pid provider. This means that any DTrace scripts or one-
liners based on the pid provider may be dependent on the application software ver-
sion they were written for.

Although application software can and is likely to change between versions,
many library interfaces are likely to remain unchanged, such as libc, libsocket, lib-
pthread, and many others, especially those exporting standard interfaces such as
POSIX. These can make good targets for tracing with the pid provider, because
one-liners and scripts will have a higher degree of stability than when tracing
application-specific software.

If a pid-based script has stopped working because of minor software changes,
then ideally the script can be repaired with equivalent minor changes to match the
newer software. If the software has changed significantly, then the pid-based script
may need to be rewritten entirely. Because of this instability, it is recommended to
use pid only when needed. If there are stable providers available that can serve a
similar role, they should be used instead, and the scripts that use them will not
need to be rewritten as the software changes.

Since pid is an unstable interface, the pid provider one-liners and scripts in this
book are not guaranteed to work or be supported by software vendors.

The pid provider scripts in this book serve not just as examples of using the pid
provider in D programs but also as example data that DTrace can make available and
why that can be useful. If these scripts stop working, you can try fixing them or check
for updated versions on the Web (try this book’s Web site, www.dtracebook.com).

www.dtracebook.com
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Arguments and Return Value

The arguments and return value for functions can be inspected on the pid entry
and return probes.

pid<PID>:::entry: The function arguments is (uint64_t) arg0 ... 
argn.

pid<PID>:::return: The program counter is (uint64_t) arg0; the return 
value is (uint64_t) arg1.

The uregs[] array can also be accessed to examine individual user registers.

cpc Provider

The CPU Performance Counter (cpc) provider provides probes for profiling CPU
events, such as instructions, cache misses, and stall cycles. These CPU events are
based on the performance counters that the CPUs provide, which vary between
manufacturers, types, and sometimes versions of the same type of CPU. A generic
interface for the performance counters has been developed, the Performance Appli-
cation Programming Interface (PAPI),3 which is supported by the cpc provider in
addition to the platform-specific counters. The cpc provider is fully documented in
the cpc provider section of the DTrace Guide and is currently available only in
Solaris Nevada.4

The cpc provider probe names have the following format:

The event name may be a PAPI name or a platform-specific event name. On
Solaris, events for the current CPU type can be listed using cpustat(1M):

3. See http://icl.cs.utk.edu/papi.

4. This was integrated in snv_109, defined by PSARC 2008/480, and developed by Jon Haslam.
See his blog post about cpc, currently at http://blogs.sun.com/jonh/entry/finally_dtrace_
meets_the_cpu.

cpc:::<event name>-<mode>-<optional mask-><count>

solaris# cpustat -h
Usage:
        cpustat [-c events] [-p period] [-nstD] [-T d|u] [interval [count]]
[...]
        Generic Events:

continues

http://icl.cs.utk.edu/papi
http://blogs.sun.com/jonh/entry/finally_dtrace_meets_the_cpu
http://blogs.sun.com/jonh/entry/finally_dtrace_meets_the_cpu
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The first group, Generic Events, is the PAPI events and is documented on
Solaris in the generic_events(3CPC) man page. The second group,  Platform
Specific Events, is from the CPU manufacturer and is typically documented in
the CPU user guide referenced in the cpustat(1M) output.

The mode component of the probe name can be user for profiling user-mode,
kernel for kernel-mode, or all for both.

The optional mask component is sometimes used by platform-specific events, as
directed by the CPU user guide.

The final component of the probe name is the overflow count: Once this many of
the specified event has occurred on the CPU, the probe fires on that CPU. For fre-
quent events, such as cycle and instruction counts, this can be set to a high num-
ber to reduce the rate that the probe fires and therefore reduce the impact on
target application performance.

cpc provider probes have two arguments: arg0 is the kernel program counter or
0 if not executing in the kernel, and arg1 is the user-level program counter or 0 if
not executing in user-mode.

Depending on the CPU type, it may not be possible to enable more than one cpc
probe simultaneously. Subsequent enablings will encounter a Failed to enable
probe error. This behavior is similar to, and for the same reason as, the operating
system, allowing only one invocation of cpustat(1M) at a time. There is a finite
number of performance counter registers available for each CPU type.

The sections that follow have example cpc provider one-liners and output.

        event[0-3]: PAPI_br_ins PAPI_br_msp PAPI_br_tkn PAPI_fp_ops 
 PAPI_fad_ins PAPI_fml_ins PAPI_fpu_idl PAPI_tot_cyc 
 PAPI_tot_ins PAPI_l1_dca PAPI_l1_dcm PAPI_l1_ldm 

  PAPI_l1_stm PAPI_l1_ica PAPI_l1_icm PAPI_l1_icr 
  PAPI_l2_dch PAPI_l2_dcm PAPI_l2_dcr PAPI_l2_dcw 
  PAPI_l2_ich PAPI_l2_icm PAPI_l2_ldm PAPI_l2_stm 
 PAPI_res_stl PAPI_stl_icy PAPI_hw_int PAPI_tlb_dm 

  PAPI_tlb_im PAPI_l3_dcr PAPI_l3_icr PAPI_l3_tcr 
   PAPI_l3_stm PAPI_l3_ldm PAPI_l3_tcm 

        See generic_events(3CPC) for descriptions of these events

Platform Specific Events:

        event[0-3]: FP_dispatched_fpu_ops FP_cycles_no_fpu_ops_retired
   FP_dispatched_fpu_ops_ff LS_seg_reg_load 
  LS_uarch_resync_self_modify LS_uarch_resync_snoop 
 LS_buffer_2_full LS_locked_operation LS_retired_cflush
LS_retired_cpuid DC_access DC_miss DC_refill_from_L2 

 DC_refill_from_system DC_copyback DC_dtlb_L1_miss_L2_hit
  DC_dtlb_L1_miss_L2_miss DC_misaligned_data_ref 

[...]
        See "BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h 
        Processors" (AMD publication 31116) 
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See Also

There are many topics relevant to application analysis, most of which are covered
fully in separate chapters of this book. 

Chapter 3: System View

Chapter 4: Disk I/O

Chapter 5: File Systems

Chapter 6: Network Lower-Level Protocols

Chapter 7: Application-Level Protocols

Chapter 8: Languages

All of these can be considered part of this chapter. The one-liners and scripts
that follow summarize application analysis with DTrace and introduce some
remaining topics such as signals, thread scaling, and the cpc provider.

One-Liners

For many of these, a Web server with processes named httpd is used as the target
application. Modify httpd to be the name of the application process of interest.

proc provider

Trace new processes:

Trace new processes (current FreeBSD5):

New processes (with arguments):

dtrace -n 'proc:::exec-success { trace(execname); }'

dtrace -n 'proc:::exec_success { trace(execname); }'

5. FreeBSD 8.0; this will change to become exec-success (consistent with Solaris and Mac
OS X), now that support for hyphens in FreeBSD probe names is being developed.

dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
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New threads created, by process:

Successful signal details:

syscall provider

System call counts for processes named httpd:

System calls with non-zero errno (errors):

profile provider

User stack trace profile at 101 Hertz, showing process name and stack:

User stack trace profile at 101 Hertz, showing process name and top five stack
frames:

User stack trace profile at 101 Hertz, showing process name and stack, top ten
only:

dtrace -n 'proc:::lwp-create { @[pid, execname] = count(); }'

dtrace -n 'proc:::signal-send { printf("%s -%d %d", execname, args[2], args[1]->pr_pid); }'

dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'

dtrace -n 'syscall:::return /errno/ { @[probefunc, errno] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack()] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack(5)] = count(); }'

dtrace -n 'profile-101 { @[execname, ustack()] = count(); } END { trunc(@, 10); }'
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User stack trace profile at 101 Hertz for processes named httpd:

User function name profile at 101 Hertz for processes named httpd:

User module name profile at 101 Hertz for processes named httpd:

sched provider

Count user stack traces when processes named httpd leave CPU:

pid provider

The pid provider instruments functions from a particular software version; these
example one-liners may therefore require modifications to match the software ver-
sion you are running. They can be executed on an existing process by using -p PID
or by running a new process using -c command.

Count process segment function calls:

Count libc function calls:

Count libc string function calls:

dtrace -n 'profile-101 /execname == "httpd"/ { @[ustack()] = count(); }'

dtrace -n 'profile-101 /execname == "httpd"/ { @[ufunc(arg1)] = count(); }'

dtrace -n 'profile-101 /execname == "httpd"/ { @[umod(arg1)] = count(); }'

dtrace -n 'sched:::off-cpu /execname == "httpd"/ { @[ustack()] = count(); }'

dtrace -n 'pid$target:a.out::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'pid$target:libc::entry { @[probefunc] = count(); }' -p PID

dtrace -n 'pid$target:libc:str*:entry { @[probefunc] = count(); }' -p PID
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Trace libc fsync() calls showing file descriptor:

Trace libc fsync() calls showing file path name:

Count requested malloc() bytes by user stack trace:

Trace failed malloc() requests:

See the “C” section of Chapter 8 for more pid provider one-liners.

plockstat provider

As with the pid provider, these can also be run using the -c command.
Mutex blocks by user-level stack trace:

Mutex spin counts by user-level stack trace:

Reader/writer blocks by user-level stack trace:

dtrace -n 'pid$target:libc:fsync:entry { trace(arg0); }' -p PID

dtrace -n 'pid$target:libc:fsync:entry { trace(fds[arg0].fi_pathname); }' -p PID

dtrace -n 'pid$target::malloc:entry { @[ustack()] = sum(arg0); }' -p PID

dtrace -n 'pid$target::malloc:return /arg1 == NULL/ { ustack(); }' -p PID

dtrace -n 'plockstat$target:::mutex-block { @[ustack()] = count(); }' -p PID

dtrace -n 'plockstat$target:::mutex-acquire /arg2/ { @[ustack()] = sum(arg2); }' -p PID

dtrace -n 'plockstat$target:::rw-block { @[ustack()] = count(); }' -p PID
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cpc provider

These cpc provider one-liners are dependent on the availability of both the cpc pro-
vider and the event probes (for Solaris, see cpustat(1M) to learn what events are
available on your system). The following overflow counts (200,000; 50,000; and
10,000) have been picked to balance between the rate of events and fired DTrace
probes.

User-mode instructions by process name:

User-mode instructions by process name and function name:

User-mode instructions for processes named httpd by function name:

User-mode CPU cycles by process name and function name:

User-mode level-one cache misses by process name and function name:

User-mode level-one instruction cache misses by process name and function
name:

User-mode level-one data cache misses by process name and function name:

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-user-200000 /execname == "httpd"/ { @[ufunc(arg1)] = 
count(); }'

dtrace -n 'cpc:::PAPI_tot_cyc-user-200000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_icm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_dcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
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User-mode level-two cache misses by process name and function name:

User-mode level-three cache misses by process name and function name:

User-mode conditional branch misprediction by process name and function name:

User-mode resource stall cycles by process name and function name:

User-mode floating-point operations by process name and function name:

User-mode TLB misses by process name and function name:

One-Liner Selected Examples

There are additional examples of one-liners in the “Case Study” section.

New Processes (with Arguments)

New processes were traced on Solaris while the man ls command was executed:

dtrace -n 'cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_l3_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_br_msp-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_res_stl-user-50000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_fp_ops-user-10000 { @[execname, ufunc(arg1)] = count(); }'

dtrace -n 'cpc:::PAPI_tlb_tl-user-10000 { @[execname, ufunc(arg1)] = count(); }'

solaris# dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'
dtrace: description 'proc:::exec-success ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0  13487  exec_common:exec-success   man ls
  0  13487         exec_common:exec-success   sh -c cd /usr/share/man; tbl /usr/share/
man/man1/ls.1 |neqn /usr/share/lib/pub/
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The variety of programs that are executed to process man ls are visible, ending
with the more(1) command that shows the man page.

Mac OS X currently doesn’t provide the full argument list in pr_psargs, which
is noted in the comments of the curpsinfo translator:

And using pr_psargs in trace() on Mac OS X can trigger tracemem()
behavior, printing hex dumps from the address, which makes reading the output a
little difficult. It may be easier to just use the execname for this one-liner for now.
Here’s an example of tracing man ls on Mac OS X:

Note that the output is shuffled (the CPU ID change is a hint). For the correct
order, include a time stamp in the output and postsort.

  0  13487         exec_common:exec-success   tbl /usr/share/man/man1/ls.1
  0  13487         exec_common:exec-success   neqn /usr/share/lib/pub/eqnchar -
  0  13487         exec_common:exec-success   nroff -u0 -Tlp -man -
  0  13487  exec_common:exec-success   col -x
  0  13487         exec_common:exec-success   sh -c trap '' 1 15; /usr/bin/mv -f /tmp/
mpcJaP5g /usr/share/man/cat1/ls.1 2> /d
  0  13487         exec_common:exec-success   /usr/bin/mv -f /tmp/mpcJaP5g /usr/share/
man/cat1/ls.1
  0  13487    exec_common:exec-success   sh -c more -s /tmp/mpcJaP5g
  0  13487         exec_common:exec-success more -s /tmp/mpcJaP5g
^C

macosx# grep pr_psargs /usr/lib/dtrace/darwin.d
      char pr_psargs[80];     /* initial characters of arg list */
      pr_psargs = P->p_comm; /* XXX omits command line arguments XXX */
      pr_psargs = xlate <psinfo_t> ((struct proc *)(T->task->bsd_info)).pr_psargs; /* 

XXX omits command line arguments XXX */

macosx# dtrace -n 'proc:::exec-success { trace(execname); }'
dtrace: description 'proc:::exec-success ' matched 2 probes
CPU     ID            FUNCTION:NAME
  0  19374 posix_spawn:exec-success   sh 
  0  19374 posix_spawn:exec-success   sh 
  0  19368        __mac_execve:exec-success   sh 
  0  19368        __mac_execve:exec-success tbl
  0  19368        __mac_execve:exec-success   sh 
  0  19368 __mac_execve:exec-success   grotty
  0  19368 __mac_execve:exec-success   more
  1  19368        __mac_execve:exec-success man
  1  19368        __mac_execve:exec-success   sh 
  1  19368 __mac_execve:exec-success   gzip
  1  19368 __mac_execve:exec-success   gzip
  1  19374 posix_spawn:exec-success   sh 
  1  19368 __mac_execve:exec-success   groff
  1  19368 __mac_execve:exec-success   troff
  1  19368 __mac_execve:exec-success   gzip
^C



ptg

800 Chapter 9 � Applications

System Call Counts for Processes Called httpd

The Apache Web server runs multiple httpd processes to serve Web traffic. This
can be a problem for traditional system call debuggers (such as truss(1)), which
can examine only one process at a time, usually by providing a process ID. DTrace
can examine all processes simultaneously, making it especially useful for multipro-
cess applications such as Apache.

This one-liner frequency counts system calls from all running Apache httpd
processes:

The most frequently called system call was lstat64(), called 245 times.

User Stack Trace Profile at 101 Hertz, Showing Process Name and 
Top Five Stack Frames

This one-liner is a quick way to see not just who is on-CPU but what they are
doing:

solaris# dtrace -n 'syscall:::entry /execname == "httpd"/ { @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 225 probes
^C

  accept                     1
  getpid                     1
  lwp_mutex_timedlock                    1
  lwp_mutex_unlock                     1
  shutdown                    1
  brk                      4
  gtime                     5
  portfs                     7
  mmap64                     10
  waitsys                    30
  munmap                     33
  doorfs                     39
  openat                     49
  writev                     51
  stat64                     60
  close                     61
  fcntl                     73
  read                     74
  lwp_sigmask                   78
  getdents64                    98
  pollsys                    100
  fstat64                    109
  open64                    207
  lstat64                    245

solaris# dtrace -n 'profile-101 { @[execname, ustack(5)] = count(); }'
dtrace: description 'profile-101 ' matched 1 probe
^C
[...]
  mpstat

    libc.so.1`p_online+0x7
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No stack trace was shown for sched (the kernel), since this one-liner is examin-
ing user-mode stacks (ustack()), not kernel stacks (stack()). This could be elim-
inated from the output by adding the predicate /arg1/ (check that the user-mode
program counter is nonzero) to ensure that only user stacks are sampled.

User-Mode Instructions by Process Name

To introduce this one-liner, a couple of test applications were written and executed
called app1 and app2, each single-threaded and running a continuous loop of code.
Examining these applications using top(1) shows the following:

top(1) reports that each application is using 12.5 percent of the total CPU
capacity, which is a single core on this eight-core system. The Solaris prstat -mL
breaks down the CPU time into microstates and shows this in terms of a single
thread:

prstat(1M) shows that each thread is running at 100 percent user time (USR).
This is a little more information than simply %CPU from top(1), and it indicates
that these applications are both spending time executing their own code.

   mpstat`acquire_snapshot+0x131
    mpstat`main+0x27d
    mpstat`_start+0x7d

               13
  httpd

    libc.so.1`__forkx+0xb
    libc.so.1`fork+0x1d
   mod_php5.2.so`zif_proc_open+0x970
  mod_php5.2.so`execute_internal+0x45
  mod_php5.2.so`dtrace_execute_internal+0x59

               42
  sched
              541

last pid:  4378;  load avg:  2.13,  2.00,  1.62;  up 4+02:53:19       06:24:05
98 processes: 95 sleeping, 3 on cpu
CPU states: 73.9% idle, 25.2% user,  0.9% kernel,  0.0% iowait,  0.0% swap
Kernel: 866 ctxsw, 19 trap, 1884 intr, 2671 syscall
Memory: 32G phys mem, 1298M free mem, 4096M total swap, 4096M free swap

   PID USERNAME NLWP PRI NICE  SIZE   RES STATE  TIME    CPU COMMAND
  4319 root        1  10  0 1026M  513M cpu/3   10:50 12.50% app2
  4318 root        1  10  0 1580K  808K cpu/7   10:56 12.50% app1
[...]

   PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID 
  4318 root     100 0.0 0.0 0.0 0.0 0.0 0.0 0.0   0   8   0   0 app1/1
  4319 root     100 0.0 0.0 0.0 0.0 0.0 0.0 0.0   0   8   0   0 app2/1
[...]
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The cpc provider allows %CPU time to be understood in greater depth. This one-
liner uses the cpc provider to profile instructions by process name. The probe speci-
fied fires for every 200,000th user-level instruction, counting the current process
name at the time:

So, although the output from top(1) and prstat(1M) suggests that both
applications are very similar in terms of CPU usage, the cpc provider shows that
they are in fact very different. During the same interval, app1 executed roughly
300 times more CPU instructions than app2.

The other cpc one-liners can explain this further; app1 was written to continu-
ally execute fast register-based instructions, while app2 continually performs
much slower main memory I/O.

User-Mode Instructions for Processes Named httpd by Function Name

This one-liner matches processes named httpd and profiles instructions by func-
tion, counting on every 200,000th instruction:

solaris# dtrace -n 'cpc:::PAPI_tot_ins-user-200000 { @[execname] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-user-200000 ' matched 1 probe
^C

  sendmail                    1
  dtrace                     2
  mysqld                     6
  sshd                      7
  nscd                     14
  httpd                     16
  prstat                     23
  mpstat                     52
  app2                     498
  app1                   154801

solaris# dtrace -n 'cpc:::PAPI_tot_ins-user-200000 /execname == "httpd"/ { 
@[ufunc(arg1)] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-user-200000 ' matched 1 probe
^C

  httpd`ap_invoke_handler                    1
  httpd`pcre_exec                     1
  libcrypto.so.0.9.8`SHA1_Update                  1
[...]
  libcrypto.so.0.9.8`bn_sqr_comba8                 39
  libz.so.1`crc32_little                     41
  libcrypto.so.0.9.8`sha1_block_data_order              50
  libcrypto.so.0.9.8`_x86_AES_encrypt                88
  libz.so.1`compress_block                   103
  libcrypto.so.0.9.8`bn_mul_add_words               117
  libcrypto.so.0.9.8`bn_mul_add_words               127
  libcrypto.so.0.9.8`bn_mul_add_words               133
  libcrypto.so.0.9.8`bn_mul_add_words               134
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The functions executing the most instructions are in the libz library, which per-
forms compression.

User-Mode Level-Two Cache Misses by Process Name and Function Name

This example is included to suggest what to do when encountering this error:

This system does have the cpc provider; however, this probe is invalid. After
checking for typos, check whether the event name is supported on this system
using cpustat(1M) (Solaris):

This output shows that the PAPI_l2_tcm event (level-two cache miss) is not sup-
ported on this system. However, it also shows that PAPI_l2_dcm (level-two data
cache miss) and PAPI_l2_icm (level-two instruction cache miss) are supported.
Adjusting the one-liner for, say, data cache misses only is demonstrated by the fol-
lowing one-liner:

  libz.so.1`fill_window                    222
  libz.so.1`deflate_slow                    374
  libz.so.1`longest_match                    1022

solaris# dtrace -n 'cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
dtrace: invalid probe specifier cpc:::PAPI_l2_tcm-user-10000 { @[execname, ufunc(arg1)] =
 count(); }: probe description cpc:::PAPI_l2_tcm-user-10000 does not match any probes

solaris# cpustat -h
Usage:
        cpustat [-c events] [-p period] [-nstD] [-T d|u] [interval [count]]
[...]
        Generic Events:

        event[0-3]: PAPI_br_ins PAPI_br_msp PAPI_br_tkn PAPI_fp_ops 
 PAPI_fad_ins PAPI_fml_ins PAPI_fpu_idl PAPI_tot_cyc 
 PAPI_tot_ins PAPI_l1_dca PAPI_l1_dcm PAPI_l1_ldm 
  PAPI_l1_stm PAPI_l1_ica PAPI_l1_icm PAPI_l1_icr 
  PAPI_l2_dch PAPI_l2_dcm PAPI_l2_dcr PAPI_l2_dcw 
  PAPI_l2_ich PAPI_l2_icm PAPI_l2_ldm PAPI_l2_stm 
 PAPI_res_stl PAPI_stl_icy PAPI_hw_int PAPI_tlb_dm 
  PAPI_tlb_im PAPI_l3_dcr PAPI_l3_icr PAPI_l3_tcr 

   PAPI_l3_stm PAPI_l3_ldm PAPI_l3_tcm 

        See generic_events(3CPC) for descriptions of these events

Platform Specific Events:

        event[0-3]: FP_dispatched_fpu_ops FP_cycles_no_fpu_ops_retired
[...]
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This one-liner can then be run for instruction cache misses so that both types of
misses can be considered.

Should the generic PAPI events be unavailable or unsuitable, the platform-spe-
cific events (as listed by cpustat(1M)) may allow the event to be examined, albeit
in a way that is tied to the current CPU version.

Scripts

Table 9-3 summarizes the scripts that follow and the providers they use.

procsnoop.d

This is a script version of the “New Processes” one-liner shown earlier. Tracing the
execution of new processes provides important visibility for applications that call

solaris# dtrace -n 'cpc:::PAPI_l2_dcm-user-10000 { @[execname, ufunc(arg1)] = count(); }'
dtrace: description 'cpc:::PAPI_l2_dcm-user-10000 ' matched 1 probe
^C

  dtrace    libproc.so.1`byaddr_cmp                          1
  dtrace     libproc.so.1`symtab_getsym              1
  dtrace  libc.so.1`memset              1
  mysqld mysqld`srv_lock_timeout_and_monitor_thread        1
  mysqld       mysqld`sync_array_print_long_waits                1
  dtrace      libproc.so.1`byaddr_cmp_common             2
  dtrace  libc.so.1`qsort              2
  dtrace     libproc.so.1`optimize_symtab             3
  dtrace    libproc.so.1`byname_cmp                          6
  dtrace  libc.so.1`strcmp              17
  app2        app2`main                 399

Table 9-3 Application Script Summary

Script Description Provider

procsnoop Snoop process execution proc

procsystime System call time statistics by process syscall

uoncpu.d Profile application on-CPU user stacks profile

uoffcpu.d Count application off-CPU user stacks by time sched

plockstat User-level mutex and read/write lock statistics plockstat

kill.d Snoop process signals syscall

sigdist.d Signal distribution by source and destination processes syscall

threaded.d Sample multithreaded CPU usage profile
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the command line; some applications can call shell commands so frequently that it
becomes a performance issue—one that is difficult to spot in traditional tools (such
as prstat(1M) and top(1)) because the processes are so short-lived.

Script

Example

The following shows the Oracle Solaris commands executed as a consequence of
restarting the cron daemon via svcadm(1M):

The TIME(ms) column is printed so that the output can be postsorted if desired
(DTrace may shuffle the output slightly because it collects buffers from multiple
CPUs).

See Also: execsnoop

A program called execsnoop exists from the DTraceToolkit, which has similar
functionality to that of procsnoop. It was written originally for Oracle Solaris and
is now shipped on Mac OS X by default. execsnoop wraps the D script in the shell
so that command-line options are available:

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4   #pragma D option switchrate=10hz
5
6   dtrace:::BEGIN
7   {
8 printf("%-8s %5s %6s %6s %s\n", "TIME(ms)", "UID", "PID", "PPID",
9               "COMMAND");
10   start = timestamp;
11  }
12
13  proc:::exec-success
14  {
15          printf("%-8d %5d %6d %6d %s\n", (timestamp - start) / 1000000,
16  uid, pid, ppid, curpsinfo->pr_psargs);
17  }

Script procsnoop.d

solaris# procsnoop.d
TIME(ms)   UID  PID   PPID COMMAND
3227         0 13273  12224 svcadm restart cron
3709         0  13274   106 /sbin/sh -c exec /lib/svc/method/svc-cron
3763         0  13274    106 /sbin/sh /lib/svc/method/svc-cron
3773         0  13275  13274 /usr/bin/rm -f /var/run/cron_fifo
3782         0  13276  13274 /usr/sbin/cron
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execsnoop traces process execution by tracing the exec() system call (and
variants), which do differ slightly between operating systems. Unfortunately, sys-
tem calls are not a stable interface, even across different versions of the same oper-
ating system. Small changes to execsnoop have been necessary to keep it working
across different versions of Oracle Solaris, because of subtle changes with the names
of the exec() system calls. The lesson here is to always prefer the stable provid-
ers, such as the proc provider (which is stable) instead of syscall (which isn’t).

procsystime

procsystime is a generic system call time reporter. It can count the execution of
system calls, their elapsed time, and on-CPU time and can produce a report show-
ing the system call type and process details. It is from the DTraceToolkit and
shipped on Mac OS X by default in /usr/bin.

Script

The essence of the script is explained here; the actual script is too long and too
uninteresting (mostly dealing with command-line options) to list; see the DTrace-
Toolkit for the full listing.

macosx# execsnoop -h
USAGE: execsnoop [-a|-A|-ehjsvZ] [-c command]
       execsnoop           # default output
                -a            # print all data
                -A          # dump all data, space delimited
                -e   # safe output, parseable
                -j            # print project ID
                -s           # print start time, us
                -v # print start time, string
                -Z             # print zonename

-c command  # command name to snoop
  eg,
        execsnoop -v   # human readable timestamps
        execsnoop –Z         # print zonename
        execsnoop -c ls  # snoop ls commands only

1      syscall:::entry
2      /self->ok/
3      {
4   @Counts[probefunc] = count();
5   self->start = timestamp;
6  self->vstart = vtimestamp;
7      }
8
9      syscall:::return
10      /self->start/
11      {
12 this->elapsed = timestamp - self->start;
13            this->oncpu = vtimestamp - self->vstart;
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A self->ok variable is set beforehand to true if the current process is sup-
posed to be traced. The code is then straightforward: Time stamps are set on the
entry to syscalls so that deltas can be calculated on the return.

Examples

Examples include usage and file system archive.

Usage

Command-line options can be listed using -h:

File System Archive

The tar(1) command was used to archive a file system, with procsystime tracing
elapsed times (which is the default) for processes named tar:

14 @Elapsed[probefunc] = sum(this->elapsed);
15  @CPU[probefunc] = sum(this->cpu);
16            self->start = 0;
17    self->vstart = 0;
18      }

solaris# procsystime -h
lox# ./procsystime -h
USAGE: procsystime [-aceho] [ -p PID | -n name | command ]
                  -p PID  # examine this PID
                  -n name         # examine this process name
                  -a    # print all details
                  -e    # print elapsed times
                  -c    # print syscall counts
                  -o    # print CPU times
                  -T     # print totals
  eg,
       procsystime -p 1871     # examine PID 1871
       procsystime -n tar     # examine processes called "tar"
       procsystime -aTn bash   # print all details for bash
       procsystime df -h      # run and examine "df -h"

solaris# procsystime -n tar
Tracing... Hit Ctrl-C to end...
^C

Elapsed Times for processes tar,

         SYSCALL         TIME (ns)
           fcntl             58138
         fstat64            96490
          openat            280246
           chdir           1444153
           write           8922505
          open64           15294117

continues
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Most of the elapsed time for the tar(1) command was in the read() syscall,
which is expected because tar(1) is reading files from disk (which is slow I/O).
The total time spent waiting for read() syscalls during the procsystime trace was
1.55 seconds.

uoncpu.d

This is a script version of the DTrace one-liner to profile the user stack trace of a
given application process name. As one of the most useful one-liners, it may save
typing to provide it as a script, where it can also be more easily enhanced.

Script

Example

Here the uoncpu.d script is used to frequency count the user stack trace of all cur-
rently running Perl programs. Note perl is passed as a command-line argument,
evaluated in the predicate (line 4):

        openat64          16804949
           close           17855422
      getdents64         46679462
       fstatat64         98011589
            read         1551039139

1 #!/usr/sbin/dtrace -s
2
3 profile:::profile-1001
4      /execname == $$1/
5      {
6            @["\n on-cpu (count @1001hz):", ustack()] = count();
7      }

Script uoncpu.d

# uoncpu.d perl
dtrace: script 'uoncpu.d' matched 1 probe
^C
[...output truncated...]

  on-cpu (count @1001hz):
   libperl.so.1`Perl_sv_setnv+0xc8
  libperl.so.1`Perl_pp_multiply+0x3fe
  libperl.so.1`Perl_runops_standard+0x3b

   libperl.so.1`S_run_body+0xfa
   libperl.so.1`perl_run+0x1eb

     perl`main+0x8a
    perl`_start+0x7d

              105
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The hottest stacks identified include the Perl_pp_multiply() function, sug-
gesting that Perl is spending most of its time doing multiplications. Further analy-
sis of those functions and using the perl provider, if available (see Chapter 8),
could confirm.

uoffcpu.d

As a companion to uoncpu.d, the uoffcpu.d script measures the time spent off-
CPU by user stack trace. This time includes device I/O, lock wait, and dispatcher
queue latency.

Script

Example

Here the uoffcpu.d script was used to trace CPU time of bash shell processes:

  on-cpu (count @1001hz):
  libperl.so.1`Perl_pp_multiply+0x3f7
  libperl.so.1`Perl_runops_standard+0x3b

   libperl.so.1`S_run_body+0xfa
   libperl.so.1`perl_run+0x1eb

     perl`main+0x8a
    perl`_start+0x7d

              111

1 #!/usr/sbin/dtrace -s
2
3      sched:::off-cpu
4      /execname == $$1/
5      {
6   self->start = timestamp;
7      }
8
9      sched:::on-cpu
10      /self->start/
11      {
12            this->delta = (timestamp - self->start) / 1000;
13            @["off-cpu (us):", ustack()] = quantize(this->delta);
14            self->start = 0;
15      }

Script uoffcpu.d

# uoffcpu.d bash
dtrace: script 'uoffcpu.d' matched 6 probes
^C
[...]

continues
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While tracing, in another bash shell, the command sleep 1 was typed and exe-
cuted. The previous output shows the keystroke latency (mostly 65 ms to 131 ms) of
the read commands, as well as the time spent waiting for the sleep(1) command
to complete (in the 524 to 1048 ms range, which matches expectation: 1000 ms).

Note the user stack frame generated by the ustack() function contains a mix
of symbol names and hex values (for example, bash`0x806dff4) in the output.
This can happen for one of several reasons whenever ustack() is used. DTrace
actually collects and stores the stack frames has hex values. User addresses are
resolved to symbol names as a postprocessing step before the output is generated.
It is possible DTrace will not be able to resolve a user address to a symbol name if
any of the following is true:

The user process being traced has exited before the processing can be done.

  off-cpu (us):
    libc.so.1`__waitid+0x7
    libc.so.1`waitpid+0x65

     bash`0x8090627
    bash`wait_for+0x1a4
  bash`execute_command_internal+0x6f1

   bash`execute_command+0x5b
    bash`reader_loop+0x1bf

     bash`main+0x7df
    bash`_start+0x7d

           value  ------------- Distribution ------------- count
          262144 |                0
          524288 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
         1048576 |               0

  off-cpu (us):
    libc.so.1`__read+0x7
    bash`rl_getc+0x47
    bash`rl_read_key+0xeb
   bash`readline_internal_char+0x99

     bash`0x80d945a
     bash`0x80d9481
    bash`readline+0x55

     bash`0x806e11f
     bash`0x806dff4
     bash`0x806ed06
     bash`0x806f9b4
     bash`0x806f3a4
    bash`yyparse+0x4b9
    bash`parse_command+0x80
    bash`read_command+0xd9
    bash`reader_loop+0x147

     bash`main+0x7df
    bash`_start+0x7d

           value  ------------- Distribution ------------- count
           32768 |             0
           65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            5
          131072 |@@@@@@@@@@@             2
          262144 |                 0
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The symbol table has been stripped, either from the user process binary or 
from the shared object libraries it has linked.

We are executing user code out of data via jump tables.6

plockstat

plockstat(1M) is a powerful tool to examine user-level lock events, providing
details on contention and hold time. It uses the DTrace plockstat provider, which is
available for developing custom user-land lock analysis scripts. The plockstat pro-
vider (and the plockstat(1M) tool) is available on Solaris and Mac OS X and is
currently being developed for FreeBSD.

Script

plockstat(1M) is a binary executable that dynamically produces a D script that
is sent to libdtrace (instead of a static D script sent to libdtrace via dtrace(1M)).
If it is of interest, this D script can be examined using the -V option:

Example

Here the plockstat(1M) command traced all lock events (-A for both hold and
contention) on the Name Service Cache Daemon (nscd) for 60 seconds:

6. See www.opensolaris.org/jive/thread.jspa?messageID=436419&#436419.

solaris# plockstat -V -p 12219
plockstat: vvvv D program vvvv
plockstat$target:::rw-block
{
        self->rwblock[arg0] = timestamp;
}
plockstat$target:::mutex-block
{
        self->mtxblock[arg0] = timestamp;
}
plockstat$target:::mutex-spin
{
        self->mtxspin[arg0] = timestamp;
}
plockstat$target:::rw-blocked
/self->rwblock[arg0] && arg1 == 1 && arg2 != 0/
{
        @rw_w_block[arg0, ustack(5)] =

sum(timestamp - self->rwblock[arg0]);
        @rw_w_block_count[arg0, ustack(5)] = count();
        self->rwblock[arg0] = 0;

rw_w_block_found = 1;
}
[...output truncated...]

www.opensolaris.org/jive/thread.jspa?messageID=436419&#436419
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While tracing, there were very few contention events and many hold events.
Hold events are normal for software execution and are ideally as short as possible,
while contention events can cause performance issues as threads are waiting for
locks.

The output has caught a spin event for the lock at address 0x8089ab8 (no sym-
bol name) from the code path location nscd`_nscd_restart_if_cfgfile_
changed+0x3e, which was for 38 us. This means a thread span on-CPU for 38 us

solaris# plockstat -A -e 60 -p `pgrep nscd`
Mutex hold

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
   30  1302583 0x814c08c     libnsl.so.1`rpc_fd_unlock+0x4d
  326    15687 0x8089ab8                  nscd`_nscd_restart_if_cfgfile_changed+0x6c
    7   709342 libumem.so.1`umem_cache_lock libumem.so.1`umem_cache_applyall+0x5e
  112    16702 0x80b67b8       nscd`lookup_int+0x611
    3   570898 0x81a0548      libscf.so.1`scf_handle_bind+0x231
   60    24592 0x80b20e8      nscd`_nscd_mutex_unlock+0x8d
   50    24306 0x80b2868      nscd`_nscd_mutex_unlock+0x8d
   30    19839 libnsl.so.1`_ti_userlock  libnsl.so.1`sig_mutex_unlock+0x1e
    7    83100 libumem.so.1`umem_update_lock libumem.so.1`umem_update_thread+0x129
[...output truncated...]

R/W reader hold

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
   30    95341 0x80c0e14        nscd`_nscd_get+0xb8
  120    15586 nscd`nscd_nsw_state_base_lock nscd`_get_nsw_state_int+0x19c
   60    20256 0x80e0a7c        nscd`_nscd_get+0xb8
  120     9806 nscd`addrDB_rwlock    nscd`_nscd_is_int_addr+0xd1
   30    39155 0x8145944        nscd`_nscd_get+0xb8
[...output truncated...]

R/W writer hold

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
   30    16293 nscd`addrDB_rwlock    nscd`_nscd_del_int_addr+0xeb
   30    15440 nscd`addrDB_rwlock    nscd`_nscd_add_int_addr+0x9c
    3    14279 nscd`nscd_smf_service_state_lock nscd`query_smf_state+0x17b

Mutex block

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
    2   119957 0x8089ab8                   nscd`_nscd_restart_if_cfgfile_changed+0x3e

Mutex spin

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
    1    37959 0x8089ab8                    nscd`_nscd_restart_if_cfgfile_changed+0x3e

Mutex unsuccessful spin

Count     nsec Lock                      Caller
-------------------------------------------------------------------------------
    2    42988 0x8089ab8                    nscd`_nscd_restart_if_cfgfile_changed+0x3e
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before being able to grab the lock. On two other occasions, the thread gave up spin-
ning after an average of 43 us (unsuccessful spin) and was blocked for 120 us
(block), both also shown in the output.

kill.d

The kill.d script prints details of process signals as they are sent, such as the
PID source and destination, signal number, and result. It’s named kill.d after
the kill() system call that it traces, which is used by processes to send signals.

Script

This is based on the kill.d script from the DTraceToolkit, which uses the syscall
provider to trace the kill() syscall. The proc provider could also be used via the
signal-* probes, which will match other signals other than via kill() (see
sigdist.d next).

Note that the target PID is cast as a signed integer on line 13; this is because
the kill() syscall can also send signals to process groups by providing the pro-
cess group ID as a negative number, instead of the PID. By casting it, it will be cor-
rectly printed as a signed integer on line 19.

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7  printf("%-6s %12s %6s %-8s %s\n",
8 "FROM", "COMMAND", "SIG", "TO", "RESULT");
9   }
10
11  syscall::kill:entry
12  {
13  self->target = (int)arg0;
14   self->signal = arg1;
15  }
16
17  syscall::kill:return
18  {
19          printf("%-6d %12s %6d %-8d %d\n",
20              pid, execname, self->signal, self->target, (int)arg0);
21   self->target = 0;
22   self->signal = 0;
23  }

Script kill.d
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Example

Here the kill.d script has traced the bash shell sending signal 9 (SIGKILL) to
PID 12838 and sending signal 2 (SIGINT) to itself, which was a Ctrl-C. kill.d
has also traced utmpd sending a 0 signal (the null signal) to various processes:
This signal is used to check that PIDs are still valid, without signaling them to do
anything (see kill(2)).

sigdist.d

The sigdist.d script shows which processes are sending which signals to other
processes, including the process names. This traces all signals: the kill() system
call as well as kernel-based signals (for example, alarms).

Script

This script is based on /usr/demo/dtrace/sig.d from Oracle Solaris and uses
the proc provider signal-send probe.

# kill.d
FROM       COMMAND  SIG TO       RESULT
12224         bash      9 12838    0
3728         utmpd     0 4174     0
3728         utmpd     0 3949     0
3728         utmpd      0 10621    0
3728         utmpd      0 12221    0
12224         bash      2 12224    0

1 #!/usr/sbin/dtrace -s
[...]
45      #pragma D option quiet
46
47      dtrace:::BEGIN
48      {
49 printf("Tracing... Hit Ctrl-C to end.\n");
50      }
51
52      proc:::signal-send
53      {
54            @Count[execname, stringof(args[1]->pr_fname), args[2]] = count();
55      }
56
57      dtrace:::END
58      {
59 printf("%16s %16s %6s %6s\n", "SENDER", "RECIPIENT", "SIG", "COUNT");
60            printa("%16s %16s %6d %6@d\n", @Count);
61      }

Script sigdist.d
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Example

The sigdist.d script has traced the bash shell sending signal 9 (SIGKILL) to a
sleep process and also signal 2 (SIGINT, Ctrl-C) to itself. It’s also picked up sshd
sending bash the SIGINT, which happened via a syscall write() of the Ctrl-C to the
ptm (STREAMS pseudo-tty master driver) device for bash, not via the kill() syscall.

threaded.d

The threaded.d script provides data for quantifying how well multithreaded
applications are performing, in terms of parallel execution across CPUs. If an
application has sufficient CPU bound work and is running on a system with multi-
ple CPUs, then ideally the application would have multiple threads running on
those CPUs to process the work in parallel.

Script

This is based on the threaded.d script from the DTraceToolkit.

# sigdist.d
Tracing... Hit Ctrl-C to end.
^C
          SENDER      RECIPIENT    SIG  COUNT
            bash       bash      2      1
            bash      sleep      9      1
            sshd       bash      2      1
            sshd     dtrace      2      1
           sched       bash     18      2
            bash       bash     20      3
           sched    sendmail     14      3
           sched    sendmail     18      3
           sched     proftpd     14      7
           sched    in.mpathd     14     10

1 #!/usr/sbin/dtrace -s
2
3      #pragma D option quiet
4
5      profile:::profile-101
6      /pid != 0/
7      {
8            @sample[pid, execname] = lquantize(tid, 0, 128, 1);
9      }
10
11      profile:::tick-1sec
12      {
13   printf("%Y,\n", walltimestamp);
14   printa("\n @101hz   PID: %-8d CMD: %s\n%@d", @sample);
15     printf("\n");
16     trunc(@sample);
17      }

Script threaded.d
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Example

To demonstrate threaded.d, two programs were written (called test0 and test1)
that perform work on multiple threads in parallel. One of the programs was coded
with a lock “serialization” issue, where only the thread holding the lock can really
make forward progress. See whether you can tell which one:

threaded.d prints output every second, which shows a distribution plot where
value is the thread ID and count is the number of samples during that second.
By glancing at the output, both programs had every thread sampled on-CPU dur-
ing the one second, so the issue may not be clear. The clue is in the counts:
threaded.d is sampling at 101 Hertz (101 times per second), and the sample
counts for test0 only add up to 118 (a little over one second worth of samples on
one CPU), whereas test1 adds up to 691. The program with the issue is test0,
which is using a fraction of the CPU cycles that test1 is able to consume in the
same interval.

This was a simple way to analyze the CPU execution of a multithreaded applica-
tion. A more sophisticated approach would be to trace kernel scheduling events
(the sched provider) as the application threads stepped on- and off-CPU.

# threaded.d
2010 Jul  4 05:17:09,

 @101hz   PID: 12974    CMD: test0

           value  ------------- Distribution ------------- count
               1 |              0
               2 |@@@@@@@@@            28
               3 |@@              6
               4 |@@@@@@@@@@@            32
               5 |@@@@@             14
               6 |@@@@@             15
               7 |@@@              8
               8 |@@              5
               9 |@@@              10
              10 |                 0

 @101hz   PID: 12977    CMD: test1

           value ------------- Distribution ------------- count
               1 |                   0
               2 |@@@@                  77
               3 |@@@@@@                  97
               4 |@@@@                  77
               5 |@@@@@                  87
               6 |@@@@                  76
               7 |@@@@@@                 101
               8 |@@@@                  76
               9 |@@@@@@                 100
              10 |                   0

[...]
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Case Studies

In this section, we apply the scripts and methods discussed in this chapter to
observe and measure applications with DTrace.

Firefox idle

This case study examines the Mozilla Firefox Web browser version 3, running on
Oracle Solaris.

The Problem

Firefox is 8.9 percent on-CPU yet has not been used for hours. What is costing 8.9
percent CPU?

Profiling User Stacks

The uoncpu.d script (from the “Scripts” section) was run for ten seconds:

# prstat
   PID USERNAME  SIZE  RSS STATE  PRI NICE TIME  CPU PROCESS/NLWP
 27060 brendan   856M  668M sleep   59 0   7:30:44 8.9% firefox-bin/17
 27035 brendan   150M  136M sleep   59 0   0:20:51 0.4% opera/3
 18722 brendan   164M 38M sleep   59 0   0:57:53 0.1% java/18
  1748 brendan  6396K 4936K sleep   59    0  0:03:13 0.1% screen-4.0.2/1
 17303 brendan   305M  247M sleep   59  0  34:16:57 0.1% Xorg/1
 27754 brendan  9564K 3772K sleep   59 0   0:00:00 0.0% sshd/1
 19998 brendan    68M 7008K sleep   59 0   2:41:34 0.0% gnome-netstatus/1
 27871 root     3360K 2792K cpu0    49 0   0:00:00 0.0% prstat/1
 29805 brendan    54M 46M sleep   59 0   1:53:23 0.0% elinks/1
[...]

# uoncpu.d firefox-bin
dtrace: script 'uoncpu.d' matched 1 probe
^C
[...output truncated...]

  on-cpu (count @1001hz):
 libmozjs.so`js_FlushPropertyCacheForScript+0xe6

   libmozjs.so`js_DestroyScript+0xc1
 libmozjs.so`JS_EvaluateUCScriptForPrincipals+0x87

              libxul.so`__1cLnsJSContextOEvaluateString6MrknSnsAString_internal_pvpnMn
sIPrincip8
              libxul.so`__1cOnsGlobalWindowKRunTimeout6MpnJnsTimeout__v_+0x59c
              libxul.so`__1cOnsGlobalWindowNTimerCallback6FpnInsITimer_pv_v_+0x2e

  libxul.so`__1cLnsTimerImplEFire6M_v_+0x144
  libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
continues
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The output was many pages long and includes C++ signatures as function
names (they can be passed through c++filt to improve readability). The hottest
stack is in libmozjs, which is SpiderMonkey—the Firefox JavaScript engine. How-
ever, the count for this hot stack is only 42, which, when the other counts from the
numerous truncated pages are tallied, is likely to represent only a fraction of the
CPU cycles. (uoncpu.d can be enhanced to print a total sample count and the end
to make this ratio calculation easy to do.)

Profiling User Modules

Perhaps an easier way to find the origin of the CPU usage is to not aggregate on
the entire user stack track but just the top-level user module. This won’t be as
accurate—a user module may be consuming CPU by calling functions from a
generic library such as libc—but it is worth a try:

The hottest module was libxul, which is the core Firefox library. The next was
libmozjs (JavaScript) and then libc (generic system library). It is possible that lib-
mozjs is responsible for the CPU time in both libc and libxul, by calling functions
from them. We’ll investigate libmozjs (JavaScript) first; if this turns out to be a
dead end, we’ll return to libxul.

  libxul.so`__1cMnsAppStartupDRun6M_I_+0x34
   libxul.so`XRE_main+0x35e3
    firefox-bin`main+0x223
    firefox-bin`_start+0x7d

               42

# dtrace -n 'profile-1001 /execname == "firefox-bin"/ { @[umod(arg1)] = count(); }
tick-60sec { exit(0); }'
dtrace: description 'profile-1001 ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1  63284            :tick-60sec 

  libsqlite3.so                      1
  0xf0800000                      2
  libplds4.so                    2
  libORBit-2.so.0.0.0                    5
  0xf1600000                      8
  libgthread-2.0.so.0.1400.4                   10
  libgdk-x11-2.0.so.0.1200.3                   14
  libplc4.so                    16
  libm.so.2                      19
  libX11.so.4                   50
  libnspr4.so                   314
  libglib-2.0.so.0.1400.4                    527
  0x0                     533
  libflashplayer.so                   1143
  libc.so.1                   1444
  libmozjs.so                   2671
  libxul.so                   4143
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Function Counts and Stacks

To investigate JavaScript, the DTrace JavaScript provider can be used (see Chap-
ter 8). For the purposes of this case study, let’s assume that such a convenient pro-
vider is not available. To understand what the libmosjs library is doing, we’ll first
frequency count function calls:

The most frequent function called was JS_CallTracer(), which was called
almost two million times during the ten seconds that this one-liner was tracing. To
see what it does, the source code could be examined; but before we do that, we can
get more information from DTrace including frequency counting the user stack
trace to see who is calling this function:

# dtrace -n 'pid$target:libmozjs::entry { @[probefunc] = count(); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target:libmozjs::entry ' matched 1617 probes
^C

  CloseNativeIterators                     1
  DestroyGCArenas                     1
  JS_CompareValues                     1
  JS_DefineElement                     1
  JS_FloorLog2                      1
  JS_GC                     1
[...]
  JS_free                   90312
  js_IsAboutToBeFinalized                   92414
  js_GetToken                  99666
  JS_DHashTableOperate                 102908
  GetChar                  109323
  fun_trace                  132924
  JS_GetPrivate                 197322
  js_TraceObject                   213983
  JS_TraceChildren                  228323
  js_SearchScope                   267826
  js_TraceScopeProperty                 505450
  JS_CallTracer                1923784

# dtrace -n 'pid$target:libmozjs:JS_CallTracer:entry { @[ustack()] = 
count(); }' -p `pgrep firefox-bin`
[...]

   libmozjs.so`JS_CallTracer
  libmozjs.so`js_TraceScopeProperty+0x54

   libmozjs.so`js_TraceObject+0xd5
  libmozjs.so`JS_TraceChildren+0x351

              libxul.so`__1cLnsXPConnectITraverse6MpvrnbInsCycleCollectionTraversalCal
lback__I_+0xc7
              libxul.so`__1cQnsCycleCollectorJMarkRoots6MrnOGCGraphBuilder__v_+0x96

libxul.so`__1cQnsCycleCollectorPBeginCollection6M_i_+0xf1
libxul.so`__1cbGnsCycleCollector_beginCollection6F_i_+0x26

              libxul.so`__1cZXPCCycleCollectGCCallback6FpnJJSContext_nKJSGCStatus__i_+0xd8
    libmozjs.so`js_GC+0x5ef

continues
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The stack trace here has been truncated (increase the ustackframes tunable
to see all); however, enough has been seen for this and the truncated stack traces
to see that they originate from JS_GC()—a quick look at the code confirms that
this is JavaScript Garbage Collect.

Function CPU Time

Given the name of the garbage collect function, a script can be quickly written to
check the CPU time spent in it (named jsgc.d):

This specifically measures the elapsed CPU time (vtimestamp) for JS_GC().
(Another approach would be to use the profile provider and count stack traces that
included JS_GC().)

Here we execute jsgc.d:

    libmozjs.so`JS_GC+0x4e
 libxul.so`__1cLnsXPConnectHCollect6M_i_+0xaf
 libxul.so`__1cQnsCycleCollectorHCollect6MI_I_+0xee
 libxul.so`__1cYnsCycleCollector_collect6F_I_+0x28
libxul.so`__1cLnsJSContextGNotify6MpnInsITimer__I_+0x375

  libxul.so`__1cLnsTimerImplEFire6M_v_+0x12d
  libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
              libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
            40190

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  pid$target::JS_GC:entry
6  {
7  self->vstart = vtimestamp;
8  }
9
10  pid$target::JS_GC:return
11  /self->vstart/
12  {
13          this->oncpu = (vtimestamp - self->vstart) / 1000000;
14          printf("%Y GC: %d CPU ms\n", walltimestamp, this->oncpu);
15   self->vstart = 0;
16  }

Script jsgc.d

# jsgc.d -p `pgrep firefox-bin`
2010 Jul  4 01:06:57 GC: 331 CPU ms
2010 Jul  4 01:07:38 GC: 316 CPU ms
2010 Jul  4 01:08:18 GC: 315 CPU ms
^C
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So, although GC is on-CPU for a significant time, more than 300 ms per call, it’s
not happening frequently enough to explain the 9 percent CPU average of Firefox.
This may be a problem, but it’s not the problem. (This is included here for com-
pleteness; this is the exact approach used to study this issue.)

Another frequently called function was js_SearchScope(). Checking its stack
trace is also worth a look:

This time, the function is being called by js_Execute(), the entry point for
JavaScript code execution (and itself was called by JS_EvaluateUCScriptFor-
Principals()). Here we are modifying the earlier script to examine on-CPU time
(now jsexecute.d):

# dtrace -n 'pid$target:libmozjs:js_SearchScope:entry { @[ustack()] = 
count(); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target:libmozjs:js_SearchScope:entry ' matched 1 probe
^C
[...output truncated...]

   libmozjs.so`js_SearchScope
  libmozjs.so`js_DefineNativeProperty+0x2f1

   libmozjs.so`call_resolve+0x1e7
  libmozjs.so`js_LookupProperty+0x3d3
  libmozjs.so`js_PutCallObject+0x164

   libmozjs.so`js_Interpret+0x9cd4
   libmozjs.so`js_Execute+0x3b4

 libmozjs.so`JS_EvaluateUCScriptForPrincipals+0x58
              libxul.so`__1cLnsJSContextOEvaluateString6MrknSnsAString_internal_pvpnMn
sIPrincipal_pkcIIp1pi_I_+0x2e8
              libxul.so`__1cOnsGlobalWindowKRunTimeout6MpnJnsTimeout__v_+0x59c
              libxul.so`__1cOnsGlobalWindowNTimerCallback6FpnInsITimer_pv_v_+0x2e

  libxul.so`__1cLnsTimerImplEFire6M_v_+0x144
  libxul.so`__1cMnsTimerEventDRun6M_I_+0x51

libxul.so`__1cInsThreadQProcessNextEvent6Mipi_I_+0x143
libxul.so`__1cVNS_ProcessNextEvent_P6FpnJnsIThread_i_i_+0x44

 libxul.so`__1cOnsBaseAppShellDRun6M_I_+0x3a
  libxul.so`__1cMnsAppStartupDRun6M_I_+0x34

   libxul.so`XRE_main+0x35e3
    firefox-bin`main+0x223
    firefox-bin`_start+0x7d

             9287

1  #!/usr/sbin/dtrace -s
2
3  pid$target::js_Execute:entry
4  {
5  self->vstart = vtimestamp;
6  }
7
8  pid$target::js_Execute:return
9  /self->vstart/
10  {
11          this->oncpu = vtimestamp - self->vstart;
12          @["js_Execute Total(ns):"] = sum(this->oncpu);
13   self->vstart = 0;
14  }

Script jsexecute.d
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Here we run it for ten seconds:

This shows 428 ms of time in js_Execute() during those ten seconds, and so
this CPU cost can explain about half of the Firefox CPU time (this is a single-CPU
system; therefore, there is 10,000 ms of available CPU time every 10 seconds, so
this is about 4.3 percent of CPU).

The JavaScript functions could be further examined with DTrace to find out
why this JavaScript program is hot on-CPU, in other words, what exactly it is
doing (the DTrace JavaScript provider would help here, or a Firefox add-on could
be tried).

Fetching Context

Here we will find what is being executed: preferably the URL. Examining the ear-
lier stack trace along with the Firefox source (which is publically available) showed
the JavaScript filename is the sixth argument to the JS_EvaluateUCScriptFor-
Principals() function. Here we are pulling this in and frequency counting:

The name of the URL has been modified in this output (to avoid embarrassing
anyone); it pointed to a site that I didn’t think I was using, yet their script was get-
ting executed more than 700 times per second anyway, which is consuming (wast-
ing!) at least 4 percent of the CPU on this system.

The Fix

An add-on was already available that could help at this point: SaveMemory, which
allows browser tabs to be paused. The DTrace one-liner was modified to print con-
tinual one-second summaries, while all tabs were paused as an experiment:

# jsexecute.d -p `pgrep firefox-bin` -n 'tick-10sec { exit(0); }'
dtrace: script 'jsexecute.d' matched 2 probes
dtrace: description 'tick-10sec ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0  64907            :tick-10sec 

  js_Execute Total(ns):                 427936779

# dtrace -n 'pid$target::*EvaluateUCScriptForPrincipals*:entry { @[copyinstr(arg5)] =
 count(); } tick-10sec { exit(0); }' -p `pgrep firefox-bin`
dtrace: description 'pid$target::*EvaluateUCScriptForPrincipals*:entry ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1  64907            :tick-10sec 

  http://www.example.com/js/st188.js                   7056
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The execution count for the JavaScript program begins at around 700 execu-
tions per second and then vanishes when pausing all tabs. (The output has also
caught the execution of greasemonkey.js, executed as the add-on was used.)

prstat(1M) shows the CPU problem is no longer there (shown after waiting a
few minutes for the %CPU decayed average to settle):

Next, the browser tabs were unpaused one by one to identify the culprit, while
still running the DTrace one-liner to track JavaScript execution by file. This
showed that there were seven tabs open on the same Web site that was running
the JavaScript program—each of them executing it about 100 times per second.
The Web site is a popular blogging platform, and the JavaScript was being exe-
cuted by what appears to be an inert icon that links to a different Web site (but as
we found out—it is not inert).7 The exact operation of that JavaScript program can
now be investigated using the DTrace JavaScript provider or a Firefox add-on
debugger.

Conclusion

A large component of this issue turned out to be a rogue JavaScript program, an
issue that could also have been identified with Firefox add-ons. The advantage of

# dtrace -n 'pid$target::*EvaluateUCScriptForPrincipals*:entry { @[copyinstr(arg5)] =
 count(); } tick-1sec { printa(@); trunc(@); }' -p `pgrep firefox-bin`
[...]
  1  63140             :tick-1sec 
  http://www.example.com/js/st188.js                   697

  1  63140             :tick-1sec 
  http://www.example.com/js/st188.js                   703

  1  63140             :tick-1sec 
file:///export/home/brendan/.mozilla/firefox/3c8k4kh0.default/extensions/%7Be4a8a97b-f
2ed-450b-b12d-ee082ba24781%7D/components/greasemonkey.js                1
  http://www.example.com/js/st188.js                   126

  1  63140             :tick-1sec 

  1  63140             :tick-1sec

# prstat
   PID USERNAME  SIZE  RSS STATE  PRI NICE TIME  CPU PROCESS/NLWP
 27035 brendan   150M  136M sleep   49 0   0:27:15 0.2% opera/4
 27060 brendan   407M  304M sleep   59 0   7:35:12 0.1% firefox-bin/17
 28424 root     3392K 2824K cpu1    49 0   0:00:00 0.0% prstat/1
[...]

7. An e-mail was sent to the administrators of the blogging platform to let them know.
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using DTrace is that if there is an issue, the root cause can be identified—no mat-
ter where it lives in the software stack. As an example of this,8 about a year ago a
performance issue was identified in Firefox and investigated in the same way—
and found to be a bug in a kernel frame buffer driver (video driver); this would be
extremely difficult to have identified from the application layer alone.

Xvnc

Xvnc is a Virtual Network Computing (VNC) server that allows remote access to
X server–based desktops. This case study represents examining an Xvnc process
that is CPU-bound and demonstrates using the syscall and profile providers.

When performing a routine check of running processes on a Solaris system by
using prstat(1), it was discovered that an Xvnc process was the top CPU con-
sumer. Looking just at that process yields the following:

We can see the Xvnc process is spending most of its time executing in user mode
(USR, 86 percent) and some of its time in the kernel (SYS, 14 percent). Also worth
noting is it is executing about 200,000 system calls per second (SCL value of .2M).

syscall Provider

Let’s start by checking what those system calls are. This one-liner uses the syscall
provider to frequency count system calls for this process and prints a summary
every second:

8. I’d include this as a case study here, if I had thought to save the DTrace output at the time.

solaris# prstat -c -Lmp 5459
   PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID 
  5459 nobody    86 14 0.0 0.0 0.0 0.0 0.0 0.0   0  36 .2M 166 Xvnc/1

solaris# dtrace -qn 'syscall:::entry /pid == 5459/ { @[probefunc] = 
count(); } tick-1sec { printa(@); trunc(@); }'

  read                      4
  lwp_sigmask                   34
  setcontext                    34
  setitimer                      68
  accept                   48439
  gtime                   48439
  pollsys                   48440
  write                   97382

continues
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Because the rate of system calls was relatively high, as reported by
prstat(1M), we opted to display per-second rates with DTrace. The output shows
more than 97,000 write() system calls per second and just more than 48,000
accept(), poll(), and gtime() calls.

Let’s take a look at the target of all the writes and the requested number of
bytes to write:

The vast majority of the writes are to a file, /var/adm/X2msgs. The number of
bytes to write was 82 bytes and 35 bytes for the most part (more than 361,000
times each). Checking that file yields the following:

Looking at the file Xvnc is writing to, we can see it is getting very large (more
than 2GB), and the messages themselves appear to be error messages. We will
explore that more closely in just a minute.

Given the rate of 97,000 writes per second, we can already extrapolate that each
write is taking much less than 1 ms (1/97000 = 0.000010), so we know the data is
probably being written to main memory (since the file resides on a file system and

  read                     4
  lwp_sigmask                   33
  setcontext                    33
  setitimer                      66
  gtime                   48307
  pollsys                   48307
  accept                   48308
  write                   97117

solaris# dtrace -qn 'syscall::write:entry /pid == 5459/ { @[fds[arg0].fi_pathname,
arg2] = count(); }'
^C

  /var/adm/X2msgs 26                8
  /devices/pseudo/mm@0:null          8192            3752
  /var/adm/X2msgs             82           361594
  /var/adm/X2msgs             35           361595

solaris# ls -l /var/adm/X2msgs
-rw-r--r--   1 root   nobody   2147483647 Aug 13 15:05 /var/adm/X2msgs
solaris# tail /var/adm/X2msgs

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
 XserverDesktop: XserverDesktop::wakeupHandler: unable to accept new

 connection: Invalid argument (22)
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the writes are not synchronous, they are being satisfied by the in-memory file sys-
tem cache). We can of course time these writes with DTrace:

Before measuring the write time, we wanted to be sure we knew the target file
system type of the file being written, which was ZFS. We used that in the predi-
cate in the w.d script to measure write system calls for this process (along with the
process PID test). The output of w.d is a quantize aggregation that displays wall
clock time for all the write calls executed to a ZFS file system from that process
during the sampling period. We see that most of the writes fall in the 512-nanosec-
ond to 1024-nanosecond range, so these are most certainly writes to memory.

We can determine the user code path leading up to the writes by aggregating on
the user stack when the write system call is called:

solaris# dtrace -qn 'syscall::write:entry /pid == 5459/
{ @[fds[arg0].fi_fs] = count(); }'
^C
  specfs                    2766
  zfs                   533090

solaris# cat -n w.d
1   #!/usr/sbin/dtrace -qs 
2
3   syscall::write:entry 
4   /pid == 5459 && fds[arg0].fi_fs == "zfs"/ 
5   { 
6  self->st = timestamp; 
7   } 
8   syscall::write:return
9   /self->st/
10  {
11 @ = quantize(timestamp - self->st);
12          self->st = 0;
13  }

solaris# ./w.d
^C

           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1477349
            1024 |               2312
            2048 |               3100
            4096 |              250
            8192 |              233
           16384 |              145
           32768 |             90
           65536 |                  0

solaris# dtrace -qn 'syscall::write:entry /pid == 5459 && fds[arg0].fi_fs == 
"zfs"/ { @[ustack()] = count(); }'
^C
[...]
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We see two very similar stack frames, indicating a log event is causing the Xvnc
process to write to its log file.

We can even use DTrace to observe what is being written to the file, by examin-
ing the contents of the buffer pointer from the write(2) system call. It is passed
to the copyinstr() function, both to copy the data from user-land into the kernel
address space and to treat it as a string:

    libc.so.1`_write+0x7
   libc.so.1`_ndoprnt+0x2816
    libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1a5
  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

           430879

    libc.so.1`_write+0x7
   libc.so.1`_ndoprnt+0x2816
    libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1eb
  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

           430879

solaris# dtrace -n 'syscall::write:entry /pid == 5459/ { @[copyinstr(arg1)] = 
count(); }'
dtrace: description 'syscall::write:entry ' matched 1 probe
^C

Sun Aug 22 00:09:05 2010
ent (22)
keupHandler: unable to accept new
             st!
Ltd.
See http://www.realvnc.com for information on VNC.
                1

Sun Aug 22 00:09:06 2010
ent (22)
keupHandler: unable to accept new
             st!
                2
[...]
upHandler: unable to accept new connection: Invalid argument (22)XserverDesktop::wakeu
pHandler: unable to accept new connection: Invalid argument (22)XserverDesktop::wakeup
Handler: unable to accept new connection: Invalid argument (22)XserverDesktop::wake
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This shows the text being written to the log file, which largely contains errors
describing invalid arguments used for new connections. Remember that our initial
one-liner discovered more than 48,000 accept() system calls per-second—it
would appear that these are failing because of invalid arguments, which is being
written as an error message to the /var/adm/X2msgs log.

DTrace can confirm that the accept() system calls are failing in this way, by
examining the error number (errno) on syscall return:

All the accept() system calls are returning with errno 22, EINVAL (Invalid
argument). The reason for this can be investigated by examining the arguments to
the accept() system call.

We see the first argument to accept is 3, which is the file descriptor for the
socket. The second two arguments are both NULL, which may be the cause of the
EINVAL error return from accept. It is possible it is valid to call accept with the
second and third arguments as NULL values,9 in which case the Xvnc code is not
handling the error return properly. In either case, the next step would be to look at
the Xvnc source code and find the problem. The code is burning a lot of CPU with
calls to accept(2) that are returning an error and each time generating a log file
write.

                59
valid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: I
nvalid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: In
valid argument (22)XserverDesktop::wakeupHandler: unable to accept new connection: In 
                59

solaris# dtrace -n 'syscall::accept:return /pid == 5459/ { @[errno] = count(); }'
dtrace: description 'syscall::accept:return ' matched 1 probe
^C

       22           566135

solaris# grep 22 /usr/include/sys/errno.h
#define     EINVAL 22    /* Invalid argument                 */

solaris# dtrace -n 'syscall::accept:entry /execname == "Xvnc"/ { @[arg0, arg1, 
arg2] = count(); }'
dtrace: description 'syscall::accept:entry ' matched 1 probe
^C

                3            0        0           150059

9. Stevens (1998) indicates that it is.
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While still using the syscall provider, the user code path for another of the other
hot system calls can be examined:

This shows that calls to gtime(2) are part of the log file writes in the applica-
tion, based on the user function names we see in the stack frames.

profile Provider

To further understand the performance of this process, we will sample the on-CPU
code at a certain frequency, using the profile provider.

This one-liner shows which user functions were on-CPU most frequently. It tests
for user mode (arg1) and the process of interest and uses the ufunc() function to
convert the user-mode on-CPU program counter (arg1) into the user function
name. The most frequent is a libc function, _ndoprnt(), followed by several func-
tions from the standard C++ library.

For a detailed look of the user-land code path that is responsible for consuming
CPU cycles, aggregate on the user stack:

solaris# dtrace -n 'syscall::gtime:entry /pid == 5459/ { @[ustack()] = count(); }'
dtrace: description 'syscall::gtime:entry ' matched 1 probe
^C

    libc.so.1`__time+0x7
 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0xce

  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

           370156

solaris# dtrace -n 'profile-997hz /arg1 && pid == 5459/ { @[ufunc(arg1)] = count(); }'
dtrace: description 'profile-997hz ' matched 1 probe
^C
[...]
  libc.so.1`memcpy                    905
  Xvnc`_ZN14XserverDesktop12blockHandlerEP6fd_set           957
  libgcc_s.so.1`uw_update_context_1                1155
  Xvnc`_ZN3rdr15SystemExceptionC2EPKci               1205
  libgcc_s.so.1`execute_cfa_program                1278
  libc.so.1`strncat                   1418
  libc.so.1`pselect                   1686
  libstdc++.so.6.0.3`_Z12read_uleb128PKhPj                  1700
  libstdc++.so.6.0.3`_Z28read_encoded_value_with_basehjPKhPj     2198
  libstdc++.so.6.0.3`__gxx_personality_v0              2445
  libc.so.1`_ndoprnt                   3918
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Note that only the two most frequent stack frames are shown here. We see the
event loop in the Xvnc code and visually decoding the mangled function names; we
can see a function with network TCPListener accept in the function name.
This makes sense for an application like Xvnc, which would be listening on a net-
work socket for incoming requests and data. And we know that there’s an issue
with the issued accept(2) calls inducing a lot of looping around with the error
returns.

We can also take a look at the kernel component of the CPU cycles consumed by
this process, again using the profile provider and aggregating on kernel stacks:

solaris# dtrace -n 'profile-997hz /arg1 && pid == 5459/ { @[ustack()] = 
count(); } tick-10sec { trunc(@, 20); exit(0); }'
^c
[...]

 libstdc++.so.6.0.3`__gxx_personality_v0+0x29f
  libgcc_s.so.1`_Unwind_RaiseException+0x88
  libstdc++.so.6.0.3`__cxa_throw+0x64
 Xvnc`_ZN7network11TcpListener6acceptEv+0xb3
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              125

    libc.so.1`memset+0x10c
  libgcc_s.so.1`_Unwind_RaiseException+0xb7
  libstdc++.so.6.0.3`__cxa_throw+0x64
 Xvnc`_ZN7network11TcpListener6acceptEv+0xb3
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              213

solaris# dtrace -n 'profile-997hz /pid == 5459 && arg0/ { @[stack()] = count(); }'
^c
[...]

    unix`mutex_enter+0x10
   genunix`pcache_poll+0x1a5
   genunix`poll_common+0x27f
    genunix`pollsys+0xbe
    unix`sys_syscall32+0x101

               31

    unix`tsc_read+0x3
    genunix`gethrtime+0xa
    unix`pc_gethrestime+0x31
    genunix`gethrestime+0xa
   unix`gethrestime_sec+0x11
    genunix`gtime+0x9
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The kernel stack is consistent with previously observed data. We see system call
processing (remember, this process is doing 200,000 system calls per second), we
see the gtime system call stack in the kernel, as well as the poll system call kernel
stack. We could measure this to get more detail, but the process profile was only 14
percent kernel time, and given the rate and type of system calls being executed by
this process, there is minimal additional value in terms of understanding the CPU
consumption by this process in measuring kernel functions.

For a more connected view, we can trace code flow from user mode through the
kernel by aggregating on both stacks:

    unix`sys_syscall32+0x101
               41

    unix`tsc_read+0x3
   genunix`gethrtime_unscaled+0xa
   genunix`syscall_mstate+0x4f
    unix`sys_syscall32+0x11d

              111

    unix`lock_try+0x8
   genunix`post_syscall+0x3b6
   genunix`syscall_exit+0x59
    unix`sys_syscall32+0x1a0

              229

solaris# dtrace -n 'profile-997hz /pid == 5459/ { @[stack(), ustack()] = 
count(); } tick-10sec { trunc(@, 2); exit(0); }'
dtrace: description 'profile-997hz ' matched 2 probes
CPU     ID            FUNCTION:NAME
  1 122538            :tick-10sec 

    unix`lock_try+0x8
   genunix`post_syscall+0x3b6
   genunix`syscall_exit+0x59
    unix`sys_syscall32+0x1a0

    libc.so.1`_write+0x7
   libc.so.1`_ndoprnt+0x2816
    libc.so.1`fprintf+0x99

 Xvnc`_ZN3rfb11Logger_File5writeEiPKcS2_+0x1eb
  Xvnc`_ZN3rfb6Logger5writeEiPKcS2_Pc+0x36
  Xvnc`_ZN3rfb9LogWriter5errorEPKcz+0x2d

Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x28b
   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              211

    unix`lock_try+0x8
   genunix`post_syscall+0x3b6
   genunix`syscall_exit+0x59
    unix`sys_syscall32+0x1a0

continues
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Here we see the event loop calling into the accept(3S) interface in libc and
entering the system call entry point in the kernel. The second set of stack frames
shows the log write path. One of the stacks has also caught _ndoprnt, which we
know from earlier to be the hottest on-CPU function, calling write() as part of
Xvnc logging.

Conclusions

The initial analysis with standard operating system tools showed that the single-
threaded Xvnc process was CPU bound, spending most of its CPU cycles in user-
mode and performing more than 200,000 system calls per second. DTrace was used
to discover that the application was continually encountering new connection fail-
ures because of invalid arguments (accept(2)) and was writing this message to a
log file, thousands of times per second.

Summary

With DTrace, applications can be studied like never before: following the flow of
code from the application source, through libraries, through system calls, and
through the kernel. This chapter completed the topics for application analysis; see
other chapters in this book for related topics, including the analysis of program-
ming languages, disk, file system, and network I/O.

    libc.so.1`_so_accept+0x7
 Xvnc`_ZN7network11TcpListener6acceptEv+0x18
Xvnc`_ZN14XserverDesktop13wakeupHandlerEP6fd_seti+0x13d

   Xvnc`vncWakeupHandler+0x3d
    Xvnc`WakeupHandler+0x36
   Xvnc`WaitForSomething+0x28d
    Xvnc`Dispatch+0x76

     Xvnc`main+0x3e5
    Xvnc`_start+0x80

              493
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10
Databases

DTrace is a powerful tool for analyzing databases, allowing database operation to
be examined in detail. High-level events such as user connections and transac-
tions can be traced as they are processed step-by-step inside the database engine
and as the database interacts with the operating system. You can get answers to
questions such as the following.

Which queries are causing random disk I/O?

What is causing high latency for certain transactions?

How well do the caches perform for certain queries?

Databases already provide a collection of fixed statistics, often extensive and
covering details such as transaction times, byte counts, and cache hit rates.
Although these are useful, they are limited to what the database makes available
and are also limited to one layer of the software stack: the database itself. How-
ever, when you need to look outside this layer, for example, at disk events using
tools from the operating system, database context is lost. Because DTrace can
monitor both types of events in the same tool, it can be used to associate database
context to system events. This is why DTrace can be used to determine which que-
ries are causing random disk I/O, by tracing both database and disk I/O events in
the same script.

The aim of this chapter is to introduce what you can do with DTrace, to suggest
a strategy for analysis, to list DTrace providers, and to provide example DTrace
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one-liners and scripts for retrieving database context such as query strings. These
examples can be combined with those from other chapters to see operating system
events such as disk and network I/O in the context of queries and other database
events.

Capabilities

The following summarizes DTrace’s capabilities on the database server.

DTrace provides custom, high-level observability. Information such as query 
counts and user connections can be traced, and you can decide how to pres-
ent the results. Although similar information is usually available via other 
database tools, DTrace provides data-processing features such as frequency 
counts, distribution plots, and predicates, which can improve how this data is 
presented and understood.

DTrace can measure behavior across the entire software stack. This can 
reveal issues with the disk devices, kernel drivers, user-level locks, and any 
other system component, which might be missed when performing analysis 
from the database only. Systemic bottlenecks can be identified and eliminated.

DTrace can monitor system events in database context. System events such 
as disk and network I/O can be analyzed in terms of database users and 
queries.

DTrace can provide a deep view of internal database operations, going far 
beyond shipped metrics and standard analyzers.

Apart from the database server, DTrace can also analyze the database clients
and their application software, if DTrace is available on those systems.

The following summarizes the capabilities on the database client.

DTrace can trace connections to the database server. The database request 
latency, plus the operation of the database interface library and the client 
network stack, can be measured from the client.

DTrace can trace the client application. Database transactions can be traced 
right back to application context. This could lead to changes in the applica-
tion configuration or code to optimize how database requests are made.

To visualize key components involved, Figure 10-1 shows a database client on a
different system from the server.
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Although database administrators can become skilled at identifying issues
within the database itself, this is only one component of a larger system. Since
DTrace can examine this entire system, the problem is no longer getting to the
information but knowing where to start.

Strategy

We suggest the following approach to getting started with database analysis:

1. Use the shipped database statistics and analyzers already available. Most 
databases can provide exhaustive statistics, if enabled, and also analyzers to 
observe operation. Understanding your available database statistics is a good 
introduction to which type of metrics may be important and should lead to 
ideas on where DTrace can extend observability (rather than reinvent 
observability).

2. Search for a matching DTrace database provider. This will be a high-level 
provider that will allow you to write concise scripts to observe fundamental 
database behavior, for example, the mysqld provider.

3. DTrace system behavior from other providers. DTrace is about observing 
the entire system, not just the database. Some issues may be easier to see, 
and much easier to prove, if observed from other layers of the software stack. 

Figure 10-1 Client-server components
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For example, try observing disk events from the io provider (which resem-
bles physical calls to disks), rather than from database I/O. 

4. Consider using the pid provider to examine raw database operation. This 
can be difficult, because you are observing the raw, unvarnished code of the 
database in flight. A specific database provider is preferable, but one may not 
yet have been written for your database. Also consider whether your database 
vendor allows you to examine the operation of its code (conditions of use).

In general, start tracing at a high level, such as of what work is being per-
formed, and then drill down into the specifics of how it is being performed. You
may find the biggest wins in eliminating unnecessary work, rather than tuning
existing work. Try to picture the key components of the database in your environ-
ment and the database engine.

For example, consider Figure 10-2, which shows a generic database query pro-
cessing engine.

Consider how many of these components you can currently observe. Writing DTrace
scripts to trace transactions at each of these components is a good starting point.
Scripts can then be enhanced to measure exactly how transactions are being processed.

Providers

Various providers are available for database analysis, with more being added over
time. Tables 10-1 and 10-2 list what is currently available for both the database
server and client. 

The pid provider is considered an “unstable” interface, because it instruments a
specific software version. The pid provider–based one-liners and scripts in this chap-
ter may not execute without modifications to match the software version you are
running. See Chapter 9, Applications, for more discussion about the pid provider.

Figure 10-2 Generic database query processing
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MySQL

A DTrace provider called mysql has been developed and added to the MySQL1

server source. An early version of this provider was in MySQL 6.0.8 and provided a
limited set of probes when compiled with the --enable-dtrace option. An
extended version of the provider was developed and made available in MySQL
6.0.8 and 5.1.30, which is demonstrated here. The probes for the mysql provider
are fully documented in the MySQL Reference Manual.2 Note the probes listed in
Table 10-3 are from the MySQL 5.7.1 Reference Manual.

Without the mysql provider, similar functionality is possible by tracing using
the pid provider, although such scripts will be unstable and require updates to con-
tinue working on different versions of MySQL. They will also require an under-
standing of the MySQL server source code to develop.

One-liners and scripts are demonstrated here as an introduction to DTrace and
MySQL.

Table 10-1 Database Server Providers

Provider Description

mysql MySQL database provider. High-level probes for connections, query events, 
row operations, network I/O, and more.

postgresql PostgreSQL database provider. High-level probes for transactions and lock 
events.

syscall Trace interface between database server and operating system.

io Trace server disk events: size, latency, throughput.

fbt Trace kernel events including networking.

pid Trace server internals: all software function calls.

Table 10-2 Database Client Providers

Provider Description

syscall Traces interface between database client and operating system

fbt Traces kernel events including networking

pid Traces database client library calls and application software calls

1. www.mysql.com

2. http://dev.mysql.com/doc/refman/5.6/en/dba-dtrace-mysqld-ref.html

www.mysql.com
http://dev.mysql.com/doc/refman/5.6/en/dba-dtrace-mysqld-ref.html
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One-Liners

The following one-liners provide an excellent starting point for observing and
understanding database activity.

mysql Provider

MySQL: query trace by query string:

Table 10-3 MySQL DTrace Probes

Probe Group Probe Name

Connection connection-start, connection-done

Command command-start, command-done

Query query-start, query-done

Query parsing query-parse-start, query-parse-done

Query cache query-cache-hit, query-cache-miss

Query execution query-exec-start, query-exec-done

Row level insert-row-start, insert-row-done, update-row-start,
update-row-done, delete-row-start, delete-row-done

Row reads read-row-start, read-row-done

Index reads index-read-row-start, index-read-row-done

Lock handler-rdlock-start, handler-rdlock-done,
handler-wrlock-start, handler-wrlock-done,
handler-unlock-start, handler-unlock-done

Filesort filesort-start, filesort-done

Statement select-start, select-done, insert-start, insert-done,
insert-select-start, insert-select-done, update-start,
update-done, multi-update-start, multi-update-done,
delete-start, delete-done, multi-delete-start,
multi-delete-done

Network net-read-start, net-read-done, net-write-start,
net-write-done

Keycache keycache-read-start, keycache-read-block,
keycache-read-done, keycache-read-hit,
keycache-read-miss, keycache-write-start,
keycache-write-block, keycache-write-done

dtrace -n 'mysql*:::query-start { trace(copyinstr(arg0)) }' 
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MySQL: query count summary by query string:

MySQL: query count summary by user:

MySQL: query count summary by host:

MySQL: query event count:

MySQL: row event count:

MySQL: lock event count:

pid Provider

The following are examples of tracing MySQL 5.1 internal functions using the pid
provider; these are likely to need the function name and arguments adjusted for
other versions.

MySQL server: trace queries:

dtrace -n 'mysql*:::query-start { @[copyinstr(arg0)] = count(); }' 

dtrace -n 'mysql*:::query-start { @[copyinstr(arg3)] = count(); }' 

dtrace -n 'mysql*:::query-start { @[copyinstr(arg4)] = count(); }' 

dtrace -n 'mysql*:::query-* { @[probename] = count(); }' 

dtrace -n 'mysql*:::*-row-* { @[probename] = count(); }' 

dtrace -n 'mysql*:::*lock-* { @[probename] = count(); }' 

dtrace -qn 'pid$target::*mysql_parse*:entry { printf("%Y   %s\n", walltimestamp, 
copyinstr(arg1)); }' -p PID
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MySQL server: count queries:

MySQL client: who’s doing what (stack trace by query):

io Provider

MySQL: disk I/O size distribution

One-Liner Selected Examples

This section includes several of the one-liners from the previous section in action.

MySQL: Query Count Summary by Query String 

This one-liner counts queries while tracing on the MySQL server:

Here the select * from image query was performed three times while tracing.

MySQL: Disk I/O Size Distribution

This matches the execname of mysqld when block I/O is issued. This will only
match disk I/O issued synchronously with mysqld; writes buffered by a file sys-
tem and flushed to disk later will not be matched by this one-liner.

dtrace -n 'pid$target::*mysql_parse*:entry { @[copyinstr(arg1)] = count(); }' -p PID

dtrace -Zn 'pid$target:libmysql*:mysql_*query:entry { trace(copyinstr(arg1));
ustack(); }' -p PID

dtrace -n 'io:::start /execname == “mysqld”/ { @ = quantize(args[0]->b_bcount); }'

server# dtrace -n 'mysql*:::query-start { @[copyinstr(arg0)] = count(); }'
dtrace: description 'mysql*:::query-start ' matched 1 probe
^C

  select * from imagelinks                    1
  select * from imagelinks where il_from > 118              1
  select * from user                      1
  select @@version_comment limit 1                   1
  show tables                      1
  select * from image                     3
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Here we traced several I/O, with most in the 64KB to 128KB range. While tracing,
many queries were performed to the MySQL server, yet there were few disk I/Os
as a result—either the MySQL cache was returning most of them (as the following
scripts can identify) or the disk I/O was asynchronous to MySQL (see Chapter 5,
File Systems, for tracing the VFS layer, which enables observing file system I/O
while the mysqld process is still on-CPU).

Scripts

Table 10-4 summarizes the scripts for MySQL and the providers they use.

mysqld_qsnoop.d

This script traces queries live and prints details including the time and result.

server# dtrace -n 'io:::start /execname == "mysqld"/ { @ = quantize(args[0]->b_
bcount); }'
dtrace: description 'io:::start ' matched 6 probes
^C

           value  ------------- Distribution ------------- count
             256 |              0
             512 |@@@@               1
            1024 |@@@@             1
            2048 |              0
            4096 |              0
            8192 |@@@@             1
           16384 |             0
           32768 |@@@@            1
           65536 |@@@@@@@@@@@@@@@@@@@@@@@@            6
          131072 |                 0

Table 10-4 MySQL Script Summary

Script Target Description Provider

mysqld_qsnoop.d Server Snoops all queries with info including 
result

mysql

mysqld_qchit.d Server Shows query-cache hit rate with 
missed queries

mysql

mysqld_qslower.d Server Snoops queries slower than given 
milliseconds

mysql

mysqld_pid_qtime.d Server Shows query time distribution plots pid

libmysql_snoop.d Client Snoops client queries via libmysqlclient pid
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Script

This script depends on the query-start and query-done probes firing in the
same thread so that the thread-local (self->) variables are passed between the
action blocks.

The output may be shuffled slightly by DTrace: the TIME(ms) column can be
used for postsorting to see the queries in the correct order.

Examples

The mysqld_qsnoop.d script is demonstrated by observing a wiki server using a
MySQL database.

CLI queries: The mysqld_snoop.d script was used to monitor lookups on a 
wiki server that utilizes a MySQL database (MediaWiki), while a few queries 
were tested locally.

 1  #!/usr/sbin/dtrace -s
 2
 3  #pragma D option quiet
 4  #pragma D option switchrate=10hz
 5
 6  dtrace:::BEGIN
 7  {
 8          printf("%-8s %-16s %-18s %5s %3s %s\n", "TIME(ms)", "DATABASE",
 9    "USER@HOST", "ms", "RET", "QUERY");
10   timezero = timestamp;
11  }
12
13  mysql*:::query-start
14  {
15  self->query = copyinstr(arg0);
16  self->db = copyinstr(arg2);
17          self->who = strjoin(copyinstr(arg3), strjoin("@", copyinstr(arg4)));
18   self->start = timestamp;
19  }
20
21  mysql*:::query-done
22  /self->start/
23  {
24          this->now = (timestamp - timezero) / 1000000;
25          this->time = (timestamp - self->start) / 1000000;
26          printf("%-8d %-16.16s %-18.18s %5d %3d %s\n", this->now, self->db,
27 self->who, this->time, (int)arg0, self->query);
28 self->start = 0; self->query = 0; self->db = 0; self->who = 0;
29  }

server# mysqld_qsnoop.d
TIME(ms) DATABASE    USER@HOST        ms RET QUERY
2208     wikidb        wikiuser@localhost     2   0 show tables
5974     wikidb       wikiuser@localhost  63   0 select * from user
8727     wikidb       wikiuser@localhost  22   0 select * from image
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Note that the first lookup of the image table took 22 ms, followed by 0 ms—
most likely because of caching in either the MySQL query cache or the file 
system cache (the scripts that follow can confirm). The lookup of the bogus 
table returned 1, error, since this table does not exist.

Production queries: Now mysqld_snoop.d was tracing while a page was 
loaded from this wiki server:

One of the queries took more than a second, which added noticeable latency 
to the page load time. This can be investigated further with more DTrace, 
such as the mysqld_qslower.d script.

The actual queries performed are long strings of text, including MediaWiki 
comments, which in a few cases have been truncated. Increase the strsize
tunable to avoid the truncation, which can be set either by adding a #pragma
directive to the script or by using -x at the command line. For example, 
adjust strsize to 32 bytes to avoid the text wrapping:

9590     wikidb      wikiuser@localhost  0   0 select * from image
29262    wikidb     wikiuser@localhost  0   1 select * from bogus
^C

server# mysqld_qsnoop.d
TIME(ms) DATABASE      USER@HOST       ms RET QUERY
5110     wikidb        wikiuser@localhost  0   0 BEGIN
5112     wikidb        wikiuser@localhost     0   0 SET /* Database::open  */ sql_m
ode = ''
5115     wikidb        wikiuser@localhost     1   0 SELECT /* Title::getInterwikiLi
nk  */  iw_url,iw_local,iw_trans  FROM `interwiki`  WHERE iw_prefix = 'configuration'
5141     wikidb        wikiuser@localhost     0   0 /* Article::pageData 192.168.1.
132 */ SELECT page_id,page_namespace,page_title,page_restrictions,page_counter,page_i
s_redirect,page_is_new,page_random,page_touched,page_latest,page_len  FROM `page`  WHE
RE page_namespace = '0' AND page_title = 'Configurat
5145     wikidb        wikiuser@localhost  1684   0 SELECT /* Title::loadRestrictio
ns 192.168.1.132 */  *  FROM `page_restrictions` WHERE pr_page = '36'
5146     wikidb        wikiuser@localhost     0   0 /* Title::loadRestrictionsFromR
ow 192.168.1.132 */ SELECT  page_restrictions  FROM `page`  WHERE page_id = '36'  LIMI
T 1
5171     wikidb        wikiuser@localhost     0   0 SELECT /* MediaWikiBagOStuff::_
doquery 192.168.1.132 */ value,exptime FROM `objectcache` WHERE keyname='wikidb:pcache
:idhash:36-0!1!0!!en!2'
[...]

server# mysqld_qsnoop.d -x strsize=32
TIME(ms) DATABASE      USER@HOST       ms RET QUERY
8902     wikidb        wikiuser@localhost  0   0 BEGIN
8903     wikidb        wikiuser@localhost     0   0 SET /* Database::open 192.168.1
8905     wikidb        wikiuser@localhost     0   0 /* Article::pageData 192.168.1.
8911     wikidb        wikiuser@localhost     1   0 SELECT /* Title::loadRestrictio
8912     wikidb        wikiuser@localhost     0   0 /* Title::loadRestrictionsFromR
8947     wikidb        wikiuser@localhost  0   0 COMMIT
9249     wikidb        wikiuser@localhost  0   0 BEGIN

continues
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mysqld_qchit.d

This shows queries by query-cache hit and miss, which is useful for determining
how well the query cache is performing and which queries are missing. This also
calculated and printed hit rate while tracing.

Script

Lines 17–25 exist to truncate long queries so that the columns line up. They can be
deleted if you want to see the full queries.

9250     wikidb        wikiuser@localhost     0   0 SET /* Database::open 192.168.1
9253     wikidb        wikiuser@localhost     1   0 SELECT /* LinkBatch::doQuery 19
9258     wikidb        wikiuser@localhost     1   0 SELECT /* MediaWikiBagOStuff::_
[...]

 1  #!/usr/sbin/dtrace -s
 2
 3  #pragma D option quiet
 4
 5  dtrace:::BEGIN
 6  {
 7          printf("Tracing... Hit Ctrl-C to end.\n");
 8          hits = 0; misses = 0;
 9  }
10
11  mysql*:::query-cache-hit,
12  mysql*:::query-cache-miss
13  {
14  this->query = copyinstr(arg0);
15  }
16
17  mysql*:::query-cache-hit,
18  mysql*:::query-cache-miss
19  /strlen(this->query) > 60/
20  {
21   this->query[57] = '.';
22   this->query[58] = '.';
23   this->query[59] = '.';
24          this->query[60] = 0;
25  }
26
27  mysql*:::query-cache-hit
28  {
29          @cache[this->query, "hit"] = count();
30          hits++;
31  }
32
33  mysql*:::query-cache-miss
34  {
35 @cache[this->query, "miss"] = count();
36          misses++;
37  }
38
39  dtrace:::END
40  {
41          printf("  %-60s %6s %6s\n", "QUERY", "RESULT", "COUNT");
42          printa("   %-60s %6s %@6d\n", @cache);
43  total = hits + misses;
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Example

To test this script, a table dump of the image table was performed ten times, and a
table dump of the user table was performed five times:

All the queries resulted in misses. This was unexpected. After a little investiga-
tion of the MySQL configuration, it was discovered that the query cache was not
enabled at all! To fix this, the following was added to /etc/mysql/my.cnf:

MySQL was then restarted, and this test was repeated:

Now hits can be seen for the repeated queries. (Fortunately for this production
server, what MySQL did not cache, the file system cache did, which explains the
speedup seen in the example of mysqld_qsnoop.d.)

44          printf("\nHits  : %d\n", hits);
45 printf("Misses : %d\n", misses);
46 printf("Hit Rate : %d%%\n", total ? (hits * 100) / total : 0);
47  }

server# mysqld_qchit.d
Tracing... Hit Ctrl-C to end.
^C
   QUERY      RESULT  COUNT
   select * from user             miss      5
   select * from image              miss     10

Hits     : 0
Misses   : 15
Hit Rate : 0%

query_cache_size= 16M

server# mysqld_qchit.d
Tracing... Hit Ctrl-C to end.
^C
   QUERY      RESULT  COUNT
   select * from image               miss      1
   select * from user             miss      1
   select * from user              hit      4
   select * from image                hit      9

Hits     : 13
Misses   : 2
Hit Rate : 86%
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mysqld_qslower.d

This traces queries slower than a given value of milliseconds, with details to deter-
mine where the latency is.

Script

This script takes the millisecond value as an argument, which is read on line 11
and converted to nanoseconds. If no argument is given, the script still executes
with a value of 0 (thanks to the defaultargs pragma on line 4), meaning it will
trace all requests.

 1  #!/usr/sbin/dtrace -s
 2
 3  #pragma D option quiet
 4  #pragma D option defaultargs
 5  #pragma D option switchrate=10hz
 6
 7  dtrace:::BEGIN
 8  {
 9          printf("%5s %5s %5s %5s %s\n", "QRYms", "EXCms", "CPUms",
10     "CACHE", "QUERY");
11  min_ns = $1 * 1000000;
12  }
13
14  mysql*:::query-start
15  {
16  self->query = copyinstr(arg0);
17   self->start = timestamp;
18  self->vstart = vtimestamp;
19  }
20
21  mysql*:::query-cache-hit,
22  mysql*:::query-cache-miss
23  {
24 self->cache = probename == "query-cache-hit" ? "hit" : "miss";
25  }
26
27  mysql*:::query-exec-start
28  {
29  self->estart = timestamp;
30  }
31
32  mysql*:::query-exec-done
33  /self->estart/
34  {
35          self->exec = timestamp - self->estart;
36   self->estart = 0;
37  }
38
39  mysql*:::query-done
40  /self->start && (timestamp - self->start) >= min_ns/
41  {
42          this->time = (timestamp - self->start) / 1000000;
43          this->vtime = (vtimestamp - self->vstart) / 1000000;
44 this->etime = self->exec / 1000000;
45 printf("%5d %5d %5d %5s %s\n", this->time, this->etime, this->vtime,
46     self->cache, self->query);
47  }
48
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The columns printed are as follows:

QRYms: Query time, milliseconds

EXCms: Execution time, milliseconds

CPUms: On-CPU time, milliseconds

Example

Here the script was used to trace any query that took one millisecond or longer:

The show tables query showed 2 milliseconds, which was entirely on-CPU
time (code path), with 1 millisecond in the execution stage.

The next query (select * from pagelinks) took 25 milliseconds, 24 of which
were in the execution stage. However, only 5 milliseconds were on-CPU, meaning
that most of this time was waiting off-CPU, most probably on disk I/O to satisfy
the query.

This query was repeated, the second time taking 4 milliseconds, all on-CPU.
Here the query-cache was disabled, and although the file system appears to be
returning the data from its cache (no off-CPU time waiting on disk I/O), there was
still significant latency as the (file system–cached) database files were reread for
the query. Here’s an example of enabling the cache and running the script with no
arguments to trace all events:

This shows the same query is returning in 0 ms (rounded to zero), instead of 4 ms.
This makes a case for using the query cache over the file system cache.

49  mysql*:::query-done
50  {
51          self->start = 0; self->vstart = 0; self->exec = 0;
52 self->cache = 0; self->query = 0;
53  }

server# mysqld_qslower.d 1
QRYms EXCms CPUms CACHE QUERY
    2     1    2  miss show tables
   25    24  5  miss select * from pagelinks
    4     4   4  miss select * from pagelinks

server# mysqld_qslower.d
QRYms EXCms CPUms CACHE QUERY
    0     0  0   hit select  from pagelinks
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mysqld_pid_qtime.d

This script traces queries and shows their time as distribution plots by query
string. It was written to demonstrate using the pid provider and as such is
expected to work only on a particular version of the MySQL source (5.1).

Script

This script traces MySQL internal functions and arguments (the dispatch_
command() function, with arg2) for this MySQL version. This can be rewritten to
match different MySQL versions and internals or to use the mysql provider if
available.

Example

In the following output, the select * from months query had one execution
take between 8 and 16 milliseconds, 11 executions take between 0.5 and 1.0 milli-
seconds, and 9 executions take between 131 and 262 microseconds. Presumably,
the slow execution (8 ms to 16 ms) was the first query, which put the data in mem-
ory (which mysqld_qslower.d, or a pid-based variant, could confirm).

     1  #!/usr/sbin/dtrace -s
     2
     3  #pragma D option quiet
     4
     5  dtrace:::BEGIN
     6  {
     7 printf("Tracing... Hit Ctrl-C to end.\n");
     8  }
     9
    10  pid$target::*dispatch_command*:entry
    11  {
    12    self->query = copyinstr(arg2);
    13     self->start = timestamp;
    14  }
    15
    16  pid$target::*dispatch_command*:return
    17  /self->start/
    18  {
    19          @time[self->query] = quantize(timestamp - self->start);
    20   self->query = 0; self->start = 0;
    21  }
    22
    23  dtrace:::END
    24  {
    25 printf("MySQL query execution latency (ns):\n");
    26      printa(@time);
    27  }

server# mysqld_pid_qtime.d -p `pgrep -x mysqld`
Tracing... Hit Ctrl-C to end.
^C
MySQL query execution latency (ns):
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The process ID was provided to the script using the -p option and running the
Oracle Solaris pgrep(1) utility.

libmysql_snoop.d

This script traces queries on the client side for software using the MySQL C client
library (libclientmysql) and shows the queries performed along with time and
result.

Script

This uses the pid provider to trace the internals of the libmysqlclient library. The
pid provider is usually considered an unstable interface, however; here it is used to
trace the MySQL C API—a documented3 interface that is unlikely to change
quickly.

   show tables
           value  ------------- Distribution ------------- count
          131072 |                0
          262144 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
          524288 |                0

   select * from months
           value  ------------- Distribution ------------- count
           65536 |             0
          131072 |@@@@@@@@@@@@@@@@@                 9
          262144 |                0
          524288 |@@@@@@@@@@@@@@@@@@@@@                  11
         1048576 |               0
         2097152 |               0
         4194304 |               0
         8388608 |@@               1
        16777216 |             0

   select * from words where name < 'fish'
           value  ------------- Distribution ------------- count
         8388608 |               0
        16777216 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    11
        33554432 |@@@              1
        67108864 |             0

3. See http://dev.mysql.com/doc/refman/5.1/en/c.html for MySQL 5.1.

 1  #!/usr/sbin/dtrace -Zs
 2
 3  #pragma D option quiet
 4  #pragma D option switchrate=10hz
 5
 6  dtrace:::BEGIN
 7  {
 8          printf("%-8s %6s %3s %s\n", "TIME(ms)", "Q(ms)", "RET", "QUERY");

continues

http://dev.mysql.com/doc/refman/5.1/en/c.html
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Example

Here the mysqld_client.d script was used to trace queries made by a PHP pro-
gram that was performing wiki maintenance. The strsize tunable was used to
truncate output, as shown earlier with mysqld_qsnoop.d:

Each query performed is traced from the client, including the query time
(Q(ms)) and return value (RET). The longest query performed was a DELETE from
recentchanges, taking 20 milliseconds.

The output did include the text output from the PHP script, which has been
removed from this example to focus on the DTrace output.

See Also

Much more is possible with DTrace and MySQL; for more information, see the fol-
lowing references:

“Tracing mysqld using DTrace” in the MySQL Reference Manual4

 9   timezero = timestamp;
10  }
11
12  pid$target::mysql_query:entry,
13  pid$target::mysql_real_query:entry
14  {
15  self->query = copyinstr(arg1);
16   self->start = timestamp;
17  }
18
19  pid$target::mysql_query:return,
20  pid$target::mysql_real_query:return
21  /self->start/
22  {
23          this->time = (timestamp - self->start) / 1000000;
24          this->now = (timestamp - timezero) / 1000000;
25          printf("%-8d %6d %3d %s\n", this->now, this->time, arg1, self->query);
26 self->start = 0; self->query = 0;
27  }

client# mysql_client.d -x strsize=60 -c 'php rebuildrecentchanges.php'
TIME(ms)  Q(ms) RET QUERY
6433          0 0 SET /* Database::open  */ sql_mode = ''
6454         20   0 DELETE /* Database::delete  */ FROM `recentchanges`
6457          1   0 INSERT /* rebuildRecentChangesTablePass1  */ INTO `recentc
6458          0   0 SELECT /* -2  */ rc_cur_id,rc_this_oldid,rc_timestamp FROM 
6469         10  0 SELECT /* -2 */ DISTINCT rc_user FROM `recentchanges` LEFT
6469          0  0 SELECT /* -2 */ DISTINCT rc_user FROM `recentchanges` LEFT

4. http://dev.mysql.com/doc/refman/5.5/en/dba-dtrace-server.html for MySQL 5.5

http://dev.mysql.com/doc/refman/5.5/en/dba-dtrace-server.html


ptg

PostgreSQL 851

“MySQL and DTrace” (January 2009) by MC Brown, at MySQL University5

MySQL top using DTrace6

Chapter 9 (for both the server and client)

The MySQL Reference Manual has subsections for the probe groups, many of
which have examples of DTrace code. For example, the following is the example
output for the first sample script in the “Statement Probes” section:7

Although the DTrace script is not included here, the output is enough to demon-
strate further capabilities: It includes rows updated, rows matched, and duration
by query.

PostgreSQL

A DTrace provider for PostgreSQL8 was developed and added to the server source,
with basic probes appearing in version 8.2 and extended probes appearing in 8.4.
The provider is available only when PostgreSQL has been compiled with the --enable-
dtrace option. Probes are listed in the PostgreSQL manual in the “Dynamic Trac-
ing” chapter,9 and version 8.4 probes are demonstrated here. Table 10-5 is a partial
listing of the available probes.

A few examples of using DTrace on PostgreSQL are shown here as one-liners
and scripts to retrieve query strings and times. These scripts can be enhanced to
include whatever other information is of interest from the operating system so that
it can be examined in the context of PostgreSQL queries.

5. http://forge.mysql.com/wiki/Using_DTrace_with_MySQL

6. http://milek.blogspot.com/2010/01/mysql-top.html

Query          RowsU   RowsM    Dur (ms)
select * from t2           0        275      0
insert into t2 (select * from t2)      0        275      9
update t2 set i=5 where i > 75        110      110      8
update t2 set i=5 where i < 25        254      134      12
delete from t2 where i < 5      0        0        0

7. http://dev.mysql.com/doc/refman/5.5/en/dba-dtrace-ref-statement.html

8. www.postgresql.org

9. See www.postgresql.org/docs/8.4/static/dynamic-trace.html for PostgreSQL 8.4.

http://forge.mysql.com/wiki/Using_DTrace_with_MySQL
http://milek.blogspot.com/2010/01/mysql-top.html
http://dev.mysql.com/doc/refman/5.5/en/dba-dtrace-ref-statement.html
www.postgresql.org
www.postgresql.org/docs/8.4/static/dynamic-trace.html
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Table 10-5 PostgreSQL DTrace Probes

Probe name Description

transaction-start Probe that fires at the start of a new transaction. arg0 is the 
transaction ID.

transaction-commit Probe that fires when a transaction completes successfully. 
arg0 is the transaction ID.

query-start Probe that fires when the processing of a query is started. arg0
is the query string.

query-done Probe that fires when the processing of a query is complete. 
arg0 is the query string.

checkpoint-start Probe that fires when a checkpoint is started. arg0 holds the 
bitwise flags used to distinguish different checkpoint types, 
such as shutdown, immediate, or force.

checkpoint-done Probe that fires when a checkpoint is complete. (The probes 
listed next fire in sequence during checkpoint processing.) 
arg0 is the number of buffers written. arg1 is the total num-
ber of buffers. arg2, arg3, and arg4 contain the number of 
xlog file(s) added, removed, and recycled, respectively.

buffer-sync-start Probe that fires when we begin to write dirty buffers during 
checkpoint (after identifying which buffers must be written). 
arg0 is the total number of buffers. arg1 is the number that 
are currently dirty and need to be written.

buffer-sync-written Probe that fires after each buffer is written during checkpoint. 
arg0 is the ID number of the buffer.

buffer-read-start Probe that fires when a buffer read is started. arg0 and arg1
contain the fork and block numbers of the page (but arg1 will 
be -1 if this is a relation extension request). arg2, arg3, and 
arg4 contain the tablespace, database, and relation OIDs iden-
tifying the relation. arg5 is true for a local buffer, false for a 
shared buffer. arg6 is true for a relation extension request, false 
for normal read.

buffer-read-done Probe that fires when a buffer read is complete. arg0 and arg1
contain the fork and block numbers of the page (if this is a rela-
tion extension request, arg1 now contains the block number of 
the newly added block). arg2, arg3, and arg4 contain the 
tablespace, database, and relation OIDs identifying the relation. 
arg5 is true for a local buffer, false for a shared buffer. arg6 is 
true for a relation extension request, false for normal read. 
arg7 is true if the buffer was found in the pool, false if not.
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One-Liners

Here are some PostgreSQL DTrace one-liners.

postgresql Provider

These one-liners are for tracing events on the PostgreSQL server.
PostgreSQL: query trace by query string:

PostgreSQL: query count summary by query string: 

PostgreSQL: count query events: 

PostgreSQL: count buffer read/flush events: 

PostgreSQL: count lock events: 

PostgreSQL: checkpoint trace with type integer:

PostgreSQL: server query status trace (simple snoop):

dtrace -n 'postgresql*:::query-start { trace(copyinstr(arg0)) }'

dtrace -n 'postgresql*:::query-start { @[copyinstr(arg0)] = count(); }'

dtrace -n 'postgresql*:::query-* { @[probename] = count(); }'

dtrace -n 'postgresql*:::buffer-* { @[probename] = count(); }'

dtrace -n 'postgresql*:::lwlock-*,postgresql*:::lock-* { @[probename] = count(); }'

dtrace -n 'postgresql*:::checkpoint-start { printf(“PID %d, type %d”, pid, arg0); }'

dtrace -qn 'postgresql*:::statement-status { printf("%d ns, PID %d, %s\n", 
timestamp, pid, copyinstr(arg0)); }'
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pid Provider

The following are examples of tracing the PostgreSQL 8.2 server internal func-
tions using the pid provider; these are likely to need the function name and argu-
ments adjusted for other versions.

PostgreSQL server: trace queries:

PostgreSQL server: count queries:

Apart from exec_simple_query(), the pg_parse_query() function may exist
that can serve the same purpose: retrieving the query string.

One-Liner Selected Examples

Here are some selected examples.

PostgreSQL: Server Query Status Trace (Simple Snoop)

This one-liner is a simple (and rough) way to snoop PostgreSQL server activity, by
tracing changes to its status string:

The current server time is printed as nanoseconds, allowing time during states
to be calculated as the delta between lines.

Scripts

Table 10-6 summarizes the following scripts for PostgreSQL and the providers
they use.

dtrace -qn 'pid$target::exec_simple_query:entry { printf("%Y   %s\n", 
walltimestamp, copyinstr(arg0)); }' -p PID

dtrace -n 'pid$target::exec_simple_query:entry { @[copyinstr(arg0)] = 
count(); }' -p PID

# dtrace -qn 'postgresql*:::statement-status { printf("%d ns, PID %d, %s\n", timestamp
, pid, copyinstr(arg0)); }'
2974757108112944 ns, PID 218225, select * from images;
2974757108326123 ns, PID 218225, <IDLE>
2974772955404114 ns, PID 218225, copy words from '/usr/dict/words';
2974774714391125 ns, PID 218225, <IDLE>
2974796403248508 ns, PID 218254, autovacuum: ANALYZE public.words
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pg_qslower.d

This traces queries slower than a given value of milliseconds, with details to deter-
mine where the latency is. If the provided value is 0, this script traces all queries.

Script

This script is based on mysql_qslower.d. The millisecond argument is processed
on line 11 and is zero by default thanks to line 4.

Table 10-6 PostgreSQL Script Summary

Script Target Description Provider

pg_qslower.d Server Snoops queries slower than given 
milliseconds

postgresql

pg_pid_qtime.d Server Shows query time distribution plots by 
query string

pid

 1      #!/usr/sbin/dtrace -s
 2
 3      #pragma D option quiet
 4      #pragma D option defaultargs
 5      #pragma D option switchrate=10hz
 6
 7      dtrace:::BEGIN
 8      {
 9              printf("%-8s %5s %5s %5s %s\n", "TIMEms", "QRYms", "EXCms", "CPUms",
10        "QUERY");
11  min_ns = $1 * 1000000;
12    timezero = timestamp;
13      }
14
15 postgresql*:::query-start
16      {
17   self->start = timestamp;
18   self->vstart = vtimestamp;
19      }
20
21      postgresql*:::query-execute-start
22      {
23   self->estart = timestamp;
24      }
25
26      postgresql*:::query-execute-done
27      /self->estart/
28      {
29 self->exec = timestamp - self->estart;
30    self->estart = 0;
31      }
32
33 postgresql*:::query-done
34      /self->start && (timestamp - self->start) >= min_ns/
35      {
36              this->now = (timestamp - timezero) / 1000000;

continues
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The columns printed are as follows:

TIMEms: Elapsed time since tracing started, milliseconds

QRYms: Query time, milliseconds

EXCms: Execution time, milliseconds

CPUms: Time on-CPU, milliseconds

Example

Here’s an example of tracing queries taking ten milliseconds or longer:

There were two queries that took longer than two seconds: a CREATE DATABASE
query and a copy query. For both of these, only about 80 ms was spent on-CPU,
suggesting that the rest of the time was likely spent waiting on disk I/O.

pg_pid_qtime.d

This script traces queries and shows their time as distribution plots by query
string. It was written to demonstrate using the pid provider and as such may work
only on a particular version of the PostgreSQL source (8.2).

Script

This script traces internal functions and arguments (the exec_simple_query()
function, with arg0) for this PostgreSQL version. This can be rewritten to match
different PostgreSQL versions and internals or to use the postgres provider if
available.

37 this->time = (timestamp - self->start) / 1000000;
38 this->vtime = (vtimestamp - self->vstart) / 1000000;
39   this->etime = self->exec / 1000000;
40    printf("%-8d %5d %5d %5d %s\n", this->now, this->time, this->etime,
41     this->vtime, copyinstr(arg0));
42      }
43
44 postgresql*:::query-done
45      {
46 self->start = 0; self->vstart = 0; self->exec = 0;
47      }

server# pg_qslower.d 10
TIMEms  QRYms EXCms CPUms QUERY
1031     2201  2191   86 CREATE DATABASE wikidb;
10229      71    28     4 create table images ( name varchar(80), index int );
15872      32     0  1 INSERT INTO images VALUES ( 'fred', 1 );
23735      22     0  1 create table words ( word varchar(80) );
28231    2087  2075 85 copy words from '/usr/dict/words';
^C
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Example

Here the pg_pid_qtime.d script was aimed at a PostgreSQL server process (PID
86008, postmaster) that was serving an command-line instance of psql. While
tracing, a table was populated and searched:

 1  #!/usr/sbin/dtrace -s
 2
 3  #pragma D option quiet
 4
 5  dtrace:::BEGIN
 6  {
 7          printf("Tracing... Hit Ctrl-C to end.\n");
 8  }
 9
10  pid$target::exec_simple_query:entry
11  {
12  self->query = copyinstr(arg0);
13   self->start = timestamp;
14  }
15
16  pid$target::exec_simple_query:return
17  /self->start/
18  {
19          @time[self->query] = quantize(timestamp - self->start);
20 self->start = 0; self->query = 0;
21  }
22
23  dtrace:::END
24  {
25  printf("PostgreSQL simple query execution latency (ns):\n");
26          printa(@time);
27  }

server# pg_pid_qtime.d -p 86008
Tracing... Hit Ctrl-C to end.
^C
PostgreSQL simple query execution latency (ns):

  select * from images;
           value  ------------- Distribution ------------- count
           65536 |             0
          131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2
          262144 |                0

  select * from words;
           value  ------------- Distribution ------------- count
         8388608 |               0
        16777216 |@@@@              1
        33554432 |@@@@@@@@@@@@@@@@@@@@@@@@             6
        67108864 |@@@@@@@@@@@@            3
       134217728 |            0

  copy words from '/usr/dict/words';
           value  ------------- Distribution ------------- count
       268435456 |            0
       536870912 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1
      1073741824 |                 0
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The slowest query was a “copy” from the 25,143-line file /usr/dict/words to
populate the words table, which took more than 500 ms. Several select * from
words queries were then executed, which mostly fell in the 33-ms to 67-ms range.

See Also

Much more is possible with DTrace and PostgreSQL; for more information, see the
following references:

26.4 “Dynamic Tracing” in the PostgreSQL documentation10

The PostgreSQL-DTrace-Toolkit11 by Robert Lor

Chapter 9 (for both the server and client)

Oracle

There is not currently an Oracle DTrace provider built in to the database software;
until there is, it can be observed like any other application, by examining how it
uses system resources such as CPUs, disks, and the network. See the following
chapters of this book:

Chapter 3, System View

Chapter 4, Disk I/O (especially if raw devices are used)

Chapter 5, File Systems

Chapter 6, Network Lower-Level Protocols

Chapter 9, Applications (for both the server and client)

Although the database internals can be observed using the pid provider or by
gathering user stack traces in various probes, it is generally not a useful exercise
on the Oracle Database, unless working a case directly with Oracle Support and
someone with knowledge of and access to the source code.

Examples

This example is taken from a 128 CPU SPARC system running Solaris 10, execut-
ing a CPU-intensive decision support query.

10. See www.postgresql.org/docs/8.4/static/dynamic-trace.html.

11. This is currently at http://pgfoundry.org/projects/dtrace/.

www.postgresql.org/docs/8.4/static/dynamic-trace.html
http://pgfoundry.org/projects/dtrace/
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We start with a system view:

We can see from the vmstat data the CPUs are very busy, virtually all in user
mode, and the run queue depth is running at about 60 runnable threads in the
queues. Note that number does not include threads running on a CPU. This is a
128 CPU system, so we have 128 running threads, plus 60 or so waiting to run.
Other data examined (not shown here) indicated there was minimal disk I/O, indi-
cating the data for the query was being satisfied out of the memory cache (Oracle
SGA db_block_buffers) and virtually no network I/O.

Given the CPUs are very busy and the run queues are consistently nonzero, we
should take a look at run queue latency. First we’ll do this with prstat(1) with
the m flag to monitor thread microstates:

We can see the LAT values (run queue latency) are very high for many of the
processes (more than are shown here), getting more than 20 percent. With DTrace,
we can measure the run queue latency and track run queue depth both per-CPU
and systemwide.  For Solaris:

solaris# vmstat 1 10
 kthr      memory    page            disk          faults      cpu
 r b w   swap  free  re  mf pi po fr de sr s1 s2 s3 s4   in   sy   cs us sy id
 0 0 0 96761632 88160736 15 25 28 0 0 0  3  0  4 -0  4 5025 1446 1212  2  0 98
 59 0 0 68166200 59685864 166 182 0 1 1 0 0 0  0  0 0 15085 65474 4853 95 5 0
 59 0 0 68164080 59690376 0 0 0 0  0  0 0  0  0  0  0 15257 85574 4621 94 6 0
 66 0 0 68164056 59690352 0 0 0 0  0  0 0  0  0  0  0 14583 46688 4292 96 4 0
 60 0 0 68162992 59689280 0 0 0 0  0  0 0  0  0  0  0 15371 82698 4838 94 6 0
 57 0 0 68158456 59684736 0 0 0 0  0  0 0  0  0  0  0 14815 56748 4446 95 5 0
 58 0 0 68149888 59670304 59 107 0 2 2 0 0 0  0  0  0 15343 87177 4766 94 6 0
 67 0 0 68144808 59658880 395 395 0 0 0 0 0 0  0  0 0 14841 68232 4494 95 5 0
 58 0 0 68138328 59651960 23 310 0 2 2 0 0 0  0  0  0 15403 88676 4955 93 7 0
 65 0 0 68138248 59651424 20 146 0 0 0 0 0 0  0  0  0 14694 59987 4309 95 5 0

solaris# prstat -mc 5 2
   PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP
  2298 dbbench   46 2.5 0.1 0.0 0.0 0.0  50 1.2 2 320  3K   0 oracle.darre/2
  2044 dbbench   45 2.4 0.1 0.0 0.0 0.0  50 2.7 2 312  3K   0 oracle.darre/2
  2108 dbbench   45 2.2 0.1 0.0 0.0 0.0  50 3.1 3 308  3K   0 oracle.darre/2
  2210 dbbench   45 2.3 0.1 0.0 0.0 0.0  50 3.1 4 305  2K   0 oracle.darre/2
[…]
  2122 dbbench   25 1.5 0.1 0.0 0.0 0.0  51  23 4 173  2K   0 oracle.darre/2
  2270 dbbench   25 1.1 0.1 0.0 0.0 0.0  50  24 0 174  1K   0 oracle.darre/2
  2232 dbbench   26 0.8 0.1 0.0 0.0 0.0  50  23 3 181  1K   0 oracle.darre/2
  2052 dbbench   25 1.3 0.1 0.0 0.0 0.0  50  23 6 170  1K   0 oracle.darre/2
  2062 dbbench   25 1.2 0.1 0.0 0.0 0.0  50  24 2 170  1K   0 oracle.darre/2
Total: 355 processes, 752 lwps, load averages: 182.06, 132.24, 104.07
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Now we run the cpudispqlen.d script on this server:

The per-CPU run queue depth ranges show zero to three threads in the queues,
with a peak for one sample of four to five threads in the queues. Note again these
are the per-CPU run queues.

Looking at run queue depth systemwide yields the following:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
      printf("Sampling at 1001 Hertz... Hit Ctrl-C to end.\n");
}

profile:::profile-1001hz
{
      @["Per-CPU disp queue length:"] =

lquantize(curthread->t_cpu->cpu_disp->disp_nrunnable, 0, 64, 1);
}

Script cpudispqlen.d

solaris# ./cpudispqlen.d
Sampling at 1001 Hertz... Hit Ctrl-C to end.

  Per-CPU disp queue length:
           value  ------------- Distribution ------------- count
             < 0 |              0

0 |@@@@@@@@@@@@@@@@@@@@@@@@       283778
               1 |@@@@@@@@@@@@@             161042
               2 |@@@                34316
               3 |                3197
               4 |              1
               5 |              0

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
      printf("Sampling at 1001 Hertz... Hit Ctrl-C to end.\n");
}

profile:::profile-1001hz
{
      @["System wide disp queue length:"] =
          sum(curthread->t_cpu->cpu_disp->disp_nrunnable);
}

profile:::tick-1sec
{
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Running sysdispqlen.d yields the following:

Note that the values here are consistent with what was reported by vmstat (the
r column). Also, these values represent the number of threads systemwide sitting
on run queues waiting to run—the number of running threads is not included. We
know from the CPU utilization data all the CPUs are busy running threads, so for
this system, we have 128 + 50 (178) active threads. When the number of active
threads exceeds the number of CPUs, we will experience some run queue latency.
We can use DTrace to measure the time threads spend waiting in run queues.

The qtime.d script tracks the time threads spend on a run queue on a per-CPU
basis.

      normalize(@, 1001);
      printa(@);
      trunc(@);
}
Script sysdispqlen.d

solaris# ./sysdispqlen.d
Sampling at 1001 Hertz... Hit Ctrl-C to end.
  System wide disp queue length:                   46
  System wide disp queue length:                   50
  System wide disp queue length:                   49
  System wide disp queue length:                   33
  System wide disp queue length:                   31
  System wide disp queue length:                   31
  System wide disp queue length:                   42
  System wide disp queue length:                   52
  System wide disp queue length:                   61
  System wide disp queue length:                   56
^C

#!/usr/sbin/dtrace -s

sched:::enqueue
{
      s[args[0]->pr_lwpid, args[1]->pr_pid] = timestamp;
}

sched:::dequeue
/this->start = s[args[0]->pr_lwpid, args[1]->pr_pid]/
{
      @[args[2]->cpu_id] = quantize(timestamp – this->start);
      s[args[0]->pr_lwpid, args[1]->pr_pid] = 0;
}

Script qtime.d
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solaris# ./qtime.d

        1
           value ------------- Distribution ------------- count
            8192 |                  0
           16384 |@@@@@@@@@@@@@@@@@@@@             90
           32768 |@@@                 15
           65536 |@@@                 12
          131072 |                  2
          262144 |@@                  7
          524288 |@                  3
         1048576 |@                 6
         2097152 |@                 5
         4194304 |@@@                   13
         8388608 |@@@@@                  21
        16777216 |@@                   10
        33554432 |                 0

       60
           value ------------- Distribution ------------- count
            8192 |                  0
           16384 |@@@@@@@@@@@@@@@@@@@@@                 97
           32768 |@@@@                 18
           65536 |                  2
          131072 |                  0
          262144 |                  1
          524288 |@@                  9
         1048576 |@                 3
         2097152 |@@                   11
         4194304 |@@@@                   20
         8388608 |@@@                   13
        16777216 |@@@                   12
        33554432 |                 0
[…]
       99
           value ------------- Distribution ------------- count
            8192 |                  0
           16384 |@@@@@@@@@@@@@@@@@@             90
           32768 |@@                  9
           65536 |@@@@                 19
          131072 |                  1
          262144 |                  0
          524288 |@@                  10
         1048576 |@@                   8
         2097152 |@                 5
         4194304 |@@                   10
         8388608 |@@@@@@                  30
        16777216 |@@@                   17
        33554432 |                 2
        67108864 |                 0

      100
           value ------------- Distribution ------------- count
            8192 |                  0
           16384 |@@@@@@@@@@@@@@@@@@             85
           32768 |@@@@                 19
           65536 |@                  6
          131072 |                  1
          262144 |                  0
          524288 |@                  6
         1048576 |@                 3
         2097152 |@@                   9
         4194304 |@@                   10
         8388608 |@@@@@@                  28
        16777216 |@@@@@                  22
        33554432 |                 0
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The data has once again been truncated for space purposes. For each CPU, a
quantize aggregation is generated, showing the time values in nanoseconds on the
left column and the number of occurrences of threads waiting on a run queue for
that time period on the right. The data shows that typical run latency is 16 us to
32 us, with a grouping of outliers in the 8-ms to 32-ms range. The numbers sug-
gest that roughly 30 percent of the threads fall within the 8-ms to 32-ms range.

Unfortunately, the overall effect the 30 percent worse-case run queue latency is
having on overall query time is difficult to measure in any detail, because of the
complexity of assessing the benefits of concurrency vs. added run queue latency.
For example, the Oracle parameters for this system could be altered to reduce the
number of query slaves spawned to run this query, to say no more than 128 (the
number of CPUs). That would certainly improve run queue latency but would also
potentially impact the total time for the query to complete as a result of the
reduced number of slaves and the additional work needed to be done by the query
slave processes.

On the same system, a different DSS query was executed with a similar profile
in terms of system utilization. For this query, we observed the disk I/O component,
starting with running iostat(1M):

Again, we’re showing truncated output here for space purposes. We can see sev-
eral disks sustaining a moderate level of reads-per-second (r/sec), throughput rang-
ing from 11MB/sec to 99MB/sec (kr/sec), and about 6 milliseconds of latency
(asvc_t).

We can get a more detailed view of disk I/O latency using DTrace. We first
applied methods described in Chapter 4, Disk I/O, to measure latency. However, we
found the io:::done probe was not firing because of the use of asynchronous I/O

solaris# iostat -xnz 5 10
extended device statistics

    r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device
[...]
   57.3    0.0 56616.3   0.0  0.0  0.4 0.0    6.4   0  29 
c18t21000024FF206BB9d167
   11.5    0.0 11446.9 0.0  0.0  0.1    0.0 5.9   0 6 c7t21000024FF206CFDd164
   71.3    0.0 71040.8 0.0  0.0  0.4    0.0 5.9   0  32 c7t21000024FF206CFDd163
   47.4    0.0 47563.2   0.0  0.0  0.3 0.0    6.4   0  24 
c18t21000024FF206BB9d164
   57.2    0.0 56753.0 0.0  0.0  0.3    0.0 5.7   0  27 c7t21000024FF206CFDd162
   39.3    0.0 39221.1   0.0  0.0  0.3 0.0    6.6   0  21 
c18t21000024FF206BB9d163
   77.4    0.0 77268.7 0.0  0.0  0.4    0.0 5.8   0  33 c7t21000024FF206CFDd161
   42.5    0.0 42602.8   0.0  0.0  0.3 0.0    6.5   0  22 
c18t21000024FF206BB9d162
   46.6    0.0 46516.6   0.0  0.0  0.3 0.0    7.0   0  23 
c18t21000024FF206BB9d161
   99.8    0.0 99457.8 0.0  0.0  0.6    0.0 5.8   0  42 c7t21000024FF206CFDd159
0.0 40755.8    0.0  0.0  0.3    0.0    6.5   0  22 c18t21000024FF206BB9d160
[…]
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APIs used by the software for disk reads and writes. This was likely because of a
bug in the io provider on this version of Solaris. As a workaround, we determined
which disk device driver was being used (ssd) and measured latency using the
unstable fbt provider. First, we observed which ssd driver routines were being
called:

Using the ssdstrategy routine as the entry point and ssd_buf_iodone as
the I/O completed point, we developed ssdlatency.d:

solaris# dtrace -n 'fbt:ssd::entry { @[probefunc] = count(); } tick-5s { exit(0); }'
dtrace: description 'fbt:ssd::entry ' matched 292 probes

  ssdopen                    11
  ssd_buf_iodone                    3345
  ssd_ddi_xbuf_done                   3345
  ssd_ddi_xbuf_get                   3345
  ssd_destroypkt_for_buf                   3345
  ssd_mapblockaddr_iodone                    3345
  ssd_return_command                   3345
  ssd_xbuf_dispatch                   3345
  ssdintr                    3345
  ssd_fill_scsi1_lun                   3346
  ssd_setup_rw_pkt                   3346
  ssd_add_buf_to_waitq                  3347
  ssd_core_iostart                   3347
  ssd_ddi_xbuf_qstrategy                   3347
  ssd_initpkt_for_buf                    3347
  ssd_mapblockaddr_iostart                  3347
  ssd_xbuf_init                     3347
  ssd_xbuf_iostart                   3347
  ssd_xbuf_strategy                   3347
  ssdaread                   3347
  ssdinfo                    3347
  ssdmin                    3347
  ssdstrategy                   3347
  ssd_start_cmds                    6692

 1  #!/usr/sbin/dtrace -s
 2
 3  fbt:ssd:ssdstrategy:entry
 4  {
 5 start[arg0] = timestamp;
 6  }
 7
 8  fbt:ssd:ssd_buf_iodone:entry
 9  /start[arg2]/
10  {
11        @time["ssd I/O latency (ns)"] = quantize(timestamp - start[arg2]);
12   start[arg2] = 0;
13  }
14
15 Script ssdlatency.d
16
17  solaris# ./ssdlatency.d
18
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The quantize aggregation shows the disk latency in the 4-ms to 8-ms range,
which is consistent with the iostat data. However, what gets lost in the averaging
of tools like iostat is outliers. The quantize aggregation shows we did have an out-
lier in the 16-ms to 32-ms range. In this specific example, it was only one occur-
rence (and 22 I/Os in the 8-ms to 16-ms range), so it is not a cause for concern, but
the key point here is to be aware that stat utilities tend to generate averages,
which can hide periodic events that fall well outside the average range. Using
DTrace, we can reveal these outliers.

Overall, looking at the two queries, we found there was dispatcher queue
latency because of the large number of runnable, compute-bound threads, and we
measured the latency accurately using DTrace. We also confirmed that the disks
were performing as expected.

Summary

In this chapter, we introduced DTrace scripts and one-liners that utilize the data-
base-specific providers. We also showed using DTrace with Oracle, which as of this
writing does not have a DTrace provider but can still be observed and analyzed
with DTrace. We showed, with DTrace, database operation on both the server and
the client can be examined in detail, identifying common queries and clients, query
time broken down by query stage, query cache performance, and other internal
behavior of the database. By having database context in DTrace, other system
events such as disk and network I/O can be correlated to queries, as well as CPU
time consumed. Although the Oracle Database currently does not have a provider
to provide query context, its operation was examined as an application, including
its usage of the CPUs and disks.

19    ssd I/O latency (ns)
20             value ------------- Distribution ------------- count
21            131072 |                 0
22            262144 |                 3
23            524288 |                 47
24           1048576 |                 32
25           2097152 |                 58
26           4194304 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  4560
27           8388608 |                 22
28          16777216 |                1
29          33554432 |                0
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11
Security

Since DTrace can examine custom events on the system with whatever additional
data is of interest, it can be applied for various uses in computer security. These
include the following:

Sniffing, such as real-time forensics

Monitoring:

– Custom auditing

– Host-based Intrusion Detection Systems (HIDS)

Policy enforcement

Security debugging:

– Privilege debugging

– Reverse engineering

Scripts are provided in this chapter to demonstrate these uses. These and addi-
tional topics including DTrace privileges and DTrace-based attacks are discussed first.

Privileges, Detection, and Debugging

In this section, we discuss the Solaris privileges associated with using DTrace and
how DTrace can be used in several important security scenarios.
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DTrace Privileges

By default, only the root user (administrator) can use DTrace. Other users see the
following:

Oracle Solaris has a privileges facility (see privileges(5)) that allows spe-
cific authorizations to be given to processes using the ppriv(1) command. They
can also be assigned to user accounts using usermod(1M), which saves the privi-
leges to /etc/user_attr (companion of /etc/passwd and /etc/shadow) so
that they are granted to the user’s login shell process. The available DTrace privi-
leges are summarized in Table 11-1 and are explained in greater detail in the
DTrace Guide.1

For Oracle Solaris zones, these privileges need to be explicitly granted to non-
global zones for the zone administrators (root) to be allowed to access DTrace pro-
viders. This is performed using the zonecfg(1M) command to add these DTrace
privileges to the limitpriv property. For example, the following command adds
the dtrace_proc and dtrace_user privileges to the nonglobal zone named
zone01:

The zone must be rebooted for this to take effect.

$ /usr/sbin/dtrace -n 'BEGIN'
dtrace: failed to initialize dtrace: DTrace requires additional privileges

1. http://wikis.sun.com/display/DTrace/Security

solaris# zonecfg -z zone01 set limitpriv=default,dtrace_proc,dtrace_user

Table 11-1 Oracle Solaris Privileges for DTrace

Privilege Description

dtrace_proc Allows use of the pid and fasttrap providers. User may affect perfor-
mance of their own processes with DTrace enablings.

dtrace_user Allows use of the syscall and profile providers to inspect the user’s own 
processes. User may affect the performance of other users’ processes 
with DTrace enablings.

dtrace_kernel Allow all providers with the exception of pid and fasttrap providers 
and all actions with the exception of destructive actions.

http://wikis.sun.com/display/DTrace/Security
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DTrace-Based Attacks

DTrace can examine all events on a system including private data from running
applications and can also modify user-land data (the copyout() destructive
action) as well as run arbitrary commands (system()). Before becoming con-
cerned about DTrace-based attacks, we should stress that only privileged users
can use DTrace—usually the “root” user, as explained in the previous section.
These privileged users can already perform such malicious acts using other sys-
tem tools.

For example, the “Scripts” section includes sshkeysnoop.d, which shows SSH
passwords as they are typed. Similar functionality can be performed with existing
debuggers; here’s an example on Solaris:

Here the password secret123 was sniffed one keystroke at a time using
truss(1), a standard Solaris tool that has existed for more than 20 years.
Although DTrace can do this more easily as shown by sshkeysnoop.d, it has not
newly introduced the technical capability to do this.

Despite the existence of tools such as dtrace(1M) and truss(1), the operat-
ing system is still secure from attacks based on these tools, since they cannot be
executed without administrator privileges. Put differently, if an attacker can exe-
cute these tools, they have already broken into the system.

Sniffing

Since DTrace can examine any data from the operating system’s user or kernel
address space, it can be used to examine any user session data on the system,
including plain text from applications before encryption is performed. In the secu-
rity context, this is known as sniffing, and because of its capabilities, DTrace is the
ultimate sniffer.

# ps -ef | grep ssh
    root 129318 129270  0 08:10:52 pts/2    0:00 ssh brendan@mars
[...]
# truss -p 129318
read(6, 0x0804740F, 1)       (sleeping...)
read(6, " s", 1)            = 1
read(6, " e", 1)            = 1
read(6, " c", 1)            = 1
read(6, " r", 1)            = 1
read(6, " e", 1)            = 1
read(6, " t", 1)            = 1
read(6, " 1", 1)            = 1
read(6, " 2", 1)            = 1
read(6, " 3", 1)            = 1
read(6, "\n", 1)                         = 1
[...]
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The sniffing scripts shown later in this chapter demonstrate this ability as an
academic exercise—they are not intended for real-world usage. Since they can
examine user-land data including keystrokes and passwords (as can other tools;
see DTrace-based attacks), consider privacy concerns (including laws) before using
them.

A real-world use for sniffing capabilities may exist, such as to perform real-time
forensics2 by capturing data on an attack in progress (see cuckoo.d in the
“Scripts” section).

Security Audit Logs

Although DTrace offers incredible visibility into a system, it is designed to be a
debugging and analysis tool, not a monitoring or logging tool. It’s important to con-
sider that DTrace will drop events when under pressure and can abort executing
altogether.

The possibility of dropping events can make DTrace unsuitable for generating
security audit logs, which are required to be reliable, authentic, and complete (non-
repudiation). An attacker may be able to generate sufficient load to cause DTrace
to either miss events or abort entirely. Although the likelihood of DTrace dropping
events can be minimized by adjusting tunables (increasing buffer sizes and switch
rate and using the destructive pragma), it cannot be eliminated. The best form of
security audit logs are those designed for the purpose, such as Oracle Solaris
Auditing logs.

This doesn’t mean that there are no uses for DTrace in security logging; a log
used for intrusion detection may still identify intrusion events, even if the log has
become incomplete because of dropped events. DTrace also has much finer-grained
capabilities than Solaris Auditing, such as using predicates to match events on cer-
tain file and directory names, groups of users, and so on; and it may be a sufficient
option when such finer control is required.

DTrace can also be used in a Solaris Zones environment for monitoring multi-
ple zones simultaneously from the global zone, even while the nonglobal zones are
rebooted. Administrators and users in the nonglobal zone may not necessarily be
aware that global-zone DTrace monitoring is active and, even if they were, cannot
do anything to stop it.

2. Provided that it is legal for you to do so; privacy laws differ between countries.
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HIDS

DTrace could be used as part of a HIDS to detect and report suspicious activity on
the system it is running on. The capabilities with DTrace are as follows.

Detection: Anything that can be traced can be detected. This includes log-
ins, command execution, file system activity, and network I/O.

Reporting: DTrace can output to a log that is post processed by additional 
reporting software; or, the system() action can run shell commands that do 
the reporting.

Although DTrace can provide a form of HIDS, there are usually compelling rea-
sons to perform intrusion detection using Network Intrusion Detection Systems
(NIDS) instead, in particular, monitoring numerous hosts by inspecting network
traffic from a single tap port on a switch or router. One possible advantage of a
DTrace-based HIDS is that it can be selective with the events it monitors, rather
than inspecting every packet (which may become impractical for high-load envi-
ronments). For example, instead of inspecting every packet to identify both
accepted and rejected TCP connections, DTrace can be used to trace only those
events from the kernel TCP/IP stack (if the tcp provider is available, this is trivial
to do).

Another possible advantage of a DTrace-based HIDS is the inspection of activ-
ity that is encrypted over the wire, including SSH and HTTPS. Since these are
decrypted on the server where DTrace is running, it can examine both the plain
text from the encrypted sessions and the events that they call.

Environments with higher security requirements may find it desirable to run
both NIDS for LAN-wide intrusion detection and DTrace-based HIDS where
needed.

Similar to auditing, a Solaris zones environment allows a DTrace-based HIDS to
be run in the global zone to monitor all nonglobal zones. Even if a nonglobal zone
is compromised, the intruder cannot stop the global-zone HIDS.

Policy Enforcement

With the destructive pragma, DTrace can be used ad hoc to help enforce a security
policy, such as raising signals to kill processes, execute commands, or even panic
the system. The term ad hoc is used for the same reasons that DTrace isn’t entirely
suitable for security audit logs (described earlier): There are scenarios where DTrace
could drop events or stop running entirely. Although not ideal, ad hoc enforcement
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of security may be the best option available if system vulnerabilities are discov-
ered and a security patch is not yet available.

When using DTrace for enforcement, you should take care regarding the timing
of the enforcement action. The DTrace raise() built-in is immediate, whereas the
system() built-in is not—and is executed asynchronously sometime after the
event (switchrate tunable). The time delta may allow an attacker to reach their
goal, such as completing a connection or modifying a file.

Similar to auditing, a Solaris zones environment may allow a DTrace-based
security policy to be executed in the global zone, such as preventing nonglobal
zones from being able to place network devices in promiscuous mode (see the
nosnoopforyou.d script).

Privilege Debugging

Apart from the Solaris privileges required to run DTrace, there are numerous
other fine-grained privileges that may be used by application software. The
ppriv(1) command allows privilege usage by software to be debugged for trouble-
shooting assignment issues and for determining which privileges are required.
DTrace can also help, with the sdt provider probes priv-ok and priv-err for
tracing successful and unsuccessful privilege checks. Here they are traced via a
one-liner on Oracle Solaris, showing the privilege number (arg0) and process
name:

This has caught the execution of successful privilege checks by an ssh process
(which was performing an outbound connection). The privilege codes are in /usr/
include/sys/priv_const.h:

And are described in the privileges(5) man page. To see why ssh is access-
ing these privileges, the user stack trace can be examined by including the
ustack() action to see the path through the ssh source.

solaris# dtrace -n 'sdt:::priv-* { printf("for %d by %s\n", arg0, execname); }'
dtrace: description 'sdt:::priv-* ' matched 6 probes
  0  13405   priv_policy_ap:priv-ok for 24 by ssh
  0  13405   priv_policy_ap:priv-ok for 24 by ssh
  0  13405   priv_policy_ap:priv-ok for 24 by ssh
  0  13403 priv_policy_only:priv-ok for 42 by ssh
  0  13405   priv_policy_ap:priv-ok for 42 by ssh

#define PRIV_NET_ACCESS          24
#define PRIV_PROC_SETID          42
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A privilege debugging tool has been written that uses these probes, privdebug.pl
(the source is not included here). It is available to download from the “Privilege
Debugging Tool” page3 from the OpenSolaris security group site, which also links
to a white paper4 by the authors to explain privilege debugging using DTrace. The
tool can be used to identify which privileges a body of software accesses, even if
that software includes multiple process IDs. Here the privileges accessed during
startup of proftpd (FTP daemon) are traced:

This can be useful to determine what privileges software should have under nor-
mal operation, by running it as root and tracing what actual privileges it used;
then, those privileges can be granted as a minimum set (not root).5 If that software
is later compromised (vulnerability), then only the minimum set of privileges have
been compromised. Also, the removal of unnecessary privileges may be an effec-
tive workaround for existing vulnerabilities that require those privileges to work.

The -v option to privdebug.pl prints more details; here, the in.telnetd
daemon was traced as a telnet connection was established:

3. http://hub.opensolaris.org/bin/view/Community+Group+security/privdebug

4. See www.sun.com/blueprints/0206/819-5507.pdf by Darren Moffat and Glenn Brunette.

solaris# privdebug.pl -n proftpd
STAT PRIV
USED net_access
USED net_access
USED net_access
USED proc_setid
USED proc_setid
USED proc_setid
USED proc_setid
USED proc_fork
USED net_access
USED net_access
USED net_privaddr

5. This is discussed further in “Limiting Service Privileges in the Solaris 10 Operating System,”
currently at www.sun.com/blueprints/0505/819-2680.pdf.

solaris# privdebug.pl -n in.telnetd -f -v
STAT TIMESTAMP PPID  PID   PRIV          CMD 
USED 1231183251124451 238   7115  sys_audit      in.telnetd
USED 1231183251139719 238   7115  sys_audit      in.telnetd
USED 1231183251612259 238   7115  proc_fork      in.telnetd
USED 1231183251974167 7115  7116  proc_exec      in.telnetd
USED 1231183472328575 238   7115  proc_fork      in.telnetd
USED 1231183472556716 7115  7117  proc_exec      in.telnetd
USED 1231183478414533 238   7115  proc_fork      in.telnetd
USED 1231183482742793 7115  7118  file_dac_write  in.telnetd
USED 1231183504062754 7115  7118  proc_exec      in.telnetd

http://hub.opensolaris.org/bin/view/Community+Group+security/privdebug
www.sun.com/blueprints/0206/819-5507.pdf
www.sun.com/blueprints/0505/819-2680.pdf
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Similar observability is available on FreeBSD via the priv provider, which has
the priv_ok and priv_err probes. The first argument to these probes (arg0) is
the privilege number from /usr/src/sys/sys/priv.h. Here’s an example of
using this to trace an ssh login, showing the process name, privilege number, and
kernel stack trace:

The output has been truncated because many privileges were checked during
the normal operation of sshd, firing the priv_ok probe. Errors for privileges 50
and 51 were also traced, which are for credential checks for the setuid() and
seteuid() calls.

Reverse Engineering

If you find an unknown program running that you suspect to be malware or spy-
ware, DTrace can be used to examine the operation of the software to confirm. This
can include examining which files are being opened, read, and written; what net-
work I/O is being performed to which remote hosts and ports; what data is being
sent; and the user code responsible for these events including the user stack back

freebsd# dtrace -n 'priv:::priv* { printf("%s, priv %d", execname, arg0); stack(); }'
dtrace: description 'priv:::priv* ' matched 2 probes
CPU     ID            FUNCTION:NAME
  0  38015     priv_check:priv_ok sshd, priv 160

   kernel`priv_check_cred+0xee
    kernel`fork1+0x59e
    kernel`fork+0x29
    kernel`syscall+0x3e5
    kernel`0xc0bc2030

  0  38015     priv_check:priv_ok sshd, priv 326
   kernel`priv_check_cred+0xee
    kernel`priv_check+0x26
    kernel`vn_stat+0x198
    kernel`vn_statfile+0x15a
    kernel`kern_fstat+0x83
    kernel`fstat+0x27
    kernel`syscall+0x3e5
    kernel`0xc0bc2030

[...]

  0  38014     priv_check:priv_err sshd, priv 50
   kernel`priv_check_cred+0xbf
    kernel`setuid+0xca
    kernel`syscall+0x3e5
    kernel`0xc0bc2030

  0  38014     priv_check:priv_err sshd, priv 51
   kernel`priv_check_cred+0xbf
    kernel`seteuid+0xca
    kernel`syscall+0x3e5
    kernel`0xc0bc2030
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trace. This analysis can begin with the syscall provider, as demonstrated in net-
workwho.d in the “Scripts” section and also shown in In Phrack Magazine issue
63, “Analyzing Suspicious Binary Files and Processes” by Boris Loza.6

Scripts

Table 11-2 summarizes the scripts that follow and the providers they use.
The fbt provider is considered an “unstable” interface, because it instruments a

specific operating system version. The fbt provider-based scripts is this chapter
were written for a particular version of Oracle Solaris and will require modifica-
tions to execute properly on other kernel versions. See Chapter 12, Kernel, for
more discussion about using the fbt provider.

sshkeysnoop.d

As an example of sniffing, the sshkeysnoop.d program traces keystrokes from
any client ssh command running on the system. These are traced as the keystrokes
are entered, where they can be examined as plain text before encryption is applied.

6. See www.phrack.com/issues.html?issue=63&id=3#article, which references Brendan Gregg.

Table 11-2 Security Script Summary

Script Type Description Provider

sshkeysnoop.d Sniffer*

* These tools are included here for study purposes only. Because they can examine user-land data, including keystrokes and
passwords, you should consider privacy concerns (including laws!) before using them.

Shows ssh command keystrokes syscall

shellsnoop Sniffer* Watches other shell sessions syscall

keylatency.d Sniffer* Measures inter-keystroke latency syscall

cuckoo.d Sniffer* Captures serial line sessions fbt

watchexec.d HIDS Watches for new command executions 
and then alerts

syscall

nosetuid.d Enforcement Only allow specified UID to setuid()
to root

syscall

nosnoopforyou.d Enforcement Prevents promiscuous mode on net-
work interfaces

fbt

networkwho.d Reverse
engineering

Shows the user stack trace for network 
I/O

syscall

www.phrack.com/issues.html?issue=63&id=3#article
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Script

This script is written for the current version of OpenSSH shipped with Solaris,
where the ssh program reads keystrokes by opening and reading from /dev/tty.
This is traced by watching ssh call open() on /dev/tty and recording the file
descriptor for later checking with the read() syscall:

 1  #!/usr/sbin/dtrace -s
 2  /*
 3   * sshkeysnoop.d - A program to print keystroke details from ssh.
 4   *   Written in DTrace (Solaris 10 build 63).
 5   *
 6   * WARNING: This is a demonstration program, please do not use this for
 7   * illegal purposes in your country such as breeching privacy. 
[...truncated...]
24   */
25
26  #pragma D option quiet
27
28  /*
29   * Print header
30   */
31  dtrace:::BEGIN
32  {
33   /* print header */
34  printf("%5s %5s %5s %5s %s\n","UID","PID","PPID","TYPE","TEXT");
35  }
36
37  /*
38   * Print ssh execution
39   */
40  syscall::exec*:return
41  /execname == "ssh"/
42  {
43  /* print output line */
44 printf("%5d %5d %5d %5s  %s\n\n", curpsinfo->pr_euid, pid, 
45              curpsinfo->pr_ppid, "cmd", stringof(curpsinfo->pr_psargs));
46  }
47
48  /*
49   * Determine which fd is /dev/tty
50   */
51  syscall::open*:entry
52  /execname == "ssh"/
53  {
54          self->path = arg0;
55  }
56
57  syscall::open*:return
58  /self->path && copyinstr(self->path) == "/dev/tty"/
59  {
60  /* track this syscall */
61          self->ok = 1;
62  }
63
64  syscall::open*:return { self->path = 0; }
65
66  syscall::open*:return
67  /self->ok/
68  {
69   /* save fd number */
70   self->fd = arg0;
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Wildcards have been used in probe names for this to work on different operat-
ing systems (for example, open64() on Solaris, open_nocancel() on Mac OS X);
however, this may match unwanted syscalls as well. If this becomes a problem (since
syscalls are added over time), the script can be fine-tuned to match them explicitly.

Example

To demonstrate this script, it was executed in a lab environment where a test
account had been created with the username testuser and the password secret123.
(Running this on a production system might be an invasion of user’s privacy.)
While tracing, an outbound ssh session was executed to log in to this test account
on a remote host:

71  }
72
73  /*
74   * Print ssh keystrokes
75   */
76  syscall::read*:entry
77  /execname == "ssh" && arg0 == self->fd/
78  {
79 /* remember buffer address */
80    self->buf = arg1;
81  }
82
83  syscall::read*:return
84  /self->buf != NULL && arg0 < 2/
85  {
86          this->text = (char *)copyin(self->buf, arg0);
87
88  /* print output line */
89  printf("%5d %5d %5d %5s %s\n", curpsinfo->pr_euid, pid, 
90  curpsinfo->pr_ppid, "key", stringof(this->text));
91    self->buf = NULL;
92  }
Script sshkeysnoop.d

# sshkeysnoop.d
  UID   PID PPID  TYPE  TEXT
    0 30040 30032   cmd  ssh testuser@mars

    0 30040 30032   key  s
    0 30040 30032   key  e
    0 30040 30032   key  c
    0 30040 30032  key  r <--- password
    0 30040 30032   key  e
    0 30040 30032   key  t
    0 30040 30032   key  1
    0 30040 30032   key  2
    0 30040 30032   key  3
    0 30040 30032   key

    0 30040 30032  key  l <--- command line keystrokes
    0 30040 30032   key  s

continues
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The username, host, and password are all visible in the output. After logging in,
the testuser executed the ls -l command. The output of that command is not visi-
ble, since this script is only tracing the input keystrokes (see shellsnoop).

shellsnoop

Command-line activity from operating system shells can be examined with
shellsnoop, which traces keystroke reads and STDOUT writes from any of the
known running shells (sh, ksh, bash, and so on). This capability is similar to the
ttywatcher tool (pre-DTrace), which monitored sessions via their terminal
interface.

Script

The key parts of the shellsnoop script are given next. (The full script is in the
DTraceToolkit.)

To support command-line options (such as -q for quiet mode, demonstrated
later), shellsnoop is implemented as a DTrace script encapsulated inside a shell
script. The getopts function is used in the shell to process options and set vari-
ables, which are then passed to DTrace:

    0 30040 30032   key
    0 30040 30032   key  -
    0 30040 30032   key  l
    0 30040 30032   key
^C

  1  #!/usr/bin/sh
[...]
 74  while getopts dhp:qsu:v name
 75  do
 76          case $name in
 77 d)      opt_debug=1 ;;
 78          p)      opt_pid=1; pid=$OPTARG ;;
[...]
104  #################################
105  # --- Main Program, DTrace ---
106  #
107  dtrace -n '
108   /*
109    * Command line arguments
110    */
111   inline int OPT_debug   = '$opt_debug';
112   inline int OPT_quiet   = '$opt_quiet';
113   inline int OPT_pid     = '$opt_pid';
[...]
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shellsnoop traces text originating from the shell (the output of built-ins, for
example), as well as text from any subcommands. For example, if the user runs ls -l,
shellsnoop must be tracing the STDOUT writes from the ls subcommand.
Shells fork() and then exec() these commands, so shellsnoop watches for any
exec() that begins from a shell and tracks this process ID in the child associa-
tive array for later identification:

Shell keystrokes and built-in output are traced via read() and write() syscalls
from processes with a shell name to file descriptors between 0 and 2 (covers
STDIN, STDOUT, STDERR):

140   /*
141    * Remember this PID is a shell child
142    */
143   syscall::exec*:entry
144   /execname == "sh"   || execname == "ksh"  || execname == "csh"  || 
145    execname == "tcsh" || execname == "zsh"  || execname == "bash"/
146   {
147    child[pid] = 1;
[...]
153   }

161   /*
162    * Print shell keystrokes
163    */
164   syscall::write:entry, syscall::read:entry
165   /(execname == "sh"   || execname == "ksh"  || execname == "csh"  ||
166     execname == "tcsh" || execname == "zsh"  || execname == "bash")
167    && (arg0 >= 0 && arg0 <= 2)/
168   {
169          self->buf = arg1;
170   }
[...]
186   syscall::write:return, syscall::read:return
187   /self->buf && child[pid] == 0 && OPT_quiet == 0/
188   {
189          this->text = (char *)copyin(self->buf, arg0);
190  this->text[arg0] = '\'\\0\'';
191
192 printf("%5d %5d %8s %3s  %s\n", pid, curpsinfo->pr_ppid, execname, 
193              probefunc == "read" ? "R" : "W", stringof(this->text));
194   }
195   syscall::write:return
196   /self->buf && child[pid] == 0 && OPT_quiet == 1/
197   {
198          this->text = (char *)copyin(self->buf, arg0);
199  this->text[arg0] = '\'\\0\'';
200 printf("%s", stringof(this->text));
201   }
202   syscall::read:return
203   /self->buf && execname == "sh" && child[pid] == 0 && OPT_quiet == 1/
204   {
205          this->text = (char *)copyin(self->buf, arg0);
206  this->text[arg0] = '\'\\0\'';
207 printf("%s", stringof(this->text));
208   }
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The first output block (lines 186 to 194) is for the default output of shellsnoop,
which prints columns of details including the text. Line 189 (and 199 and 206)
places a NULL character to terminate the string, which should read this->
text[arg0] = '\0';, however, because this entire DTrace script is encapsu-
lated in quote marks, shell escaping was required.

The second output block (lines 195 to 210) is for quiet mode, which only prints
the characters that the shell is printing, allowing the shell session to be mirrored
by shellsnoop (demonstrated later).

The third block (lines 202 to 208) is a special case for the Bourne shell (sh) dur-
ing quiet mode so that the input commands can be seen (they aren’t echoed out
using write()).

Subcommand output is identified by STDOUT or STDERR writes from pro-
cesses identified by the child array, populated earlier:

The default output prints columns of details and the text and then checks
whether the text was already terminated with a newline, adding one if needed.
The quiet mode output simply prints the text as is.

215   /*
216    * Print command output
217    */
218   syscall::write:entry, syscall::read:entry
219   /child[pid] == 1 && (arg0 == 1 || arg0 == 2)/
220   {
221          self->buf = arg1;
222   }
[...]
233   syscall::write:return, syscall::read:return
234   /self->buf && OPT_quiet == 0/
235   {
236          this->text = (char *)copyin(self->buf, arg0);
237  this->text[arg0] = '\'\\0\'';
238
239 printf("%5d %5d %8s %3s  %s", pid, curpsinfo->pr_ppid, execname,
240              probefunc == "read" ? "R" : "W", stringof(this->text));
241
242          /* here we check if a newline is needed */
243 this->length = strlen(this->text);
244 printf("%s", this->text[this->length - 1] == '\'\\n\'' ? "" : "\n");
245          self->buf = 0;
246   }
247   syscall::write:return, syscall::read:return
248   /self->buf && OPT_quiet == 1/
249   {
250          this->text = (char *)copyin(self->buf, arg0);
251  this->text[arg0] = '\'\\0\'';
252 printf("%s", stringof(this->text));
253          self->buf = 0;
254   }
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Examples

Examples include systemwide sniffing and process watching.

Systemwide Sniffing

The shellsnoop program watches all shell sessions systemwide by default. Here
it is executed with the -s option to show the system time in microseconds with
each shell event traced:

While tracing, an ls -1 command was executed to list files. Both the reads and
echoed writes for the keystrokes can be seen, with the exception of the first l since
shellsnoop began running after that read syscall was entered. 

If you look closely at the first column, the time between shell writes and reads
(both measured at completion) is the keystroke latency for that read. The key-
stroke latency between l and s is 160 ms (272520552661 us to 272520392705 us).

Process Watching

Here shellsnoop is directed to watch the keystrokes of a particular shell, with
quiet mode set (-q) so that only shell text is printed. Both windows of shellsnoop
and the examined shell are shown here.

# shellsnoop -s
TIME(us)         PID PPID      CMD DIR  TEXT
272520392705   30032 30029     bash   W  l
272520552661   30032 30029     bash   R  s
272520552787   30032 30029     bash   W  s <--- keystrokes
272520599003   30032 30029     bash   R
272520599073   30032 30029     bash   W
272520739499   30032 30029     bash   R  -
272520739616   30032 30029     bash   W  -
272520836096   30032 30029     bash   R  1
272520836166   30032 30029     bash   W  1
272520987743   30032 30029     bash   R
272520987811   30032 30029     bash   W

272520994415   30096 30032       ls   W  a
272520994444   30096 30032       ls   W  bin
272520994475   30096 30032       ls   W  boot
272520994509   30096 30032       ls   W  dev
272520994537   30096 30032       ls   W  devices <--- command output
272520994565   30096 30032       ls   W  etc
272520994593   30096 30032       ls   W  export
272520994623   30096 30032       ls   W  home
272520994650   30096 30032       ls   W  kernel
272520994803   30096 30032       ls   W  lib
272520994893   30096 30032       ls   W  mnt
272520994939   30096 30032       ls   W  net
[...]
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Here’s the example for window 1, shellsnoop:

And here’s the text from window 2, showing the target shell:

The initial shell prompt wasn’t seen by shellsnoop because it was printed
before tracing began, but after that, shellsnoop has mirrored the target shell
perfectly. (It helps that this is a single CPU system, and the output doesn’t get
scrambled slightly because of DTrace reading through the different CPU switch
buffers.)

It can be a little spooky to be watching another user’s session on your own screen,
including editor sessions (vi(1) or vim(1)) where the cursor dances around the
screen modifying text. 

keylatency.d

Inter-keystroke latency is the time between keystrokes, which differs based on
which keys are being pressed, the distance between those keys (finger travel), the
user’s keyboard skill, and other typing characteristics. This is sometimes studied
in security for improving brute-force password attacks. If keystroke latency can be
measured while a user types a secret password, then this information may be used
to infer which are less likely keystroke transitions and remove them from a brute-
force search. The keylatency.d script measures the keystroke latency time.

# ps -fp 130138
     UID    PID  PPID   C    STIME TTY         TIME CMD
 brendan 130138 130135   0 01:10:38 pts/2      0:00 -bash
# shellsnoop -q -p 130138
cd /etc
-bash-3.2$ ls -l passwd
-r--r--r--   1 root  root        1061 Apr  6 23:42 passwd
-bash-3.2$ ls -l shadow
-r--------   1 root sys 508 Apr  6 23:42 shadow
-bash-3.2$ cat -n shadow
cat: cannot open shadow: Permission denied
-bash-3.2$ ^C

-bash-3.2$ cd /etc
-bash-3.2$ ls -l passwd
-r--r--r--   1 root  root        1061 Apr  6 23:42 passwd
-bash-3.2$ ls -l shadow
-r--------   1 root sys 508 Apr  6 23:42 shadow
-bash-3.2$ cat -n shadow
cat: cannot open shadow: Permission denied
-bash-3.2$
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Script

The keylatency.d script watches keystrokes by tracing read() syscalls from
STDIN. It contains a string TARGET, which can be adjusted so that other processes
are traced (for example, vi).

Lines 27 to 29 convert some of the special characters into strings so that when
printed they don’t mess up the output.

 1  #!/usr/sbin/dtrace -s
 2
 3  #pragma D option quiet
 4
 5  /* process name to monitor */
 6  inline string TARGET = "bash";
 7
 8  self string lastkey;
 9
10  dtrace:::BEGIN
11  {
12          printf("Tracing %s keystrokes...  Hit Ctrl-C to end.\n", TARGET);
13  }
14
15  syscall::read:entry
16  /execname == TARGET && arg0 == 0/
17  {
18    self->buf = arg1;
19   self->start = timestamp;
20  }
21
22  syscall::read:return
23  /self->buf && arg0 == 1/
24  {
25          this->latency = timestamp - self->start;
26          this->key = stringof((char *)copyin(self->buf, arg0));
27          this->key = this->key == "\r" ? "NL" : this->key;    /* return */
28          this->key = this->key == "\t" ? "TAB" : this->key;      /* tab */
29          this->key = this->key == "\177" ? "BS" : this->key;   /* backspace */
30  @a[self->lastkey != NULL ? self->lastkey : " ", this->key] =
31      avg(this->latency);
32 @c[self->lastkey != NULL ? self->lastkey : " ", this->key] = count();
33  self->lastkey = this->key;
34    self->start = 0;
35  }
36
37  syscall::read:return /self->buf/ { self->buf = 0; self->start = 0; }
38
39  dtrace:::END
40  {
41   normalize(@a, 1000000);
42 printf("Average Keystroke Latency for %s processes (ms):\n\n", TARGET);
43          printf("%34s %8s\n", "LATENCY", "COUNT");
44          printa("%16s -> %3s %10@d %@8d\n", @a, @c);
45  }
Script keylatency.d
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Example

The script was executed while regular commands were typed in another bash shell:

One of the fastest keystroke latencies is the transition from - to l, typed fre-
quently as ls -l. The slowest transitions are those after new lines, because this
includes think time.

The fastest transition caught was from h to t at only 13 milliseconds. (This may
be a giveaway that the text was typed on a dvorak-layout keyboard.)

cuckoo.d

In the book The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer Espi-
onage, Clifford Stoll attached an array of TeleType printers to modem-attached
serial lines to capture activity from a remote cracker (black hat hacker). If DTrace
had been available to Clifford, capturing session data across the system would
have been much easier (and would not have required borrowing so many TeleType
printers and terminals). This script does this for Solaris, capturing serial output
and displaying it with user and process ID details.

This script is based on the unstable fbt provider and may work only on a partic-
ular version of Oracle Solaris. It’s included as an example of kernel sniffing capa-
bilities, whether it executes or not; for it to keep working, it will need to be
updated to match changes in the kernel code.

# keylatency.d
Tracing bash keystrokes...  Hit Ctrl-C to end.
^C
Average Keystroke Latency for bash processes (ms):

         LATENCY    COUNT
               h -> t         13        1
               b -> s         17        2
               i -> o         29        1
               c -> d         33        8
                 -> s         41        3
               s -> t         42        3
               h -> e         43        2
                 -> /         45        7
               - -> l         48        9
               t -> h         54        2
[...output truncated...]
               - -> x        489        1
              NL -> c        503        9
               t -> BS        599        2
              NL -> l        651        9
              NL -> j        696        3
              BS -> l        949        2
              NL -> t        978        2
              NL ->  d       1279        2
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Script

This script traces the cnwrite() function and pulls in the character data from
user-land (assuming it is a UIO_USERSPACE uio, which could be tested in a
predicate if desired). There may be other ways to do this as well, such as tracing
async_txint() or cdev_write().

As with shellsnoop, strings are manually NULL terminated to the known
length (line 17).

Example

The echoed keystrokes and command outputs in the following were traced from a
serial session (connected via the service processor). This script could be enhanced:
curpsinfo->pr_ttydev could be printed so that different serial sessions can be
differentiated; and as with shellsnoop, a quiet mode could be implemented to
only print the seen text, mirroring the serial display.

 1  #!/usr/sbin/dtrace -s
 2
 3  #pragma D option quiet
 4  #pragma D option switchrate=10hz
 5
 6  dtrace:::BEGIN
 7  {
 8          printf("%-20s %6s %6s %6s %s\n", "TIME", "PID", "PPID", "UID", "TEXT");
 9  }
10
11  fbt::cnwrite:entry
12  {
13  this->iov = args[1]->uio_iov;
14  this->len = this->iov->iov_len;
15          this->text = stringof((char *)copyin((uintptr_t)this->iov->iov_base,
16       this->len));
17  this->text[this->len] = '\0';
18
19 printf("%-20Y %6d %6d %6d %s\n", walltimestamp, pid, ppid, uid,
20       this->text);
21  }
Script cuckoo.d

# cuckoo.d
TIME      PID   PPID    UID TEXT
2010 Jun  7 12:49:30  30557  30554      0 d
2010 Jun  7 12:49:30  30557  30554      0 a
2010 Jun  7 12:49:30  30557  30554      0 t
2010 Jun  7 12:49:30  30557  30554      0 e
2010 Jun  7 12:49:30  30557  30554      0 

2010 Jun  7 12:49:30  30629  30557      0 Mon Jun  7 12:49:30 UTC 2010

2010 Jun  7 12:49:30  30557  30554      0 lox# 
2010 Jun  7 12:49:31  30557  30554      0 l

continues
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watchexec.d

This is an example of an intrusion detection script. The execution of binaries are
traced, and any that are not recognized based on a hard-coded “allow” list will gen-
erate alerts. The alerts are reported by a custom shell wrapper, which takes the
action desired: populate a log, send e-mail, send an SNMP trap, and so on.

Script

The script watches the exec() syscall variants and checks whether the execut-
able is in a hard-coded allow list in the script. If not, a shell command is executed
to perform the report, which is handed the information including the executable
path as shell arguments:

2010 Jun  7 12:49:31  30557  30554      0 s 
2010 Jun  7 12:49:31  30557  30554      0
2010 Jun  7 12:49:31  30557  30554      0 - 
2010 Jun  7 12:49:32  30557  30554      0 l 
2010 Jun  7 12:49:32  30557  30554      0 

2010 Jun  7 12:49:32  30630  30557      0 total 696

2010 Jun  7 12:49:33  30630  30557      0 -rw-------   1 root     root       32 31 Ap
r  6 23:54 akworAAAEhadig

2010 Jun  7 12:49:33  30630  30557      0 -rw-------   1 root     root       26 02 Ap
r  6 23:55 akworBAAFhadig
[...]

 1      #!/usr/sbin/dtrace -s
 2
 3      #pragma D option destructive
 4      #pragma D option quiet
 5
 6      inline string REPORT_CMD = "/usr/local/bin/reporter.sh";
 7
 8      dtrace:::BEGIN
 9      {
10            /*
11 * Ensure this contains all the reporting commands,
12             * otherwise this script will be a feedback loop:
13             */
14   ALLOWED[REPORT_CMD] = 1;
15    ALLOWED["/bin/sh"] = 1;
16
17            /*
18    * Commands to allow.
19             * Example list (from Solaris) in alphabetical order:
20             */
21   ALLOWED["/bin/bash"] = 1;
22  ALLOWED["/lib/svc/bin/svcio"] = 1;
23   ALLOWED["/sbin/sh"] = 1;
24 ALLOWED["/usr/apache2/current/bin/httpd"] = 1;
25  ALLOWED["/usr/bin/basename"] = 1;
26   ALLOWED["/usr/bin/cat"] = 1;
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The arguments printed are a starting point, which can be enhanced. The current
working directory could be added (cwd), although directories (and executables)
may contain whitespace, which will need to be considered if treating the arguments
to the reporter as whitespace delimited. Another useful addition would be the
return value of exec() by tracing exec:return to see whether it was successful.

The /usr/local/bin/reporter.sh script performs the reporting. It may log
to a file, write to syslog, send an e-mail, send an SNMP trap, write to a database,
or some combination of these. Examples are beyond the scope of this book; as a
starting point, the following reporter.sh takes the arguments and simply
appends them to a log file: 

This could be executed as a trial run to check what is identified and to improve the
ALLOWED list, before using a reporter.sh that sends an e-mail or an SNMP trap.

Either watchexec.d or reporter.sh could be easily modified to support other
policies as well, such as monitoring for activity outside of work hours, from certain
IP addresses, and so on. You can be as creative as you like because of the flexibility
of DTrace and its ability to collect virtually any kind of information on the system.

27   ALLOWED["/usr/bin/chmod"] = 1;
28   ALLOWED["/usr/bin/chown"] = 1;
29   ALLOWED["/usr/bin/grep"] = 1;
30   ALLOWED["/usr/bin/head"] = 1;
31   ALLOWED["/usr/bin/ls"] = 1;
32   ALLOWED["/usr/bin/pgrep"] = 1;
33   ALLOWED["/usr/bin/pkill"] = 1;
34   ALLOWED["/usr/bin/ssh"] = 1;
35   ALLOWED["/usr/bin/svcprop"] = 1;
36   ALLOWED["/usr/bin/tput"] = 1;
37   ALLOWED["/usr/bin/tr"] = 1;
38   ALLOWED["/usr/bin/uname"] = 1;
39  ALLOWED["/usr/lib/nfs/mountd"] = 1;
40  ALLOWED["/usr/lib/nfs/nfsd"] = 1;
41  ALLOWED["/usr/sfw/bin/openssl"] = 1;
42   ALLOWED["/usr/xpg4/bin/sh"] = 1;
43
44            printf("Reporting unknown exec()s to %s...\n", REPORT_CMD);
45      }
46
47  syscall::exec*:entry
48      /ALLOWED[copyinstr(arg0)] != 1/
49      {
50            /*
51 * Customize arguments for reporting command:
52             */
53   system("%s %s %d %d %d %Y\n", REPORT_CMD, copyinstr(arg0),
54    uid, pid, ppid, walltimestamp);
55      }
Script watchexec.d

reporter.sh:
     1      #!/bin/sh
     2
     3 echo "$*" >> /var/log/execlog.txt
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Example

As a test, watchexec.d was run with the simple logging reporter.sh, while a
user logged in and ran a couple of binary executables from their home directory:

The log shows that the user with UID 1001 ran an unknown executable
./a.out, and another called ./ls. The invocation of ls is suspicious since it is
usually called via the shell PATH as /usr/bin/ls; so although this may be inno-
cent (cd /usr/bin; ./ls), it may also be a malicious binary that has been
renamed ls.

watchexec.d is an example DTrace component of a simple intrusion detection
system. Additional components needed include the reporter.sh script and a
means to start and restart watchexec.d, considering that DTrace can abort trac-
ing and this needs to keep running. It may also make sense for watchexec.d to
call reporter.sh on startup from dtrace:::BEGIN so that if the script has
began restarting for some reason (systemic unresponsiveness), that would also be
reported.

nosetuid.d

This is an example of ad hoc security enforcement. Here the setuid() syscall is
traced and blocked based on a simple security policy: Only the allowed UID can
become UID 0, “root.” setuid() is used by software such as su(1M) (set user) and
sudo(8) to become a different user, usually root (UID 0), after authenticating. 

If a security vulnerability was found that allows nonroot users to setuid() to
root without the correct password, a script such as this could provide a form of
defense while waiting for the operating system vendor to provide a patch.

Script

This script raises the KILL signal to processes using the raise() action and
because of this requires the destructive pragma. Be sure that you understand the
implications before running this script; as a trial, line 22 could be deleted and the
script executed to test whether it would have killed any normal application activ-
ity by mistake.

# watchexec.d
Reporting unknown exec()s to /usr/local/bin/reporter.sh...

# cat /var/log/execlog.txt 
./a.out 1001 8919 8911 2009 Sep 19 19:32:55
./ls 1001 8919 8911 2009 Sep 19 19:33:07
/etc/dhcp/eventhook 0 8852 8851 2009 Sep 19 19:35:27
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Example

While running the script, the user brendan (UID 1001) attempts to su to root (UID 0):

The su command has been killed, and the uid was not changed to root. The root
user running the nosetuid.d script saw the following:

Not only has it killed the su command, but it also saw and killed a sendmail
command by mistake! This may be a good example of why actions such as
raise() require the destructive pragma—to indicate that the script has the capa-
bility to cause harm.

 1      #!/usr/sbin/dtrace -s
 2
 3      #pragma D option quiet
 4      #pragma D option destructive
 5
 6      inline int ALLOWED_UID = 517;
 7
 8      dtrace:::BEGIN
 9      {
10  printf("Watching setuid(), allowing only uid %d...\n", ALLOWED_UID);
11      }
12
13      /*
14       * Kill setuid() processes who are becomming root, from non-root, and who
15       * are not the allowed UID.
16       */
17  syscall::setuid:entry
18      /arg0 == 0 && curpsinfo->pr_uid != 0 && curpsinfo->pr_uid != ALLOWED_UID/
19      {
20   printf("%Y KILLED %s %d -> %d\n", walltimestamp, execname,
21     curpsinfo->pr_uid, arg0);
22            raise(9);
23      }
Script nosetuid.d

$ id
uid=1001(brendan) gid=1(other)
$ su -
Password:
$ id
uid=1001(brendan) gid=1(other)

# nosetuid.d
Watching setuid(), allowing only uid 517...
2009 Sep 19 06:51:57 KILLED su 1001 -> 0
2009 Sep 19 06:57:57 KILLED sendmail 25 -> 0
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nosnoopforyou.d

The network packet sniffer utility on Solaris is snoop(1M). As a more complex
example of ad hoc enforcement, the nosnoopforyou.d script prevents users from
performing network sniffing on Solaris, such as by using snoop(1M). This exam-
ple is more complex, because it identifies network sniffing by watching for inter-
faces being placed in promiscuous mode inside the kernel, rather than matching on
the execname “snoop” (since users could then just copy and rename snoop(1M)).
By matching inside the kernel, even if users wrote and compiled their own user-
land software to perform network sniffing, it would still be identified and killed.

Script

This script would have been much easier had the kernel promiscuous functions
executed in the same thread as the user-land code. It would then be a matter of
just tracing the right function and raising a signal. Instead, those functions are
executed by a kernel task queue thread, after the user thread has stepped off-CPU.
This script traces the event before enqueuing the task, while the user thread is
still on-CPU and can be killed:

Warning

Not only is this an fbt provider–based script and therefore prone to misexecute on differ-
ent kernel versions, it also uses the destructive pragma so that it can raise the KILL signal
to processes. So, if it stops working properly and misidentifies processes, it could kill them
and cause harm to the system.

 1      #!/usr/sbin/dtrace -Cs
 2
 3      #pragma D option quiet
 4      #pragma D option destructive
 5
 6      /* /usr/include/sys/dlpi.h: */
 7      #define     DL_PROMISCON_REQ 0x1f
 8
 9      dtrace:::BEGIN
10      {
11  trace("Preventing promiscuity...\n");
12      }
13
14 fbt::dld_wput_nondata:entry
15      {
16    this->mp = args[1];
17  this->prim = ((union DL_primitives *)this->mp->b_rptr)->dl_primitive;
18      }
19
20 fbt::dld_wput_nondata:entry
21      /this->prim == DL_PROMISCON_REQ/
22      {
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Line 25 has been commented out in this script in case anyone copies and pastes
without reading the previous warning. If you understand the warning and want
this script to work, remove the comment characters from that line.

Example

In the window1 session, the script was run. In the window2 session, the
snoop(1M) command was executed, which was immediately killed. Details can be
seen in the output of the script:

networkwho.d

The networkwho.d script shows the user-land stack trace when a process per-
forms writes and socket connections so that the code-path to network I/O can be
identified. This may be the first of many ways that DTrace can examine the behav-
ior of an unknown binary (malware or spyware) as it executes.

Script

The script takes a PID argument and traces the user-land stack trace whenever it
calls connect(), listen(), write(), or send(). Since the script may be exe-
cuted after the connect(), it can’t rely on tracing it to provide file descriptor
details for later filtering with write() and send(); instead, it traces all write()
and send() calls and prints the file descriptor type:

23            printf("%Y KILLED %s PID:%d PPID:%d\n", walltimestamp, execname,
24       pid, ppid);
25    /* raise(9); */
26      }
Script nosnoopforyou.d

window1# nosnoopforyou.d
Preventing promiscuous mode...
2009 Sep 19 22:04:20 KILLED snoop PID:9273 PPID:9193

window2# snoop
Using device e1000g0 (promiscuous mode)
Killed
window2#

 1      #!/usr/sbin/dtrace -s
 2
 3      #pragma D option defaultargs
 4      #pragma D option switchrate=10hz
 5
 6      dtrace:::BEGIN
 7      /$1 == 0/

continues
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Example

To demonstrate networkwho.d, it was pointed at an active ssh process:

The stack trace within ssh that is performing the writes has been shown, iden-
tifying the code path taken.

Summary

DTrace has some interesting uses for security, including the ability to sniff data at
any layer of the software stack, debug the use of system privileges, and examine
the operation of suspicious software. DTrace was designed as a debugger that can
drop events under load, which makes some uses such as auditing and policy
enforcement unreliable using DTrace. It may, however, be better than nothing at
all. This chapter demonstrated these uses with several D scripts.

 8      {
 9   printf("USAGE: networkwho.d PID\n");
10            exit(1);
11      }
12
13 syscall::connect:entry,
14  syscall::listen:entry
15      /pid == $1/
16      {
17            ustack();
18      }
19
20 syscall::write*:entry,
21  syscall::send*:entry
22      /pid == $1/
23      {
24    trace(fds[arg0].fi_fs);
25            ustack();
26      }
Script networkwho.d

# networkwho.d 9136
[...]
  0  89023         write:entry   sockfs

    libc.so.1`__write+0x15
   ssh`packet_write_poll+0x37
    ssh`client_loop+0x47a
    ssh`ssh_session2+0x5c

     ssh`main+0xd9f
     ssh`_start+0x7d
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12
Kernel

The operating system kernel is the software at the heart of a system, managing
system resources and user processes. It has historically been difficult to observe as
it executes in a protected context, beyond the reach of process debuggers. DTrace
provides custom visibility into kernel operations, allowing you to answer ques-
tions such as the following.

Where is the kernel spending time consuming CPU cycles?

What kernel memory allocations are occurring, and for which segments?

When are functions executing? And with what arguments?

Why are functions being executed? What is their stack backtrace?

How long does it take to execute kernel functions? On-cpu/off-cpu?

As an example, the following one-liner traces all kernel function calls beginning
with vmem (kernel virtual memory subsystem), printing a time stamp in nanosec-
onds for when the function began and finished executing:

solaris# dtrace -n 'fbt::vmem_*: { trace(timestamp); }'
dtrace: description 'fbt::vmem_*: ' matched 66 probes
CPU     ID            FUNCTION:NAME
  0  37099      vmem_alloc:entry   126065068702911
  0  37100     vmem_alloc:return   126065068705647
  0  36499  vmem_is_populator:entry   126065068779334
  0  36500 vmem_is_populator:return   126065068780982

continues
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This shows when vmem calls are executed, as they happen in the kernel. Before
DTrace, this type of visibility was impossible; in order to provide real-time debug-
ging, you needed a custom build of the kernel that included extra instrumentation
for these function calls.

This chapter introduces kernel analysis using DTrace, providing a suggested
strategy for analysis, checklist of common issues, and example DTrace one-liners
and scripts. There is also additional discussion for certain topics, including kernel
tracing and memory allocation.

The kernel is an advanced topic that cannot be fully explained within a single
chapter of this book, so some familiarity with kernel internals is assumed. For ref-
erence, see the following:

Solaris Internals (McDougall and Mauro, 2006)

Mac OS X Internals (Singh, 2006)

The Design and Implementation of the FreeBSD Operating System (Neville-
Neil and McKusick, 2004)

These are also listed in the bibliography.

Capabilities

Major components of the kernel are pictured in Figure 12-1, all of which may be
visible via DTrace depending on the kernel build and the inclusion of symbol infor-
mation (Solaris and OpenSolaris are usually built to include all function symbols,
making everything visible).

Use DTrace to answer questions about an operating system kernel such as the
following.

Which system calls are occurring, and by which processes? Where in the user 
code are they originating (user stack trace)? What arguments are being 
passed? What is the system call latency?

What calls into the Virtual File System (VFS) layer are occurring? Which files 
are being read and written?

What virtual memory functions are being called? Why (kernel stack trace)?

What is the kernel load in terms of process and thread creation?

  0  42127      vmem_size:entry   126066151505074
  0  42128      vmem_size:return   126066151526361
[...]
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How much of the kernel execution time is in networking code? Which pro-
cesses are generating the network load?

Which threads are being taken off-CPU, and why? How long are runnable 
threads waiting for CPU?

What is the interrupt load on CPUs, and from which devices?

Do device drivers encounter errors during boot (anonymous tracing)?

What other areas of the kernel are consuming CPU cycles and memory?

In addition, the following chapters cover topics that are provided by or related to
the kernel:

Chapter 4, Disk I/O (includes kernel disk I/O interface and drivers)

Chapter 5, File Systems (these are typically implemented in the kernel)

Chapter 6, Network Lower-Level Protocols (includes the kernel TCP/IP stack)

Chapter 7, Application-Level Protocols (some application protocols are imple-
mented as kernel drivers)

Figure 12-1 Operating system kernel functional diagram
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Strategy

To get started using DTrace to examine the operating system kernel, follow these
steps:

1. Try the DTrace one-liners and scripts listed in the sections that follow.

2. Instrument and observe the system calls (syscall provider). The system call 
layer is where applications meet the kernel. Observing system calls provides 
good insight into which underlying kernel subsystems are being most heavily 
utilized.

3. Check which stable providers exist that may help, such as profile, sched, 
vminfo, and lockstat, and the documentation for these providers. The profile 
provider is especially effective at identifying why the kernel is on-CPU, as 
shown in the one-liners. Also check for the existence of sdt provider probes.

4. Before examining kernel function calls with the fbt provider, see what docu-
mentation exists for the kernel topic of interest (see earlier references).

5. Trace kernel function execution using the fbt provider. Finding the best 
probes to use out of the thousands available can be the real challenge; see 
Chapter 14, Tips and Tricks, for examples of using grep(1), known work-
loads and frequency counting. Additional techniques are as follows:

5.1 Examine the kernel source code, if available (requires a basic under-
standing of the kernel programming language, such as C for the kernel). 
Reading the kernel source not only can find function probes of interest 
but is the best way to determine the arguments and return value of 
functions. 

5.2 You can navigate the kernel by following program flow, tracing function 
entry and return probes with the flowindent pragma. Another way is to 
pick deep and logical points in the kernel (such as a device driver per-
forming I/O) and to examine stack backtraces, which illustrate the 
path to that point.

5.3. Familiarize yourself with any existing kernel statistics. For example, 
Solaris has kstat (kernel statistics), which can be listed using the kstat
-p command. Where they are incremented in the kernel source code can 
be used for navigation through unfamiliar code.

6. If you are not in kernel engineering or don’t work for the operating system 
vendor, consider asking the vendor to provide DTrace scripts for you, proving 
the business need for the observability.



ptg

Providers 897

Checklist

Consider the checklist of kernel events shown in Table 12-1 that can be examined
using DTrace.

Providers

Table 12-2 shows providers of interest when tracing the kernel:

Table 12-1 Kernel Checklist

Issue Description

On-CPU When CPUs are busy in what some tools report as system (%sys) time (the 
kernel), DTrace can determine which kernel modules and code paths are 
responsible. Reasons for busy CPUs include the following:

• Lock contention (spin)

• CPU cross calls

• Hot code paths

• Memory bus I/O

Off-CPU/
latency

Different types of off-cpu latency can be encountered in the kernel:

• Device I/O time (disks, network)

• CPU scheduler dispatcher queue latency

• Lock wait

• Conditional variable wait

Errors Check whether errors are being encountered and communicated via the 
appropriate interface.

Configuration If kernel tuning parameters are set, it can be worthwhile to use DTrace to 
check that they are taking effect.

Table 12-2 Providers for Kernel Observability

Provider Description

syscall Traces entry and return of operating system calls, arguments, and return values.

profile Sample kernel activity at a custom rate.

sched Traces kernel thread scheduler events.

continues
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The full reference for provider probes and arguments is in the DTrace Guide1

and summarized in Appendix C. Additional fbt provider discussion follows.

fbt Provider

The Function Boundary Tracing (fbt) provider instruments kernel function execu-
tion, providing probes for kernel function entry and return points. It also provides
access to function arguments, return codes, and return instruction offsets. By trac-
ing function entry and return, the elapsed time and on-CPU time during function
execution can also be measured.

Listing fbt provider probes on Mac OS X 10.6:

Stability

The fbt provider is considered an unstable interface, meaning that the provider
interface (which consists of the probe names and arguments) may be subject to

vminfo Virtual memory statistic probes, based on vmstat(1M) statistics.

sysinfo Kernel statistics probes, based on mpstat(1M) statistics.

lockstat Traces kernel lock events.

sdt Kernel modules sometimes have interesting sdt probes implemented by the 
kernel engineer for debugging purposes.

fbt Traces kernel function execution, arguments, and return values (an unstable 
interface).

1. http://wikis.sun.com/display/DTrace/Documentation

macosx# dtrace -ln fbt:::
   ID   PROVIDER    MODULE               FUNCTION NAME
   41        fbt   mach_kernel    AllocateNode entry
   42        fbt   mach_kernel    AllocateNode return
   43        fbt  mach_kernel         Assert entry
   44        fbt  mach_kernel         Assert return
   45        fbt   mach_kernel    BF_decrypt entry
   46        fbt   mach_kernel    BF_decrypt return
   47        fbt   mach_kernel    BF_encrypt entry
   48        fbt   mach_kernel    BF_encrypt return
   49        fbt   mach_kernel    BF_set_key entry
[...18346 lines truncated...]

Table 12-2 Providers for Kernel Observability (Continued)

Provider Description

http://wikis.sun.com/display/DTrace/Documentation
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change between kernel versions. This is because the interface is dynamically con-
structed based on the thousands of functions that make up the current implemen-
tation of the kernel. These kernel functions are subject to change, and when they
do, so does the fbt provider.

This means that any DTrace scripts or one-liners based on the fbt provider may
be dependent on the kernel version for which they were written. At the very least,
fbt-based scripts are unlikely to be portable between Solaris, Mac OS X, and Free-
BSD, since the kernels are significantly different. The kernel also changes from
version to version for the same operating system, so an fbt-based script written for
Solaris 10 update 1 may not work on Solaris 10 update 2 and may not even work
after a minor kernel patch on Solaris 10 update 1.

If an fbt-based script has stopped working because of minor kernel changes, it
may be that the script can be repaired with equivalent minor changes to match the
newer kernel. If the kernel has changed significantly, then the fbt-based script
may need to be rewritten entirely. Because of this instability, you should use fbt
only when needed. If there are stable providers available that can serve the same
role, use those instead. The scripts that use them will not need to be rewritten as
the kernel changes.

Because fbt is an unstable interface, these scripts are not guaranteed to work or
to be supported by the operating system vendors. Despite the instability, it is still
of enormous value that fbt tracing is possible at all, and using it can and has
solved countless issues.

The scripts in this book serve as examples of using fbt—not just for how the fbt
provider is used in D programs but also for example data that DTrace can make
available and showing why that can be useful. If these scripts stop working, you
can try fixing them yourself or check for updated versions on the Web (try this
book’s Web site).

See Chapter 6, Network Lower-Level Protocols, and the discussion around
tcpsnoop.d as a case study for fbt instability.

Probe Count

The number of probes differs depending on the kernel that is being dynamically
instrumented. The following examples compare the available probe count by list-
ing probes and counting lines.

Here’s the example for Oracle Solaris Nevada:

solaris# dtrace -ln fbt::: | wc -l
   69113
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Here’s the example for Mac OS X Snow Leopard:

Here’s the example for FreeBSD 8.0:

Regardless of the kernel, there should be at least 10,000 probes available.

Module Name

The kernel module name is the second field of the probe name. Listing these on
Solaris yields the following:

This allows all probes from a particular module to be matched—for example,
fbt:zfs::entry for all the function entry probes from ZFS.

Mac OS X currently doesn’t make use of the module field, which only ever con-
tains mach_kernel. This doesn’t turn out to be much of a problem because of the
naming conventions of many kernel modules, which prefix the function name with
the module name. For example, finding the HFS (file system) functions on Mac OS X
is possible using wildcards, as shown by the following:

macos_x# dtrace -ln fbt::: | wc -l
   18356

freebsd# dtrace -ln fbt::: | wc -l
   37133

solaris# dtrace -ln 'fbt:::' | awk '{ print $2":"$3 }' | sort -u
PROVIDER:MODULE
fbt:FX
fbt:FX_DPTBL
fbt:RT
fbt:RT_DPTBL
fbt:SDC
fbt:TS
fbt:TS_DPTBL
fbt:acpi_drv
fbt:acpica
fbt:acpidev
fbt:acpinex
[...165 lines truncated...]

macos_x# dtrace -ln 'fbt::hfs_*:entry'
   ID   PROVIDER    MODULE               FUNCTION NAME
 9396        fbt    mach_kernel  hfs_addconverter entry
 9398        fbt  mach_kernel              hfs_bmap entry
 9400        fbt  mach_kernel    hfs_chkdq entry
 9402        fbt   mach_kernel    hfs_chkdqchg entry
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Arguments and Return Value

The arguments and return value for kernel functions can be inspected on the fbt
entry and return probes.

fbt:::entry: The typed arguments are available as args[0] ... args[n].

fbt:::return: The program counter is args[0]; the return value is 
args[1].

The arg0 … argn variables are the same but cast as uint64_t (64-bit unsigned
integers).

Symbol information is built in to the kernel to allow navigation of typed C
structs. This allows any information passed as arguments or return values to be
inspected using D language statements that match C. For example, consider the
following C code from Oracle Solaris ZFS:

The argument to arc_get_data_buf() is an arc_buf_t pointer, presented in
DTrace as args[0]. The definition for arc_buf_t can be examined to search for
members of interest. Another way to find members is to inspect their usage in the
function code. In this case, lines 2250 to 2252 show how state, size, and type can be
retrieved. The following fetches the size using DTrace:

 9404        fbt  mach_kernel             hfs_chkiq entry
[...]

uts/common/fs/zfs/arc.c:
[...]
 2247  static void
 2248  arc_get_data_buf(arc_buf_t *buf)
 2249  {
 2250 arc_state_t     *state = buf->b_hdr->b_state;
 2251          uint64_t     size = buf->b_hdr->b_size;
 2252  arc_buf_contents_t   type = buf->b_hdr->b_type;
 2253
 2254   arc_adapt(size, state);

# dtrace -n 'fbt::arc_get_data_buf:entry { trace(args[0]->b_hdr->b_size); }'
dtrace: description 'fbt::arc_get_data_buf:entry ' matched 1 probe
CPU     ID            FUNCTION:NAME
 12  48494    arc_get_data_buf:entry           9728
 12  48494    arc_get_data_buf:entry               512
 12  48494    arc_get_data_buf:entry               512
 12  48494    arc_get_data_buf:entry           4608
 12  48494    arc_get_data_buf:entry               512
[...]
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Data can be fetched in this way from deep within kernel structures. Other
examples of retrieving useful data from kernel structures can be found in /usr/
lib/dtrace translators.

On Solaris systems, you can also determine the arguments passed to a kernel
function of interest using the integrated modular debugger, mdb(1), and its built-
in commands:

The ::nm -f ctype command was executed on zfs_read to print its function
prototype, which shows arguments and return value as C language data types.
This shows that zfs_read() returns a pointer to an integer (int (*)) and takes
four pointers as arguments, each pointing to a kernel data structure (vnode_t,
and so on).

The::print -t command was executed with vnode_t to list the structure
members along with their data types. This shows that among the many variables
stored in a vnode is a character pointer called v_path, which is a NULL-termi-
nated string containing the cached vnode path name. We can use this information
for our DTrace invocation to look at zfs_read():

solaris# mdb -k
Loading modules: [ unix genunix dtrace specfs ufs sd mpt px ldc ip hook neti 
sctp arp usba nca fcp fctl emlxs ssd md lofs zfs random cpc crypto ptm sppp nfs ipc ]
> zfs_read::nm -f ctype
C Type
int (*)(vnode_t *, uio_t *, int, cred_t *, caller_context_t *)
> ::print -t vnode_t
{
    kmutex_t v_lock {
        void *[1] _opaque 
    }
    uint_t v_flag 
    uint_t v_count 
[...]
    char *v_path 
[...]
}

solaris# dtrace -n 'fbt:zfs:zfs_read:entry { @[stringof(args[0]->v_path)] = 
count(); }'
dtrace: description 'fbt:zfs:zfs_read:entry ' matched 1 probe
^C

  /scratch/aime/nchand/aime_armix_main/opmn/conf/.formfactor.dnagad01
1
  /scratch/aime/nchand/aime_armix_main/has_work/listener.ora                2
  /scratch/aime/nchand/aime_armix_main/opmn/conf/ons.config.dnagad01          4
  /scratch/aime/nchand/aime_armix_main/rdbms/bin/oracle                4
  /scratch/aime/nchand/aime_armix_main/work/sqlnet.ora           4
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In the previous example, we enabled the entry point to the kernel zfs_read()
function, and using the information derived from the mdb(1) session, we aggre-
gate on the file path name embedded in the vnode referenced as the first argu-
ment. Note we used the DTrace stringof() function to treat the character
pointer (v_path) as a string so that it can be printed.

Kernel Tracing

The fbt provider along with the DTrace flowindent option enables a powerful
way of tracing kernel function flow. It may at times be interesting to trace the code
flow through the kernel for a specific event or system call, for the purpose of timing
and profiling, for investigating a problem and needing to know which kernel functions
are being called, or perhaps as an exercise in studying kernel internals. Using the
syscall provider as the entry point into tracing the kernel is particularly interest-
ing because system calls are the entry point into the kernel from user processes.

The ktrace.d script enables tracing the function call flow through the kernel
from the entry point of a system call, provided as a command-line argument:

Note the use of the macro variable $1 in the probe function field of the syscall
provider entry and return probes, allowing us to specify which system call we want
to trace on the command line. Executing this for the write(2) system call yields
the following:

1  #!/usr/sbin/dtrace -s
2  #pragma D option flowindent
3
4  syscall::$1:entry
5  {
6          self->flag = 1;
7  }
8  fbt:::
9  /self->flag/
10 {
11 }
12 syscall::$1:return
13 /self->flag/
14 {
15   self->flag = 0;
16         exit(0);
17 }

Script ktrace.d

solaris# ./ktrace.d write
dtrace: script './ktrace.d' matched 68135 probes
CPU FUNCTION
  3  -> write

continues
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Most of the resulting output was truncated for space purposes (the total output
was more than 400 lines). With the flowindent option, the output includes
arrows and indentation based on function entry and return, allowing us to easily
see function flow. The output spans from the entry point of the write(2) system
call through to its return to the calling process. This information can be used in
several ways, depending on your goal. As noted previously, it is extremely useful
for understanding kernel internals, using the output in conjunction with the
source code.

We can use the same script on Mac OS X:

  3    -> getf
  3      -> set_active_fd
  3      <- set_active_fd
  3    <- getf
  3    -> fop_rwlock
  3      -> nfs4_rwlock
  3        -> nfs_rw_enter_sig
  3        <- nfs_rw_enter_sig
  3      <- nfs4_rwlock
  3    <- fop_rwlock
  3    -> fop_write
  3      -> nfs4_write
  3        -> nfs_rw_enter_sig
  3        <- nfs_rw_enter_sig
  3        -> uio_prefaultpages
  3        <- uio_prefaultpages
  3        -> writerp4
  3 -> vpm_data_copy
[...]
  3  <- nfs4_write
  3  <- fop_write
  3  -> fop_rwunlock
  3    -> nfs4_rwunlock 
  3      -> nfs_rw_exit
  3        -> cv_broadcast
  3        <- cv_broadcast
  3      <- nfs_rw_exit
  3    <- nfs4_rwunlock 
  3  <- fop_rwunlock
  3  -> releasef
  3    -> cv_broadcast
  3    <- cv_broadcast
  3  <- releasef
  3  <- write
  3  <= write

macosx# ./ktrace.d read_nocancel
dtrace: script './ktrace.d' matched 18393 probes

CPU FUNCTION
  0  -> read_nocancel
  0    -> proc_fdlock_spin
  0    <- proc_fdlock_spin
  0    -> lck_mtx_lock_spin
  0    <- lck_mtx_lock_spin
  0    -> fp_lookup
  0    <- fp_lookup
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And we can use it on FreeBSD:

For performance-related work with DTrace, this provides a clear view into what
specific functions in the kernel may be candidates for timing. Try looking for
higher-level functions that are suitable for tracing, rather than lower-level func-
tions that may be more frequent and expensive to trace.

While flowindent is a convenient way to trace function flow, it isn’t reliable:
The output can become shuffled on multi-CPU systems, making function flow diffi-
cult to follow. One way to improve this is to include a time stamp in the output and
to postsort based on that.

  0    -> proc_fdunlock 
  0    <- proc_fdunlock 
  0    -> lck_mtx_unlock_darwin10
  0    <- lck_mtx_unlock_darwin10
  0    -> vfs_context_current
  0    <- vfs_context_current
  0    -> vfs_context_proc
  0      -> get_bsdthreadtask_info
  0      <- get_bsdthreadtask_info
[...]
  0      -> proc_fdunlock
  0      <- proc_fdunlock
  0      -> lck_mtx_unlock_darwin10
  0      <- lck_mtx_unlock_darwin10
  0    <- read_nocancel 
  0  <= read_nocancel

freebsd# ./ktrace.d read
dtrace: script './ktrace.d' matched 37134 probes
CPU FUNCTION
  0  -> read
  0    -> kern_readv
  0      -> fget_read 
  0        -> fget_unlocked
  0        <- fget_unlocked
  0      <- fget_read 
  0      -> dofileread
  0        -> devfs_read_f
[...]
  0          <- random_read
  0  -> vfs_timestamp
  0  <- vfs_timestamp
  0  -> dev_relthread
  0            -> dev_lock 
  0            <- dev_lock 
  0            -> dev_unlock
  0            <- dev_unlock
  0  <- dev_relthread
  0        <- devfs_read_f
  0      <- dofileread
  0    <- kern_readv
  0  <- read
  0  <= read 
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Extending the previous ktrace.d example from a Solaris system. If we want to
take a closer look at writes, we can start by determining which file system type is
the most frequent write target:

Most of the writes are to an NFSv4 mounted file system. We can modify
ktrace.d to trace only the kernel flow for writes to NFS:

Note the kwtrace.d script has the write system call specified in the probe func-
tion field and includes a predicate so we execute the action in the clause only if the
target file system matches what is specified on the command line:

solaris# dtrace -n 'syscall::write:entry { @[fds[arg0].fi_fs] = count(); }'
dtrace: description 'syscall::write:entry ' matched 1 probe
^C

  tmpfs                     28
  specfs                     52
  lofs                     201
  fifofs                    278
  zfs                     359
  nfs4                     3178

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option flowindent
4
5  syscall::write:entry
6  /fds[arg0].fi_fs == $$1/
7  {
8          self->flag = 1;
9  }
10 fbt:::
11 /self->flag/
12 {
13 }
14 syscall::write:return
15 /self->flag/
16 {
17   self->flag = 0;
18         exit(0);
19 }

Script kwtrace.d

solaris# ./kwtrace.d nfs4
dtrace: script './kwtrace.d' matched 68135 probes
CPU FUNCTION
  5  -> write
  5    -> getf
  5      -> set_active_fd
  5      <- set_active_fd
  5    <- getf
  5    -> fop_rwlock
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Having passed the string nfs4 on the command line, kwtrace.d provides the
kernel code path for the NFSv4 write. If we want to measure the time in a specific
kernel function, we can now create a script based on this output. We’ll take a look
at the total time for a write system call to NFS and break out the kernel internal
data copy component of the load by measuring the time spent in vpm_data_
copy(), which we see in the kwtrace.d output. We can create a DTrace script
that we can reuse specifically for chasing NFSv4 writes, measuring the kernel
function specified on the command line.

  5      -> nfs4_rwlock
  5        -> nfs_rw_enter_sig
  5        <- nfs_rw_enter_sig
  5      <- nfs4_rwlock
  5    <- fop_rwlock
  5    -> fop_write
  5      -> nfs4_write
  5        -> nfs_rw_enter_sig
  5        <- nfs_rw_enter_sig
  5        -> uio_prefaultpages
  5        <- uio_prefaultpages
  5        -> writerp4
  5   -> vpm_data_copy <--- kernel data copy entry point
  5     -> vpm_map_pages
[...]
  5              <- free_vpmap
  5            <- vpm_unmap_pages
  5   <- vpm_data_copy <--- kernel data copy return
  5        <- writerp4
  5        -> vpm_sync_pages
  5        <- vpm_sync_pages 
[...]
  5    -> releasef
  5      -> cv_broadcast
  5      <- cv_broadcast
  5    <- releasef
  5  <- write
  5  <- write

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  syscall::write:entry
6  /fds[arg0].fi_fs == "nfs4"/
7  {
8   self->st = timestamp;
9  }
10 fbt::$1:entry
11 /self->st/
12 {
13 self->kst[probefunc] = timestamp;
14 }
15 fbt::$1:return
16 /self->kst[probefunc]/
17 {
18         @ktime[probefunc] = sum(timestamp - self->kst[probefunc]);

continues
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The writek.d script takes the name of the desired kernel function as a com-
mand-line argument, used in the probe function field of the fbt provider probes. A
time stamp is captured both at the entry point of the write system call and the
entry point of the specified kernel function and again at the return points to deter-
mine total time spent for the write and the kernel function, which will of course be
a subset of the total time:

The resulting output shows the write system call took about 200 microseconds,
of which 20 microseconds was spent in vpm_data_copy(). Note again that, based
on the kernel code flow observed earlier, we know that vpm_data_copy() calls
other kernel functions. The measured time includes the called functions, often
referred to as inclusive time in software profiling tools.

Kernel Memory Usage

In Chapter 3, System View, we briefly discussed tracking kernel memory alloca-
tion and consumption with DTrace, showing examples from memory allocators for
the different operating systems. In this section, we will continue exploring kernel
memory usage with DTrace.

An operating system kernel may support a variety of different kernel memory
allocators, including page, zone, and slab. See the kernel texts listed at the start of
this chapter for the complete reference of allocators available and their function.
To get a sense of those currently in use, you can start by using the existing system
tools to show kernel memory usage:

19  self->kst[probefunc] = 0;
20 }
21 syscall::write:return
22 /self->st/
23 {
24         @write_syscall_time = sum(timestamp - self->st);
25         self->st = 0;
26         exit(0);
27 }
28 END
29 {
30         printa("Write syscall: %@d (nanoseconds)\n", @write_syscall_time);
31         printa("Kernel function %s() time: %@d (nanoseconds)\n", @ktime);
32 }

Script writek.d

solaris# ./writek.d vpm_data_copy
Write syscall: 202027 (nanoseconds)
Kernel function vpm_data_copy() time: 20095 (nanoseconds)
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Solaris: echo ::kmastat | mdb -k

Mac OS X: zprint

FreeBSD: vmstat -m, vmstat -z

Each of these will list kernel memory zones with allocation sizes, showing where
the most memory has been allocated.

DTrace can be used to watch allocations in flight by tracing the kernel func-
tions performing them. This can also show which are the popular memory alloca-
tors, because each has their own interface functions. At a guess, these functions
probably contain the word alloc:

This one-liner frequency counted kernel alloc functions on Solaris and found
that the most frequent while tracing was kmem_cache_alloc(), called 275,312
times. This function is for the slab allocator.

Solaris, Mac OS X, and FreeBSD all have implementations of the slab allocator2

for the allocation and management of reusable kernel objects, and they include a
similar set of kernel functions prefixed with kmem_, such as kmem_alloc(), and
so on. When using DTrace to instrument slab allocator allocation functions, it is
important to note that they do not necessarily result in the allocation of physical
memory. The design is based on object reuse, so a kmem_alloc() call may return
the address of a previously freed kernel object that is already backed with physi-
cal memory. That said, it is still useful to understand which kernel subsystems are

solaris# dtrace -n 'fbt::*alloc*:entry { @[probefunc] = count(); }'
dtrace: description 'fbt::*alloc*:entry ' matched 703 probes
^C

  callbparams_alloc                    1
  log_alloc                       1
  mi_copyout_alloc                     1
  mi_tpi_trailer_alloc                     1
  pt_ttys_alloc                     1
[...]
  kmem_slab_alloc                    8137
  kmem_slab_alloc_impl                  8137
  kmem_depot_alloc                  21437
  nvp_buf_alloc                   22259
  hment_alloc                  22450
  nv_mem_zalloc                   28268
  nv_alloc_sys                 31074
  zfs_acl_alloc                   31908
  zfs_acl_node_alloc                  31908
  kmem_alloc                  96147
  kmem_zalloc                 112147
  kmem_cache_alloc                  275312

2. This comes from The Slab Allocator: An Object-Caching Kernel Memory Allocator by Jeff Bonwick.
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calling into the kernel allocation routines, as an indicator of which kernel caches
are potentially growing.

For Solaris systems, we can instrument kmem_cache_alloc() and kmem_
cache_free() to observe which object caches are most active.

The kmem_track.d script simply counts entries into the allocate and free routine,
aggregating on the name of the object cache in the kernel and generating output
every second:

The output shows a very close balance in terms of allocations and frees for most
of the object caches. For the kmem_alloc_256 cache, we see significantly more
allocations than frees, so we can take a closer look by using a predicate and instru-
menting just the allocation function.

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  fbt::kmem_cache_alloc:entry
6  {
7          @alloc[args[0]->cache_name] = count();
8  }
9  fbt::kmem_cache_free:entry
10 {
11 @free[args[0]->cache_name] = count();
12 }
13 tick-1sec
14 {
15 printf("%-32s %-8s %-8s\n", "CACHE NAME", "ALLOCS", "FREES");
16         printa("%-32s %-@8d %-@8d\n", @alloc, @free);
17  trunc(@alloc); trunc(@free);
18 }

Script kmem_track.d

solaris# ./kmem_track.d
^C
CACHE NAME           ALLOCS   FREES
[...]
streams_dblk_144           623      623
kmem_alloc_256            1914     12
kmem_alloc_128            1917     1910
streams_mblk              1946     1946
kmem_alloc_64        1984     1975
streams_dblk_esb       2037     2037
kmem_alloc_8              2733     2730
zio_cache         2890     2890
streams_dblk_208       2977     2936
kmem_alloc_80        3807     3807
kmem_alloc_32        4836     4820
kmem_alloc_40        5752     5745
streams_dblk_80            5931     5864
kmem_alloc_16        10540    10537
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The output shows us that the most frequent kernel code path leading to cache
allocations from the kmem_alloc_256 cache are through the ZFS code path, with
245,284 occurrences of that stack frame during the sampling period vs. the next
most frequent stack frame, which occurred only 1,663 times during the data collec-
tion (and was also the ZFS subsystem).

Another approach to examining Solaris kernel memory allocator activity is to
instrument the kmem_alloc() function, tracking the size of the request and the
kernel stack leading up to the call:

solaris# dtrace -n 'fbt::kmem_cache_alloc:entry /args[0]->cache_name == 
"kmem_alloc_256"/ { @[stack()] = count(); }'
dtrace: description 'fbt::kmem_cache_alloc:entry ' matched 1 probe
^C
[...]

    genunix`kmem_alloc+0x2c
   zfs`vdev_disk_io_start+0x25c
    zfs`zio_execute+0x74
   zfs`vdev_queue_io_done+0x84
   zfs`vdev_disk_io_done+0x4
    zfs`zio_execute+0x74
   genunix`taskq_thread+0x1a4
    unix`thread_start+0x4

             1663

    genunix`kmem_alloc+0x2c
    zfs`zil_itx_create+0x18
    zfs`zfs_log_write+0x100
    zfs`zfs_write+0x534
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

           245284

solaris# dtrace -n 'fbt::kmem_alloc:entry { @[arg0, stack()] = count(); }'
dtrace: description 'fbt::kmem_alloc:entry ' matched 1 probe
^C
[...]
               64 <--------------------------- size (arg0)

    zfs`zfs_range_lock+0xc
    zfs`zfs_write+0x160
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

            44668
               32 <--------------------------- size (arg0)

  zfs`dsl_dir_tempreserve_space+0x38
   zfs`dmu_tx_try_assign+0x228
    zfs`dmu_tx_assign+0xc
    zfs`zfs_write+0x314
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

            44696
               32 <--------------------------- size (arg0)

   zfs`zio_push_transform+0x8
    zfs`zio_create+0x110

continues
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The output here shows again a kernel code path through ZFS, with the size of
the kmem_alloc() request at the top of each stack frame.

The underlying mechanism for allocating physical memory in Solaris requires
calling into the segkmem routines. We can instrument the memory allocator code
in segkmem to observe physical memory allocations into the kernel address space.

    zfs`zio_null+0x4c
  zfs`dmu_buf_hold_array_by_dnode+0xdc

   zfs`dmu_buf_hold_array+0x60
    zfs`dmu_write_uio+0x48
    zfs`zfs_write+0x40c
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

            44696
              232 <--------------------------- size (arg0)

    zfs`zil_itx_create+0x18
    zfs`zfs_log_write+0x100
    zfs`zfs_write+0x534
    genunix`fop_write+0x20
    genunix`write+0x268
    unix`syscall_trap+0xac

            44696

solaris# dtrace -n 'fbt::segkmem_xalloc:entry { @segkmem[args[0]->vm_name,
arg2, stack()] = count(); }'
dtrace: description 'fbt::segkmem_xalloc:entry ' matched 1 probe
^C
[...]
  heap                    12288

   unix`segkmem_alloc_io_4G+0x26
   genunix`vmem_xalloc+0x315
    genunix`vmem_alloc+0x155
    unix`kalloca+0x160
   unix`i_ddi_mem_alloc+0xd6
  rootnex`rootnex_setup_copybuf+0xe4
  rootnex`rootnex_bind_slowpath+0x2dd
  rootnex`rootnex_coredma_bindhdl+0x16c

   rootnex`rootnex_dma_bindhdl+0x1a
  genunix`ddi_dma_buf_bind_handle+0xb0

   sata`sata_dma_buf_setup+0x4b9
   sata`sata_scsi_init_pkt+0x1f5
    scsi`scsi_init_pkt+0x44
    sd`sd_setup_rw_pkt+0xe5
   sd`sd_initpkt_for_buf+0xa3
    sd`sd_start_cmds+0xa5
   sd`sd_return_command+0xd7

     sd`sdintr+0x187
  sata`sata_txlt_rw_completion+0x145

   nv_sata`nv_complete_io+0x95
               90
  heap <----- vmem name                     8192 <---- size

   unix`segkmem_alloc_io_4G+0x26
   genunix`vmem_xalloc+0x315
    genunix`vmem_alloc+0x155
    unix`kalloca+0x160
   unix`i_ddi_mem_alloc+0xd6
  rootnex`rootnex_setup_copybuf+0xe4
  rootnex`rootnex_bind_slowpath+0x2dd
  rootnex`rootnex_coredma_bindhdl+0x16c
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Here we see memory allocation for the kernel through the SCSI Disk (sd driver)
into the kernel’s vmem heap segment (memory for kernel object caches are allo-
cated out of the kernel heap3).

Using the same basic methodology used in the kmem_track.d script, we can
track allocations and frees in the segkmem code:

As was the case with the kmem layer, we can see a pretty even number of alloca-
tions and frees. The key point here is that, when tracking kernel memory, we need
to examine both to determine actual physical memory growth.

   rootnex`rootnex_dma_bindhdl+0x1a
  genunix`ddi_dma_buf_bind_handle+0xb0

   sata`sata_dma_buf_setup+0x4b9
   sata`sata_scsi_init_pkt+0x1f5
    scsi`scsi_init_pkt+0x44
    sd`sd_setup_rw_pkt+0xe5
   sd`sd_initpkt_for_buf+0xa3
    sd`sd_start_cmds+0xa5
   sd`sd_return_command+0xd7

     sd`sdintr+0x187
  sata`sata_txlt_rw_completion+0x145

   nv_sata`nv_complete_io+0x95
              142

3. This comes from Magazines and Vmem: Extending the Slab Allocator to Many CPUs and
Arbitrary Resources by Jeff Bonwick and Jonathan Adams.

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
6  fbt::segkmem_xalloc:entry
7  {
8          @segkmem_alloc[args[0]->vm_name, arg2] = count();
9  }
10 fbt::segkmem_free_vn:entry
11 {
12          @segkmem_free[args[0]->vm_name, arg2] = count();
13 }
14 END
15 {
16          printf("%-16s %-8s %-8s %-8s\n", "VMEM NAME", "SIZE", "ALLOCS", "FREES");
17          printa("%-16s %-8d %-@8d %-@8d\n", @segkmem_alloc, @segkmem_free);
18 }

Script segkmem.d

solaris# ./segkmem.d
^C
VMEM NAME        SIZE     ALLOCS   FREES
heap             73728   2        0
heap    1933312  6     4
heap             278528   24       24
heap             16384    49       49
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On Mac OS X, kernel_memory_allocate() is a master function for kernel
memory allocations (but not the only one). The following DTrace command line
shows the source of kernel memory requests by instrumenting the entry point of
this function and aggregating on the process name, the size of the allocation
(arg2), and the kernel stack:

macosx# dtrace -n 'fbt::kernel_memory_allocate:entry { @[execname, arg2, stack()] =
 count(); }'
dtrace: description 'fbt::kernel_memory_allocate:entry ' matched 1 probe
^C
[...]
  mds                    65541

   mach_kernel`kmem_alloc+0x38
   mach_kernel`kalloc_canblock+0x76
   mach_kernel`OSMalloc+0x60

              0x5a5bce0a
              0x5a5be95b
              0x5a5befcc

  mach_kernel`decmpfs_hides_rsrc+0x5f3
 mach_kernel`decmpfs_pagein_compressed+0x1b6

   mach_kernel`hfs_vnop_pagein+0x64
   mach_kernel`VNOP_PAGEIN+0x9e
   mach_kernel`vnode_pagein+0x30b
  mach_kernel`vnode_pager_cluster_read+0x5c
  mach_kernel`vnode_pager_data_request+0x8a

   mach_kernel`vm_fault_page+0xcaa
   mach_kernel`vm_fault+0xd2d
   mach_kernel`user_trap+0x29f
   mach_kernel`lo_alltraps+0x12a

              392
  WindowServer                  8736

   mach_kernel`kmem_alloc+0x38
   mach_kernel`kalloc_canblock+0x76
    mach_kernel`kalloc+0x19
   mach_kernel`IOMalloc+0x12

              0x5afd6d2e
              0x5afd9241
              mach_kernel`shim_io_connect_method_structureI_structureO+0x15e

 mach_kernel`IOUserClient::externalMethod+0x3c0
  mach_kernel`is_io_connect_method+0x1d3
  mach_kernel`iokit_server_routine+0x123d
  mach_kernel`ipc_kobject_server+0xf4

   mach_kernel`ipc_kmsg_send+0x6f
  mach_kernel`mach_msg_overwrite_trap+0x112
  mach_kernel`thread_setuserstack+0x195

   mach_kernel`lo64_mach_scall+0x4d
              829
  WindowServer                  8736

   mach_kernel`kmem_alloc+0x38
   mach_kernel`kalloc_canblock+0x76
    mach_kernel`kalloc+0x19
   mach_kernel`IOMalloc+0x12

              0x5afd694f
              0x5afd92f5
              mach_kernel`shim_io_connect_method_structureI_structureO+0x15e

 mach_kernel`IOUserClient::externalMethod+0x3c0
  mach_kernel`is_io_connect_method+0x1d3
  mach_kernel`iokit_server_routine+0x123d
  mach_kernel`ipc_kobject_server+0xf4

   mach_kernel`ipc_kmsg_send+0x6f
  mach_kernel`mach_msg_overwrite_trap+0x112
  mach_kernel`thread_setuserstack+0x195
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Looking at the last item in the output, we see the most frequent kernel stack
frame occurred 829 times during the tracing period, the process on-cpu was the
Mac OS X WindowServer, and the size passed to the kernel_memory_allocate()
function was 8736. In this sample, the last two entries are actually very similar:
the count value, size value, and process name. The stack frames are also very simi-
lar, both showing the path to kernel memory allocation originating with a system
call (mach_kernel`lo64_mach_scall+0x4d) and moving up through the Mac
OS X Interprocess Communication (IPC) and IO Kit path. 

Alternatively, using the quantize aggregating function and execname, a more
summarized view of kernel memory allocations is generated:

   mach_kernel`lo64_mach_scall+0x4d
              829

macosx# dtrace -n 'fbt::kernel_memory_allocate:entry { @[execname] = 
quantize(arg2); }'
dtrace: description 'fbt::kernel_memory_allocate:entry ' matched 1 probe
^C
  Kindle for Mac
           value  ------------- Distribution ------------- count
            2048 |              0
            4096 |@@@@@@@@              6
            8192 |@@@@@@@@@@@@@@@@@@@@@             17
           16384 |             0
           32768 |@@@             2
           65536 |@@@             2
          131072 |@@@@@              4
          262144 |                0
          524288 |                0
         1048576 |@               1
         2097152 |               0

  AppleSpell
           value  ------------- Distribution ------------- count
            4096 |              0
            8192 |@@@@@@@@@@@@@@@@@@@@         40
           16384 |@             1
           32768 |@             1
           65536 |@@@@@@@@@@@@@@@@@@@                   37
          131072 |                0

  NoteBook
           value  ------------- Distribution ------------- count
            2048 |              0
            4096 |@@@               21
            8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@             188
           16384 |             3
           32768 |@@@@            26
           65536 |@@@             20
          131072 |@               8
          262144 |                0

  WindowServer
           value  ------------- Distribution ------------- count
            2048 |              0
            4096 |              5
            8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1120
           16384 |             0
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The output shows the process name and a graph of the size of the requested
allocations. We can see the WindowServer generated mostly 8KB to 16KB size
requests, and an application called NoteBook also fell in the 8KB to 16KB range,
with a few allocations in the 128KB to 256KB range.

Instrumenting the Mac OS X kmem alloc and free calls, along with the sizes,
provides another point of observability into kernel memory activity:

In FreeBSD, a similar set of scripts tracking kmem_alloc() and kmem_free(),
aggregating on kernel stack frames and execname (process names), can be used to
understand kernel memory usage.

There are more kernel allocators than shown here, all of which can be explored
with DTrace. For example, try tracing the kalloc() and zalloc() functions on

1  #!/usr/sbin/dtrace -s
2
3  #pragma D option quiet
4
5  fbt::kmem_alloc:entry
6  {
7     @alloc[arg2] = count();
8  }
9  fbt::kmem_free:entry
10 {
11    @free[arg2] = count();
12 }
13 END
14 {
15    printf("%-16s %-8s %-8s\n", "SIZE", "ALLOCS", "FREES");
16    printa("%-16d %-@8d %-@8d\n", @alloc, @free);
17 }

Script kmem_osx.d

macosx# ./kmem_osx.d
^C
SIZE    ALLOCS   FREES
18672            0        1
8330             0        2
9935             0        2
110313           0        2
8334             1        0
9939             1        0
110317           1        0
60 1        1
80 1        1
11680            1        1
15176            1        1
30352            1        1
16384            1        2
8736             2        2
11660            2        2
15244            2        2
1048576          2       2
11648            9        9
4096    92       198
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Mac OS X and the malloc() function on FreeBSD. Sizes and stack traces can be
explored in similar ways as shown here for the slab allocator.

Anonymous Tracing

This feature allows DTrace to be enabled when there is no user-land consumer
(such as dtrace(1M)) running. This is particularly powerful for kernel analysis,
because it can be used to investigate device driver issues during boot time, before
processes are running.

To introduce this with a well-known topic rather than what would likely be an
unfamiliar device driver, a nonkernel example is demonstrated next: analysis of
boot processes.

The -A option to dtrace(1M) saves the D program specified (either with -n or
-s for a script) into the /kernel/drv/dtrace.conf file to be read at boot time
(which happens very early, before most other drivers):

This D program traces process execution, printing a time stamp and the parent
process ID, process ID, and process argument list. It won’t be enabled until the
server is rebooted. After the reboot, the DTrace data can be collected using -a:

solaris# dtrace -A -qn 'proc:::exec-success { printf("%-10d %-6d %-6d %s\n", 
timestamp, ppid, pid, curpsinfo->pr_psargs); }'
dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf
dtrace: added forceload directives to /etc/system
dtrace: run update_drv(1M) or reboot to enable changes

solaris# dtrace -a > boot.out
solaris# sort -n boot.out
215913067635 0 1      /sbin/init
216070909233 1      6  INITSH -c exec /sbin/autopush -f /etc/iu.ap
216271075785 1      6     /sbin/autopush -f /etc/iu.ap
216672994689 1      7  INITSH -c exec /sbin/soconfig -f /etc/sock2path
216687058247 1      7    /sbin/soconfig -f /etc/sock2path
[...truncated...]
302497182805 1742   1776   /lib/svc/bin/lsvcrun /etc/rc2.d/S89PRESERVE start
302503684531 1776   1777 /bin/sh /etc/rc2.d/S89PRESERVE start
302525623084 1742   1778   /lib/svc/bin/lsvcrun /etc/rc2.d/S98deallocate start
302531891396 1778   1779  /bin/sh /etc/rc2.d/S98deallocate start
302552852919 1779   1780  /usr/sbin/auditconfig -getcond
302558707682 1779   1781   /usr/sbin/deallocate -Is
302799248939 1742   1783   /usr/sbin/devfsadm -S
303534313252 76  1784   /sbin/sh -c exec /sbin/rc3
303548242737 76     1784   /sbin/sh /sbin/rc3
303557236068 1784   1785   /usr/bin/who -r
303561859363 1784   1787   /usr/bin/uname -a
303565852737 1784   1788   /sbin/netstrategy
303682501117 76     1786   /sbin/sh -c exec /lib/svc/method/svc-boot-config
303690686594 76  1786   /sbin/sh /lib/svc/method/svc-boot-config
303704109035 1786   1791   /usr/sbin/uadmin 23 1

continues
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The output of -a will be shuffled on multi-CPU servers and so was sorted on the
included time stamp. The first process to execute during boot was /sbin/init (as
would be expected).

A section of output was truncated so that later boot execution is also shown,
starting with the (legacy) /etc/rc2.d scripts (extra lines were also truncated,
caused by "\n" characters in curpsinfo->pr_psargs). There is enough data in
this output to investigate boot latency by process and to follow the parent process
IDs to the origin, such as a start script. The script could be enhanced to show both
the process start and end times and other sources of latency including disk I/O.
(Such a project was undertaken during development of Solaris 10; DTrace was
used to track down boot latency issues that were then resolved.4)

For anonymous tracing to work in debugging kernel device driver initialization,
the dtrace module needs to be loaded before the device driver. It is in fact loaded
very early in the boot process; the modinfo(1M) command shows the load order:

The dtrace module is near the top, with ID 5.

One-Liners

The following one-liners can be used to profiling the kernel and tracking system
events of interest.

303816877333 76  1790   /sbin/sh -c exec /lib/svc/method/svc-intrd
303824547597 76     1790   /sbin/sh /lib/svc/method/svc-intrd
[...truncated...]

4. See http://blogs.sun.com/dp/entry/more_on_bootchart_for_solaris by Dan Price and http://
blogs.sun.com/eschrock/entry/boot_chart_results by Eric Schrock.

solaris# modinfo
 Id         Loadaddr   Size Info Rev Module Name
  0 fffffffffb800000 1d80c2   -   0  unix ()
  1 fffffffffb957360 2ef9d0  -   0  genunix ()
  3 fffffffffbbe0000 5e20   1   1 specfs (filesystem for specfs)
  4 fffffffffbbe5d80  46a8   3   1  fifofs (filesystem for fifo)
  5 fffffffff7c84000 1cd08  20   1  dtrace (Dynamic Tracing)
  6 fffffffffbbea370  5c80  16   1 devfs (devices filesystem)
  7 fffffffff77fb000  118c0 17   1  dev (/dev filesystem)
  8 fffffffffbbefda8 6570   -   1 dls (Data-Link Services)
  9 fffffffff780d000 322c8   -   1  mac (MAC Services)
 10 fffffffff783f000  21a98 5   1  procfs (filesystem for proc)
 12 fffffffffbbf6020 4148   1   1  TS (time sharing sched class)
 13 fffffffff780c2c0    9e8   -  1  TS_DPTBL (Time sharing dispatch table)
 14 fffffffff7861000   a060   -   1  pci_autoconfig (PCI BIOS interface)
 15 fffffffff786b000 61e10   -   1 acpica (ACPI interpreter)
 16 fffffffff78cc000  18940   -   1  pcie (PCI Express Framework Module)
[...]

http://blogs.sun.com/dp/entry/more_on_bootchart_for_solaris
http://blogs.sun.com/eschrock/entry/boot_chart_results
http://blogs.sun.com/eschrock/entry/boot_chart_results
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syscall Provider

Count system calls by type:

profile Provider

Kernel stack trace profile at 1001 Hertz:

Kernel stack trace profile at 1001 Hertz, top five stack frame functions per
stack:

Kernel stack trace profile at 1001 Hertz, top 20 stacks:

Kernel function name profile at 1001 Hertz:

Kernel module name profile at 1001 Hertz:

Kernel thread name profile at 1001 Hertz (FreeBSD):

dtrace -n 'syscall:::entry { @[probefunc] = count(); }'

dtrace -n 'profile-1001 { @[stack()] = count(); }'

dtrace -n 'profile-1001 { @[stack(5)] = count(); }'

dtrace -n 'profile-1001 { @[stack()] = count(); } END { trunc(@, 20); }'

dtrace -n 'profile-1001 { @[func(arg0)] = count(); }'

dtrace -n 'profile-1001 { @[mod(arg0)] = count(); }'

dtrace -n 'profile-1001 { @[stringof(curthread->td_name)] = count(); }'
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sched Provider

Thread off-cpu stack trace count:

Stack size for processes (Solaris):

vminfo provider

Pages paged in by process name:

 Minor faults by process name:

sysinfo Provider

CPU cross calls by process name:

CPU cross calls by kernel stack trace:

 lockstat Provider

Adaptive lock block time totals (ns) by process name:

dtrace -n 'sched:::off-cpu { @[stack()] = count(); }'

dtrace -n 'sched:::on-cpu { @[execname] = max(curthread->t_procp->p_stksize); }'

dtrace -n 'vminfo:::pgpgin { @pg[execname] = sum(arg0); }'

dtrace -n 'vminfo:::as_fault { @mem[execname] = sum(arg0); }'

dtrace -n 'sysinfo:::xcalls { @[execname] = count(); }'

dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); }'

dtrace -n 'lockstat:::adaptive-block { @time[execname] = sum(arg1); }'
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 Adaptive lock block time distribution (ns) by process name:

Adaptive lock block time totals (ns) by kernel stack trace:

Adaptive lock block time totals (ns) by lock name (if symbol data is present):

Adaptive lock block time totals (ns) by calling function:

sdt Provider

Count interrupts by CPU:

fbt Provider

The fbt provider instruments a particular operating system and version and hence
is considered unstable. This means that the following one-liners may require modi-
fications to match the software version you are running. This is only a sample of
the thousands of possible fbt provider–based one-liners for examining kernel operation.

Kernel function call counts:

Kernel function call counts by module:

dtrace -n 'lockstat:::adaptive-block { @time[execname] = quantize(arg1); }'

dtrace -qn 'lockstat:::adaptive-block { @[stack(5), "^^^ total ns:"] = sum(arg1); }'

dtrace -qn 'lockstat:::adaptive-block { @[arg0] = sum(arg1); } END { printa("%40a 
%@16d ns\n", @); }'

dtrace -qn 'lockstat:::adaptive-block { @[caller] = sum(arg1); } END { printa("%40a 
%@16d ns\n", @); }'

dtrace -n 'sdt:::interrupt-start { @num[cpu] = count(); }'

dtrace -n 'fbt:::entry { @[probefunc] = count(); }'

dtrace -n 'fbt:::entry { @[probemod] = count(); }'
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Kernel function call counts for module zfs by module:

Kernel function call counts for functions beginning with hfs_ by module:

Kernel stack backtrace counts for calls to function arc_read() (for example):

Count kernel alloc functions to investigate kernel memory allocation:

Kernel kmem cache allocations by cache name (Solaris):

Kernel kernel_memory_allocate() calls by stack trace (Mac OS X):

Kernel malloc() calls by malloc type and size distribution (FreeBSD):

Show who is calling delay() and for how many clock ticks (snoozers):

dtrace -n 'fbt:zfs::entry { @[probefunc] = count(); }'

dtrace -n 'fbt::hfs_*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::arc_read:entry { @[stack()] = count(); }'

dtrace -n 'fbt::*alloc*:entry { @[probefunc] = count(); }'

dtrace -n 'fbt::kmem_cache_alloc:entry { @[args[0]->cache_name] = count(); }'

dtrace -n 'fbt::kernel_memory_allocate:entry { @[stack()] = count(); }'

dtrace -n 'fbt::malloc:entry { @[stringof(args[1]->ks_shortdesc)] = quantize(arg1); }'

dtrace -n 'fbt::delay:entry { @[stack()] = quantize(arg0); }'
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Show who is calling pause(), why, and for how long in ticks (FreeBSD):

cpc Provider

These cpc provider one-liners are dependent on the availability of both the cpc pro-
vider and the event probes (for Solaris, see cpustat(1M) to see what events are
available on your system). The following overflow counts (200,000; 50,000; and
10,000) have been picked to balance between the rate of CPC events and fired
DTrace probes.

Kernel-mode instructions by thread address:

Kernel-mode instructions by function name:

Kernel-mode instructions by module name:

Kernel-mode CPU cycles by function name:

Kernel-mode level-one cache misses by function name:

Kernel-mode level-one instruction cache misses by function name:

dtrace -n 'fbt::pause:entry { @[stack(), stringof(arg0)] = quantize(arg1); }'

dtrace -n 'cpc:::PAPI_tot_ins-kernel-200000 { @[(uint64_t)curthread] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-kernel-200000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_tot_ins-kernel-200000 { @[mod(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_tot_cyc-kernel-200000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_tcm-kernel-10000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_l1_icm-kernel-10000 { @[func(arg0)] = count(); }'



ptg

924 Chapter 12 � Kernel

Kernel-mode level-one data cache misses by function name:

Kernel-mode level 2 cache misses by function name:

Kernel-mode level 3 cache misses by function name:

Kernel-mode conditional branch misprediction by function name:

Kernel-mode resource stall cycles by function name:

Kernel-mode floating-point operations by function name:

Kernel-mode TLB misses by function name:

Kernel-mode instruction TLB misses by function name:

dtrace -n 'cpc:::PAPI_l1_dcm-kernel-10000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_l2_tcm-kernel-10000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_l3_tcm-kernel-10000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_br_msp-kernel-10000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_res_stl-kernel-50000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_fp_ops-kernel-10000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_tlb_tl-kernel-10000 { @[func(arg0)] = count(); }'

dtrace -n 'cpc:::PAPI_tlb_im-kernel-10000 { @[func(arg0)] = count(); }'
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Kernel-mode data TLB misses by function name:

One-Liner Selected Examples

Here we show examples of some of the one-liners from the previous section.

Count System Calls by Type

Although this is a simple one-liner, tracing system calls should not be overlooked
when approaching the kernel. System calls are a main input to the kernel (the
other being hardware interrupts), and checking what the kernel is being asked to
do provides important context for what the kernel is actually doing. Here just the
syscall types are counted by aggregating on the function name:

During tracing, a find(1) command was searching the file system while print-
ing metadata (find . -ls). The most common syscall type was acl(), because
find retrieved file metadata. From this, we would expect that the most frequently
accessed kernel functions would be from the file system as it retrieved access con-
trol list (ACL) information for files; this may include performing device I/O to read
the information from storage devices.

Kernel Stack Trace Profile at 1001 Hertz

This is one of the most useful DTrace one-liners, providing a quick look at why ker-
nel code is on-CPU. The rate used is not that important; we chose 1001 Hertz to
avoid lockstep sampling with events that might be running every millisecond.

dtrace -n 'cpc:::PAPI_tlb_dm-kernel-10000 { @[func(arg0)] = count(); }'

solaris# dtrace -n 'syscall:::entry { @[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 233 probes
^C

  exece                     1
  fork1                     1
[...output truncated...]
  fchdir                    1367
  getdents64                   1371
  fstat64                    1376
  pathconf                   5359
  lstat64                    5388
  gtime                    5496
  pollsys                    5593
  ioctl                    5636
  acl                    10718
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solaris# dtrace -n 'profile-1001 { @[stack()] = count(); }'
dtrace: description 'profile-1001 ' matched 1 probe
^C
[...output truncated...]

    unix`do_splx+0x80
 unix`xc_common+0x231 <--- CPU cross call

    unix`xc_call+0x46
    unix`hat_tlb_inval+0x283
    unix`x86pte_inval+0xaa
    unix`hat_pte_unmap+0xfd
   unix`hat_unload_callback+0x193
    unix`hat_unload+0x41
   unix`segkmem_free_vn+0x6f
    unix`segkmem_free+0x27
    genunix`vmem_xfree+0x104
    genunix`vmem_free+0x29
    unix`kfreea+0x54
    unix`i_ddi_mem_free+0x5d
  rootnex`rootnex_teardown_copybuf+0x24
  rootnex`rootnex_coredma_unbindhdl+0xbd
  rootnex`rootnex_dma_unbindhdl+0x2e
  genunix`ddi_dma_unbind_handle+0x41
  sata`sata_common_free_dma_rsrcs+0x72

   sata`sata_scsi_destroy_pkt+0x2c
             1053

             1121    <--- User-land (no kernel stack)

              unix`do_copy_fault_nta+0x30 <--- Memory I/O
    genunix`uiomove+0xc6
    zfs`dmu_read_uio+0xa8
    zfs`zfs_read+0x19a
    genunix`fop_read+0xa7
    nfssrv`rfs3_read+0x3a1
   nfssrv`common_dispatch+0x384
    nfssrv`rfs_dispatch+0x2d
    rpcmod`svc_getreq+0x19c
    rpcmod`svc_run+0x16e
    rpcmod`svc_do_run+0x81
    nfs`nfssys+0x765
    unix`sys_syscall32+0xff

             3133

   zfs`fletcher_4_native+0x71
              zfs`zio_checksum_error+0x2d4 <--- Code path (ZFS checksum)

   zfs`zio_checksum_verify+0x3e
    zfs`zio_execute+0x89
   genunix`taskq_thread+0x1b7
    unix`thread_start+0x8

             3425

  unix`mach_cpu_idle+0x6 <--- Idle
    unix`cpu_idle+0xaf
   unix`cpu_idle_adaptive+0x19

     unix`idle+0x114
    unix`thread_start+0x8

            26884
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The output includes the kernel stack backtrace followed by a count for the num-
ber of times it was sampled on-CPU. The stack traces shown earlier have been
identified, with the most common (listed last) being the idle loop. A user-land
application thread was on-CPU for 1121 of the samples, generating no kernel stack
trace (to see its stack trace, aggregate on ustack() instead).

Kernel Module Name Profile at 1001 Hertz

This one-liner samples the module name that is on-CPU (and currently doesn’t
work on Mac OS X, as mentioned earlier):

The 0x0 function is for user-land code. The hottest module was unix, which
provides common functions for other modules. Although unix functions were hot
on-CPU, they may be requested by other modules; using the previous one-liner will
explain:

The tsc_read() function from the unix module was called from a code path
that includes ZFS.

solaris# dtrace -n 'profile-1001 { @[mod(arg0)] = count(); }'
dtrace: description 'profile-1001 ' matched 1 probe
^C

  sd                      1
  mac                      2
  TS                      2
  ip                      4
  c2audit                    10
  genunix                    247
  0x0                     656
  zfs                     848
  unix                    4348

    unix`tsc_read+0x5
    genunix`gethrtime+0xd
    unix`pc_gethrestime+0x49
    genunix`gethrestime+0x19
   zfs`zfs_time_stamper_locked+0x2e
   zfs`zfs_time_stamper+0x40
    zfs`zfs_read+0x20c
    genunix`fop_read+0x6b
    genunix`read+0x2b8
    genunix`read32+0x22
  unix`_sys_sysenter_post_swapgs+0x14b

              526
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Kernel Thread Name Profile at 1001 Hertz (FreeBSD):

The FreeBSD thread structure (/usr/src/sys/sys/proc.h) contains the name
of the thread. Profiling the on-CPU thread name at 1001 Hertz yields the following:

The output includes user-land threads, sh and sshd, as well as kernel threads
including idle: cpu0. Having a human-readable name for a kernel thread is par-
ticularly handy for debugging with DTrace, rather than trying to determine a
thread’s function from what may be a cryptic stack trace alone.

CPU Cross Calls by Kernel Stack Trace

Although CPU cross calls are lightweight events, many thousands per second can
cause performance problems because they frequently interrupt the operation of
other CPUs. When excessive cross calls are identified (for example, the xcal field
from mpstat(1M)), DTrace can be used to identify the reason for the cross calls:

In this example, the cross calls were because of processes exiting and their memory
address spaces being cleaned up by the hardware address translation (HAT) layer.

freebsd# dtrace -n 'profile-1001 { @[stringof(curthread->td_name)] = count(); }'
dtrace: description 'profile-1001 ' matched 1 probe
dtrace: aggregation size lowered to 3m
^C

  sh                      3
  em0 taskq                    9
  swi4: clock                    19
  sshd                     108
  idle: cpu0                   1947

solaris# dtrace -n 'sysinfo:::xcalls { @[stack()] = count(); }'
dtrace: description 'sysinfo:::xcalls ' matched 2 probes
^C

    unix`xc_call+0x46
    unix`hat_tlb_inval+0x283
    unix`x86pte_inval+0xaa
    unix`hat_pte_unmap+0xfd
   unix`hat_unload_callback+0x23e
    unix`hat_unload+0x41
  genunix`segkp_release_internal+0xb5

   genunix`segkp_release+0xbd
   genunix`schedctl_freepage+0x33
  genunix`schedctl_proc_cleanup+0x5c

    genunix`proc_exit+0x1a6
    genunix`exit+0x15
    genunix`rexit+0x1c
    unix`sys_syscall32+0xff

                7
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Kernel Function Call Counts for Functions Beginning with hfs_ by Module

Tracing HFS+ calls on Mac OS X while a file system archive operation is performed:

The most frequently called function while tracing was hfs_file_is_compressed().

Kernel Stack Backtrace Counts for Calls to Function foo()

The previous one-liner identified the function hfs_file_is_compressed() as
frequently called; by tracing it and frequency counting the kernel stack trace, we
can determine the reason it’s being called:

The function was called during vnode_getattr(), presumably to fetch file
attributes.

macosx# dtrace -n 'fbt::hfs_*:entry { @[probefunc] = count(); }'
dtrace: description 'fbt::hfs_*:entry ' matched 47 probes
^C

  hfs_vnop_write                     1
  hfs_generate_volume_notifications                 2
  hfs_getinoquota                     2
  hfs_vnop_ioctl                     2
  hfs_chkdq                       3
  hfs_vnop_pagein                     3
  hfs_vnop_bwrite                     6
  hfs_vnop_blktooff                    82
  hfs_swap_BTNode                     99
  hfs_hides_rsrc                     418
  hfs_vnop_blockmap                   653
  hfs_vnop_strategy                   659
  hfs_uncompressed_size_of_compressed_file              936
  hfs_vnop_read                    1645
  hfs_hides_xattr                    3691
  hfs_file_is_compressed                   7667

macosx# dtrace -n 'fbt::hfs_file_is_compressed:entry { @[stack()] = count(); }'
dtrace: description 'fbt::hfs_file_is_compressed:entry ' matched 1 probe
^C
[...output truncated...]

mach_kernel`hfs_uncompressed_size_of_compressed_file+0x197
   mach_kernel`VNOP_GETATTR+0x65
   mach_kernel`vnode_getattr+0x84
   mach_kernel`vn_stat_noauth+0xa1
   mach_kernel`pathconf+0x1a5
   mach_kernel`pathconf+0x556
    mach_kernel`lstat64+0x48
   mach_kernel`unix_syscall64+0x269
   mach_kernel`lo64_unix_scall+0x4d

             2100
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Kernel-Mode Instructions by Function Name

This one-liner uses the cpc provider to profile instructions by function, counting on
every 200,000th instruction:

While profiling, the zfs function vdev_raidz_generate_parity_pq() has
executed the most instructions, based on the cpc profile used. The system has a
ZFS file system with a write workload, and the one-liner has identified that the
bulk of kernel instructions are spent calculating RAID-Z parity.

Kernel-Mode Instructions by Module Name

This one-liner counts instructions by kernel module (which currently works best
on Solaris—see the earlier comments about module name availability in the “fbt
Provider” section). The count is incremented on every 200,000th instruction:

solaris# dtrace -n 'cpc:::PAPI_tot_ins-kernel-200000 { @[func(arg0)] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-kernel-200000 ' matched 1 probe
^C

  mac`mac_client_vid                      1
  mac`mac_stat_get                     1
  pcplusmp`apic_set_idlecpu                    1
[...]
  genunix`avl_find                    342
  unix`x86pte_get                    350
  unix`x86pte_mapin                   377
  unix`htable_lookup                     386
  unix`bzero                   504
  genunix`fsflush_do_pages                   601
  unix`tsc_read                     1226
  unix`default_lock_delay                    2416
  unix`mutex_enter                   2843
  unix`do_copy_fault_nta                   5039
  unix`mutex_delay_default                 11182
  zfs`fletcher_4_native                  16918
  zfs`vdev_raidz_generate_parity_pq               29703

solaris# dtrace -n 'cpc:::PAPI_tot_ins-kernel-200000 { @[mod(arg0)] = count(); }'
dtrace: description 'cpc:::PAPI_tot_ins-kernel-200000 ' matched 1 probe
^C

  mm                      1
  TS                      1
  pcplusmp                    2
  specfs                     2
  SDC                      5
  0x0                      9
  kcf                     16
  sha1                     41
  scsi                     69
  sha2                     69
  scsi_vhci                      70
  sd                     181
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According to this cpc profile, the zfs module was executing the most instructions.

Kernel-Mode Level-One Data Cache Misses by Function Name

This one-liner counts the current kernel function on every 10,000 level-one data
cache miss for each CPU:

The function causing the most data cache misses was do_copy_fault_nta(),
which is the kernel function to copy data (nontemporal access).

Kernel-Mode Level-One Instruction Cache Misses by Function Name

This one-liner counts the current kernel function on every 10,000 level-one instruc-
tion cache miss for each CPU:

  rootnex                    408
  mpt                     421
  dtrace                    454
  genunix                    2062
  unix                   19688
  zfs                    35620

solaris# dtrace -n 'cpc:::PAPI_l1_dcm-kernel-10000 { @[func(arg0)] = count(); }'
dtrace: description 'cpc:::PAPI_l1_dcm-kernel-10000 ' matched 1 probe
^C

  rootnex`rootnex_teardown_copybuf                  1
  rootnex`immu_map_sgl                     1
[...]
  zfs`fletcher_4_native                    142
  genunix`fsflush_do_pages                   193
  unix`mutex_enter                    489
  unix`bzero                   507
  unix`tsc_read                     552
  unix`0xfffffffffb857cba                    761
  zfs`vdev_raidz_generate_parity_pq                 786
  unix`do_copy_fault_nta                  20248

solaris# dtrace -n 'cpc:::PAPI_l1_icm-kernel-10000 { @[func(arg0)] = count(); }'
dtrace: description 'cpc:::PAPI_l1_icm-kernel-10000 ' matched 1 probe
^C
^C

  pcplusmp`apic_send_ipi                     1
  pcplusmp`apic_redistribute_compute                 1
[...]
  unix`mutex_exit                     28
  scsi_vhci`vhci_bind_transport                  31
  unix`rw_exit                     31
  sd`sd_return_command                   36
  unix`bzero                    39
  unix`tsc_read                     40
  genunix`kmem_cache_alloc                   50
  unix`mutex_enter                    242
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The most instruction cache misses were from the mutex_enter() function. We
found this surprising, thinking that such a frequently called function would
remain in cache. The explanation may be that this function is being flushed from
the cache on thread context switch, which happens frequently because of mutex
blocks, followed by cache misses when the lock is acquired and the thread contin-
ues to execute. (We aren’t sure—we just discovered this.)

Scripts

Table 12-3 summarizes the scripts that follow and the providers they use. The fbt
and sdt scripts instrument a particular operating system kernel version (these
scripts are for Solaris Nevada, circa June 2010). See the “fbt Provider” section ear-
lier in this chapter for an explanation of the fbt provider interface. The last three
scripts are from the DTraceToolkit (see Chapter 13, Tools).

intrstat

intrstat(1M) shows device interrupt statistics, including time spent servicing
interrupts by device. This is a Solaris binary DTrace consumer, shipped under /usr/
sbin/intrstat.

The inclusion of this DTrace-based tool helps complete system observability for
CPU utilization. CPUs can be busy for a number of reasons, and tools such as
prstat(1M) or top(1) only properly identify processes (PIDs) that are consum-
ing CPU (because of hot user-land code and syscalls). intrstat(1M) on Solaris
identifies device drivers that are consuming CPU because of interrupts. (You can

Table 12-3 Kernel Script Summary

Script Description Provider

intrstat Report interrupt statistics (Solaris binary DTrace consumer) sdt

lockstat Report kernel lock and profile statistics (binary DTrace 
consumer)

lockstat

koncpu.d Profile kernel on-CPU stacks profile

koffcpu.d Count kernel off-CPU stacks by time sched

taskq.d Measure task queue wait and execution time (Solaris) sdt

priclass.d Priority distribution by scheduling class profile

cswstat.d Context switch time statistics sched

putnexts.d stream putnext() tracing with stack backtraces fbt
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still observe this activity on Mac OS X via DTrace using the fbt or profile provid-
ers; you just don’t have the neat summaries that intrstat(1M) provides.)

Script

intrstat(1M) is a binary executable that uses DTrace directly via libdtrace (instead
of a script that uses libdtrace indirectly via dtrace(1M) and the D language).

Examples

On a four-CPU system, intrstat(1M) was used to examine network interrupts
during load:

  Output is printed every second. The last output summary shows the e1000g
device (1 Gbit/sec Ethernet interface) interrupts were consuming more than 40
percent of CPU 2. e1000g is mapped to CPU 2 on this system:

solaris# intrstat 1

      device | cpu0 %tim      cpu1 %tim    cpu2 %tim      cpu3 %tim
-------------+------------------------------------------------------------
    e1000g#0 |         0 0.0         0  0.0    130  2.6         0  0.0

      device | cpu0 %tim      cpu1 %tim    cpu2 %tim      cpu3 %tim
-------------+------------------------------------------------------------
    e1000g#0 |         0 0.0         0  0.0    220  5.0         0  0.0

      device | cpu0 %tim      cpu1 %tim    cpu2 %tim      cpu3 %tim
-------------+------------------------------------------------------------
    e1000g#0 |         0 0.0         0  0.0   1154 32.0         0  0.0
       mpt#0 |         0  0.0         0  0.0     95  0.6         0  0.0

      device | cpu0 %tim      cpu1 %tim    cpu2 %tim      cpu3 %tim
-------------+------------------------------------------------------------
    e1000g#0 |         0 0.0         0  0.0   1231 41.3         0  0.0
       mpt#0 |         0  0.0         0  0.0     0  0.0         0  0.0
      ohci#0 |         0  0.0        17  0.0     0  0.0         0  0.0
      ohci#1 |         0  0.0        17  0.1     0  0.0         0  0.0

solaris# mdb -k
Loading modules: [ unix krtld genunix specfs dtrace cpu.AuthenticAMD.15 uppc ... ]
> ::interrupts
IRQ  Vector IPL Bus   Type  CPU Share APIC/INT# ISR(s) 
1    0x41   5   ISA   Fixed 0   1     0x0/0x1   i8042_intr
4    0xb0   12  ISA   Fixed 3   1     0x0/0x4   asyintr
9    0x81   9   PCI   Fixed 1   1     0x0/0x9   acpi_wrapper_isr
12   0x42   5 ISA   Fixed 0   1    0x0/0xc   i8042_intr
19   0x20   1 PCI   Fixed 1   2   0x0/0x13  ohci_intr, ohci_intr
24   0x62   6 PCI   Fixed 2   1    0x1/0x0   e1000g_intr
25   0x63   6 PCI   Fixed 2   1    0x1/0x1   e1000g_intr
26   0x60   6 PCI   Fixed 2   1    0x1/0x2   e1000g_intr
27   0x61   6 PCI   Fixed 2   1    0x1/0x3   e1000g_intr
28   0x40   5   PCI   Fixed 2   1     0x2/0x0   mpt_intr
[...]
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The reason it consumes more than 40 percent can be determined in a number of
ways using DTrace, such as profiling the kernel stack, as shown in the one-liners.

lockstat

lockstat(1M) is a powerful tool on Solaris and FreeBSD to examine kernel lock
events, such as spin, block, and hold time. It can also profile (sample) kernel activ-
ity. lockstat(1M) existed on Solaris before DTrace5 and was used as a static ker-
nel framework to retrieve this data; with Solaris 10, lockstat(1M) became
DTrace-based.

Script

lockstat(1M) is a binary executable that dynamically produces a D script that is
sent to libdtrace (instead of a static D script sent to libdtrace via dtrace(1M)). If
it is of interest, this D script can be examined using the -V option:

Examples

Examples include usage, default output, stacks, and profiling with stack.

Usage

Use the -h option to see usage:

5. This was created by Jeff Bonwick, coinventor of ZFS, inventor of kernel slab allocation, and
so on.

solaris# lockstat -V sleep 5
lockstat: vvvv D program vvvv
lockstat:::adaptive-spin
{
        @avg[0ULL, (uintptr_t)arg0, caller] = avg(arg1);
}

lockstat:::adaptive-block
{
        @avg[1ULL, (uintptr_t)arg0, caller] = avg(arg1);
}
[...output truncated...]

solaris# lockstat -h
Usage: lockstat [options] command [args]

Event selection options:
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Commonly used options include -C (which is on by default anyway) to watch
lock contention events, -s to include stacks, and -n to increase the records (in
response to lockstat(1M) warnings about dropping events).

Default Output

By default, lockstat(1M) will examine lock contention events. A command is
passed for lockstat(1M) that it will execute and wait for completion, so you can
specify an interval by passing the sleep(1) command. Regardless of the com-
mand, events are collected on a systemwide basis.

Here the -o option is also used to write to an output file, because the output is
often many pages long (beware: -o appends, not overwrites):

  -C  watch contention events [on by default]
  -E   watch error events [off by default]
  -H   watch hold events [off by default]
  -I  watch interrupt events [off by default]
  -A  watch all lock events [equivalent to -CH]
  -e event_list only watch the specified events (shown below);

 <event_list> is a comma-separated list of
  events or ranges of events, e.g. 1,4-7,35

  -i rate         interrupt rate for -I [default: 97 Hz]

Data gathering options:

  -b  basic statistics (lock, caller, event count)
  -t    timing for all events [default]
  -h     histograms for event times
  -s depth  stack traces <depth> deep
  -x opt[=val]    enable or modify DTrace options

Data filtering options:

  -n nrecords     maximum number of data records [default: 10000]
  -l lock[,size] only watch <lock>, which can be specified as a

symbolic name or hex address; <size> defaults
to the ELF symbol size if available, 1 if not

  -f func[,size]  only watch events generated by <func>
  -d duration     only watch events longer than <duration>
  -T   trace (rather than sample) events
[...]

solaris# lockstat -o lockstat.out sleep 5
solaris# more lockstat.out

Adaptive mutex spin: 20028 events in 5.041 seconds (3973 events/sec)

Count indv cuml rcnt nsec Lock         Caller
-------------------------------------------------------------------------------
 1276   6%   6% 0.00   15985 0xffffff821f761c48     taskq_thread+0x26c
 1247   6%  13% 0.00    1621 0xffffff8221fa6c50 dsl_dataset_block_kill+0x1af
 1190   6%  19% 0.00   2790 0xffffff821f761a18     taskq_thread+0x26c
 1096   5%  24% 0.00   3912 0xffffff81eb648020   mpt_scsi_start+0x9d
 1062   5%  29% 0.00    4502 0xffffff821f761c48     taskq_dispatch+0x2ea
  393   2%  31% 0.00 35982 0xffffff821f761c48   cv_wait+0x69

continues
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nsec is the average duration of the events in nanoseconds, and Count shows
the number of events. The top lock was from taskq_thread(), with 1,276 spin
events at 15,985 ns per event, making a total of 20.3 ms of CPU time spent spin-
ning on this lock.

Stacks

The stack backtrace for lock events reveals the code path responsible and can be
included in the output with the -s option. Here, five levels of stack trace are
included (-s5):

The stack trace for this lock event showed that it originated from segkmem. The
distribution plot shown by lockstat(1M) should be familiar by now, because this
was the inspiration for the way DTrace prints quantize aggregations.

Profiling with Stack

lockstat(1M) can also profile the kernel, sampling at a specified rate. Before
DTrace, this was the best way to determine kernel CPU time. Here -s5 is used to
also record five levels of stack trace:

  368   2%  33% 0.00    1100 0xffffff8221fa6c50     dsl_dir_tempreserve_clear+0x70
  365   2%  35% 0.00    1276 0xffffff8221fa6c50     dsl_dir_willuse_space_impl+0x35
  353   2%  37% 0.00 1958 0xffffff81eb648020    mpt_intr+0x5d 
[...output truncated...]

solaris# lockstat -s5 -o lockstat.out sleep 5
solaris# more lockstat.out

Adaptive mutex spin: 38423 events in 5.041 seconds (7622 events/sec)

-------------------------------------------------------------------------------
Count indv cuml rcnt nsec Lock         Caller
 4309  11%  11% 0.00  7244 vph_mutex+0x8000     page_hashin+0xb4

      nsec ------ Time Distribution ------ count   Stack
       512 |  69 page_create_io+0x2c7
      1024 |@@@@@@@@  1252 page_create_io_wrapper+0x57
      2048 |@@@@@@@@@                1295      segkmem_xalloc+0xc0
      4096 |@@@@@   822  segkmem_alloc_io_2G+0x3b
      8192 |@@@               466
     16384 |@                179
     32768 |                78
     65536 |                58
    131072 |               30
    262144 |               44
    524288 |               14
   1048576 |                 2
[...]
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The hottest on-CPU stack trace was from HAT performing a translation look-
aside buffer (TLB) flush. The output contains multiple groups of results such as
that listed previously and is sorted from most to least frequent.

koncpu.d

This is a script version of the DTrace one-liner to profile the kernel (see the “One-Liners”
section for examples). As one of the most useful and frequently used one-liners, it may
save typing to provide it as a script, where it can also be more easily enhanced.

Script

Example

The output now includes the frequency rate:

solaris# lockstat -Ii997 -s5 -o profile.out sleep 5
solaris# more profile.out
Count indv cuml rcnt  nsec CPU+PIL        Caller
  105   0%  87% 0.00    62312 cpu[0]       mmu_tlbflush_entry+0x3

      nsec ------ Time Distribution ------ count   Stack
     32768 |@@@@@@@@@@@@@@@@@@@@           71      hat_tlb_inval+0x312
     65536 |@@@@@@@@ 30        x86pte_inval+0xaa
    131072 |                   0         hat_pte_unmap+0xfd
    262144 |   0   hat_unload_callback+0x193
    524288 |               0
   1048576 |@                 4

[...]

1   #!/usr/sbin/dtrace -s
2
3   profile:::profile-1001
4   {
5           @["\n  on-cpu stack (count @1001hz):", stack()] = count();
6   }
Script koncpu.d

solaris# koncpu.d
dtrace: script 'koncpu.d' matched 1 probe
^C
[...output truncated...]

  on-cpu stack (count @1001hz):
    unix`mach_cpu_idle+0x6
    unix`cpu_idle+0xaf
   unix`cpu_idle_adaptive+0x19

     unix`idle+0x114
    unix`thread_start+0x8

            10215
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As a script, additional DTrace actions can be added at the command line. Here
it is directed to exit after ten seconds and save the output to a file:

This output file now contains both the interval time and the frequency rate,
which are useful reminders to take into consideration when later interpreting the
output.

koffcpu.d

As a companion to koncpu.d, the koffcpu.d script measures the time spent off-
CPU by stack trace. This time includes device I/O, lock wait, and dispatcher queue
latency, and as such koffcpu.d could be a useful script (see the following example).

Script

The script saves a thread-local time stamp when a thread leaves a CPU and then
calculates the delta time when it returns. The kernel stack trace is included in the
output.

solaris# koncpu.d -n 'tick-10sec { exit(0); }' -o profile.out
dtrace: script 'koncpu.d' matched 1 probe
dtrace: description 'tick-10sec ' matched 1 probe

solaris# cat profile.out
CPU     ID            FUNCTION:NAME
  8  17724              :tick-10sec

  on-cpu stack (count @1001hz):
    unix`page_nextn+0x4a
   genunix`fsflush_do_pages+0x104

[...]

1   #!/usr/sbin/dtrace -s
2
3   sched:::off-cpu
4   {
5   self->start = timestamp;
6   }
7
8   sched:::on-cpu
9   /self->start/
10  {
11          this->delta = (timestamp - self->start) / 1000;
12          @["off-cpu (us):", stack()] = quantize(this->delta);
13    self->start = 0;
14  }
Script koffcpu.d
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Example

This was executed on Solaris. The output shows that the longest off-CPU stack
traces correspond to the generic taskq_thread(). Many code paths that leave
the CPU and wait for I/O are processed as tasks by such asynchronous task
threads, making the stack trace rather uninteresting. To identify the stacks
affected by this latency, more DTrace is required, such as tracing when work is
added to a task queue and when it completes (see taskq.d).

koffcpu.d may still identify latency by stack trace in some cases; however, it
may be more interesting as an example of DTrace exposing the complexities of
reality.

taskq.d

As shown in the example of koffcpu.d, functions can be handled by task queues
in the kernel. Task queues are used for a number of reasons; this quotation is from
the Solaris man page taskq(9F):

A kernel task queue is a mechanism for general-purpose asynchronous task schedul-
ing that enables tasks to be performed at a later time by another thread. There are
several reasons why you may utilize asynchronous task scheduling:

1. You have a task that  isn’t  time-critical,  but  a current code path that is.

2. You have a task that  may  require  grabbing  locks that a thread already holds.

3. You have a task that needs to block  (for  example, to  wait for memory) but have a 
thread that cannot block in its current context.

solaris# koffcpu.d
dtrace: script 'koffcpu.d' matched 6 probes
^C
[...output truncated...]

  off-cpu (us):
    genunix`cv_wait+0x61
   genunix`taskq_thread_wait+0x84
   genunix`taskq_thread+0x2d1
    unix`thread_start+0x8

           value  ------------- Distribution ------------- count
            2048 |              0
            4096 |@             1
            8192 |              0
           16384 |@@@@@@@@@@@@@                   22
           32768 |@@@@@@@@@@@@@                   22
           65536 |@@@@@            8
          131072 |@@@@@@              11
          262144 |@@               3
          524288 |@               1
         1048576 |               0
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4. You have a code path that can’t complete because of a specific condition but also 
can’t sleep or fail. In this case, the task is  immediately  queued  and then is exe-
cuted after the condition disappears.

5. A task queue is just a simple way to launch  multiple tasks in parallel.

The taskq.d script provides statistics on task queue operations: task dispatch
count, total task wait time, and total task execution time.

Script

Task queues have a standard interface as part of DDI (device drivers interface),
making an enticing source for fbt probes. However, on Solaris, sdt probes are
placed for taskq analysis:6

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN { trace("Tracing...  Interval 10 seconds, or Ctrl-C.\n"); }
6
7   sdt:::taskq-enqueue
8   {
9  this->tq  = (taskq_t *)arg0;
10 this->tqe = (taskq_ent_t *) arg1;
11          @c[this->tq->tq_name, this->tqe->tqent_func] = count();
12   time[arg1] = timestamp;
13  }
14
15  sdt:::taskq-exec-start
16  /time[arg1]/
17  {
18          this->wait = timestamp - time[arg1];
19  this->tq  = (taskq_t *)arg0;
20 this->tqe = (taskq_ent_t *) arg1;
21  @w[this->tq->tq_name, this->tqe->tqent_func] = sum(this->wait);
22   time[arg1] = timestamp;
23  }
24
25  sdt:::taskq-exec-end
26  /time[arg1]/
27  {
28          this->exec = timestamp - time[arg1];
29  this->tq  = (taskq_t *)arg0;
30 this->tqe = (taskq_ent_t *) arg1;
31  @e[this->tq->tq_name, this->tqe->tqent_func] = sum(this->exec);
32          time[arg1] = 0;
33  }
34
35  profile:::tick-10s,
36  dtrace:::END
37  {
38   normalize(@w, 1000000);
39   normalize(@e, 1000000);

6. http://blogs.sun.com/akolb/entry/task_queues_in_opensolaris

http://blogs.sun.com/akolb/entry/task_queues_in_opensolaris
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These sdt probes are not currently available on Mac OS X or FreeBSD; fbt trac-
ing can be used instead.

Example

While tracing, a ZFS write workload was performed. The total time spent waiting
and executing on the task queues can be seen. To see why these functions are
being placed on a task queue, the kernel stack trace can be examined during
sdt:::taskq-enqueue.

priclass.d

DTrace provides excellent visibility into the kernel thread scheduler, not just from
the sched provider but also from the profile provider, by sampling what threads are
on-CPU and with what priority. The priclass.d script samples the scheduling
class and priority value.

Script

40 printf("\n %-22s %-25s %8s %9s %9s\n", "TASKQ NAME", "FUNCTION",
41   "COUNT", "T_WAITms", "T_EXECms");
42 printa(" %-22.22s %-25.25a %8@d %@9d %@9d\n", @c, @w, @e);
43 trunc(@c); trunc(@w); trunc(@e);
44  }

Script tsskq.d

solaris# taskq.d
Tracing...  Interval 10 seconds, or Ctrl-C.

 TASKQ NAME  FUNCTION        COUNT  T_WAITms  T_EXECms
 kmem_taskq genunix`kmem_update_timeo      1         0         0
 kmem_taskq genunix`kmem_cache_scan       1         0         0
 zil_clean              zfs`zil_itx_clean 6         0        18
 kmem_taskq  genunix`kmem_hash_rescale      17         0         0
 timeout_taskq   genunix`timeout_execute        40         0         0
 zio_null_intr zfs`zio_execute       144    1         1
 zio_null_issue zfs`zio_execute       144   36         3
 zio_ioctl_intr zfs`zio_execute       156    0         1
 cpudrv_cpudrv_monitor  cpudrv`cpudrv_monitor   160         1         2
 callout_taskq          genunix`callout_execute  1416        90       176
 zio_write_issue   zfs`zio_execute         17390    95569      5450
 zio_write_intr  zfs`zio_execute        34855    4782      2196

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN

continues
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Example

Various applications were executed on Solaris in different scheduling classes.
These included a windowing environment (runs in IA, interactive), prstat -R
(runs in RT, real time), and a CPU busy process (runs in TS, time sharing). The
kernel will also be running (runs in SYS, system):

6   {
7           printf("Sampling... Hit Ctrl-C to end.\n");
8   }
9
10  profile:::profile-1001hz
11  {
12 @count[stringof(curlwpsinfo->pr_clname)]
13 = lquantize(curlwpsinfo->pr_pri, 0, 170, 10);
14  }
Script priclass.d

solaris# priclass.d
Sampling... Hit Ctrl-C to end.
^C

  IA
           value ------------- Distribution ------------- count
              40 |                   0

50 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 30
              60 |                   0

  SYS
           value ------------- Distribution ------------- count
             < 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  4959
               0 |                   0
              10 |                   0
              20 |                   0
              30 |                   0
              40 |                   0
              50 |                   0
              60 |                   30
              70 |                   0
              80 |                   0
              90 |                   0
             100 |                   0
             110 |                   0
             120 |                   0
             130 |                   0
             140 |                   0
             150 |                   0
             160 |                   50
          >= 170 |                  0

  RT
           value ------------- Distribution ------------- count
              90 |                   0
             100 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 110
             110 |                   0

  TS
           value ------------- Distribution ------------- count
             < 0 |                   0
               0 |@@@@@@@@@@@@@@@                    2880
              10 |@@@@@@@                 1280
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The priority numbers match those expected for the classes (see Chapter 3 in
Solaris Internals [McDougall and Mauro, 2006]). The distribution plot for the TS
class also matches expected changes in priority for CPU busy processes (also see
ts_dptbl(4)), which demotes the priority as the thread uses its quantum, until
the thread is promoted again back to top priority (because of ts_maxwait).

cswstat.d

Thread context switch time was once a concern for performance analysis, because
excessive switching could consume a significant amount of CPU. This was previ-
ously analyzed by using microbenchmarks to determine the expected context
switch time and then measuring the number of current context switches with tools
such as vmstat(1M) and mpstat(1M). These days, the context switch time is
much faster with respect to the clock speed of CPUs, and it has become less of a
concern. However, it does remain an interesting topic for analysis, and DTrace is
able to measure context switch time directly on the real target workload by using
the sched provider.

Script

The script measures the time between descheduling one thread and scheduling the
next:

              20 |@@@@@                 990
              30 |@@@@@                 920
              40 |@@@@                 670
              50 |@@@@                 730
              60 |                   0

1   #!/usr/sbin/dtrace -s
2
3   #pragma D option quiet
4
5   dtrace:::BEGIN
6   {
7   /* print header */
8 printf("%-20s  %8s %12s %12s\n", "TIME", "NUM", "CSWTIME(us)",
9      "AVGTIME(us)");
10          times = 0;
11          num = 0;
12  }
13
14  sched:::off-cpu
15  {
16   /* csw start */
17          num++;
18   start[cpu] = timestamp;
19  }
20
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Line 17 increments a scalar global variable num; these are usually better served
as aggregations (for example, @num = count()). However, num is later read on line
33 as part of a formula, which an aggregation cannot do (they can only be printed).
This also applies to the times variable, which is also a scalar global.

Example

On this system, the average context switch time is two microseconds, and the total
time spent is about three milliseconds (total across all 24 CPUs in this system) per
second, which is negligible.

putnexts.d

The STREAMS interface is used on Solaris to deliver messages around the kernel
and across kernel modules via queues. Although it’s recently been removed from
some hot code-paths (in TCP/IP), there are still many modules that operate via
streams. This operation can be viewed by tracing the STREAMS API functions,
such as putnext(), which puts a message to a kernel module queue.

Script

Although this is an fbt-based script and considered unstable, it’s also very short
and should ideally be easy to maintain to match changes in the kernel:

21  sched:::on-cpu
22  /start[cpu]/
23  {
24          /* csw end */
25 times += timestamp - start[cpu];
26          start[cpu] = 0;
27  }
28
29  profile:::tick-1sec
30  {
31   /* print output */
32 printf("%20Y  %8d %12d %12d\n", walltimestamp, num, times/1000,
33  num == 0 ? 0 : times/(1000 * num));
34          times = 0;
35          num = 0;
36  }
Script cswstat.d

solaris# cswstat.d
TIME       NUM CSWTIME(us)  AVGTIME(us)
2010 Jun  3 02:05:24  1291         3139            2
2010 Jun  3 02:05:25  1069         2197            2
2010 Jun  3 02:05:26  1863         4040            2
2010 Jun  3 02:05:27  1102         2659            2
2010 Jun  3 02:05:28  1889         4152            2
2010 Jun  3 02:05:29   871         1805            2
[...]
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The kernel stack trace is capped to the first five stack frames.

Example

The first stack shows the ip module passing a message to arp for processing.
The most frequent was shown at the bottom, ip passing messages to tcp.

Summary

DTrace provides an incredibly detailed view of kernel internal operation, which
can be a crucial capability, whether the goal is to root-cause a performance prob-
lem, to understand capacity, or simply to study operating system internals. There

1   #!/usr/sbin/dtrace -s
2
3   fbt::putnext:entry
4   {
5  @[stringof(args[0]->q_qinfo->qi_minfo->mi_idname), stack(5)] = count();
6   }
Script putnexts.d

solaris# putnexts.d
dtrace: script 'putnexts.d' matched 1 probe
^C
[...output truncated...]
  arp

    ip`arp_output+0x2f1
    ip`arp_request+0xf6
    ip`nce_timer+0x619
   genunix`callout_list_expire+0x77
   genunix`callout_expire+0x31

               17
  nxge

    dld`dld_str_rx_raw+0xbf
    dls`dls_rx_promisc+0x181
   mac`mac_promisc_dispatch_one+0x94
   mac`mac_promisc_dispatch+0x110
    mac`mac_rx_common+0x3e

               73
  strwhead

    genunix`strput+0x19d
    genunix`strputmsg+0x2a0
    genunix`msgio32+0x202
    genunix`putmsg32+0x78
    unix`sys_syscall32+0xff

               83
  tcp

    ip`tcp_input_data+0x3398
    ip`squeue_enter+0x440
    ip`ip_fanout_v4+0x48d
   ip`ire_recv_local_v4+0x366
   ip`ill_input_short_v4+0x69e

              937
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are a broad range of DTrace providers and methods for examining the kernel,
enabling time- and count-based profiles, measuring kernel function times, examin-
ing arguments and return values, and tracing kernel code flow. These were demon-
strated throughout this chapter.
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13
Tools

This chapter describes some tools built using DTrace to collect data; several such
have emerged since DTrace was first made available with the initial release of
Solaris 10. This chapter is not intended to provide information on how to use the
various tools discussed here; each is very well documented with numerous exam-
ples, all easily available online. Our goal here is to briefly introduce these tools to
the reader. All the tools discussed in this chapter are easily and freely download-
able if you want to explore them in more detail.

The tools discussed in this chapter are as follows.

The DTraceTookit: This is a huge collection of tools implemented as scripts.

Chime: This is a standalone tool for visualizing DTrace aggregations. It is 
also a component of the DTrace GUI plug-in for NetBeans and Sun Studio.

DTrace GUI plug-in for NetBeans and Sun Studio: This integrates the 
DTraceToolkit and Chime into NetBeans and Sun Studio.

DLight: This is part of the Sun Studio GUI tools for doing application analy-
sis based on DTrace.

Mac OS X Instruments: This is part of the Mac OS X developer tools, a 
GUI-based tool that uses DTrace for application analysis.

Analytics: This is a powerful Web-based graphical tool that ships with the 
Oracle ZFS Storage product family.
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The DTraceToolkit

The DTraceToolkit is a collection of more than 200 DTrace scripts and one-liners
for performance observability and troubleshooting. It is designed to serve both as a
toolkit of prewritten scripts and as a set of examples from which to learn DTrace.
The following are the major components of the toolkit:

Scripts

A man page for every script

An examples file for every script

The man(ual) pages document the purpose of the scripts, their output, and any
command-line options; the example files demonstrate using the scripts and show how
to read and interpret their output. Since the scripts are designed to be intuitive, the
examples file—which contains the CLI equivalent of screenshots—is an effective
form of documentation, because the output for some scripts alone may be self-evident.

Most of the development time for the DTraceToolkit is spent testing scripts for
different workloads on different operating systems.1 It can be easy to write scripts
that appear to work, but it’s much harder to develop scripts that are proven to
work. Although testing is essential, some scripts cannot be tested fully. fbt provider–
based scripts should be tested on every possible version of the kernel, but there are
so many that this has become impractical. The use of the fbt provider in the DTrace-
Toolkit is therefore deliberately minimized because of its instability. Chapter 12,
Kernel, discusses the stability issues with using the fbt provider in detail.

The DTraceToolkit is an open source project and can be downloaded free of
charge. It is not supported by any company.

Locations

The DTraceToolkit is currently available from a few locations:

http://sourceforge.net/projects/dtracetoolkit

www.brendangregg.com/dtrace.html#DTraceToolkit

http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit

It was also shipped in OpenSolaris in /opt/DTT, and 44 scripts are in Mac OS X
in /usr/bin.

1. Stefan Parvu performs testing for each release using an automated test harness.

http://sourceforge.net/projects/dtracetoolkit
www.brendangregg.com/dtrace.html#DTraceToolkit
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
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Versions

The DTraceToolkit was created in May 2005 by Brendan Gregg, who also wrote
most of the scripts throughout this book. Several versions have been released, the
latest being version 0.99 released in September 2007, containing 230 scripts.
Another version is planned after the release of this book.

Although it was initially aimed at the Solaris and OpenSolaris systems, with
the inclusion of DTrace in Mac OS X and FreeBSD, the toolkit is moving toward
more directly supporting other operating systems. Many of the scripts, in particu-
lar those based on stable DTrace providers, work across different operating sys-
tems without changes; some of the scripts require only minor changes to become
generic and avoid Solaris-isms (for example, when using shell wrappers: picking
/bin/sh instead of /usr/bin/sh). When Apple included 44 scripts in Mac OS X,
some were modified so that they executed properly.

Installation

The DTraceToolkit is shipped as a compressed tar file. It can be expanded using
the following:

At this point, the scripts can be executed and the documentation read. If
desired, an installer script (called install) can be executed, which copies the tool-
kit to /opt/DTT.

Scripts

Table 13-1 summarizes the scripts in the DTraceToolkit, the subdirectory under
which they are provided, and a description of their purpose. A summary version of
this table is listed in the DTraceToolkit under Docs/Contents.

# gzcat DTraceToolkit-0.99.tar.gz | tar xvf -

Table 13-1 DTraceToolkit 0.99 Scripts

Script Directory Description

dexplorer / Run a series of scripts and archive output.

dtruss / Process syscall info. DTrace truss.

dvmstat / vmstat by PID/name/command.

continues
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errinfo / Report syscall failures with details.

execsnoop / Snoop process execution as it occurs.

iosnoop / Snoop I/O events as they occur.

iopattern / Print disk I/O pattern.

iotop / Display top disk I/O events by process.

opensnoop / Snoop file opens as they occur.

procsystime / Analyze process system call times.

rwsnoop / Snoop read/write events.

rwtop / Display top read/write bytes by process.

statsnoop / Snoop file stats as they occur.

httpdstat.d Apps Realtime httpd statistics.

nfswizard.d Apps NFS client activity wizard.

shellsnoop Apps Snoop live shell activity.

weblatency.d Apps Web site latency statistics.

cputypes.d Cpu List CPU types.

cpuwalk.d Cpu Measure which CPUs a process runs on.

dispqlen.d Cpu Dispatcher queue length by CPU.

intbycpu.d Cpu Interrupts by CPU.

intoncpu.d Cpu Interrupt on-cpu usage.

inttimes.d Cpu Interrupt on-cpu time total.

loads.d Cpu Print load averages.

runocc.d Cpu Run queue occupancy by CPU.

xcallsbypid.d Cpu CPU cross calls by PID.

bitesize.d Disk Print disk event size report.

diskhits Disk Disk access by file offset.

hotspot.d Disk Print disk event by location.

iofile.d Disk I/O wait time by filename and process.

iofileb.d Disk I/O bytes by filename and process.

iopending Disk Plot number of pending disk events.

pathopens.d Disk Pathnames successfully opened count.

seeksize.d Disk Print disk seek size report.

fsrw.d FS File system read/write event tracing.

fspaging.d FS File system read/write and paging tracing.

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)

Script Directory Description
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rfsio.d FS Read FS I/O stats, with cache miss rate.

rfileio.d FS Read file I/O stats, with cache miss rate.

vopstat FS vnode interface statistics.

j_calldist.d Java Measure Java elapsed times for different types of 
operations.

j_calls.d Java Count Java calls (method, and so on) using 
DTrace.

j_calltime.d Java Measure Java elapsed times for different types of 
operations.

j_classflow.d Java Trace a Java class method flow using DTrace.

j_cpudist.d Java Measure Java on-CPU times for different types of 
operations.

j_cputime.d Java Measure Java on-CPU times for different types of 
operations.

j_events.d Java Count Java events using DTrace.

j_flow.d Java Snoop Java execution showing method flow 
using DTrace.

j_flowtime.d Java Snoop Java execution with method flow and 
delta times.

j_methodcalls.d Java Count Java method calls DTrace.

j_objnew.d Java Report Java object allocation using DTracev

j_package.d Java Count Java class loads by package using DTracev

j_profile.d Java Sample stack traces with Java translations using 
DTrace.

j_stat.d Java Java operation stats using DTrace.

j_syscalls.d Java Count Java methods and syscalls using DTrace.

j_syscolors.d Java Trace Java method flow plus syscalls, in color.

j_thread.d Java Snoop Java thread execution using DTrace.

j_who.d Java Trace Java calls by process using DTrace.

js_calldist.d JavaScript Measure JavaScript elapsed times for types of 
operations.

js_calls.d JavaScript Count JavaScript calls using DTrace.

js_calltime.d JavaScript Measure JavaScript elapsed times for types of 
operations.

continues

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)

Script Directory Description
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js_cpudist.d JavaScript Measure JavaScript on-CPU times for types of 
operations.

js_cputime.d JavaScript Measure JavaScript on-CPU times for types of 
operations.

js_execs.d JavaScript JavaScript execute snoop using DTrace.

js_flow.d JavaScript Snoop JavaScript execution showing function 
flow using DTrace.

js_flowinfo.d JavaScript JavaScript function flow with info using DTrace.

js_flowtime.d JavaScript JavaScript function flow with delta times using 
DTrace.

js_objcpu.d JavaScript Measure JavaScript object creation on-CPU time 
using DTrace.

js_objgc.d JavaScript Trace JavaScript Object GC using DTrace.

js_objnew.d JavaScript Count JavaScript object creation using DTrace.

js_stat.d JavaScript JavaScript operation stats using DTrace.

js_who.d JavaScript Trace JavaScript function execution by process 
using DTrace.

cputimes Kernel Print time by kernel/idle/process.

cpudists Kernel Time distribution by kernel/idle/process.

cswstat.d Kernel Context switch time statistics.

dnlcps.d Kernel DNLC stats by process.

dnlcsnoop.d Kernel Snoop DNLC activity.

dnlcstat Kernel DNLC statistics.

kstat_types.d Kernel Trace kstat reads with type info.

modcalls.d Kernel Kernel function calls by module name.

priclass.d Kernel Priority distribution by scheduling class.

pridist.d Kernel Process priority distribution.

putnexts.d Kernel Trace who is putting to which streams module.

whatexec.d Kernel Examine the type of files executed.

lockbyproc.d Locks Lock time by process name.

lockbydist.d Locks Lock time distribution by process name.

anonpgpid.d Mem Anonymous memory paging info by PID on-CPU.

minfbypid.d Mem Minor faults by PID.

minfbyproc.d Mem Minor faults by process name.

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)

Script Directory Description



ptg

The DTraceToolkit 953

pgpginbypid.d Mem Pages paged in by PID.

pgpginbyproc.d Mem Pages paged in by process name.

swapinfo.d Mem Print virtual memory info.

vmbypid.d Mem Virtual memory stats by PID.

vmstat.d Mem vmstat demo using DTrace.

vmstat-p.d Mem vmstat -p demo using DTrace.

xvmstat Mem Extended vmstat demo using DTrace.

guess.d Misc Guessing game.

wpm.d Misc Words per minute tracing.

woof.d Misc Audio alert for new processes.

connections Net Print inbound TCP connections by process.

icmpstat.d Net Print ICMP statistics.

tcpsnoop Net Snoop TCP network packets by process, Solaris 
10 3/05.

tcpsnoop_snv Net Snoop TCP network packets by process, Solaris 
Nevada.

tcpsnoop.d Net Snoop TCP network packets by process, Solaris 
10 3/05.

tcpsnoop_snv.d Net Snoop TCP network packets by process, Solaris 
Nevada.

tcpstat.d Net Print TCP statistics.

tcptop Net Display top TCP network packets by PID, Solaris 
10 3/05.

tcoptop_snv Net Display top TCP network packets by PID, Solaris 
Nevada.

tcpwdist.d Net Simple TCP write distribution by process.

udpstat.d Net Print UDP statistics.

pl_calldist.d Perl Measure Perl elapsed times for subroutines.

pl_calltime.d Perl Measure Perl elapsed times for subroutines.

pl_cpudist.d Perl Measure Perl on-CPU times for subroutines.

pl_cputime.d Perl Measure Perl on-CPU times for subroutines.

pl_flow.d Perl Snoop Perl execution showing subroutine flow.

pl_flowinfo.d Perl Snoop Perl subroutine flow with info using 
DTrace.

continues

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)

Script Directory Description
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pl_flowtime.d Perl Snoop Perl subroutines with flow and delta times.

pl_malloc.d Perl Perl libc malloc analysis.

pl_subcalls.d Perl Measure Perl subroutine calls using DTrace.

pl_syscalls.d Perl Count Perl subroutine calls and syscalls using 
DTrace.

pl_syscolors.d Perl Trace Perl subroutine flow plus syscalls, in color.

pl_who.d Perl Trace Perl subroutine execution by process using 
DTrace.

php_calldist.d Php Measure PHP elapsed times for functions.

php_calltime.d Php Measure PHP elapsed times for functions.

php_cpudist.d Php Measure PHP on-CPU times for functions.

php_cputime.d Php Measure PHP on-CPU times for functions.

php_flow.d Php Snoop PHP execution showing function flow.

php_flowinfo.d Php Snoop PHP function flow with info using DTrace.

php_flowtime.d Php Snoop PHP functions with flow and delta times.

php_funccalls.d Php Measure PHP function calls using DTrace.

php_malloc.d Php PHP libc malloc analysis.

php_syscalls.d Php Count PHP function calls and syscalls using 
DTrace.

php_syscolors.d Php Trace PHP function flow plus syscalls, in color.

php_who.d Php Trace PHP function execution by process using 
DTrace.

crash.d Proc Crashed application report.

creatbyproc.d Proc Snoop file creat() by process name.

dappprof Proc Profile user and lib function usage.

dapptrace Proc Trace user and lib function usage.

fddist Proc File descriptor usage distribution.

fileproc.d Proc Snoop files opened by process.

kill.d Proc Snoop process signals.

lastwords Proc Print syscalls before exit.

mmapfiles.d Proc mmap’d files by process.

newproc.d Proc Snoop new processes.

pfilestat Proc Show I/O latency break down by FD.

pidpersec.d Proc Print new PIDs per sec.

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)

Script Directory Description



ptg

The DTraceToolkit 955

readbytes.d Proc Read bytes by process name.

readdist.d Proc Read distribution by process name.

rwbbypid.d Proc Read/write bytes by PID.

rwbypid.d Proc Read/write calls by PID.

rwbytype.d Proc Read/write bytes by vnode type.

sampleproc Proc Sample processes on the CPUs.

shortlived.d Proc Check short lived process time.

sigdist.d Proc Signal distribution by process name.

stacksize.d Proc Measure stack size for running threads.

sysbypid.d Proc System stats by PID.

syscallbyproc.d Proc System calls by process name.

syscallbypid.d Proc System calls by process ID.

treaded.d Proc Sample multi-threaded CPU usage.

topsysproc Proc Display top syscalls by process name.

writebytes.d Proc Write bytes by process name.

writedist.d Proc Write distribution by process name.

py_calldist.d Python Measure Python elapsed times for functions.

py_calltime.d Python Measure Python elapsed times for functions.

py_cpudist.d Python Measure Python on-CPU times for functions.

py_cputime.d Python Measure Python on-CPU times for functions.

py_flow.d Python Snoop Python execution showing function flow.

py_flowinfo.d Python Snoop Python function flow with info using 
DTrace.

py_flowtime.d Python Snoop Python functions with flow and delta times.

py_funccalls.d Python Measure Python function calls using DTrace.

py_malloc.d Python Python libc malloc analysis.

py_mallocstk.d Python Python libc malloc analysis with full stack traces.

py_profile.d Python Sample stack traces with Python translations 
using DTrace.

py_syscalls.d Python Count Python function calls and syscalls using 
DTrace.

py_syscolors.d Python Trace Python function flow plus syscalls, in color.

continues

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)
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py_who.d Python Trace Python function execution by process 
using DTrace.

sh_calldist.d Shell Measure Bourne shell elapsed times for types of 
operations.

sh_calls.d Shell Count Bourne calls (func/builtin/cmd/subsh) 
using DTrace.

sh_calltime.d Shell Measure Bourne shell elapsed times for types of 
operations.

sh_cpudist.d Shell Measure Bourne shell on-CPU times for types of 
operations.

sh_cputime.d Shell Measure Bourne shell on-CPU times for types of 
operations.

sh_flow.d Shell Snoop Bourne shell execution showing function 
flow using .DTrace

sh_flowinfo.d Shell Snoop Bourne shell flow with additional info.

sh_flowtime.d Shell Snoop Bourne shell execution with flow and 
delta times.

sh_lines.d Shell Trace Bourne shell line execution using DTrace.

sh_pidcolors.d Shell Demonstration of deeper DTrace Bourne shell 
analysis.

sh_stat.d Shell Bourne shell operation stats using DTrace.

sh_syscalls.d Shell Count Bourne calls and syscalls using DTrace.

sh_syscolors.d Shell Trace Bourne shell flow plus syscalls, in color.

sh_wasted.d Shell Measure Bourne shell elapsed times for 
“wasted” commands.

sh_who.d Shell Trace Bourne shell line execution by process 
using DTrace.

sar-c.d System sar -c demo using DTrace.

syscallbysysc.d System System calls by system call.

topsyscall System Display top system call type.

uname-a.d System uname -a demo using DTrace.

tcl_calldist.d Tcl Measure Tcl elapsed time for different types of 
operations.

tcl_calls.d Tcl Count Tcl calls (proc/cmd) using DTrace.

tcl_calltime.d Tcl Measure Tcl elapsed times for different types of 
operations.

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)

Script Directory Description
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The best examples from this table have been included and explained in other
chapters of this book. The remaining scripts are documented in the DTraceToolkit:
See the script, the man page, and examples file for each.

As an example of how scripts are provided in the DTraceToolkit, the following
sections list the related files for the cpuwalk.d script. 

Script Example: cpuwalk.d 

The cpuwalk.d script was written to help analyze the effectiveness of multi-
threaded applications by sampling how frequently the threads are running on dif-
ferent CPUs. For this to work, there needs to be a sufficiently high workload for
the application to be using multiple CPUs concurrently.

An issue that this script could identify is serialization on a global lock, where
only the thread holding the lock can make forward progress.

tcl_cpudist.d Tcl Measure Tcl on-CPU time for different types of 
operations.

tcl_cputime.d Tcl Measure Tcl on-CPU times for different types of 
operations.

tcl_flow.d Tcl Snoop Tcl execution showing procedure flow 
using DTrace.

tcl_flowtime.d Tcl Snoop Tcl execution showing procedure flow 
and delta times.

tcl_ins.d Tcl Count Tcl instructions using DTrace.

tcl_insflow.d Tcl Snoop Tcl execution showing procedure flow 
and delta times.

tcl_methodcalls.d Tcl Count Tcl method calls DTrace.

tcl_procflow.d Tcl Snoop Tcl execution showing procedure flow 
using DTrace.

tcl_stat.d Tcl Tcl operation stats using DTrace.

tcl_syscalls.d Tcl Count Tcl calls and syscalls using DTrace.

tcl_syscolors.d Tcl Trace Tcl program flow plus syscalls, in color.

tcl_who.d Tcl Trace Tcl calls by process using DTrace.

setuids.d User Snoop setuid calls.

zvmstat Zones vmstat info by zone

Table 13-1 DTraceToolkit 0.99 Scripts (Continued)

Script Directory Description
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Script

The script is Cpu/cpuwalk.d, which is also has a symbolic link called Bin/
cpuwalk.d, provided for convenience (all scripts are linked under Bin and can be
searched using grep from one place).

 1  #!/usr/sbin/dtrace -s
 2  /*
 3   * cpuwalk.d - Measure which CPUs a process runs on.
 4   *  Written using DTrace (Solaris 10 3/05)
 5   *
 6   * This program is for multi-CPU servers, and can help identify if a process
 7   * is running on multiple CPUs concurrently or not.
 8   *
 9   * $Id: cpuwalk.d 3 2007-08-01 10:50:08Z brendan $
10   *
11   * USAGE:    cpuwalk.d [duration]
12   *         eg,
13   *     cpuwalk.d 10      # sample for 10 seconds
14   *   cpuwalk.d     # sample until Ctrl-C is hit
15   *
16   * FIELDS:
17   *  value           CPU id
18   *              count         Number of 1000 hz samples on this CPU
19   *
20   * COPYRIGHT: Copyright (c) 2005 Brendan Gregg.
21   *
22   * CDDL HEADER START
23   *
24   *  The contents of this file are subject to the terms of the
25   *  Common Development and Distribution License, Version 1.0 only
26   *  (the "License").  You may not use this file except in compliance
27   *  with the License.
28   *
29   *  You can obtain a copy of the license at Docs/cddl1.txt
30   *  or http://www.opensolaris.org/os/licensing.
31   *  See the License for the specific language governing permissions
32   *  and limitations under the License.
33   *
34   * CDDL HEADER END
35   *
36   * 22-Sep-2005  Brendan Gregg   Created this.
37   * 14-Feb-2006     "     "     Last update.
38   */
39
40  #pragma D option quiet
41  #pragma D option defaultargs
42
43  inline int MAXCPUID = 1024;
44
45  dtrace:::BEGIN
46  {
47  $1 ? printf("Sampling...\n") :
48  printf("Sampling... Hit Ctrl-C to end.\n");
49          seconds = 0;
50  }
51
52  profile:::profile-1000hz
53  /pid/
54  {
55          @sample[pid, execname] = lquantize(cpu, 0, MAXCPUID, 1);
56  }
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If there are concerns that the script may sample in lockstep with the application,
the profile rate can be adjusted from 1000hz to 1001hz (or something similar).

Man Page

The manual page file is Man/man1m/cpuwalk.d.1m. To read it, set the MANPATH
variable to the Man directory, for example: MANPATH=/opt/DTT/Man man cpuwalk.d.

57
58  profile:::tick-1sec
59  {
60          seconds++;
61  }
62
63  profile:::tick-1sec
64  /seconds == $1/
65  {
66          exit(0);
67  }
68
69  dtrace:::END
70  {
71          printa("\n    PID: %-8d CMD: %s\n%@d", @sample);
72  }

 1  Maintenance Commands            cpuwalk.d(1m)
 2
 3  NAME
 4       cpuwalk.d - Measure which  CPUs  a  process  runs  on.  Uses
 5       DTrace.
 6
 7  SYNOPSIS
 8       cpuwalk.d [duration]
 9
10  DESCRIPTION
11       This program is for multi-CPU servers, and can help identify
12       if a  process  is  running on multiple CPUs concurrently or
13       not.
14
15       A duration may be specified in seconds.
16
17       Since this uses DTrace, only the root user or users with the
18       dtrace_kernel privilege can run this command.
19
20  OS
21       Any
22
23  STABILITY
24       stable.
25
26  EXAMPLES
27       this runs until Ctrl-C is hit,
28     # cpuwalk.d
29
30 run for 5 seconds,
31     # cpuwalk.d 5
32
33  FIELDS
34       PID  process ID

continues
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Examples

The examples file is in Examples/cpuwalk_example.txt.

35
36 CMD  process name
37
38       value
39            CPU id
40
41       count
42 number of samples (sample at 100 hz)
43
44  DOCUMENTATION
45       See the DTraceToolkit for further  documentation  under  the
46       Docs directory.  The  DTraceToolkit  docs  may include full
47       worked examples with  verbose descriptions explaining  the
48       output.
49
50  EXIT
51       cpuwalk.d will run until Ctrl-C  is  hit,  or  the  duration
52 specified is reached.
53
54  USER COMMANDS Last change: $Date:: 2007-08-05 #$         1
55
56  Maintenance Commands              cpuwalk.d(1m)
57
58  SEE ALSO
59 threaded.d(1M), dtrace(1M)
60
61  USER COMMANDS Last change: $Date:: 2007-08-05 #$         2
62

 1  The following is a demonstration of the cpuwalk.d script,
 2
 3
 4  cpuwalk.d is not that useful on a single CPU server,
 5
 6     # cpuwalk.d
 7     Sampling... Hit Ctrl-C to end.
 8     ^C
 9
10 PID: 18843    CMD: bash
11
12 value  ------------- Distribution ------------- count
13                  < 0 |                     0
14     0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 30
15                    1 |                     0
16
17          PID: 8079     CMD: mozilla-bin
18
19 value  ------------- Distribution ------------- count
20                  < 0 |                     0
21     0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 10
22                    1 |                     0
23
24  The output above shows that PID 18843, "bash", was sampled on CPU 0 a total
25  of 30 times (we sample at 1000 hz).
26
27
28
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The scripts are designed to be intuitive to use and to produce output that is self-
evident. This is best demonstrated in the examples files, which can often explain
the function and intended usage of scripts more quickly than by reading the man
page or script itself.

29  The following is a demonstration of running cpuwalk.d with a 5 second
30  duration. This is on a 4 CPU server running a multithreaded CPU bound
31  application called "cputhread",
32
33     # cpuwalk.d 5
34     Sampling...
35
36          PID: 3        CMD: fsflush
37
38 value  ------------- Distribution ------------- count
39                    1 |                     0
40     2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 30
41                    3 |                     0
42
43          PID: 12186    CMD: cputhread
44
45 value  ------------- Distribution ------------- count
46                  < 0 |                     0
47   0 |@@@@@@@@@@           4900
48   1 |@@@@@@@@@@           4900
49   2 |@@@@@@@@@@           4860
50   3 |@@@@@@@@@@           4890
51                    4 |                     0
52
53  As we are sampling at 1000 hz, the application cputhread is indeed running
54  concurrently across all available CPUs. We measured the applicaiton on
55  CPU 0 a total of 4900 times, on CPU 1 a total of 4900 times, etc. As there
56  are around 5000 samples per CPU available in this 5 second 1000 hz sample,
57  the application is using almost all the CPU capacity in this server well.
58
59
60
61  The following is a similar demonstration, this time running a multithreaded
62  CPU bound application called "cpuserial" that has a poor use of locking
63  such that the threads "serialise",
64
65
66     # cpuwalk.d 5
67     Sampling...
68
69          PID: 12194    CMD: cpuserial
70
71 value  ------------- Distribution ------------- count
72                  < 0 |                     0
73 0 |@@@                    470
74  1 |@@@@@@                   920
75       2 |@@@@@@@@@@@@@@@@@@@@@@@@@         3840
76  3 |@@@@@@                   850
77                    4 |                     0
78
79  In the above, we can see that this CPU bound application is not making
80  efficient use of the CPU resources available, only reaching 3840 samples
81  on CPU 2 out of a potential 5000. This problem was caused by a poor use
82  of locks.
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Chime

Chime is a graphical tool for visualizing DTrace aggregations, created by Tom
Erickson and released as an OpenSolaris project. It has a library of DTrace scripts
that can be navigated and executed via a graphical interface, and it allows data to
be presented over time as line graphs, allowing patterns to be observed that may
not be obvious at the command line. Custom DTrace scripts and one-liners can be
executed, with Chime providing visualizations. Chime is also part of the DTrace
GUI plug-in for NetBeans and Sun Studio.

The amount of detail shown in Figure 13-1 would require many pages of text
output, which would not be as effective at showing patterns in the data.

Chime is also open source and serves as an example of the Java DTrace API,
which it uses to interface to DTrace. The Java DTrace API allows Chime to read
data from DTrace efficiently, rather than wrapping the text output of dtrace(1M).

Locations

Chime is available on the OpenSolaris Web site: http://hub.opensolaris.org/bin/
view/Project+dtrace-chime/.

Links to download Chime are in the install section. It is distributed as a pack-
age file that must be uncompressed (gunzip) and added (pkgadd -d).

Ch

This Web site also includes documentation for customizing and enhancing
ime by adding new “displays,” which are visualizations of DTrace one-liners and

Figure 13-1 Chime displaying interrupt statistics

http://hub.opensolaris.org/bin/view/Project+dtrace-chime/
http://hub.opensolaris.org/bin/view/Project+dtrace-chime/
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scripts (see Figure 13-2). Chime is distributed with starter scripts, many of which
are from the DTraceToolkit.2

Examples

Chime can be used at the command line as a replacement for DTrace, for one-liners
and scripts that populate aggregations. For example, the following one-liner can be
executed at the command line:

Figure 13-2 Customizing and enhancing Chime by adding new “displays”

2. See http://blogs.sun.com/tomee/entry/chime_and_the_dtracetoolkit and http://blogs.sun.com/
tomee/entry/chime_and_the_dtracetoolkit_part.

http://blogs.sun.com/tomee/entry/chime_and_the_dtracetoolkit
http://blogs.sun.com/tomee/entry/chime_and_the_dtracetoolkit_part
http://blogs.sun.com/tomee/entry/chime_and_the_dtracetoolkit_part


ptg

964 Chapter 13 � Tools

or via Chime (see Figure 13-3).
Newer features of Chime include automatic drilldown analysis;3 in Figure 13-4,

this is demonstrated for the gnome-panel process, drilling down on system calls
by function.

solaris# dtrace -n 'sysinfo:::readch { @bytes[execname] = sum(arg0); }'
solaris# /opt/OSOL0chime/bin/chime -n 'sysinfo:::readch { @bytes[execname] =
sum(arg0); }'

3. http://blogs.sun.com/tomee/entry/chime_automatic_drilldown

Figure 13-3 Chime displaying read bytes by process, and for firefox-bin only

http://blogs.sun.com/tomee/entry/chime_automatic_drilldown
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Figure 13-4 Chime drill-down analysis
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DTrace GUI Plug-in for NetBeans and Sun Studio

The DTrace GUI plug-in is a graphical interface for DTrace that can be installed
into the Sun Studio IDE, Oracle Solaris Studio IDE, and currently available
releases of the NetBeans IDE.4

It was written by Nasser Nouri and is based on Chime and the DTraceToolkit
(the scripts from which are included under a DTraceScripts subdirectory). 

Location

Information on the DTrace GUI plug-in, along with download and install instruc-
tions, can be found at http://wiki.netbeans.org/DTrace.

Examples

Figure 13-5 shows selecting, editing, and executing vmbypid.d in the NetBeans
IDE.

DLight, Oracle Solaris Studio 12.2

Oracle Solaris Studio 12.2 can use DTrace for performance analysis. A kernel pro-
filer tool called er_kernel is included, which uses DTrace to sample kernel stack
traces and produces a report. 

Oracle Solaris Studio 12.2 includes DLight, a standalone interactive observabil-
ity tool that  analyzes data from multiple DTrace scripts in a synchronized fashion
to trace a runtime problem in an application to its root cause. DLight can analyze
an executable or a running process. It includes five profiling tools for C, C++, and
Fortran programs.

Thread Microstates: This provides an overview of the program’s threads as 
they enter various execution states during the program’s run. The Solaris 
microstate accounting feature uses the DTrace facility to provide fine-grained 
information about the state of each thread as it enters and exits ten different 
execution states.

4. NetBeans is available as a standalone IDE. Sun Studio and Oracle Solaris Studio, when
installed, include NetBeans.

http://wiki.netbeans.org/DTrace
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CPU Usage: This provides the percentage of the total CPU time used by the 
program during its run.

Memory Usage: This shows the way the program’s memory heap changes 
over time. This tool identifies memory leaks, which are points in the program 
where memory that is no longer needed fails to be released. These leaks can 
lead to increased memory consumption and even cause a program to run out 
of usable memory.

Thread Usage: This provides the number of threads in use by the program, 
and any moments where a thead has to wait to get a lock in order to proceed 
with its task. This data is useful for multithreaded applications, which must 
perform thread synchronization in order to avoid expensive wait times.

Figure 13-5 NetBeans interface for selecting and running scripts
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I/O Usage: This provides an overview of the program’s read and write activ-
ity during the run.

Figure 13-6 provides an illustration of the DLight profiling tools.

Figure 13-6 DLight profiling tools
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Locations

Documentation for these can be found at the following locations:

http://docs.sun.com/app/docs/doc/821-0304: The Performance Analyzer 
manual of the Oracle Sun Studio collection

http://docs.sun.com/app/docs/doc/821-2126: Oracle Solaris Studio 12.2 
DLight Tutorial

Examples

Figures 13-7 through 13-10 provide examples of DLight screens and output.

Figure 13-7 DLight Thread Details window

http://docs.sun.com/app/docs/doc/821-0304
http://docs.sun.com/app/docs/doc/821-2126
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Figure 13-8 DLight thread call stack

Figure 13-9 DLight CPU usage details
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Mac OS X Instruments

Mac OS X Instruments is a graphical analysis tool for tracing and profiling code. It
can use DTrace to fetch data, and according to the Instruments User Guide, much
of Instruments is now based on DTrace:

DTrace is a dynamic tracing facility originally created by Sun and ported to Mac OS X
v10.5. Because DTrace taps into the operating system kernel, you have access to low-
level operation about the kernel itself and about the user processes running on your
computer. Many of the built-in instruments are already based on DTrace. And even
though DTrace is itself a very powerful and complex tool, Instruments provides a sim-
ple interface that gives you access to the power of DTrace without the complexity.

Figure 13-10 DLight  I/O usage details
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Locations

Instruments is part of the Mac OS X Xcode developer tools, which can be down-
loaded from http://developer.apple.com/technologies/xcode.html.

The user guide is at http://developer.apple.com/mac/library/documentation/
DeveloperTools/Conceptual/InstrumentsUserGuide.

Of particular interest is the chapter “Creating Custom Instruments with
DTrace.”

Instruments is part of the Xcode Tools developer suite, which can be down-
loaded from the members area of the Apple Developer Connection Web site (free
registration required) at http://connect.apple.com/.

Examples

Figure 13-11 shows an example of output from Instruments.

Figure 13-11 Mac OS X Instruments example

http://developer.apple.com/technologies/xcode.html
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide
http://connect.apple.com/
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Analytics

By now you have learned enough about DTrace to understand the raw analytical
power that it offers to a skilled practitioner—emphasis on skilled. And it takes
time, ability, and experimentation to become a DTrace expert. What if there was
an easier way for nonexperts to use the power of DTrace to diagnose complex sys-
tems in real time? 

Some of the finest minds at Sun Microsystems were applied to this question.
The result was Analytics,5 a DTrace-based graphical analysis tool released in late
2008 as part of the Sun ZFS storage appliance (the 7000 series). 

Analytics enables you to construct complex DTrace queries via a simple point-
and-click graphical interface, designed to promote drill-down analysis without
knowledge of DTrace or operating system internals. It uses visualizations to pres-
ent the resulting data in ways that add value, aiding interpretation with line plots,
stacked plots, heat maps, hierarchy views, and pie charts—whatever is most effec-
tive for the data type presented. A system can be analyzed in real time, with data
retained at a one-second granularity for postevent analysis.

This chapter introduces Analytics as a case study in using DTrace via a graphi-
cal environment and illustrates how visualizations can enhance the data that
DTrace makes available. This material is based on a presentation6 that Bryan
Cantrill delivered for CEC (Sun’s Customer Engineering Conference) in 2008,
when Analytics was released as part of the Sun 7000 storage appliance. A Virtual-
Box simulator version7 of the storage appliance is currently available as a free
download, so you can try Analytics without its associated storage hardware.

The Problem

Historically, storage administrators have had very little insight into the nature of
performance; essential questions like “What am I serving and to whom?” or “And
how long is that taking?” were largely unanswerable.

The problem is made acute by the central role of storage in information infra-
structure—it has become very easy for applications to “blame storage.” It has
therefore become the storage administrator’s problem to exonerate the storage
infrastructure. However, with the limited tool set available until now, this has been
excruciating to impossible.

5. Analytics was also primarily created and developed by Bryan Cantrill, coinventor of DTrace.

6. http://blogs.sun.com/fishworks/resource/CEC08/fishworks_analytics.pdf

7. http://blogs.sun.com/fishworks

http://blogs.sun.com/fishworks/resource/CEC08/fishworks_analytics.pdf
http://blogs.sun.com/fishworks
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Those best positioned to shed some light on storage systems are those with the
greatest expertise in those systems: the vendors. But vendors seem to have the
same solutions for every performance problem: Buy more/faster/bigger disks/systems.
This costs the customer a boatload—and doesn’t necessarily solve the problem!

Solving the Problem

How can a storage administrator understand what’s really going on in the storage
infrastructure? An effective storage observability solution needs the following:

A way to understand storage systems not in terms of their implementation 
but rather in terms of their abstractions

To be able to quickly differentiate between problems of load and problems of 
architecture

To allow you to quickly progress through the diagnostic cycle: from hypothe-
sis to data and then to new hypothesis and new data

To be graphical—it should harness the power of the visual cortex

To be real-time—it needs to be able to react quickly to changing conditions

To best understand these, they are explained as follows in terms of the problem
only—not in terms of any possible solution (DTrace).

Implementation vs. Abstraction

Understanding the system’s implementation—network, CPU, DRAM, disks—is
useful only when correlated to the system’s abstractions. For a storage appliance,
the abstractions are at the storage protocol level, for example:

NFS operations from clients on files

CIFS operations from clients on files

iSCSI operations from clients on volumes

These abstractions describe the load applied to the appliance. The interfaces to
a storage appliance are the protocols it supports: NFS, CIFS, iSCSI, and so on. The
applied load is expressed in these terms. The load is not CPU cycles, disk IOPS, or
network packets—those are implementation details that can occur as a result of
load.
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Load vs. Architecture

Performance is the result of a given load (the work to be done) on a given architec-
ture (the means to perform that work). We shouldn’t assume that poor perfor-
mance is the result of inadequate architecture; it may be because of unnecessarily
high load. The system cannot automatically know whether the load or the architec-
ture (or both) is ultimately at fault; to determine that, both must be observable by
the administrator.

Diagnostic Cycle

The diagnostic cycle is the progression from hypothesis through instrumentation
to data gathering to a new hypothesis:

hypothesis  instrumentation  data  hypothesis

Enabling the diagnostic cycle has implications for any solution to the storage
observability problem: The system must be highly interactive to allow new data to
be quickly transformed into a new hypothesis, and the system must allow ad hoc
instrumentation to be created, specific to the data that motivates it.

Visualizations

The human brain has evolved an extraordinary ability to visually recognize pat-
terns. Tables of data are often ineffective. We must be able to visually represent
data to perceive subtle patterns. In the case of Analytics, this does not mean
merely “adding a GUI” or bolting on a third-party graphing package but rather
rethinking how we visualize performance. Visualization must be treated as a first-
class aspect of the storage observability problem.

Real Time

The storage administrator needs to be able to interact with the system in real time
to understand the dynamics of the system. They also need to be able to under-
stand the system at a fine temporal granularity (for example, one second); coarser
granularity only clouds data and delays response.

Toward a Solution

DTrace is well suited to be the foundation for a storage observability solution. It
cuts through implementation to get to the semantics of the system and separates
architectural limitations from load-based pathologies.

However, DTrace is only a foundation. The real win for the user is to create a
powerful and usable system that makes it easy to generate DTrace queries—an
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abstraction layer above the programmatic interface. We also need a means to visu-
alize the data and the ability to (efficiently!) store historical data.

Appliance Analytics

Figure 13-12 shows a screen from Analytics.
Analytics is a DTrace-based facility that allows storage administrators to ask

questions phrased in terms of storage abstractions.

“What clients are making NFS requests?”

“What CIFS files are being accessed?”

Figure 13-12 Analytics screen



ptg

Analytics 977

“What LUNs are currently being written to?”

“How long are CIFS operations taking?”

The data to answer these questions is represented visually, with the browser as
vector. All data is available at a per-second granularity, can be viewed in real time,
and can be optionally recorded for historical analysis.

Analytics can also answer much more complex queries that can be formulated
through an intuitive visual interface.

“What files are being accessed by the client kiowa?”

“What is the read/write mix for the file usertab.dbf when accessed from cli-
ent deimos?”

“For writes to the file usertab.dbf from the client deimos taking longer 
than 1.5 milliseconds, what is the file offset?”

These queries can be formulated in real time based on past data. The data from
these queries can themselves be optionally recorded, and the resulting data can
become the foundations for more detailed queries.

The sections that follow explain key components of Analytics.

Statistics

Analytics displays and manipulates “statistics.” A statistic can be a “raw statis-
tic”—a single scalar recorded over time (for example, “NFSv3 operations per sec-
ond”). Statistics can also be broken down into constituent elements (for example,
“NFSv3 operations per second broken down by client”).

Statistics are examined in Analytics by clicking an Add Statistic... button. This
displays a menu of statistics, each of which may have suboptions to display differ-
ent breakdown dimensions for that statistic, as shown in Figure 13-13.

The available statistics are designed for effective observability of storage load
and architecture, with only the most important of these statistics displayed by
default; the full set of statistics is displayed only when an “advanced analytics”
option is enabled.

Once a statistic is selected, a new panel is added to the display, containing a
graph of the statistic, updated in real time (see Figure 13-14).

Time is on the x-axis, moving from right to left, and value is on the y-axis. The
average over the visible time range (entire x-axis) is displayed to the left of the
graph (Figure 13-14 shows 1147 NFSv3 ops/sec, which is the average for the 60
seconds displayed). To get the value of a statistic at a particular time, click that
time in the graph to display the value.
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Figure 13-13 Adding a statistic

Figure 13-14 Raw statistic
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Breakdowns

Many of the statistics can be broken down in a variety of ways, producing “break-
down” statistics. Figure 13-13 shows the available breakdowns for the “NFSv3
operations per second” statistic, which are type of operation, file name, client,
share, project, latency, size, and offset.

For breakdown statistics, the area to the left of the graph contains a breakdown
table showing average value of each element. One or more breakdown elements can
be highlighted by clicking and Shift+clicking them in the table (see Figure 13-15).

The table lists the top ten elements over the displayed time period; if more ele-
ments are available, an ellipsis (...) will appear as last element in table, which can
be clicked to reveal more elements.

Hierarchical Breakdowns

Some of the breakdowns have a hierarchy of elements, such as files in a directory
tree or disk devices in a device tree (which includes host bus adaptor cards and
disk enclosures). Analytics can visualize files and devices hierarchically by click-
ing “Show hierarchy” under the breakdown table. The hierarchy can be expanded
by clicking plus (+) buttons, as shown in Figure 13-16. 

The pie chart provides visual comparison of selected breakdowns. The wedges
can also be clicked to toggle highlighting. Figure 13-16 shows two files and one
directory highlighted.

Heat Maps

For some statistics, such as operation latency, size, offset, and so on—a scalar is
not sufficiently expressive. A scalar average can be highly misleading, and zero-
valued data must be distinguished from no data. For these operations, Analytics
allows the distribution of data over time to be examined using quantized break-
downs. These consist of time on the x-axis, values on the x-axis, and a heat map (a
color-coded histogram) per sample (see Figure 13-17).

Figure 13-15 Breakdown statistic
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The color of each time/latency pixel represents the number of operations at that
time and latency range. The darker the color, the more operations occurred. A false
color palette is also applied to highlight subtle details.

For heat maps of latency, occasional high latency (outliers) will be easily identi-
fied as lone pixels at the top of the heat map. This aids identification of outliers,
which for latency can represent performance issues. However, it can also compress
the bulk of the lower latency data on the y-axis, making examination of the nor-
mal latency ranges difficult; to manage this, Analytics has an outliers elimination
button to control whether outliers are included in the display and are allowing the
y-axis to be zoomed to the range of interest.

Figure 13-16 Hierarchical breakdowns

Figure 13-17 Heat map
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The heat map shown in Figure 13-17 shows two levels of latency, represented as
the dark horizontal lines. This detail would remain unknown if a line plot of aver-
age latency was examined instead.

Another breakdown that uses the heat map visualization is utilization, as
shown in Figure 13-18.

Instead of showing average utilization across all CPUs or disks, a heat map
with utilization on the y-axis is used, where the color for each time/utilization
range represents the number of devices at that utilization level. This allows vari-
ous problems to be identified: high utilization, poor scaling across components, and
single bad components (for example, a disk that is stuck on 100 percent utilization
or a software thread that is pinning a single CPU at 100 percent utilization). Fig-
ure 13-18 shows that a few CPUs are at a higher rate of utilization than the rest,
and several disks are completely unutilized (spares).

Drill-Downs

Ad hoc queries are formed by drilling down on a particular element in a break-
down statistic. The possible drill-downs for an element are shown when right-click-
ing the element, as shown in Figure 13-19.

If the drill-down statistic has further breakdowns, they can be selected to con-
tinue drilling down further. For example, starting with the raw statistic for
“NFSv3 operations per second” during load, the following four drill-downs were
performed by continuing to drill down on elements: 

Figure 13-18 Utilization heat map
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1. NFSv3 operations per second, broken down by type

2. NFSv3 operations per second of type read, broken down by client

3. NFSv3 operations per second of type read for client dace-1, broken down by 
file name

4. NFSv3 operations per second of type read for client dace-1, for file /export/
fs1/logfile1 broken down by offset

The last two are shown in Figure 13-20.
Behind the scenes, a DTrace script is being dynamically created from these

mouse clicks. Usually—depending on the statistic and breakdown—Analytics will

Figure 13-19 Drilling down with the mouse

Figure 13-20 Complex drill-downs
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seamlessly use other sources for statistics if available and appropriate, such as
Kstat (kernel statistics).

Controls

Above each graph is a set of controls for navigation of the statistics, as shown in
Figure 13-21.

There are 18 buttons in the control bar, each an icon to represent the action it
performs. Table 13-2 summarizes the function of these controls.

These are included here to further explain the Appliance interface; for a full
description of the functionality, see the product documents.8

Worksheets

Statistics are viewed on a worksheet, which can be named and saved. This allows
custom observability tools to be constructed as worksheets containing all the sta-
tistics of interest. 

8. These are both bundled with the appliance under the HELP wiki and in the Administration
Guide, currently at http://wikis.sun.com/display/Fishworks/Documentation.

Figure 13-21 Analytics control bar

Table 13-2 Analytics Control Descriptions

Button Function

1, 2, 3 Moving: left, right, pause

4, 5 Zooming: in, out (x-axis)

6, 7, 8, 9, 10 Time scale: minute, hour, day, week, month

11, 12 Find value: minimum, maximum

13 Toggle graph type: multi line / stacked

14 Synchronizing graphs

15 Drill down

16 Save this statistic as a dataset

17 Export visible statistic as CSV

18 Outlier elimination (y-axis zoom)

http://wikis.sun.com/display/Fishworks/Documentation
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By pausing a worksheet on a particular time and then saving it, you can easily
return to that time by opening the worksheet, which opens up all the statistics
that were being observed. This can be useful when examining an event such as a
performance issue, where a worksheet can be opened by other staff who will be
taken straight to the time and statistics for that event.

An entire worksheet can also be downloaded as a bundle for analysis on remote
systems. The bundle includes all the statistics in the worksheet, bounded by the
selected time range (x-axis) in the worksheet. It allows zooming in to one-second
granularity. These bundles are used during support, where a customer can create a
worksheet that spans an interesting event, and send a support engineer a bundle
containing all the data for remote analysis.

Datasets

Analytics allows statistics to be archived for historical analysis: These archived
statistics are called datasets, and they contain all data at a one-second granular-
ity. Recording them means that multiple DTrace enablings (one for each statistic)
are running continually.

To manage the size of data on disk, the administrator can check the size of these
datasets on the Analytics > Datasets screen and destroy or suspend any that are
too large. Datasets that can become particularly large include the by-file break-
downs when serving thousands of files, since each second contains a list of file-
names that were accessed, along with their operation/sec counts.  Heat maps can
become large, too, since the color of the pixel adds a third dimension. All of this
data is compressed on disk, by placing it on an Oracle ZFS share where compres-
sion is enabled.

The CPU overhead of recording these datasets has already been minimized by
the design of DTrace and is typically negligible. It is relative to the frequency of
events, and so is most noticeable when tracing network packets (which can reach
hundreds of thousands of packets per second). Times when this overhead can be a
factor include performing benchmarks that drive the system to its maximum,
where every last percentage point of performance matters. In those cases, the more
CPU expensive datasets can be suspended during the benchmark.

See Also

This section briefly showed how Analytics visualizes the data that DTrace makes
available, as a DTrace visual interface case study. For more information about this
topic, see the following:

“Visualizing System Latency” by Brendan Gregg, Communications of the 
ACM, July 2010
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“Analytics in the Sun 7000 Series” by Bryan Cantrill and Brendan Gregg9

Chapter 6, “Analytics,” of the Oracle Sun ZFS Storage 7000 Administration 
Guide10

Summary

This chapter demonstrated various tools built atop of DTrace, including the DTrace-
Toolkit, a large collection of scripts; and Analytics, a sophisticated GUI analyzer that
facilitates drill-down analysis and adds value to the data DTrace makes available.

9. http://blogs.sun.com/bmc/resource/cec_analytics.pdf

10. http://wikis.sun.com/display/FishWorks/Documentation

http://blogs.sun.com/bmc/resource/cec_analytics.pdf
http://wikis.sun.com/display/FishWorks/Documentation
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14
Tips and Tricks

DTrace is an extremely powerful and versatile tool, designed to provide observabil-
ity into systems that are inherently very complex. As with any other technology,
there is a learning curve, and as one gains experience with DTrace, one discovers
interesting ways to dig deeper and learn more about the systems and software
being analyzed and leverage the power of DTrace more effectively. Many have been
using DTrace extensively for many years and from that experience have gained
insight that can be shared with those at various stages of the DTrace learning
curve. In this chapter, we offer some tips and tricks to help you learn and apply
DTrace effectively based on our experiences and the experience of many others.1

Tip 1: Known Workloads

Before using DTrace to examine an unknown workload, consider generating a
known workload to examine as a controlled experiment. This should help you write
correct DTrace scripts much more quickly, because you can check the script output
vs. the known workload input. If there are systemic nuances that complicate anal-
ysis, they will be easier to grasp in the context of a known workload than of one
that is unknown.

1. http://dtrace.org/blogs/bmc/2005/06/20/yet-more-blog-sifting/ contains links to some very
interesting and educational blogs on having used DTrace to solve a specific problem.

http://dtrace.org/blogs/bmc/2005/06/20/yet-more-blog-sifting/
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As an example, let’s say I’d like to analyze NFS reads on a busy Solaris NFS
server. Rather than writing scripts to analyze the production workload, of which I
don’t yet have a clear understanding, my task will be easier if I first analyze a
known workload. To create one, use the dd command:

The client is Mac OS X, which mounts the share using NFSv3. The arguments
to dd shown earlier create a known workload of five 1KB reads—a simple work-
load to start with.

I then used DTrace on the NFS server to trace these reads. Since the NFS server
is busy processing other client requests, I used a predicate to match only reads
from our client, 192.168.56.1. The filename and size of each read were printed:

On the NFS server, there were 17 32KB reads to the file. This doesn’t match at
all what dd requested. To double-check, I repeated the dd command while DTrace
was tracing:

client# mount 192.168.56.3:/export/fs1 /mnt
client# dd if=/mnt/100m of=/dev/null bs=1024 count=5
5+0 records in
5+0 records out
5120 bytes transferred in 0.006986 secs (732905 bytes/sec)

server# dtrace -n 'nfsv3:::op-read-start /args[0]->ci_remote == "192.168.56.1"/ { prin
tf("%s read %d bytes", args[1]->noi_curpath, args[2]->count); }'
dtrace: description 'nfsv3:::op-read-start ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
  0  90345          rfs3_read:op-read-start /export/fs1/100m read 32768 bytes
^C

client# dd if=/mnt/100m of=/dev/null bs=1024 count=5
5+0 records in
5+0 records out
5120 bytes transferred in 0.000310 secs (16519105 bytes/sec)



ptg

Tip 2: Write Target Software 989

This time no NFS reads were seen on the server, despite dd successfully com-
pleting five reads.

If until now everything has behaved as you expected it, then you haven’t wasted
much time confirming what you already know (and you know your NFS pretty well).

If, instead, you are surprised by the mismatch, then you have made an impor-
tant discovery: Something went wrong with the workload, with the DTrace one-
liner, or with your understanding of NFS. At this point, you don’t know which, but
you can perform a simple experiment to figure it out.

Discoveries like these are common when using DTrace. By generating a simple
known workload and then tracing it, you will quickly iron out any issues before
encountering them in the unknown, and typically more complex, production work-
load. Also, the use of available benchmarking utilities makes it relatively easy to
generate a known load that serves two purposes—developing your DTrace and
understanding the data values returned, and verifying that the underlying subsys-
tem being measured can perform as expected. Utilities such as uperf or ttcp for
network loading and filebench for file system I/O loads are readily available and
easy to use.

Tip 2: Write Target Software

The previous tip was to start with a simple workload. Here we start with a simple
target.

Production applications can get complicated, and it can be difficult to learn
DTrace while at the same time learning the internals of a complex system. If com-
ponents of the production environment can be reproduced separately on a lab sys-
tem, they can be separately DTraced and understood before tackling them in the

server# dtrace -n 'nfsv3:::op-read-start /args[0]->ci_remote == "192.168.56.1"/ { prin
tf("%s read %d bytes", args[1]->noi_curpath, args[2]->count); }'
dtrace: description 'nfsv3:::op-read-start ' matched 1 probe
^C

Note

The issue is that dd is performing reads on the client, and those reads are being processed
by the client NFS driver. In the first case, the reads triggered the client NFS driver to perform
read-ahead. Read-ahead is where more data is fetched than was requested to prewarm the
DRAM-based client cache, in an effort to improve performance. In the second case, no NFS
reads were requested since the client satisfied the reads from its own client cache.
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context of the production environment. This will typically involve writing software
(which often reveals implementation details that are useful to know).

Apart from replicating parts of the production application, you can also repli-
cate specific issues in order to test analysis techniques and fine-tune DTrace
scripts. This could include small programs that exhibit hot code paths, lock conten-
tion, disk I/O, and network I/O.

As a simple example: An application is hot on-CPU, and it is important to quan-
tify which functions are responsible. To test whether profiling the on-CPU user-
land function might be an effective technique, a C program was written (hotcpu)
to generate a known workload:

This should cause func_beta() to be on-CPU ten times longer than func_
alpha(). This program was run and the user-land function was sampled at 1001
Hertz:

The output matches expectations: func_beta() was on-CPU during 2,905 sam-
ples, which is ten times func_alpha() at 290 samples. This approach can now be
applied to the target application with a greater degree of confidence.

Although this is only a simple example, the concept can be applied to much
more complex issues. Imagine writing a short program to exhibit a known rate of

 1  int i, j;
 2
 3  void func_alpha()
 4  {
 5          for (i = 0, j = 1; i < 1 * 1000000; i++) { j++; }
 6  }
 7
 8  void func_beta()
 9  {
10          for (i = 0, j = 1; i < 10 * 1000000; i++) { j++; }
11  }
12
13  int main(int argc, char *argv[])
14  {
15          while (1) {
16         func_alpha();
17         func_beta();
18          }
19          return (0);
20  }

# dtrace -n 'profile-1001 /execname == "hotcpu"/ { @[ufunc(arg1)] = count(); }'
dtrace: description 'profile-1001 ' matched 1 probe
^C

  hotcpu`func_alpha                   290
  hotcpu`func_beta                   2905
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adaptive mutex lock contention and using this program to develop and fine-tune
lock analysis scripts.

Tip 3: Use grep to Search for Probes

This may be obvious, but it’s worth mentioning: grep(1) can filter probe lists.
Some providers, such as fbt, make tens of thousands of probes available. A quick
way to find interesting probes from such a list can be to search for likely keywords
using grep. For example, searching for keyboard shows related probes in the fbt
provider on Solaris:

This has also matched modules that may be of interest, kbtrans and kb8042.
DTrace can perform simple searches like this using wildcards (*) as part of the
probe name (for this example, running dtrace -l 'fbt::*keyboard*:entry'),
but because it supports regular expressions, grep can apply more powerful filters. 

Tip 4: Frequency Count 

Another way to find probes of interest is to apply a known workload (see tip 1) and
frequency count probes to see which fire at a rate similar to the workload. 

For example, let’s say I wanted to investigate how ZFS processed mkdir on
Solaris, but I don’t know which probe to start tracing in the ZFS kernel module. As
a known workload, I run a shell script that runs mkdir 23 times from a ZFS direc-
tory, while frequency counting all zfs functions:

# dtrace -ln fbt:::entry | grep keyboard
71069        fbt  consconfig_dacf      plat_stdin_is_keyboard entry
72619        fbt   kbtrans  kbtrans_streams_set_keyboard entry
73083        fbt         kb8042 kb8042_send_to_keyboard entry

window1# ./run_mkdir_23_times.ksh
window2# dtrace -n 'fbt:zfs::entry { @[probefunc] = count(); }'
dtrace: description 'fbt:zfs::entry ' matched 1751 probes
^C

  bplist_vacate                     1
  dbuf_fill_done                     1
  dbuf_noread                    1
  dmu_buf_will_fill                    1
  dmu_free_range                     1
[... output truncated ...]
  metaslab_compare                    18

continues
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While the output was many pages long (containing more than 600 functions),
only three fired 23 times, matching the known workload. These included zfs_
mkdir(), which sounds like the best function from which to begin this investiga-
tion (I could also have found this with Tip 3).

Tip 5: Time Stamp Column, Postsort

On multi-CPU systems, the output of DTrace can become slightly shuffled because
of the way DTrace collects buffer data from each CPU in turn and prints it at a
default rate of 1 Hertz (configurable using the switchrate tunable). When it’s
important to analyze the output in the correct order, print a time stamp column
and postsort. Some DTrace-based scripts such as iosnoop have an option to do
this (iosnoop -t), which could then be postprocessed by the command-line
sort(1) utility (using a numeric sort: sort -n).

The following demonstrates the issue:

  dmu_zfetch_stream_remove                   19
  zfs_readdir                   22
  mzap_create_impl                    23
  zap_create_norm                     23
  zfs_mkdir                      23
  arc_free                    24
  dsl_dataset_block_born                     24
  dsl_dataset_block_kill                     24
[... output truncated ...]
  zio_wait_for_children                  29891
  dbuf_hash                  30199
  dbuf_rele                  31273
  dbuf_read                  34549
  propname_match                   74874
  zprop_name_to_prop_cb                  74874

# dtrace -n 'profile:::profile-3hz { trace(timestamp); }'
dtrace: description 'profile-3hz ' matched 1 probe
CPU     ID            FUNCTION:NAME
  0  41241         :profile-3hz  1898015274778547
  0  41241         :profile-3hz  1898015608118262
  0  41241         :profile-3hz  1898015941430060
  1  41241         :profile-3hz  1898015275499014
  1  41241         :profile-3hz  1898015609173485
  1  41241         :profile-3hz  1898015942505828
  2  41241         :profile-3hz  1898015275351257
  2  41241         :profile-3hz  1898015609180861
  2  41241         :profile-3hz  1898015942512708
  3  41241         :profile-3hz  1898015274803528
  3  41241         :profile-3hz  1898015608120522
  3  41241         :profile-3hz  1898015941449884
^C
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The time stamps printed are not in the correct order. Time stamp jumps occur
when DTrace collects data from a different CPU buffer, visible as a change in CPU
ID in the first column.

Tip 6: Use Perl to Postprocess

DTrace is capable of processing and presenting data in powerful ways, as demon-
strated by many of the scripts in this book. This includes associating thread events
to calculate delta times, using aggregations to print distribution plots, speculative
tracing to include output based on some later event, and much more. You could
spend a lot of time trying these features to achieve the desired output, but in some
cases it may be quicker to dump raw data and postprocess it in another language,
such as Perl.

We’re all for using DTrace as much as possible, and this can result in some
impressive standalone scripts. The point of this tip is to be practical: If you really
need to solve a problem quickly, there are a few advantages to simplifying a
DTrace script and post-processing its output.

The DTrace part should become simple and quick to write, for example, 
printf() statements.

The output can be reprocessed in different ways to produce different reports.

You may already know languages such as Perl really well.

Here’s an example of dumping potentially useful information from the io provider:

# dtrace -n 'io:::start,io:::done { printf("%d %d %s %s %x %d %d %d", timestamp, pid, 
execname, args[1]->dev_statname, arg0, args[0]->b_bcount, args[0]->b_blkno, args[0]->
b_flags); }'
dtrace: description 'io:::start,io:::done ' matched 10 probes
CPU     ID      FUNCTION:NAME
  0  24014    bdev_strategy:start 141488280383085 0 sched sd0 ffffff030a5c1e40 8192 16
95648 17301761
  0  24002     biodone:done 141488281001231 0 sched sd0 ffffff030a5c1e40 8192 16
95648 50856193
  0  24014    bdev_strategy:start 141488281130011 0 sched sd0 ffffff030a5c1e40 1536 17
04449 17301761
  0  24014    bdev_strategy:start 141488281226254 0 sched sd0 ffffff03371f7800 1536 56
10498 17301761
  0  24002     biodone:done 141488281292792 0 sched sd0 ffffff030a5c1e40 1536 17
04449 50856193
  0  24002     biodone:done 141488281575235 0 sched sd0 ffffff03371f7800 1536 56
10498 50856193
  0  24014    bdev_strategy:start 141488282042493 0 sched sd0 ffffff03371f7800 32256 1
704520 17301761
  0  24002     biodone:done 141488282253075 0 sched sd0 ffffff03371f7800 32256 1
704520 50856193
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Imagine you’re debugging an intermittent issue that occurs only once a day.
While developing DTrace scripts, it may take several iterations to get it to output
the desired summary. If you can test a script only once a day, it could take several
days to develop the desired DTrace script. Instead, you could write a simple
DTrace script that dumps everything of possible interest using printf() state-
ments, across whichever probes seem interesting. Then spend time developing a
Perl program to postprocess, without waiting for the next intermittent occurrence
of the issue. If the intermittent problem vanishes, you still have the raw data to
continue your analysis.

Tip 7: Learn Syscalls

By tracing system calls, you can examine all application I/O as well as file system
and process operations. Because system calls have a reasonably stable interface
that is also well documented (man pages), they provide excellent probe points for
use with DTrace. By learning system calls well, you may also discover some clever
uses of syscall provider probes.

For example, the syscall provider can be used to discover application configura-
tion files by tracing all open() syscalls while the application is launched. Here
sshd (the SSH daemon) is examined while it is restarted:

  0  24014    bdev_strategy:start 141488302929675 0 sched sd0 ffffff0304da7c80 131072 
1650176 17301761
  0  24014    bdev_strategy:start 141488303307458 0 sched sd0 ffffff0336e4c580 131072 
1650432 17301761
...

# dtrace -n 'syscall::open*:entry /execname == "sshd"/ { @[copyinstr(arg0)] = 
count(); }'
dtrace: description 'syscall::open*:entry ' matched 2 probes
^C

  /dev/conslog                      1
  /dev/null                       1
  /dev/tty                    1
  /etc/default/login                      1
  /etc/netconfig                     1
  /etc/ssh/ssh_host_dsa_key                    1
  /etc/ssh/ssh_host_rsa_key                    1
  /etc/ssh/sshd_config                     1
  /lib/libbsm.so.1                     1
  /lib/libcrypto.so.0.9.8                    1
  /lib/libgen.so.1                     1
  /lib/libnsl.so.1                     1
  /lib/libsocket.so.1                    1
  /lib/svc/method/sshd                     1
  /usr/lib/libgss.so.1                     1
  /usr/share/lib/zoneinfo/UTC                    1
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The configuration files under /etc have been identified, along with other files
of interest, including the PID file in /var/run.

A trickier example was shown in Chapter 7, Network Protocols, for tracing SSH
logins via the chdir() syscall:

This assumes that sshd executes chdir() to the user home directory after
becoming the user.

Other clever uses have been shown in this book, especially for cases where a sta-
ble DTrace provider is not available and the syscall provider is the next best
option.

Tip 8: timestamp vs. vtimestamp

DTrace provides two nanosecond timestamp variables, timestamp and vtimestamp.
timestamp is elapsed time since system boot, in nanoseconds. vtimestamp is also
nanoseconds but begins at thread creation and is incremented only when that
thread is on-CPU.

The delta between two measurements of these timestamp types can answer the
following:

timestamp2 – timestamp1: Elapsed time, wall clock time, or latency

vtimestamp2 – vtimestamp1: On-CPU time

Knowing these deltas can lead to areas of further analysis for understanding
latency.

As an example, the following code calculates these deltas for the read() syscall.
(A system call is chosen for this example as it makes association between the
points easy: self-> variables can be used without worrying about recursive
entry.)

  /var/run/sshd.pid                    1
  /dev/udp                    2
  /lib/libc.so.1                     2
  /var/ld/ld.config                    2
  /var/run/syslog_door                     2

server# dtrace -n 'syscall::chdir:entry /execname == "sshd"/ { printf("UID:%d %s", 
uid, copyinstr(arg0)); }'
dtrace: description 'syscall::chdir:entry ' matched 1 probe
CPU     ID            FUNCTION:NAME
  9  14265         chdir:entry UID:130948 /home/brendan
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Now that elapsed and on-CPU time are known, the following interpretation can
be applied.

elapsed ~= oncpu: Latency is due to on-CPU time.

elapsed >> oncpu: Latency is due to off-CPU time.

This determination points to areas we can analyze to understand latency further:

On-CPU time: Hot code paths, lock contention, CPU cross calls, memory bus 
I/O, and so on

Off-CPU time: Disk I/O, network I/O, lock wait, CPU dispatcher queue 
latency, and so on

So, the timestamp and vtimestamp deltas are very useful to know and compare.

Tip 9: profile:::profile-997 and Profiling

The profile probe (from the profile provider) allows DTrace to sample on all CPUs
at a custom interval, specified in Hertz if no units are given. It’s best to use an odd-
or unusually numbered interval (profile-997, profile-1001, profile-1234),
instead of a round number such as profile-1000 (sample every millisecond), to
avoid sampling in lockstep with any scheduled task that is also running every mil-
lisecond, which would unfairly inflate (or deflate) any activity measured in the
samples.

Profiling software in this way is a quick and effective technique to see where
CPU cycles are spent. The action taken when the profile probe fires can be to sam-
ple the function or stack trace that is on-CPU. Profiling was used in Chapter 9,
Applications, to profile user-level software and in Chapter 12, Kernel, to profile the
kernel. Both of these were performed with one-liners, which are among the most
useful (and frequently used) DTrace one-liners:

syscall::read:entry
{
      self->start = timestamp;
      self->vstart = vtimestamp;
}

syscall::read:return
/self->start/
{
      this->elapsed = timestamp - self->start;
      this->oncpu = vtimestamp - self->vstart;
...
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User stack trace profile at 101 Hertz, showing process name and stack:

Kernel stack trace profile at 1001 Hertz:

Tip 10: Variable Scope and Use

Recall DTrace provides different types of user-defined variables that differ in scope:

Global variables, such as variable_name

Thread-local variables, such as self->variable_name

Clause-local variables, such as this->variable_name

Aggregation variables, such as @variable_name

Thread-local variables (self->) can be referenced by different probes in the
same thread context, whereas clause-local variables (this->) can be referenced
only in action blocks for the same probe. The performance impact of clause-local
variables is lower, so they should be used whenever possible, such as for tempo-
rary calculations in an action block.

Some DTrace scripts use thread-local variables to contain temporary strings in
an action block, only because the first release of Solaris 10 did not allow clause-
local string variables.

Thread-Local Variables

Thread-local variables can be referenced by different probes in the same thread
context. This can be very useful when coordinating different events such as a sys-
tem call being made by an application and the kernel functions involved in execut-
ing that system call. There are certain instances, however, in which seemingly
related probes don’t necessarily fire in the same thread context.

The io provider start and done probes are a good example of probes that gen-
erally fire in the same thread. It might be tempting to use the following script to
gather statistics on how long individual I/Os are taking to complete:

dtrace -n 'profile-101 { @[execname, ustack()] = count(); }'

dtrace -n 'profile-1001 { @[stack()] = count(); }'
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Unfortunately, this script will give the wrong data. Although it’s possible that
io:::start might fire synchronously with respect to the thread causing this I/O,
the io:::done probe will not. When the I/O completes, the done probe will fire in
the context of whichever thread happens to be on-CPU at the time. Because the
thread that initiated this I/O is sleeping waiting for the I/O to finish, it will never be
the case that the done probe fires in the same thread in which the start probe fired.

When using probes that fire in different thread contexts, you need to find some
unique identifier associated with this probe and use a global array indexed on that
identifier. For the io provider, the device and block number are useful as a unique
identifier. The previous script would be rewritten as follows:

Instead of using a thread-local variable, we implemented a global variable
(start) using data made available from the probe arguments that will be unique
for a given firing of the io:::start probe.

Clause-Local Variables

Although intended for use within a single clause, since clause-local variables
(this->) are not freed at the end of a clause, they may be accessed in other
clauses with the same probe name.

#!/usr/sbin/dtrace -qs

io:::start
{
    self->ts = timestamp;
}

io:::done
/self->ts/
{
    @ = avg(timestamp – self->ts);
    self->ts = 0;
}

#!/usr/sbin/dtrace -ws

io:::start
{
    start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
    @ = avg(timestamp - start[args[0]->b_edev, args[0]->b_blkno]);
    start[args[0]->b_edev, args[0]->b_blkno] = 0;
}



ptg

Tip 11: strlen() and strcmp() 999

Global and Aggregation Variables

Although global variables may work, try to use aggregate variables instead. For
example, any time a counter is needed such as x++, use an aggregation instead:
@x = count(). This will usually be possible if the counter is gathering the data to
be printed; it may not be possible if the counter must be used within a predicate or
an arithmetic expression.

The reason for this is that aggregations are designed to be multi-CPU safe,
whereas the global variables are not. There are cases where a global variable can
become invalid when written to by DTrace actions firing on multiple CPUs.

As an example, consider the following DTrace script:

On a multi-CPU system, we would expect to see the global variable and the
value stored in the aggregation deviate because of the method involved in updat-
ing the global variable. Even on a system with only two CPUs, we can hit this situ-
ation very frequently, as shown in the following output:

Tip 11: strlen() and strcmp()

These functions and the strings that they process can be traced via the pid pro-
vider, which can sometimes help navigate an unfamiliar body of code.

For example, the argument to strlen() and the user stack trace were traced
for a bash shell, while ls -l was typed in that shell. One of the stacks discovered
was the following:

#!/usr/sbin/dtrace -qs

profile-997
{
    total++;
    @ = count();
}

END
{
    printf("Global == %d\n", total);
    printf("Aggregate == %@d\n", @);
}

# ./global.d
^C
Global == 10661
Aggregate == 15254

#
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The output includes the ls -l command string, implying that this stack trace is
related to the processing of commands. Reading the stack trace from the bottom up
shows this strlen() was used while adding the command to the bash history.2

So, by simply tracing strlen(), we now have an idea of the code flow within bash
for this particular action (adding history). strcmp() and the other string func-
tions may also be used for this type of experiment.

Tip 12: Check Assumptions

DTrace lets you check your assumptions, usually with short one-liners. Try to get
into the habit of not only being aware of the assumptions you are making but also
checking them where possible with DTrace.

For example, you might assume that operating system statistics such as net-
work interface statistics are always correct. This isn’t true: Bugs happen.  DTrace
can be used to calculate statistics from different points in the system to double-check
their accuracy. (This has unearthed statistics bugs on more than one occasion.)

# dtrace -n 'pid$target::strlen:entry { @[copyinstr(arg0), ustack()] = 
count(); }' -p 592
dtrace: description 'pid$target::strlen:entry ' matched 2 probes
^C
[... output truncated ...]
  ls -l

    libc.so.1`strlen
   bash`alloc_history_entry+0x23
    bash`add_history+0xdd
   bash`really_add_history+0x22
   bash`bash_add_history+0x114
   bash`check_add_history+0x52
   bash`maybe_add_history+0x57
   bash`pre_process_line+0xe6
    bash`shell_getc+0x312
    bash`read_token+0x3f

     bash`yylex+0x95
    bash`yyparse+0x2c1
    bash`parse_command+0x64
    bash`read_command+0xb2
    bash`reader_loop+0x11b

     bash`main+0x6dd
    bash`_start+0x7d

                1

2. Yes, this stack trace is real and is one of my favorites.
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Tip 13: Keep It Simple

And stable. It’s possible to write long and complex DTrace scripts, especially when
navigating the thousands of available probes from the fbt and pid providers. An
example of this is the fbt-based tcpsnoop.d, shown and explained in Chapter 6,
Network Lower-Level Protocols. Although you can write scripts like this, try to
solve your tracing needs with short and simple scripts instead.

Long scripts become difficult to maintain. And if they use unstable providers
such as fbt and pid, they will need maintenance to match changes in the target
software. Always check for the availability of stable providers first, because more
are being written each year.

It’s also easy to write incorrect DTrace scripts. With DTrace, you can quickly go
from having no visibility in an area to producing numerous custom statistics.
Without careful checking and testing, these statistics can be dead wrong, and if
you previously had no visibility into an area, it may not be obvious that the statis-
tics are wrong. Short and simple scripts are easier to check and verify.

Tip 14: Consider Performance Impact

DTrace has been designed to minimize its impact on performance. This design
includes the following:

Per-CPU kernel buffers that are read by user-land dtrace at a slow rate 
(switchrate)

Dropping events when the rate is too high

“Abort due to systemic unresponsiveness”

On systems with a large number of CPUs, the startup cost of DTrace can be
minimized by tuning down the principal buffer size (4MB by default). This may
require some incremental steps to avoid DTrace warning of data drops (see tip 15),
but it is very easy to do either on the command line or within a script:

or

# dtrace -b 512k -n 'syscall:::entry { @[execname,probefunc] = count(); }'

# dtrace -x bufsize=512k -n 'syscall:::entry { @[execname,probefunc] = count(); }'
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or, in a D script:

However, you should keep in mind that there may still be a small impact on per-
formance. Enabled DTrace probes have a small CPU cost for execution, which can
affect performance when DTrace probes are firing frequently. The easiest way to
determine this impact is to run dtrace for a number of seconds as an experiment
and to measure the performance loss while dtrace is running. To ensure dtrace
stops running after a number of seconds, the profile provider tick probe can be
used to call exit() after the desired interval.

Taking that one step further, it can be useful when using DTrace on a busy pro-
duction system to leverage the ability to specify very short time durations with the
tick probe, to ensure DTrace will exit quickly, and to gradually increase the dura-
tion once it is determined that the D being executed is not inducing application
issues. For example, start with this:

in your DTrace script (or even tick-500msec). If the D is running as expected,
increase the duration to capture a more meaningful sample.

In general, be careful when probes are firing more than 10,000 times per sec-
ond. The impact also depends on the CPU horsepower of the target system and the
complexity of the DTrace actions. Actions that have a higher performance cost
include copyin() and copyinstr(), which copy data from the user to the kernel
address space.

The pid provider can especially hurt performance if misused, because it can
trace not only every function entry and return in user-level software but also every
instruction—potentially millions of probes. Caution should be taken to account for
the number of probes enabled and their frequency. (See Chapter 9, Applications,
for more discussion on the pid provider.)

Performance can also suffer when outputting large volumes of trace data to an X
Windows screen on the same server that is being DTraced (where performance
impact is due to screen updates).

Although there are scenarios where the performance cost may be high (for
example, tracing details of all malloc() calls by a busy application), the informa-
tion retrieved by DTrace may nonetheless be worth the cost.

#pragma D option bufsize=512k

tick-1sec
{
      exit(0);
}
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Tip 15: drops and dynvardrops

If the DTrace main buffer overflows because of the system’s inability to drain it
quickly enough, “drops” warnings will be printed (for example, dtrace: 710 drops
on CPU 0). To eliminate these warnings, the principal buffer size can be increased
with either the -b option at the command line or the bufsize tunable option. The
default is 4MB per CPU. Another fix may be to increase the switchrate tunable
option to flush the buffers more quickly than the default of once per second. 

Another type of warning is dynvardrops, when the dynamic variable buffer
overflows. The dynvarsize tunable can be used to increase the size of this buffer.
This often happens when assigning dynamic variables and then forgetting to free
them after they are no longer needed, and over time they can fill the dynamic vari-
able buffer to the point of dynvardrops. Rather than increase the dynvarsize
variable, first inspect your D script to determine whether there are variables you
should be freeing but are not. Note dynvardrops must be eliminated for correct
results. 

Tip 16: Tail-Call Optimization

This is a compiler optimization feature to reuse the caller’s stack frame when one
function ends by calling another function. Although this saves register window
instructions, it causes a problem for DTrace—the function return probe will fire
before the entry probe. This happens more frequently on SPARC than x86 platforms.

There is another optimization you may encounter that has the side effect of a
function return probe not firing at all. This can happen when a function returns
into its parent function, which then immediately returns; the compiler can opti-
mize the first return to skip past the second to save instructions. As a conse-
quence, DTrace sees the function entry probe fire but not the return probe.

Further Reading

See Advanced DTrace Tips, Tricks and Gotchas by Bryan Cantrill, Mike Shapiro,
and Adam Leventhal.3

3. http://dtrace.org/blogs/bmc/2005/02/28/dtrace-tips-tricks-and-gotchas/

http://dtrace.org/blogs/bmc/2005/02/28/dtrace-tips-tricks-and-gotchas/
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A
DTrace Tunable 
Variables

Several tunable variables are available within DTrace for customization when nec-
essary. Many of these variables are named at the DTrace consumer level to facili-
tate per-consumer modifications (that is, per instance of dtrace(1M) either as a
one-liner or as a D script), with a corresponding kernel variable name that will
have systemwide scope (affecting every instance of dtrace(1M)). The default val-
ues work very well the majority of the time. For the most part, changing the
default value can and should be done on a per-consumer basis vs. systemwide.
Table A-1 is taken from the “Options and Tunables” chapter of the DTrace Guide,1

with some additional information, such as the default values on Solaris 10.
The different ways to set tunable variables are as follows:

Per-consumer, command line: -x consumer_variable_name=value

Per-consumer, D script: #pragma D option consumer_variable_
name=value

Systemwide, Solaris /etc/system: set kernel_variable_name=value

As listed in Table A-1, some tunable variables have command-line aliases for
convenience, for example, using -b size instead of -x bufsize=size. Note that

1. See the bibliography for the current location of the DTrace Guide.
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a few of the tunables are simply set and do not require a value to be specified;
these are those with “Disabled” in the Default Value column, for example, using
either -q or -x quiet for quiet mode.

Table A-1 DTrace Tunable Variables

Consumer
Variable Name

Kernel Tunable 
Variable Name

Default
Value

dtrace(1M)
Alias Description

aggrate dtrace_
aggrate_
default

1Hz None Rate at which aggre-
gation buffers are 
read.

Aggsize None 4MB None The per-CPU size of 
aggregation buffers.

bufresize None Auto None Buffer resizing policy. 
Optional setting of 
manual will cause 
DTrace to fail to start if 
an allocation failure 
occurs. This variable 
affects all DTrace buf-
fers. See the “Buffers 
and Buffering” chapter 
in the DTrace Guide.

bufsize None 4MB -b The per-CPU size of 
principal buffers.

bufpolicy None Switch None The buffer manage-
ment policy used. 
Optional settings are 
fill and ring. See 
the “Buffers and Buff-
ering” chapter in the 
DTrace Guide.

cleanrate dtrace_
cleanrate_
default

101Hz None The rate at which 
speculative buffers are 
cleaned. See the 
“Speculations” sec-
tion in Chapter 2.

cpu None None—
all CPUs

-c The CPU on which to 
enable tracing. By 
default, buffer alloca-
tion and tracing is 
enabled for all CPUs.

continues
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defaultargs None Disabled None Allow use of $1..$N
macro variables while 
they are undefined at 
the command line; for 
which integers default 
to zero, strings to NULL.

destructive dtrace_
destructive_
disallow

Disabled -w Allow destructive 
actions, including 
raise() and panic().
See Appendix B.

dynvarsize dtrace_dstate_
defsize

1MB None Dynamic variable 
space size.

flowindent None Disabled -F Indent function entry 
and prefix with ->;
unindent function 
return and prefix 
with <-.

grabanon None Disabled -a Claim anonymous 
state. See the “Anony-
mous Tracing” section 
in Chapter 12.

jstackframes dtrace_
jstackframes_
default

50 None Maximum number of 
default jstack()
stack frames.

jstackstr-
size

dtrace_
jstackstrsize_
default

512
bytes

None Default string space 
size for jstack().

nspec dtrace_nspec_
default

1 None Number of specula-
tions (number of spec-
ulative buffers).

quiet None Disabled -q When enabled, out-
put only explicitly 
traced data.

rawbytes None Disabled None When enabled, trace-
mem generates only 
hexidecimal data.

specsize dtrace_
specsize_
default

32KB None Size of speculation 
buffers.

continues

Table A-1 DTrace Tunable Variables (Continued)

Consumer
Variable Name

Kernel Tunable 
Variable Name

Default
Value

dtrace(1M)
Alias Description
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The dumpvars.d script (shown here) can be executed on your target system to
dump the current values of DTrace kernel tunable variables. Note this script does
not work on FreeBSD 8.0.

strsize dtrace_
strsize_
default

256
bytes

None Size available for string 
variables.

stackframes dtrace_
stackframes_
default

20 None Maximum number of 
kernel stack frames 
(stack()).

stackindent None 14 None Number of whitespace 
characters to use 
when indenting 
stack() and 
ustack() output.

statusrate dtrace_
statusrate_
default

1Hz None Rate of status checking.

switchrate dtrace_
switchrate_
default

1Hz None Rate of switch buffer 
switching.

ustackframes dtrace_
ustackframes_
default

20 None Maximum number of 
user stack frames 
(ustack()).

solaris# ./dumpvars.d
dtrace_destructive_disallow:  0
dtrace_nonroot_maxsize:      16777216
dtrace_difo_maxsize:       262144
dtrace_dof_maxsize:       262144
dtrace_global_maxsize:      16384
dtrace_actions_max:       16384
dtrace_retain_max:        1024
dtrace_helper_actions_max:    32
dtrace_helper_providers_max:  32
dtrace_dstate_defsize:      1048576
dtrace_strsize_default:      256
dtrace_cleanrate_default:     9900990
dtrace_cleanrate_min:       200000
dtrace_cleanrate_max:      60000000000
dtrace_aggrate_default:     1000000000
dtrace_statusrate_default:    1000000000
dtrace_statusrate_max:      10000000000
dtrace_switchrate_default:    1000000000

Table A-1 DTrace Tunable Variables (Continued)

Consumer
Variable Name

Kernel Tunable 
Variable Name

Default
Value

dtrace(1M)
Alias Description
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dtrace_nspec_default:       1
dtrace_specsize_default:      32768
dtrace_stackframes_default:   20
dtrace_ustackframes_default:  20
dtrace_jstackframes_default:  50
dtrace_jstackstrsize_default: 512
dtrace_msgdsize_max:        128
dtrace_chill_max:        500000000
dtrace_chill_interval:      1000000000
dtrace_devdepth_max:        32
dtrace_err_verbose:        0
dtrace_deadman_interval:     1000000000
dtrace_deadman_timeout:     10000000000
dtrace_deadman_user:       30000000000

macosx# ./dumpvars.d
dtrace_destructive_disallow:  0
dtrace_nonroot_maxsize:      16777216
dtrace_difo_maxsize:       262144
dtrace_dof_maxsize:       393216
dtrace_global_maxsize:      16384
dtrace_actions_max:       16384
dtrace_retain_max:        1024
dtrace_helper_actions_max:    32
dtrace_helper_providers_max:  32
dtrace_dstate_defsize:      1048576
dtrace_strsize_default:      256
dtrace_cleanrate_default:     9900990
dtrace_cleanrate_min:       200000
dtrace_cleanrate_max:      60000000000
dtrace_aggrate_default:     1000000000
dtrace_statusrate_default:    1000000000
dtrace_statusrate_max:      10000000000
dtrace_switchrate_default:    1000000000
dtrace_nspec_default:       1
dtrace_specsize_default:      32768
dtrace_stackframes_default:   20
dtrace_ustackframes_default:  20
dtrace_jstackframes_default:  50
dtrace_jstackstrsize_default: 512
dtrace_msgdsize_max:        128
dtrace_chill_max:        500000000
dtrace_chill_interval:      1000000000
dtrace_devdepth_max:        32
dtrace_err_verbose:        0
dtrace_deadman_interval:     1000000000
dtrace_deadman_timeout:     10000000000
dtrace_deadman_user:       30000000000

#!/usr/sbin/dtrace -qs
dtrace:::BEGIN
{
      printf("dtrace_destructive_disallow:  %d\n",`dtrace_destructive_disallow);
      printf("dtrace_nonroot_maxsize:  %d\n",`dtrace_nonroot_maxsize);
      printf("dtrace_difo_maxsize:    %d\n",`dtrace_difo_maxsize);
      printf("dtrace_dof_maxsize:    %d\n",`dtrace_dof_maxsize);
      printf("dtrace_global_maxsize:   %d\n",`dtrace_global_maxsize);
      printf("dtrace_actions_max:    %d\n",`dtrace_actions_max);
      printf("dtrace_retain_max:    %d\n",`dtrace_retain_max);

continues
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      printf("dtrace_helper_actions_max: %d\n",`dtrace_helper_actions_max);
      printf("dtrace_helper_providers_max:  %d\n",`dtrace_helper_providers_max);
      printf("dtrace_dstate_defsize:  %d\n",`dtrace_dstate_defsize);
      printf("dtrace_strsize_default:  %d\n",`dtrace_strsize_default);
      printf("dtrace_cleanrate_default: %d\n",`dtrace_cleanrate_default);
      printf("dtrace_cleanrate_min:   %d\n",`dtrace_cleanrate_min);
      printf("dtrace_cleanrate_max:   %d\n",`dtrace_cleanrate_max);
      printf("dtrace_aggrate_default:  %d\n",`dtrace_aggrate_default);
      printf("dtrace_statusrate_default: %d\n",`dtrace_statusrate_default);
      printf("dtrace_statusrate_max:  %d\n",`dtrace_statusrate_max);
      printf("dtrace_switchrate_default: %d\n",`dtrace_switchrate_default);
      printf("dtrace_nspec_default:   %d\n",`dtrace_nspec_default);
      printf("dtrace_specsize_default:  %d\n",`dtrace_specsize_default);
      printf("dtrace_stackframes_default:   %d\n",`dtrace_stackframes_default);
      printf("dtrace_ustackframes_default:  %d\n",`dtrace_ustackframes_default);
      printf("dtrace_jstackframes_default:  %d\n",`dtrace_jstackframes_default);
      printf("dtrace_jstackstrsize_default: %d\n",`dtrace_jstackstrsize_default);
      printf("dtrace_msgdsize_max:   %d\n",`dtrace_msgdsize_max);
      printf("dtrace_chill_max:     %d\n",`dtrace_chill_max);
      printf("dtrace_chill_interval:  %d\n",`dtrace_chill_interval);
      printf("dtrace_devdepth_max:   %d\n",`dtrace_devdepth_max);
      printf("dtrace_err_verbose:    %d\n",`dtrace_err_verbose);
      printf("dtrace_deadman_interval:  %d\n",`dtrace_deadman_interval);
      printf("dtrace_deadman_timeout:  %d\n",`dtrace_deadman_timeout);
      printf("dtrace_deadman_user:   %d\n",`dtrace_deadman_user);

      exit(0);
}
Script dumpvars.d
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To provide the most complete reference possible, Tables B-1 through B-18, listing
built-in variables and built-in functions, are based on Solaris Nevada, circa June
2010, which has the most available. It is possible that some of the variables and/or
functions listed in these tables will not be available, depending on which operat-
ing system, and which version of a specific operating system, is being used.

Table B-1 Built-in Variables

Type and Name Description

int64_t arg0, ..., arg9 The first ten input arguments to a probe represented as 
raw 64-bit integers. If fewer than ten arguments are 
passed to the current probe, the remaining variables 
return zero.

args[] The typed arguments to the current probe, if any. The 
args[] array is accessed using an integer index, but 
each element is defined to be the type corresponding to 
the given probe argument (if type information is avail-
able). For example, if args[] is referenced by a read(2)
system call probe, args[0] is of type int, args[1] is of 
type void *, and args[2] is of type size_t.

uintptr_t caller The program counter location of the current kernel 
thread at the time the probe fired.

continues
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uintptr_t ucaller The program counter location of the current user thread 
at the time the probe fired.

chipid_t chip The CPU chip identifier for the current physical chip.

processorid_t cpu The CPU identifier for the current CPU.

cpuinfo_t *curcpu The CPU information for the current CPU.

lwpsinfo_t *curlwpsinfo The lightweight process (LWP) state of the LWP associ-
ated with the current thread. 

psinfo_t *curpsinfo The process state of the process associated with the cur-
rent thread. 

kthread_t *curthread The address of the operating system kernel’s internal data 
structure for the current thread; for Solaris, the 
kthread_t. The kthread_t is defined in <sys/
thread.h>. Refer to Solaris Internals for more informa-
tion on this variable and other operating system data 
structures.

string cwd The name of the current working directory of the process 
associated with the current thread.

uint_t epid The enabled probe ID (EPID) for the current probe. This 
integer uniquely identifies a particular probe that is 
enabled with a specific predicate and set of actions.

int errno The error value returned by the last system call executed 
by this thread.

string execname The name that was passed to exec(2) to execute the 
current process.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is the system-
wide unique identifier for the probe as published by 
DTrace and listed in the output of dtrace -l.

uint_t ipl The interrupt priority level (IPL) on the current CPU at 
probe firing time. Refer to Solaris Internals for more infor-
mation on interrupt levels and interrupt handling in the 
Solaris operating system kernel.

lgrp_id_t lgrp The latency group ID for the latency group of which the 
current CPU is a member.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

Table B-1 Built-in Variables (Continued)

Type and Name Description
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string probefunc The function name portion of the current probe’s 
description.

string probemod The module name portion of the current probe’s 
description.

string probename The name portion of the current probe’s description.

string probeprov The provider name portion of the current probe’s 
description.

psetid_t pset The processor set ID for the processor set containing the 
current CPU.

string root The name of the root directory of the process associated 
with the current thread.

uint_t stackdepth The current thread’s kernel stack frame depth at probe 
firing time.

id_t tid The thread ID of the current thread. For threads associ-
ated with user processes, this value is equal to the result 
of a call to pthread_self(3C).

uint64_t timestamp The current value of a nanosecond timestamp counter. 
This counter increments from an arbitrary point in the 
past and should be used only for relative computations.

uintptr_t ucaller The program counter location of the current user thread 
at the time the probe fired.

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread’s saved user-mode register values at 
probe firing time. Use of the uregs[] array is discussed 
in the “User Process Tracing” chapter of the DTrace Guide.

uint64_t ustackdepth The current thread’s user stack depth.

uint64_t vtimestamp The current value of a nanosecond timestamp counter 
that is virtualized to the amount of time that the current 
thread has been running on a CPU, minus the time spent 
in DTrace predicates and actions. This counter incre-
ments from an arbitrary point in the past and should be 
used only for relative time computations.

uint64_t walltimestamp The current number of nanoseconds since 00:00 Univer-
sal Coordinated Time, January 1, 1970.

string zonename The name of the zone.

Table B-1 Built-in Variables (Continued)

Type and Name Description
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Table B-2 Built-in Functions

Function Name and Prototype Description

Subroutines

void *alloca(size_t size) Allocates size bytes out of scratch space. Returns a 
pointer to the allocated space.

string basename(char *str) Creates a copy of the string str, without a prefix 
that ends in /.

void bcopy(void *src, void 
*dest, size_t size)

Copies size bytes from src address to dest address.

string cleanpath(char *str) Creates a string that consists of a copy of the path 
pointed to by str, but with certain redundant ele-
ments removed and with /./ and /../ elements 
collapsed.

void *copyin(uintptr_t 
addr, size_t size)

Copies the specified size in bytes from the specified 
user address into a DTrace scratch buffer and returns 
the address of this buffer

string copyinstr(uintptr_t 
addr)

string copyinstr(uintptr_t 
addr, size_t maxlength)

Copies a null-terminated C string from the specified 
user address into a DTrace scratch buffer and returns 
the address of this buffer.

void copyinto(uintptr_t 
addr, size_t size, void 
*dest)

Copies the specified size in bytes from the specified 
user address into the DTrace scratch buffer specified 
by dest.

string ddi_pathname(dev_
info_t *, minor_number)

Returns the device pathname for the dev_info_t
and device minor number.

string dirname(char *str) Creates a string that consists of all but the last level of 
the pathname specified by str.

void exit(int status) The exit action is used to immediately stop tracing 
and exit the consumer.

void ftruncate() Truncates STDOUT.

_symaddr func(uintptr_t 
addr)

Returns the kernel function associated with addr.

int getmajor(dev_t) Returns the major number of the device referenced 
by dev_t.

int getminor(dev_t) Returns the minor number of the device referenced 
by dev_t

uint32_t htonl(uint32_t) Converts a 32-bit value from host byte order to net-
work byte order.

uint64_t htonll(uint64_t) Converts a 64-bit value from host byte order to net-
work byte order.
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uint16_t htons(uint16_t) Converts a 16-bit value from host byte order to net-
work byte order.

int index(string, char) Returns a pointer to the first occurrence of char in 
string.

string inet_ntoa(ipaddr_t 
*addr)

Takes a pointer to an IPv4 address and returns it as a 
dotted quad decimal string.

string inet_ntoa6(in6_
addr_t *addr)

Takes a pointer to an IPv6 address and returns it as an 
RFC 1884 convention 2 string, with lowercase hexa-
decimal digits.

string inet_ntop(int af, 
void *addr)

Takes a pointer to an IP address and returns a string 
version depending on the provided address family.

string lltostr(uint64_t) Returns a pointer to a string represented by 64-bit 
unsigned integer value.

_symaddr mod(address) Returns the kernel module associated with address.

size_t msgdsize(mblk_t *mp) Returns the number of bytes in the data message 
pointed to by mp.

size_t msgsize(mblk_t *mp) Returns the number of bytes in the message pointed 
to by mp: total bytes, not just data bytes.

int mutex_owned(kmutex_t 
*mutex)

Returns nonzero if the calling thread currently holds 
the specified kernel mutex, or returns zero if the 
specified adaptive mutex is currently unowned.

kthread_t *mutex_
owner(kmutex_t *mutex)

Returns the thread pointer of the current owner of 
the specified adaptive kernel mutex. mutex_owner
returns NULL if the specified adaptive mutex is cur-
rently unowned or if the specified mutex is a spin 
mutex.

int mutex_type_adap-
tive(kmutex_t *mutex)

Returns nonzero if the specified kernel mutex is of 
type MUTEX_ADAPTIVE or zero if it is not.

int mutex_type_spin(
kmutex_t *)

Returns nonzero if the specified kernel mutex is of 
type MUTEX_SPIN or zero if it is not.

uint32_t ntohl(uint32_t) Converts a 32-bit value from network byte order to 
host byte order.

uint64_t ntohll(uint64_t) Converts a 64-bit value from network byte order to 
host byte order.

uint16_t ntohs(uint16_t) Converts a 16-bit value from network byte order to 
host byte order.

continues

Table B-2 Built-in Functions (Continued)

Function Name and Prototype Description
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int progenyof(pid_t pid) Returns nonzero if the calling process (the process 
associated with the thread that is currently triggering 
the matched probe) is among the progeny of the 
specified process ID.

int rindex(string, char) Returns a pointer to the last occurrence of char in 
string.

int rand(void) Returns a pseudo-random integer.

int rw_iswriter(krwlock_t 
*rwlock)

Returns nonzero if the specified reader-writer lock is 
either held or desired by a writer. If the lock is held 
only by readers and no writer is blocked or if the lock 
is not held at all, rw_iswriter returns zero.

int rw_read_held(krwlock_t 
*rwlock)

Returns nonzero if the specified reader-writer lock is 
currently held by one or more readers, or zero 
otherwise.

int rw_write_held(krwlock_t
*rwlock)

Returns nonzero if the specified reader-writer lock is 
currently held by a writer. If the lock is held only by 
readers or not held at all, rw_write_held returns 
zero.

string strchr(string, char) Returns the first occurrence of char in string.

string strjoin(string1, 
string2)

Creates a string that consists of str1 concatenated 
with str2.

string strrchr(string, 
char)

Returns the last occurrence of char in string.

string strstr(string1, 
string2)

Returns the position of the first occurrence of 
string2 in string1.

string strtok(string1, 
string2)

Returns a token for string.

size_t strlen(string) Returns the length of the specified string in bytes, 
excluding the terminating null byte.

string substr(string, pos, 
len)

Returns the substring of string starting at position 
pos for length len.

Data Recording Actions 

_symaddr sym(uintptr_t 
address)

Print the kernel symbol for the specified kernel 
address.

void trace(expression) Takes a D expression as its argument and traces the 
result to the directed buffer

Table B-2 Built-in Functions (Continued)

Function Name and Prototype Description
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void tracemem(address, 
size_t nbytes)

Takes a D expression as its first argument, address,
and a constant as its second argument, nbytes.
tracemem copies the memory from the address 
specified by addr into the directed buffer for the 
length specified by nbytes. What happens when the 
buffer is processed depends on the size; 1, 2, 4, and 
8 bytes will be printed as integers of that size; other 
sizes will be hex dumped.

void printf(string format, 
...)

Print formatted.

void printa(aggregation)

void printa(string format, 
aggregation)

Print an aggregation, with optional format specifiers.

void stack(int nframes)

void stack(void)

The stack action records a kernel stack trace to the 
directed buffer.

void ustack(int nframes, 
int strsize)

void ustack(int nframes)

void ustack(void)

The ustack action records a user stack trace to the 
directed buffer.

void jstack(int nframes, 
int strsize)

void jstack(int nframes)

void jstack(void)

Java stack. jstack is an alias for ustack that per-
forms in situ Java frame translation from the JVM. The 
jstackframes option tunes the number of stack 
frames, and the jstackstrsize option tunes the 
size of the string space used when generating 
jstack.

_usymaddr uaddr(uintptr_t 
address)

Prints the symbol for a specified user address, includ-
ing hexadecimal offset.

_usymaddr ufunc(uintptr_t 
address)

Prints the user function for the specified user address.

_usymaddr umod(uintptr_t 
address)

Prints the user module for the specified user address.

_usymaddr usym(uintptr_t 
address)

Prints the user symbol for the specified user address.

Aggregation Functions (@agg denotes an aggregation variable)

@agg avg(int) Returns to an aggregation variable the arithmetic 
average

continues

Table B-2 Built-in Functions (Continued)

Function Name and Prototype Description
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void clear(@agg) Clear an aggregation—clear all the values in the 
aggregation to zero. Does not remove the entries.

@agg count() Returns to an aggregation variable the number of 
times called.

void denormalize(@agg) Undo a prior normalize().

@agg lquantize(int, lower, 
upper, step)

Returns to an aggregation variable a linear frequency 
distribution.

@agg min(int) Returns to an aggregation variable the smallest value.

@agg max(int) Returns to an aggregation variable the largest value.

void normalize(@agg, int) Normalize the data in the aggregation by the passed 
normalization factor int.

@agg quantize(int) Returns to an aggregation variable a power-of-two 
frequency distribution.

void setopt(string option, 
char * pos)

Sets aggregation sort option, with optional position 
pos.

Aggregation sort options:

aggsortkey sorts by key order.

aggsortrev reverses sort order.

aggsortpos sets the position of the aggregation to 
use as primary sort key (multiple aggregations).

aggsortkeypos sets the position of key to use as 
primary sort key (multiple aggregations).

@agg stddev(int) Returns to an aggregation variable the standard 
deviation.

@agg sum(int) Returns to an aggregation variable the total value.

void trunc(@agg)

void trunc(@agg, int)

Truncate an aggregation—remove all the aggrega-
tion entries (keys and values), or with optional int,
truncate all but int entries.

Kernel Destructive Actions 

void breakpoint(void) Induce a kernel breakpoint, transferring control to the 
kernel debugger. 

void chill(int nanoseconds) The chill action causes DTrace to spin for the speci-
fied number of nanoseconds.

void panic(void) The panic action causes a kernel panic when 
triggered.

continues

Table B-2 Built-in Functions (Continued)

Function Name and Prototype Description
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* Reserved for future use by the D language 
+ Defined by D but not defined by ANSI-C 

Process Destructive Actions 

void copyout(void *buf, 
uintptr_t addr, size_t 
nbytes)

Copies nbytes from the buffer specified by buf to 
the address specified by addr in the address space of 
the process associated with the current thread. 

void copyoutstr(string str, 
uintptr_t addr, size_t 
maxlen)

Copies the string specified by str to the address 
specified by addr in the address space of the pro-
cess associated with the current thread. 

void freopen(string *) Redirects all writes to STDOUT to the specified file 
string *.

void raise(int signal) The raise action sends the specified signal to the cur-
rently running process.

void stop(void) The stop action forces the process that fires the 
enabled probe to stop when it next leaves the kernel.

void system(string program, 
...)

Causes the program specified by program to be exe-
cuted as if it were given to the shell as input.

Speculation Actions 

id speculation() Returns an identifier for a new speculative buffer.

void speculate(id) Denotes that the remainder of the clause should be 
traced to the speculative buffer specified by id.

void commit(id) Commits the speculative buffer associated with id.

void discard(id) Discards the speculative buffer associated with id.

Table B-3 Keywords

auto* do* if* register* string+ unsigned

break* double import*+ restrict* stringof+ void

case* else* inline return* struct volatile

char enum int self+ switch* while*

const extern long short this+ xlate+

continue* float offsetof+ signed translator+

counter*+ for* probe*+ sizeof typedef

default* goto* provider*+ static* union

Table B-2 Built-in Functions (Continued)

Function Name and Prototype Description
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Integer types may be prefixed with the signed or unsigned qualifier. If no sign
qualifier is present, the type is assumed to be signed.

Table B-4 Integer Data Types

Type Name 32-Bit Size 64-Bit Size

char 1 byte 1 byte

short 2 bytes 2 bytes

int 4 bytes 4 bytes

long 4 bytes 8 bytes

long long 8 bytes 8 bytes

Table B-5 Integer Type Aliases

Type Name Description

int8_t 1-byte signed integer

int16_t 2-byte signed integer

int32_t 4-byte signed integer

int64_t 8-byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1-byte unsigned integer

uint16_t 2-byte unsigned integer

uint32_t 4-byte unsigned integer

uint64_t 8-byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

Table B-6 Floating-Point Data Types

Type Name 32-Bit Size 64-Bit Size

float 4 bytes 4 bytes

double 8 bytes 8 bytes

long double 16 bytes 16 bytes
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Table B-7 Integer Suffixes

u or U unsigned version of the type selected by the compiler

l or L long

ul or UL unsigned long

ll or LL long long

ull or ULL unsigned long long

Table B-8 Floating-Point Suffixes

f or F float

l or L long double

Table B-9 Character Escape Sequences

\a Alert

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\? Question mark

\' Single quote

\” Double quote

\0oo Octal value oo

\xhh Hexadecimal value hh

\0 Null character

Table B-10 Binary Arithmetic Operators

+ Integer addition

- Integer subtraction

* Integer multiplication

/ Integer division

% Integer modulus
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Table B-11 D Unary Arithmetic Operators

++ Increment value

-- Decrement value

Table B-12 Binary Relational Operators

< Left-hand operand is less than right-operand.

<= Left-hand operand is less than or equal to right-hand operand.

> Left-hand operand is greater than right-hand operand.

>= Left-hand operand is greater than or equal to right-hand operand.

== Left-hand operand is equal to right-hand operand.

!= Left-hand operand is not equal to right-hand operand.

Table B-13 Binary Logical Operators

! Logical negation of a single operand

&& Logical AND: true if both operands are true

¦¦ Logical OR: true if one or both operands are true

^^ Logical XOR: true if exactly one operand is true

Table B-14 Unary Logical Operators

! Logical negation of a single operand

Table B-15 Binary Bitwise Operators

~ Bitwise negation of a single operand.

& Bitwise AND.

¦ Bitwise OR.

^ Bitwise XOR.

<< Shift the left-hand operand left by the number of bits specified by the right-
hand operand.

>> Arithmetic-shift the left-hand operand right by the number of bits specified 
by the right-hand operand.
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Table B-16 Unary Bitwise Operators

~ Bitwise negation of a single operand

Table B-17 Binary Assignment Operators

= Set the left-hand operand equal to the right-hand expression value.

+= Increment the left-hand operand by the right-hand expression value.

-= Decrement the left-hand operand by the right-hand expression value.

*= Multiply the left-hand operand by the right-hand expression value.

/= Divide the left-hand operand by the right-hand expression value.

%= Modulo the left-hand operand by the right-hand expression value.

¦= Bitwise OR the left-hand operand with the right-hand expression value.

&= Bitwise AND the left-hand operand with the right-hand expression value.

^= Bitwise XOR the left-hand operand with the right-hand expression value.

<<= Shift the left-hand operand left by the number of bits specified by the right-
hand expression value.

>>= Shift the left-hand operand right by the number of bits specified by the 
right-hand expression value.

Table B-18 Operator Precedence and Associativity

Operators Associativity

() [] -> Left to right

! ~ ++ – + - * & (type) sizeof stringof offsetof xlate Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

¦ Left to right

&& Left to right

^^ Left to right

continues
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The table entries are in order from highest precedence to lowest precedence.
The comma (,) operator listed in the table is for compatibility with the ANSI-C

comma operator, which can be used to evaluate a set of expressions in left-to-right
order and return the value of the rightmost expression. This operator is provided
strictly for compatibility with C and should generally not be used.

The ()entry in the table of operator precedence represents a function call. The
[]entry in the table of operator precedence represents an array or associative
array reference. 

¦¦ Left to right

?: Right to left

= += -= *= /= %= &= ^= ¦= <<= >>= Right to left

, Left to right

Table B-18 Operator Precedence and Associativity (Continued)

Operators Associativity
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C
Provider Arguments 
Reference

This appendix shows the providers available on Solaris Nevada, circa May 2010
(which contains the most comprehensive collection of providers to date). The “Pro-
viders” section summarizes the probes for each provider and the argument types.
Refer to the provider chapters in the DTrace Guide for the full reference for each
provider, which includes an explanation for the individual arguments. The “Argu-
ments” section summarizes some common argument types.

Providers

Tables C-1 through C-15 cover all the providers.              

Table C-1 fc Provider Probes and Arguments

Probe Arguments

fc:::abts-receive conninfo_t *, fc_port_info_t *,
fc_port_info_t *

fc:::fabric-login-end conninfo_t *, fc_port_info_t *

fc:::fabric-login-start conninfo_t *, fc_port_info_t *

fc:::link-down conninfo_t *

continues
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fc:::link-up conninfo_t *

fc:::rport-login-end conninfo_t *, fc_port_info_t *,
fc_port_info_t *, int, int

fc:::rport-login-start conninfo_t *, fc_port_info_t *,
fc_port_info_t *, int

fc:::rport-logout-end conninfo_t *, fc_port_info_t *,
fc_port_info_t *, int

fc:::rport-logout-start conninfo_t *, fc_port_info_t *,
fc_port_info_t *, int

fc:::rscn-receive conninfo_t *, int

fc:::scsi-command conninfo_t *, fc_port_info_t *, scsicmd_t *,
fc_port_info_t *

fc:::scsi-response conninfo_t *, fc_port_info_t *, scsicmd_t *,
fc_port_info_t *

fc:::xfer-done conninfo_t *, fc_port_info_t *, scsicmd_t *,
fc_port_info_t *, fc_xferinfo_t *

fc:::xfer-start conninfo_t *, fc_port_info_t *, scsicmd_t *,
fc_port_info_t *, fc_xferinfo_t *

Table C-2 fsinfo Provider Probes and Arguments

Probe Arguments

fsinfo:::* fileinfo_t *, int

Table C-3 io Provider Probes and Arguments

Probe Arguments

io:::done bufinfo_t *, devinfo_t *, fileinfo_t *

io:::start bufinfo_t *, devinfo_t *, fileinfo_t *

io:::wait-done bufinfo_t *, devinfo_t *, fileinfo_t *

io:::wait-start bufinfo_t *, devinfo_t *, fileinfo_t *

Table C-1 fc Provider Probes and Arguments (Continued)

Probe Arguments
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Table C-4 ip Provider Probes and Arguments

Probe Arguments

ip:::receive pktinfo_t *, csinfo_t *, ipinfo_t *, ifinfo_t *,
ipv4info_t *, ipv6info_t *

ip:::send pktinfo_t *, csinfo_t *, ipinfo_t *, ifinfo_t *,
ipv4info_t *, ipv6info_t *

Table C-5 iscsi Provider Probes and Arguments

Probe Arguments

iscsi:::async-send conninfo_t *, iscsiinfo_t *

iscsi:::data-receive conninfo_t *, iscsiinfo_t *

iscsi:::data-request conninfo_t *, iscsiinfo_t *

iscsi:::data-send conninfo_t *, iscsiinfo_t *

iscsi:::login-command conninfo_t *, iscsiinfo_t *

iscsi:::login-response conninfo_t *, iscsiinfo_t *

iscsi:::logout-command conninfo_t *, iscsiinfo_t *

iscsi:::logout-response conninfo_t *, iscsiinfo_t *

iscsi:::nop-receive conninfo_t *, iscsiinfo_t *

iscsi:::nop-send conninfo_t *, iscsiinfo_t *

iscsi:::scsi-command conninfo_t *, iscsiinfo_t *, scsicmd_t *

iscsi:::scsi-response conninfo_t *, iscsiinfo_t *

iscsi:::task-command conninfo_t *, iscsiinfo_t *

iscsi:::task-response conninfo_t *, iscsiinfo_t *

iscsi:::text-command conninfo_t *, iscsiinfo_t *

iscsi:::text-response conninfo_t *, iscsiinfo_t *

iscsi:::xfer-done conninfo_t *, iscsiinfo_t *, xferinfo_t *,
uint32_t, uintptr_t, uint32_t, uint32_t,
uint32_t, int

iscsi:::xfer-start conninfo_t *, iscsiinfo_t *, xferinfo_t *,
uint32_t, uintptr_t, uint32_t, uint32_t,
uint32_t, int

Table C-6 mib Provider Probes and Arguments

Probe Arguments

mib::: int
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Table C-7 nfsv3 Provider Probes and Arguments

Probe Arguments

nfsv3:::op-access-done conninfo_t *, nfsv3opinfo_t *,
ACCESS3res *

nfsv3:::op-access-start conninfo_t *, nfsv3opinfo_t *,
ACCESS3args *

nfsv3:::op-commit-done conninfo_t *, nfsv3opinfo_t *,
COMMIT3res *

nfsv3:::op-commit-start conninfo_t *, nfsv3opinfo_t *,
COMMIT3args *

nfsv3:::op-create-done conninfo_t *, nfsv3opinfo_t *,
CREATE3res *

nfsv3:::op-create-start conninfo_t *, nfsv3opinfo_t *,
CREATE3args *

nfsv3:::op-fsinfo-done conninfo_t *, nfsv3opinfo_t *,
FSINFO3res *

nfsv3:::op-fsinfo-start conninfo_t *, nfsv3opinfo_t *,
FSINFO3args *

nfsv3:::op-fsstat-done conninfo_t *, nfsv3opinfo_t *,
FSSTAT3res *

nfsv3:::op-fsstat-start conninfo_t *, nfsv3opinfo_t *,
FSSTAT3args *

nfsv3:::op-getattr-done conninfo_t *, nfsv3opinfo_t *,
GETATTR3res *

nfsv3:::op-getattr-start conninfo_t *, nfsv3opinfo_t *,
GETATTR3args *

nfsv3:::op-link-done conninfo_t *, nfsv3opinfo_t *,
LINK3res *

nfsv3:::op-link-start conninfo_t *, nfsv3opinfo_t *,
LINK3args *

nfsv3:::op-lookup-done conninfo_t *, nfsv3opinfo_t *,
LOOKUP3res *

nfsv3:::op-lookup-start conninfo_t *, nfsv3opinfo_t *,
LOOKUP3args *

nfsv3:::op-mkdir-done conninfo_t *, nfsv3opinfo_t *,
MKDIR3res *

nfsv3:::op-mkdir-start conninfo_t *, nfsv3opinfo_t *,
MKDIR3args *

nfsv3:::op-mknod-done conninfo_t *, nfsv3opinfo_t *,
MKNOD3res *
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nfsv3:::op-mknod-start conninfo_t *, nfsv3opinfo_t *,
MKNOD3args *

nfsv3:::op-null-done conninfo_t *, nfsv3opinfo_t *

nfsv3:::op-null-start conninfo_t *, nfsv3opinfo_t *

nfsv3:::op-pathconf-done conninfo_t *, nfsv3opinfo_t *,
PATHCONF3res *

nfsv3:::op-pathconf-start conninfo_t *, nfsv3opinfo_t *,
PATHCONF3args *

nfsv3:::op-read-done conninfo_t *, nfsv3opinfo_t *,
READ3res *

nfsv3:::op-read-start conninfo_t *, nfsv3opinfo_t *,
READ3args *

nfsv3:::op-readdir-done conninfo_t *, nfsv3opinfo_t *,
READDIR3res *

nfsv3:::op-readdir-start conninfo_t *, nfsv3opinfo_t *,
READDIR3args *

nfsv3:::op-readdirplus-done conninfo_t *, nfsv3opinfo_t *,
READDIRPLUS3res *

nfsv3:::op-readdirplus-start conninfo_t *, nfsv3opinfo_t *,
READDIRPLUS3args *

nfsv3:::op-readlink-done conninfo_t *, nfsv3opinfo_t *,
READLINK3res *

nfsv3:::op-readlink-start conninfo_t *, nfsv3opinfo_t *,
READLINK3args *

nfsv3:::op-remove-done conninfo_t *, nfsv3opinfo_t *,
REMOVE3res *

nfsv3:::op-remove-start conninfo_t *, nfsv3opinfo_t *,
REMOVE3args *

nfsv3:::op-rename-done conninfo_t *, nfsv3opinfo_t *,
RENAME3res *

nfsv3:::op-rename-start conninfo_t *, nfsv3opinfo_t *,
RENAME3args *

nfsv3:::op-rmdir-done conninfo_t *, nfsv3opinfo_t *,
RMDIR3res *

nfsv3:::op-rmdir-start conninfo_t *, nfsv3opinfo_t *,
RMDIR3args *

continues

Table C-7 nfsv3 Provider Probes and Arguments (Continued)

Probe Arguments
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nfsv3:::op-setattr-done conninfo_t *, nfsv3opinfo_t *,
SETATTR3res *

nfsv3:::op-setattr-start conninfo_t *, nfsv3opinfo_t *,
SETATTR3args *

nfsv3:::op-symlink-done conninfo_t *, nfsv3opinfo_t *,
SYMLINK3res *

nfsv3:::op-symlink-start conninfo_t *, nfsv3opinfo_t *,
SYMLINK3args *

nfsv3:::op-write-done conninfo_t *, nfsv3opinfo_t *,
WRITE3res *

nfsv3:::op-write-start conninfo_t *, nfsv3opinfo_t *,
WRITE3args *

Table C-8 nfsv4 Provider Probes and Arguments

Probe Arguments

nfsv4:::cb-recall-done conninfo_t *, nfsv4cbinfo_t *,
CB_RECALL4res *

nfsv4:::cb-recall-start conninfo_t *, nfsv4cbinfo_t *,
CB_RECALL4args *

nfsv4:::compound-done conninfo_t *, nfsv4opinfo_t *,
COMPOUND4res *

nfsv4:::compound-start conninfo_t *, nfsv4opinfo_t *,
COMPOUND4args *

nfsv4:::null-done conninfo_t *

nfsv4:::null-start conninfo_t *

nfsv4:::op-access-done conninfo_t *, nfsv4opinfo_t *,
ACCESS4res *

nfsv4:::op-access-start conninfo_t *, nfsv4opinfo_t *,
ACCESS4args *

nfsv4:::op-close-done conninfo_t *, nfsv4opinfo_t *,
CLOSE4res *

nfsv4:::op-close-start conninfo_t *, nfsv4opinfo_t *,
CLOSE4args *

nfsv4:::op-commit-done conninfo_t *, nfsv4opinfo_t *,
COMMIT4res *

Table C-7 nfsv3 Provider Probes and Arguments (Continued)

Probe Arguments
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nfsv4:::op-commit-start conninfo_t *, nfsv4opinfo_t *,
COMMIT4args *

nfsv4:::op-create-done conninfo_t *, nfsv4opinfo_t *,
CREATE4res *

nfsv4:::op-create-start conninfo_t *, nfsv4opinfo_t *,
CREATE4args *

nfsv4:::op-delegpurge-done conninfo_t *, nfsv4opinfo_t *,
DELEGPURGE4res *

nfsv4:::op-delegpurge-start conninfo_t *, nfsv4opinfo_t *,
DELEGPURGE4args *

nfsv4:::op-delegreturn-done conninfo_t *, nfsv4opinfo_t *,
DELEGRETURN4res *

nfsv4:::op-delegreturn-start conninfo_t *, nfsv4opinfo_t *,
DELEGRETURN4args *

nfsv4:::op-getattr-done conninfo_t *, nfsv4opinfo_t *,
GETATTR4res *

nfsv4:::op-getattr-start conninfo_t *, nfsv4opinfo_t *,
GETATTR4args *

nfsv4:::op-getfh-done conninfo_t *, nfsv4opinfo_t *,
GETFH4res *

nfsv4:::op-getfh-start conninfo_t *, nfsv4opinfo_t *

nfsv4:::op-link-done conninfo_t *, nfsv4opinfo_t *,
LINK4res *

nfsv4:::op-link-start conninfo_t *, nfsv4opinfo_t *,
LINK4args *

nfsv4:::op-lock-done conninfo_t *, nfsv4opinfo_t *,
LOCK4res *

nfsv4:::op-lock-start conninfo_t *, nfsv4opinfo_t *,
LOCK4args *

nfsv4:::op-lockt-done conninfo_t *, nfsv4opinfo_t *,
LOCKT4res *

nfsv4:::op-lockt-start conninfo_t *, nfsv4opinfo_t *,
LOCKT4args *

nfsv4:::op-locku-done conninfo_t *, nfsv4opinfo_t *,
LOCKU4res *

nfsv4:::op-locku-start conninfo_t *, nfsv4opinfo_t *,
LOCKU4args *

continues

Table C-8 nfsv4 Provider Probes and Arguments (Continued)
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nfsv4:::op-lookup-done conninfo_t *, nfsv4opinfo_t *,
LOOKUP4res *

nfsv4:::op-lookup-start conninfo_t *, nfsv4opinfo_t *,
LOOKUP4args *

nfsv4:::op-lookupp-done conninfo_t *, nfsv4opinfo_t *,
LOOKUPP4res *

nfsv4:::op-lookupp-start conninfo_t *, nfsv4opinfo_t *

nfsv4:::op-nverify-done conninfo_t *, nfsv4opinfo_t *,
NVERIFY4res *

nfsv4:::op-nverify-start conninfo_t *, nfsv4opinfo_t *,
NVERIFY4args *

nfsv4:::op-open-confirm-done conninfo_t *, nfsv4opinfo_t *,
OPEN_CONFIRM4res *

nfsv4:::op-open-confirm-start conninfo_t *, nfsv4opinfo_t *,
OPEN_CONFIRM4args *

nfsv4:::op-open-done conninfo_t *, nfsv4opinfo_t *,
OPEN4res *

nfsv4:::op-open-downgrade-done conninfo_t *, nfsv4opinfo_t *,
OPEN_DOWNGRADE4res *

nfsv4:::op-open-downgrade-start conninfo_t *, nfsv4opinfo_t *,
OPEN_DOWNGRADE4args *

nfsv4:::op-open-start conninfo_t *, nfsv4opinfo_t *,
OPEN4args *

nfsv4:::op-openattr-done conninfo_t *, nfsv4opinfo_t *,
OPENATTR4res *

nfsv4:::op-openattr-start conninfo_t *, nfsv4opinfo_t *,
OPENATTR4args *

nfsv4:::op-putfh-done conninfo_t *, nfsv4opinfo_t *,
PUTFH4res *

nfsv4:::op-putfh-start conninfo_t *, nfsv4opinfo_t *,
PUTFH4args *

nfsv4:::op-putpubfh-done conninfo_t *, nfsv4opinfo_t *,
PUTPUBFH4res *

nfsv4:::op-putpubfh-start conninfo_t *, nfsv4opinfo_t *

nfsv4:::op-putrootfh-done conninfo_t *, nfsv4opinfo_t *,
PUTROOTFH4res *

nfsv4:::op-putrootfh-start conninfo_t *, nfsv4opinfo_t *

Table C-8 nfsv4 Provider Probes and Arguments (Continued)
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nfsv4:::op-read-done conninfo_t *, nfsv4opinfo_t *,
READ4res *

nfsv4:::op-read-start conninfo_t *, nfsv4opinfo_t *,
READ4args *

nfsv4:::op-readdir-done conninfo_t *, nfsv4opinfo_t *,
READDIR4res *

nfsv4:::op-readdir-start conninfo_t *, nfsv4opinfo_t *,
READDIR4args *

nfsv4:::op-readlink-done conninfo_t *, nfsv4opinfo_t *,
READLINK4res *

nfsv4:::op-readlink-start conninfo_t *, nfsv4opinfo_t *

nfsv4:::op-release-lockowner-done conninfo_t *, nfsv4opinfo_t *,
RELEASE_LOCKOWNER4res *

nfsv4:::op-release-lockowner-start conninfo_t *, nfsv4opinfo_t *,
RELEASE_LOCKOWNER4args *

nfsv4:::op-remove-done conninfo_t *, nfsv4opinfo_t *,
REMOVE4res *

nfsv4:::op-remove-start conninfo_t *, nfsv4opinfo_t *,
REMOVE4args *

nfsv4:::op-rename-done conninfo_t *, nfsv4opinfo_t *,
RENAME4res *

nfsv4:::op-rename-start conninfo_t *, nfsv4opinfo_t *,
RENAME4args *

nfsv4:::op-renew-done conninfo_t *, nfsv4opinfo_t *,
RENEW4res *

nfsv4:::op-renew-start conninfo_t *, nfsv4opinfo_t *,
RENEW4args *

nfsv4:::op-restorefh-done conninfo_t *, nfsv4opinfo_t *,
RESTOREFH4res *

nfsv4:::op-restorefh-start conninfo_t *, nfsv4opinfo_t *

nfsv4:::op-savefh-done conninfo_t *, nfsv4opinfo_t *,
SAVEFH4res *

nfsv4:::op-savefh-start conninfo_t *, nfsv4opinfo_t *

nfsv4:::op-secinfo-done conninfo_t *, nfsv4opinfo_t *,
SECINFO4res *

nfsv4:::op-secinfo-start conninfo_t *, nfsv4opinfo_t *,
SECINFO4args *

continues

Table C-8 nfsv4 Provider Probes and Arguments (Continued)
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nfsv4:::op-setattr-done conninfo_t *, nfsv4opinfo_t *,
SETATTR4res *

nfsv4:::op-setattr-start conninfo_t *, nfsv4opinfo_t *,
SETATTR4args *

nfsv4:::op-setclientid-confirm-done conninfo_t *, nfsv4opinfo_t *,
SETCLIENTID_CONFIRM4res *

nfsv4:::op-setclientid-confirm-start conninfo_t *, nfsv4opinfo_t *,
SETCLIENTID_CONFIRM4args *

nfsv4:::op-setclientid-done conninfo_t *, nfsv4opinfo_t *,
SETCLIENTID4res *

nfsv4:::op-setclientid-start conninfo_t *, nfsv4opinfo_t *,
SETCLIENTID4args *

nfsv4:::op-verify-done conninfo_t *, nfsv4opinfo_t *,
VERIFY4res *

nfsv4:::op-verify-start conninfo_t *, nfsv4opinfo_t *,
VERIFY4args *

nfsv4:::op-write-done conninfo_t *, nfsv4opinfo_t *,
WRITE4res *

nfsv4:::op-write-start conninfo_t *, nfsv4opinfo_t *,
WRITE4args *

Table C-9 proc Provider Probes and Arguments

Probe Arguments

proc:::create psinfo_t *

proc:::exec string

proc:::exec-failure int

proc:::exec-success

proc:::exit int

proc:::fault int, siginfo_t *

proc:::lwp-create lwpsinfo_t *, psinfo_t *

proc:::lwp-exit

proc:::signal-clear int, siginfo_t *

proc:::signal-discard lwpsinfo_t *, psinfo_t *, int

proc:::signal-handle int, siginfo_t *, int (*)()

proc:::signal-send lwpsinfo_t *, psinfo_t *, int

Table C-8 nfsv4 Provider Probes and Arguments (Continued)

Probe Arguments
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Table C-10 sched Provider Probes and Arguments

Probe Arguments

sched:::change-pri lwpsinfo_t *, psinfo_t *, pri_t

sched:::cpucaps-sleep lwpsinfo_t *, psinfo_t *

sched:::cpucaps-wakeup lwpsinfo_t *, psinfo_t *

sched:::dequeue lwpsinfo_t *, psinfo_t *, cpuinfo_t *

sched:::enqueue lwpsinfo_t *, psinfo_t *,
cpuinfo_t *, int

sched:::off-cpu lwpsinfo_t *, psinfo_t *

sched:::schedctl-nopreempt lwpsinfo_t *, psinfo_t *, int

sched:::schedctl-preempt lwpsinfo_t *, psinfo_t *

sched:::schedctl-yield int

sched:::surrender lwpsinfo_t *, psinfo_t *

sched:::tick lwpsinfo_t *, psinfo_t *

sched:::wakeup lwpsinfo_t *, psinfo_t *

Table C-11 srp Provider Probes and Arguments

Probe Arguments

srp:::login-command conninfo_t *, srp_portinfo_t *,
srp_logininfo_t *

srp:::login-response conninfo_t *, srp_portinfo_t *,
srp_logininfo_t *

srp:::logout-command conninfo_t *, srp_portinfo_t *

srp:::scsi-command conninfo_t *, srp_portinfo_t *,
scsicmd_t *, srp_taskinfo_t *

srp:::scsi-response conninfo_t *, srp_portinfo_t *,
srp_taskinfo_t *

srp:::service-down conninfo_t *, srp_portinfo_t *

srp:::service-up conninfo_t *, srp_portinfo_t *

srp:::task-command conninfo_t *, srp_portinfo_t *,
srp_taskinfo_t *

srp:::task-response conninfo_t *, srp_portinfo_t *,
srp_taskinfo_t *

srp:::xfer-done conninfo_t *, srp_portinfo_t *,
xferinfo_t *, srp_taskinfo_t *

srp:::xfer-start conninfo_t *, srp_portinfo_t *,
xferinfo_t *, srp_taskinfo_t *
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Table C-12 sysevent Provider Probes and Arguments

Probe Arguments

sysevent:::post syseventchaninfo_t *,
syseventinfo_t *

Table C-13 tcp Provider Probes and Arguments

Probe Arguments

tcp:::accept-established pktinfo_t *, csinfo_t *, ipinfo_t *,
tcpsinfo_t *, tcpinfo_t *

tcp:::accept-refused pktinfo_t *, csinfo_t *, ipinfo_t *,
tcpsinfo_t *, tcpinfo_t *

tcp:::connect-established pktinfo_t *, csinfo_t *, ipinfo_t *,
tcpsinfo_t *, tcpinfo_t *

tcp:::connect-refused pktinfo_t *, csinfo_t *, ipinfo_t *,
tcpsinfo_t *, tcpinfo_t *

tcp:::connect-request pktinfo_t *, csinfo_t *, ipinfo_t *,
tcpsinfo_t *, tcpinfo_t *

tcp:::receive pktinfo_t *, csinfo_t *, ipinfo_t *,
tcpsinfo_t *, tcpinfo_t *

tcp:::send pktinfo_t *, csinfo_t *, ipinfo_t *,
tcpsinfo_t *, tcpinfo_t *

tcp:::state-change void, csinfo_t *, void, tcpsinfo_t *,
void, tcplsinfo_t *

Table C-14 udp Provider Probes and Arguments

Probe Arguments

udp:::receive pktinfo_t *, csinfo_t *, ipinfo_t *,
udpsinfo_t *, udpinfo_t *

udp:::send pktinfo_t *, csinfo_t *, ipinfo_t *,
udpsinfo_t *, udpinfo_t *
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Table C-15 xpv Provider Probes and Arguments

Probe Arguments

xpv:::add-to-physmap-end int

xpv:::add-to-physmap-start domid_t, uint_t, ulong_t, ulong_t

xpv:::decrease-reservation-end int

xpv:::decrease-reservation-start domid_t, ulong_t, uint_t, ulong_t *

xpv:::dom-create-end int

xpv:::dom-create-start xen_domctl_t *

xpv:::dom-destroy-end int

xpv:::dom-destroy-start domid_t

xpv:::dom-pause-end int

xpv:::dom-pause-start domid_t

xpv:::dom-unpause-end int

xpv:::dom-unpause-start domid_t

xpv:::evtchn-op-end int

xpv:::evtchn-op-start int, void *

xpv:::increase-reservation-end int

xpv:::increase-reservation-start domid_t, ulong_t, uint_t, ulong_t *

xpv:::mmap-end int

xpv:::mmap-entry ulong_t, ulong_t, ulong_t

xpv:::mmap-start domid_t, int, privcmd_mmap_entry_t *

xpv:::mmapbatch-end int, struct seg *, caddr_t

xpv:::mmapbatch-start domid_t, int, caddr_t

xpv:::mmu-ext-op-end int

xpv:::mmu-ext-op-start int, int, struct mmuext_op *

xpv:::mmu-update-end int

xpv:::mmu-update-start int, int, mmu_update_t *

xpv:::populate-physmap-end int

xpv:::populate-physmap-start domid_t, ulong_t, ulong_t *

xpv:::set-memory-map-end int

xpv:::set-memory-map-start domid_t, int, struct xen_memory_map *

xpv:::setvcpucontext-end int

xpv:::setvcpucontext-start domid_t, vcpu_guest_context_t *
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Arguments

Common argument types are specified in this section. These are from the Solaris
Nevada translator files in /usr/lib/dtrace and also documented in the pro-
vider chapters of the DTrace Guide.

bufinfo_t

devinfo_t

fileinfo_t

typedef struct bufinfo {
      int b_flags;        /* buffer status */
      size_t b_bcount;      /* number of bytes */
      caddr_t b_addr;       /* buffer address */
      uint64_t b_lblkno;    /* block # on device */
      uint64_t b_blkno;   /* expanded block # on device */
      size_t b_resid;     /* # of bytes not transferred */
      size_t b_bufsize;     /* size of allocated buffer */
      caddr_t b_iodone;     /* I/O completion routine */
      int b_error;       /* expanded error field */
      dev_t b_edev;        /* extended device */
} bufinfo_t;

typedef struct devinfo {
      int dev_major;        /* major number */
      int dev_minor;        /* minor number */
      int dev_instance;      /* instance number */
      string dev_name;      /* name of device */
      string dev_statname;  /* name of device + instance/minor */
      string dev_pathname;    /* pathname of device */
} devinfo_t;

typedef struct fileinfo {
      string fi_name;     /* name (basename of fi_pathname) */
      string fi_dirname;      /* directory (dirname of fi_pathname) */
      string fi_pathname;     /* full pathname */
      offset_t fi_offset;    /* offset within file */
      string fi_fs;        /* filesystem */
      string fi_mount;    /* mount point of file system */
      int fi_oflags;     /* open(2) flags for file descriptor */
} fileinfo_t;
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cpuinfo_t

lwpsinfo_t

psinfo_t

typedef struct cpuinfo {
        processorid_t cpu_id;    /* CPU identifier */
        psetid_t cpu_pset;  /* processor set identifier */
        chipid_t cpu_chip;    /* chip identifier */
        lgrp_id_t cpu_lgrp;  /* locality group identifer */
        processor_info_t cpu_info;   /* CPU information */
} cpuinfo_t;

typedef struct lwpsinfo {
        int pr_flag;   /* flags; see below */
        id_t pr_lwpid;          /* LWP id */
        uintptr_t pr_addr;        /* internal address of thread */
        uintptr_t pr_wchan;      /* wait addr for sleeping thread */
        char pr_stype; /* synchronization event type */
        char pr_state;  /* numeric thread state */
        char pr_sname;            /* printable character for pr_state */
        char pr_nice;   /* nice for cpu usage */
        short pr_syscall;         /* system call number (if in syscall) */
        int pr_pri;             /* priority,  high value = high priority */
        char pr_clname[PRCLSZ];   /* scheduling class name */
        processorid_t pr_onpro;   /* processor which last ran this thread */
        processorid_t pr_bindpro; /* processor to which thread is bound */
        psetid_t pr_bindpset;     /* processor set to which thread is bound */
} lwpsinfo_t;

typedef struct psinfo {
        int     pr_nlwp;            /* number of active lwps in the process */
        pid_t   pr_pid;         /* unique process id */
        pid_t pr_ppid;   /* process id of parent */
        pid_t   pr_pgid; /* pid of process group leader */
        pid_t   pr_sid;           /* session id */
        uid_t   pr_uid;         /* real user id */
        uid_t pr_euid;   /* effective user id */
        gid_t   pr_gid;         /* real group id */
        gid_t pr_egid;   /* effective group id */
        uintptr_t pr_addr;  /* address of process */
        dev_t   pr_ttydev;          /* controlling tty device (or PRNODEV) */
        timestruc_t pr_start;       /* process start time,  from the epoch */
        char    pr_fname[PRFNSZ];   /* name of execed file */
        char   pr_psargs[PRARGSZ]; /* initial characters of arg list */
        int  pr_argc;    /* initial argument count */
        uintptr_t pr_argv;          /* address of initial argument vector */
        uintptr_t pr_envp;          /* address of initial environment vector */
        char pr_dmodel;          /* data model of the process */
        taskid_t pr_taskid;    /* task id */
        projid_t pr_projid;    /* project id */
        poolid_t pr_poolid;    /* pool id */
        zoneid_t pr_zoneid;    /* zone id */
} psinfo_t;
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conninfo_t

pktinfo_t

csinfo_t

ipinfo_t

/*
 * The conninfo_t structure should be used by all application protocol
 * providers as the first arguments to indicate some basic information
 * about the connection. This structure may be augmented to accommodate
 * the particularities of additional protocols in the future.
 */
typedef struct conninfo {
      string ci_local;     /* local host address */
      string ci_remote;     /* remote host address */
      string ci_protocol;     /* protocol (ipv4,  ipv6,  etc) */
} conninfo_t;

/*
 * pktinfo is where packet ID info can be made available for deeper
 * analysis if packet IDs become supported by the kernel in the future.
 * The pkt_addr member is currently always NULL.
 */
typedef struct pktinfo {
      uintptr_t pkt_addr;
} pktinfo_t;

/*
 * csinfo is where connection state info is made available.
 */
typedef struct csinfo {
      uintptr_t cs_addr;
      uint64_t cs_cid;
      pid_t cs_pid;
      zoneid_t cs_zoneid;
} csinfo_t;

/*
 * ipinfo contains common IP info for both IPv4 and IPv6.
 */
typedef struct ipinfo {
      uint8_t ip_ver;     /* IP version (4,  6) */
      uint32_t ip_plength;    /* payload length */
      string ip_saddr;      /* source address */
      string ip_daddr;      /* destination address */
} ipinfo_t;
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ifinfo_t

ipv4info_t

ipv6info_t

/*
 * ifinfo contains network interface info.
 */
typedef struct ifinfo {
      string if_name;    /* interface name */
      int8_t if_local;   /* is delivered locally */
      netstackid_t if_ipstack;   /* ipstack ID */
      uintptr_t if_addr;  /* pointer to raw ill_t */
} ifinfo_t;

/*
 * ipv4info is a translated version of the IPv4 header (with raw pointer).
 * These values are NULL if the packet is not IPv4.
 */
typedef struct ipv4info {
      uint8_t ipv4_ver; /* IP version (4) */
      uint8_t ipv4_ihl;       /* header length,  bytes */
      uint8_t ipv4_tos; /* type of service field */
      uint16_t ipv4_length;   /* length (header + payload) */
      uint16_t ipv4_ident;    /* identification */
      uint8_t ipv4_flags;     /* IP flags */
      uint16_t ipv4_offset;   /* fragment offset */
      uint8_t ipv4_ttl;       /* time to live */
      uint8_t ipv4_protocol;  /* next level protocol */
      string ipv4_protostr;   /* next level protocol,  as a string */
      uint16_t ipv4_checksum; /* header checksum */
      ipaddr_t ipv4_src;  /* source address */
      ipaddr_t ipv4_dst; /* destination address */
      string ipv4_saddr;      /* source address,  string */
      string ipv4_daddr;      /* destination address,  string */
      ipha_t *ipv4_hdr;       /* pointer to raw header */
} ipv4info_t;

/*
 * ipv6info is a translated version of the IPv6 header (with raw pointer).
 * These values are NULL if the packet is not IPv6.
 */
typedef struct ipv6info {
      uint8_t ipv6_ver; /* IP version (6) */
      uint8_t ipv6_tclass;    /* traffic class */
      uint32_t ipv6_flow;     /* flow label */
      uint16_t ipv6_plen;     /* payload length */
      uint8_t ipv6_nexthdr;   /* next header protocol */
      string ipv6_nextstr;    /* next header protocol,  as a string */
      uint8_t ipv6_hlim;      /* hop limit */
      in6_addr_t *ipv6_src;   /* source address */
      in6_addr_t *ipv6_dst;   /* destination address */

continues
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tcpinfo_t

tcpsinfo_t

      string ipv6_saddr;    /* source address,  string */
      string ipv6_daddr;      /* destination address,  string */
      ip6_t *ipv6_hdr;     /* pointer to raw header */
} ipv6info_t;

/*
 * tcpinfo is the TCP header fields.
 */
typedef struct tcpinfo {
      uint16_t tcp_sport;     /* source port */
      uint16_t tcp_dport;     /* destination port */
      uint32_t tcp_seq;      /* sequence number */
      uint32_t tcp_ack;     /* acknowledgment number */
      uint8_t tcp_offset;    /* data offset,  in bytes */
      uint8_t tcp_flags;      /* flags */
      uint16_t tcp_window;    /* window size */
      uint16_t tcp_checksum;  /* checksum */
      uint16_t tcp_urgent;   /* urgent data pointer */
      tcph_t *tcp_hdr;      /* raw TCP header */
} tcpinfo_t;

/*
 * tcpsinfo contains stable TCP details from tcp_t.
 */
typedef struct tcpsinfo {
      uintptr_t tcps_addr;
      int tcps_local;    /* is delivered locally,  boolean */
      int tcps_active;        /* active open (from here),  boolean */
      uint16_t tcps_lport;          /* local port */
      uint16_t tcps_rport;   /* remote port */
      string tcps_laddr;           /* local address,  as a string */
      string tcps_raddr;            /* remote address,  as a string */
      int32_t tcps_state;        /* TCP state */
      uint32_t tcps_iss; /* Initial sequence # sent */
      uint32_t tcps_suna;          /* sequence # sent but unacked */
      uint32_t tcps_snxt;          /* next sequence # to send */
      uint32_t tcps_rack;          /* sequence # we have acked */
      uint32_t tcps_rnxt;           /* next sequence # expected */
      uint32_t tcps_swnd;  /* send window size */
      int32_t tcps_snd_ws;  /* send window scaling */
      uint32_t tcps_rwnd;  /* receive window size */
      int32_t tcps_rcv_ws; /* receive window scaling */
      uint32_t tcps_cwnd;  /* congestion window */
      uint32_t tcps_cwnd_ssthresh;  /* threshold for congestion avoidance */
      uint32_t tcps_sack_fack;      /* SACK sequence # we have acked */
      uint32_t tcps_sack_snxt;      /* next SACK seq # for retransmission */
      uint32_t tcps_rto; /* round-trip timeout,  msec */
      uint32_t tcps_mss;        /* max segment size */
      int tcps_retransmit;          /* retransmit send event,  boolean */
} tcpsinfo_t;
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tcplsinfo_t

/*
 * tcplsinfo provides the old tcp state for state changes.
 */
typedef struct tcplsinfo {
      int32_t tcps_state;  /* previous TCP state */
} tcplsinfo_t;
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D
DTrace on FreeBSD

This appendix covers enabling DTrace on FreeBSD and includes an e-mail from
John Birrell.

Enabling DTrace on FreeBSD 7.1 and 8.0

DTrace is not available in FreeBSD 7.1/8.0 following an installation. A kernel
build is required after editing the kernel configuration file. The DTrace modules
must also explicitly be loaded after the new kernel is booted.

You can reference the online FreeBSD documentation for enabling DTrace here:

www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/dtrace-enable.html

Information on the kernel configuration file and building kernels can be found
here:

www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-
building.html

www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-
config.html

www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/dtrace-enable.html
www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfigbuilding.html
www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfigbuilding.html
www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfigconfig.html
www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfigconfig.html
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For your convenience, the steps are outlined here:

1. cd to /usr/src/sys/i386/conf.

This is the directory location of the kernel configuration file, GENERIC.

Run cp GENERIC GENERIC_DTRACE.

It’s a good idea to keep the original file intact and make a copy for editing.

2. Run edit GENERIC_DTRACE, adding these two options:

options KDTRACE_HOOKS

options DDB_CTF 

Run cd /usr/src.

Run make WITH_CTF=1 KERNCONF=GENERIC_DTRACE kernel.

Build a kernel with the GENERIC_DTRACE configuration file and WITH_CTF=1.

When the build completes, reboot.

3. Type the following command after reboot to load the dtrace kernel modules:

kldload dtraceall

At this point, DTrace is ready to use on your FreeBSD 7.1 system!
The following example shows the dtrace(1) command with the -l flag to list

all probes, getting a total number of probes (33,207) on our FreeBSD system. We
can see that FreeBSD currently has a limited number of providers available:
dtrace, dtmalloc, fbt, proc, syscall, and profile.

Note

From the documentation, if you’re building on AMD64, you also need to add this:

options KDTRACE_FRAME

Note

options KDTRACE_HOOKS was already in the configuration file but commented out. The
options DDB_CTF needed to be explicitly added.

freebsd# dtrace -l | wc -l
   33207
freebsd# dtrace -l | awk '{print $2}' | uniq
PROVIDER
dtrace
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DTrace for FreeBSD: John Birrell

The port of DTrace to FreeBSD was performed by John Birrell, a FreeBSD contrib-
utor who was based on the Victorian coast, Australia. His e-mail to freebsd-
current@freebsd.org announcing DTrace for FreeBSD in May 2006 has been
reproduced here, in memory of a remarkably talented and determined software
engineer.

Date: Wed May 24 23:55:12 PDT 2006
From: John Birrell <jb@what-creek.com>
Subject: DTrace for FreeBSD - Status Update

It's nearly 8 weeks since I started porting DTrace to FreeBSD and I
thought I would post a status update including today's significant
emotional event. 8-)

For those who don't know what DTrace is or which company designed it,
here are a few links:

The BigAdmin: <http://www.sun.com/bigadmin/content/dtrace/>
A Blurb: <http://www.sun.com/2004-0518/feature/index.html>
The Guide: <http://docs.sun.com/app/docs/doc/817-6223>
My FreeBSD Project Page: <http://people.freebsd.org/~jb/dtrace/index.html>

Much of the basic DTrace infrastructure is in place now. Of the 1039
DTrace tests that Sun runs on Solaris, 793 now pass on FreeBSD.

We've got the following providers:

- dtrace
- profile
- syscall
- sdt
- fbt

As of today, loading those providers on a GENERIC kernel gives 32,519 
probes.

Today's significant emotional event added over 30,000 of those, thanks
to the Function Boundary Tracing (fbt) provider. It provides the
instrumentation of the entry and return of every (non-leaf) function
in the kernel and (non-DTrace provider) modules.

dtmalloc
fbt
proc
syscall
profile
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Here is an example of what fbt can do.... The following script creates
a probe on the entry to the kernel malloc() function. It dereferences 
the second argument to the malloc_type structure and then quantizes the
size of the mallocs being made according to the malloc type name.

The script:

fbt:kernel:malloc:entry
{
        mt = (struct malloc_type *) arg1;
        @[stringof(mt->ks_shortdesc)] = quantize(arg0)
}

The output:

  vmem
           value  ------------- Distribution ------------- count
               2 |              0

4 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 56
               8 |              0

[...]

  nfsserver_srvdesc
           value  ------------- Distribution ------------- count
               4 |              0
               8 |@@@@@@@@@@@@@@@@@@@@     8991
              16 |         0
              32 |         0
              64 |         0

128 |@@@@@@@@@@@@@@@@@@@@        8991
             256 |         0

  temp
           value  ------------- Distribution ------------- count
               4 |              0
               8 |@@@@@@@@@@@@@      935
              16 |@@               151
              32 |@@@              184
              64 |@         66
             128 |@        97
             256 |         30
             512 |         22
            1024 |         13
            2048 |         4
            4096 |         28
            8192 |@@@@@@@@@@@@@@@@@@@     1359
           16384 |        0
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  dtrace
           value  ------------- Distribution ------------- count
               0 |              0
               1 |@               23
               2 |               19
               4 |@@@         118
               8 |@@@@@         182
              16 |@@@@@         211
              32 |@@@@@@@@@@@@@@@@@      689
              64 |@               31
             128 |@         29
             256 |@@         99
             512 |@         24
            1024 |@@@              135
            2048 |         5
            4096 |         0
            8192 |         0
           16384 |        0
           32768 |        0
           65536 |        0
          131072 |        0
          262144 |        0
          524288 |        0
         1048576 |         10
         2097152 |        0
         4194304 |@         20
         8388608 |        0

There is still a lot of work to do and while that goes on, the code has
to remain in the FreeBSD perforce server. It isn't ready to get merged
into CVS-current yet.

I have asked the perforce-admins to mirror the project out to CVS (via
cvsup10.freebsd.org), but I'm not sure what the hold-up there is.

I had hoped that one or two of the Google SoC students would contribute
to this, but I only received one proposal and that wasn't for anything
that would help get DTrace/FreeBSD completed.

There are things people can do to help. Some of them are build related;
some are build tool related; some are user-land DTrace specific; and the
rest are kernel related. Speak up if you are interested in working on
this!

--
John Birrell
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E
USDT Example

This appendix was contributed by Alan Hargreaves.

Throughout this book, the suggested strategies for tracing user-land applications
typically end with using the pid provider to trace application internals, should eas-
ier, stable providers not be available. Using the unstable pid provider can be
extremely complex, can be extremely time-consuming, and can make for some brit-
tle and difficult-to-maintain scripts. It can take days to figure out how to extract
the desired information from the running internals of an application. Another
option exists for using DTrace to observe and analyze application software; if the
source code is available, you can insert your own User Statically Defined Tracing
(USDT) provider into the source code to provide the custom probes and arguments
that you desire. For them to be available in the production environment, the modi-
fied source code must be recompiled and the new binaries deployed. USDT gives us
a way to build an application-specific provider with probe names and arguments
that make semantic sense in the context of the application. For example, a USDT
provider for a database could provide probes named query-start and query-
end, with arguments containing the query string and client and database name,
for queries to be examined and their time measured.

Some time ago, Brendan Gregg asked fellow DTrace expert (and Australian)
Alan Hargreaves if he’d like to write a USDT-based Bourne shell provider, because
one didn’t exist at the time. Such a provider would facilitate tracing of Bourne shell
scripts, providing probes and arguments for the entry and return from subroutines
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and other events of interest. Alan didn’t have experience with the Bourne shell
code; however, within 24 hours, he had not only studied it enough but had a work-
ing Bourne shell provider designed and implemented. We’ve asked Alan to contrib-
ute this appendix of how he designed and implemented the USDT Bourne shell
provider. This demonstrates the other option that may be considered: If stable pro-
viders do not already exist and using the pid provider becomes too complex, then
the source code (if available) can be edited, recompiled, and redeployed in production.

USDT Bourne Shell Provider

Integrating USDT probes into the Bourne shell provides an excellent example of
using this DTrace facility and of how to approach instrumenting applications.

Compared to SDT

Although USDT probes use similar macros, they differ slightly from their kernel
counterpart, SDT:

We don’t provide the argument types in the probe.

We do need a .d file that declares all of the probes and their stability.

There is an extra step in the compile/link process.

Defining the Provider

All of the probes that we will place into the source code need to be declared in a .d
file. This file also contains a number of pragma lines defining the stability levels of
the provider, module, functions, and arguments. We will go into more depth on this
when we discuss stability. For now, let’s look at a simple probe declaration. We’ll be
using this small USDT provider throughout this section.

provider world {
        probe loop(int);
}

#pragma D attributes Evolving/Evolving/Common provider world provider
#pragma D attributes Private/Private/Common provider world module
#pragma D attributes Private/Private/Common provider world function
#pragma D attributes Evolving/Evolving/Common provider world name
#pragma D attributes Evolving/Evolving/Common provider world args
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In this example, our provider is called world, and it provides one probe called
loop that has a single integer argument. Note that we’ve declared the argument
types where we declared the probe. We could save this in a file called probes.d.

Adding a USDT Probe to Source

Let’s start with a simple example that uses the probe declaration we just used.

This program prints “Hello World” five times with a two-second pause between
each. Let’s say we wanted to monitor the loop variable before we did the
printf(). There is no easy way to get that value using the pid provider. We could
modify the code by adding the bold lines shown here:

The include file sys/sdt.h contains all the macros and definitions that we
need to add USDT probes, including the one that we use: DTRACE_PROBE1().

This describes a probe in the provider world, named loop, that will have a sin-
gle argument. As we saw in the previous section, it is an integer. It is critical that
the probe name, provider name, and argument type(s) in the probe match what we
declared in the .d file.

#include <stdio.h>
#include <unistd.h>

int
main(int ac, char **av) {
        int i;
        for (i = 0; i < 5; i++) {

    printf(“Hello World\n”);
                sleep(2);
        }
}

#include <stdio.h>
#include <unistd.h>
#include <sys/sdt.h>

int
main(int ac, char **av) {
        int i;
        for (i = 0; i < 5; i++) {

DTRACE_PROBE1(world, loop, i);
    printf(“Hello World\n”);

                sleep(2);
        }
}
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I can see your fingers itching to try this, so we can compile it as follows:

The -G option to the dtrace(1M) command tells it to generate ELF files con-
taining the embedded DTrace program. The probes specified in the files listed in
the -s options are saved into these objects to be linked into the binary. This also
goes through looking for the probe points in other objects and replaces them with
NOP instructions so that the default is that the probes are disabled. The file asso-
ciated with the -s argument is treated as a D program containing the declaration
of the probe points.

If we run this outside of the DTrace framework, it will do exactly as we expected
and print “Hello World” five times with a two-second break between each.

Let’s take a look at it with DTrace:

So, in this small example we have managed to make a variable visible at a point
that would otherwise have been difficult to do, probably requiring debug state-
ments and special builds. The only overhead we have is a few NOP instructions
where the probe would be.

This is fine for if we only want to make a simple variable visible at a particular
point in the code path. Quite often you will want to do a little bit more calculation
in what you are making visible. If we only use the DTRACE_PROBEn() macros as
we have here, that overhead will be added even when the probes are disabled. This
gets just a little trickier because we need to run another dtrace(1M) command to
generate an include file:1

solaris# cc -c helloworld.c
solaris# dtrace -G -s probes.d helloworld.o
solaris# cc -o helloworld -ldtrace probes.o helloworld.o

solaris# dtrace -q -c ./helloworld -n '
world$target:::loop {
        printf(“%s:%s loop = %d\n”, probemod, probefunc, arg0);
}'
helloworld:main loop = 0
Hello World
helloworld:main loop = 1
Hello World
helloworld:main loop = 2
Hello World
helloworld:main loop = 3
Hello World
helloworld:main loop = 4

solaris# dtrace -h -s probes.d

1. http://dtrace.org/blogs/ahl/2006/05/08/user-land-tracing-gets-better-and-better/

http://dtrace.org/blogs/ahl/2006/05/08/user-land-tracing-gets-better-and-better/
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This will create probes.h. Inside probes.h we get some more useful macro
definitions. Among these, we get macros of the form PROVIDER_PROBENAME_
ENABLED(). If we want to verify that the probe is enabled before we do anything,
we must modify helloworld.c like this:

Now if we create the header file for this, we get an added bonus. We get a much
cleaner-looking macro for our probe. We also get macros of the form PROVIDER_
PROBENAME(), so we can replace the DTRACE_PROBE1() line with simply the
following:

which makes for substantially cleaner-looking code, especially if we are doing a lot
of probes.

Stability

DTrace provides two types of stability attributes for entities such as built-in vari-
ables, functions, and probes: a stability level and an architectural dependency class.
The stability level assists you in making risk assessments when developing scripts
and tools based on DTrace by indicating how likely an interface or DTrace entity is
to change in a future release or patch. The dependency class tells you whether an
interface is common to all Solaris platforms and processors or whether the inter-
face is associated with a particular architecture such as SPARC processors only.
The two types of attributes used to describe interfaces can vary independently.

#include <stdio.h>
#include <unistd.h>
#include <sys/sdt.h>
#include "probes.h"

Int
main(int ac, char **av) {
        int i;
        for (i = 0; i < 5; i++) {

if (WORLD_LOOP_ENABLED()) {
    /* Lots of stuff that takes time */

DTRACE_PROBE1(world, loop, i);
                }

    printf(“Hello World\n”);
                sleep(2);
        }
}

          WORLD_LOOP(i);
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When declaring stabilities of a USDT provider, we need to document this for the
full probe specification, including the arguments. 

The provider

The modules

The function

The probes

The type and number of arguments in each probe

DTrace describes interfaces using a triplet of attributes consisting of two stabil-
ity levels and a dependency class. By convention, the interface attributes are writ-
ten in the following order, separated by slashes:

The name stability of an interface describes the stability level associated with
its name as it appears in your D program or on the dtrace(1m) command line.

The data stability of an interface is distinct from the stability associated with
the interface name. This stability level describes the commitment to maintaining
the data formats used by the interface and any associated data semantics. For
example, the pid D variable (not the pid provider) is a stable interface: Process
IDs are a stable concept in Solaris, and it is guaranteed that the pid variable will
be of type pid_t with the semantic that it is set to the process ID corresponding to
the thread that fired a given probe in accordance with the rules for stable inter-
faces.

The dependency class of an interface is distinct from its name and data stability
and describes whether the interface is specific to the current operating platform or
microprocessor.

In the probes.d file previously, we made the following definitions:

This says that the name and data stability of all but the module and function
part of the probes is evolving. This means the interface might eventually become

name-stability / data-stability / dependency-class

#pragma D attributes Evolving/Evolving/Common provider world provider 
#pragma D attributes Private/Private/Common provider world module 
#pragma D attributes Private/Private/Common provider world function 
#pragma D attributes Evolving/Evolving/Common provider world name 
#pragma D attributes Evolving/Evolving/Common provider world args
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standard or stable but is still in transition. All efforts would be made to avoid
incompatible change, but if any were required, they could occur only in a minor or
major release. The module and function are marked private. This means that they are
subject to change and simply cannot be relied upon for stability for this probe. The
third part of the triplet means that the probes are common to all architectures.

The “Stability” chapter of the DTrace Guide discusses stability in great depth.

Case Study: Implementing a Bourne Shell Provider

Before you start, it is useful to have a good idea of exactly what probes you are
interested in providing. In the case of the shell provider, we decided on the probes
listed in Table E-1.

In addition, we need to think about the probe arguments (Table E-2).

Table E-1 Probes

Probe Description

builtin-entry Fires on entry to a shell built-in command

builtin-return Fires on return from a shell built-in command

command-entry Fires when the shell execs an external command

command-return Fires on return from an external command

function-entry Fires on entry into a shell function

function-return Fires on return from a shell function

line Fires before commands on a particular line of code are executed

subshell-entry Fires when the shell forks a subshell

subshell-return Fires on return from a forked subshell

script-start Fires before any commands in a script are exexuted

script-done Fires on script exit

variable-set Fires on assignment to a variable

variable-unset Fires when a variable is unset
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Table E-2 Probe Arguments

Type Argument Description

builtin-entry, command-entry, function-entry

char * args[0] Script name

char * args[1] Built-in/command/function name

int args[2] Line number

int args[3] # arguments

char ** args[4] Pointer to argument list

builtin-return, command-return, function-return

char * args[0] Script name

char * args[1] Built-in/command/function name

int args[2] Return value

subshell-entry

char * args[0] Script name

pid_t args[1] Forked process ID

subshell-return

char * args[0] Script name

int args[1] Return value

line

char * args[0] Script name

int args[1] Line number

script-start

char * args[0] Script name

script-done

char * args[0] Script name

int args[1] Exit value

variable-set

char * args[0] Script name

char * args[1] Variable name

char * args[2] Value

variable-unset

char * args[0] Script name

char * args[1] Variable name
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You will notice that we’ve tried to get as much consistency as possible: args[0]
is always the script name. Within similar probes, we’ve also kept the arguments
consistent. This makes it simpler to write scripts using these probes.

This makes for a probes.d that looks like this:

The stability of this provider is currently marked in general as unstable because
it is under development. The module and function parts are private to the shell code,
so no reliance should be placed on them. The probes are common to all architectures.
Once the provider has had some use, we will look at firming up the stabilities.

Where to Place the Probes

Working out exactly where in the source code to place the probes can be difficult if
you are just looking at the source. One way to find exactly which functions you
need to place the probes in is to leverage the pid provider to look at which func-
tions get executed with a small script that you would expect to make each probe
fire (one at a time). For example, to catch likely builtin-entry and builtin-return
locations, we could use the following script (prime numbers are good as you are
less likely to hit them by accident):

provider sh { 
      probe function__entry(char *, char *, int, int, char **); 
      probe function__return(char *, char *, int); 
      probe builtin__entry(char *, char *, int, int, char **); 
      probe builtin__return(char *, char *, int); 
      probe script__start(char *); 
      probe script__done(char *, int); 
      probe command__entry(char *, char *, int, int, char **); 
      probe command__return(char *, char *, int); 
      probe subshell__entry(char *, pid_t, int); 
      probe subshell__return(char *, int); 
      probe line(char *, int); 
      probe varible__set(char *, char *, char *);
      probe variable__unset(char *, char *);
};

#pragma D attributes Unstable/Unstable/Common provider sh provider 
#pragma D attributes Private/Private/Unknown provider sh module 
#pragma D attributes Private/Private/Unknown provider sh function 
#pragma D attributes Unstable/Unstable/Common provider sh name 
#pragma D attributes Unstable/Unstable/Common provider sh args 

#!/usr/has/bin/sh

for i in 1 2 3 4 5 6 7 8 9 10 11 12 13
do    echo $i
done
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Note that as I am running this on an Solaris Development box, the Bourne shell
is /usr/has/bin/sh, not /bin/sh.

We would then use the pid provider to watch function calls:

Among a lot of other information here we find this:

We can now redo the probe to look at the stack when we call b_echo().

After a bit of looking at the code at this point, it looks like execute() is proba-
bly going to be a good function to place the built-in probes. In the Bourne shell,
this function is inside xec.c.

Within the function we find a switch() statement in which we can actually
place a couple of other entry/return probes as well as the built-in entry and built-in
return. The code we end up with is as follows:

The variable-set probe is also worth showing here as it needs to use an
_ENABLED macro.

solaris# dtrace -n 'pid$target:sh::entry { @[probefunc] = count(); }' -c ./builtin.sh

  echo   13

solaris# dtrace -n 'pid$target:sh:echo:entry { ustack(10); exit(0); }' -c ./
builtin.sh
[...]
CPU     ID            FUNCTION:NAME 
  0  62526             echo:entry 
              sh`echo 

    sh`builtin+0x2d4 
    sh`execute+0x571 
    sh`execute+0x28a 
    sh`exfile+0x195 

     sh`main+0x518 
     sh`_start+0x7d 

else if (comtype == BUILTIN) { 
SH_BUILTIN_ENTRY(cmdadr, *com, t->line, argn, c);

        builtin(hashdata(cmdhash), argn, com, t); 
SH_BUILTIN_RETURN(cmdadr, *com, exitval); 

        freejobs(); 
        break; 
} else ...
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The value that we need to place into args[1] is one byte beyond where argscan
is pointing. Now we don’t want to do an increment in the macro for three reasons.

We can’t be sure how many times the macro instantiates the argument; we 
may end up incrementing by more than one.

If we increment argscan, then we need to decrement it again for the follow-
ing code to use it. The probe would then have an impact when disabled (an 
increment and decrement of a variable).

If DTrace is undefined on the target system, we may even have zero instanti-
ations, making a subsequent decrement (to put the value back where it 
should be) incorrect.

The solution was to place it in the previous clause and increment a stack vari-
able only if the probe is enabled.

We also need to ensure that the files we added probes to include probes.h that
we generate from probes.d. We also need to make the following additions and
modifications (bold) to the Makefile to properly generate the code:

It’s also worth noting that there was actually a little more to this provider,
because the way the shell was written, it did not keep track of line numbers
beyond parsing. The line structure element and some support for it also needed to
be added but is beyond the scope of this appendix.

   if (SH_VARIABLE_SET_ENABLED()) { 
       char *value = (char *)argscan; 

           value++; 
     SH_VARIABLE_SET((char *)cmdadr, (char *)argi, 

            value); 
                } 

OBJS=   args.o blok.o cmd.o defs.o error.o fault.o hash.o hashserv.o \ 
        io.o msg.o print.o stak.o string.o word.o xec.o \ 
        ctype.o echo.o expand.o func.o macro.o pwd.o setbrk.o test.o \ 
        bltin.o jobs.o ulimit.o sh_policy.o main.o name.o service.o \

probes.o

all: probes.h $(ROOTFS_PROG)
dtrace -h -s probes.d

probes.o: error.o main.o xec.o name.o probes.d
      dtrace -32 -G -s probes.d error.o main.o xec.o name.o

clean:
      $(RM) probes.h $(OBJS)
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F
DTrace Error Messages

DTrace will print error or warning messages to STDERR as a result of specific
events. This appendix describes the more common messages encountered and pro-
vides suggestions for avoiding them.

Many of these are from the “DTrace Tips, Tricks and Gotchas” presentation1 by
Bryan Cantrill, Mike Shapiro, and Adam Leventhal. 

Privileges

Message

Meaning

The user does not have the necessary permissions to run DTrace.

1. http://dtrace.org/blogs/bmc/2005/02/28/dtrace-tips-tricks-and-gotchas/

macosx# dtrace -l
dtrace: failed to initialize dtrace: DTrace requires additional privileges
macosx#

http://dtrace.org/blogs/bmc/2005/02/28/dtrace-tips-tricks-and-gotchas/
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Suggestions

On Mac OS X and FreeBSD, the only solution is to run as the root user or use
sudo(8).

On Solaris systems, required privileges to run DTrace can be assigned using
process privileges (also see Chapter 11, Security):

dtrace_user: Allows the use of profile, syscall and fasttrap providers, on 
processes that the user owns

dtrace_proc: Allows the use of the pid provider on processes that the user 
owns

dtrace_kernel: Allows most providers to probe everything, in read only 
mode

Privileges can be added to a process (such as a user’s shell) temporarily by using
the ppriv(1) command. For example, to add dtrace_user to PID 1851, use this:

Drops

Message

Meaning

DTrace ran out of available principal buffer space for recording output data. This
occurs when the switch buffer policy is in use (which is the default) and more data
is output than there is space available in the active principal buffer. In practice,
this usually happens when outputting thousands of events (and many pages of out-
put) per second.

Suggestions

The size of the principal buffer can be increased by adjusting the bufsize tunable
variable per consumer, which may eliminate drops. For example, to increase it from

solaris# ppriv -s A+dtrace_user 1851
solaris# usermod -K defaultpriv=basic,dtrace_user brendan

dtrace: 978 drops on CPU 0
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the default of 4MB per CPU to 8MB per CPU, you can use -b 8m or -x bufsize=8m
on the command line, or you can use #pragma D option bufsize=8m in D
scripts (see Appendix A).

Also, the switchrate tunable can be increased from the default of 1 Hertz to
10 Hertz using -x switchrate=10hz on the command line or #pragma D
option switchrate=10hz in a D script, which can also reduce buffer drops
because it is drained more quickly by the DTrace consumer.

Finally, it may be possible to modify the script to record less data, such as by
using predicates to filter out uninteresting events or by using aggregations to sum-
marize data instead of printing out everything. Either of these will relieve the
pressure on the principal buffer, reducing drops.

Since this is a common error message, it is also described in Chapter 14, Tips
and Tricks.

Aggregation Drops

Message

Meaning

DTrace ran out of available aggregation buffer space for recording aggregation
data.

Suggestions

The aggregation buffer size can be increased by setting the aggsize tuneable
variable. To set the size to 8MB, either use -x aggsize=8m on the command line
or use #pragma D option aggsize=8m in D scripts (see Appendix A).

Also, the rate of consumption of aggregation data can be tuned by increasing
aggrate from the default of 1 Hertz to 10 Hertz using -x aggrate=10hz on the
command line or #pragma D option aggrate=10hz in a D script.

dtrace: 11 aggregation drops on CPU 0
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Dynamic Variable Drops

Message

Meaning

Space for dynamic variables (thread-local variables, associative array variables)
has been depleted.

Suggestions

Ensure your D programs are clearing unused dynamic variables (for example,
self->myvar = 0;).

The space for storage of dynamic variables can be increased from the default of
1MB (dynvarsize) to 2MB per consumer using -x dynvarsize=2m or in D
scripts with #pragma D option dynvarsize=2m (see Appendix A).

If the message includes non-empty dirty list, the cleanrate variable can be
increased from the default of 101Hz per-consumer using -x cleanrate=333hz on
the command line or using #pragma D option cleanrate=333hz in a D script.

Note dynamic variable drops must be eliminated for correct results.

Invalid Address

Message

Invalid address (0x...) in action. For example:

Meaning

This error is caused when DTrace attempts to dereference a memory address that
isn’t mapped. In the previous example, the arg0 variable for the open(2) system

dtrace: 103 dynamic variable drops
dtrace: 73 dynamic variable drops with non-empty dirty list

# dtrace -n 'syscall::open:entry { trace(stringof(arg0)); }'
[...]
dtrace: error on enabled probe ID 1 (ID 6329: syscall::open:entry):
invalid address (0xd27fbf38) in action #1
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call refers to a user-land address; however, DTrace executes in the kernel address
space.

Suggestions

Depending on the specific address being deferenced, the use of copyin() or copy-
instr() may be required to copy a user-land address into the kernel before
DTrace can dereference it. And so, this example may be fixed by changing the
function from stringof() to copyinstr() in the trace() statement. 

When derefencing addresses in an entry probe, it is also a good idea to move the
dereference to the corresponding return probe if possible (which may involve sav-
ing the address as a thread-local variable on entry, for reference on return). On
entry, the address may be valid, but the actual memory page(s) have not been
faulted in yet. If that is the case, a similar error message is seen—despite using
copyinstr().

Maximum Program Size

Message

Meaning

The D program (biggie.d) comprised a very large number of enablings, and/or
actions, exceeding DTrace’s ability to execute the program because of size require-
ments for internal DTrace objects.

Suggestions

Edit the program, reducing the number of probes and/or actions. Alternative, con-
sider increasing the dtrace_dof_maxsize variable in /etc/system (Solaris).
The default value is 256KB.

dtrace: failed to enable './biggie.d': DIF
program exceeds maximum program size
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Not Enough Space

Message

Meaning

The limit on the number of pid provider probes that can be created (250,000) has
been reached. This can happen when trying to instrument very large process using
the pid provider. 

Suggestions

Often, this can be the result of an unintended invocation by the user; pid$target:::,
which will attempt to insert a probe at every instruction in the target process, was
actually intended to be pid$target:::entry or pid$target:libc::entry,
and so on. Note there is potentially a huge difference in the number of probes
required for pid$target::: vs. pid$target:::entry. The user should modify
the DTrace to require fewer probes for the target process.

If instrumenting large processes is required, consider increasing the pid probe
limit by editing the /kernel/drv/fasttrap.conf file (in Solaris) and changing
the fasttrap-max-probes value from 250000 to something larger. After editing,
you will need to run update_drv fasttrap or reboot.

# dtrace -ln 'pid$target:::' -p `pgrep mozilla-bin`
dtrace: invalid probe specifier pid$target:::: failed to create probe in process 7424:
 Not enough space
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G
DTrace Cheat Sheet

Synopsis

Finding Probes

1. DTrace Guide: Currently at http://wikis.sun.com/display/DTrace/Documentation

2. Keyword search: dtrace -l | grep foo

3. Frequency count:
dtrace -n 'fbt:::entry { @[probefunc] = count(); }' \

-c 'ping host'

4. DTraceToolkit: grep foo /opt/DTT/Bin/*

dtrace -n 'probe /predicate/ { action; }'

http://wikis.sun.com/display/DTrace/Documentation
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Finding Probe Arguments

Probes

Vars

syscall::: man syscallname

fbt::: Kernel source, or mdb -k and ::nm -f ctype (Solaris)

everything else DTrace Guide

BEGIN D program start

END D program end

syscall::read*:entry process reads

syscall::write*:entry process writes

syscall::open*:entry file open

proc:::exec-success process create

io:::start,io:::done disk or NFS I/O request, completion

lockstat:::adaptive-block blocked thread acquired kernel mutex

sysinfo:::xcalls CPU cross calls

sched:::off-cpu thread leaves CPU

fbt:::entry entire kernel - all function entry probes

javascript*::: JavaScript provider probes

perl*::: Perl provider probes

profile:::tick-1sec run once per sec, one CPU only

profile:::profile-123 sample at 123 Hertz

execname on-CPU process name probemod module name

pid, tid on-CPU PID, Thread ID probefunc function name

cpu CPU ID probename probe name

timestamp time, nanoseconds self->foo thread-local

vtimestamp time thread was on-CPU, ns this->foo clause-local

arg0..N probe args (uint64) $1..$N CLI args, int

args[0]..[N] probe args (typed) $$1..$$N CLI args, str

curthread pointer to current thread $target Set via -p or -c

curpsinfo procfs style process information zonename zonename
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Actions

Switches

Pragmas

@agg[key1, key2] = count() frequency count

@agg[key1, key2] = sum(var) sum variable

@agg[key1, key2] = quantize(var) power of 2 quantize variable

printf("format", var0..varN) print vars; use printa() for aggregations

stack(num), ustack(num) print num lines of kernel, user stack

func(pc), ufunc(pc) return kernel/user function name from 
program counter

clear(@) clear an aggregation

trunc(@, 5) truncate an aggregation to top 5 entries

stringof(ptr) string from kernel address

copyinstr(ptr) string from user-land address

exit(0) exit dtrace(1M)

-n trace this probe description

-l list probes instead of tracing them

-q quiet - don't print default output

-s file invoke script file; or at top of script: #!/usr/sbin/dtrace -s

-w allow destructive actions

-p PID allow pid::: provider to trace this PID; the PID is available as $target

-c 'command' have dtrace(1M) invoke this command

-o file append output to file

-x options set various DTrace options (switchrate, bufsize, ...)

#pragma D option quiet same as -q, quiet output

#pragma D option destructive same as -w, allow destructive actions

#pragma D option switchrate=10hz print at 10 Hertz (instead of 1 Hertz)

#pragma D option bufsize=16m set per-CPU buffer size (default 4MB)

#pragma D option defaultargs $1 is 0, $$1 is "", etc...
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One-Liners

dtrace -n 'proc:::exec-success  { trace(curpsinfo->pr_psargs); }'
dtrace -n 'syscall:::entry      { @num[execname] = count(); }'
dtrace -n 'syscall::open*:entry { printf("%s %s",execname,copyinstr(arg0)); }'
dtrace -n 'io:::start         { @size = quantize(args[0]->b_bcount); }'
dtrace -n 'fbt:::entry         { @calls[probemod] = count(); }'
dtrace -n 'sysinfo:::xcalls     { @num[execname] = count(); }'
dtrace -n 'profile-1001         { @[stack()] = count() }'
dtrace -n 'profile-101 /pid == $target/ { @[ustack()] = count() }' -p PID
dtrace -n 'syscall:::entry      { @num[probefunc] = count(); }'
dtrace -n 'syscall::read*:entry { @[fds[arg0].fi_pathname] = count(); }'
dtrace -n 'vminfo:::as_fault    { @mem[execname] = sum(arg0); }'
dtrace -n 'sched:::off-cpu /pid == $target/ { @[stack()] = count(); }' -p PID
dtrace -n 'pid$target:libfoo::entry { @[probefunc] = count(); }' -p PID
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O’Reilly.
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action In DTrace, the term action refers to the action statements taken when a
probe fires, which are defined in an action clause. See clause.

adaptive mutex A mutex (mutual exclusion) lock type. When requested yet held
by another thread, it will either spin if that other thread is currently executing on
another CPU or block if it isn’t.

aggregating function A D built-in function that operates on aggregations. These
include population functions, such as count(), avg(), sum(), and quantize();
processing functions such as normalize() and trunc(); and printa() for print-
ing. (See the “Aggregations” section in Chapter 2.)

aggregation A special D variable type used to summarize data. They are pre-
fixed with an at (@) sign, are populated by aggregating functions on a per-CPU
basis, and are combined only when printed out; this minimizes the overhead on
multi CPU systems. See aggregating function.

aggregation buffer A per-CPU buffer for aggregation data. This can be tuned by
the aggsize tunable.

Analytic A graphical interface for performance analysis, which uses DTrace to
provide much of its data. It is shipped as part of the Oracle ZFS Storage Systems.

anchored probes Probes that instrument a specific location in code, such as the
fbt provider entry and return probes, which instrument the entry and return of
kernel functions. See unanchored probes.
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API Application Programming Interface.

array A variable type that consists of a set of values, referenced by an integer
index. A string is an array of characters.

associative array A collection of values that are each assigned and retrieved
using a unique key. These differ from ordinary arrays in that the key (index) can
be something other than a consecutive series of integers. They are often used to
store data that may be retrieved by different threads, keyed on some global identi-
fier such as a buffer address.

buffer A region of memory used for temporary data. With DTrace, this is some-
times used to refer to the DTrace principal buffer (see principal buffer).

bufpolicy DTrace tunable parameter to define the principal buffer behavior. Val-
ues can be switch (default), fill, or ring. See principal buffer.

C The C programming language.

C++ The C++ programming language.

cast See type cast.

Chime A graphical tool for executing and displaying DTrace data. Chime uses the
Java DTrace API.

CIFS Common Internet File System. A file system and device protocol commonly
used by Microsoft Windows (sometimes referred to as Server Message Block
[SMB]).

clause A series of one or more action statements that are executed when a probe
fires, grouped in braces, as in { ... }.

clause local A D variable type intended for use within an action clause, { ... },
for temporary variables.

command A program executed at the shell.

comment characters The characters /* ... */, which indicate that text is not
to be executed. The text is usually provided to help other programmers under-
stand the code, by including description of the code.

commented out Taking a body of code and encapsulating it in the comment char-
acters /* ... */ so that it is removed from the execution of the program.

consumer End user. Consumers of the DTrace framework are the user-level com-
mands including dtrace(1M) and lockstat(1M), which consume DTrace via the
libdtrace library.
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core A execution pipeline on a CPU.

CPU Central Processing Unit. The microprocessor hardware of the computer.

CR Change Request. This is the term Sun Microsystems uses for filed bugs, which
are requesting a change in a product. CR is followed by the numeric bug ID and a
text synopsis, such as “CR 6558517: need DTrace versions of IP address to string
functions, like inet_ntop().”

cross calls A CPU cross call is when one CPU sends a request to others on a
multi-CPU system. These can be for systemwide events such as cache coherency.

CTF Compact C Type Format. Debugging information that is built in to the exe-
cutable to describe C types (structures, typedefs, and so on) and function proto-
types.

D D is the programming language supported by DTrace and processed by
dtrace(1M) and libdtrace(3LIB). It was inspired by the C programming lan-
guage.

D language See D.

D program A program written in the D programming language. It may be exe-
cuted at the command line or saved to a file and executed as a D script.

D script A D program saved as a file and executed with either dtrace -s filename
or by making the file executable and adding an interpreter line such as #!/usr/
sbin/dtrace -s. By convention, it has a .d extension.

DIF DTrace Intermediate Format. An encoding of RISC-like instructions used to
represent predicates and actions bound to DTrace probes.

DIFO DIF Object. Representation of a D expression for evaluation.

dispatcher queue Also known as a run queue. A queue of runnable threads.

DNS Domain Name Service.

DOF DTrace Object Format. An encoding of a DTrace program.

drops Data was dropped, so the output of DTrace is incomplete. This happens
when using the switch buffer policy (which is the default) and the active principal
buffer has filled because of a high rate of trace data. See “drops and dynvardrops”
in Chapter 14.

DTrace The term DTrace alone refers to either the technology or the kernel
implementation.
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dtrace(1M) Command-line program for executing D programs either as one-liners
or as scripts.

dtrace(7d) DTrace kernel implementation (the term is the Solaris man page
name).

DTraceToolkit This is the name of a freely downloadable software package contain-
ing a large collection of D scripts and one-liners with supporting documentation.

dynamic This term is often used with DTrace to refer to dynamic probes, which is
included in the name of the technology (Dynamic Tracing). Dynamic probes are
automatically generated by DTrace, such as the instrumentation of currently run-
ning software to provide function entry and return probes. Providers such as fbt
and pid provide dynamic probes. Depending on the target software, tens or hun-
dreds of thousands of dynamic probes may be available. See static.

dynvardrops The dynamic variable buffer has filled, and assignments are
dropped. The output from DTrace may no longer be accurate with the presence of
dynvardrops. See switch buffer, and also see “drops and dynvardrops” in Chapter 14.

enabling A group of enabled probes and their associated predicates and actions.

errno The error value returned by the last system call made by the current
thread. These are defined in errno.h and intro(2). For example, errno 2 is
usually ENOENT “No such file or directory.”

execname Process name that was passed to exec().

fault A possible failure mode of hardware and software. An expected error event.

fbt provider Function Boundary Tracing provider. Dynamically provides probes
for the entry and return of kernel functions.

FC Fibre Channel. A block storage protocol.

fds[] array A built-in D array currently available on Solaris and Mac OS X that
provides translation from integer file descriptors into fileinfo_t, which con-
tains the path name, mount point, file system type, and more.

Fibre Channel See FC.

fill buffer A principal buffer policy that has a fixed size and fills once. When one
is full, tracing stops and dtrace(1M) exits, processing all the CPU fill buffers.
This is set using bufpolicy=fill (see bufpolicy).

FreeBSD A Unix-like operating system, based on BSD. FreeBSD is generally
regarded as reliable, robust, and secure and has a number of security enhance-
ments from the TrustedBSD project.
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FTP File Transfer Protocol. A commonly used protocol to transfer files over the
Internet.

GLDv3 Generic LAN Driver version 3. Provides an interface for local area net-
work (LAN) device drivers on Solaris.

global See scalar.

global scalar variables See scalar.

global variables See scalar.

Hertz Cycles per second.

HFS+ Hierarchical File System Plus. A file system developed by Apple used in
Mac OS X.

HTTP HyperText Transfer Protocol.

ICMP Internet Control Message Protocol. Used by ping(1) (ICMP echo request/
reply).

IDE Integrated Drive Electronics. An obsolete interface standard for storage
devices.
Integrated Development Environment. A GUI-based software application for
developing software.

inline Refers to code that is included in another body of code, rather than refer-
ring to code that is saved in a separate file.

IP Internet Protocol. The term ip may also refer to the Solaris kernel ip module
that implements network stack protocols, including IP and TCP.

iSCSI Internet Small Computer Systems Interface. An IP-based storage protocol.

Java The Java programming language.

JavaScript The JavaScript programming language.

KB Kilobytes.

kernel The master program on a system that runs in privileged mode to manage
resources and user-level processes.

kernel-land Also known as kernel mode or system mode. A virtual memory–based
operating system supports multiple execution modes that define the hardware and
software context of the running software, including the addressable memory or
address space. Kernel-land refers to executing in a privileged context, and the ker-
nel address space, in which the kernel and device drivers execute. DTrace probes
also fire in kernel-land, which is why user-land addresses including the path name
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pointer for the open() system call cannot be dereferenced directly; rather, a D
function (copyin() or copyinstr()) must first be used to copy data from the
user address space to the kernel. See user-land.

keys Used to refer to the identifier for key/value pairs in associative arrays.

latency The time for an event, such as the time for an I/O to complete. Latency is
important for performance analysis, because it is often the most effective measure
of a performance issue.

LDAP Lightweight Directory Access Protocol. A name service protocol.

libdtrace(3LIB) The C library interface used by DTrace consumers (for example,
dtrace(1M) and lockstat(1M)) to access the kernel DTrace framework.
libdtrace(3LIB) includes the D language compiler and facilities for enabling
probes and consuming trace data. This library is currently a private interface and
not for public consumption; it is subject to change at any time without notice.

lockstep This term is used in DTrace to refer to sampling at the same rate as
another timed event, which could over-represent the event in the collected sample
data.

Mac OS X A Unix-based operating system and graphical user environment devel-
oped by Apple Inc.

Mac OS X Instruments A graphical analyzer for Mac OS X that uses DTrace.

macro A method of generating variables in the D programming language. (See
Chapter 2.) Macros are processed and replaced with literal text by the m4 prepro-
cessor, part of the C compiler tool chain. See m4(1) and the Solaris Programming
Utilities Guide (http://docs.sun.com/app/docs/doc/801-6734/).

malloc Memory allocate. This usually refers to the function performing allocation.

MB Megabytes.

memory This term is used to refer to system memory, which is usually imple-
mented as DRAM.

MIB Message Information Base. These describe the data served via SNMP.

MMU Memory Management Unit. This is responsible for presenting memory to a
CPU and for performing virtual to physical address translation.

mpt An SCSA-compliant nexus device driver.

mutex See mutual exclusion lock.

http://docs.sun.com/app/docs/doc/801-6734/
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mutual exclusion lock Called mutex locks for short, these are software locks
where only the thread that holds the lock can access the locked resource. This pre-
vents simultaneous writing, which would otherwise result in data corruption on
multi-CPU systems. Mutex locks are used throughout the kernel.

MySQL An open source relational database management system.

NetBeans DTrace GUI A graphical interface for DTrace currently available with
the NetBeans IDE.

NFS Network File System. A protocol for accessing a file system over a network.

NFSv3 NFS version 3.

NFSv4 NFS version 4.

NIS Network Information Service. A name service protocol created by Sun Micro-
systems.

off-CPU A thread that is not currently running on a CPU and so is “off-CPU,”
because of having blocked on I/O or a lock, because of having yielded, or because it
is waiting on a dispatcher queue.

on-CPU A thread that is currently running on a CPU.

onnv An abbreviation of ON Nevada, where ON is the consolidation of the Oper-
ating System and Networking components of Solaris. See Solaris Nevada.

OpenSolaris This refers to a development version of the Solaris operating sys-
tem that was open to community contributions. The project has now been retired.

Oracle Solaris See Solaris.

Oracle Solaris Studio A software development platform for multiple languages,
including C and C++. This includes DLight, a performance analyzer that is DTrace
based.

OS Operating System. The collection of software including the kernel for manag-
ing resources and user-level processes.

OSs Operating Systems.

pagefault A system trap that occurs when a program references a memory loca-
tion that is not currently part of its address space.

page-in/page-out Functions performed by an operating system (kernel) to move
chunks of memory (pages) to and from external storage devices.

Perl The Perl programming language.
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PHP The PHP programming language (originally, “Personal Home Page” tools).

PID Process Identifier. The operating system unique numeric identifier for pro-
cesses.

pid provider Process ID provider. Dynamically provides probes for the entry,
return, and instructions of user-level functions.

POSIX Portable Operating System Interface for Unix. A family of related stan-
dards by the IEEE to define a Unix API.

PostgreSQL An open source object-relational database management system.

pragma A compiler preprocessor directive.

predicate A D conditional statement, / ... /, that evaluates either true or
false. (See Chapter 2.)

principal buffer The main DTrace buffer that records the output of tracing
actions including trace(), printf(), and stack(). It is per-CPU and 4MB by
default, which can be tuned with the bufsize tunable (see Appendix A). Its behavior
can be tuned with various buffer policies: see switch buffer, fill buffer, ring buffer.

probe A DTrace point of instrumentation, described by the four-tuple pro-
vider:module:function:name. Thousands of possible probes are available to DTrace,
created either statically or dynamically. D programs enable probes and may take
custom actions when they fire, such as printing data. See static, dynamic, anchored
probes, and unanchored probes. (See Chapter 2.)

process An operating system abstraction of an executing user-level program.
Each is identified by its PID (see PID) and may have one or more running threads
(see thread).

profile The name of the profile provider, which can sample events at a given fre-
quency. The term profile can also mean any technique to collect data that charac-
terizes the performance of software.

provider A DTrace provider is a library of related probes and arguments. The
provider name is specified as the first member of the probe name.

PSARC Platform Software Architecture Review Committee. A committee created
at Sun Microsystems to review and approve most software developments, espe-
cially those that create or modify existing interfaces to users or other parts of the
system, before integration.

Python The Python programming language.
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reader/writer lock A mutual exclusion primitive used by threaded software to
protect shared data.

RFC Request For Comments. This is a misleading acronym. In practice, an RFC is
used by the Internet Engineering Task Force (IETF) as the document to define a
protocol standard; in other words, RFC 793 defines the TCP protocol.

ring buffer A principal buffer policy that wraps when full, thereby only keeping
recent events. A D program can then be written to exit on an event of interest,
which will then process the ring buffer showing events that led up to that event.
This is set using bufpolicy=ring (see bufpolicy).

Ruby The Ruby programming language.

sample In DTrace, the term sample is often used to refer to the time interval–
based capturing of data. As such, only a sample of the data is captured and exam-
ined—rather than tracing every event. The profile provider samples at a specified
rate. For a different technique of data collection, see trace.

SAS Serial Attached SCSI.

SATA Serial Advanced Technology Attachment. An interface standard for storage
devices.

scalar A scalar variable. These are individual fixed-size data objects, such as inte-
gers and pointers (see Chapter 2). The term global is often used in addition as a
reminder that it has global scope.

scalar global See scalar.

scalar variables See scalar.

SCSI Small Computer System Interface. An interface standard for storage
devices.

SDT Statically Defined Tracing, kernel-based. This involves the placement of
static DTrace instrumentation in kernel code by the kernel engineer, at locations
to provide useful probes. SDT-based providers with a “stable” interface include io,
proc, and sched; the sdt provider (sdt in lowercase, not to be confused with SDT)
has an “unstable” interface. Also see USDT.

sdt provider A kernel DTrace provider for static probes, with a commitment level
of “unstable.” sdt probes are typically placed by kernel engineers as debug points
and to prototype possible future stable providers.

self-> Prefix for thread-local variable. See thread local.

Shell A command-line interpreter and scripting language.
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SMB Server Message Block protocol, also known as CIFS (see CIFS).

SNMP Simple Network Management Protocol.

snv See Solaris Nevada.

socket A software abstraction representing a network endpoint for communication.

Solaris A Unix operating system originally developed by Sun Microsystems. It is
popular for enterprise use and is known for scalability, for reliability, and for intro-
ducing innovative features such as DTrace and ZFS. It has now been named Ora-
cle Solaris after the acquisition of Sun by Oracle Corporation.

Solaris Nevada An Oracle, Inc., internal name for the current development ver-
sion of Solaris, which is expected to be called Solaris 11 when released.

spin A software mechanism involving executing in a tight loop while trying to
acquire a resource, typically a spin lock or an adaptive mutual exclusion (mutex)
lock.

SSH Secure Shell. A encrypted remote shell protocol.

stable Used throughout this book to refer to the commitment level of a program-
ming interface, usually the interface presented by a DTrace provider. A stable
interface is one that should remain unchanged over time. D programs that use sta-
ble provider interfaces should work on future software versions without needing
changes. See unstable.

stack Short for “stack trace.”

stack backtrace See stack trace.

stack frame A data structure containing function state information, including
pointers to the function, return address, and function arguments.

stack trace A call stack composed of multiple stack frames, showing the ancestry
of executing functions. Reading a stack trace from bottom to top shows which func-
tions have called which other functions and, from this, the path through code. This
is also called a stack back trace, since reading the stack from top down begins with
the most recent function and works backward to the least recent.

static Often used in DTrace to refer to statically defined probes, which are
inserted into the source code by the programmer. Statically defined probes include
those from the io and proc providers. DTrace will typically have dozens of stati-
cally defined probes available, depending on the available providers. See dynamic.

STDOUT The POSIX file descriptor name for normal command output.
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subroutine A behavior implemented by the DTrace framework that can be per-
formed at probe-firing time that modifies internal DTrace state but does not trace
any data. Similar to actions, subroutines are requested using the D function call
syntax.

switch buffer The default DTrace principal buffer policy that switches between
active and inactive buffers, allowing the consumer (usually dtrace(1M)) to read
the inactive buffer while the kernel continues to write to the active one. See
switchrate and drops.

switchrate A DTrace tunable paramater that defines the rate of switching
between active and inactive principal buffers, when the switch buffer policy is
used. This is also the rate that the consumer reads from the switch buffers. The
default is one second, which can introduce noticeable lag when watching
dtrace(1M) output at the command line, and so for many scripts in this book, it
is tuned to 10 Hertz. See switch buffer.

syscall System call. The interface for processes to request privileged actions from
the kernel.

Tcl The Tcl programming language.

TCP Transmission Control Protocol. Originally defined in RFC 793.

this-> Prefix for clause-local variables. See clause local.

thread A software abstraction that represents a schedulable and executable com-
ponent of a program. Typically a subset of a process.

thread local A D variable type that is associated with an individual thread,
allowing data to be saved on a per-thread basis.

TLB Translation Lookaside Buffer. A cache for memory translation on virtual
memory systems, used by the MMU (see MMU).

trace In DTrace, this term is used to refer to the inspection of every event. For
example, the syscall provider can trace the entry point of every system call. For a
different technique of data collection, see sample. This is also the name of the
trace() built-in, which prints the argument given.

translator A collection of D assignment statements that convert implementation
details of a particular instrumented subsystem into an object of struct type that
forms an interface of greater stability than the input expression.

type cast Variables are of a type (integer, character, and so on). To cast a variable
is to indicate to the compiler (or here, the Dtrace tool chain) that you want to treat
a variable as a different type. This results in the size of the variable changing,
which (seamlessly) affects pointer arithmetic. 
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uberblock Top or root block of the ZFS file system hierarchy.

UDP User Datagram Protocol. Originally defined in RFC 768.

unanchored probes Probes not associated with a specific location in code. Exam-
ples include the profile provider’s profile and tick probes and the cpc provider
probes. See anchored probes.

uncomment Remove the comment characters /* ... */ from code.

unstable Used throughout this book to refer to the commitment level of a pro-
gramming interface, usually the interface presented by a DTrace provider. An
unstable interface is one that may change over time across different software ver-
sions; D programs written to use an unstable provider will need maintenance to
match the provider as it changes. See stable.

USDT User-land Statically Defined Tracing. This involves the placement of static
DTrace instrumentation in application code by the programmer, at locations to
provide useful probes. USDT-based providers include plockstat, perl, python, ruby,
javascript, hotspot, and X.

user-land Also known as user-mode. A virtual memory–based operating system
supports multiple execution modes that define the hardware and software context
of the running software, including the addressable memory or address space. user-
land refers to the per-process address space for threads running in a nonprivi-
leged mode, with access only to memory that is mapped to its address space. When
a thread executes a system call, it causes a system trap that switches the mode to
kernel-mode so the kernel can perform an operation, such as reading or writing a
file, on behalf of the calling process. See kernel-land.

variable A named storage object. D variable types are summarized in Chapter 2.

workload The requests for a system or resource. For example, the workload on an
NFS server can be described by the NFS protocol operations requested. Character-
istics used to describe a workload typically include the number of clients, the type
of requests (read, write, synchronous write), the rate and size of I/O, and whether
the access pattern is generally sequential or random.

XDR External Data Representation. An encoding standard used by NFS.

ZFS A combined file system and volume manager created by Sun Microsystems.



ptg

1089

Index

Symbols
!, 1022–1023
!=, 28
", 880, 1021
%, 27
%=, 1023
&, 28, 1022–1023
&&, 22, 28, 1022–1023
&=, 1023
(), 1023–1024
*, 27
*=, 1023
+, 27, 1023
++, 1022
+=, 1023
=, 1023
==, 28
??, 160, 203
@, 14, 33
[], 1023–1024
^, 1022–1023
^=, 1023–1024
^^, 1022–1023
|=, 1023–1024
$1..$N, 32
$$1..$$N, 32
| (or), 28, 491, 1022–1024
| | (OR), 28, 458
~ (tilde), 1022–1023

^^ (XOR), 28
^ (xor), 28
:, 23, 200, 545
?:, 1024
, (comma operator), 1024
-=, 1023
/=, 1023
/ (division), 27
- (subtraction), 27
--, 1022
` (backquote) character, 33, 64, 78, 231
%@ format code, 36
* (asterisk) pattern-matching character, 69–70, 

133
' single quote, 24, 194, 201, 231, 880, 1021
>, 28
>=, 28
>>, 28
<, 28
<=, 28
<<, 28

A
-a, 917, 1007
-A, 917
@a, 36, 527
accept(), 427, 445, 453, 468, 828
accept-established, 482
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Access control list (ACL), 925
Actions, 13, 23

copyin(), 39, 1014
copyinstr(), 39–40, 1014
exit(), 41, 1014
jstack(), 40–41, 1017
printf(), 38, 1017
sizeof(), 41
speculations, 41–42
stack(), 40–41, 1017, 1071
stringof(), 39–40
strjoin(), 40, 1016
strlen(), 40, 687–688, 1000, 1016
trace(), 37, 684–685
tracemem(), 39, 1017
translators, 42
ustack(), 40–41, 1008, 1017, 1071

Active (TCP term), 482
Active service time, 213
Adaptive-block, 920–921
Adaptive mutex, 1015, 1077
Address family, 449–454, 1015
Administrator privileges, 868–869
Advanced Host Controller Interface (AHCI), 237, 289
AES_encrypt() function, 651–654
AF_INET, AF_INET6, 449–452
aggrate, 1006, 1016–1017
Aggregation drops (error), 1065
Aggregations, 13–14, 1077

buffers, 1006, 1065, 1077
functions, 33-34, 1017-1018

lquantize(), 35
normalize(), 36
printa(), 36–37
quantize(), 34–35
trunc() and clear(), 36

types, 34
variables, 999, 1017

aggsize, 1006, 1065, 1077
aggsortkey, 37
aggsortkeypos, 37
aggsortpos, 37, 459
aggsortrev, 37
ahci, 237, 289
aio_read(), 306
Alert (\a), 1021
Analytics

abstractions, 974
breakdown statistics, 979
control bar, 983
control descriptions, 983
controls, 983
datasets, 984

diagnostic cycle, 975
drill-downs, 981–983
heat maps, 979–981
hierarchical breakdowns, 979–980
load vs. architecture, 975
real time, 975
shouting in the data center, 269–273
statistics, 977
visualizations, 975
worksheets, 983

Anchored probes, 1077
Anonymous memory segment, 103
Anonymous state, 1007
Anonymous tracing, 917–918
Apache, 610–611
Apache Web server, 560, 732, 783–784, 800
Appends output, 43, 1071
Apple, 370, 620, 949, 972

see also Mac OS X
Application-level protocols

capabilities, 400–401
checklist, 559–560
providers

fbt provider, 561
iSCSI scripts, 634–638
one-liners

fc provider, 568
http provider, 567
http provider examples, 573
iscsi provider, 567
nfsv3 provider, 563
nfsv4 provider, 564–566
NFSv3 provider examples, 569–571
NFSv4 provider examples, 571–572
smb provider, 566
smb provider examples, 572–573
syscall provider, 563
syscall provider examples, 568–569

pid provider, 562
scripts

CIFS scripts
cifserrors.d, 605–607
cifsfbtnofile.d, 607–609
cifsfileio.d, 603
cifsops.d, 602–603
cifsrwsnoop.d, 600–601
cifsrwtime.d, 604

DNS scripts
dnsgetname.d, 623–625
getaddrinfo.d, 622–623

Fibre Channel scripts
fcerror.d, 647–649
fcwho.d, 647
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FTP scripts
ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

HTTP scripts
httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

iSCSI scripts
iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers, 634–638

LDAP scripts
ldapsyslog.d, 664–666

multiscripts, 666–668
network script summary, 574–576
NFSv3 scripts

nfsv3commit.d, 585–587
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

NIS scripts, 663–664
SSH scripts

scpwatcher.d, 661–663
sshcipher.d, 649–655
sshconnect.d, 657–661
sshdactivity.d, 655–657

strategy, 558–559
Applications

capabilities, 784
case studies

Firefox idle, 817–824
Xvnc, 824–832

checklist, 786–787
providers

cpc provider, 791–792
one-liner examples

new processes (with arguments), 798–799
system call counts, 800
user-mode instructions, 801–803
user-mode level-two cache misses, 

803–804
user stack trace profile at 101 hertz, 

800–801
one-liners

cpc provider, 797–798
pid provider, 795–796
plockstat provider, 796
proc provider, 793–794
profile provider, 794–795
sched provider, 795
syscall provider, 794

pid provider, 788–791
script summary, 804
scripts

execsnoop, 805–806
kill.d, 813–814
plockstat, 811–813
procsnoop.d, 804–806
procsystime, 806–808
sigdist.d, 814–815
threaded.d, 815–816
uoffcpu.d, 809–811
uoncpu.d, 808–809

strategy, 784–786
Arc_get_data_buf(), 901
Architecture, 16–17
arg0, 31, 61, 174–175
arg1, 61
Args[], 31
Arguments

bufinfo_t, 1038
conninfo_t, 1040
cpuinfo_t, 1039
csinfo_t, 1040
devinfo_t, 1038
fileinfo_t, 1038
ifinfo_t, 1041
ipinfo_t, 1040
ipv4info_t, 1041
ipv6info_t, 1041
lwpsinfo_t, 1039
pktinfo_t, 1040
psinfo_t, 1039
tcpinfo_t, 1042
tcplsinfo_t, 1043
tcpsinfo_t, 1042
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Arguments and return value
kernel functions, 901–903
pid provider, 791

Arithmetic operators, 27, 1021–1022
Array operators, 545
Assembly language, 677–679
Assignment operators, 27
Associative arrays, 29, 81, 200, 240, 285–286, 1078
Assumptions, 1000
Asynchronous writes, 332, 584
Asyncronous write workloads, 241
AT attachment disk driver, 251
ata, 251
Automatic drilldown analysis, 964
avg() function, 34, 81
awk, 20

B
-b flag, 1003, 1006
Backquote (`) character, 33, 64, 78, 231
Backslash (\\), 1021
Backspace (\b), 491, 1021
Bart, 206–207
basename(), 736
B_ASYNC, 159
B_DONE, 159
B_ERROR, 159
b_flags, 157–159, 178
B_PAGEIO, 159
B_PHYS, 159
B_READ, 159
B_WRITE, 159
BEGIN, 44
BEGIN and END, 24
Berkeley Internet Name Daemon (BIND), 575, 

623–624
Binary arithmetic operators, 1021
Binary assignment operators, 1023
Binary bitwise operators, 1022
Binary logical operators, 1022
Binary relational operators, 1022
Birrell, John, 1047
Bitwise operators, 28, 1022–1023
Blank fields, 24
Blowfish, 651, 654
Boolean operators, 28
Boot processes, 917–918
Bourne shell, 764–774
Bourne shell provider, 1052–1061
Breakdowns, 979
broken.php, 733, 736
bsdtar(1) command, 164, 210
Buckley, Joel, 229

buffer-read-done, 852
buffer-read-start, 852
Buffer resizing, 1006
buffer-sync-start, 852
buffer-sync-written, 852
bufinfo_t, 157–159, 1026, 1038
bufpolicy, 1006, 1078
bufresize, 1006
Bufsize, 1006
bufsize, 43, 1064, 1071, 1084
Built-in functions, 1014–1019
Built-in variables, 31–32, 1011–1013
Bus adapter driver, 234
Bytes read by filename, 302, 309–310
Bytes written by filename, 302, 310

C
-c, 43, 528, 788, 795–796, 1006
-C, 231, 478, 683–684
C (language)

includes and the preprocessor, 683
kernel C, 681
one-liner examples

count kernel function calls, 688
function entry arguments, 687
user stack trace, 687–688

one-liners
fbt provider, 685–686
pid provider, 684–685
profile provider, 686–687

probes and arguments, 681–682
script summary, 689
scripts, 689
struct types, 682–683
user-land C, 680

C++ language, 689–691
Cache allocations, 909–911, 922
Cache file system read, 331–332
Cache misses, 923–924
Cantrill, Bryan, 269, 661, 973, 1003
Carriage return (\r), 1021
Case studies

Bourne shell provider, 1057–1061
disk I/O, 269–290
file systems, 387–398
Firefox idle, 817–824
Xvnc, 824–832

cd(1), 301
CD-ROMs, 376–378
c++filt, 432, 690
char, 26
Character escape sequences, 1021
chdir(), 569
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Cheat sheet, 1069–1072
Chime (tool), 962–965
CIFS, 1078

count of operations by client address, 572
count of operations by file path name, 573
frequency of operations by type, 572
read I/O size distribution, 573

CIFS scripts
cifserrors.d, 575, 605–607
cifsfbtnofile.d, 575, 607–609
cifsfileio.d, 575, 603
cifsops.d, 575, 602–603
cifsrwsnoop.d, 575, 600–601
cifsrwtime.d, 575, 604

cipher, 649–655
cipher_crypt(), 653
Class-loading probes, 691
Clause, 9, 21
Clause-local variables, 30–31, 998
cleanrate, 1006
clear(), 34, 36
CLI queries, 842–843
Client initiator, 636
Client-server components, 835
close(), 445
cmdk, 251
cnwrite(), 885
Command-line aliases, 1005
Command-line hints, 161–162
Comment / uncomment characters, 1078, 1088
Common Internet File System. see CIFS
Compact C Type Format (CTF), 682, 1079
Compression, 652
COMSTAR, 634, 638–640
Conditional branch misprediction, 798, 924
Conditional statements, 22
Connection latency, 414
connection-start/connection-done, 838
connections, 399
conninfo_t, 1040
Contention. see Locks and lock contention
Context switch time, 943
Controls, 983
Cool Stack, 731
copyin(), 39, 624, 1002, 1014, 1067
copyinstr(), 39–40, 304, 622–624, 679, 687, 1002, 

1014, 1067
count(), 34
Count file systems calls, 302–303
Count function calls, 710–711, 735, 742, 767
Count interrupts, 921
Count kernel function calls, 688
Count line execution by filename and line 

number, 754, 767

Count method calls by filename, 754
Count of operations, 563, 570
Count subroutine calls by file, 721–722, 741
Count system calls, 45, 824, 925
cpc provider, 787, 791–792, 797–798, 923–925
CPU cross calls by kernel stack trace, 928
CPU events, 791–792
CPU Performance Counter (cpc). see cpc 

provider
cpuinfo_t, 1039
CPUms, 846–847, 856
CPUs, tracking

analysis, 60–85
checklist, 57–58
events, 87–94
interrupts, 85–88
one-liners, 58–60
providers, 58

cpustat(1M), 791–792, 803
CR (Change Request), 1079
Cross calls, 390–393, 897, 928
crypt functions, 650
csinfo_t, 409, 1040
curpsinfo, 31
curthread, 31

D
-D (dtrace(1M)), 199, 231
D language, 14–16

actions
copyin(), 39
copyinstr(), 39–40
exit(), 41
jstack(), 40–41
list of, 1014–1019
printf(), 38
sizeof(), 41
speculations, 41–42
stack(), 40–41
stringof(), 39–40
strjoin(), 40
strlen(), 40
trace(), 37
tracemem(), 39
translators, 42
ustack(), 40–41

aggregations
lquantize(), 35
normalize(), 36
printa(), 36–37
quantize(), 34–35
trunc() and clear(), 36
types, 34
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D language (continued)
components

actions, 23
predicates, 22
probe format, 21–22
program structure, 21
usage, 20–21

example programs
counting system calls by a named process, 

45
Hello World, 44
profiling process names, 46–47
showing read byte distributions by process, 

45–46
snoop process execution, 48–49
timing a system call, 47–48
tracing fork() and exec(), 45

options, 43–44
probes

BEGIN and END, 24
profile and tick, 24–25
syscall entry and return, 25
wildcards, 23–24

variables
associative arrays, 29
built-in, 31–32
clause local, 30–31
external, 33
macro, 32
operators, 27–28
scalar, 28
structs and pointers, 29
thread local, 30
types, 26–27

dad (driver), 251
Data cache misses by function name, 931
Data corruption, 242
Data recording actions, 1016–1017
Databases

capabilities, 834–835
client-server components, 835
MySQL

one-liner examples, 840–841
one-liners, 838–840
script summary, 841
scripts, 841–851

libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

Oracle, 858–865
PostgreSQL

one-liner examples, 854–858

one-liners, 853–854
pid provider, 854
postgresql provider, 853

script summary, 855
scripts, 854–858

providers, 836–837
strategy, 835–836

Datasets, 984
dcmd (d-command, mdb(1))), 99
Debuggers/debugging, 2–3, 261, 671, 682, 800, 

898, 1005
Decryption, 871
Default cipher, 650
defaultargs, 43, 334, 360, 373, 656, 1007, 1071
DES_encrypt3(), 650
destructive, 43, 886–890, 1007, 1018–1019
Device drivers, 537–543, 917–918
Device insertion, 242–243
devinfo_t, 160, 1038
DFCI, 534
Diagnostic cycle, 975
DIF (DTrace Intermediate Format), 1079
Direct Memory Access, 242
Directory Name Lookup Cache (dnlc), 314, 346, 

952
Dirty data, 310, 332, 347, 349, 369
Disk and network I/O activity

analysis, 128–134
checklist, 125
disk I/O, 134–141
one-liners, 127–128
providers, 126–127
strategy, 125

Disk I/O
capabilities, 152–154
case studies, 269–290
checklist, 155–156
IDE scripts, 250

ideerr.d, 173, 257
idelatency.d, 173, 252–254
iderw.d, 173, 255–257

io provider scripts
bitesize.d, 181–183
disklatency.d, 172, 175–177
geomiosnoop.d, 172, 209–210
iolatency.d, 172–175
iopattern, 172, 207–209
iosnoop, 172, 187–203
iotop, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

providers
fbt provider, 163–166
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io provider, 157–163, 165
one-liner examples, 166–171
one-liners, 165–166

SAS scripts
mptevents.d, 173, 264–267
mptlatency.d, 173, 267–269
mptsassscsi.d, 173, 263–267

SATA scripts
satacmds.d, 172, 237–243
satalatency.d, 173, 248–250
satareasons.d, 173, 246–248
satarw.d, 172, 243–246
scsi.d, 172, 236

SCSI scripts
SCSI probes, 212–213
scsicmds.d, 172, 218–221
scsi.d, 229–236
scsilatency.d, 172, 221–223
scsireasons.d, 172, 227–229
scsirw.d, 172, 223–226
sdqueue.d, 172, 213–215
sdretry.d, 172, 215–218

size aggregation, 167
size by process ID, 166–167
size distribution, 840–841
strategy, 154–155

Disk queueing, 201–202
Disk reads and writes, 232–233
Disk reads with multipathing, 234
Disk time, 205–206
Dispatcher queue, 529, 938, 950, 1079
Displays (Chime), 963–964
Distribution plots, 13–14, 34, 45, 98, 165, 

310–312, 433, 841, 855
DLight, Oracle Solaris Studio 12.2, 966–971
DLPI, 534
dmake, 308
dnlcps.d, 314, 346–347, 952
DNS scripts, 621

dnsgetname.d, 623–625
getaddrinfo.d, 622–623

do_copy_fault_nta(), 931
DOF (Dtrace Object Format), 1079
done probe, 157
doorfs(), 658
Double quote, 880, 1021
Downloading and installing

Chime, 962–963
DTrace GUI plug-in, 966
DTraceToolkit, 948–949
Mac OS X Instruments, 971–972

Drill-downs, 964–965, 981–983
Driver interface, 542
Driver internals, 538

Drops, 699, 870, 935, 1003, 1064–1066
DTrace GUI Plug-in for NetBeans and Sun 

Studio, 966
DTrace Guide. See Solaris Dynamic Tracing Guide
dtrace provider, 11
dtrace(7d), 1080
dtrace_kernel, 868, 872, 1064
dtrace(1M), 19, 1080
dtrace_proc, 868, 1064
DTraceToolkit

downloading and installing, 948–949
man page, 959–960
script example: cpuwalk.d, 957–961
script summary, 949–957
scripts, 949–957
versions, 949

dtrace_user, 868, 1064
DVDs, 378–379
Dynamic probes, 4, 1080
dynvardrops, 343, 1003, 1066, 1079–1080
dynvarsize, 43, 1003, 1007, 1066

E
egrep(1), 539
Elevator seeking, 199
Encrypted sessions, 871
enqueue probe (sched provider), 84
Entropy stat, 709, 711–712
Entry (syscall), 25
Erickson, Tom, 962
er_kernel (kernel profiler tool), 966
errno, 25, 31, 794, 1080
Error(s)

cifserrors.d, 605–606
codes, 467–468
disk I/O, 156
error messages

aggregation drops, 1065
drops, 1064–1065
dynamic variable drops, 1066
invalid address, 1066–1067
maximum program size, 1067
not enough space, 1067
privileges, 1063–1064

file system I/O, 297
fserrors.d, 326–327
httperrors.d, 614
network I/O, 404
network I/O checklist, 404
nfsv3errors.d, 588
nfsv4errors.d, 595
number, 170–171
PHP, 736
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Error(s) (continued)
socket system call errors, 467–468
soerrors.d, 465
translation table, 595–597

Ethernet scripts
device driver tracing, 537–543
Mac tracing with fbt, 534
macops.d, 534–537
ngelink.d, 546–547
ngesnoop.d, 544–546

Ethernet vs. Wi-Fi, 462
Example programs

counting system calls, 45
Hello World, 44
profiling process names, 46–47
showing read byte distributions by process, 

45–46
snoop process execution, 48–49
timing a system call, 47–48
tracing fork() and exec(), 45
tracing open(2), 44–45

Exclusive time, 703, 718, 730, 750, 762
execname, 31, 110, 1080
exec_simple_query(), 854
execsnoop, 805–806
exit(), 41, 1002, 1014
ExtendedDTraceProbes, 692, 694, 696
External Data Representation. see XDR
External variables, 33

F
-F (dtrace(1M)), 438, 1007
Failed to enable probe (error), 792
Fast File System (FFS), 351
fasttrap, 868, 1064, 1068
fbt, 12, 155–156, 163–166, 170, 298, 352, 405
fbt-based script maintenance, 418
fc provider, 568, 646
fc provider probes and arguments, 1025–1026
FC (Fibre Channel) scripts, 646

fcerror.d, 647–649
fcwho.d, 647

fds[], 68, 131, 145, 300, 429, 1080
fds[].fi_fs variable, 91
fdsp[.fi_dirname variable, 161
File System Archive, 807
File systems

capabilities, 292–295
case study, 387–398
checklist, 296–297
functional diagram, 293
providers

fsinfo provider, 298–300

one-liners
fbt provider, 303
fsinfo provider, 302
sdt provider, 303
syscall provider, 300–301
vfs provider, 303
vminfo provider, 302

one-liners: fsinfo provider examples
bytes read by filename, 309–310
bytes written by filename, 310
calls by fs operation, 308–309
calls by mountpoint, 309
read/write I/O size distribution, 

310–312
one-liners: sdt provider examples, 312–313
one-liners: syscall provider examples

frequency count stat() files, 305
reads by file system type, 306–307
trace file creat() calls with process 

name, 304–305
trace file opens with process name, 304
tracing cd, 306
writes by file system type, 307
writes by process name and file system 

type, 307
one-liners: vminfo provider examples, 308

scripts
fsinfo scripts

fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

HFS+ scripts
hfsfileread.d, 374–375
hfsslower.d, 372–374
hfssnoop.d, 371–372

HSFS scripts, 376–378
NFS client scripts

nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

PCFS scripts, 375–376
syscall provider

fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

TMPFS scripts
tmpgetpage.d, 386–387
tmpusers.d, 385–386

UDFS scripts, 378–379
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UFS scripts
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

VFS scripts
dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
vfslife.d, 345
vfssnoop.d, 340–343

ZFS scripts
perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

strategy, 295–296
write operation, 295

Filebench, 296, 559, 989
fileinfo_t, 160–161, 1038
filesort (probes), 838
filesort-start/filesort-done, 838
fill buffer, 1080, 1084
Find vs. Bart, 206–207
Firefox case study

fetching context, 822
function counts and stacks, 819
function CPU time, 820
profiling user modules, 818
profiling user stacks, 817

First-byte latency, 460–461, 499
Floating-point data types, 1020
Floating-point suffixes, 1021
Floating-point types, 27
flowindent, 43, 104, 438, 684, 685, 896, 903–906, 1007
flush write-cache, 241–242
fop interface, 303, 336, 349
Formfeed (\f), 1021
FreeBSD, 164, 949, 1075, 1080

AF_INET values, 451
hyphens in probe names, 793n
iostat(8), 125
kmem layer, 123
netstat(8), 125
stack trace, 170, 421
system tools, 55

FreeBSD 7.1 and 8.0
installing DTrace, 1045–1046

Frequency count, 991–992
Frequency count fbt, 166, 278–279
Frequency count functions, 166, 171
Frequency count sdt, 276–277
fsinfo, 126, 132
fsinfo provider, 298–300, 302
fsinfo provider examples, 308–312
fsinfo provider probes and arguments, 1026
fsinfo scripts

fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

FTP Analytics, 625
FTP scripts

ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

Function arguments, 283–285
Function Boundary Tracing. see fbt
Function counts and stacks, 819
Function CPU time, 820
function-entry, 752
Function execution, 672–673
Function names, 690, 1014–1019
function-return, 752

G
Garbage collection, 691, 751, 753, 759, 820
gc++filt, 432, 690
GEOM, 164, 172, 209–210
Gerhard, Chris, 229
GET, 616
gld, 405
GLDv3, 534, 1081
Global and aggregation variables, 33, 350, 

997–999
Global zone, 870–872

H
-h (dtrace1M)), 807
Hardware address translation (HAT), 928
Hargreaves, Alan, 1051
Haslam, Jon, 350
HC (High Capacity), 407
Header files, 683
Heat maps, 979–981
Hertz rates, 24–25, 61
HFS+, 370, 929
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HFS+ scripts
hfsslower.d, 372–374
hfssnoop.d, 371–372

hfs_file_is_compressed(), 929
HIDS (Host-based Intrusion Detection Systems), 

871
Hierarchal File System. see HFS+
Hierarchical breakdowns, 979–980
High Sierra File System (HSFS), 376
Hold events, 812
Horizontal tab (\t), 1021
Host name lookup latency, 660
Hot code paths, 897, 944, 990, 996
hotkernel, 64
hotspot, 675, 691, 694
HotSpot VM, 691
hotuser, 64
HSFS scripts, 376–378
HTTP

flow diagram, 610
scripts

httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

summarize user agents, 573
HTTP files opened by the httpd server, 563, 568
http provider, 567
http provider examples, 573
httpd, 563, 568, 783–784, 795, 802–803
Hyphens in probe names, 793n

I
%I, 488
IA (interactive scheduling class), 942
ICMP, 1081
ICMP event by kernel stack trace, 424, 439
ICMP event trace, 424, 437
ICMP scripts

icmpsnoop.d, 447, 522–525
icmpstat.d, 447, 521
superping.d, 447, 526–529

IDE driver reference, 251
IDE scripts

ideerr.d, 257–259
idelatency.d, 252–254
iderw.d, 255–257

ifinfo_t, 410, 1041
Inbound TCP connections, 441, 446, 486–487, 489
Inclusive time, 703, 718, 730, 750, 762, 908
inet*() functions, 590, 608
inet_ntoa(), 455, 502

inet_ntoa6(), 455, 502
inet_ntop(), 451
Instruction cache misses by function name, 

931–932
Instruments (Mac OS X tool), 971–972
Integer data types, 1020
Integer suffixes, 1021
Integer type aliases, 1020
Integer variable types, 26–27
Internet Control Message Protocol (ICMP). see

ICMP
Internet Small Computer System Interface 

(iSCSI). see iSCSI
Interrupt load, 58
Interrupt start count, 921
Interrupts, 85–88, 932, 962
intrstat(1M), 16, 85, 932-934
Intrusion detection, 871, 886
Invalid address (error), 1066–1067
Invasion of privacy issues, 875–877
I/O

analysis, 130
checklist, 127
one-liners, 129
providers, 128
strategy, 127

io probes, 157–158
io provider, 165, 637–638, 840

bufinfo_t, 158–159
command-line hints, 161–162
devinfo_t, 160
fileinfo_t, 160–161
probes and arguments, 1026

io provider scripts
bitesize.d, 172, 181–183
disklatency.d, 172, 175–177
geomiosnoop.d, 209–210
iolatency.d, 172–175, 270
iopattern, 207–209
iosnoop, 187–203
iotop, 172, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

iostat(8), 55, 125
iostat(1M), 55, 125, 134, 288, 863
iotop, 204–207
IP event statistics, 424, 435
IP-layer network traffic, 126
ip probe arguments, 408
ip provider, 404, 425

csinfo_t, 409
ifinfo_t, 410
ipinfo_t, 409
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ipv4info_t, 410
ipv6info_t, 410
pktinfo_t, 409

ip provider development, 473
ip provider examples, 440
ip provider probes, 408
ip provider probes and arguments, 1027
IP scripts

fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477
ipproto.d, 477–478
ipstat.d, 474–475

ipfbtsnoop.d, 446, 478–481
ipIfStatsHCInOctets (probe), 407
ipIfStatsHCOutOctets (probe), 407
ipinfo_t, 409, 1040
ip_input(), 481, 555
ipio.d, 446, 475–477
ip_output(), 419, 555
ipproto.d, 446, 477–478
ipstat.d, 446, 474–475
ipv4info_t, 410
ipv4info_t, 1041
ipv6info_t, 410
ipv6info_t, 1041
iSCSI

client initiator, 636
functional diagram, 634
provider, 567, 635
target server, 635

iscsi provider probes and arguments, 1027
iSCSI scripts

iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers

fbt provider, 635–637
io provider, 637–638
iscsi provider, 635

iscsi_iodone(), 637
iscsit_op_scsi_cmd(), 636
iscsit_xfer_scsi_data(), 636

J
Java

code, 693
one-liner examples, 694–696
one-liners, 693–694
script summary, 696
scripts

j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

Java virtual machine (JVM), 691
JavaScript (language)

code, 707–708
one-liner examples

count function calls by function filename, 
710–711

object entropy stat, 711–712
trace function calls, 710
trace program execution showing filename 

and line number, 709
one-liners, 708–709
script summary, 712
scripts

js_calls.d, 712–713
js_calltime.d, 715–718
js_flowinfo.d, 670, 713–715, 952
js_stat.d, 718

JavaScript Garbage Collect, 820
JBODs, 269–273
JNI functions, 692
Joyent, 751
jstack(), 40–41, 108, 743, 1017
jstackframes, 1007, 1017
jstackstrsize, 44, 1007, 1017

K
kalloc(), 916–917
Kernel

capabilities, 894–895
checklist, 897–898
clock interrupt, 61
destructive actions, 1018
functional diagram, 895
ktrace.d, 903–906
lock events, 934–935
memory

allocation, 122, 914–915, 922
Mac OS X, 122–124
tools, 118–120

memory allocations, 915–916
profiler tool, 966
profiling, 64–70, 72
providers

anonymous tracing, 917–918
fbt provider

arguments and return value, 901–903
module name, 900–901
probe count, 899–900
stability, 898–899
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Kernel, providers (continued)
kernel memory usage, 908–917
kernel tracing, 903–908
one-liner examples

count system calls by type, 925
CPU cross calls by kernel stack trace, 

928
kernel function call counts for functions 

beginning with hfs_ by module, 929
kernel-mode instructions by function 

name, 930
kernel-mode instructions by module 

name, 930–931
kernel-mode level-one data cache misses 

by function name, 931
kernel-mode level-one instruction cache 

misses by function name, 931–932
kernel module name profile at 1001 

hertz, 927
kernel stack backtrace counts for calls 

to function foo(), 929
kernel stack trace profile at 1001 hertz, 

925–927
kernel thread name profile at 1001 

hertz (freebsd):, 928
one-liners

cpc provider, 923–925
fbt provider, 921–923
lockstat provider, 920–921
profile provider, 919
sched provider, 920
sdt provider, 921
syscall provider, 919
sysinfo provider, 920
vminfo provider, 920

script summary, 932
scripts

cswstat.d, 932, 943–944
intrstat, 932–934
koffcpu.d, 932, 938–939
koncpu.d, 932, 937–938
lockstat, 934–937
priclass.d, 932, 941–943
putnexts.d, 932, 944–945
taskq.d, 932, 939–941

stacks, 168–170
statistics, 896
strategy, 896–897

Kernel file system flush thread, 347
kernel_memory_allocate(), 122–123, 914–915, 922
keycache (probes), 838
Keys, 15, 33, 36, 1082
Keystroke captures, 875–876
Keywords, table of, 1019

KILL signal, 888, 890
kmem, 119

kmem_alloc(), 911–912, 916
kmem_cache_alloc(), 909–910
kmem_cache_free(), 910
kmem_free(), 916

kstat(1M), 55,118, 896, 983

L
-l (dtrace(1M)), 1071
Languages

Assembly, 677–679
C

includes and the preprocessor, 683
kernel C, 681
one-liner examples

count kernel function calls, 688
show user stack trace, 687–688
trace function entry arguments, 687

one-liners
fbt provider, 685–686
pid provider, 684–685
profile provider, 686–687

probes and arguments, 681–682
scripts, 689
struct types, 682–683
user-land C, 680

C++, 690–691
capabilities, 671–672
checklist, 674
Java

code, 693
one-liner examples, 694–696
one-liners, 693–694
scripts

j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

JavaScript
code, 707–708
js_stat.d, 718
one-liner examples

count function calls by function 
filename, 710–711

object entropy stat, 711–712
trace function calls showing function 

name, 710
trace program execution showing 

filename and line number, 709
one-liners, 708–709
scripts

js_calls.d, 712–713
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js_calltime.d, 715–718
js_flowinfo.d, 713–715

Perl
code, 720
one-liner examples, 721–722
one-liners, 720–721
scripts

pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

PHP
code, 733
one-liner examples

count function calls by filename, 735
trace function calls showing function 

name, 735
trace PHP errors, 736

one-liners, 734–735
script summary, 736
scripts

php_calls.d, 736
php_flowinfo.d, 738

providers, 675–679
Python

code, 741
one-liner examples

count function calls by file, 742
profile stack traces, 743–744
trace function calls, 742

one-liners, 741
scripts

py_calls.d, 745–746
py_calltime.d, 748–751
py_flowinfo.d, 746–748
py_who.d, 744–745

Ruby
code, 752
one-liner examples

count line execution by filename and 
line number, 754

count method calls by filename, 754
trace method calls showing class and 

method, 754
one-liners, 753
scripts

rb_calls.d, 756–757
rb_calltime.d, 759–762
rb_flowinfo.d, 757–759
rb_who.d, 755–756

scripting, 669
Shell

code, 765
one-liner examples

count function calls by filename, 767
count line execution by filename and 

line number, 767
trace function calls showing function 

name, 766
one-liners, 765–766
scripts

sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_who.d, 768–769

strategy, 672–673
Tcl

code, 776
one-liner examples, 777–778
one-liners, 776–777
scripts

tcl_calls.d, 779–780
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_who.d, 778–779

Latency, 156
disk I/O, 285–287, 269-273
by driver instance, 234–236
file system I/O, 296
heat maps, 980
network I/O checklist, 403
TCP connection, 414

latency.d, 288
LDAP scripts, 664–666
Leventhal, Adam, 1, 1003
libc, 105, 680, 684, 789, 829
libc fsync() calls, 796
libc function calls, 795
libcurses, 788–789
libdtrace(3LIB), 1082
Libmysql_snoop.d, 849–850
libsocket, 789–790
libssl (Secure Sockets Layer library), 784
Local ports, 442
Locks and lock contention, 58, 87–88, 674, 787, 

811–813, 816, 897, 935
lockstat(1M), 12, 16, 62, 87, 811–813, 920-921, 

934-937
Logical operators, 1022
Loopback traffic, 408, 493, 525
lquantize(), 34, 35, 270, 630
lwpid, 81–82
lwpsinfo_t, 1039

M
Mac OS X

AF_INET values, 451
disk I/O, 177
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Mac OS X (continued)
ether_frameout(), 418
fbt provider, 418, 421, 474
iostat(8), 125
kernel memory allocation, 122
netstat(8), 125
system tools, 55

Mac OS X Instruments, 971–972
Mac OS X Internals, 296, 370
Mac OS X Interprocess Communication (IPC) and 

IO Kit path, 915
Mac OS X tracing with fbt, 534
mach_kernel, 900
Macro variables, 32
MacRuby, 751
Maguire, Alan, 500
malloc(), 674, 676, 763, 787, 796, 922
Man(ual) pages for scripts, 948
Matteson, Ryan, 610
max() function, 34, 81
Maximum program size (error), 1067
mdb(1), 2, 261, 677, 902, 909
mdb(1) kmastat dcmd, 118
MediaWiki, 735, 737–738, 842–843
Memory allocation, 787
Memory Management Unit (MMU), 1082, 1087
Memory monitoring

analysis, 98–101
checklist, 96
kernel memory, 118–124
one-liners, 97–98
providers, 96–97
strategy, 95
user process memory activity, 101–117

Memory usage, 908–917
memstat dcmd (d-command), 99
Method compilation probes, 691
MIB (Message Information Base), 126, 404, 1082
mib probes, 407
mib provider, 404–408, 423
mib provider examples

ICMP event by kernel stack trace, 439
ICMP event trace, 437
IP event statistics, 435
SNMP MIB event count, 434–435
TCP event statistics, 436
UDP event statistics, 437

Microsoft FAT16, 375
Microsoft FAT32, 375
Millisecond to nanosecond conversion, 846
min() function, 34, 81
Minor faults, 920, 952
modinfo(1M), 918
Monitor probes, 691

Mountpoint, 302, 309–312
Mozilla Firefox, 45–46, 109, 428, 706, 769
mpstat(1M), 2, 55–57, 72–73, 88, 91, 388
mpt, 260–262, 1082
Multipathing, 234
Multiple aggregations, 37
Multithreaded applications, 815, 957, 967
Mutex blocks, 796
Mutex lock, 87
Mutex spin counts, 796
mutex_enter(), 66–67, 86–87, 931–932
MySQL

C API, 849–850
DTrace probes, 838
one-liner examples, 840–841
one-liners, 838–840
Reference Manual, 850
references, 850–851
script summary, 841
scripts

libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

N
-n, 43, 322, 1071
Namecache, 210, 340–341, 345–346
NetBeans IDE, 962, 966–967
netstat(1M), 55, 125, 402, 406, 455
network (probes), 838
Network Address Translation (NAT), 555
Network device driver tracing with fbt, 537–543
Network file system. see NFS
Network I/O, 141–148
Network I/O checklist, 403, 559–560
Network I/O providers, 560–561
Network Information Service, 1083
Network Intrusion Detection Systems (NIDS), 

871
Network lower-level protocols

capabilities, 400–402
checklist, 403–404
common mistakes

packet size, 553
receive context, 548–550
send context, 550–553
stack reuse, 554–555

providers
fbt provider

receive, 419–422
send, 416–419



ptg

Index 1103

ip provider
csinfo_t, 409
ifinfo_t, 410
ipinfo_t, 409
ipv4info_t, 410
ipv6info_t, 410
pktinfo_t, 409

mib provider, 405–408
network providers, 411–415
one-liners

ip provider, 425
ip provider examples, 440
mib provider, 423
mib provider examples, 434–439
syscall provider, 422
syscall provider examples, 427–434
tcp provider, 425
tcp provider examples, 441–445
udp provider, 427
udp provider examples, 445

planned network provider argument types, 
412

planned network provider arguments, 412
planned network providers, 412

scripts
Ethernet scripts

Mac tracing with fbt, 534
macops.d, 534–537
network device driver tracing with fbt, 

537–543
ngelink.d, 546–547
ngesnoop.d, 544–546

ICMP scripts
icmpsnoop.d, 522–525
icmpstat.d, 521
superping.d, 526–529

IP scripts
fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477, 476
ipproto.d, 477–478
ipstat.d, 474–475

socket scripts
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

TCP scripts
fbt provider, 483–485
tcp provider, 482–483

tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516
tcpstat.d, 485–486
tcp1stbyte.d, 499

UDP scripts
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

XDR scripts, 529–533
strategy, 402–403

Network packet sniffer, 890
Network providers, 411–415
Network script summary, 445–447, 574–576
Network-sniffing tools, 400
Network statistic tools, 402
New Processes (with Arguments), 798–799
Newline (\n), 1021
NFS client back-end I/O, 157
NFS client scripts

nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

NFS I/O, 162–163
nfsstat, 588
nfsv3 probes, 577
nfsv3 provider, 563
NFSv3 provider examples, 569–571
nfsv3 provider probes and arguments, 1028–1030
NFSv3 scripts

nfsv3commit.d, 585–587
nfsv3disk.d, 666–668
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
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NFSv4 scripts (continued)
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

nfsv4 provider, 564–566
NFSv4 provider examples, 571–572
nfsv4 provider probes and arguments, 1030–1034
nge driver (Nvidia Gigabit Ethernet), 537
NIDS, 871
NIS (Network Information Service), 1083
NIS scripts, 663–664
nmap port scan, 453
Nonglobal (local) zone, 870–872
normalize(), 34, 36, 143
Not enough space (error), 1067
Nouri, Nasser, 966
nscd (Name Service Cache Daemon), 452, 461, 

660, 811
nspec, 1007
ntohs(), 451, 502, 508
NULL character (\0), 1021
Nvidia, 237
nv_sata, 237, 275

O
-o, 43, 727, 935, 1071
Object arguments, C++, 690–691
Object entropy stat, 709, 711–712
Octal value (\0oo), 1021
Off-CPU sched provider probe, 674, 786, 897, 932
On-CPU sched provider probe, 58–61, 674, 786, 

897, 932
One-liners

C, 684–687
cheat sheet, 1072
cpu, 58–60
disk I/O, 165–166
file systems, 300–303
I/O, 127–128
Java, 693–694
JavaScript, 708–709
kernel, 918
memory, 97–98
MySQL, 838
network, 411, 422–427
Perl, 720–721
PHP, 734
PostgreSQL, 853
provider, 563–568, 793
Python, 741
Ruby, 753

Shell, 765
Tcl, 776

OpenSolaris, xxx, 1, 336, 411, 451, 949, 1083
OpenSolaris security group site, 873
OpenSolaris Web site, 962
OpenSSH, 649, 876
Operator(s)

arithmetic, 27, 1021–1022
assignment, 27
associativity, 1023–1024
binary arithmetic, 1021
binary bitwise, 1022
binary logical, 1022
binary relational, 1022
boolean, 28
precedence, 1023–1024
relational, 28, 1022
ternary, 28, 178, 195
unary arithmetic, 1022
unary bitwise, 1023
unary logical, 1022

@ops aggregation, 602
Options, 43–44
or ( | ), 28, 491, 1022–1024
OR (| |), 28, 458
Oracle, 858–865
Oracle Solaris, xxv

DTrace privileges, 868
Studio 12, 672
Studio IDE, 966
see also Solaris

Oracle Sun Web Stack, 731, 733
Oracle Sun ZFS Storage Appliance, 599, 625
OSI model, 400
Outbound TCP connections, 489

P
-p, 664, 849
-p PID, 43, 684, 788, 795
%P, 488
Pacheco, David, 610
Packet sniffers, 525, 890
Packets (network), 553, 483
Page-ins, 95–97, 111–113, 297, 308, 1083
Page-outs, 95–97, 297, 1083
pagefault, 96, 114–115, 119, 1083
panic(), 42, 1007, 1018
Passive (TCP term), 482
Passive FTP transfers, 629
Password sniffing, 869
pause(), 923
PCFS scripts, 375–376
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Performance Application Programming Interface 
(PAPI), 791–792, 803

Perl language, 993–994
bug #73630, 720
code, 720
one-liner examples, 721–722
one-liners, 720–721
provider, 719
script summary, 722
scripts

pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

Perturbations, 269–273
pgrep(1), 629–631, 849
PHP

code, 733
one-liner examples

count function calls by filename, 735
trace errors, 736
trace function calls showing function name, 

735
one-liners, 734–735
script summary, 736
scripts

php_calls.d, 736
php_flowinfo.d, 736, 738
php_flowtime.d, 739
php_syscolors.d, 739

pid (process ID), 31, 33, 97–98, 165, 167–168, 788, 
790-791

pid provider, 98, 562, 788–791, 795–796, 839–840, 
854

ping, 447, 462, 522, 525–529, 1081
Pipe ( | ) character, 28, 491, 1022–1024
pktinfo_t, 409, 1040
Platform Specific Events, 792
plockstat, 58, 96–97, 689, 787, 811–813
plockstat provider, 796
Policy enforcement, 871–872
Population functions, 1077
Port closed, 493, 510–511
Port number, 455
Port scan, 453, 496
POSIX, 622, 790, 1084
PostgreSQL

documentation, 858
one-liner examples, 854–858
one-liners, 853–854
probes, 851–852
script summary, 855
scripts, 854–858

PostgreSQL-DTrace-Toolkit, The, 858

postgresql provider, 853
Postprocessing, 993–994
ppid, 31
ppriv(1), 872, 868
Predicates, 9, 12, 22, 63, 1084
Prefetch, 313, 329
Prefetch requests, 313
Prefetch Technologies, 610
Preprocessor, 683
Principal buffer, 43, 1001, 1003, 1006, 1064–1065, 

1080, 1084
printa(), 34, 36–37, 519
printf(), 38, 520, 1017
priv-err, 872, 874
priv-ok, 872, 874
Privacy violations, 875–877
Privilege debugging, 872–874
Privileges, 868, 1063–1064
Privileges, detection, and debugging

HIDS, 871
policy enforcement, 871–872
privilege debugging, 872–874
reverse engineering, 874–875
security audit logs, 870
sniffing, 869

probefunc, 31, 71, 91, 110, 132
probemod, 31, 71
probename, 31, 110
probeprov, 31
proc provider, 11, 793–794
proc provider probes and arguments, 1034
Process destructive actions, 1019
Process ID (pid) provider. see pid provider
Process name, 307
Process watching, 881
Processes paging in from the file system, 308
Processors. see CPUs
procstat(1), 55
procsystime, 806–808
Production queries, 843
profile, 24–25, 46, 61, 996–997, 1084
profile provider, 11, 58–59, 63, 794–795, 919
Profile Python Stack Traces, 743–744
Profiling process names, 46–47
Profiling user modules, 818
Profiling user stacks, 817
Program counter (PC), 61
Program execution flow, 673
Programming language providers, 675
Promiscuous mode, 525, 544, 875, 890–891
Provider, 11, 1084
Provider arguments reference

arguments
bufinfo_t, 1038
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Provider arguments reference, arguments (continued)
conninfo_t, 1040
cpuinfo_t, 1039
csinfo_t, 1040
devinfo_t, 1038
fileinfo_t, 1038
ifinfo_t, 1041
ipinfo_t, 1040
ipv4info_t, 1041
ipv6info_t, 1041
lwpsinfo_t, 1039
pktinfo_t, 1040
psinfo_t, 1039
tcpinfo_t, 1042
tcplsinfo_t, 1043
tcpsinfo_t, 1042

fc provider probes and arguments, 1025–1026
fsinfo provider probes and arguments, 1026
io provider probes and arguments, 1026
ip provider probes and arguments, 1027
iscsi provider probes and arguments, 1027
nfsv3 provider probes and arguments, 

1028–1030
nfsv4 provider probes and arguments, 

1030–1034
proc provider probes and arguments, 1034
sched provider probes and arguments, 1035
srp provider probes and arguments, 1035
sysevent provider probes and arguments, 1036
tcp provider probes and arguments, 1036
udp provider probes and arguments, 1036
xpv provider probes and arguments, 1037

Providers for Various Shells Web site, 764–765
prstat(1), 73–74, 77–78, 82, 100
prstat(1M), 55, 60, 73, 74, 801
ps(1), 62, 100
PSARC, 764, 1084
psinfo_t, 1039
Python language

code, 741
one-liner examples, 742–744
one-liners, 741
patches and bugs, 740
script summary, 744
scripts

py_calldist.d, 750
py_calls.d, 744–746
py_calltime.d, 744, 748–751
py_cpudist.d, 750
py_cputime.d, 750
py_flowinfo.d, 746–748
py_flowtime.d, 748
py_syscolors.d, 748
py_who.d, 744–745

Q
-q, 43–44, 69, 880–881, 885, 1007
quantize(), 34–35, 138, 148, 270, 571
Query (probes), 838
Query cache hit rate, 841, 844–845
Query count summary, 840
Query execution (probes), 838
Query parsing (probes), 838
Query processing, database, 836
Query time distribution plots, 841, 848–849
Question mark, 160, 203, 1021
Quiet mode, 43–44, 69, 880–881, 885, 1007, 1071
Quote marks

backquote, 33, 64, 78, 231
double, 880, 1021
single, 24, 194, 201, 231, 880, 1021

R
raise(), 872, 888–891, 1007, 1019
Random I/O, 202, 208–209
Random reads, 579
Random workload, 185–186
Read-aheads, 197, 298, 314, 354–355, 377, 989
Read I/O size distribution, 571
Read workload, 220
Reader/writer locks, 9, 796, 1085
read_nocancel(), 306
Reads by file system type, 306–307
Receive (network), 408, 419–422
Receive context, 548–550
Relational operators, 28, 1022
Remote host latency, 661
Remote hosts, 442–443
Return (syscall), 25
Reusable kernel objects, 909
Reverse engineering, 874–875
RFC, 473, 481, 517, 1015, 1085
Ring buffer, 1084–1085
RIP protocol, 562
Root privileges, 20
Root user privileges, 868–869
Round-trip time (RTT), 477
RT (real time), 942
ruby-dtrace, 751
Ruby language

code, 752
one-liner examples, 753–755
one-liners, 753
provider, 751
script summary, 755
scripts

rb_calls.d, 756–757
rb_calltime.d, 759–762
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rb_flowinfo.d, 757–759
rb_who.d, 755–756

S
-s file, 43
sar(1), 55
SAS driver reference, 260
SAS scripts

mptevents.d, 264–267
mptlatency.d, 267–269
mptsassscsi.d, 263–267

sata, 275
SATA command, 279–290
SATA driver reference, 237
SATA DTracing

documentation, 274
frequency count fbt, 278–279
frequency count sdt, 276–277
function arguments, 283–285
latency, 285–287
stable providers, 275
stack backtraces, 280–283
testing, 288
unstable providers: fbt, 277–278
unstable providers: sdt, 275–276

SATA scripts
satacmds.d, 172, 237–243
satalatency.d, 248–250
satareasons.d, 246–248
satarw.d, 243–246

SATA stack, 274
Scalar globals, 31–32
Scalar variables, 28
sched, 405
Sched (scheduler), 202–203
sched provider, 60, 97, 405, 795, 920
sched provider probes and arguments, 1035
Scheduling class, 57, 347, 420, 932, 941–942, 952
scp, 308, 649–651, 654
Script summaries

application, 804
C, 689
disk I/O, 172–173
DTraceToolkit, 949–957
file systems, 313–315
Java, 696
JavaScript, 712
kernel, 932
MySQL, 841
network, 445–447, 574–576
Perl, 722
PHP, 736
PostgreSQL, 855

Python, 744
Ruby, 755
security, 875
shell, 768
Tcl, 778

Scripting languages, 669
Scripts

applications scripts, 804
execsnoop, 805–806
kill.d, 813–814
plockstat, 811–813
procsnoop.d, 804–806
procsystime, 806–808
sigdist.d, 814–815
threaded.d, 815–816
uoffcpu.d, 809–811
uoncpu.d, 808–809

C language, 689
CIFS scripts, 599

cifserrors.d, 605–607
cifsfbtnofile.d, 607–609
cifsfileio.d, 603
cifsops.d, 602–603
cifsrwsnoop.d, 600–601
cifsrwtime.d, 604

DNS scripts, 621
dnsgetname.d, 623–625
getaddrinfo.d, 622–623

DTrace Toolkit scripts list, 949–961
ethernet scripts, 533

Mac tracing with fbt, 534
macops.d, 534–537
network device driver tracing, 537–543
ngelink.d, 546–547
ngesnoop.d, 544–546

Fibre Channel scripts, 646
fcerror.d, 647–649
fcwho.d, 647

fsinfo scripts, 327
fssnoop.d, 333–335
fswho.d, 328
readtype.d, 329–332
writetype.d, 332–333

FTP scripts, 625
ftpdfileio.d, 626–627
ftpdxfer.d, 625–626
proftpdcmd.d, 627–629
proftpdio.d, 632–633
proftpdtime.d, 630–632
tnftpdcmd.d, 630

HFS+ scripts, 370
hfsfileread.d, 374–375
hfsslower.d, 372–374
hfssnoop.d, 371–372
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Scripts (continued)
HSFS scripts, 376

cdrom.d, 377–378
HTTP scripts, 609

httpclients.d, 612–613
httpdurls.d, 616–618
httperrors.d, 614
httpio.d, 614–615
weblatency.d, 618–621

ICMP scripts, 521
icmpsnoop.d, 522–525
icmpstat.d, 521
superping.d, 526–529

IDE scripts, 250
ideerr.d, 257
idelatency.d, 252–254
iderw.d, 255–257

io provider scripts, 172
bitesize.d, 181–183
disklatency.d, 175–177
geomiosnoop.d, 209–210
iolatency.d, 172–175
iopattern, 207–209
iosnoop, 187–203
iotop, 204–207
iotypes.d, 178–179
rwtime.d, 179–181
seeksize.d, 184–187

IP scripts, 469
fbt provider, 470–474
ipfbtsnoop.d, 478–481
ipio.d, 475–477, 476
ipproto.d, 477–478
ipstat.d, 474–475

iSCSI scripts, 633
iscsicmds.d, 643–644
iscsirwsnoop.d, 640–641
iscsirwtime.d, 641–643
iscsiterr.d, 644–646
iscsiwho.d, 638–639
providers, 634–638

Java, 696
j_calls.d, 696–698
j_calltime.d, 701–704
j_flow.d, 698–700
j_thread.d, 704–705

JavaScript, 712
js_calls.d, 712–713
js_calltime.d, 715–718
js_flowinfo.d, 713–715

kernel, 932
cswstat.d, 932, 943–944
intrstat, 932–934
koffcpu.d, 932, 938–939

koncpu.d, 932, 937–938
lockstat, 934–937
priclass.d, 932, 941–943
putnexts.d, 932, 944–945
taskq.d, 932, 939–941

LDAP scripts, 664
ldapsyslog.d, 664–666

multiscripts, 666
nfsv3disk.d, 666–668

MySQL, 841
libmysql_snoop.d, 849–850
mysqld_pid_qtime.d, 848–849
mysqld_qchit.d, 844–845
mysqld_qslower.d, 846–847
mysqld_qsnoop.d, 841–844

NFS client scripts, 379
nfs3fileread.d, 383–384
nfs3sizes.d, 382–383
nfswizard.d, 379–381

NFSv3 scripts, 576
nfsv3commit.d, 585–587
nfsv3errors.d, 588–590
nfsv3fbtrws.d, 590–592
nfsv3fileio.d, 581
nfsv3ops.d, 580
nfsv3rwsnoop.d, 578–579
nfsv3rwtime.d, 582–583
nfsv3syncwrite.d, 584

NFSv4 scripts, 592
nfsv4commit.d, 595
nfsv4deleg.d, 597–599
nfsv4errors.d, 595–597
nfsv4fileio.d, 594
nfsv4ops.d, 594
nfsv4rwsnoop.d, 594
nfsv4rwtime.d, 595
nfsv4syncwrite.d, 595

NIS scripts, 663
nismatch.d, 663–664

PCFS scripts, 375
pcfsrw.d, 375–376

Perl, 722
pl_calls.d, 723–725
pl_calltime.d, 728–731
pl_flowinfo.d, 725–728
pl_who.d, 722–723

PHP, 736
php_calls.d, 736
php_flowinfo.d, 738

PostgreSQL, 854
pg_pid_qtime.d, 856–858
pg_qslower.d, 855–856

Python, 744
py_calls.d, 745–746
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py_calltime.d, 748–751
py_flowinfo.d, 746–748
py_who.d, 744–745

Ruby, 755
rb_calls.d, 756–757
rb_calltime.d, 759–762
rb_flowinfo.d, 757–759
rb_who.d, 755–756

SAS scripts, 259
mptevents.d, 264–267
mptlatency.d, 267–269
mptsassscsi.d, 263–267

SATA scripts, 236
satacmds.d, 237–243
satalatency.d, 248–250
satareasons.d, 246–248
satarw.d, 243–246

SCSI scripts, 211
SCSI probes, 212–213
scsicmds.d, 218–221
scsi.d, 229–236
scsilatency.d, 221–223
scsireasons.d, 227–229
scsirw.d, 223–226
sdqueue.d, 213–215
sdretry.d, 215–218

security scripts, 875
cuckoo.d, 884–886
keylatency.d, 882–884
networkwho.d, 891–892
nosetuid.d, 888–889
nosnoopforyou.d, 890–891
script summary, 875
shellsnoop, 878–882
sshkeysnoop.d, 875–878
watchexec.d, 886–888

Shell, 768
sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_who.d, 768–769

socket scripts, 447
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

SSH scripts, 649
scpwatcher.d, 661–663
sshcipher.d, 649–655
sshconnect.d, 657–661
sshdactivity.d, 655–657

syscall provider, 315
fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

Tcl, 778
tcl_calls.d, 779–780
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_who.d, 778–779

TCP scripts, 481
fbt provider, 483–485
tcp provider, 482–483
tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516

script: fbt-based, 505–515
script: tcp-based, 515–516

tcpstat.d, 485–486
tcp1stbyte.d, 499

TMPFS scripts, 385
tmpgetpage.d, 386–387
tmpusers.d, 385–386

UDFS scripts, 378
dvd.d, 378

UDP scripts, 517
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

UFS scripts, 351
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

VFS scripts, 335
dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
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Scripts, VFS scripts (continued)
vfslife.d, 345
vfssnoop.d, 340–343

XDR scripts, 529
xdrshow.d, 529–533

ZFS scripts, 357
perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

scrwtop10.d script, 132–133
SCSI probes, 212–213
SCSI scripts, 211

SCSI probes, 212–213
scsicmds.d, 218–221
scsi.d, 229–236
scsilatency.d, 221–223
scsireasons.d, 227–229
scsirw.d, 223–226
sdqueue.d, 213–215
sdretry.d, 215–218

SCSI virtual host controller interconnect, 221, 
234–236

sctp, 412–413
sdt (statically defined tracing), 156, 275–276
sdt provider, 303, 921
sdt provider examples, 312–313
Secure Shell. see SSH
Security, 867

audit logs, 870
privileges, detection, and debugging, 867

HIDS, 871
malicious acts, 869
policy enforcement, 871–872
privilege debugging, 872–874
privileges, 868
reverse engineering, 874–875
security logging, 870
sniffing, 869–870

script summary, 875
scripts

cuckoo.d, 884–886
keylatency.d, 882–884
networkwho.d, 891–892
nosetuid.d, 888–889
nosnoopforyou.d, 890–891
shellsnoop, 878–882
sshkeysnoop.d, 875–878
watchexec.d, 886–888

sed, 240
segkmem, 121

Segment driver, 121
select-start / select-done, 838
self->, 30, 41, 143, 228, 660, 997, 1085
Semaphore system call, 93
Semicolons, 23
Send, 408, 416–419
Send context, 550–553
Sequential I/O, 208
Sequential Workload, 185
Server Message Block (SMB). see CIFS
Server query status trace (simple snoop), 854
Service time, disk I/O, 155
setuid(), 875
Shapiro, Mike, 1, 1003
Shared memory, 100–101
Shell (language), 764, 1085

code, 765
one-liner examples

count function calls by filename, 767
count line execution by filename and line 

number, 767
trace function calls showing function name, 

766
one-liners, 765–766
script summary, 768
scripts

sh_calls.d, 769–771
sh_flowinfo.d, 771–774
sh_flowtime.d, 774
sh_syscolors.d, 774
sh_who.d, 768–769

shellsnoop, 878–882
short, 26
Shouting in the data center, 269–273
Show user stack trace on function call, 687–688
Signals, 804, 813–814
Signed integers, 26–27
Simple snoop, 854
Single quote mark, 24, 194, 201, 231, 880, 1021
sizeof(), 41
Slab allocator, 909, 913
smb provider, 566, 572–573
Sniffing, 869–870, 875
SNMP Message Information Bases (MIBs), 404
SNMP MIB event count, 424, 434–435
snoop, 400
Snoop process execution, 48–49
snoop(1M), 890
Socket accepts by process name, 422, 427
Socket connections by process and user stack 

trace, 422, 428
Socket file system, 76
Socket flow diagram, 448
Socket read bytes by process name, 423, 433
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Socket read (write/send/recv) I/O count by process 
name, 423, 430

Socket read (write/send/recv) I/O count by system 
call, 422, 429

Socket reads (write/send/recv) I/O count by 
process and user stack trace, 423, 431

Socket reads (write/send/recv) I/O count by 
system call and process name, 423, 430

Socket scripts, 447
soaccept.d, 453–455
socketio.d, 457–458
socketiosort.d, 458–460
soclose.d, 455–457
soconnect.d, 449–453
soerrors.d, 465–468
so1stbyte.d, 460–462
sotop.d, 463–464

Socket system call error descriptions, 467–468
Socket write bytes by process name, 432
Socket write I/O size distribution by process 

name, 433
Solaris, 416–418, 420, 471–474, 1076

80-character maximum, 493
AF_INET values, 451
disk I/O on a Solaris Server, 176–177
I/O stack, 153
IDE driver reference, 251
iostat(1M), 125
kernel memory tools, 118
lower-level network stack, 533
netstat(1M), 125
performance analysis, 52
SAS driver reference, 260
SATA driver reference, 237
system tools, 55
TCP/IP stack, 401

Solaris Auditing, 870
Solaris Dynamic Tracing Guide, 19, 157
Solaris Internals, 66
Solaris Nevada, 298, 411, 470–471, 576–578, 592, 

1011, 1025, 1038, 1086
Solaris Performance and Tools, 52
sort, 992
Sort options, 37
specsize, 1007
Speculations, 41–42, 1006, 1019
SpiderMonkey, 706, 818
spin, 812, 934, 936, 1015, 1086
srp provider probes and arguments, 1035
ssh, 428, 455
SSH logins, 563, 569
SSH scripts

scpwatcher.d, 661–663
sshcipher.d, 649–655

sshconnect.d, 657–661
sshdactivity.d, 655–657

ssh vs. telnet, 462
sshd (SSH daemon), 132, 189, 291, 462, 569, 649, 

655–657, 661, 994–995
sshkeysnoop.d, 875–878
Stability, 275, 806, 1086
stack(), 40–41, 90, 92, 113, 551, 1008, 1017, 1071
Stack backtrace counts, 929
Stack reuse, 554–555
Stack traces, 155, 168–171, 280–283, 312–313
Stackdepth, 31, 698
stackframes, 44, 1008
stat() files, 300, 305
Stat tools, 56
State changes, tcp, 415
Static probes, 4, 1085, 1086
Statically Defined Tracing provider. see sdt 

provider
Statistics (Analytics), 977–984
stddev() function, 34
STDOUT, 662, 878–880, 1014, 1019, 1086
Stoll, Clifford, 884
Stream Control Transmission Protocol (sctp), 

412–413
Streaming workload, 578–579
STREAMS, 534, 944
strftime(), 688
String buffer, 44
String types, 27
String variables, 1008
stringof(), 39–40, 1067
strjoin(), 40, 178, 431, 1016
strlen(), 40, 618, 687–688, 999–1000, 1016
strsize, 44, 1008
strtok(), 618–619, 1016
Subroutines, 720–726, 729–730, 1014, 1087
Subversion, 190
sudo, 20
sum(), 34, 118
Sun Microsystems, 269n, 663, 973, 1079, 1083, 

1084, 1086
Sun Studio IDE, 966
Switch buffer, 1008, 1064, 1080, 1087
switchrate, 194, 992, 1003, 1008, 1065, 1087
sync-cache, 225–226, 246
Synchronous vs. asyncronous write workloads, 

241
Synchronous writes, 584–585, 595
Synchronous ZFS writes, 242, 254
SYS (system), 347, 942
syscall Entry and Return, 25
syscall provider, 60, 90–91, 126, 300–301, 404, 

422, 563, 794, 919
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syscall provider examples
frequency count stat() files, 305
http files opened by the httpd server, 568
reads by file system type, 306
socket accepts by process name, 427
socket connections by process and user stack 

trace, 428
socket read bytes by process name, 423, 433
socket read (write/send/recv) I/O count by 

process name, 423, 430
socket read (write/send/recv) I/O count by 

system call, 422, 429
socket reads (write/send/recv) I/O count by 

process and user stack trace, 423, 431
socket reads (write/send/recv) I/O count by 

system call and process name, 423, 430
socket write bytes by process name, 432
socket write I/O size distribution by process 

name, 433
SSH logins by UID and home directory, 569
trace file creat() calls with process name, 304
trace file opens with process name, 304
tracing cd, 306
writes by file system type, 307
writes by process name and file system type, 

307
Syscall provider scripts

fserrors.d, 326–327
fsrtpk.d, 320–322
fsrwcount.d, 317–319
fsrwtime.d, 319–320
mmap.d, 324–325
rwsnoop, 322–323
sysfs.d, 315–317

sysevent provider probes and arguments, 1036
sysinfo provider, 58, 87–88, 90–91, 920
syslog(), 664–666
systat(1), 55
System activity reporter, 55
System call counts for processes called httpd, 800
System call time reporter, 806
System calls, 994–995
System tools, 55
System view

CPU tracking
analysis, 60–85
checklist, 57–58
events, 87–94
interrupts, 85–88
one-liners, 58–60
providers, 58

disk and network I/O activity
analysis, 128–134
checklist, 125

disk I/O, 134–141
one-liners, 127–128
providers, 126–127
strategy, 125

memory monitoring
analysis, 98–101
checklist, 96
kernel memory, 118–124
one-liners, 97–98
providers, 96–97
strategy, 95
user process memory activity, 101–117

system methodology, 53–56
system tools, 54–56

Systemwide sniffing, 881

T
Tail-call optimization, 1003
$target, 32, 43, 788, 1070–1071
task queues, 939–941
Tcl (language), 774

code, 776
one-liner examples, 777–778
one-liners, 776–777
pronunciation, 774
script summary, 778
scripts

tcl_calls.d, 779–780
tcl_flowtime.d, 781
tcl_insflow.d, 782
tcl_procflow.d, 780–782
tcl_syscolors.d, 781
tcl_who.d, 778–779

TCP (Transmission Control Protocol), 481, 1087
TCP connections, 441, 446, 486–489
TCP event statistics, 424, 436
tcp fusion, 408
TCP handshake, 408, 482, 492–493, 514–515
TCP Large Send Offload, 553
tcp provider, 404, 425, 482–483
tcp provider examples

inbound TCP connections, 441
sent IP payload size distributions, 443
sent TCP bytes summary, 444
TCP events by type summary, 444
TCP received packets, 443

tcp provider probes and arguments, 1036
TCP scripts

fbt provider, 483–485
tcp provider, 482–483
tcpaccept.d, 486–487
tcpacceptx.d, 488
tcpbytes.d, 494
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tcpconnect.d, 489
tcpconnlat.d, 497–499
tcpfbtwatch.d, 446, 501–503
tcpio.d, 491–493
tcpioshort.d, 490
tcpnmap.d, 496–497
tcp_rwndclosed.d, 500
tcpsize.d, 495
tcpsnoop.d, 503–516
tcpstat.d, 485–486
tcp1stbyte.d, 499

TCP window buffer, 552
tcpdump, 400
tcpinfo_t, 1042
tcpsinfo_t, 1042
telnet, 462
Ternary operators, 28, 178, 195
The Cuckoo’s Egg: Tracking a Spy Through the 

Maze of Computer Espionage, 884
this->, 30, 176, 182, 997, 1087
Thread life-cycle probes, 691
Thread-local variables, 997–998
Tick probe, 24–25, 1002
tid, 31
Time functions, 526
Time-share scheduling code, 420
Time stamps, 31, 807, 992–993, 995–996
timestamp vs. vtimestamp, 995–996
Timing a system call, 47–48
Tips and tricks

assumptions, 1000
drops and dynvardrops, 1003
frequency count, 991–992
grep, 991
known workloads, 987–989
performance issues, 1001–1002
Perl, 993–994
postprocessing, 993–994
profile probe, 996–997
script simplicity, 1001
strlen() and strcmp(), 999–1000
system calls, 994–995
tail-call optimization, 1003
target software, 989–991
timestamp variables, 992–993
timestamp vs. vtimestamp, 995–996
variables

clause-local variables, 30–31, 998
global and aggregation variables, 999
thread-local variables, 997–998

TLB, 798, 924–925, 937, 1087
TMPFS scripts

tmpgetpage.d, 386–387
tmpusers.d, 385–386

Tools, 947
Analytics

abstractions, 974
breakdowns, 979–980
controls, 983
datasets, 984
diagnostic cycle, 975
drill-downs, 981
heat maps, 979–980
hierarchical breakdowns, 979–980
load vs. architecture, 975
real time, 975
statistics, 977
visualizations, 975
worksheets, 983

Chime, 962–965
DLight, Oracle Solaris Studio 12.2, 966–971
DTrace GUI Plug-in for NetBeans and Sun 

Studio, 966
DTraceToolkit

installation, 949
script example: cpuwalk.d, 957–961

Man page, 959–960
script, 958–959

scripts, 949–957
versions, 949

Mac OS X Instruments, 971–972
top(1), 55
trace(), 37, 684–685, 799
Trace command calls showing command name, 

778
Trace errors, 170–171
Trace file creat() calls with process name, 

304–305
Trace file opens with process name, 304
Trace function calls, 710, 735, 742, 766
Trace function entry arguments, 687
Trace method calls showing class and method, 

754
Trace PHP errors, 736
Trace procedure calls showing procedure name, 

777
Trace program execution showing filename and 

line number, 709
Trace subroutine calls, 721
tracemem(), 39, 799, 1017
Tracing fork() and exec(), 45
Tracing open(2), 44–45
Transaction group, 179
Translation code, 162
Translation Lookaside Buffer (TLB). see TLB
Translators, 42, 1087
Transmission Control Protocol (RFC 793), 481
trunc(), 33–34, 36, 110, 131, 133, 581
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truss(1), 869
TS (time sharing), 420, 942–943
Tunable variables, 1005–1010
Type cast, 26, 1087
Types, 26–27

U
uberblock, 641, 1088
UDFS scripts, 378–379
udp, 404
UDP (User Datagram Protocol), 1088
UDP event statistics, 424, 437
udp provider, 404, 427, 517

examples, 445
probes and arguments, 1036

UDP scripts
fbt provider, 517
udp provider, 517
udpio.d, 520–521
udpstat.d, 518–520

UFS scripts, 351
ufsimiss.d, 356–357
ufsreadahead.d, 354–356
ufssnoop.d, 352–354

UFS vs. ZFS synchronous writes, 242
uid, 31
uint64_t, 26
Unanchored probes, 1088
Unary arithmetic operators, 1022
Unary bitwise operators, 1023
Unary logical operators, 1022
Unary operators, 27
Uncached file system read, 331
Uncomment characters, 1088
Underscore, 793n
Unix File System. see UFS
unrolled loop, 232, 618
Unsigned integers, 26–27
unsigned long, 1021
unsigned long long, 27, 1021
Unstable, 1088
Unstable interface, 790
Unstable providers, 275–278
uregs[], 31, 677, 791, 1013
URLs accessed, 616
USB storage, 375
USDT, 1088
USDT example, Bourne shell provider, 1052–1061
User Datagram Protocol. see UDP
User-land, 1088
User-land C, 680
User-mode instructions, 801–803
User-mode level-two cache misses, 803–804

User process memory activity, 101–117
User stack trace profile at 101 hertz, 800–801
usermod(1M), 868
ustack(), 40–41, 90, 113, 165, 687, 872, 1008, 

1017, 1071
ustackframes, 44, 1008–1010
Utilities, 55

V
-v, 161
-V, 811
Variables, 9

associative arrays, 29
built-in, 31–32
clause local, 30–31
clause-local variables, 998
DTrace tunable, 1005–1010
external, 33
global and aggregation variables, 999
macro, 32
operators, 27–28
scalar, 28
structs and pointers, 29
thread local, 30
thread-local variables, 997–998
types, 26–27

Vertical tab (\v), 1021
vfs (virtual file system), 126
vfs provider, 298, 303
VFS scripts

dnlcps.d, 346–347
fsflush_cpu.d, 347–349
fsflush.d, 349–351
maclife.d, 344–345
macvfssnoop.d, 338–340
sollife.d, 343–344
solvfssnoop.d, 336–338
vfslife.d, 345
vfssnoop.d, 340–343

Video demonstration, 269–273
vim, 343–344
Virtual File System. see vfs
Virtual host controller interconnect, 221, 234–236
Virtual memory, 898
Virtual memory info provider (vminfo), 297
Virtual Network Computing (VNC), 824
VirtualBox simulator version, 973
VM life-cycle probes, 691
vmem, 120, 894, 913
vmem heap segment, 913
vminfo provider, 96–97, 302, 308, 920
vm_map_enter(), 105
vmstat, 909
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vmstat(1), 55–56
vm_stat(1), 55, 95, 99
vmstat(8), 55
vmstat(1M), 55, 388–389
vmstat(1M/8), 95
vmtop10.d script, 109–110
vnode interface statistics, 951
vnode_getattr(), 929
VNOP interface, 303, 338–339
Volume manager, 332, 357, 1088
VOP interface, 303, 340–343
VOP_READ_APV(), 170
vopstat, 951
VThread-local variables, 30, 997–998, 1085, 

1087
vtimestamp, 31, 995–996

W
-w, 43, 1007
Wait service time, 213–215
walltimestamp, 31
Web browsers, tracking, 573–574
Web server processes, 323–324
while getopts loop, 193
Whitespace, 887, 1008
Wi-Fi vs. Ethernet, 462
Wiki software,  735
Wildcards, 23–24, 305–307, 690, 991
Workload, 102, 254, 270, 987, 1088
Worksheets (Analytics), 983
Write canceling, 332
write DMA extended, 242
Writes by file system type, 307
Writes by process name and file system type, 307
Writing target software, 989–991

X
-x, 43, 843
xcalls (cross calls), 91
XDR (External Data Representation), 270, 1088

scripts, 447, 529–533
xpv provider probes and arguments, 1037
Xvnc case study

profile provider, 829–831
syscall provider, 824–829

Y
Youtube demonstration video, 269–273

Z
-Z, 316, 375–376, 626, 744, 756
zalloc(), 105, 916–917
ZFS, 221, 225, 241–242, 250

I/O pipeline (ZIO), 357, 361
ZFS ARC, 303, 312–313
ZFS function calls, 688
ZFS 8KB mirror reads

cross calls, 390–393
vmstat(1M), mpstat(1M), and iostat(1M), 

388–389
ZFS scripts

perturbation.d, 366–368
spasync.d, 369–370
zfsslower.d, 360–361
zfssnoop.d, 358–359
zioprint.d, 361–363
ziosnoop.d, 363–365
ziotype.d, 365–366

zpool status, 221
Zprint, 909
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