
Chapter 5: Further Explorations in Classification

Evaluating algorithms and 
kNN

Let us return to the athlete example from the previous chapter.   

In that example we built a classifier which took the 
height and weight of an athlete as input and classified 
that  input by sport—gymnastics, track, or basketball. 

So Marissa Coleman, pictured on the left, is 6 foot 1 
and weighs 160 pounds. Our classifier correctly 
predicts she plays basketball:

>>> cl = Classifier('athletesTrainingSet.txt')

>>> cl.classify([73, 160])

'Basketball'

and predicts that someone 4 foot 9 and 90 pounds is 
likely to be a gymnast:

>>> cl.classify([59, 90])

'Gymnastics'

 



Once we build a classifier, we might be interested in answering some questions about it such 
as:

How can we answer these questions? 

Training set and test set.
At the end of the previous chapter we worked with three different datasets: the women 
athlete dataset, the iris dataset, and the auto miles-per-gallon one. We divided each of these 
datasets in turn into two subsets. One subset we used to construct the classifier. This data set 
is called the training set. The other set was used to evaluate the classifier. That data is called 
the test set.  Training set and test set are common terms in data mining.  
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How good is this 
classifier?How accurate is the 

classifier?

How does this 
classifier compare 
with others?



People in data mining never test with the data they used to train the system. 

You can see why we don't use the training data for testing if we consider the nearest neighbor  
algorithm. If Marissa Coleman the basketball player from the above example, was in our 
training data, she at 6 foot 1 and 160 pounds would be the nearest neighbor of herself. So 
when evaluating a nearest neighbor algorithm, if our test set is a subset of our training data 
we would always be close to 100% accurate.  More generally, in evaluating any data mining 
algorithm, if our test set is a subset of our training data the results will be optimistic and 
often overly optimistic. So that doesn’t seem like a great idea.

How about the idea we used in the last chapter? We divide our data into two parts. The larger  
part we use for training and the smaller part we use for evaluation.  As it turns out that has 
its problems too. We could be extremely unlucky in how we divide up our data. For example, 
all the basketball players in our test set might be short (like Debbie Black who is only 5 foot 3  
and weighs 124 pounds) and get classified as marathoners. And all the track people in the 
test set might be short and lightweight for that sport like Tatyana Petrova (5 foot 3 and 108 
pounds) and get classified as gymnasts. With a test set like this, our accuracy will be poor. On  
the other hand, we could be very lucky in our selection of a test set. Every person in the test 
set is the prototypical height and weight for their respective sports and our accuracy is near 
100%. In either case, the accuracy based on a single test set may not reflect the true accuracy 
when our classifier is used with new data.

A solution to this problem might be to repeat the process a number of times and average the 
results. For example, we might divide the data in half. Let’s call the parts Part 1 and Part 2:
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Data set

Part 1 Part 2



We can use the data in Part 1 to train our classifier and the data in Part 2 to test it. Then we 
will repeat the process, this time training with Part 2 and testing with Part 1.  Finally we 
average the results. One problem with this though, is that we are only using 1/2 the data for 
training during each iteration. But we can fix this by increasing the number of parts. For 
example, we can have three parts and for each iteration we will train on 2/3 of the data and 
test on 1/3. So  it might look like this

iteration 1 train with parts 1 and 2 test with part 3

iteration 2 train with parts 1 and 3 test with part 2

iteration 3 train with parts 2 and 3 test with part 1

Average the results.

In data mining, the most common number of parts is 10, and this method is called ...

10-fold Cross Validation

With this method we have one data set which we divide randomly into 10 parts. We use 9 of 
those parts for training and reserve one tenth for testing. We repeat this procedure 10 times 
each time reserving a different tenth for testing. 

Let’s look at an example. Suppose I want to build a classifier that just answers yes or no to 
the question Is this person a professional basketball player? My data consists of information  
about 500 basketball players and 500 non-basketball players. 
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ten-fold cross validation example:

Step 1, we equally divide the data into 10 buckets:

     

So we will put 50 basketball players in each bucket and 50 non-players. Each bucket holds 
information on 100 individuals.

Step 2, we iterate through the following steps ten times:
 
 2.1.    During each iteration hold back one of the buckets. For iteration 1, we will 
  hold back bucket 1, iteration 2, bucket 2, and so on.

 2.2  We will train the classifier with data from the other buckets. (during the 
  first iteration we will train with the data in buckets 2 through 10). 

 2.3    We will test the classifier we just built using data from the bucket we held
  back and save the results. In our case these results might be:

   35 of the basketball players were classified correctly
   29 of the non basketball players were classified correctly

Step 3, we sum up the results.

EVALUATION AND KNN

5-5

Data



Often we will put the final results in a table that looks like this:

classified as a basketball 
player

classified as not a 
basketball player

really a basketball player

really not a basketball player

372 128

220 280

So of the 500 basketball players 372 of them were classified correctly. One thing we could do 
is add things up and say that of the 1,000 people we classified 652 (372 + 280) of them 
correctly. So our accuracy is 65.2%. The measures we obtain using ten-fold cross-validation 
are more likely to be truly representative of the classifiers performance compared with two-
fold, or three-fold cross-validation. This is so, because each time we train the classifier we are  
using 90% of our data compared with using only 50% for two-fold cross-validation. 
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Hmmm. I have an idea. If 10-fold 
cross validation is good because we are 
training on 90% of the data, how about 
using n-fold cross validation where n is 
the number of entries in our data set?

For example, if we have 1,000 entries, we 
will train our classifier on 999 of them 
and test on 1, and repeat this process 
1,000 times. Using the largest possible 
amount of our data for training should 
result in a highly accurate classifier.



Leave-One-Out

In the machine learning literature, n-fold cross validation (where n is the number of samples 
in our data set) is called leave-one-out. We already mentioned one benefit of leave-one-out—
at every iteration we are using the largest possible amount of our data for training. The other 
benefit is that it is deterministic. 

What do we mean by ‘deterministic’?

Suppose Lucy spends an intense 80 hour week creating and coding a new classifier.  It is 
Friday and she is exhausted so she asks two of her colleagues (Emily and Li) to evaluate the 
classifier over the weekend. She gives each of them the classifier and the same dataset and 
asks them to use 10-fold cross validation. On Monday she asks for the results ...
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I am happy to report 
that the classifier was 73.69% 
accurate!!

The classifier was only 
71.27% accuate.



Hmm. They did not get the same results. Did Emily or Li make a mistake? Not necessarily. In  
10-fold cross validation we place the data randomly into 10 buckets. Since there is this 
random element, it is likely that Emily and Li did not divide the data into buckets in exactly 
the same way. In fact, it is highly unlikely that they did. So when they train the classifier, they  
are not using exactly the same data and when they test this classifier they are using different 
test sets. So it is quite logical that they would get different results. This result has nothing to 
do with the fact that two different people were performing the evaluation. If Lucy herself ran 
10-fold cross validation twice, she too would get slightly different results. The reason we get 
different results is that there is a random component to placing the data into buckets.  So 10-
fold cross validation is called non-deterministic because when we run the test again we are 
not guaranteed to get the same result. In contrast, the leave-one-out method is deterministic.  
Every time we use leave-one-out on the same classifier and the same data we will get the 
same result. That is a good thing!

The disadvantages of leave-one-out

The main disadvantage of leave-one-out is the computational expense of the method. 
Consider a modest-sized dataset of 1,000 instances and that it takes one minute to train a 
classifier. For 10-fold cross validation we will spend 10 minutes in training. In leave-one-out 
we will spend 16 hours in training.  If our dataset contains a million entries the total time 
spent in training would nearly be two years. Eeeks!
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I’ll get that report 
to you in two years!



The other disadvantage of leave-one-out is related to stratification.

Stratification. 

Let us return to an example from the previous chapter—building a classifier that predicts 
what sport a woman plays (basketball, gymnastics, or track). When training the classifier we 
want the training data to be representative and contain data from all three classes. Suppose 
we assign data to the training set in a completely random way. It is possible that no 
basketball players would be included in the training set and because of this, the resulting 
classifier would not be very good at classifying basketball players. Or consider creating a data  
set of 100 athletes. First we go to the Women’s NBA website and write down the info on 33 
basketball players; next we go to Wikipedia and get 33 women who competed in gymnastics, 
at the 2012 Olympics and write that down; finally, we go again to Wikipedia to get 
information on women who competed in track at the Olympics and record data for 34 people.  
So our dataset looks like this:
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comment class num num
Asuka Teramoto Gymnastics 54 66
Brittainey Raven Basketball 72 162
Chen Nan Basketball 78 204
Gabby Douglas Gymnastics 49 90
Helalia Johannes Track 65 99
Irina Miketenko Track 63 106
Jennifer Lacy Basketball 75 175
Kara Goucher Track 67 123
Linlin Deng Gymnastics 54 68
Nakia Sanford Basketball 76 200
Nikki Blue Basketball 68 163
Qiushuang Huang Gymnastics 61 95
Rebecca Tunney Gymnastics 58 77
Rene Kalmer Track 70 108
Shanna Crossley Basketball 70 155
Shavonte Zellous Basketball 70 155
Tatyana Petrova Track 63 108
Tiki Gelana Track 65 106
Valeria Straneo Track 66 97
Viktoria Komova Gymnastics 61 76
comment class num num
Asuka Teramoto Gymnastics 54 66
Brittainey Raven Basketball 72 162
Chen Nan Basketball 78 204
Gabby Douglas Gymnastics 49 90
Helalia Johannes Track 65 99
Irina Miketenko Track 63 106
Jennifer Lacy Basketball 75 175
Kara Goucher Track 67 123
Linlin Deng Gymnastics 54 68
Nakia Sanford Basketball 76 200
Nikki Blue Basketball 68 163
Qiushuang Huang Gymnastics 61 95
Rebecca Tunney Gymnastics 58 77
Rene Kalmer Track 70 108
Shanna Crossley Basketball 70 155
Shavonte Zellous Basketball 70 155
Tatyana Petrova Track 63 108
Tiki Gelana Track 65 106
Valeria Straneo Track 66 97
Viktoria Komova Gymnastics 61 76
comment class num num
Asuka Teramoto Gymnastics 54 66
Brittainey Raven Basketball 72 162
Chen Nan Basketball 78 204
Gabby Douglas Gymnastics 49 90
Helalia Johannes Track 65 99
Irina Miketenko Track 63 106
Jennifer Lacy Basketball 75 175
Kara Goucher Track 67 123
Linlin Deng Gymnastics 54 68
Nakia Sanford Basketball 76 200
Nikki Blue Basketball 68 163
Qiushuang Huang Gymnastics 61 95
Rebecca Tunney Gymnastics 58 77
Rene Kalmer Track 70 108
Shanna Crossley Basketball 70 155
Shavonte Zellous Basketball 70 155
Tatyana Petrova Track 63 108
Tiki Gelana Track 65 106
Valeria Straneo Track 66 97
Viktoria Komova Gymnastics 61 76

33 women baskball players

33 women gymnasts

34 women marathoners



Let’s say we are doing 10-fold cross validation. We start at the beginning of the list and put 
every ten people in a different bucket. In this case we have 10 basketball players in both the 
first and second buckets. The third bucket has both basketball players and gymnasts. The 
fourth and fifth buckets solely contain gymnasts and so on. None of our buckets are 
representative of the dataset as a whole and you would be correct in thinking this would skew  
our results.  The preferred method of assigning instances to buckets is to make sure that the 
classes (basketball players, gymnasts, marathoners) are representing in the same proportions 
as they are in the complete dataset. Since one-third  of the complete dataset consists of 
basketball players, one-third of the entries in each bucket should also be basketball players. 
And one-third the entries should be gymnasts and one-third marathoners. This is called 
stratification and this is a good thing. The problem with the leave-one-out evaluation 
method is that necessarily all the test sets are non-stratified since they contain only one 
instance.  In sum, while leave-one-out may be appropriate for very small datasets, 10-fold 
cross validation is by far the most popular choice.

Confusion Matrices
So far, we have been evaluating our classifier  
by computing the percent accuracy. That is, 

sometimes we may want a more detailed 
picture of the performance of our 
classification algorithm and one such 
detailed visualization is a table called the 
confusion matrix. The rows of the confusion 
matrix represent the actual class of the test 
cases, the columns represent what our 
classifier predicted.
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number of test cases correctly classified

         Total number of test cases



The name confusion matrix comes from the observation that it is easy for us to see where our  
algorithm gets confused. Let’s look at an example using our women athlete domain. Suppose 
we have a dataset that consists of attributes for 100 women gymnasts, 100 players in the 
Women’s National Basketball Association, and 100 women marathoners.  We evaluate the 
classifier using 10-fold cross-validation. In 10-fold cross-validation we use each instance of 
our dataset exactly once for testing.  The results of this test might be the following confusion 
matrix:

gymnast basketball player marathoner

gymnast 83 0 17

basketball player 0 92 8

marathoner 9 16 85

Again, the real class of each instance is represented by the rows; the class predicted by our 
classifier is represented by the columns. So, for example, 83 instances of gymnasts were 
classified correctly as gymnasts but 17 were misclassified as marathoners. 92 basketball 
players were classified correctly as basketball players but 8 were misclassified as 
marathoners. 85 marathoners were classified correctly but 9 were misclassified as gymnasts 
and 16 misclassified as basketball players. 

The diagonal of the confusion matrix represents instances that were classified correctly. 

gymnast basketball player marathoner

gymnast 83 0 17

basketball player 0 92 8

marathoner 9 16 85

In this case the accuracy of the algorithm is:

83+ 92 + 85
300

= 260
300

= 86.66%

EVALUATION AND KNN
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It is easy to inspect the matrix to get an idea of what type of errors our classifier is making. It 
this example, it seems our algorithm is pretty good at distinguishing between gymnasts and 
basketball players. Sometimes gymnasts and basketball players get misclassified as 
marathoners and marathoners occasionally get misclassified as gymnasts or basketball 
players.

A programming example

Let us go back to a dataset we used in the last chapter, the Auto Miles Per Gallon data set 
from Carnegie Mellon University. The format of the data looked like:

mpg cylinders c.i. HP weight secs. 0-60 make/model

30 4 68 49 1867 19.5 fiat 128

45 4 90 48 2085 21.7 vw rabbit (diesel)

20 8 307 130 3504 12 chevrolet chevelle malibu

I am trying to predict the miles per gallon of a vehicle based on number of cylinders, 
displacement (cubic inches), horsepower, weight, and acceleration. I put all 392 instances in 
a file named mpgData.txt and wrote the following short Python program that divided the 
data into ten buckets using a stratified method. (Both the data file and Python code are 
available on the website guidetodatamining.com.)
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Confusion matrices 
are not that 
confusing!



import random
def buckets(filename, bucketName, separator, classColumn):
    """the original data is in the file named filename
    bucketName is the prefix for all the bucket names
    separator is the character that divides the columns
    (for ex., a tab or comma and classColumn is the column
    that indicates the class"""

    # put the data in 10 buckets
    numberOfBuckets = 10
    data = {}
    # first read in the data and divide by category
    with open(filename) as f:
        lines = f.readlines()
    for line in lines:
        if separator != '\t':
            line = line.replace(separator, '\t')
        # first get the category
        category = line.split()[classColumn]
        data.setdefault(category, [])
        data[category].append(line)
    # initialize the buckets
    buckets = []
    for i in range(numberOfBuckets):
        buckets.append([])       
    # now for each category put the data into the buckets
    for k in data.keys():
        #randomize order of instances for each class
        random.shuffle(data[k])
        bNum = 0
        # divide into buckets
        for item in data[k]:
            buckets[bNum].append(item)
            bNum = (bNum + 1) % numberOfBuckets
    # write to file
    for bNum in range(numberOfBuckets):
        f = open("%s-%02i" % (bucketName, bNum + 1), 'w')
        for item in buckets[bNum]:
            f.write(item)
        f.close()
           
buckets("mpgData.txt", 'mpgData','\t',0)
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Executing this code will produce ten files labelled mpgData01, mpgData02, etc.

s code it

Can you revise the nearest neighbor code from the last chapter so the 
function test performs 10-fold cross validation on the 10 data files we 
just created (you can download them at guidetodatamining.com)? 

Your program should output a confusion matrix that looks something like:

predicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPG

ac-
tual 
MPG

10 15 20 25 30 35 40 45

ac-
tual 
MPG

10 3 10 0 0 0 0 0 0
ac-
tual 
MPG

15 3 68 14 1 0 0 0 0
ac-
tual 
MPG 20 0 14 66 9 5 1 1 0

ac-
tual 
MPG

25 0 1 14 35 21 6 1 1

ac-
tual 
MPG

30 0 1 3 17 21 14 5 2

ac-
tual 
MPG

35 0 0 2 8 9 14 4 1

ac-
tual 
MPG

40 0 0 1 0 5 5 0 0

ac-
tual 
MPG

45 0 0 0 2 1 1 0 2

 53.316% accurate
! total of 392 instances
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s code it - one solution

One solution involves only 

Let us look at these in turn.

initializer method  __init__

The signature of the init method looks like:

    def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

The filenames of the buckets will be something like mpgData-01, mpgData-02, etc.  In this 
case, bucketPrefix will be “mpgData”. testBucketNumber is the bucket containing the 
test data. If testBucketNumber is 3, the classifier will be trained on buckets 1, 2, 4, 5, 6, 7, 
8, 9, and 10. dataFormat is a string specifying how to interpret the columns in the data. For  
example, 

  "class! num! num! num! num! num! comment"

specifies that the first column represents the class of the instance. The next 5 columns 
represent numerical attributes of the instance and the final column should be interpreted as 
a comment.

The complete, new initializer method is as follows:

EVALUATION AND KNN
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• Changing the initializer method to read in data from 9 buckets.

• Adding a new method to test from data in one bucket

• Adding a new procedure that performs 10-fold cross-validation



class Classifier:
    def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

        """ a classifier will be built from files with the bucketPrefix
        excluding the file with textBucketNumber. dataFormat is a 
        string that describes how to interpret each line of the data 
        files. For example, for the mpg data the format is:
        "class! num! num! num! num! num! comment"
        """
   
        self.medianAndDeviation = []
        
        # reading the data in from the file
 
        self.format = dataFormat.strip().split('\t')
        self.data = []
        # for each of the buckets numbered 1 through 10:
        for i in range(1, 11):
            # if it is not the bucket we should ignore, read the data
            if i != testBucketNumber:
                filename = "%s-%02i" % (bucketPrefix, i)
                f = open(filename)
                lines = f.readlines()
                f.close()
                for line in lines[1:]:
                    fields = line.strip().split('\t')
                    ignore = []
                    vector = []
                    for i in range(len(fields)):
                        if self.format[i] == 'num':
                            vector.append(float(fields[i]))
                        elif self.format[i] == 'comment':
                            ignore.append(fields[i])
                        elif self.format[i] == 'class':
                            classification = fields[i]
                    self.data.append((classification, vector, ignore))
        self.rawData = list(self.data)
        # get length of instance vector
        self.vlen = len(self.data[0][1])
        # now normalize the data
        for i in range(self.vlen):
            self.normalizeColumn(i)
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testBucket method  

Next, we write a new method that will test the data in one bucket:

    def testBucket(self, bucketPrefix, bucketNumber):
        """Evaluate the classifier with data from the file
        bucketPrefix-bucketNumber"""
        
        filename = "%s-%02i" % (bucketPrefix, bucketNumber)
        f = open(filename)
        lines = f.readlines()
        totals = {}
        f.close()
        for line in lines:
            data = line.strip().split('\t')
            vector = []
            classInColumn = -1
            for i in range(len(self.format)):
                  if self.format[i] == 'num':
                      vector.append(float(data[i]))
                  elif self.format[i] == 'class':
                      classInColumn = i
            theRealClass = data[classInColumn]
            classifiedAs = self.classify(vector)
            totals.setdefault(theRealClass, {})
            totals[theRealClass].setdefault(classifiedAs, 0)
            totals[theRealClass][classifiedAs] += 1
        return totals

This takes as input a bucketPrefix and a bucketNumber. If the prefix is "mpgData " and the 
number is 3, the test data will be read from the file mpgData-03.  testBucket will return a 
dictionary in the following format:

{'35':! {'35': 1, '20': 1, '30': 1}, 
 '40': ! {'30': 1}, 
 '30': ! {'35': 3, '30': 1, '45': 1, '25': 1}, 
 '15': ! {'20': 3, '15': 4, '10': 1}, 
 '10': ! {'15': 1}, 
 '20': ! {'15': 2, '20': 4, '30': 2, '25': 1}, 
 '25': ! {'30': 5, '25': 3}}

EVALUATION AND KNN
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The key of this dictionary represents the true class of the instances. For example, the first line  
represents results for instances whose true classification is 35 mpg.  The value for each key is 
another dictionary that represents how our classifier classified the instances. For example, 
the line

 '15': ! {'20': 3, '15': 4, '10': 1}, 

represents a test where 3 of the instances that were really 15mpg were misclassified as 
20mpg, 4 were classified correctly as 15mpg, and 1 was classified incorrectly as 10mpg.

procedure to perform 10-fold cross-validation.

Finally, we need to write a procedure that will perform 10-fold cross-validation. That is, it 
builds 10 classifiers. Each classifier is trained on 9 of the buckets and tested on data from the 
remaining bucket.

def tenfold(bucketPrefix, dataFormat):
    results = {}
    for i in range(1, 11):
        c = Classifier(bucketPrefix, i, dataFormat)
        t = c.testBucket(bucketPrefix, i)
        for (key, value) in t.items():
            results.setdefault(key, {})
            for (ckey, cvalue) in value.items():
                results[key].setdefault(ckey, 0)
                results[key][ckey] += cvalue
                
    # now print results
    categories = list(results.keys())
    categories.sort()
    print(   "\n       Classified as: ")
    header =    "        "
    subheader = "      +"
    for category in categories:
        header += category + "   "
        subheader += "----+"
    print (header)
    print (subheader)
    total = 0.0
    correct = 0.0
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    for category in categories:
        row = category + "    |"
        for c2 in categories:
            if c2 in results[category]:
                count = results[category][c2]
            else:
                count = 0
            row += " %2i |" % count
            total += count
            if c2 == category:
                correct += count
        print(row)
    print(subheader)
    print("\n%5.3f percent correct" %((correct * 100) / total))
    print("total of %i instances" % total)

tenfold("mpgData", "class! num! num! num! num! num! comment")

Running the program yields the following results:

       Classified as: 
        10   15   20   25   30   35   40   45   
      +----+----+----+----+----+----+----+----+
10    |  3 | 10 |  0 |  0 |  0 |  0 |  0 |  0 |
15    |  3 | 68 | 14 |  1 |  0 |  0 |  0 |  0 |
20    |  0 | 14 | 66 |  9 |  5 |  1 |  1 |  0 |
25    |  0 |  1 | 14 | 35 | 21 |  6 |  1 |  1 |
30    |  0 |  1 |  3 | 17 | 21 | 14 |  5 |  2 |
35    |  0 |  0 |  2 |  8 |  9 | 14 |  4 |  1 |
40    |  0 |  0 |  1 |  0 |  5 |  5 |  0 |  0 |
45    |  0 |  0 |  0 |  2 |  1 |  1 |  0 |  2 |
      +----+----+----+----+----+----+----+----+

53.316 percent correct
total of 392 instances

EVALUATION AND KNN
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Kappa Statistic!
At the start of this chapter we mentioned some of the questions we might be interested in 
answering about a classifier including How good is this classifier. We also have been refining  
our evaluation methods and looked at 10-fold cross-validation and confusion matrices. In the  
example on the previous pages we determined that our classifier for predicted miles per 
gallon of selected car models was 53.316% accurate. But does 53.316% mean our classifier is 
good or not so good? To answer that question we are going to look at one more statistics, the 
Kappa Statistic.
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How good is this 
classifier?

Does 53% accuracy 
mean the classifier is a 
good one?



The Kappa Statistic compares the performance of a classifier to that of a classifier that makes 
predictions based solely on chance. To show you how this works I will start with a simpler 
example than the mpg one and again return to the women athlete domain. Here are the 
results of a classifier in that domain:

gymnast basketball 
player

marathoner TOTALS

gymnast 35 5 20 60

basketball player 0 88 12 100

marathoner 5 7 28 40

TOTALS 40 100 60 200

I also show the totals for the rows and columns. To determine the accuracy we sum the 
numbers on the diagonal (35 + 88 + 28 = 151) and divide by the total number of instances 
(200) to get 151 / 200 = .755

Now I am going to generate another confusion matrix that will represent the results of a 
random classifier (a classifier that makes random predictions).  First, we are going to make a 
copy of the above table only containing the totals:

gymnast basketball 
player

marathoner TOTALS

gymnast    60

basketball player    100

marathoner    40

TOTALS 40 100 60 200

Looking at the bottom row, we see that 50% of the time (100 instances out of 200) our 
classifier classifies an instance as “Basketball Player”,  20% of the time (40 instances out of 
200) it classifies an instance as “gymnast” and 30% as “marathoner.”

EVALUATION AND KNN
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We are going to use these percentages to fill in the rest of 
the table. There were 60 total real gymnasts. Our 
random classifier will classify 20% of those as gymnasts. 
20% of 60 is 12 so we put a 12 in the table. It will classify 
50% as basketball players (or 30 of them) and 30% as 
marathoners.

gymnast basketball 
player

marathoner TOTALS

gymnast 12 30 18 60

basketball player    100

marathoner    40

TOTALS 40 100 60 200

And we will continue in this way. There are 100 real basketball players. The random classifier  
will classify 20% of them (or 20) as gymnasts, 50% as basketball players and 30% as 
marathoners. And so on:

gymnast basketball 
player

marathoner TOTALS

gymnast 12 30 18 60

basketball player 20 50 30 100

marathoner 8 20 12 40

TOTALS 40 100 60 200

To determine the accuracy of the random method we sum the numbers on the diagonal and 
divide by the total number of instances:

P(r) = 12 +50 +12
200

= 74
200

= .37
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Classifier:

gymnast: 20%

basketball player: 50%

marathoner: 30%



The Kappa Statistic will tell us how much better the real classifier is compared to this random  
one.  The formula is

κ = P(c)− P(r)
1− P(r)

where P(c) is the accuracy of the real classifier and P(r) is the accuracy of the random one. In 
this case the accuracy of the real classifier was .755 and that of the random one was .37 so

κ = .755 − .37
1− .37

= .385
.63

= .61

How do we interpret that .61? Does that mean our classifier is poor, good, or great? Here is a 
chart that will help us interpret that number:

EVALUATION AND KNN
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A commonly cited* scale on how to interpret Kappa

< 0:    less than chance performance

0.01-0.20  slightly good

0.21-0.40  fair performance

0.41-0.60  moderate performance

0.61-0.80  substantially good performance

0.81-1.00  near perfect performance
* Landis, JR, Koch, GG. 1977. The measurement of observer agreement for categorical data. Biometrics 33:159-74



accuracy = 0.697

s sharpen your pencil

Suppose we developed a somewhat silly classifier that predicts the 
major of current university students based on how well they liked 10 
movies. We have a data set of 600 students consisting of computer 
science (cs) majors, education majors (ed), English majors (eng) and 
psychology majors (psych).  The confusion matrix is shown below. Can 
you compute the Kappa Statistic and interpret what that statistic 
means? 

predicted majorpredicted majorpredicted majorpredicted major

cs ed eng psych Total

cs 50 8 15 7

ed 0 75 12 33

eng 5 12 123 30

psych 5 25 30 170
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s solution
How good is our classifier? Can you compute the Kappa Statistic and 
interpret what that statistic means? 

First, we sum all the columns:

cs ed eng psych TOTAL

SUM 60 120 180 240 600

% 10% 20% 30% 40% 100%

Next, we construct the confusion matrix for the random classifier

predicted majorpredicted majorpredicted majorpredicted major

cs ed eng psych Total

cs 8 16 24 32 80

ed 12 24 36 48 120

eng 17 34 51 68 170

psych 23 46 69 92 230

Total 60 120 180 240 600

The accuracy of this random classifier is:
(8 + 24 + 51 + 92) / 600  = (175 / 600) = 0.292

EVALUATION AND KNN
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s solution continued

So the accuracy of our classifier P(c) is 0.697 
and that of the random classifier P(r) is 292 

The Kappa Statistic is 

                    κ = P(c)− P(r)
1− P(r)

         κ = 0.697 − 0.292
1− 0.292

= 0.405
0.708

= 0.572

This suggests our algorithm performs moderately well.
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Improvements to the Nearest 
Neighbor Algorithm!

One trivial example of a classifier is the Rote Classifier, which just memorizes the entire 
training set and only classifies an instance if that instance exactly matches one in the training  
set. If we only evaluated classifiers on instances in the training data, the Rote Classifier 
would always be 100%  accurate. In real life, the rote classifier is not a good choice because 
there will be instances we want to classify that are not in the training set. You can view the 
nearest neighbor algorithm we have been working with as an extension of the rote classifier. 
Instead of requiring exact matches we are looking at instances that are close matches. Pang-
Ning Tan, Michael Steinbach, and Vipin Kumar in their  data 
mining textbook 1  call this the If it 
walks like a duck, quacks like a duck, 
and looks like a duck, then it's 
probably a duck approach. 

One problem with the nearest neighbor algorithm occurs when we have outliers. Let me 
explain what I mean by that. And let us return, yet again, to the women athlete domain; this 
time only looking at gymnasts and marathoners. Suppose we have a particularly short and 
lightweight marathoner.  In diagram form, this data might be represented as on the next 
page, where m indicates ‘marathoner’ and g, ‘gymnast.

EVALUATION AND KNN
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1 Introduction to Data Mining. 2005. Addison-Wesley



We can see that short lightweight marathoner as the sole m in the group of g’s. Suppose x is 
an instance we would like to classify. Its nearest neighbor is that outlier m, so it would get 
classified as a marathoner. If we just eyeballed the diagram we would say that x is most likely 
a gymnast since it appears to be in the group of gymnasts. 

kNN
One way to improve our current nearest neighbor approach is instead of looking at one 
nearest neighbor we look at a number of nearest neighbors—k nearest neighbors or kNN. 
Each neighbor will get a vote and the algorithm will predict that the instance will belong to 
the class with the highest number of votes. For example, suppose we are using three nearest 
neighbors (k = 3).  In that case we have 2 votes for gymnast and one for marathoner, so we 
would predict x is a gymnast:
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So when we are trying to predict a discrete class (marathoners, gymnasts, or basketball 
players, for example) we can use this voting method.  The class with the most votes will be 
the one assigned to the instance. If there is a tie the predicted class will be selected randomly 
from the classes that are tied. When we are trying to predict a numeric value like how 
many stars a person will give the band Funky Meters we can apportion influence from the 
nearest neighbors to compute a distance-weighted value. Let me parse that out a bit more. 
Suppose we are trying to predict how well Ben will like Funky Meters and Ben’s three closest 
neighbors are Sally, Tara, and Jade. Here are their distances from Ben and their ratings for 
Funky Meters. 
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User Distance Rating

Sally 5 4

Tara 10 5

Jade 15 5

So Sally was closest to Ben and she gave Funky Meters a 4. Because I want the rating of the 
closest person to be weighed more heavily in the final value than the other neighbors, the 
first step we will do is to convert the distance measure to make it so that the larger the 
number the closer that person is. We can do this by computing the inverse of the distance 
(that is, 1 over the distance). So the inverse of Sally’s distance of 5 is 

           
1
5
= 0.2

User Inverse Distance Rating

Sally 0.2 4

Tara 0.1 5

Jade 0.067 5

Now I am going to divide each of those inverse distances by the sum of all the inverse 
distances. The sum of the inverse distances is 0.2 + 0.1 + 0.067 = 0.367.

User Influence Rating

Sally 0.545 4

Tara 0.272 5

Jade 0.183 5

We should notice two things. First, that the sum of the influence values totals 1. The second 
thing to notice is that with the original distance numbers Sally was twice as close to Ben as 
Tara was, and that is preserved in the final numbers were Sally has twice the influence as 
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Tara does. Finally we are going to multiple each person’s influence and rating and sum the 
results:

predicted Score for Ben 

                   

= 0.545 × 4 + 0.272 × 5 + 0.183× 5

= 2.18 +1.36 + 0.915 = 4.455

s sharpen your pencil

I am wondering how well Sofia will like the jazz pianist Hiromi. What is 
the predicted value given the following data using the k nearest 
neighbor algorithm with k = 3.?
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person distance from Sofia rating for HiromiGabriela 4 3
Ethan

8 3
Jayden 10 5



s sharpen your pencil  - solution

the first thing to do is to compute the inverse  ( 1 over the distance) 
of each distance:

Person Inverse Distance Rating

Gabriela 1/4 = 0.25 3

Ethan 1/8 = 0.125 3

Jayden 1/10 = 0.1 5

The sum of the inverse distances is 0.475. Next I am going to compute 
the influence of each person by dividing the inverse distance by the sum 
of each distance

Person Influence Rating

Gabriela 0.526 3

Ethan 0.263 3

Jayden 0.211 5

Finally, I multiply the influence by the rating and sum the results:

= (0.526 × 3)+ (0.263× 3)+(0.211× 5)

= 1.578 + 0.789 +1.055 = 3.422
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A new dataset and a challenge!
It is time to look at a new dataset, the Pima Indians Diabetes Data Set developed by the 
United States National Institute of Diabetes and Digestive and Kidney Diseases.

Astonishingly, over 30% of Pima people develop diabetes.  In contrast, the diabetes rate in 
the United States is 8.3% and in China it is 4.2%.

Each instance in the dataset represents information about a Pima woman over the age of 21 
and belonged to one of two classes: a person who developed diabetes within five years, or a 
person that did not. There are eight attributes:
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Here is an example of the data (the last column represents the class—0=no diabetes;
1=diabetes):

2  99  52  15  94  24.6  0.637  21  0

3  83  58  31  18  34.3  0.336  25  0

5  139  80  35  160  31.6  0.361  25  1

3  170  64  37  225  34.5  0.356  30  1

So, for example, the first woman has had 2 children, has 
a plasma glucose concentration of 99, a diastolic blood 
pressure of 52 and so on.
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attributes:

1. Number of times pregnant 
2. Plasma glucose concentration a 2 hours in an 
oral glucose tolerance test 
3. Diastolic blood pressure (mm Hg) 
4. Triceps skin fold thickness (mm) 
5. 2-Hour serum insulin (mu U/ml) 
6. Body mass index (weight in kg/(height in m)^2) 
7. Diabetes pedigree function 
8. Age (years)



 

s code it - part 1

There are two files on our website. pimaSmall.zip is a zip file containing 100 
instances of the data divided into 10 files (buckets). pima.zip is a zip file 
containing 393 instances. When I used the pimaSmall data with the nearest 
neighbor classifier we built in the previous chapter using 10-fold cross-
validation I got these results:

       Classified as: 
        0   1   
      +----+----+
0     | 45 | 14 |
1     | 27 | 14 |
      +----+----+

59.000 percent correct
total of 100 instances

Here is your task:

Download the classifier code from our website and implement the kNN 
algorithm. Let us change the initializer method of the class to add another 
argument, k:

def __init__(self, bucketPrefix, testBucketNumber, dataFormat, k):

The method signature should look like    def knn(self, itemVector):
It should make use of self.k (remember to set that value in the init method) 
and return the class (in this Pima Cancer dataset case ‘0’ or ‘1’). You should 
also modify the procedure tenfold to pass k to the initializer.
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Hint: The python function heapq.nsmallest(n, list) will return a list with the n smallest items.



s code it - answer

My modification to _init__ was simply:

def __init__(self, bucketPrefix, testBucketNumber, dataFormat, k):
        self.k = k
        ...

 

My knn method was
    
def knn(self, itemVector):
    """returns the predicted class of itemVector using k
    Nearest Neighbors"""
    # changed from min to heapq.nsmallest to get the
    # k closest neighbors
    neighbors = heapq.nsmallest(self.k,
                           [(self.manhattan(itemVector, item[1]), item)
                           for item in self.data])
    # each neighbor gets a vote
    results = {}
    for neighbor in neighbors: 
        theClass = neighbor[1][0]
        results.setdefault(theClass, 0)
        results[theClass] += 1
    resultList = sorted([(i[1], i[0]) for i in results.items()],  
                        reverse=True)
    #get all the classes that have the maximum votes
    maxVotes = resultList[0][0]
    possibleAnswers = [i[1] for i in resultList if i[0] == maxVotes]
    # randomly select one of the classes that received the max votes
    answer = random.choice(possibleAnswers)
    return( answer)
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My slight modification to tenfold was:

def tenfold(bucketPrefix, dataFormat, k):
    results = {}
    for i in range(1, 11):
        c = Classifier(bucketPrefix, i, dataFormat, k)

        ...

   

 

s code it - part 2

     Which makes the most difference? Having more data 
(comparing the results from pimaSmall and pima) or having 
a better algorithm (comparing k=1 to k=3)?

EVALUATION AND KNN

5-37

You can download this code at guidetodatamining.com. Remember, this is just one way to implement this method, and it is not necessarily the best way.



s code it - results!

Here are my accuracy results (k=1 is the nearest neighbor algorithm 
from the last chapter):

 

So it seems that roughly tripling the amount of data increases the 
accuracy much more than improving the algorithm does.
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pimaSmall pima

k=1 59.00% 71.247%

k=3 61.00% 72.519%



s sharpen your pencil

Hmm. 72.519% seems like pretty good accuracy but is it? Compute the 
Kappa Statistic to find out:
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no diabetes diabetes

no diabetes 219 44

diabetes 64 66

Performance:

☐     slightly good
☐      fair
☐      moderate
☐      substantially good
☐      near perfect



s sharpen your pencil — answer

random (r) classifier:

κ = P(c)− P(r)
1− P(r)

= .72519 − .5745
1− .5745

= .15069
.4255

= .35415

Only fair performance
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no diabetes diabetes TOTAL

no diabetes 219 44 263

diabetes 64 66 130

TOTAL 283 110 393

ratio 0.7201 0.2799

no diabetes diabetes

no diabetes 189.39 73.61

diabetes 93.61 36.39

p(r)= 189.39 + 36.61
393

= .5745

accuracy



More data, better algorithms & a broken bus
Several years ago I was at a 
conference in Mexico City. This 
conference was a bit unusual in that 
it alternated between a day of 
presentations and a day of touring 
(the Monarch Butterflies, Inca 
ruins, etc). The days of touring 
involved riding long distances on a 
bus and the bus had a tendency to 
break down. As a result, a bunch of 
us PhD types spend a good deal of 
time standing at the side of road 
talking to one another as the bus 
was being attended to. These roadside exchanges were the 
highpoint of the conference for me. One of the people I talked to was a person named Eric 
Brill. Eric Brill is famous for developing what is called the Brill tagger, which does part-of-
speech tagging. Similar to what we have been doing in the last few chapters, the Brill tagger 
classifies data—in this case, it classifies words by their part of speech (noun, verb, etc.). The 
algorithm Brill came up with was significantly better than its predecessors (and as a result 
Brill became famous in natural language processing circles). At the side of that Mexican road, 
I got to talking with Eric Brill about improving the performance of algorithms. His view is 
that you get more of an improvement by getting more data for the training set, than you 
would by improving the algorithm. In fact, he felt that if he kept the original part-of-speech 
tagging algorithm and just increased the size of the training data, the improvement would 
exceed that of his famous algorithm. Although, he said, you cannot get a PhD for just 
collecting more data, but you can for developing an algorithm with marginally improved 
performance!

Here's another example. In various machine translation competitions, Google always places 
at the top. Granted that Google has a large number of very bright people developing great 
algorithms, much of Google's dominance is due to its enormous training sets it acquired from  
web.

更多数据  ➯   Més dades   ➯    More data
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This isn't to say that you shouldn't pick the best algorithm for the job. As we have already 
seen picking a good algorithm makes a significant difference. However, if you are trying to 
solve a practical problem (rather than publish a research paper) it might not be worth your 
while to spend a lot of time researching and tweaking algorithms. You will perhaps get more 
bang for your buck—or a better return on your time—if you concentrate on getting more data.  

With that nod toward the importance of data, I will continue my path of introducing new 
algorithms. 
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People have used kNN classifiers for 

recommending items at Amazonassessing consumer credit riskclassifying land cover using image analysisrecognizing faces
classifying the gender of people in imagesrecommending web pages
recommending vacation packages


