
Lecture 5: Adaptive Prefix-Free Coding

Lecturer: Travis

January 27th, 2015

In the first week we discussed so-called static prefix-free
compression algorithms (such as Morse coding) that don’t adapt
to their input, and semi-static algorithms (such as Huffman
coding) that use two passes over their input (one to compute the
characters’ frequencies and another to encode).

Today we’re going to talk about adaptive prefix-free compression
algorithms — also known as dynamic or one-pass — which use
only one pass over their input and adjust the code they use as they
go along, so that it adapts to the frequencies of the characters (so
far).

(By the way, prefix-free codes are sometimes called instantaneous
because we can encode each character immediately after reading it
and decode it immediately after reading its encoding.)

Recall the situation of Alice sending a message to Bob by either
using an agreed-upon code or first sending him a code, and
sending the encoding of each character? How does that work if
Alice starts changing the code?

If Alice uses an agreed-upon code to send the first character, then
updates her copy of the code in a deterministic way that depends
only on that character, then Bob — who now knows the first
character — can update his copy of the code in the same way.

In general, after sending the first i characters of the message, Alice
can update the code in a deterministic way that depends only on
the current state of the code and those i characters.

One of the simplest adaptive prefix-free coding algorithms is
Move-To-Front (MTF). Alice and Bob start with the same list of
characters in the alphabet. Alice reads each character of the
message, sends its current position in the list to Bob, then moves
it to the front of the list. When Bob receives each position, he
learns the character, which he also moves to the front of the list.

Of course, Alice has to send each position in a prefix-free manner.
To do this, she can use one of the integer codes you learned about
last week, such as Elias’ gamma or delta codes.

Elias himself published a paper in 1986 proposing MTF, but he was
beaten to it by Ryabko and Bentley, Sleator, Tarjan and Wei. Most
people cite Bentley et al. because they described data structures
that allow us to run MTF in time proportional to the length of the
encoding.1

1It’s pretty easy to do this with modern data structures, but that’s partly
because of the techniques these guys invented around this time (e.g., splay trees
— which use a kind of MTF — and amortized analysis).

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R

γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)

A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)

B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)

R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)

A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)

C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)

A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)

D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)

A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)

B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)

R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)

A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

ABRACADABRA

A, B, C, D, R γ(1)
A, B, C, D, R γ(2)
B, A, C, D, R γ(5)
R, B, A, C, D γ(3)
A, R, B, C, D γ(4)
C, A, R, B, D γ(2)
A, C, R, B, D γ(5)
D, A, C, R, B γ(2)
A, D, C, R, B γ(5)
B, A, D, C, R γ(5)
R, B, A, D, C γ(3)
A, R, B, A, D γ(6)

(here γ(6) means “end of string”)

For i ≥ 1, the codeword γ(i) consists of dlog(i + 1)e − 1 copies of
0 followed by the dlog(i + 1)e-bit binary representation of i , so
|γ(i)| ≈ 2 lg i .

γ(1) = 1 ,

γ(2) = 010 ,

γ(3) = 011 ,

γ(4) = 00100 ,

γ(5) = 00101 ,
...

For i ≥ 1, the codeword δ(i) consists of γ(dlog(i + 1)e) followed
by the dlog(i + 1)e-bit binary representation of i with the leading 1
removed, so |δ(i)| ≈ lg i + 2 lg lg(i + 1).

δ(1) = 1 ,

δ(2) = 0100 ,

δ(3) = 0101 ,

δ(4) = 01100 ,

δ(5) = 01101 ,
...

So how long is the final encoding? Well, at any point the position
of any character in the list is at most the time since it last
occurred, or σ if it has never occurred. Therefore, if a character x
occurs occ(x , S) times in the message S [1..n], then the sum of the
base-2 logarithms of the positions we send for those occurrences is
bounded from above by

lg σ + (occ(x , S)− 1) lg
n − 1

occ(x ,S)− 1
.

Summing over all the characters, we find that the sum of the logs
of the positions is bounded by nH0(S) + σ lg σ. (Recall that H0(S)
is the 0th-order empirical entropy of S , which is the entropy of the
distribution of characters in S .) All good so far, but what about
the cost of using a prefix-free code to send the positions?

With the overhead of the delta code included, by Jensen’s
Inequality the bound is something like
nH0(S) + 2n lg H0(S) + σ lg σ. That’s pretty good, and MTF is
still used all over the place, including in lots of BWT-based
compression algorithms.

Still, can we do better? For example, what if every time Alice
sends a character, she builds a new Huffman code — or updates
the one she has — for the prefix of S she’s encoded so far, with an
extra escape character she can use to send characters that haven’t
appeared yet?

In practice, this is a bit masochistic. If we really think the
characters of S are drawn i.i.d. — which is when Huffman coding
the characters is actually a good choice — then we can just wait
for a while, build a Huffman code, wait a while longer, build
another Huffman code, wait much longer, build a third Huffman
code, wait even longer. . . and probably not have to build another
code, since the frequencies will almost certainly not change much.

Nevertheless, people — Faller in 1973, Gallagher in 1978 and
Knuth in 1985 — figured out how to update a Huffman code
quickly when one of the characters’ frequencies is incremented.
The algorithm described by these three researchers is known as
FGK, for obvious reasons. They didn’t analyse the length of the
encoding, though.

Lemma (Sibling Property)

Suppose that a strict binary tree T has non-negative weights
assigned to its leaves and each internal node is assigned the sum of
the weights of its children. Then T is a Huffman tree for its leaf
weights if all nodes can be placed in order of non-decreasing weight
such that siblings are adjacent and children precede parents.

2.43

2.45
4.88

5.27

10.15

5.36

5.57
10.93

21.08

11.18

11.97
23.15

44.23

5.94

6.13
12.07

13.31

25.38

6.61

1.31

1.70
3.01

1.74

1.77
3.51

6.52

7.19

3.54

3.74
7.28

14.47

7.97

2.08

2.12
4.20

0.86

0.68

0.15

0.26

0.41

1.09

1.95

1.96

0.07

0.08

0.13

0.13
3.91

8.11

16.08

30.55

55.93

100.16

Vitter gave an improved algorithm in 1986, showed his algorithm
uses at most 1 more bit per character than semi-static Huffman
coding, showed that this is optimal for adaptive Huffman coding,
and showed FGK uses at most twice as many bits as semi-static
Huffman. Milidiu, Laber and Pessoa showed in 2000 that FGK uses
at most 2 more bits per character than semi-static Huffman.

Theorem

Vitter’s algorithm for adaptive Huffman coding stores S [1..n] using
at most nH0(S) + 2n + o(n) bits and O(nH0(S) + n) time for
encoding and decoding.2.

2Assuming σ � n for simplicity.

(We can also use an adaptive Huffman code based only on the
characters’ frequencies is a sliding window that contains the part of
S we have just encoded. This works fairly well in practice when we
choose the window length well, but messes up the theory a bit.)

FGK and Vitter’s algorithm maintain a code-tree and encode and
decode via root-to-leaf descents. As we discussed in the first week,
it’s much faster to use a canonical code. There were a series of
papers in the ’90s by an Australian called Alistair Moffat —
Simon’s PhD supervisor’s PhD supervisor, I think, and Simon’s
first post-doc supervisor — on adaptive canonical Huffman coding.
Moffat cares more about practice, though, so he didn’t bother
proving theorems.

People worked on adaptive Huffman coding rather than adaptive
Shannon coding because semi-static Huffman beats semi-static
Shannon (and because adaptive Huffman works better in practice).
About tens years ago, though, some people started trying to prove
better bounds for adaptive Shannon. It turned out to be really
easy to maintain an adaptive canonical Shannon code.

Theorem

The best algorithm for adaptive Shannon coding stores S [1..n]
using at most nH0(S) + n + o(n) bits and O(1) worst-case time for
encoding and decoding each character.3

(Notice these are the same bounds as for semi-static Shannon
coding.)

3Again assuming σ � n for simplicity.

You should understand and remember MTF. You don’t need to
remember anything about adaptive Huffman or Shannon coding
once you’ve done next week’s exercise.

