
Lecture 6: Arithmetic Coding

Lecturer: Travis

January 29th, 2015



What I expect you to remember from January for the exam:

• the definition of Entropy

• the statement (not so much the proof) of Shannon’s Noiseless
Coding Theorem

• the statement (and maybe the proof?) of the Kraft Inequality

• Huffman’s Algorithm (not so much the proof of correctness)

• how to make a prefix-free code canonical

• Move-to-Front (not so much the analysis)

• Arithmetic Coding (not so much the analysis)



Arithmetic coding can be viewed as an implementation of Shannon
coding that avoids problems of precision. It’s not instantaneous
like Huffman or Shannon coding (of each character) but it usually
achieves better compression than they do. It was invented by a
Finn, Jorma Rissanen, while he was working at IBM in the ’70s.
IBM patented it, but (most of?) the patents have now expired.



It is not difficult to modify Shannon’s construction to obtain a
so-called alphabet code, i.e., one in which the lexicographic order
of the codewords is the same as that of the characters to which
they are assigned. (This was a suggested exercise in week 1.)

Instead of sorting the probabilities and then considering the partial
sums

0, p1, p1 + p2, . . . , p1 + · · ·+ pn−1 ,

we leave them in the order of the characters and consider the sums

p1

2
, p1 +

p2

2
, . . . , p1 + · · ·+ pn−1 +

pn−2

2
.

Since the ith sum differs from both its predecessor and its
successor by at least pi/2, the first dlg(1/pi )e+ 1 < lg(1/pi ) + 2
bits of its binary representation are sufficient to distinguish it.



Suppose Alice wants to send ABRACADABRA to Bob using
alphabetic Shannon coding. She first sends the characters’
frequencies (5 As, 2 Bs, 1 C, 1D, 2 Rs) and then wants to
compute the total probability of all the possible messages of length
11 from AAAAAAAAAAA to ABRACADABDR — i.e.,
lexicographically less than ABRACADABRA — plus half the
probability of ABRACADABRA.

(Imagine putting 5 As, 2 Bs, 1 C, 1 D and 2 Rs into a hat and
then sampling 11 characters with replacement. A message’s
probability is the chance we sample it. For example, the probability
of ABRACADABRA is
5
11 ·

2
11 ·

2
11 ·

5
11 ·

1
11 ·

5
11 ·

1
11 ·

5
11 ·

2
11 ·

2
11 ·

5
11 = 50000

285311670611 .)



As you can see, even for such a short message, Alice is stuck with
computing a long multinomial expansion involving some pretty big
numbers. How can she do this — or something equivalent — in a
reasonable amount of time on a machine with reasonable precision?

To make this example easy, let’s start by changing the probability
distribution of the characters just a little bit. (This might be
slightly bad in real life, but I want to get an idea across here.)
Let’s say

5/11 ≈ 14/32 = (0.01110)2

2/11 ≈ 6/32 = (0.00110)2

1/11 ≈ 3/32 = (0.00011)2

1/11 ≈ 3/32 = (0.00011)2

2/11 ≈ 6/32 = (0.00110)2.



The sum of all the probabilities of messages with 11 characters
starting with A, is just the probability that the first character is A,
which is 14/32. The sum of all the probabilities of all such
messages starting with A or B is 20/32. The sum of all such
messages starting with A, B or C is 23/32. And so on.

14/32 = (0.01110)2

20/32 = (0.10100)2

23/32 = (0.10111)2

26/32 = (0.11000)2

32/32 = (1.00000)2.



This means the total probability of all the possible messages of
length 11 from AAAAAAAAAAA to ABRACADABDR plus half
the probability of ABRACADABRA is something between 0 and
(0.01110)2. So whatever its binary representation is, it starts with
0. We know the first bit! And we can keep going like this . . .

The total probability of messages lexicographically strictly less than
AB is

0 + 0.01110(0.01110− 0) = 0.00110001

and the total probability of messages strictly less than AC is

0 + 0.10100(0.01110− 0) = 0.0100011 .



0 10.01110 0.10111

A B C D R

0.10100 0.11000

0.011100

AA AB ARAC AD

0.01000110000.0011000100

ABA ABRABC ABDABB

0.01000110000.0011000100

0.0
100

000
010

000
00



The total probability of messages strictly less than ABR is

0.0011000100+0.11000(0.0100011000−0.0011000100) = 0.010000001

and the total probability of messages strictly less than AC is still

0.0011000100 + 1(0.0100011000− 0.0011000100) = 0.0100011 ,

so we know the first 5 bits of the total probability of
AAAAAAAAAAA to ABRACADABDR plus half the probability of
ABRACADABRA, are 01000.

In general, the length of the binary numbers can grow by 5 bits per
character. How do we keep the precision under control?



Notice that the adjustments we make from now on can never
change the first 5 bits — we’ll always stay in the interval
[0.010000001, 0.0100011). So we can map the interval to [0, 1),
dropping the first 5 bits.

In general, as we process characters, the interval shrinks, so the
two numbers at the ends get closer, so their binary representations
agree on more bits, so Alice can send those bits to Bob and forget
about them. (Bob does the same thing at the other end of the
line.)



But what if we have some nasty message where the characters
keep the left end of the interval smaller than 1/2 and the right end
larger than 1/2? Then even if the two numbers get closer, their
binary representations don’t agree on even 1 bit, so we overflow
our registers before Alice can send a single bit.

Well, that can only happen when the left and right ends of the
interval gets closer to 0.1, so the left end starts looking like
0.011111. . . and the right ends starts looking like 0.100000. . . —
and in that case, we can represent long prefixes of those numbers
by just counting the number of 1s after the first 0 and 0s after the
first 1. Cool, eh?

When Alice has processed the last character, she just needs to
send enough bits from the binary representation of the middle of
the interval to distinguish it from the two ends (and, thus, from
the binary representation of anything outside the interval).



When I taught this course a few years ago (and had a whole
semester and all the lectures to myself) I asked the students to
actually implement an arithmetic coder. It’s not so hard, really — I
did it too, as a sanity check, and I’m a pretty awful programmer —
but I may not have explained some details very well: one guy’s
family had gone to visit his in-laws that weekend, so he spent 16
hours trying to get it to work. He was a really good student, too.
:-(

So, anyway, this year it’s optional . . . :-)



So, if Alice is so keen to save bits, why doesn’t she count the
occurrences of each character, send the first character using that
probability distribution, then decrement that character’s frequency
by 1, send the second character using the new distribution (which
is of the remaining suffix of the message), etc?

That is, she could use (5/11, 2/11, 1/11, 1/11, 2/11) to send A,
then (4/10, 2/10, 1/10, 1/10, 2/10) to send B, then
(4/9, 1/9, 1/9, 1/9, 2/9) to send R, . . . When she comes to sending
the last A, she’ll use the distribution (1/1, 0, 0, 0, 0), so she won’t
have to send anything at all!



This is called decrementing arithmetic coding, and it doesn’t really
help much. Notice that decrementing arithmetic coding uses
almost the same distribution to send each character as if we were
using adaptive arithmetic coding — which increments a character’s
frequency after sending it — to send the message reversed. I’ll skip
the actual analysis, though, which involves logs of factorials and
fun stuff like that.

(The same argument sort of explains why adaptive Huffman and
Shannon do well.)



Rissanen used arithmetic coding is his Minimum Description
Length (MDL) principle. This is a formalization of Occam’s Razor:
all other things being equal, a simpler explanation is more likely to
be correct. (This can also be formalized with Kolmogorov
Complexity, which we’ll talk about later in the course if we have
time.)

Suppose we’re given a class of models (i.e., probabilistic sources)
and a way to encode them, and a way to encode a message with
respect to a source. Then we should prefer the model that
minimizes the sum of the lengths of the two encodings.

Arithmetic coding is important in MDL because it reduces the
inefficiencies of coding, so we get a better estimate of the
complexity of the model and of the message with respect to the
model.



From Wikipedia:

A coin is flipped 1,000 times and the numbers of heads and
tails are recorded. Consider two model classes:

• The first is a code that represents outcomes with a 0 for
heads or a 1 for tails. This code represents the hypothesis
that the coin is fair. The code length according to this
code is always exactly 1,000 bits.

• The second consists of all codes that are efficient for a
coin with some specific bias, representing the hypothesis
that the coin is not fair. Say that we observe 510 heads
and 490 tails. Then the code length according to the best
code in the second model class is shorter than 1,000 bits.



For this reason a naive statistical method might
choose the second model as a better explanation for the
data. However, an MDL approach would construct a
single code based on the hypothesis, instead of just using
the best one. To do this, it is simplest to use a two-part
code in which the element of the model class with the
best performance is specified. Then the data is specified
using that code. A lot of bits are needed to specify which
code to use; thus the total codelength based on the
second model class could be larger than 1,000 bits.
Therefore the conclusion when following an MDL
approach is inevitably that there is not enough evidence
to support the hypothesis of the biased coin, even though
the best element of the second model class provides
better fit to the data.


