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Outline	


•  Brief introduction about text compression	


•  Why would we do it? (i.e. motivation)	


•  Three classic dictionary compression algorithms	

–  Lempel-Ziv ’78 (LZ78, LZW)	

–  Lempel-Ziv ’77 (LZ77, RLZ)	

–  Grammar Compression (RePair)	


•  Thursday: no lecture 	

–  (Travis in Warsaw, Simon in London)	


•  Next Tuesday: Travis with more text compression	




Remember how Google works?	


•  Crawl the web, gather a collection of documents	


•  For each word t in the collection, store a list of all documents containing t:	


•  Query: blue mittens	


blue 

blunt 

mittens 

… 

1 2 4 11 31 45 173 

1 2 4 5 6 16 57 132 173 … 

… 

174 

lexicon lists 

… 

… 

mint 2 31 54 101 

1 4 5 11 31 45 174 288 

Inverted Index	




 
 
•  Query: blue mittens 

blue 

mittens 

1 2 4 11 31 45 173 174 

1 4 5 11 31 45 174 288 

Intersect lists	
1 4 11 31 45 174 

Remember how Google works?	




What happens after the result list 
is determined?	




<Some slides on query biased 
snippet generation> 



How does compression help?	


•  Search engines have to store the documents they index	


•  We want to compress web collections in order to...	


•  Reduce space	

–  Web crawls are large and contain lots of redundancy....	


–  ...duplicate documents, reused text, HTML boilerplate...	


•  Compression aids throughput	

–  Faster to transfer compressed data from disk to memory	


	




Elsewhere…	


•  Text compression is, of course, not just happening at 
Google…	


•  Personal file compression: zip, gzip, bzip, p7zip, et c.	


•  Online file repositories: e.g., dropbox.	


•  Storage of genomic data: DNA read sets are shipped 
compressed.	


•  Et c., et c., et c. – it’s everywhere.	




“Text compression”	


•  Keep in mind that the term “text compression” encompasses 
more than just compression of natural language documents…	


•  Suitable for other data with similar sequential structure, such 
as program source code	


•  Text compressors achieve some compression on almost any 
kind of (uncompressed) data	




Dictionary compression…	




Dictionary compression	


•  In dictionary compression variable length substrings are replaced by 
short, possibly even fixed length, codewords	


•  The dictionary D is a collection of strings, often called phrases. For 
completeness, it includes all single symbols.	


•  The text T (over an alphabet of size σ) is parsed into phrases	

	


	
T = T1T2…Tz, Ti in D.	


•  The sequence is called a parsing or factorization of T with respect to 
D	


•  The text is encoded by replacing each phrase Ti with a code than 
acts as a pointer to the dictionary	




Dictionary compression	


•  Here is a simple static dictionary compression scheme for English 
text:	


–  Dictionary consists of some set of English words + individual symbols	


–  Compute frequencies of the words in some corpus of English texts.	


–  Compute frequencies of symbols in the corpus from which the 
dictionary words have been removed	


–  Number the words and symbols in descending order of frequencies	


•  To encode a text, replace each dictionary word and each symbol 
that does not belong to a word with its corresponding number. 
Encode the sequences of numbers using γ coding.	




Lempel-Ziv compression…	




Lempel-Ziv compression	


•  In 1977 and 1978, Abraham Lempel and Jacob Ziv published two 
adaptive dictionary compression algorithms that soon came to 
dominate practical text compression	


•  Many variants have been published and implemented (zip, gzip)	

–  the most widely used algorithms in general purpose compression tools	


•  The common feature of the two algorithms is that the dictionary 
consists of substrings of the already processed part of the text	

–  In this way the dictionary is able to adapt to the text	


•  The two algorithms – called LZ77 and LZ78 – differ primarily in the 
way they represent phrases	

–  LZ77 uses direct pointers to the preceding text	

–  LZ78 uses pointers to a separate dictionary	




LZ78	


•  The dictionary consists of phrases numbered from 0 upwards:	

	
 	
	

	
 	
D = {Z0,Z1,Z2,…}	


•  Initially, the only phrase is the empty string Z0 = ε. Each new phrase 
is inserted to the dictionary and gets the next free number.	


•  Suppose we have computed the parsing T1…Tj-1 for T[0..i) and the 
next phrase Tj starts at position i. Let Zk in D be the longest phrase 
in the dictionary that is a prefix of T[i..n-1).	


•  Then the next phrase is Tj = Zj = T[i..i+|Zk|] = Zkti+|Zk|, and it is 
inserted into the dictionary.	


•  The phrase Tj is encoded as the pair <k,ti+|Zk|>. Using fixed length 
codes, the pair needs ceil(log(j+1)) + ceil(logσ) bits.	




LZ78 (example)	


Let T = b a d a d a d a b a a b	


Phrase # 0 1 2 3 4 5 6 7 

Phrase ε b a d ad ada ba ab 

Encoding <0,b> <0,a> 
 

<0,d> 
 

<2,d> 
 

<4,a> 
 

<1,a> 
 

<2,b> 
 

Code len 0+2 1+2 2+2 2+2 3+2 3+2 3+2 



LZ78 as a trie	


•  One way to think about LZ78 is by the trie it produces	


•  Let T = b a d a d a d a b a a b	

	


0 

1 2 3 

4 

5 

6 7 

b 
a 

d 

d 

a 

a 
b 

ε 

(0,b) 

(0,a) 

(0,d) 

(2,d) 

(4,d) 

(1,a) 

(2,d) 



Lempel-Ziv-Welch (LZW)	


•  Terry Welch came up with a simple but important spin on LZ78 in 
1984…	




Lempel-Ziv-Welch (LZW)	


•  Welch’s algorithm is used in the unix tool compress.	


•  Initially the dictionary D contains all individual symbols:	

	
 	
D = {Z1,…,Zσ}	


•  Suppose the next phrase Tj starts at position i. Let Zk in D be the 
longest phrase in the dictionary that is a prefix of T[i..n). Now the 
next text phrase is Tj = Zk and the phrase added to the dictionary is 
Z = TjT[i+|Tj|].	


•  The phrase Tj is encoded with the index k, requiring 	

	
 	
log(σ+j-1) bits.	


•  Idea: Omitting symbol codes (of LZ78) saves space in practice, even 
though index codes can be longer and phrases shorter	




LZW: encoding 

Let T = b a d a d a d a b a a b 

Phrase b a d ad ada ba a b 

Enc. 2 1 4 6 8 5 1 2 

CodeLen. 2 3 3 3 3 4 4 4 

Dict. a b c d ba ad da ada adab baa ab 

Index 1 2 3 4 5 6 7 8 9 10 11 



LZW: encoding 

•  We call “ada” a self-referential phrase. 

•  The decoder starts with just a dictionary of single symbols 
(like the encoder did). 

   

•  Then is receives the stream of phrase identifiers: 

  2  1  4     6     8     5     1     2 

Dict. a b c d ba ad da ada adab baa ab 

Index 1 2 3 4 5 6 7 8 9 10 11 

b a d ad ad? 
ad a 



LZ77…	




Relative Lempel-Ziv	


•  The Lempel-Ziv factorization (or parsing) breaks a string X of n 
symbols into z factors (or phrases).	


•  If the parsing is up to position i, then next phrase is either	

–  X[i] – if symbol X[i] has not appeared before, or	


–  X[i..j] – the longest substring starting at i and some pi < i in X	




Relative Lempel-Ziv	


•  The Lempel-Ziv factorization (or parsing) breaks a string X of n 
symbols into z factors (or phrases).	


•  If the parsing is up to position i, then next phrase is either	

–  X[i] – if symbol X[i] has not appeared before, or	


–  X[i..j] – the longest substring starting at i and some pi < i in X	


1 2 3 4 5 6 7 8 9 10 11 
a b a a b a b a a b a 
a b a a b a b a a b a 

(1,1)	
 (1,3)	
 (2,5)	
(a,0)	
 (b,0)	




Relative Lempel-Ziv	


•  LZ77’s phrase length grows much faster than LZ78 and LZW	


•  One problem is efficiently finding the previous occurrences:	

–  We have to search through the entire previously processed string at each 

point, not a summary dictionary as in the other schemes	


•  One solution: limit the dictionary to be some fixed size window 
immediately prior to the start of the current phrase (gzip)	

–  generally degrades compression	


•  Another solution: maintain a suitable index data structure over 
the already processed string… or even the whole string (7zip)	




Relative Lempel-Ziv (RLZ)… 



Relative Lempel-Ziv	


•  Very simple spin on LZ77 (kind of a static LZ77)	


•  Let D be a string of d symbols, called the dictionary or reference, 
and let T be the collection we want to compress	


•  Process T left-to-right and parse it into phrases...	


•  If the parsing is up to position i, to generate the next phrase we 
find the largest j such that T[i..j] occurs in D. 	

–  Output position of T[i..j] in D and length (j-i+1)	


–  Continue parsing from position j+1.	




Relative Lempel-Ziv	


•  If the parsing is up to position i, to generate the next phrase we 
find the largest j such that T[i..j] occurs in D. 	

–  Output position of T[i..j] in D and length (j-i+1)	


–  Continue parsing from position j+1.	


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

s h o t a t f i n g e r s 

f i n g e r s  t h e  c a t  s a t  o n  i t s  f i n g e r s	
T =	


D =	


(9,7)	
 (5,1)	




Relative Lempel-Ziv	


•  RLZ results in great compression when the dictionary matches 
the string (or strings) you’re trying to compress, but is tragic 
otherwise	


•  Very fast for decoding large files (like LZ77)	


•  Advantage over LZ77 is that pointers to previous phrase 
occurrences are limited in the amount they can vary: they must 
point into the dictionary.	


•  When compressing massive collections, choose the dictionary so 
that it completely fills the available RAM	




Grammar Compression…	




Grammar compression	


•  Grammar compression represents the text as a context-free 
grammar.	


	
T = a_rose_is_a_rose_is_a_rose	

	


	
 	
S è ABB	

	
 	
A è a_rose	

	
 	
B è _is_A	


	

•  The grammar should generate exactly one string. Such a grammar is 

called a straight-line grammar because:	

–  The are no branches; i.e., each non-terminal is the left-hand side of only one 

rule. Otherwise multiple strings could be generated.	

–  The are no loops; i.e., no cyclic dependencies between non-terminals. 

Otherwise infinite strings could be generated.	




Smallest grammar?	


•  The size of a grammar is the total length of the right-hand sides. 	


•  The smallest grammar problem of computing the smallest straight-line 
grammar that generates a given string is NP hard.	


•  But there are algorithms for constructing small grammars, e.g.:	

–  LZ78 parsing is easily transformed into a grammar with one rule for each phrase	


–  The best approximation ratio O(log(n/g)), where g is the size of the smallest 
grammar, has been achieved by algorithms that transform the LZ77 parsing into a 
grammar	


–  Greedy algorithms add one rule at a time as log as they find a new rule that 
reduces the size of the grammar.	




Re-Pair	


•  Invented by Larrson and Moffat (2001)	


Works as follows…	


1.  Find the pair of symbols XY that is the most frequent in the text T. If 
no pair occurs twice in T, stop.	


2.  Create a new non-terminal Z and add the rule Z è XY to the 
grammar.	


3.  Replace all occurrences of XY in T by Z. Go to step 1.	




Re-Pair (example)	


1.  Find most frequent pair XY. If no pair occurs twice in T, stop.	

2.  Create new non-terminal Z and add rule Z è XY to grammar.	

3.  Replace all occurrences of XY in T by Z. Go to step 1.	


	
T = chchchanges_time_to_make_the_change_chchchanges	

	


	
Rule added 	
 	
Text after replacement	

	
A è ch 	
 	
AAAanges_time_to_make_the_Aange_AAAanges	

	
B è e_ 	
 	
AAAanges_timBto_makBthBAangBAAAanges	

	
C è Aa	
 	
AACnges_timBto_makBthBCngBAACnges	


	
D è ng	
 	
AACDes_timBto_makBthBCDBAACDes	


	
E è CD	
 	
AAEes_timBto_makBthBEBAAEes	


	
F è es 	
 	
AAEF_timBto_makBthBEBAAEF	


	
… 	
 	
…	

	

	




Re-Pair: complexity	


•  The whole process can be performed in linear time using suitable 
data structures.	


•  We won’t go into the detail here, but…	


•  The key observation is that, if nXY is the number of occurrences of 
the most frequent pair XY in a given step, then the replacement 
reduces the size of the grammar by nXY-2.	


•  Thus we can spend O(nXY) time to perform the step (to achieve 
overall linear time).	




Re-Pair: example encoding	


•  We could encode the output of Re-Pair as follows:	


–  The number of rules, r, and the length, z, of the compressed text as γ 
codes.	


–  The right-hand sides of rules using ceil(log(σ+i-1))-bit fixed length codes 
to encode the ith rule.	


–  The compressed text using ceil(log(σ+r))-bit fixed length codes.	


•  Better compression can (probably) be achieved with a more 
sophisticated encoding.	




Compression vs. decompression	


•  A common feature of most dictionary compression algorithms is 
asymmetry of compression and decompression:	

–  The compressor needs to do lots of work choosing phrases or rules	

–  The decompressor needs only to replace each phrase	


•  Thus the decompressor is often simple and fast*	

–  LZ77-type methods are particularly simple and fast as they have no dictionary 

other than the already decoded part of the text	

–  LZ78-type and grammar-based methods need some extra effort in constructing 

and accessing the dictionary	


•  Many implementations use simple encodings of the phrases and are 
optimized more for speed than maximum compression: being 2x 
faster is usually much more important than being 1% smaller.	




Summary	


•  Dictionary-based compression comes in lots of varieties	


•  We will encounter LZ and grammar compression again when 
we look at compressed data structures, where we will 
augment these schemes so that they do more than just 
compression: they will allow us fast access and search in the 
compressed file. 	




Next lecture…	


	
13/01 	
 	
Shannon’s Theorem	

	
15/01 	
 	
Huffman Coding	

	
20/01 	
 	
Integer Codes I	

	
22/01 	
 	
Integer Codes II	

	
27/01 	
 	
Dynamic Prefix Coding	

	
29/01 	
 	
Arithmetic Coding	

	
03/02 	
 	
Dictionary Compression	

	
05/02 	
 	
No Lecture	

	
10/02 	
 	
Burrows-Wheeler Transform	

	
12/02 	
 	
Compressed Data Structures	

	
17/02 	
 	
Compressed Data Structures	

	
19/02 	
 	
Compressed Data Structures	

	
24/02 	
 	
Compressed Data Structures	


	




End	



