University of Helsinki Department of Computer Science

582487 Data Compression Techniques

Lecture 7: Dictionary Compression

Simon J. Puglisi (puglisi@cs.helsinki.fi)

Outline

- Brief introduction about *text compression*
- Why would we do it? (i.e. motivation)
- Three classic dictionary compression algorithms
 - Lempel-Ziv '78 (LZ78, LZW)
 - Lempel-Ziv '77 (LZ77, RLZ)
 - Grammar Compression (RePair)
- Thursday: no lecture
 - (Travis in Warsaw, Simon in London)
- Next Tuesday: Travis with more text compression

Remember how Google works?

- Crawl the web, gather a collection of documents
- For each word t in the collection, store a list of all documents containing t:
- Query: blue mittens

Remember how Google works?

• Query: blue mittens

What happens after the result list is determined?

https://www.etsy.com/market/navy_blue_mittens

Shop outside the big box, with unique items for **navy blue mittens** from thousands of independent designers and vintage collectors on Etsy.

How does compression help?

- Search engines have to store the documents they index
- We want to compress web collections in order to...
- Reduce space
 - Web crawls are large and contain lots of redundancy....
 - ...duplicate documents, reused text, HTML boilerplate...
- <u>Compression aids throughput</u>
 - Faster to transfer compressed data from disk to memory

- Text compression is, of course, not just happening at Google...
- Personal file compression: zip, gzip, bzip, p7zip, et c.
- Online file repositories: e.g., dropbox.
- Storage of genomic data: DNA read sets are shipped compressed.
- Et c., et c., et c. it's everywhere.

"Text compression"

- Keep in mind that the term "text compression" encompasses more than just compression of natural language documents...
- Suitable for other data with similar sequential structure, such as program source code
- Text compressors achieve some compression on almost any kind of (uncompressed) data

Dictionary compression...

Dictionary compression

- In dictionary compression variable length substrings are replaced by short, possibly even fixed length, codewords
- The dictionary D is a collection of strings, often called *phrases*. For completeness, it includes all single symbols.
- The text T (over an alphabet of size σ) is parsed into phrases

 $T = T_1 T_2 \dots T_z, T_i \text{ in } D.$

- The sequence is called a parsing or factorization of T with respect to D
- The text is encoded by replacing each phrase T_i with a code than acts as a pointer to the dictionary

Dictionary compression

- Here is a simple static dictionary compression scheme for English text:
 - Dictionary consists of some set of English words + individual symbols
 - Compute frequencies of the words in some corpus of English texts.
 - Compute frequencies of symbols in the corpus from which the dictionary words have been removed
 - Number the words and symbols in descending order of frequencies
- To encode a text, replace each dictionary word and each symbol that does not belong to a word with its corresponding number. Encode the sequences of numbers using γ coding.

Lempel-Ziv compression...

Lempel-Ziv compression

- In 1977 and 1978, Abraham Lempel and Jacob Ziv published two adaptive dictionary compression algorithms that soon came to dominate practical text compression
- Many variants have been published and implemented (zip, gzip)
 - the most widely used algorithms in general purpose compression tools
- The common feature of the two algorithms is that the dictionary consists of substrings of the already processed part of the text
 - In this way the dictionary is able to adapt to the text
- The two algorithms called LZ77 and LZ78 differ primarily in the way they represent phrases
 - LZ77 uses direct pointers to the preceding text
 - LZ78 uses pointers to a separate dictionary

LZ78

• The dictionary consists of phrases numbered from 0 upwards:

$$D = \{Z_0, Z_1, Z_2, ...\}$$

- Initially, the only phrase is the empty string $Z_0 = \varepsilon$. Each new phrase is inserted to the dictionary and gets the next free number.
- Suppose we have computed the parsing $T_1...T_{j-1}$ for T[0..i) and the next phrase T_j starts at position i. Let Z_k in D be the longest phrase in the dictionary that is a prefix of T[i..n-1).
- Then the next phrase is $T_j = Z_j = T[i..i+|Z_k|] = Z_k t_{i+|Zk|}$, and it is inserted into the dictionary.
- The phrase T_j is encoded as the pair $\langle k, t_{i+|Zk|} \rangle$. Using fixed length codes, the pair needs ceil(log(j+1)) + ceil(log σ) bits.

Phrase #	0	1	2	3	4	5	6	7
Phrase	3	b	а	d	ad	ada	ba	ab
Encoding		<0, <mark>b</mark> >	<0, <mark>a</mark> >	<0, <mark>d</mark> >	<2, <mark>d</mark> >	<4, <mark>a</mark> >	<1, <mark>a</mark> >	<2, <mark>b</mark> >
Code len		0+2	1+2	2+2	2+2	3+2	3+2	3+2

LZ78 as a trie

- One way to think about LZ78 is by the trie it produces
- Let T = b a d a d a d a b a a b

Lempel-Ziv-Welch (LZW)

• Terry Welch came up with a simple but important spin on LZ78 in 1984...

Lempel-Ziv-Welch (LZW)

- Welch's algorithm is used in the unix tool compress.
- Initially the dictionary D contains all individual symbols: $D = \{Z_1, ..., Z_{\sigma}\}$
- Suppose the next phrase T_j starts at position i. Let Z_k in D be the longest phrase in the dictionary that is a prefix of T[i..n). Now the next text phrase is $T_j = Z_k$ and the phrase added to the dictionary is $Z = T_j T[i+|T_j|]$.
- The phrase T_j is encoded with the index k, requiring $\log(\sigma + j 1)$ bits.
- Idea: Omitting symbol codes (of LZ78) saves space in practice, even though index codes can be longer and phrases shorter

LZW: encoding

Let T = b a d a d a d a b a a b

Phrase					b	a	d	ad	ada	ba	a	b
Enc.					2	1	4	6	8	5	1	2
CodeLen.					2	3	3	3	3	4	4	4
Dict.	a	b	С	d	ba	ad	da	ada	adab	baa	ab	
Index	1	2	3	4	5	6	7	8	9	10	11	

LZW: encoding

• The decoder starts with just a dictionary of single symbols (like the encoder did).

Dict.	a	b	С	d	ba	ad	da
Index	1	2	3	4	5	6	7

• Then is receives the stream of phrase identifiers:

2 1 4 6 8 5 1 2 b a d ad ad? ad a ad a

• We call "ada" a *self-referential* phrase.

- The Lempel-Ziv factorization (or parsing) breaks a string X of *n* symbols into *z* factors (or phrases).
- If the parsing is up to position i, then next phrase is either
 - X[i] if symbol X[i] has not appeared before, or
 - X[i..j] the longest substring starting at i and some $p_i < i$ in X

- The Lempel-Ziv factorization (or parsing) breaks a string X of *n* symbols into *z* factors (or phrases).
- If the parsing is up to position i, then next phrase is either
 - X[i] if symbol X[i] has not appeared before, or
 - X[i..j] the longest substring starting at i and some $p_i < i$ in X

- LZ77's phrase length grows much faster than LZ78 and LZW
- One problem is efficiently finding the previous occurrences:
 - We have to search through the entire previously processed string at each point, not a summary dictionary as in the other schemes
- One solution: limit the dictionary to be some fixed size window immediately prior to the start of the current phrase (gzip)
 - generally degrades compression
- Another solution: maintain a suitable index data structure over the already processed string... or even the whole string (7zip)

Relative Lempel-Ziv (RLZ)...

- Very simple spin on LZ77 (kind of a static LZ77)
- Let D be a string of d symbols, called the *dictionary* or *reference*, and let T be the collection we want to compress
- Process T left-to-right and parse it into phrases...
- If the parsing is up to position i, to generate the next phrase we find the largest j such that T[i..j] occurs in D.
 - Output position of T[i..j] in D and length (j-i+1)
 - Continue parsing from position j+1.

- If the parsing is up to position i, to generate the next phrase we find the largest j such that T[i..j] occurs in D.
 - Output position of T[i..j] in D and length (j-i+1)
 - Continue parsing from position j+1.

- RLZ results in great compression when the dictionary matches the string (or strings) you're trying to compress, but is tragic otherwise
- Very fast for decoding large files (like LZ77)
- Advantage over LZ77 is that pointers to previous phrase occurrences are limited in the amount they can vary: they must point into the dictionary.
- When compressing massive collections, choose the dictionary so that it completely fills the available RAM

Grammar Compression...

Grammar compression

• Grammar compression represents the text as a context-free grammar.

 $T = a_rose_is_a_rose_is_a_rose$ $S \rightarrow ABB$ $A \rightarrow a_rose$ $B \rightarrow _is_A$

- The grammar should generate exactly one string. Such a grammar is called a straight-line grammar because:
 - The are no branches; i.e., each non-terminal is the left-hand side of only one rule. Otherwise multiple strings could be generated.
 - The are no loops; i.e., no cyclic dependencies between non-terminals.
 Otherwise infinite strings could be generated.

Smallest grammar?

- The size of a grammar is the total length of the right-hand sides.
- The smallest grammar problem of computing the smallest straight-line grammar that generates a given string is NP hard.
- But there are algorithms for constructing small grammars, e.g.:
 - LZ78 parsing is easily transformed into a grammar with one rule for each phrase
 - The best approximation ratio O(log(n/g)), where g is the size of the smallest grammar, has been achieved by algorithms that transform the LZ77 parsing into a grammar
 - Greedy algorithms add one rule at a time as log as they find a new rule that reduces the size of the grammar.

• Invented by Larrson and Moffat (2001)

Works as follows...

- I. Find the pair of symbols XY that is the most frequent in the text T. If no pair occurs twice in T, stop.
- 2. Create a new non-terminal Z and add the rule $Z \rightarrow XY$ to the grammar.
- 3. Replace all occurrences of XY in T by Z. Go to step 1.

Re-Pair (example)

. . .

- I. Find most frequent pair XY. If no pair occurs twice in T, stop.
- 2. Create new non-terminal Z and add rule $Z \rightarrow XY$ to grammar.
- 3. Replace all occurrences of XY in T by Z. Go to step 1.

. . .

T = chchchanges_time_to_make_the_change_chchchanges

Rule added	Text after replacement
A → ch	AAAanges_time_to_make_the_Aange_AAAanges
B → e_	AAAanges_timBto_makBthBAangBAAAanges
C → Aa	AACnges_timBto_makBthBCngBAACnges
D 🗲 ng	AACDes_timBto_makBthBCDBAACDes
E ➔ CD	AAEes_timBto_makBthBEBAAEes
F → es	AAEF_timBto_makBthBEBAAEF

Re-Pair: complexity

- The whole process can be performed in linear time using suitable data structures.
- We won't go into the detail here, but...
- The key observation is that, if n_{XY} is the number of occurrences of the most frequent pair XY in a given step, then the replacement reduces the size of the grammar by n_{XY} -2.
- Thus we can spend $O(n_{XY})$ time to perform the step (to achieve overall linear time).

Re-Pair: example encoding

- We could encode the output of Re-Pair as follows:
 - The number of rules, r, and the length, z, of the compressed text as γ codes.
 - The right-hand sides of rules using ceil(log(σ +i-I))-bit fixed length codes to encode the ith rule.
 - The compressed text using ceil(log(σ +r))-bit fixed length codes.
- Better compression can (probably) be achieved with a more sophisticated encoding.

Compression vs. decompression

- A common feature of most dictionary compression algorithms is asymmetry of compression and decompression:
 - The compressor needs to do lots of work choosing phrases or rules
 - The decompressor needs only to replace each phrase
- Thus the decompressor is often simple and fast*
 - LZ77-type methods are particularly simple and fast as they have no dictionary other than the already decoded part of the text
 - LZ78-type and grammar-based methods need some extra effort in constructing and accessing the dictionary
- Many implementations use simple encodings of the phrases and are optimized more for speed than maximum compression: being 2x faster is usually much more important than being 1% smaller.

- Dictionary-based compression comes in lots of varieties
- We will encounter LZ and grammar compression again when we look at compressed data structures, where we will augment these schemes so that they do more than just compression: they will allow us fast access and search in the compressed file.

Next lecture...

12/01	Channan's Theorem
13/01	Snannon s Theorem
5/0	Huffman Coding
20/01	Integer Codes I
22/01	Integer Codes II
27/01	Dynamic Prefix Coding
29/01	Arithmetic Coding
03/02	Dictionary Compression
05/02	No Lecture
10/02	Burrows-Wheeler Transform
12/02	Compressed Data Structures
17/02	Compressed Data Structures
19/02	Compressed Data Structures
24/02	Compressed Data Structures

