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Abstract
The all-relevant problem of feature selection is the identification of all strongly and

weakly relevant attributes. This problem is especially hard to solve for time series classifica-
tion and regression in industrial applications such as predictive maintenance or production
line optimization, for which each label or regression target is associated with several time
series and meta-information simultaneously. Here, we are proposing an efficient, scalable
feature extraction algorithm, which filters the available features in an early stage of the ma-
chine learning pipeline with respect to their significance for the classification or regression
task, while controlling the expected percentage of selected but irrelevant features.

The proposed algorithm combines established feature extraction methods with a feature
importance filter. It has a low computational complexity, allows to start on a problem with
only limited domain knowledge available, can be trivially parallelized, is highly scalable
and based on well studied non-parametric hypothesis tests. We benchmark our proposed
algorithm on all binary classification problems of the UCR time series classification archive
as well as time series from a production line optimization project and simulated stochastic
processes with underlying qualitative change of dynamics.

1. Introduction

Promising fields of application for machine learning are the Internet of Things (IoT) [Gubbi
et al., 2013] and Industry 4.0 [Hermann et al., 2016] environments. In these fields, ma-
chine learning models anticipate future device states by combining knowledge about device
attributes with historic sensor time series. They permit the classification of devices (e.g.
hard drives) into risk classes with respect to a specific defect [Mobley, 2002]. Both fields
are driven by the availability of cheap sensors and advancing connectivity between devices,
which increases the need for machine learning on temporally annotated data.

In most cases the volume of the generated time series data forbids their transport to
centralized databases [Gubbi et al., 2013]. Instead, algorithms for an efficient reduction of
the data volume by means of feature extraction and feature selection are needed [Bolón-
Canedo et al., 2015, p. 125–136]. Furthermore, for online applications of machine learning
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it is important to continuously select relevant features in order to deal with concept drifts
caused by qualitative changes of the underlying dynamics [Liu and Setiono, 1998].

Therefore, for industrial and other applications, one needs to combine distributed feature
extraction methods with a scalable feature selection, especially for problems where several
time series and meta-information have to be considered per label/target [Kusiak and Li,
2011]. For time series classification, it proved to be efficient to apply comprehensive feature
extraction algorithms and then filter the respective features [Fulcher and Jones, 2014].

Motivated by industrial applications for machine learning models Christ et al. [2016] we
are extending the approach of Fulcher and Jones and propose FeatuRe Extraction based
on Scalable Hypothesis tests (FRESH). The algorithm characterizes time series with compre-
hensive and well-established feature mappings and considers additional features describing
meta-information. In a second step, each feature vector is individually and independently
evaluated with respect to its significance for predicting the target under investigation. The
result of these tests is a vector of p-values, quantifying the significance of each feature for
predicting the label/target. This vector is evaluated on basis of the Benjamini-Yekutieli
procedure [Benjamini and Yekutieli, 2001] in order to decide which features to keep.

The proposed algorithm is evaluated on all binary classification problems of the UCR
time series classification archive [Chen et al., 2015] as well as time series data from a produc-
tion line optimization project and simulated time series from a stochastic process with un-
derlying qualitative change of dynamics [Liehr, 2013]. The results are benchmarked against
well-established feature selection algorithms like linear discriminant analysis [Fulcher and
Jones, 2014] and the Boruta algorithm [Kursa and Rudnicki, 2011], but also against Dy-
namic Time Warping [Wang et al., 2013]. The analysis shows that the proposed method
outperforms Boruta based feature selection approaches as well as Dynamic Time Warping
based approaches for problems with large feature sets and large time series samples. This
contribution closes with a summary and an outlook on future work.

2. Time series feature extraction

Temporally annotated data come in three different variants [Elmasri and Lee, 1998]: Tem-
porally invariant information (e.g. the manufacturer of a device), temporally variant infor-
mation, which change irregularly (e.g. process states), and temporally variant information
with regularly updated values (e.g. sensor measurements). The latter describe the continu-
ously changing state si,j(t) of a system or device si with respect to a specific measurement
of sensor j, which is repeated in intervals of length ∆t. This sampling captures the state of
the system or device under investigation as a sequence

si,j(t1)→ si,j(t2)→ . . .→ si,j(tν)→ . . .→ si,j(tnt)

with tν+1 = tν + ∆t. Such kind of sequences are called time series and are abbreviated by

si,j = (si,j(t1), si,j(t2), . . . , si,j(tν), . . . , si,j(tnt))
T

= (si,j,1, si,j,2, . . . , si,j,ν , . . . , si,j,nt)
T.

Here, we are considering i = 1, . . . ,m devices with j = 1, . . . , n different time series per
device. Therefore, we are dealing with n · m · nt values describing the ensemble under
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Figure 1: Data processing tiers of the filtered feature extraction algorithm. All but the
Benjamini-Yekutieli procedure can be computed in parallel.

investigation. In order to characterize a time series with respect to its dynamics and reduce
the data volume, a mapping θk : Rnt → R is introduced, which captures a specific aspect k
of the time series. One example for such mapping might be the maximum operator

θmax(si,j) = max{si,j,1, si,j,2, . . . , si,j,ν , . . . , si,j,nt},

which quantifies the maximal value ever recorded for time series si,j . This kind of lower
dimensional representation is called a feature, which is a measurable characteristics of the
considered time series. Other examples for feature mappings θk of time series might be
their mean, the number of peaks with a certain steepness, their periodicity, a global trend,
etc. Comprehensive collections of time series feature mappings are discussed by Fulcher and
Jones [2014] and Nun et al. [2015]. Fulcher and Jones [2014] propose to use more than 9000
features from 1000 different feature generating algorithms.

Now, consider nf different time series feature mappings, which are applied to all m · n
time series recorded from n sensors of m devices (Fig. 1). The resulting feature matrix
X ∈ Rm×nφ has m rows (one for each device) and nφ = n ·nf +ni columns with ni denoting
the number of features generated from device specific meta-information. Each column of X
comprises a vector X ∈ Rm capturing a specific characteristic of all considered devices.
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3. Feature filtering

Typically, time series are noisy and contain redundancies. Therefore, one should keep the
balance between extracting meaningful but probably fragile features and robust but probably
non-significant features. Some features such as the median will not be heavily influenced by
outliers, others such as max will be intrinsically fragile. The choice of the right time series
feature mappings is crucial to capture the right characteristics for the task at hand.

3.1. Relevance of features

A meaningless feature describes a characteristic of the time series that is not useful for the
classification or regression task at hand. Radivojac et al. [2004] considered a binary target
Y , stating that the relevance of feature X is measured as the difference between the class
conditional distributions fX|Y=0 and fX|Y=1. We adopt this definition and consider a feature
X being relevant for the classification of the binary target Y if those distributions are not
equal. In general, a feature X is relevant for predicting target Y if and only if

∃ y1, y2 with fY (y1) > 0, fY (y2) > 0 : fX|Y=y1 6= fX|Y=y2 . (1)

The condition from Equation (1) is equivalent to

X is not relevant for target Y
⇔ ∀y1, y2 with fY (y1) > 0, fY (y2) > 0 : fX|Y=y1 = fX|Y=y2

⇔ ∀y1 with fY (y1) > 0 : fX|Y=y1 = fX ⇔ fX,Y = fX|Y fY = fXfY

⇔ X,Y are statistically independent

(2)

We will use the statistical independence to derive a shorter definition of a relevant feature:

Definition 1 (A relevant feature) A feature Xφ is relevant or meaningful for the pre-
diction of Y if and only if Xφ and Y are not statistically independent.

3.2. Hypothesis tests

For every extracted feature X1, . . . , Xφ, . . . , Xnφ we will deploy a singular statistical test
checking the hypotheses

Hφ
0 = {Xφ is irrelevant for predicting Y }, Hφ

1 = {Xφ is relevant for predicting Y }. (3)

The result of each hypothesis test Hφ
0 is a so-called p-value pφ, which quantifies the prob-

ability that feature Xφ is not relevant for predicting Y . Small p-values indicate features,
which are relevant for predicting the target.

Based on the vector (p1, . . . , pnφ)T of all hypothesis tests, a multiple testing approach
will select the relevant features (Sec. 3.3). We propose to treat every feature uniquely by a
different statistical test, depending on wether the codomains of target and feature are binary
or not. The usage of one general feature test for all constellations is not recommended.
Specialized hypothesis tests yield a higher statistical power due to more assumptions about
the codomains that can be used during the construction of those tests. The proposed
feature significance tests are based on nonparametric hypothesis tests, that do not make
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any assumptions about the distribution of the variables, which ensures robustness of the
procedure.

Exact Fisher test of independence: This feature significance test can be used if both
the target and the inspected feature are binary. Fisher’s exact test [Fisher, 1922] is based
on the contingency table formed by Xφ and Y . It inspects if both variables are statistically
independent, which corresponds to the hypotheses from Eq. (3).

Fisher’s test belongs to the class of exact tests. For such tests, the significance of the
deviation from a null hypothesis (e.g., the p-value) can be calculated exactly, rather than
relying on asymptotic results.

Kolmogorov-Smirnov test (binary feature): This feature significance test assumes
the feature to be binary and the target to be continuous. In general, the Kolmogorov-
Smirnov (KS) test is a non-parametric and stable goodness-of-fit test that checks if two
random variables A and B follow the same distribution [Massey, 1951]:

H0 = {fA = fB}, H1 = {fA 6= fB}.

By conditionally modeling the distribution function of target Y on the two possible values
x1, x2 of the feature Xφ we can use the KS test to check if the distribution of Y differs given
different values of Xφ. Setting A = Y |Xφ = x1 and B = Y |Xφ = x2 results in

Hφ
0 = {fY |Xφ=x1 = fY |Xφ=x2}, H

φ
1 = {fY |Xφ=x1 6= fY |Xφ=x2}. (4)

The hypotheses from Eq. (3) and (4) are equivalent as demonstrated in the chain of
Equations in (2). Hence, the KS test can address the feature relevance of Xφ.

Kolmogorov-Smirnov test (binary target): When the target is binary and the
feature non-binary, we can deploy the Kolmogorov-Smirnov test again. We have to switch
roles of target and feature variable, resulting in the testing of the following hypothesis:

Hφ
0 = {fXφ|Y=y1 = fXφ|Y=y2}, H

φ
1 = {fXφ|Y=y1 6= fXφ|Y=y2}.

This time y1 and y2 are the two possible values of Y and fXφ|Y=yj is the conditional density
function of Xφ given Y . This hypothesis is also equivalent to the one in Eq. (3).

Kendal rank test: This filter can be deployed if neither target nor feature are binary.
Kendall’s rank test [Kendall, 1938] checks if two continuous variables may be regarded as
statistically dependent, hence naturally fitting our hypotheses from Eq. (3). It is a non-
parametric test based on Kendall’s rank statistic τ , measuring the strength of monotonic
association between Xφ and Y . The calculation of the rank statistic is more complex when
ties are involved [Adler, 1957], i.e. feature or target are categorical.

3.3. Feature significance testing

When comparing multiple hypotheses simultaneously, errors in the inference tend to accu-
mulate [Curran-Everett, 2000]. In this context, a wrongly added feature is a feature Xφ for
which the null hypothesis Hφ

0 has been rejected by the respective feature significance test,
even though Hφ

0 is true. If we want to control the percentage of irrelevant added features
we have to control the percentage of wrongly rejected null hypothesis among all hypothesis.
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Figure 2: The Benjamini-Yekutieli procedure for a sample of simulated p-Values of 250
individual feature significance tests. The rejection line aims to control a FDR
level q of 10%.

In multiple testing, this ratio of the expected proportion of erroneous rejections among all
rejections is called false discovery rate (FDR).

The FDR as a measure of the accumulated statistical error was suggested by Benjamini
and Hochberg [1995]. Later the non-parametric Benjamini-Yekutieli procedure was pro-
posed. Based on the p-values it tells which hypotheses to reject while still controlling the
FDR under any dependency structure between those hypotheses [Benjamini and Yekutieli,
2001]. It will be the last component of our filtered feature extraction algorithm.

The procedure searches for the first intersection between the ordered sequence of p-values
p(φ) (dotted blue curves in Fig. 2) with a linear sequence (green lines in Fig. 2)

rφ =
φq

nφ
∑φ

µ=1
1
µ

. (5)

Here, nφ is the number of all null hypotheses and q is the FDR level that the procedure
controls. It will reject all hypotheses belonging to p-values that have a lower value than the
p-value at the intersection, see the left side of Fig. 2(b).

3.4. The proposed feature extraction algorithm

We propose FeatuRe Extraction based on Scalable Hypothesis tests (FRESH) for parameter
q ∈ [0, 1], given by the following three steps:

1. Perform a set of nφ univariate feature mappings as introduced in Sec. 2 on m · n
different time series to create the features Xφ, φ = 1, . . . , nφ.

2. For each generated feature X1, . . . , Xnφ perform exactly one hypothesis test for the
hypothesisHφ

0 from Equation (3). To do so, take the corresponding feature significance
test from Sec. 3.2. Calculate the p-values p1, . . . , pnφ of the tests.
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3. Perform the Benjamini-Yekutieli procedure under correction for dependent hypothe-
ses [Benjamini and Yekutieli, 2001] for a FDR level of q on the collected p-values
p1, . . . , pnφ to decide which null hypothesis Hφ

0 to reject (c.f. Sec. 3.3). Only return
features Xφ for which the respective hypothesis Hφ

0 was rejected by the procedure.

3.5. Variants of FRESH

A problem of many filter feature methods such as the one we utilize in steps 2 and 3 of FRESH
is the redundancy in the feature selection. As long as features are considered associated
with the target, they will all be selected by the filter even though many of them are highly
correlated to each other [Kira and Rendell, 1992]. For example median and mean are highly
correlated in the absence of outliers and therefore we expect FRESH to either select or drop
both median and mean at the same time. To avoid generating a group of highly correlated
features we propose to add another step to FRESH:

∗. Normalize the features and perform a principal performance analysis (PCA). Keep the
principal components with highest eigenvalue describing p percent of the variance.

This step will reduce the number of features and the obtained principal components are
de-correlated, orthogonal variables [Hotelling, 1933].

One could perform step ∗ between steps 1 and 2 of FRESH to get rid of the correlations
between the created variables early. Then the feature significance tests in step 2 of FRESH
will take principal components instead of the original features as input. We will denote
this variant of FRESH as FRESH_PCAb(efore). Also, one could perform step ∗ after the FRESH
algorithm, directly after step 3. This means that the PCA will only process those features,
which are found relevant by the FRESH algorithm instead of processing all features. This
variant of FRESH is called FRESH_PCAa(fter).

4. Evaluation

In the following, the performance of FRESH, its two variants from Sec. 3.5 and other time
series feature extraction methods are compared. The evaluation is done with respect to
both the meaningfulness of the extracted features as well as the time it takes to extract
the features. While doing so, all feature extraction methods operate on the same feature
mappings, the differences lay only in the used feature selection process.

4.1. Setup

FRESH is parameterized with q = 10%, cf. Eq. (5). Its variants, which apply a PCA, are
using p = 95% (Sec. 3.5). Full_X uses all the features, which are created during step 1
of FRESH (Sec. 3.4) without any subsequent filtering. Features contained in Full_X will be
filtered by applying the Boruta feature selection algorithm [Kursa and Rudnicki, 2011], or
by a forward selection with a linear discriminant analysis classifier denoted LDA. Further,
the direct classifier DTW_NN, a nearest neighbor search under the Dynamic Time Warping
distance, is considered [Wang et al., 2006]. Those six different extraction methods and
DTW_NN were each picked for a reason. DTW_NN is reported to reach the highest accuracy rates
among other time series classifiers, LDA was the first proposed algorithm to automatically
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extract features from time series [Fulcher and Jones, 2014] and Boruta is a promising feature
selection algorithm that incorporates interactions between features.

To guarantee reproducibility we use all 31 time series data sets from the UCR time
series archive [Chen et al., 2015] containing a binary classification problem. To compare
the runtime of the different methods, time series of flexible length and sample number
belonging to two classes are generated by simulating the stochastic dynamics of a dissipative
soliton [Liehr, 2013, p. 164]. The last data source originates from the production of steel
billets, extracted during the German research project iPRODICT. The project demonstrates
a typical application of industrial time series analysis, aiming to predict the passing or failing
of product specification testings based on timely annotated data. It contains 26 univariate
meta-variables forming the baseline feature set extended by 20 different sensor time series
having up to 44 data points for each sample. The data set contained 1554 samples of two
classes "broken" and "not broken" each, in total 3108 samples.

Due to limitations regarding the size of this paper, we do not address the regression
performance of FRESH and variants yet. In a future work, we catch up on this.

4.2. Accuracy

For the data sets from the UCR time series repository as well as the iPRODICT data, the
underlying structure and therefore the relevant features are unknown. We cannot compare
the different methods on their ability to extract meaningful features because we do not know
which features are meaningful and which are not. Also, we cannot compare the extracted
features to direct classifiers such as DTW_NN. Therefore, we evaluate the performance of the
feature extraction algorithms by comparing the performance of a classification algorithm on
the extracted features. Hereby, we assume that more meaningful features will result in a
better classification result.

To investigate the feature extraction methods under different conditions and to make
sure that the feature filtering is not tuned to a specific classifier, the classification task is
solved by a collection of a one layer neural network/perceptron (NN), a logistic regression
model (LR), a support vector machine (SVM), a random forest classifier (RFC) and an adaboost
classifier (ABC). The hyperparameters for those methods are not optimized to get an unbiased
view on the meaningfulness of the extracted features, instead the default values from the
Python package scikitlearn version 0.17.1 were used [Pedregosa et al., 2011].

For every data set, all available samples will be used to perform the feature extraction
itself. Then, one third of the samples are randomly picked for a test set, the remaining
two thirds are used to train the classifiers. We define the index set for the classification
algorithms asM := {NN, SVM, RFC, ABC, LR} and for the inspected feature extraction methods
we define A := {FRESH, LDA, FULL_X, FRESH_PCAa, FRESH_PCAb, Boruta}. Then, the accuracy
of a classifier m ∈M on the test part of the data set d for the features generated by method
a ∈ A is denoted as accdm(a).

Further, we calculate the mean of the accuracy of the five classification algorithms, which
is denoted by accd(a) := 1

5

∑
m∈M accdm(a). DTW_NN itself does not perform any feature

extraction and its accuracy is directly calculated by predicting on the test set. It is denoted
by accd(DTW_NN). Now, we are able to denote the average accuracy over all 31 UCR data
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sets with binary classification tasks [Chen et al., 2015] for each method a ∈ A ∪ {DTW_NN}
by accUCR(a) = 1

31

∑
i=1,...31 acc

di(a), cf. columns 3 and 7 of Tab. 1.
From the 3rd column of Tab. 1 we can observe that FRESH_PCAa dominated the feature

based approaches on the UCR data sets but it was not able to beat DTW_NN. On the iPRO-
DICT data, DTW_NN could only operate on one type of time series without the univariate
features. This seems to be the reasons why Boruta and FRESH_PCAa beat the accuracy of
DTW_NN as shown in the 7th column of Tab. 1. Here FRESH_PCAa again achieved the highest
accuracy among all feature based approaches.

Further, we count how often a feature extraction method a∗ ∈ A reaches the highest
accuracy for the 155 classifier/ data set combinations on the 31 UCR data sets among all
six feature extraction methods in A while a draw counts for both methods:

nUCRbest (a∗) :=

∣∣∣∣
{

(m, di)

∣∣∣∣m ∈M, i = 1, . . . , 31 : accdim(a∗) = max{accdim(a) | a ∈ A}
}∣∣∣∣ .

The evaluation metric nUCRbest is reported in the 5th column of Tab. 1. Again FRESH_PCAa
achieved the best result, for over half of the 155 inspected combinations it had the highest
reported accuracy and again Boruta came in second with 74.3 combinations on average. Re-
garding both accuracy metrics, FRESH_PCAa seems to be favorable over the other considered
feature based approaches, with Boruta coming close.

Table 1: Performance metrics for the different feature extraction methods and DTW_NN on
the 31 two-class data sets from the UCR time series archive as well as the data
from the iPRODICT research project. All simulations have been conducted three
times and the values of the performance metrics have been averaged to reduce the
dependency on random elements such as the test and train data split.

Method tUCR accUCR nUCRf nUCRbest tproject · 103 accproject nprojectf

DTW_NN 152.1 ± 0.3 0.926 ± 0.011 – – 0.04 ± 0.016 0.552 ± 0.013 –
Full_X 33.4 ± 0.5 0.752 ± 0.018 161.00 ± 0.00 39.0 ± 3.6 3.30 ± 0.149 0.520 ± 0.003 3246 ± 0
FRESH 33.9 ± 0.5 0.838 ± 0.020 40.35 ± 0.05 61.0 ± 5.0 3.31 ± 0.148 0.546 ± 0.007 309 ± 52
FRESH_PCAa 33.9 ± 0.5 0.877 ± 0.010 8.22 ± 0.00 79.0 ± 3.0 3.31 ± 0.146 0.566 ± 0.017 33 ± 4
FRESH_PCAb 33.5 ± 0.5 0.760 ± 0.010 3.93 ± 0.00 19.0 ± 4.4 4.01 ± 0.276 0.515 ± 0.023 2 ± 1
LDA 37.5 ± 0.6 0.678 ± 0.020 27.23 ± 0.02 13.0 ± 1.7 474 ± 390 0.525 ± 0.010 229 ± 114
Boruta 104.5 ± 0.3 0.841 ± 0.014 63.29 ± 0.28 74.3 ± 6.7 4.64 ± 0.241 0.562 ± 0.006 104 ± 3

4.3. Runtime

The second and sixth column of Tab. 1 contains the average pipeline runtime, which is
the combined runtime of feature extraction, training of a classifier and predicting. For
DTW_NN the pipeline runtime captures just the fitting and predicting steps as no features
are extracted. There are tradeoffs between the number of extracted features and the time
spent on feature extraction which force us to consider the pipeline runtime instead of the
extraction runtime. E.g., time spent in the extraction process can be compensated by a lower
number of extracted features which reduces the time spent for training the final classifier.
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Figure 3: Average pipeline runtime of time series classification concerning the nonlinear
dynamics of a dissipative soliton [Liehr, 2013, p. 164]. The curves of all methods
except DTW_NN lay on top of each other.

Analog to the accuracy evaluation metrics, tdm(a) denotes the pipeline runtime in seconds
of classifier m ∈ M and feature extraction method a ∈ A on data set d. In the same
way, td(a) = 1

5

∑
m∈M tdm(a) denotes the average pipeline runtime in seconds over all 5

classifiers and td(DTW_NN) the runtime of fitting and predicting by DTW_NN. The average
pipeline runtimes over all UCR data sets for each method a ∈ A∪{DTW_NN} are denoted by
tUCR(a) = 1

31

∑
i=1,...31 t

di(a). All calculations are executed on a single computational core
in order to increase comparability.

The full feature matrix Full_X is the fastest extraction algorithm in our comparisons on
both the UCR and the iPRODICT data, as seen in the 2nd and 6th column of Tab. 1. Saved
time for the fitting of the feature selection algorithm compensated for the five classifiers
having to be trained on more features. Accordingly, the PCA step of FRESH_PCAa saves so
much time for the fitting of the classifiers that this step is basically “free”, while FRESH_PCAa
has a mean pipeline runtime of 33.86 seconds. On average, FRESH takes 33.87 seconds. The
same can be observed on the iPRODICT data where Full_X, FRESH and FRESH_PCAa all had
similar pipeline runtimes even though the number of extracted features varied greatly. The
low average pipeline runtime of just tproject = 40.17 seconds for DTW_NN in the 6th column of
Tab. 1 is due to the classification algorithm only considering one type of time series while
the extraction methods operate on 20 different time series.

Apart from the observed runtimes, we are interested in the feature extraction method’s
ability to scale with an increasing number of feature mappings, time series length and device
numbers. As expected, Fig. 3 shows that all considered feature extraction methods – in
contrast to DTW_NN – scale linearly with an increasing length of the time series or increasing
number of samples. This is due to the considered feature mapping having a linear runtime
with respect to the length of the time series. However, Fig. 4 shows that, among the feature
based approaches, only FRESH and FRESH_PCAa scale linear with an increasing number of
features (e.g. due to more devices, feature mappings or types of time series).
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Figure 4: Average feature extraction runtime during ten feature selection runs for 10,000
samples of different amounts of simulated feature mappings (the curves of FRESH
and FRESH_PCAa are overlapping)

4.4. Selected features

The number of features extracted by algorithm a ∈ A on the data set d are denoted
by ndf (a). Again this can be averaged over the UCR data sets resulting in nUCRf (a) =
1
31

∑
i=1,...31 n

di
f (a), cf. rightmost column of Tab. 1.

During our simulations, FRESH_PCAa was able to reduce the number of features drasti-
cally. For the UCR data, it reduces 161 considered feature mappings to an average number
of 8.2 features while on the iPRODICT data it reduces the 3246 calculated features to 33.
FRESH_PCAb only selected four respective two features on average, which may explain its low
accuracies. If one wishes to extract a minimal set of relevant features, we recommend to
deploy FRESH_PCAa, as it extracted the second lowest number of features but achieved the
highest and second highest accuracies.

4.5. Resume

We proposed FRESH as a highly scalable feature extraction algorithm. Our simulations
showed that, in contrast to other considered methods, FRESH is able to scale with the number
of feature mappings and samples as well as with the amount of different types and length
of the time series. While doing so, it is extracting meaningful features as demonstrated by
competitive accuracies.

The relative bad performance of FRESH_PCAb seems to originate in the PCA step selecting
features only based on their ability to explain the variance in the input variables and not
in their significace to predict the target variable. By this, relevant information for the
classification or regression task can get lost.

On the other hand, the combination of FRESH with a subsequent PCA filtering to reduce
the number of redundant and highly correlated features, denoted as FRESH_PCAa was overall
the most competitive feature based method in our evaluation. On the UCR data, it achieved
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the second highest and on the iPRODICT data it reached the highest accuracy. Further, it
had the second lowest number of extracted features.

5. Discussion

5.1. FRESH assists the acquisition of domain knowledge

It is common knowledge that the quality of feature engineering is a crucial success factor for
supervised machine learning in general [Domingos, 2012, p. 82] and for time series analysis in
particular [Timmer et al., 1993]. But comprehensive domain knowledge is needed in order to
perform high quality feature engineering. Contrarily, it is quite common for machine learning
projects that data scientists start with limited domain knowledge and improve their process
understanding while continuously discussing their models with domain experts. This is
basically the reason, why dedicated time series models are very hard to build from scratch.

Our experience with data science projects in the context of IoT and Industry 4.0 appli-
cations Christ et al. [2016] showed that it is very important to identify relevant time series
features in an early stage of the project in order to engineer more specialized features in
discussions with domain experts. The FRESH algorithm supports this approach by applying
a huge variety of established time series feature mappings to different types of time series
and meta-information simultaneously and identifies relevant features in a robust manner.

We observe that features extracted by FRESH contribute to a deeper understanding of
the investigated problem, because each feature is intrinsically related to a distinct property
of the investigated system and its dynamics. This fosters the interpretation of the extracted
features by domain experts and allows for the engineering of more complex, domain spe-
cific features Christ et al. [2016] including dedicated time series models, such that their
predictions in return might become a future feature mapping for FRESH.

5.2. FRESH is operational

We have already mentioned that FRESH has been developed in the course of IoT and Industry
4.0 projects Christ et al. [2016]. Especially for predictive maintenance applications with
limited numbers of samples and high level of noise in e.g. sensor readings, it has been
proven as crucial to filter irrelevant features in order to prevent overfitting. To ensure a
robust and scalable filtering, we consider each feature importance individually. This causes
several implications:

• FRESH is robust in the sense of classical statistics, because the hypothesis tests and the
Benjamini-Yekutieli procedure do not make any assumptions about the probability
distribution or dependence structure between the features. Here, robustness refers to
the insensitivity of the estimator to outliers or violations in underlying assumptions
[John et al., 2013].

• FRESH is not considering the meaningfulness of interactions between features by design.
Hence, in its discussed form it will not find meaningful feature combinations such as
chessboard variables [Guyon and Elisseeff, 2003, Fig. 3a]. However, in our evaluation
process the feature selection algorithm Boruta, which considers feature interactions,
was not able to beat the performance of FRESH. Further, it is possible for FRESH
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to incorporate combinations of features and pre-defined interactions as new features
themselves.

• FRESH is scalable due to the parallelity of the feature calculation and hypothesis tests
(see the two topmost tiers in Fig. 1) and can be trivially parallelized and even dis-
tributed over several computational units. In addition, the feature filter process has
computational costs compared to feature calculation and significance testing. There-
fore, FRESH scales linearly with the number of extracted features, length of the time
series, and number of considered time series.

• A side effect of ensuring robustness and testing features individually is that FRESH
tends to extract highly correlated features, which could result in poor classification
performance. We propose to combine FRESH with a subsequent PCA, which has been
discussed as FRESH_PCAa in Sec. 3.5 and indeed improved the performance significantly.

5.3. Feature selection of FRESH

Nilsson et al. [2007] proposed to divide feature selection into two flavors, the minimal optimal
problem is finding a set consisting of all strongly relevant attributes and a subset of weakly
relevant attributes such that all remaining weakly relevant attributes contain only redundant
information. The all-relevant problem is finding all strongly and weakly relevant attributes.
The first problem is way harder than the second, even asymptotically intractable for strictly
positive distributions [Nilsson et al., 2007]. Accordingly, FRESH solves the second, easier
problem as we extract every relevant feature, even though it might be a duplicate or highly
correlated to another relevant feature [cf. Kursa and Rudnicki, 2011].

Yu and Liu [2003] separated feature selection algorithms into two categories, the wrap-
per model and the filter model. While the selection of wrapper models is based on the
performance of a learning algorithm on the selected set of features, filter models use general
characteristics to derive a decision about which features to keep. Filter models are further
divided into feature weighting algorithms and subset search algorithms, which evaluate the
goodness of features individually or through subsets. According to this definition, the feature
selection part of FRESH is a filter model, more precisely, a feature weighting algorithm.

FRESH contains a feature selection part on basis of hypothesis tests and the Benjamini-
Yekutieli procedure, which of course can be used as a feature selection algorithm itself. But,
due to its systematic incorporation of scalable time series feature mappings and the proposed
decomposition in computing tiers (Fig. 1) it is especially applicable to the needs of mass
time series feature extraction and is considered as a feature extraction algorithm.

By applying a multiple testing algorithm, FRESH avoids the “look-elsewhere effect” [Gross
and Vitells, 2010] which is a statistically significant observation arising by chance due to the
high number of tested hypotheses. This effect triggered a recent discussions about the use
of p-values in scientific publications [Wasserstein and Lazar, 2016].

5.4. Related work

There are both structural and statistical approaches to extract patterns from time series.
Many statistical approaches rely on structures that allow the usage of genetic algorithms.
They express the feature pattern for example as a tree [Mierswa and Morik, 2005, Geurts,
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2001, Eads et al., 2002]. While doing so, they aim for the best pattern and the most
explaining features by alternating and optimizing the used feature mappings. In contrast,
FRESH extracts the best fitting of a fixed set of patterns.

As an example for a structured pattern extraction, in [Olszewski, 2001] the authors
search for six morphology types: constant, straight, exponential, sinusoidal, triangular, and
rectangular phases. Those phases are detected by structure detectors which then output
a new time series whose values stand for the identified structure. Based on this structure
a domain-independent structural pattern recognition system is utilized to substitute the
original time series signal by a known pattern. Due to its fixed patterns, FRESH can be
considered to be a structured pattern extractor.

Of course, there are other promising approaches like the combination of nearest neighbor
search with Dynamic Time Warping [Wang et al., 2006], which is specialized on considering
an ensemble of exactly one dedicated time series type and cannot take meta-information
into account. For binary classifications it scales with O(n2t · mtrain · mtest) [Penserini and
others, 2006] with mtrain and mtest being the number of devices in the train and test set,
respectively. This approach also has the disadvantage that all data have to be transmitted
to a central computing instance.

The extraction algorithm most similar to ours is presented by Fulcher and Jones [2014].
It applies a linear estimator with greedy search and a constant initial model to identify the
most important features, which has been considered in this paper as LDA. The evaluation
has shown, that FRESH outperforms the approach of Fulcher and Jones [2014]. Also, FRESH
provides a more general approach to time series feature extraction, because it is able to
extract features for regression tasks and not only for classification.

Despite the applications for time series classification and regression, the feature selection
approach of FRESH could be included into kernel methods [Cho and Saul, 2009] and therefore
should find broad applicability in the machine learning community.

6. Summary and future work

In this work, FeatuRe Extraction based on ScalableHypothesis tests (FRESH) for time series
classification and regression was introduced. It combines well established feature extraction
methods with a scalable feature selection based on non-parametric hypothesis tests and the
Benjamini-Yekutieli procedure. FRESH is highly parallel and suitable for distributed IoT and
Industry 4.0 applications like predictive maintenance or process line optimization, because
it allows to consider several different time series types per label and additionally takes meta-
information into account. The latter has been demonstrated on basis of a steel billets process
line optimization of project iPRODICT.

Our evaluation for UCR time series classification tasks has shown that FRESH in com-
bination with a subsequent PCA outperforms all other feature extraction algorithms with
respect to scalability and achieved accuracy. On the iPRODICT data set, it was even able
to achieve a higher accuracy than a nearest neighbor search under Dynamic Time Warping.

The parallel nature of FRESH with respect to both feature extraction and filtering makes
it highly applicable in situations where data is fragmented over a widespread infrastructure
and computations cannot be performed on centralized infrastructure. Due to its robustness
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and applicability to machine learning problems in the context of IoT and Industry 4.0, we
are expecting that FRESH will find widespread application.
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