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SUMMARY

We present an efficient implementation of a write-only top-down construction for suffix trees.
Our implementation is based on a new, space-efficient representation of suffix trees that requires only 12
bytes per input character in the worst case, and 8.5 bytes per input character on average for a collection of
files of different type. We show how to efficiently implement the lazy evaluation of suffix trees such that a
subtree is evaluated only when it is traversed for the first time. Our experiments show that for the problem
of searching many exact patterns in a fixed input string, the lazy top-down construction is often faster and
more space efficient than other methods. Copyright c© 2003 John Wiley & Sons, Ltd.

KEY WORDS: string matching; suffix tree; space-efficient implementation; lazy evaluation

INTRODUCTION

Suffix trees are efficiency boosters in string processing. The suffix tree of a text t is an index structure
that can be computed and stored in O(|t|) time and space. Once constructed, it allows any substring w

of t to be located in O(|w|) steps, independent of the size of t . This instant access to substrings is most
convenient in a ‘myriad’ [1] of situations, and in Gusfield’s book [2], about 70 pages are devoted to
applications of suffix trees.

While suffix trees play a prominent role in algorithmics, their practical use has not been as
widespread as one should expect (for example, Skiena [3] has observed that suffix trees are the data
structure with the highest need for better implementations). The following pragmatic considerations
make them appear less attractive:
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• The linear-time constructions by Weiner [4], McCreight [5] and Ukkonen [6] are quite intricate
to implement. (See also [7], which reviews these methods and reveals relationships much closer
than one would think.)

• Although asymptotically optimal, their poor locality of memory reference [8] causes a significant
loss of efficiency on cached processor architectures.

• Although asymptotically linear, suffix trees have a reputation of being greedy for space.
For example, the representation of McCreight [5] requires 28 bytes per input character in the
worst case.

• Due to these facts, for many applications, the construction of a suffix tree does not amortize.
For example, if a text is to be searched only for a very small number of patterns, then it is usually
better to use a fast and simple online method, such as the Boyer–Moore–Horspool algorithm [9],
to search the complete text anew for each pattern.

However, these concerns are alleviated by the following recent developments:

• In [8], Giegerich and Kurtz advocate the use of a write-only, top-down construction, referred
to here as the wotd-algorithm. Although its time efficiency is O(n log n) in the expected case
and even O(n2) in the worst case (for a text of length n), it is competitive in practice, due to its
simplicity and good locality of memory reference.

• In [10], Kurtz developed a space-efficient representation that allows suffix trees to be computed
in linear time in 46% less space than previous methods. As a consequence, suffix trees for large
texts, e.g. complete genomes, have been proved to be manageable; see for example [11].

• The question of amortizing the cost of suffix tree construction is almost eliminated by
incrementally constructing the tree as demanded by its queries. This possibility was already
hinted at in [8], where the wotd-algorithm was called ‘lazytree’ for this reason.

When implementing the wotd-algorithm in a lazy functional programming language, the suffix
tree automatically becomes a lazy data structure, but of course, the general overhead of using a
lazy language is incurred. In the present paper, we explain how a lazy and an eager version of
the wotd-algorithm can efficiently be implemented in an imperative language. Our implementation
technique avoids a constant alphabet factor in the running time‡. It is based on a new space efficient
suffix tree representation, which requires only 12n bytes of space in the worst case. This is an
improvement of 8n bytes over the most space efficient previous representation, as developed in [10].
Other recently published suffix tree representations require 17n bytes [14] and 21n bytes [15].
Theoretical developments in [16,17] describe suffix tree representations that use only n log2 n + O(n)

bits of space. Another one is the compressed suffix tree of [18], which requires only O(n) bits of space.
However, these data structures are confined to text searching and, to the best of our knowledge, no
implementation exists based on these techniques.

There are other space-efficient data structures for string pattern matching. The suffix array of
[12] requires 9n bytes, including the space for construction. The level compressed trie of [19] takes

‡The suffix array construction of [12] and the linear time suffix tree construction of [13] also do not have the alphabet factor
in their running times. For the linear time suffix tree constructions of [4–6] the alphabet factor can be avoided by employing
hashing techniques, see [5]; however, at the cost of using considerably more space, see [10].
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about 12n bytes. The suffix binary search tree of [20] requires 10n bytes. The suffix cactus of [21]
can be implemented in 10n bytes, and the suffix oracle [22] in 8n bytes. Finally, the PT-tree of [23]
requires n log2 n + O(n) bits.

While some of these data structures require less space than suffix trees, we expect that for a moderate
number of pattern searches our lazy construction wotdlazy is more space efficient than these methods.
Moreover, some of these index structures can only be computed efficiently by first constructing the
complete suffix tree.

Experimental results show that our implementation technique leads to programs that are superior
to previous ones in many situations. For example, when searching 0.01n patterns of length between
10 and 20 in a text of length n, the lazy wotd-algorithm (wotdlazy, for short) is on average 43%
faster and almost 50% more space efficient than a linked list implementation of McCreight’s linear
time suffix tree algorithm [5]. It is 38% faster and 65% more space efficient than a hash table
implementation of McCreight’s linear time suffix tree algorithm, ten times faster and 42% more space
efficient than a program based on suffix arrays [12], and 40 times faster than the iterated application of
the Boyer–Moore–Horspool algorithm [9]. The lazy wotd-algorithm makes suffix trees also applicable
in contexts where the expected number of queries to the text is small relative to the length of the text,
with an almost immeasurable overhead compared with its eager variant wotdeager if the complete
tree is built. In addition to its usefulness for searching string patterns, wotdlazy is interesting for other
problems (see the list in [2]), such as exact set matching, the substring problem for a database of
patterns, the DNA contamination problem, common substrings of more than two strings, circular string
linearization, or computation of the q-word distance of two strings.

Documented source code of the programs wotdeager and wotdlazy is available at
http://bibiserv.techfak.uni-bielefeld.de/wotd. A preliminary version of this
paper appeared in [24].

THE WOTD SUFFIX TREE CONSTRUCTION

Terminology

Let � be a finite ordered set of size k, the alphabet. �∗ is the set of all strings over �, and ε is the
empty string. We use �+ to denote the set �∗ \ {ε} of non-empty strings. We assume that t is a string
over � of length n ≥ 1 and that $ ∈ � is a character not occurring in t . For any i ∈ [1, n + 1], let
si = ti . . . tn$ denote the ith non-empty suffix of t$. A �+-tree T is a finite rooted tree with edge
labels from �+. For each a ∈ �, every node α in T has at most one a-edge α

av→ β for some string v

and some node β. An edge leading to a leaf is a leaf edge. Let α be a node in T . We denote α by the
path that leads us there. Formally, α is denoted by w if and only if w is the concatenation of the edge
labels on the path from the root to α. ε is the root. A string s occurs in T if and only if T contains a
node sv, for some string v. The suffix tree for t , denoted by ST(t), is the �+-tree T with the following
properties: (i) each node is either a leaf or a branching node, and (ii) a string w occurs in T if and only
if w is a substring of t$. There is a one-to-one correspondence between the non-empty suffixes of t$
and the leaves of ST(t). We define the leaf set �(α) of a node α as follows. For a leaf sj , �(sj ) = {j }.
For a branching node u, �(u) = {j | u

v→ uv is an edge in ST(t), j ∈ �(uv)}.
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A review of the wotd-algorithm

The wotd-algorithm adheres to the recursive structure of a suffix tree. The idea is that for each
branching node u the subtree below u is determined by the set of all suffixes of t$ that have u as a prefix.
In other words, if we have the set R(u) := {s | us is a suffix of t$} of remaining suffixes available, we
can evaluate the node u. This works as follows: at first R(u) is divided into groups according to the first
character of each suffix. For any character c ∈ �, let group(u, c) := {w ∈ �∗ | cw ∈ R(u)} be the
c-group of R(u). If for some c ∈ �, group(u, c) contains only one string w, then there is a leaf edge
labeled cw outgoing from u. If group(u, c) contains at least two strings, then there is an edge labeled
cv leading to a branching node ucv, where v is the longest common prefix (lcp, for short) of all strings
in group(u, c). The child ucv can then be evaluated from the set R(ucv) = {w | vw ∈ group(u, c)}
of remaining suffixes.

The wotd-algorithm starts by evaluating the root from the set R(root) of all suffixes of t$. All nodes
of ST(t) can be evaluated recursively from the corresponding set of remaining suffixes in a top-down
manner.

For example, consider the input string t = babab. The wotd-algorithm for t works as follows:
At first, the root is evaluated from the set R(root) of all non-empty suffixes of the string t$, see the first
six columns in Figure 1. The algorithm recognizes three groups of suffixes. The a-group, the b-group,
and the $-group. The a-group contains two and the b-group contains three suffixes, hence we obtain
two unevaluated branching nodes, which are reached by an a-edge and by a b-edge. The $-group is
singleton, so we obtain a leaf reached by an edge labeled $. To evaluate the unevaluated branching node
corresponding to the a-group, one first computes the longest common prefix of the remaining suffixes
of that group. This is b in our case. So the a-edge from the root is labeled by ab, and the remaining
suffixes ab$ and $ are divided into groups according to their first character. We obtain two singleton
groups of suffixes, and thus two leaf edges outgoing from ab. These leaf edges are labeled as ab$ and
$. The unevaluated branching node corresponding to the b-group is evaluated recursively in a similar
way, see Figure 1.

Properties of the wotd-algorithm

The distinctive property of the wotd-algorithm is that the construction proceeds top-down. Once a node
has been constructed, it need not be revisited in the construction of other parts of the tree (unlike the
linear-time constructions of [4–6,13]). As the order of subtree construction is otherwise independent,
it may be arranged in a demand-driven fashion, obtaining the lazy implementation detailed in the next
section.

The top-down construction has been mentioned several times in the literature [8,19,25,26], but at first
glance, its worst case running time of O(n2) is disappointing. However, the expected running time is
O(n logk n) (see e.g. [8]), and experiments in [8] suggest that the wotd-algorithm is practically linear
for moderate size strings. This can be explained by the good locality behavior: the wotd-algorithm
has optimal locality on the tree data structure. In principle, no more than a ‘current path’ of the tree
need be in memory. With respect to text access, the wotd-algorithm also behaves very well: for each
subtree, only the corresponding remaining suffixes are accessed. At a certain tree level, the number of
suffixes considered will be smaller than the number of available cache entries. As these suffixes are
read sequentially, practically no further cache misses will occur. This point is reached earlier when
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Figure 1. The write-only top-down construction of ST(babab).

the branching degree of the tree nodes is higher, since the suffixes split up more quickly. Hence, the
locality of the wotd-algorithm improves for larger alphabets.

Aside from the linear constructions already mentioned, there are O(n log n) time suffix tree
constructions (e.g. [26,27]), which are based on Hopcroft’s partitioning technique [28]. While these
constructions are faster in terms of worst-case analysis, the subtrees are not constructed independently.
Hence they do not share the locality of the wotd-algorithm, nor do they allow for a lazy implementation.

IMPLEMENTATION TECHNIQUES

This section describes how the wotd-algorithm can be implemented in an eager language.
The ‘simulation’ of lazy evaluation in an eager language is not a very common approach. Unevaluated
parts of the data structure have to be represented explicitly, and the traversal of the suffix tree becomes
more complicated because it has to be merged with the construction of the tree. We will show, however,
that by a careful consideration of efficiency matters, one can end up with a program that is not only
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more efficient and flexible in special applications, but the performance of which is comparable to the
best existing implementations of index-based exact string matching algorithms in general.

We first describe the data structure that stores the suffix tree, and then we show how to implement
the lazy and eager evaluation, including the additional data structures.

The suffix tree data structure

To implement a suffix tree, we basically have to represent three different items: nodes, edges, and
edge labels. To describe our representation, we define a total order ≺ on the children of a branching
node: let uv and uw be two different nodes in ST(t) that are children of the same branching node u.
Then uv ≺ uw if and only if min �(uv) < min �(uw). Note that leaf sets are never empty and
�(uv) ∩ �(uw) = ∅. Hence ≺ is well defined.

Let us first consider how to represent the edge labels. Since an edge label v is a substring of t$,
it can be represented by a pair of pointers (i, j) into t ′ = t$, such that v = t ′i . . . t ′j (see Figure 2).
In case the edge is a leaf edge, we have j = n + 1, i.e., the right pointer j is redundant. In case the
edge leads to a branching node, it also suffices to store only a left pointer, if we choose it appropriately
(see Figure 3): let u

v→ uv be an edge in ST(t). We define lp(uv) := min �(uv) + |u|, the left pointer
of uv. Now suppose that uv is a branching node and i = lp(uv). Assume furthermore that uvw

is the smallest child of uv w.r.t. the relation ≺. Hence we have min �(uv) = min �(uvw), and thus
lp(uvw) = min �(uvw) + |uv| = min �(uv) + |u| + |v| = lp(uv) + |v|. Now let r = lp(uvw).
Then v = ti . . . ti+|v|−1 = ti . . . tlp(uv)+|v|−1 = ti . . . tlp(uvw)−1 = ti . . . tr−1. In other words, to retrieve
edge labels in constant time, it suffices to store the left pointer for each node (including the leaves).
For each branching node u we additionally need constant time access to the child of uv with the
smallest left pointer. This access is provided by storing a reference firstchild(u) to the first child of u

w.r.t. ≺. The lp- and firstchild-values are stored in a single integer table T . The values for children of the
same node are stored in consecutive positions ordered w.r.t. ≺. Thus, only the edges to the first child
are stored explicitly. The edges to all other children are implicit. They can be retrieved by scanning
consecutive positions in table T .

Any node u is referenced by the index in table T where lp(u) is stored. To decode the suffix tree
representation, we need two extra bits: a leaf bit marks an entry in T corresponding to a leaf, and a
rightmost child bit marks an entry corresponding to a node that does not have a right brother w.r.t. ≺.
Figure 4 shows a table T representing ST(babab).

The evaluation process

The wotd-algorithm is best viewed as a process evaluating the nodes of the suffix tree, starting at the
root and recursively proceeding downwards into the subtrees.

We first describe how an unevaluated node u of ST(t) is stored. For the evaluation of u, we
need access to the set R(u) of remaining suffixes. Therefore we employ a global array suffixes that
contains pointers to suffixes of t$. For each unevaluated node u, there is an interval in suffixes that
stores starting positions of suffixes in R(u), ordered by descending suffix-length from left to right.
R(u) is then represented by the two boundaries left(u) and right(u) of the corresponding interval in
suffixes. The boundaries are stored in the two integers reserved in table T for the branching node u.
To distinguish evaluated and unevaluated nodes, we use a third bit, the unevaluated bit.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:1035–1049
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Figure 2. The final suffix tree ST(babab) from Figure 1 with edge labels as pairs (left pointer, right pointer).
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Figure 3. The definition of lp(uv).

Now we can describe how u is evaluated: the edges outgoing from u are obtained by a simple
counting sort [29], using the first character of each suffix stored in the interval [left(u), right(u)] of
the array suffixes as the key in the counting phase. Each character c with count greater than zero
corresponds to a c-edge outgoing from u. Moreover, the suffixes in the c-group determine the subtree
below that edge. The pointers to the suffixes of the c-group are stored in a subinterval, in descending
order of their length. To obtain the complete label of the c-edge, the lcp of all suffixes in the c-group is
computed. If the c-group contains just one suffix s, then the lcp is s itself. If the c-group contains more
than one suffix, then a simple loop tests for equality of the characters tsuffixes[i]+j for j = 1, 2, . . . and
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Figure 4. A table T representing ST(babab) (see Figure 2). The input string as well as T are indexed starting
with 1. A branching node occupies two table entries, a leaf occupies one table entry. The first value for a branching
node u is lp(u), the second is firstchild(u), indicated also by arrows below the table. The leaf bit and rightmost

(last) child bit are indicated in the first table entry of each node.

for all start positions i of the suffixes in the c-group. As soon as an inequality is detected, the loop stops
and j is the length of the lcp of the c-group.

The children of u are stored in table T , one for each non-empty group. A group with count one
corresponds to a subinterval of width one. It leads to a leaf, say s, for which we store lp(s) in the next
available position of table T . lp(s) is given by the left boundary of the group. A group of size larger than
one leads to an unevaluated branching node, say v, for which we store left(v) and right(v) in the next
two available positions of table T . In this way, all nodes with the same parent u are stored in consecutive
positions. Moreover, since the suffixes of each interval are in descending order of their length, the
children are ordered w.r.t. the relation ≺. The values left(v) and right(v) are easily obtained from the
counts in the counting sort phase, and setting the leaf-bit and the rightmost-child bit is straightforward.
To prepare for the (possible) evaluation of v, the values in the interval [left(v), right(v)] of the array
suffixes are incremented by the length of the corresponding lcp. Finally, after all successor nodes of u

are created, the values of left(u) and right(u) in T are replaced by the integers lp(u) := suffixes[left(u)]
and firstchild(u), and the unevaluated bit for u is deleted.

The nodes of the suffix tree can be evaluated in an arbitrary order respecting the parent/child
relation. Two strategies are relevant in practice: the eager strategy evaluates nodes in a depth-first and
left-to-right traversal, as long as there are unevaluated nodes remaining. The program implementing
this strategy is called wotdeager in the sequel. The lazy strategy evaluates a node only when the
corresponding subtree is traversed for the first time, for example by a procedure searching for patterns
in the suffix tree. The program implementing this strategy is called wotdlazy in the sequel.

Space requirement

The suffix tree representation as described above requires 2q + n integers, where q is the number of
non-root branching nodes. Since q = n−1 in the worst case, this is an improvement of 2n integers over
the best previous representation, as described in [10]. However, one has to be careful when comparing
the 2q + n integers representation above with the results of [10]. The 2q + n integers representation

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:1035–1049



LAZY SUFFIX TREES 1043

is tailored for the wotd-algorithm and requires extra working space of 2.5n integers in the worst case§:
The array suffixes contains n integers, and the counting sort requires a buffer of the width of the interval
that is to be sorted. In the worst case, the width of this interval is n − 1. Moreover, wotdeager needs a
stack of size up to n/2, to hold references to unevaluated nodes.

Careful memory management, however, allows space to be saved in practice. Note that during eager
evaluation, the array suffixes is processed from left to right, i.e., it contains a completely processed
prefix. Simultaneously, the space requirement for the suffix tree grows. By reclaiming the completely
processed prefix of the array suffixes for the table T , the extra working space required by wotdeager is
only little more than one byte per input character, see Table I. For wotdlazy, it is not possible to reclaim
unused space of the array suffixes, since this is processed in an arbitrary order. As a consequence,
wotdlazy needs more working space.

EXPERIMENTAL RESULTS

For our experiments, we collected a set of nine files of different sizes and types. We restricted ourselves
to 7-bit ASCII files, since the suffix tree application we consider (searching for string patterns) is not
common for binary files. Our collection consists of the following files. We used three files from the
Calgary Corpus: bib, book1, book2. The first one contains formal text (bibliographic items), and the
latter two contain English text. We added three files (containing English text) from the Canterbury
Corpus: alice29, lcet10, and plrabn12. Finally, we added three large files¶: E.coli (the complete genome
of the bacteria Escherichia coli), bible (the Bible), and world (the Project Gutenberg Edition of The
World Factbook 1992).

All programs we consider are written in C. We used the gcc compiler, version 2.96, with optimizing
option –O3. The programs were run on a computer with a 1.666 MHz AMD Athlon XP 2000+
processor, 512 MB RAM, under Linux. On this computer each integer and each pointer occupies 4
bytes. As a consequence, we have 30 bits to store left(u) or lp(u) for a branching node or leaf u.
Moreover, we have 31 bits to store right(u) or firstchild(u) for a branching node u. left(u), right(u),
and lp(u) are in the range [0, n]. firstchild(u) is in the range [0, 3n]. Hence 3n ≤ 231 − 1 must be
satisfied, i.e. the maximal length of the input string is 715 827 882.

In a first experiment we ran three different programs constructing suffix trees: wotdeager, mccl,
and mcch. The latter two implement McCreight’s suffix tree construction [5]. mccl computes the
improved linked list representation, and mcch computes the improved hash table representation of
the suffix tree, as described in [10]. Table I shows the running times and the space requirements.
We normalized w.r.t. the length of the files. That is, we show the relative time (in seconds) to process
106 characters (i.e., rtime = (106 · time)/n), and the relative space requirement in bytes per input
character. For wotdeager we show the space requirement for the suffix tree representation (stspace),

§Moreover, the wotd-algorithm does not run in linear worst case time, in contrast to e.g. McCreight’s algorithm [5] which can be
used to construct the 5n integers representations of [10] in constant working space. It is not clear to us whether it is possible to
construct the 2q + n representation of this paper within constant working space, or in linear time. In particular, it is not possible
to construct it with McCreight’s [5] or with Ukkonen’s algorithm [6], see [10].
¶These files, like the two corpora, can be obtained from http://corpus.canterbury.ac.nz.
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Table I. Time and space requirement for different programs constructing suffix trees.

wotdeager mccl mcch

File n k rtime stspace space rtime space rtime space

bib 111 261 81 0.27 8.30 9.17 0.54 9.61 0.81 14.54
book1 768 771 82 0.72 8.01 9.09 1.61 10.00 1.20 14.90
book2 610 856 96 0.64 8.25 9.17 1.18 10.00 1.05 14.53
alice29 152 089 74 0.33 8.25 9.43 0.72 10.01 0.92 14.54
lcet10 426 754 84 0.56 8.25 9.24 1.12 10.00 1.01 14.53
plrabn12 481 861 81 0.62 7.94 8.93 1.39 10.00 1.14 14.91
E.coli 4 638 690 4 1.83 9.14 10.47 1.53 12.80 1.77 17.29
bible 4 047 392 63 1.43 8.43 9.57 1.42 10.00 1.28 14.53
world 2 473 400 94 1.15 8.33 9.34 1.18 9.60 1.04 14.54

Average 0.84 8.32 9.38 1.19 10.22 1.13 14.92

as well as the total space requirement including the working space. mccl and mcch only require constant
extra working space. The last row of Table I shows the averages of the values of the corresponding
columns. In each row, entries in bold face mark the smallest relative time and the smallest relative
space requirement, respectively.

All three programs have similar average running times. wotdeager and mcch show a more stable
running time than mccl. This may be explained by the fact that the running time of wotdeager and
mcch is independent of the alphabet size. For a thorough explanation of the behavior of mccl and mcch
we refer to [10]. wotdeager gives us a runtime advantage on data sets smaller than 106 characters,
while for larger data, the extra logarithmic factor in its asymptotic construction time becomes visible
gradually. mccl, plagued by its extra alphabet factor k, wins the race only for n = 4 × 106 and k = 4.
mcch is best for large data sizes in connection with large alphabets. In any case, wotdeager is more
space efficient than the other programs, using 0.84 and 5.54 bytes per input character less than mccl
and mcch, respectively. Note that the additional working space required for wotdeager is on average
only 1.06 bytes per input character.

As already observed in [10], suffix trees for DNA sequences are larger than for other types of input
strings. This is due to the small alphabet, which leads to a denser suffix tree with more branching nodes.
This effect can be confirmed here for all algorithms, comparing space requirements for inputs E.coli
and bible.

In a second experiment we studied the behavior of different programs searching for many exact
patterns in an input string, a scenario that occurs for example in genome-scale sequencing projects,
see [2] (Section 7.15). For the programs of the previous experiment, and for wotdlazy, we implemented
search functions. wotdeager and mccl require O(km) time to search for a pattern string of length
m. mcch requires O(m) time. Since the pattern search for wotdlazy is merged with the evaluation
of suffix tree nodes, one cannot make a general statement about the running time of the search.
We also considered suffix arrays, using the original program code developed by Manber and Myers [12]
(p. 946). The suffix array program, referred to by mamy, constructs a suffix array in O(n log n)
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Table II. Time and space requirement for searching 0.01n exact patterns.

wotdlazy mamy
wotdeager mccl mcch bmh

File n k rtime stspace space rtime rtime rtime rtime space rtime

bib 111 261 81 0.18 0.93 5.24 0.36 0.54 0.72 4.22 9.00 0.81
book1 768 771 82 0.61 0.90 5.22 0.75 1.70 1.21 6.57 9.00 11.24
book2 610 856 96 0.51 0.91 5.22 0.64 1.26 1.06 6.78 9.00 8.46
alice29 152 089 74 0.20 0.93 5.23 0.33 0.79 0.92 5.26 9.00 1.32
lcet10 426 754 84 0.42 0.88 5.22 0.59 1.17 1.05 6.51 9.00 5.67
plrabn12 481 861 81 0.48 0.88 5.22 0.62 1.47 1.14 7.14 9.00 6.79
E.coli 4 638 690 4 1.80 0.84 5.42 1.86 1.59 1.82 13.07 9.00 131.30
bible 4 047 392 63 1.28 0.81 5.22 1.45 1.53 1.31 10.81 9.00 59.32
world 2 473 400 94 0.95 0.80 5.09 1.17 1.28 1.07 9.38 9.00 32.31

Average 0.71 0.88 5.23 0.86 1.26 1.15 7.75 9.00 28.58

Construction time 0.84 1.19 1.13 7.73
Search time 0.02 0.07 0.02 0.02

time. Searching is performed in O(m + log n) time. The suffix array requires 5n bytes of space.
For the construction, additionally 4n bytes of working space are required. Finally, we also considered
the iterated application of an on-line string searching algorithm, our own implementation of the
Boyer–Moore–Horspool algorithm [9], referred to by bmh. The algorithm takes O(n + m) expected
time per search, and uses O(m) working space.

We generated patterns according to the following strategy: for each input string t of length n we
randomly sampled ρn substrings s1, s2, . . . , sρn of different lengths from t and tested if they occurred
in t or not. The proportionality factor ρ was between 0.0001 and 1. The lengths of the substrings were
evenly distributed over the interval [10, 20]. For i ∈ [1, ρn], the programs were called to search for
pattern pi , where pi = si , if i is even, and pi is the reverse of si , otherwise. The reason for reversing
the pattern string si in half of the cases is to simulate the fact that a pattern search is often unsuccessful.
Table II shows the relative running times for ρ = 0.01. For wotdlazy we show the space requirement
for the suffix tree after all ρn pattern searches have been performed (stspace), and the total space
requirement. For mamy, bmh, and the other three programs the space requirement is independent of ρ.
Thus for the space requirement of wotdeager, mccl, and mcch see Table I. The space requirement of
bmh is marginal, so it is omitted in Table II.

Except for the DNA sequence, wotdlazy is the fastest and most space efficient program for ρ = 0.01.
This is due to the fact that the pattern searches only evaluate a part of the suffix tree. Comparing the
stspace columns of Tables I and II we can estimate that for ρ = 0.01 only about 10% of the suffix
tree is evaluated. Of course, for the other programs, their tree construction time dominates the search
time. We can also deduce that wotdeager performs pattern searches faster than mccl. This can be
explained as follows: searching for patterns means that for each branching node the list of successors
is traversed, to find a particular edge. However, in our new suffix tree representation, the successors
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Figure 5. Average relative running time (in seconds) for different values of ρ ∈ [0, 0.002].

are found in consecutive positions of table T . This means a small number of cache misses, and hence
the good performance. It is remarkable that wotdlazy is more space efficient and ten times faster than
mamy.

Of course, the space advantage of wotdlazy is lost with a larger number of pattern searches.
In particular, for ρ ≥ 0.3 mamy is the most space efficient program (data not shown). Figures 5 and
6 give a general overview, showing how ρ influences the running times. Figure 5 shows the average
relative running time for all programs and different choices of ρ for ρ ≤ 0.002. Figure 6 shows the
average relative running time for all programs except bmh for all values of ρ. We observe that wotdlazy
is the fastest program for ρ ≤ 0.05, and wotdeager is the fastest program for ρ ≥ 0.06. bmh is
faster than wotdlazy only for ρ < 0.0002. Thus the index construction performed by wotdlazy already
amortizes for a very small number of pattern searches.

We also performed pattern searches on two very large biological sequence files sprot39 (release 39 of
the SWISSPROT protein database) and yeast (the complete genome of the baker’s yeast Saccharomyces
cerevisiae). The results are shown in Table III. We left out bmh, which would take extremely long
running times, and we could also not test mcch since this program can only process files of length up
to 8 388 605 characters. Our main observations are:
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Figure 6. Average relative running time (in seconds) for different values of ρ ∈ [0, 1].

Table III. Time and space requirements when searching 0.01n patterns in very large files.

wotdlazy wotdeager mccl mamy

File n k rtime stspace space rtime stspace space rtime space rtime space

sprot39 33 805 297 24 1.58 1.14 5.22 1.60 7.91 8.55 5.66 10.00 51.40 9.00
yeast 12 329 970 5 2.37 0.89 5.62 2.23 9.00 10.55 1.94 12.40 16.44 9.00

• The relative running time for all programs clearly increases.
• With ρ approaching 1, the slower suffix tree construction of wotdeager and wotdlazy is

compensated for by a faster pattern search procedure, so that there is a running time advantage
over mccl (data not shown).

• The execution time for mamy rises sharply on our largest data set. Here, for searching 0.01n

patterns for n = 33×106, the extra logarithmic factor in the search procedure of mamy becomes
visible.
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CONCLUSION

We have developed efficient lazy and eager implementations of the write-only top-down suffix tree
construction. These construct a representation of the suffix tree that requires only 12n bytes of space
in the worst case, plus 10n bytes of working space. The total space requirement in practice, though, is
only 9.38n bytes on average for a collection of files of different types. The time and space overhead of
the lazy implementation is very small. Our experiments show that for searching many exact patterns in
an input string, the lazy algorithm is the most space and time efficient algorithm for a wide range of
input values.

A special construction for repetitive strings

We end this exposition by discussing a special case of both practical relevance and theoretical interest.
DNA, and in particular human DNA, largely consists of repetitive sequences. Estimates of repetitive
contents go up to 50% and more [30] (p. 860). In the context of biosequence analysis, it is unfortunate
that the wotd-algorithm performs most poorly on repetitive strings. The worst case running time
of O(n2) is achieved on strings of form an$. The wotd-algorithm performs similarly on Fibonacci
strings (see e.g. [31], exercise 1.2.8-36), which are known for their highly repetitive structure. This is
particularly unfortunate since Fibonacci strings, with their iterative pattern that grows repetitive strings
via recombination of previously generated strings, may be seen as an idealized model of the effects of
DNA cutting, repair, and recombination.

Let us analyze why the wotd-algorithm performs poorly on repetitive strings. Long repeats often
lead to suffix trees with long interior edges, and significant effort is spent on determining the longest
common prefix of the suffixes contributing to a subtree below such an edge. To be more precise, the
labels of edges leaving the nodes w and aw for a ∈ � and w ∈ �∗ are often identical, or the former
is a prefix of the latter. This is because the suffixes in R(aw) are (apart from the constant prefix a) a
subset of the suffixes in R(w).

This suggests the following improvement of the wotd-algorithm: when evaluating node aw, we can
immediately skip the first m character comparisons if m is the length of the corresponding lcp computed
for w, and only then continue with the normal computation of the lcp. In a more advanced algorithm,
one can apply this idea even recursively, but it is not the aim of this exposition to elaborate on such
details. A prototype implementation of this idea has been tested, and in fact, it seems to outperform all
other suffix tree constructions on Fibonacci strings.

While still being a top-down construction, the algorithm sketched here is no longer write-only,
as it accesses node w when evaluating aw. Hence many of the arguments given in favor of the
wotd-algorithm, in particular locality of memory reference, must be re-evaluated for this variant.

But there are further aspects to this idea, interesting in their own right. The dependence of aw on w

induces a partial ordering on the construction of nodes. In the extreme, the suffix tree is constructed
in order of increasing suffix length, and we have a reverse online construction in perfect analogy to
Weiner’s landmark algorithm of 1973 [4]. This surprising observation may provide new insights into
the relationships between different suffix tree constructions.
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