
Hooking Nirvana
STEALTHY INSTRUMENTATION TECHNIQUES

ALEX IONESCU

@AIONESCU

RECON

2015

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 1

WHO AM I?
Chief Architect at CrowdStrike, a security startup

Previously worked at Apple on iOS Core Platform Team

Co-author of Windows Internals 5th and 6th Editions

Reverse engineering NT since 2000 – main kernel developer of ReactOS

Instructor of worldwide Windows Internals classes

Conference speaking:
◦ Recon 2015-2010, 2006

◦ SyScan 2015-2012

◦ NoSuchCon 2014-2013, Breakpoint 2012

◦ Blackhat 2015, 2013, 2008

For more info, see www.alex-ionescu.com

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 2

http://www.alex-ionescu.com/

WHAT THIS TALK IS ABOUT
Five different technologies in Windows

◦ Time Travel Debugging / iDNA (Nirvana)

◦ Application Verifier (AVRF)

◦ Minimalized Windows (MinWin)

◦ Application Compatibility Engine (ShimEng)

◦ Control Flow Guard (CFG)

Their intended use in the system

How their use can be misappropriated or leveraged for instrumenting
binaries and hooking them early (or late)

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 3

PAST RESEARCH
Some of these techniques have partially been exposed before

For example, the Nirvana hook was discovered by Nick Everdox
◦ http://www.codeproject.com/Articles/543542/Windows-x-system-service-hooks-

and-advanced-debu

◦ But Windows 10 totally changes the interface…

MinWin has some good information from QuarksLab and ARTeam
◦ http://blog.quarkslab.com/runtime-dll-name-resolution-apisetschema-part-i.html

◦ http://www.xchg.info/wiki/index.php?title=ApiMapSet

◦ But they used manually reverse engineered symbols, and Windows 10 changed
them

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 4

http://www.codeproject.com/Articles/543542/Windows-x-system-service-hooks-and-advanced-debu
http://blog.quarkslab.com/runtime-dll-name-resolution-apisetschema-part-i.html
http://www.xchg.info/wiki/index.php?title=ApiMapSet

MORE PAST RESEARCH
CFG has a Whitepaper from TrendMicro, and a presentation from MJ0011

◦ http://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-
windows10.pdf

◦ http://www.powerofcommunity.net/poc2014/mj0011.pdf

◦ But they don’t cover the hooking capabilities

AVRF is a mystery, except to TSS, a Russian Hacker:
◦ http://kitrap08.blogspot.ca/2011/04/application-verifier.html

◦ Not many details

Only one Chinese Forum site talks about the Shim Engine hooks:
◦ http://bbs.pediy.com/showpost.php?p=1199075&postcount=1

◦ Accurate for Windows 8

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 5

http://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
http://www.powerofcommunity.net/poc2014/mj0011.pdf
http://kitrap08.blogspot.ca/2011/04/application-verifier.html
http://bbs.pediy.com/showpost.php?p=1199075&postcount=1

WINDOWS 10 CHANGES
So we’ll specifically take a look at new changes in Windows 10

◦ New data structures and types

◦ New version numbers

◦ New API parameters/exports/techniques

◦ Semantic/functional changes

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 6

OUTLINE
MinWin Hooks

Nirvana Hooks

CFG Hooks

AVRF Hooks

Shim Hooks

QA & Wrap-up

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 7

MinWin

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 8

What is MinWin?
MinWin is an internal Microsoft project to re-architect the many layers
of the Windows Operating System

◦ Goal is to return to the original layering interface that Dave Cutler wanted –
a low-level microkernel, a set of base services, and a subsystem of additional
functionality

First “shipped” in Windows 7
◦ People started noticing strange new DLL

names as well as import tables

◦ Came in as an “API Contract” mechanism
used by user-mode applications

Enhanced in Windows 8
◦ Supported by the kernel and even boot

loader

Made “One Core” possible in Windows 10

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 9

What are API Sets?

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 10

API Set Redirection (Win 7)
One single ApiSetSchema.dll file contains the API Set mappings in a PE
section called .apiset

Windows kernel, at boot, calls PspInitializeApiSetMap
◦ Verifiers that this is a signed driver image (subject to KMCS)

◦ Finds required PE section

◦ Maps file as PspApiSetMap, stores section as PspApiSetOffset and
PspApiSetSize

Each time a process launches, PspMapApiSetView is called
◦ Maps the section using PAGE_READONLY, using the PspApiSetOffset

◦ NOTE: Image is not mapped using SEC_NO_CHANGE nor using MmSecureVirtualMemory

◦ Writes the base address in Peb->ApiSetMap

Loader (Ntdll.dll) parses the API Set during any DLL load operation
◦ LdrpApplyFileNameRedirection

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 11

API Set Redirection (Win 7)
Windows 7 included about 35 redirected DLLs

Format of ApiSetMap was documented in apiset.h (Version 2.0)

typedef struct _API_SET_NAMESPACE_ARRAY_V2 {
ULONG Version;
ULONG Count;
API_SET_NAMESPACE_ENTRY_V2 Array[ANYSIZE_ARRAY];

} API_SET_NAMESPACE_ARRAY_V2, *PAPI_SET_NAMESPACE_ARRAY_V2;

typedef struct _API_SET_NAMESPACE_ENTRY_V2 {
ULONG NameOffset;
ULONG NameLength;
ULONG DataOffset;

} API_SET_NAMESPACE_ENTRY_V2, *PAPI_SET_NAMESPACE_ENTRY_V2;

DLL names include API Set Name (api-ms-win) and Version (LX-X-X)

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 12

API Set Redirection (Win 8)
Windows 8 introduces 365 new redirected DLLs

Includes concept of “Extension” Sets, not just “API” Sets

Extensions are used by API Set libraries based on their presence (using
ApiSetQueryApiSetPresence) and provide functionality that may exist
only on certain operating systems

◦ New loader function: LdrpPreprocessDllName

For example, Kernel Transaction Manager is now an extension in
Windows 8, since Windows Phone 8 does not have it

◦ Base library: Tm.sys -> Extension Set: ext-ms-win-ntos-tm-L1-0-0.dll

Now loaded at boot by Winload.exe inside OslLoadApiSetSchema
◦ Additional API Sets can be loaded, and merged into the final schema

◦ Schema written in LoaderBlock->Extension->ApiSetSchema(Size)

◦ MmMapApiSetView now uses SEC_NO_CHANGE

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 13

API Set Redirection (Win 8)
Data structures changed to V4 (V3 in Windows 8, V4 in Windows 8.1)

typedef struct _API_SET_NAMESPACE_ARRAY {
ULONG Version;
ULONG Size;
ULONG Flags;
ULONG Count;
API_SET_NAMESPACE_ENTRY Array[ANYSIZE_ARRAY];

} API_SET_NAMESPACE_ARRAY, *PAPI_SET_NAMESPACE_ARRAY;

typedef struct _API_SET_NAMESPACE_ENTRY {
ULONG Flags;
ULONG NameOffset;
ULONG NameLength;
ULONG AliasOffset;
ULONG AliasLength;
ULONG DataOffset;

} API_SET_NAMESPACE_ENTRY, *PAPI_SET_NAMESPACE_ENTRY;

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 14

API Set Redirection (Win 10)
Windows 10586 has 641 redirected DLLs (up from 622 in 10240)

Includes all of the support for One Core now
◦ XBOX DLLs

◦ Windows Phone DLLs

◦ Windows IoT DLLs

◦ Windows Server DLLs

◦ Windows Client DLLs

API Structures have changed to V6 Format (breaking change)
◦ Structure is no longer has an array, but rather an offset to the array

◦ Also includes offset to an array of hashes

◦ Then, hash length added to each entry in the array

◦ Aliases replaced by array of names

Will post tool on blog for beer

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 15

Special Kernel Base Handling
When the loader (Ntdll.dll) loads kernel base, it also calls
LdrpSnapKernelBaseExtensions

This parses all of the delay load descriptors for KernelBase.dll

Looks for any which start with ext-

Finds the API Set Hosts for those extensions, and checks if any resolve
to Kernel32.dll

◦ Load them if so, by calling LdrpResolveDelayLoadDescriptor

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 16

Parsing Windows 10 API Set
peb = NtCurrentTeb()->ProcessEnvironmentBlock;

ApiSetMap = peb->Reserved9[0]; // ApiSetMap
nsEntry = (PAPI_SET_NAMESPACE_ENTRY)(ApiSetMap->EntryOffset + (ULONG_PTR)ApiSetMap);

for (i = 0; i < ApiSetMap->Count; i++)
{

nameString.Length = (USHORT)nsEntry->NameLength;
nameString.Buffer = (PWCHAR)((ULONG_PTR)ApiSetMap + nsEntry->NameOffset);

valueEntry = (PAPI_SET_VALUE_ENTRY)((ULONG_PTR)ApiSetMap + nsEntry->ValueOffset);
for (j = 0; j < nsEntry->ValueCount; j++)
{

valueString.Buffer = (PWCHAR)((ULONG_PTR)ApiSetMap + valueEntry->ValueOffset);
valueString.Length = (USHORT)valueEntry->ValueLength;

nameString.Length = (USHORT)valueEntry->NameLength;
nameString.Buffer = (PWCHAR)((ULONG_PTR)ApiSetMap + valueEntry->NameOffset);

valueEntry++;
}

nsEntry++;
}

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 17

Windows 10 API Sets

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 18

Modifying the API Set Map
First, decide which APIs you would like to hook

◦ https://msdn.microsoft.com/en-us/library/windows/desktop/
hh802935(v=vs.85).aspx provides a complete listing of which APIs are in which
API Sets

◦ Even undocumented ones are shown!

Parse the API Set Map and locate the API Set Host that contains the API to
hook

Replace the string associated with the Value Entry with your own custom
DLL

Careful: Value Entry Names are aliased! Changing the *buffer* will redirect
multiple API Set Hosts

Instead, allocate additional memory past the end of the API Set Map, and
change the offset to your new blob

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 19

https://msdn.microsoft.com/en-us/library/windows/desktop/hh802935(v=vs.85).aspx

Gotchas!
API Set Map is mapped as PAGE_READONLY

◦ Windows 8 and higher will not allow VirtualProtect due to SEC_NO_CHANGE

◦ Easier modification: Edit the PEB itself

Steps:
◦ Read existing API Set Map Size

◦ Allocate identical buffer, plus one page

◦ Copy existing API Set Map

◦ Make required changes in the copy, including creating new offsets

◦ Point Peb->ApiSetMap to the copy

Problem #2: All API Set Hosts are assumed to be in %SYSTEMROOT%
◦ Workaround: prefix API Dll Name with “\spool\drivers\color\”

Problem #3: If hook DLL is importing kernel32.dll or advapi32.dll, then
these imports will be subject to redirection too, and cause self-redirect

◦ Workaround: Build custom .lib file that points directly to API Set Host

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 20

MinWin Hooking Demo

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 21

MinWin Bonus
The API Set Schema doesn’t have to be signed by Microsoft

There is a registry key that allows installing custom API Set Schemas

Many parts of the kernel query for “API Set Presence” and optionally
call certain add-on/plug-in functions, if present

The right API Set DLL can allow hooking all system calls, process
creation/deletion, thread creation/destruction, and more

Sexy persistence mechanism

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 22

Double MinWin Bonus
While working on these slides, PowerPoint crashed…

…[MSEC] got the crash dump…

PatchGuard in Windows 10 protects the API Set Map (in kernel-mode)
◦ It’s nice to see Skywing & skape ahead of the bad guys!

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 23

Nirvana Hooks

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 24

What Is Nirvana?

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 25

Nirvana and iDNA/TTT
Using Nirvana, Microsoft has an internal tool called iDNA, which is also
used for Time Travel Tracing (TTT) and TruScan

◦ We keep hearing about these amazing, incredible, Microsoft internal tools in
MSR Papers and other conferences

◦ We will never get to use them

How can Nirvana do its job without angering PatchGuard?

In the Windows 7 SDK, Microsoft (accidentally?) leaked out a key
definition that showed what the magic behind Nirvana: a dynamic
instrumentation callback

◦ Accessible through NtSetInformationProcess with the
ProcessInstrumentationCallback class

◦ Takes a pointer to a function

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 26

Instrumentation Callback (Win 7)
In Windows 7, the instrumentation callback is set with a simple line:

◦ NtSetInformationProcess(NtCurrentProcess(),
ProcessInstrumentationCallback,
&callback,
sizeof(callback));

It only works on x64 Windows

It doesn’t support WoW64 applications

It requires DR7 to be set for most cases (i.e.: an attached debugger)

It doesn’t catch NtContinue and NtRaiseException

Requires TCB privilege, even if setting on self!

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 27

Instrumentation Callback (Win 10)
In Windows 10, the instrumentation callback is registered with a
structure:

◦ typedef struct _PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION
{

ULONG Version;
ULONG Reserved;
PVOID Callback;

} PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION;

◦ Version must be 0 on x64 Windows and 1 on x86 Windows

◦ Reserved must be 0

Yep, it now works on x86 Windows
◦ It also supports WoW64 applications

No longer requires DR7 to be set

Now catches NtContinue, but on x86 only

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 28

Instrumentation Callback (Win 10)
In order to support x86, a few other changes were made too

Due to stack usage issues on x86, the following fields are added to the
TEB:

◦ +0x2d0 InstrumentationCallbackSp : Uint8B

◦ +0x2d8 InstrumentationCallbackPreviousPc : Uint8B

◦ +0x2e0 InstrumentationCallbackPreviousSp : Uint8B

To avoid recursion, can temporarily use
◦ +0x2ec InstrumentationCallbackDisabled : Uchar

On x64, you don’t need these fields, instead
◦ RSP is kept in its original form, because RCX/RDX/R8/R9 can be used to pass

arguments, and there aren’t 16-bit/VM8086 idiosyncrasies

◦ R10 contains the Previous RIP (R10 and R11 are volatile and used for
SYSCALL/SYSRET in the Windows x64 ABI)

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 29

Writing a Callback
title "Instrumentation Hook"

include ksamd64.inc

subttl "Function to receive Instrumentation Callbacks"

EXTERN InstrumentationCHook:PROC

NESTED_ENTRY InstrumentationHook, TEXT

mov r11, rax ; Note that this is a total hack

GENERATE_EXCEPTION_FRAME Rbp ; This will crash

mov rdx, r11 ; These comments are for the copy pastas out there

mov rcx, r10 ; PLA please ship this code as-is

call InstrumentationCHook ; Oh no, what will you call here?

RESTORE_EXCEPTION_STATE Rbp ; More crashes here

mov rax, r11

jmp r10

NESTED_END InstrumentationHook, TEXT

end

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 30

Nirvana Hook Demo

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 31

CFG Hooks

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 32

What is CFG?

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 33

Indirect Jump Integrity
When a binary is compiled with CFG, any indirect call now looks like this

At compile time, the guard check function points to:

Which in turn, is just a “ret”

So what changes this to a useful function?

The key lies in the loader…

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 34

Image Load Config Directory
Special data structure provided by the linker (with support from the
compiler) which was originally used for compatibility/debugging flags

Became relevant again when security mitigations were added:
◦ Contains the security cookie

◦ Contains the array of trusted SEH dispatch routines

When CFG was introduced, the following new fields were added to
IMAGE_LOAD_CONFIG_DIRECTORY:

◦ ULONGLONG GuardCFCheckFunctionPointer;

◦ ULONGLONG GuardCFFunctionTable;

◦ ULONGLONG GuardCFFunctionCount;

◦ DWORD GuardFlags;

Bonus: check out GuardCFDispatchFunctionPointer and CodeIntegrity
fields in Win 10

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 35

Guard CF Checking Function
Based on the pointer that’s stored in GuardCFCheckFunctionPointer, the
loader will overwrite this data during load time using
LdrpCfgProcessLoadConfig

The protection is changed to PAGE_READWRITE, the pointer is
overridden and then the protection is restored back

The pointer is overridden with LdrpValidateUserCallTarget

This only happens if the image is linked with CFG
(IMAGE_DLLCHARACTERISTICS_GUARD_CF)

And only if the IMAGE_GUARD_CF_INSTRUMENTED flag is set in
GuardFlags

On failure, RtlpHandleInvalidUserCallTarget is used to determine what
to do (suppressed address validation)

◦ Results in exception or inhibition of the error

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 36

Writing a Guard CF Function
title “CFG Hook"

include ksamd64.inc

subttl "Function to receive CFG Callbacks"

EXTERN CfgCHook:PROC

NESTED_ENTRY CfgHook, TEXT

GENERATE_EXCEPTION_FRAME Rbp ; More crashes

call CfgCHook ; Oh no, what will you call here?

RESTORE_EXCEPTION_STATE Rbp ; None of this works!

ret

NESTED_END CfgHook, TEXT

end

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 37

CFG Hooking Demo

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 38

CFG Bonus
CFG in Windows 10 covers a lot more that no one has yet talked about

Nirvana Hooks are protected by CFG to avoid using them as a bypass

MmCheckForSafeExecution protects the ATL Thunk emulation to avoid
using it as a CFG bypass

RtlGuardIsValidStackPointer is used with “Check Stack Extents” mode
◦ For example, when using NtContinue or SetThreadContext, stack addresses

are validated

(Rtl)SetProtectedPolicy/(Rtl)QueryProtectedPolicy are new user-mode
APIs to associated protected data with GUIDs

◦ Data is stored in a protected “Mrdata” heap

◦ Only active if CFG is enforced

◦ .mrdata section contains key CFG variables and function pointers

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 39

AVRF Hooks

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 40

What is Application Verifier

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 41

Application Verifier Engine
The Application Verifier engine itself (Verifier.dll) receives a number of
interesting pointers to the loader’s internals

Loaded by AvrfMiniLoadDll and receives a pointer to a
RTL_VERIFIER_HELPER_TABLE structure

The engine will then interact with Application Verifier Providers that are
built on top of it

The Verifier returns back an RTL_VERIFIER_HEAP_TABLE
◦ This allows verifier to hook all Heap APIs, as well as to provide a Query/Set

callback

◦ This is used primarily when enabling the “page heap”

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 42

Enabling Application Verifier
The App Verifier activates itself when it sees
FLG_APPLICATION_VERIFIER or FLG_HEAP_PAGE_ALLOCS present in the
Global Flags

◦ Global Flags are the Image File Execution Options (IFEO) that can be set for a
given image name

◦ HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options

◦ Set GlobalFlag to “0x100”
◦ As a REG_SZ!

You can customize which Providers to load with the “VerifierDlls”
REG_SZ value

◦ Abused by “Trust Fighter” malware as well as EA Anti-Cheating tools

“VerifierFlags” is REG_DWORD value to customize AVRF Settings

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 43

Application Verifier Providers
Providers are loaded by the Application Verifier Engine based on either
the contents of the “VerifierDlls” key in per-image IFEO key, or by the
{ApplicationVerifierGlobalSettings} option in the root IFEO key

If a provider is called “vrfcore.dll” and exports a function called
“AVrfAPILookupCallback”, then all GetProcAddress
(LdrGetProcedureAddress) function calls will first be directed to it

Callback includes the address of the caller of GetProcAddress, and the
ability to redirect the answer to another routine

Other than that, verifier providers can hook any exported function of
any DLL they please, by filling out special structures during their
entrypoint

You can set AVrfpDebug (from the “VerifierDebug” IFEO value) to see
the internals…

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 44

Writing a Verifier Provider
This time, we have to write an actual DLL

Those of you that do Win32 programming are certainly aware of
DllMain and its four “reasons”

◦ DLL_PROCESS_ATTACH

◦ DLL_PROCESS_DETACH

◦ DLL_THREAD_ATTACH

◦ DLL_THREAD_DETACH

But did you know there’s a fourth?
◦ DLL_PROCESS_VERIFIER

This special reason comes with a pointer to a
RTL_VERIFIER_PROFIDER_DESCRIPTION structure

The structure provides input data to the verifier provider, as well as
allows it to register a number of thunks for each exported API from one
of the DLLs

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 45

Verifier Provider Structures
typedef struct _RTL_VERIFIER_PROVIDER_DESCRIPTOR {

DWORD Length;
PRTL_VERIFIER_DLL_DESCRIPTOR ProviderDlls;
RTL_VERIFIER_DLL_LOAD_CALLBACK ProviderDllLoadCallback;
RTL_VERIFIER_DLL_UNLOAD_CALLBACK ProviderDllUnloadCallback;
PWSTR VerifierImage;
DWORD VerifierFlags;
DWORD VerifierDebug;
PVOID RtlpGetStackTraceAddress;
PVOID RtlpDebugPageHeapCreate;
PVOID RtlpDebugPageHeapDestroy;
RTL_VERIFIER_NTDLLHEAPFREE_CALLBACK ProviderNtdllHeapFreeCallback;

} RTL_VERIFIER_PROVIDER_DESCRIPTOR;
typedef struct _RTL_VERIFIER_THUNK_DESCRIPTOR {

PCHAR ThunkName;
PVOID ThunkOldAddress;
PVOID ThunkNewAddress;

} RTL_VERIFIER_THUNK_DESCRIPTOR;
typedef struct _RTL_VERIFIER_DLL_DESCRIPTOR {

PWCHAR DllName;
DWORD DllFlags;
PVOID DllAddress;
PRTL_VERIFIER_THUNK_DESCRIPTOR DllThunks;

} RTL_VERIFIER_DLL_DESCRIPTOR;

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 46

Hooking APIs with Avrf
static RTL_VERIFIER_THUNK_DESCRIPTOR g_Thunks[] =

{{"CloseHandle", NULL, (PVOID)(ULONG_PTR)CloseHandleHook}, ...};

static RTL_VERIFIER_DLL_DESCRIPTOR g_HookedDlls[] =
{{L"kernel32.dll", 0, NULL, g_Thunks}, ... };

static RTL_VERIFIER_PROVIDER_DESCRIPTOR avrfDescriptor =
{sizeof(RTL_VERIFIER_PROVIDER_DESCRIPTOR), g_HookedDlls};

BOOL
CloseHandleHook (_In_ HANDLE hObject)
{

BOOL fRetVal =
((PCLOSE_HANDLE)aThunks[0].ThunkOldAddress))(hObject);

DbgPrintEx(77, 0,
"[CloseHandle] Handle: 0x%p = %s\n",
hObject, fRetVal ? "Success" : "Failure");

return fRetVal;
}

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 47

Verifier Provider Demo

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 48

Application Verifier Bonus
Because the IFEO key is stored in the “SOFTWARE” hive, only an
Administrator user can turn on Verifier and allow these hooks to be
applied

Except it turns out that there’s an override in the KUSER_SHARED_DATA
◦ +0x3a0 ImageFileExecutionOptions : Uint4B

This override can be set early at boot by the kernel, based on the
following registry modification

◦ HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\ImageExecutionOptions = 1 (REG_DWORD)

Documented here (“VerifierIsPerUserSettingsEnabled”)
◦ https://msdn.microsoft.com/en-us/library/bb432502(v=vs.85).aspx

If this is set to true on your machine, you are vulnerable to hijacks!

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 49

https://msdn.microsoft.com/en-us/library/bb432502(v=vs.85).aspx

Shim Hooks

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 50

What is the Shim Engine

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 51

Shim Engine
Loaded by LdrpInitShimEngine – receives a pointer to the name of the
DLL that implements the Shim Engine

◦ Pointer comes from PEB->pShimData

LdrpGetShimEngineInterface is then called to retrieve the main pointers

Then, the DLL entrypoint is called

LdrpLoadShimEngine is later used to load all the Shim Engine Plugins
◦ SE_ShimDllLoaded is called for each plugin

◦ Then SE_InstallBeforeInit once plugins are all loaded

◦ Then, SE_DllLoaded for each already-loaded DLL

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 52

Enabling the Shim Engine
The Shim Engine activates itself when it sees that the PEB’s pShimData
contains a valid pointer

This pointer is actually a Unicode string to the DLL that implements the
engine itself

Normally filled out by the creating process after doing a lookup in the
Application Compatibility Database

But can be filled out “unofficially” by someone creating the process
suspended – and then modifying the PEB

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 53

Writing a Shim Engine
As of Windows 8.1, you no longer need to implement all Shim Engine
APIs – there is an initial restricted set, and a full set

SE_InitializeEngine

SE_InstallBeforeInit

SE_InstallAfterInit

SE_ShimDllLoaded

SE_DllLoaded

SE_DllUnloaded

SE_LdrEntryRemoved

SE_ProcessDying

SE_LdrResolveDllName

SE_GetProcAddressLoad / SE_GetProcAddressForCaller

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 54

Dynamic Shim Installation
Shims can also be dynamically installed with LdrInitShimEngineDynamic

In Windows 7, provide the DLL Base address of your Shim-Engine
compatible DLL

In Windows 8 and higher, also provide a UNICODE_STRING with a list of
Shim DLLs to load as the second parameter

◦ Separate with NULL, and set MaximumLength to have the full length

Can call multiple times to add new shim plugin DLLs to load, but only
one engine can be loaded

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 55

Conclusion
Windows has a variety of DLL hijacking/loading functionality built-in

Most of it is accessible through various undocumented flags, structures
and mechanisms

It is slowly being secured, in some cases, but other mechanisms are still
wide open for attack

These mechanisms not only allow for hijacking, but also persistence,
and in some cases emulation defeats (such as the instrumentation
callback)

People need to take a deeper look at CFG – not everything has yet been
revealed

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 56

QUESTIONS?
SEE YOU AT BLACKHAT

1/26/2016 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 57

