
Experiences Porting Real Time Signal Processing
Pipeline CUDA Kernels to Kepler and Windows 8
Ismayil Güracar

Senior Key Expert

Siemens Medical Solutions USA, Inc

Ultrasound Business Unit

Page 1 | © 2014 Siemens. All Rights Reserved.

GTC2014: S4148 Wednesday 10:00 am

NVIDIA GPU Technology Conference

March 26, 2014

San José, California

Restricted © Siemens AG 2013 All rights reserved.
Page 2

Page 2 | © 2014 Siemens. All Rights Reserved.

Diagnostic Ultrasound Imaging Equipment

A machine for the

acquisition of

imaging information

to affect diagnosis

and treatment

Restricted © Siemens AG 2013 All rights reserved.
Page 3

Page 3 | © 2014 Siemens. All Rights Reserved.

ACUSON SC2000™ Ultrasound System

Signal Processing Timeline

Restricted © Siemens AG 2013 All rights reserved.
Page 4

Page 4 | © 2014 Siemens. All Rights Reserved.

ACUSON SC2000 Instrument Programming

and Hardware Environment

Ultrasound Platform SC2000 1.0 developed in 2008

using WinXP, CUDA 2.3 and originally GeForce 9800GT

and a few years later replaced with Fermi Quadro 2000

This talk will be on the migration to Windows 8, CUDA

5.5 and Quadro Kepler K2000

Restricted © Siemens AG 2013 All rights reserved.
Page 5

Page 5 | © 2014 Siemens. All Rights Reserved.

Application #1 2D Speckle Reduction

without with

2D cross-sectional image of the heart: left ventricle and mitral valve

Restricted © Siemens AG 2013 All rights reserved.
Page 6

Page 6 | © 2014 Siemens. All Rights Reserved.

Application #2 2D Spatial Compounding

without with

Image of my thyroid gland and cross section of internal carotid artery

Restricted © Siemens AG 2013 All rights reserved.
Page 7

Page 7 | © 2014 Siemens. All Rights Reserved.

Application #3 3D Speckle Reduction

without with

3D image of the heart, with accompanying 2D orthogonal slices

Restricted © Siemens AG 2013 All rights reserved.
Page 8

Page 8 | © 2014 Siemens. All Rights Reserved.

A First Look at Performance

WinXP

Fermi Quadro 2000

 Win8

 Kepler K2000

Application #1

2D Speckle Reduction 100% 62%

Application #2

2D Spatial Compound 100% 89%

Application #3

3D Speckle Reduction 100% 57%

 Relative processing rate (selected imaging conditions)

Just plug in a Kepler K2000 and boot with Win8

Restricted © Siemens AG 2013 All rights reserved.
Page 9

Page 9 | © 2014 Siemens. All Rights Reserved.

A Search For Causes and Solutions

• Kernel launch overhead

 - Windows Display Driver Model new for Win7/8

• Kernel execution speed limiting factors

 - execution latency and throughput

 - memory bandwidth

Restricted © Siemens AG 2013 All rights reserved.
Page 10

Page 10 | © 2014 Siemens. All Rights Reserved.

The Transition from Windows XP

and the WDDM in Windows 7/8

WDDM: Windows Display Driver Model

 - A layer between the CPU and GPU

 - GPU Command queue managed by operating system

 - CPU-GPU synchronization overhead

Restricted © Siemens AG 2013 All rights reserved.
Page 11

Page 11 | © 2014 Siemens. All Rights Reserved.

Processing Pipeline Example

cudaMemcpy(d_ptr1, inputPtr, dataSize, cudaMemcpyHostToDevice);

kernel_1<<<gridSz, blockSz>>>(d_ptr1,d_ptr2,arg1,arg2);

kernel_2<<<gridSz, blockSz>>>(d_ptr2,d_ptr3,arg1,arg2);

kernel_3<<<gridSz, blockSz>>>(d_ptr3,d_ptr4,arg1,arg2);

cudaMemcpy(h_outputPtr, d_ptr4, dataSize, cudaMemcpyDeviceToHost);

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 12 | © 2014 Siemens. All Rights Reserved.

Processing Pipeline Example: Synchronization for Error Localization

cudaMemcpy(d_ptr1, inputPtr, dataSize, cudaMemcpyHostToDevice);

if (cudaGetLastError()) {handleError(“upload to GPU error”);}

kernel_1<<<gridSz, blockSz>>>(d_ptr1,d_ptr2,arg1,arg2);

cudaDeviceSynchronize();

if (cudaGetLastError()) {handleError(“kernel_1 error”);}

kernel_2<<<gridSz, blockSz>>>(d_ptr2,d_ptr3,arg1,arg2);

cudaDeviceSynchronize();

if (cudaGetLastError()) {handleError(“kernel_2 error”);}

kernel_3<<<gridSz, blockSz>>>(d_ptr3,d_ptr4,arg1,arg2);

cudaDeviceSynchronize();

if (cudaGetLastError()) {handleError(“kernel_3 error”);}

cudaMemcpy(h_outputPtr, d_ptr4, dataSize, cudaMemcpyDeviceToHost);

if (cudaGetLastError()) {handleError(“download from GPU error”);}

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 13 | © 2014 Siemens. All Rights Reserved.

Location of Windows 8 Kernel “Thunks” In a Processing Pipeline

cudaMemcpy(d_ptr1, inputPtr, dataSize, cudaMemcpyHostToDevice);

if (cudaGetLastError()) {handleError(“upload to GPU error”);}

kernel_1<<<gridSz, blockSz>>>(d_ptr1,d_ptr2,arg1,arg2);

cudaDeviceSynchronize();

if (cudaGetLastError()) {handleError(“kernel_1 error”);}

kernel_2<<<gridSz, blockSz>>>(d_ptr2,d_ptr3,arg1,arg2);

cudaDeviceSynchronize();

if (cudaGetLastError()) {handleError(“kernel_2 error”);}

kernel_3<<<gridSz, blockSz>>>(d_ptr3,d_ptr4,arg1,arg2);

cudaDeviceSynchronize();

if (cudaGetLastError()) {handleError(“kernel_3 error”);}

cudaMemcpy(h_outputPtr, d_ptr4, dataSize, cudaMemcpyDeviceToHost);

if (cudaGetLastError()) {handleError(“download from GPU error”);}

“kernel thunks”

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 14 | © 2014 Siemens. All Rights Reserved.

Experiment:

The High Cost of “Thunking”

for (iter=0; iter<1000; iter++)

{

 kernel_1<<<gridSz,blockSz>>>(d_ptr1,…

 cudaDeviceSynchronize();

}

for (iter=0; iter<1000; iter++)

{

 kernel_1<<<gridSz,blockSz>>>(d_ptr1,…

}

cudaDeviceSynchronize();

Sync after each kernel launch

Sync only once, after 1000 kernel launches

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 15 | © 2014 Siemens. All Rights Reserved.

Experiment:

The High Cost of “Thunking”

Measurement result by timing each fragment:

With a kernel taking about 600 microseconds to execute

the synchronization “thunk” added about 130 microseconds

Test Platform:

Win7 HP Z620 PC

K2000 graphics card

NVIDIA video Driver 331.65

Your results may differ – try it!

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 16 | © 2014 Siemens. All Rights Reserved.

Remove Synchronization and

Error Check Between Each Kernel Launch

cudaMemcpyAsync(d_ptr1, inputPtr, dataSize, cudaMemcpyHostToDevice, streamId);

kernel_1<<< gridSz, blockSz, 0, streamId >>>(d_ptr1,d_ptr2,arg1,arg2);

kernel_2<<< gridSz, blockSz, 0, streamId >>>(d_ptr2,d_ptr3,arg1,arg2);

kernel_3<<< gridSz, blockSz, 0, streamId >>>(d_ptr3,d_ptr4,arg1,arg2);

cudaMemcpyAsync(h_outputPtr, d_ptr4, dataSize, cudaMemcpyDeviceToHost, streamId);

cudaDeviceSynchronize();

if (cudaGetLastError()) {handleError(“Error somewhere in pipeline—good luck”);}

Single “kernel thunk”

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 17 | © 2014 Siemens. All Rights Reserved.

Why would I want to localize

errors to a kernel?

• Development testing: quickly get to the root of a problem

• Deployment: field failure tracking and statistics

– MTBF important in medical imaging instruments, particularly when

used for interventional procedures such as catheter guidance

– Older gamer grade GPU hardware (GeForce) had rare recurrent

hardware failures. Tracked to particular memory access patterns

– Current hardware (Fermi and Kepler) is very reliable

– Recommend workstation grade cards for medical instruments

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 18 | © 2014 Siemens. All Rights Reserved.

Alternative Solutions

• Use synchronization and error checks in debug mode

executables and fewer checks for release mode

• TCC (Tesla Compute Cluster) Mode

– Bypass WDDM and return to WinXP style tightly coupled

CPU/GPU interface

– Use original synchronization model and check for errors after each
kernel launch: small overhead to cudaDeviceSynchronize()

– However, can’t use the GPU card in TCC mode to drive a display:

multiple GPU cards would be painful in our embedded application

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 19 | © 2014 Siemens. All Rights Reserved.

Instruction Level Parallelism

Experiments: Kepler versus Fermi

To learn more about ILP, see

Volkov, “Better Performance at Lower Occupancy”

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 20 | © 2014 Siemens. All Rights Reserved.

Specifications Comparison:

Multiprocessor

Fermi Quadro 2000 SM count = 4

 GPU clock rate = 626 MHz

Kepler K2000 SMX count = 2

 GPU clock rate = 952 MHz

 4 × 626 > 2 × 952

 Is this a step backward or is SMX > SM?

Restricted © Siemens AG 2013 All rights reserved.
Page 21

Page 21 | © 2014 Siemens. All Rights Reserved.

#define N_ITERATIONS 100

#define INTERNAL_ITERATIONS 100

__global__ void

ilp1_kernel(float *d_In, float *d_Out)

{

 float a = d_In[threadIdx.x];

 float b = d_In[threadIdx.x +1];

 float c = d_In[threadIdx.x +2];

 for (int x=0; x<INTERNAL_ITERATIONS; x++)

 {

 #pragma unroll

 for (int y=0; y<N_ITERATIONS; y++)

 {

 a = a*b + c;

 }

 }

 d_Out[ii]=a;

}

 Loops contain purely

 computation -- no I/O

Restricted © Siemens AG 2013 All rights reserved.
Page 22 Page 22 | © 2014 Siemens. All Rights Reserved.

__global__ void

ilp2_kernel(float *d_In, float *d_Out)

{

 float a = d_In[threadIdx.x];

 float b = d_In[threadIdx.x + 1];

 float c = d_In[threadIdx.x + 2];

 float d = d_In[threadIdx.x + 3];

 float e = d_In[threadIdx.x + 4];

 float f = d_In[threadIdx.x + 5];

 for (int x=0; x<INTERNAL_ITERATIONS; x++)

 {

 #pragma unroll

 for (int y=0; y<N_ITERATIONS; y++)

 {

 a = a*b + c;

 d = d*e + f;

 }

 }

 d_Out[threadIdx.x]=a;

 d_Out[threadIdx.x]=d;

}

No dependency between operations gives

The opportunity for instruction level parallelism

2-way ILP

Restricted © Siemens AG 2013 All rights reserved.
Page 23

__global__ void

ilp3_kernel(float *d_In, float *d_Out)

{

 … initialize variables, setup loop

 #pragma unroll

 for (int y=0; i<N_ITERATIONS; y++)

 {

 a = a*b + c;

 d = d*e + f;

 g = g*h + i;

 }

 … complete loop & output a,d and g

}

3-way ILP

Page 23 | © 2014 Siemens. All Rights Reserved.

Restricted © Siemens AG 2013 All rights reserved.
Page 24

__global__ void

ilp4_kernel(float *d_In, float *d_Out)

{

 … initialize variables, setup loop

 #pragma unroll

 for (int y=0; i<N_ITERATIONS; y++)

 {

 a = a*b + c;

 d = d*e + f;

 g = g*h + i;

 j = j*k + l;

 }

 … complete loop & output a,d,g and j

}

4-way ILP

Page 24 | © 2014 Siemens. All Rights Reserved.

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 25 | © 2014 Siemens. All Rights Reserved.

ILP Experiment Kernel

Launch Arguments

extern "C"

void ilp1 (float *d_in, float *d_out, int threadCount)

{

 dim3 gridSz(1); // launch 1 thread block so only one SM will be active

 dim3 blockSz(threadCount);

 ilp1_kernel<<<gridSz,blockSz>>>(d_in, d_out);

}

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 26 | © 2014 Siemens. All Rights Reserved.

Fermi Quadro 2000

Processing latency made

visible--additional active

threads produce no

increase in execution

time

64-thread steps due to

2 warp schedulers

(Compute Capability 2.1)

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 27 | © 2014 Siemens. All Rights Reserved.

Kepler K2000

With no ILP additional

active threads cause no

increase in execution

Not enough work to hide

the execution latency

even with 1024 threads

128-thread wide

steps due to

4 warp schedulers

(Compute Capability 3.0)

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 28 | © 2014 Siemens. All Rights Reserved.

Fermi Quadro 2000

Execution throughput

saturates with fewer

active threads per SM

with ILP

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 29 | © 2014 Siemens. All Rights Reserved.

Kepler K2000

ILP is required to

provide enough

work to hide

execution latency

Even with lots of ILP

still need about 512

active threads

per SM to saturate

execution units

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 30 | © 2014 Siemens. All Rights Reserved.

ILP

factor

Active

Threads

Per SM/SMX

Q2000

Fermi
×104 op/sec

Per SM

K2000

Kepler
×104 op/sec

Per SMX

Relative performance
Kepler op/sec × 2 SMX

 ÷
Fermi op/sec × 4 SM

no ILP 256 1.88 2.48 0.66 ×

512 3.63 4.94 0.75 ×

768 3.78 7.41 0.98 ×

1024 3.86 9.77 1.27 ×

ILP×2 256 2.53 4.76 0.94 ×

512 4.27 8.99 1.05 ×

768 4.23 11.23 1.32 ×

1024 4.24 11.51 1.36 ×

ILP×4 256 4.11 8.3 1.01 ×

512 4.11 11.6 1.41 ×

768 4.11 11.8 1.44 ×

1024 4.07 11.95 1.46 ×

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 31 | © 2014 Siemens. All Rights Reserved.

Conclusions on the

Multiprocessor and ILP

Kepler SMX is a lot more capable than Fermi SM

 2 Kepler SMX clocked at 952 MHz

 ~ 1.4× more powerful

 than 4 Fermi SM clocked at 625 MHz

Require ILP to realize the full potential of Kepler

Also need to keep occupancy up (>50% is better)

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 32 | © 2014 Siemens. All Rights Reserved.

Memory Bandwidth Experiments:

R/W bytes per thread Kepler versus Fermi

How does a purely I/O bound task scale?

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 33 | © 2014 Siemens. All Rights Reserved.

Specifications Comparison:

Memory Bandwidth

 nominal memory bandwidth

Fermi Quadro 2000 41.7 Gbytes/sec

Kepler K2000 64 Gbytes/sec

 For an I/O bound task K2000 > Q2000

 Is this always true?

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 34 | © 2014 Siemens. All Rights Reserved.

Kernel Based Memory

Copy Experiment

Varying amounts of work per thread to perform

a large device to device memory copy

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 35 | © 2014 Siemens. All Rights Reserved.

__global__ void

mem1_kernel(char *d_In, char *d_Out, int pitch)

{

 int ii = threadIdx.x + blockIdx.x * pitch;

 d_Out[ii]=d_In[ii];

}

extern "C"

void mem1(char *d_in, char *d_out, int bytesToCopy,

 int threadCount, int sharedMemPerThreadBlock)

{

 int blocks = bytesToCopy/threadCount;

 int pitch=threadCount;

 dim3 gridSz(blocks);

 dim3 blockSz(threadCount);

 mem1_kernel<<<gridSz,blockSz, sharedMemPerThreadBlock>>>(d_in, d_out,

 pitch);

}

1 byte read / 1 byte write per thread

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 36 | © 2014 Siemens. All Rights Reserved.

2 bytes read / 2 bytes write per thread
__global__ void

mem2_kernel(short *d_In, short *d_Out, int pitch)

{

 int ii = threadIdx.x + blockIdx.x * pitch;

 d_Out[ii]=d_In[ii];

}

extern "C"

void mem2(char *d_in, char *d_out, int bytesToCopy, int threadCount,

 int sharedMemPerThreadBlock)

{

 int blocks = bytesToCopy/(2*threadCount);

 int pitch=threadCount;

 dim3 gridSz(blocks);

 dim3 blockSz(threadCount);

 mem2_kernel<<<gridSz,blockSz, sharedMemPerThreadBlock>>>(

 (short*)d_in, (short*)d_out, pitch);

}

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 37 | © 2014 Siemens. All Rights Reserved.

__global__ void

mem3_kernel(char3 *d_In, char3*d_Out, int pitch)

{

 int ii = threadIdx.x + blockIdx.x * pitch;

 d_Out[ii]=d_In[ii];

}

extern "C"

void mem3(char *d_in, char *d_out, int bytesToCopy, int threadCount,

 int sharedMemPerThreadBlock)

{

 int blocks = bytesToCopy/(3*threadCount);

 int pitch=threadCount;

 dim3 gridSz(blocks);

 dim3 blockSz(threadCount);

 mem3_kernel<<<gridSz,blockSz, sharedMemPerThreadBlock>>>(

 (char3*)d_in, (char3*)d_out, pitch);

}

Non-power of 2 R/W access char3 char3

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.

__global__ void

mem8to4_kernel(int2 *d_In, short2 *d_Out, int pitch)

{

 int ii = threadIdx.x + blockIdx.x * pitch;

 int2 V = d_In[ii];

 d_Out[ii]=make_short2(V.x,V.y);

}

extern "C"

void mem8To4(char *d_in, char *d_out, int bytesToCopy,

 int threadCount, int sharedMemPerThreadBlock)

{

 int blocks = bytesToCopy/(8*threadCount);

 int pitch=threadCount;

 dim3 gridSz(blocks);

 dim3 blockSz(threadCount);

 mem8to4_kernel<<<gridSz,blockSz, sharedMemPerThreadBlock>>>(

 (int2*)d_in, (short2*)d_out, pitch);

}

Read int2 / Write short2 8 bytes read/4 bytes write

I/O is 12 bytes

per kernel

Page 38 | © 2014 Siemens. All Rights Reserved.

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
© Page 39 | 2014 Siemens. All Rights Reserved.

In many situations

Fermi Quadro 2000

memory bandwidth

is greater than

Kepler K2000

Max active threads

per SM/SMX

CC 2.1 = 1536

CC 3.0 = 2048

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 40 | © 2014 Siemens. All Rights Reserved.

Memcpy bandwidth

Increases with more

work (bytes moved)

per thread

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 41 | © 2014 Siemens. All Rights Reserved.

Non-power

of two work

per thread

has a serious

performance

penalty in Kepler

This dropoff not seen

in Fermi Quadro 2000

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 42 | © 2014 Siemens. All Rights Reserved.

Conclusions on Memory Bandwidth

For a purely I/O bound task to saturate device memory K2000 needs

at least 50% occupancy (1024 active threads per SMX) and

each thread reading/writing about 32 bytes (i.e. read int4 write int4)

100% occupancy and 16 bytes/thread will get close to saturating memory

Seems to be a very large penalty in Kepler for non power-of-two

bytes per thread read/write access

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 43 | © 2014 Siemens. All Rights Reserved.

Outcome of the Migration

Mitigated WDDM kernel launch overhead

Rewrote key kernels for greater ILP and more memory access

work per thread

Refactored the existing code for all three applications and

exceed the performance requirements with Kepler K2000

and Windows 8.

It is possible to take advantage of the advances

in technology that Kepler brings – it just takes a little work!

Copyright © 2014 Siemens Medical Solutions USA, Inc. All rights reserved.
Page 44 | © 2014 Siemens. All Rights Reserved.

Prediction

Pipelines will probably get even longer in the future,

requiring more active threads with greater amounts of

ILP to maximize computational throughput and memory

bandwidth

Restricted © Siemens AG 2013 All rights reserved.
Page 45

Page 45 | © 2014 Siemens. All Rights Reserved.

Thank You for Your Attention and Questions!

Ismayil Guracar

Senior Key Expert

Siemens Medical Solutions, USA Inc.

Ultrasound Business Unit

685 E. Middlefield Road

Mountain View, CA 94043

Phone: (650) 969-9112

ismayil.guracar@siemens.com

