
Experiences in the Land of 
Virtual Abstractions

Galen Hunt

Principal Researcher

Microsoft Research Operating Systems Group

1



Why do we all love (hardware) VMs?

• Three reasons:

– Compatibility

• I can install my application in a VM with the OS it requires 
and never have to worry about it breaking again.

– Security

• I can download even the most malignant code from the 
internet, run it in a VM, and my system’s integrity isn’t lost.

– Continuity

• I can start an application (in a VM) on one computer and 
move it to another, or reboot the computer, and it still runs.

2



Fantastic Disruption

• VMMs changed server computing forever:

• server consolidation

• cloud computing

• Why not desktop and mobile computing?

– VMs have huge memory and disk overheads

• “XP mode in Win7” : 1GB VHD, 256MB RAM

• “Win7 VM” : 4GB+ VHD, >= 512MB RAM

3



The Father’s Dilemma

4



Do we need to duplicate 
the full OS in every VM?

5

ntoskrnl.exe

disk.syskbd.sysvga.sys nic.sys

RDP

p
ro
ce

ss wizard.exe
user32.dll gdi32.dll

ke
rn
el

ntoskrnl.exe
win32k.sys

disk.sys

tcpip.sys

kbd.sysvga.sys nic.sys

kernel32.dll ntdll.dll cs
rs
s

w
in
lo
g
o
n



What might be the alternative abstractions?

• Windows abstractions at top of Win32 API?
– too large to be practical for self-contained apps: 250K+ APIs, 

registry, etc.

– not (completely) compatible across OS versions

– not secure against untrusted applications

– not continuous as users move from one device to another

6



What properties do the abstractions need?

• (or what is it that is so “magical” about the VM hardware ABI?)

– Stable

– Formalized

– Closed

– Transparent (stateless)

• So, … can we make a higher-level ABI that has these properties?

7



13 I/O 
Providers

3 Upcalls

45 ABI 
Downcalls

Drawbridge Abstractions & ABI

8

Memory Management 
Primitives (3)

 DkVirtualMemoryAlloc
 DkVirtualMemoryFree
 DkVirtualMemoryProtect

Threading Primitives (16)
 DkThreadCreate1

 DkThreadDelayExecution
 DkThreadYieldExecution
 DkThreadExit
 DkThreadGetParameter
 DkThreadRaiseException
 DkNotificationEventCreate
 DkSynchronizationEventCreate
 DkSemaphoreCreate
 DkSemaphoreRelease
 DkSemaphorePeek
 DkEventSet
 DkEventClear
 DkEventPeek
 DkObjectsWaitAny
 DkAbortEventRegister1

Child Process Primitives (3)
 DkProcessCreate1

 DkProcessGetExitCode1

 DkProcessExit1

I/O Stream Primitives (14)
 DkStreamOpen1

 DkStreamRead2

 DkStreamWrite2

 DkStreamMap2

 DkStreamMapPeBinary2

 DkStreamUnmap2

 DkStreamSetLength2

 DkStreamFlush2

 DkStreamDelete1`

 DkStreamGetEvent2

 DkStreamRename1

 DkStreamEnumerateChildren1

 DkStreamAttributesQuery1

 DkStreamAttributesQueryByHandle2

Other Primitives (9)
 DkSystemTimeQuery
 DkRandomBitsRead
 DkInstructionCacheFlush
 DkObjectReference
 DkObjectClose2

 DkInputEventRead1

 DkFrameBufferExport1

 DkFrameBufferNotifyUpdate1

 DkDebugStringPrint1

Upcalls (3)
 LibOsInitialize
 LibOsThreadStart
 LibOsExceptionDispatch

Files/Storage (1)
file:

Console Redirection (4)
null:
stderr:
stdin:
stdout:

Named Pipes (2)
pipe.client:
pipe.server:

TCP/IP Stack (4)
dns:
tcp.client:
tcp.server:
tcp:

HTTP.SYS (2)
http.application:
http.server:



Learning from the past…

“Since March of 1989 we have had running at CMU a computing 
environment in which the functions of a traditional Unix system are 
cleanly divided into two parts: facilities which manage the hardware 
resources of a computer system (such as CPU, I/O and memory) and 
support for higher-level resource abstractions used in the building of 
application ...”

“UNIX as an Application Program”
David B. Golub, Randall W. Dean, 

Alessandro Forin, and Richard F. Rashid
Proc. of the 1990 Summer USENIX Technical Conference 

9



Three categories of services in an OS

sh
el

l
a

p
p

lic
a

ti
o

n
 p

ro
ce

ss

rp
c
ss

application libraries

w
in

in
it

sm
ss

c
sr

ss

application .exe

API DLLs 
user32, gdi32, 

kernel32, ole32, …

ntdll

ke
rn

el

device 
drivers

win32k

file systems

ntoskrnl

net stacks

explorer dwmservice 
category:

hardware

application

user

10



Linux

x86
&

x64

Compatibility

• Existing library OS implementations:

11

• Prototype host implementations (past, present, and in-progress):

Windows 8.1
Win7 MinWin
(x86 on ARM)

Xbox 360
(x86 on PPC)

Windows 7 /
Server 2008 R2Win7

x86
&

x64

Barrelfish
(research OS)

Win7 SP1

x86 
&

x64

• Full host implementations:

Windows
Embedded

(CE)

Midori
(research OS)

Windows 8.1/
Server 2012 R2Win8

x86
&

x64

Silverlight

x86
&

x64



Windows and Linux LibOSes
Linux apps: Firefox, Apache, xeyes

Windows apps: Paint, IE, WordPad, Notepad, Reversi



Security: What’s the Thread Model?

• Traditional OS: “Enterprise Multitenancy”

– Invite your employees
• after full authentication

• to run the applications you choose (or that your OS vendor vets)

• on some subset of your computers

• VMs & Drawbridge: “Hostile Multitenancy”

– Invite “organized crime”
• with complete anonymity (in name & number)

• to run any code they choose

• on the same servers as your most valuable customers

13



Security

14

Native

Drawbridge



Continuity

• Checkpointer Extension

– Adds migration/fault tolerance to any unmodified apps and 
LibOSes on any Drawbridge host platform

– At runtime, track state:
• Writable/modified virtual memory allocations

• All threads & synchronisation

• Open streams, and their parameters

• Outstanding I/O

– At checkpoint time:
• Cancel pending I/O and ABI calls

• Open file (using ABI)

• Serialise address space, thread contexts and other state to file

15



Demo

16



Picoprocess Security Monitor Library OS

• Secure container for code. 
•No access to the host OS.

•Provides primitive OS 
operations to picoprocs.

(threads, VM, i/o streams)

• Subset of Windows w/ 
picoproc. enlightenments.

~16MB mem. overhead

Summary

• Drawbridge is a light-weight VMs alternative for secure application hosting.

• Drawbridge consists of three pieces:

17

picoprocess

isolated 
user-mode

address space

picoprocess

PAL ‡

Security Monitor

45
ops

Drawbridge ABI †

picoprocess



But…

• Do these higher-level abstractions 
have benefits beyond those of a hardware VM?

• Yes,…

– Higher density…

– Layerable (cheaply)…

– More versatile…

– … see also [ASPLOS 2011]

18



Density: Committed Memory by Application

19

1
.0

 

2
4

.0
 

5
4

.5

2
9

.0
 1
0

3
.5

 

4
1

8
.1

 

1
2

.2
 

3
0

.9
 

5
1

.6

6
4

.7
 1
3

6
.5

 

4
5

6
.8

 

603 603 614 607 606

1,116

0

100

200

300

400

500

600

700

800

NoOp Internet
Explorer

IIS Excel
11KB

Excel
20MB

Excel
100MB

C
o

m
m

it
te

d
 M

e
m

o
ry

 (
M

B
)

Windows Drawbridge Hyper-V

+11.1MB +6.9MB <0 MB +35.7MB +33MB +38.7MB



VM Committed for IE8 Instances

20

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500 550

C
o

m
m

it
te

d
 M

e
m

o
ry

 (
G

B
)

Hyper-V

Drawbridge

Native

22 138 527

* Native stops at 138 instances when IE reaches the per-session limit on GDI handles.



VM Committed for IIS instances

21

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300

C
o

m
m

it
te

d
 M

e
m

o
ry

 (
G

B
)

Hyper-V

Drawbridge

Native

26621 287



Layerable: Extensions [EuroSys 2013]

• Change the runtime behaviour of an application/OS

• Developed by a third party

• Applied by end user or system integrator

• “Bascule” ABI:

– Nestable in-process ABI of common OS primitives

– “Host” provides:

• Table of function entry points

• Data structure of startup parameters

– “Guest” provides:

• Table of upcall entry points

– Bootstrap: each layer loads the one above

22



Drawbridge and WoW64

• Subtly different from WoW64

– Same 32-bit library OS used on both 
x86, x64

– 64-bit host unaware of 32-bit code

• x86-on-x64 “extension” PAL

– Depends only on 64-bit ABI

– Exposes 32-bit ABI to library OS

– Looks like a PAL to the layer above it, 
like a library OS to the layer below

– Internally thunks between x86, x64

• Approach generalizes

– …for CPU emulation (e.g. x86-on-ARM 
“emulating extension”)

– …for any layered ABI filters

23

p
ic

o
p

ro
ce

ss

x86 application DLLs

x86 application .exe

32-bit ABI boundary

“Native” PAL

x86-on-x64 thunking
“extension PAL”

x86 library OS

45
calls

64-bit ABI boundary

45
calls



Architecture adaptation extension
Unmodified x86 app and LibOS on ARM host, migrates from x86 to ARM and back



Sample Extensions [EuroSys 2013]

• Implemented:

– Tracing

– File system remapping

–Checkpointing

–Architecture adaptation

• 32-on-64-bit x86

• x86 on ARM JIT

• Discussed:

– Speculation

–Record and replay

25



More Versatile: Intel SGX [SOSP 2013 Demo]

• Problem:

–Applications must trust:

• OS, VMM, bootloader, BIOS, etc.

• Administrator(s), management tools

–Hierarchical trust model is inadequate

–No practical way to protect private data

• Intel SGX [HASP 2013]

–New instructions & memory access changes

–Confidentiality and integrity protection

• Protected enclave in user-mode process

• Memory encryption

–Hardware support for mutual distrust in software

• Remote attestation

• Secure execution, despite compromised OS/VMM

26

p
ic

o
p

ro
ce

ss
Drawbridge host

ABI boundary

host PAL

e
n

cl
av

e 
b

o
u

n
d

ar
y

SE
PAL

secure services (trusted)

thunking (untrusted)

application

lib
rary O

Swin32k

ntoskrnl (user-mode kernel)

rdp
server

csrssrpcs
s

lsass

…
advapi32

kernel32

ntdll user32 gdi32

400+
syscalls

800+
syscalls

45
ops



Intel SGX Demo (Emulator)

27



Why should we love higher-level abstrations?

• Three reasons:
– Compatibility

• I can install my application in a picoprocess with the Library OS it requires and never 
have to worry about it breaking again.

– Security

• I can download even the most malignant code from the internet, run it in a 
picoprocess, and my system’s integrity isn’t lost.

– Continuity

• I can start an application (in a picoprocess) on one computer and move it to 
another, or reboot the computer, and it still runs.

• And three more:
– High Density

• I can run many hundreds of picoprocesses on one computer.

– Layerable

• I can write an extension that works with many hosts or library Oses.

– Versatility

• I can use higher-level abstractions where a VM can’t run (cheaply).

28


