
Exploiting Coarse-Grain Speculative Parallelism

Hari K. Pyla, Calvin Ribbens, Srinidhi Varadarajan
Center for High-End Computing Systems

Department of Computer Science
Virginia Tech

{harip, ribbens, srinidhi}@cs.vt.edu

Abstract
Speculative execution at coarse granularities (e.g., code-
blocks, methods, algorithms) offers a promising program-
ming model for exploiting parallelism on modern archi-
tectures. In this paper we present Anumita, a framework
that includes programming constructs and a supporting run-
time system to enable the use of coarse-grain speculation to
improve program performance, without burdening the pro-
grammer with the complexity of creating, managing and re-
tiring speculations. Speculations may be composed by spec-
ifying surrogate code blocks at any arbitrary granularity,
which are then executed concurrently, with a single winner
ultimately modifying program state. Anumita provides ex-
pressive semantics for winner selection that go beyond time
to solution to include user-defined notions of quality of so-
lution. Anumita can be used to improve the performance of
hard to parallelize algorithms whose performance is highly
dependent on input data. Anumita is implemented as a user-
level runtime with programming interfaces to C, C++, For-
tran and as an OpenMP extension. Performance results from
several applications show the efficacy of using coarse-grain
speculation to achieve (a) robustness when surrogates fail
and (b) significant speedup over static algorithm choices.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features—Concurrent programming structures;
D.3.4 [Programming Languages]: Processors—Run-time
environments

General Terms Algorithms, Design, Languages, Measure-
ment and Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

Keywords Speculative Parallelism, Coarse-grain Specula-
tion, Concurrent Programming and Runtime Systems

1. Introduction
As processor architectures evolve from fast single core de-
signs to multi/many core designs using multiple simpler
cores (lower clock frequency, shorter pipelines), there is in-
creasing pressure on programmers to use application level
threading to improve performance. While some applications
are amenable to simple parallelization techniques, a large
body of algorithms and applications are inherently hard to
parallelize due to execution order constraints inflicted by
data and control dependencies. Furthermore, for a significant
number of applications, performance (a) is highly sensitive
to input data and (b) does not scale well to 100’s of cores.

Our objective is to provide programmers with a simple
tool for exploiting parallelism in such applications. In the
arsenal of concurrent programming techniques, speculative
execution is used in a variety of contexts to improve per-
formance. Low level fine-grain speculation employed by the
hardware and compiler (e.g., branch prediction, prefetch-
ing) is a proven technique. Software transaction systems
are premised on speculative execution of potentially coarse-
grain code blocks. More generally, we believe speculative
execution relying on optimistic concurrency at coarse gran-
ularities (e.g., code-blocks, methods, algorithms) offers a
promising programming model for exploiting parallelism
for many hard-to-parallelize applications on multi and many
core architectures.

In this paper we focus on coarse-grain speculation as a
means to achieve parallelism. We provide a simple program-
ming model to express at any arbitrary granularity, the parts
of an application that may be executed speculatively. Writing
correct shared memory parallel programs is a challenging
task in itself [23], and detecting concurrency bugs (e.g., data
races, deadlocks, order violations, atomicity violations) is an
extremely difficult problem [41]. Hence, we do not want to
burden the programmer with the additional responsibilities
of using low level threading primitives to create speculative
control flows, manage rollbacks and perform recovery ac-
tions in the event of mis-speculations.

555



We present Anumita (guess in Sanskrit), a simple specu-
lative programming framework where multiple coarse-grain
speculative code blocks execute concurrently, with the re-
sults from a single speculation ultimately modifying the pro-
gram state. Our goal is to make speculation a first class
parallelization method for hard-to-parallelize and input de-
pendent code blocks. Anumita consists of a shared library,
which implements the framework API for common type-
unsafe languages including C, C++ and Fortran, and a user-
level runtime system that transparently (a) creates, instan-
tiates, and destroys speculative control flows, (b) performs
name-space isolation, (c) tracks data accesses for each spec-
ulation, (d) commits the memory updates of successful spec-
ulations, and (e) recovers from memory side-effects of any
mis-predictions. In the context of high-performance com-
puting applications, where the OpenMP threading model is
prevalent, Anumita also provides a new OpenMP pragma to
naturally extend speculation into an OpenMP context.

Anumita works by associating the memory accesses
made by each speculation flow (e.g., an instance of a code
block or a function) in a speculation composition (loosely,
a collection of possible code blocks that execute concur-
rently). Anumita localizes these memory updates and pro-
vides isolation among speculation flows through privatiza-
tion of address space. Ultimately, a single speculation flow
within a composition is allowed to modify the program state.
Anumita simplifies the notion of speculative parallelism and
relieves the programmer from the subtleties of concurrent
programming. The framework is designed to support a broad
category of applications by providing expressive evaluation
criteria for speculative execution that go beyond time to so-
lution to include arbitrary quality of solution criteria. An-
umita supports multithreaded applications and sequential
applications alike. Anumita is implemented as a language
independent runtime system and its use requires minimal
modifications to application source code.

We evaluate Anumita using microbenchmarks and real
applications from several domains. Our experimental results
indicate that Anumita is capable of significantly improving
the performance of applications by leveraging speculative
parallelism. Programmable speculation is susceptible to lim-
itations of speculative execution and may come at an ex-
pense. Speculation requires additional resources (pipelines,
cores, memory) to handle speculative flows and which may
consume more energy and power. In this paper we show that
speculative execution of several alternative (or ‘surrogate’)
code blocks incurs at worst a modest overhead in terms of
energy consumption, and can frequently yield improvements
in energy consumption, when compared to the use of a single
statically chosen surrogate.

The rest of the paper is organized as follows. Section 2
outlines the motivation for this work. Section 3 presents the
programming model and constructs used to express coarse-
grain speculative execution. Section 4 presents how these

constructs can be implemented efficiently without sacrific-
ing performance, portability and usability. Section 5 presents
our experimental evaluation. Section 6 surveys the related
work, Section 7 describes future directions and Section 8
presents our conclusions.

2. Motivating Problems
Coarse-grain speculative parallelism is most useful for ap-
plications with two common characteristics: (1) there exist
multiple possible surrogates (e.g., code blocks, methods, al-
gorithms, algorithmic variations) for a particular computa-
tion, and (2) the performance (or even success) of these sur-
rogates is problem dependent, i.e., relative performance can
vary widely from problem to problem, and is not known a
priori. Whether or not there exist efficient parallel imple-
mentations of each surrogate is an orthogonal issue to the
use of coarse-grain speculation. If only sequential imple-
mentations exist, speculation provides a degree of useful
parallelism that is not otherwise available. If parallel sur-
rogate implementations do exist, speculation still provides
resilience to hard-to-predict performance problems or fail-
ures, while also providing an additional level of parallelism
to take advantage of growing core counts, e.g., by assigning
a subset of cores to each surrogate rather than trying to scale
a single surrogate across all cores.

We discuss two motivating examples in detail. (Perfor-
mance results for these problems are given in Section 5).
In graph theory, vertex coloring is the problem of finding
the smallest set of colors needed to color a graph G =
(V,E) such that no two vertices vi, vj ∈ V with the same
color share an edge e. Graph coloring problems arise in
several domains including job scheduling, bandwidth allo-
cation, pattern matching and compiler optimization (regis-
ter allocation). Several state-of-the-art approaches that solve
this problem employ probabilistic and meta-heuristic tech-
niques, e.g., simulated annealing, tabu search and variable
neighborhood search. Typically, such algorithms initialize
the graph with a random set of colors and then employ a
heuristic algorithm to attempt to color the graph using the
specified number of colors. Depending on the input graph,
the performance of these techniques varies widely. Obvi-
ously, there will be cases where no coloring can be found
(when the specified number of colors is too small) by some
or all methods. In addition to this sensitivity to the input,
algorithms for the graph coloring problem are hard to par-
allelize due to inherent data dependancies. Parallel imple-
mentations that exist employ a divide and conquer strategy
by dividing the graph into subgraphs and applying color-
ing techniques on the subgraphs in parallel. During reduc-
tion, conflicting subgraphs are recolored. Despite such ef-
forts, the challenge still persists to develop efficient parallel
algorithms for vertex coloring.

As a second example, consider the numerical solution of
partial differential equations (PDEs). This is one of the most

556



common computations in high performance computing and
is a dominant component of large scale simulations arising
in computational science and engineering applications such
as fluid dynamics, weather and climate modeling, structural
analysis, and computational geosciences.

The large, sparse linear systems of algebraic equations
that result from PDE discretizations are usually solved
using preconditioned iterative methods such as Krylov
solvers [33]. Choosing the right combination of Krylov
solver and preconditioner, and setting the parameter values
that define the details of those preconditioned solvers, is a
challenge. The theoretical convergence behavior of precon-
ditioned Krylov solvers on model problems is well under-
stood. However, for general problems the choice of Krylov
solver, preconditioner, and parameter settings is often made
in an ad hoc manner. Consequently, iterative solver perfor-
mance can vary widely from problem to problem, even for
a sequence of problems that may be related in some way,
e.g., problems corresponding to discrete time steps in a time-
dependent simulation. In the worst case, a particular iterative
solver may fail to converge, in which case another method
must be tried. The most conservative choice is to abandon
iterative methods completely and simply use a direct fac-
torization, i.e., some variant of Gaussian Elimination (GE).
Suitably implemented, GE is essentially guaranteed to work,
but in most cases it takes considerably longer than the best
preconditioned iterative method. The problem is that the best
iterative method is not known a priori.

One could list many other examples that are good candi-
dates for coarse-grain speculation. Even for a simple prob-
lem such as sorting, where theoretical algorithmic bounds
are well known, in practice the runtime of an algorithm de-
pends on a variety of factors including the amount of input
data (algorithmic bounds assume asymptotic behavior), the
sortedness of the input data, and cache locality of the imple-
mentation [3].

3. Speculation Programming Model
For a coarse-grain speculation model to be successful, it
should satisfy several usability and deployability constraints.
First, the model should be easy to use, with primarily se-
quential semantics, i.e., the programmer should not have to
worry about the complexities and subtleties of concurrent
programming. Speculation is not supported by widely used
languages or runtime systems today. Hence, in order to ex-
press speculation, the programmer is burdened with creat-
ing and managing speculation flows using low-level thread
primitives [28]. Second, the speculation model should en-
able existing applications (both sequential and parallel) to
be easily extended to exploit speculation. This includes sup-
port for existing imperative languages, including popular
type-unsafe languages such as C and C++. Third, the model
should be expressive enough to capture a wide variety of
speculation scenarios. Finally, to ensure portability across

platforms, the speculation model should not require changes
to the operating system. Furthermore, we need to accom-
plish these objectives without negatively impacting the per-
formance of applications that exploit speculation.

A general use case for Anumita is illustrated in Fig-
ure 1. The example shows an application with three threads,
two of which enter a speculative region. (The simplest case
would involve a single-threaded code that enters a single
speculative region.) Each sequential thread begins execution
non-speculatively until a speculative region is encountered,
at which time n speculative control flows are instantiated,
where n is programmer-specified. Each flow executes a dif-
ferent surrogate code block. We refer to this construct as
a “concurrent continuation,” where one control flow enters
a speculative region through an API call and n speculative
control flows emerge from the call. Anumita achieves par-
allelism by executing the n speculative flows concurrently.
In Figure 1, the concurrent continuation out of thread 0 is a
composition of three surrogates, while the continuation out
of thread 2 has two surrogates. Note that individual surro-
gates may themselves be multithreaded, e.g., surrogate esti-
mation in the continuation flowing out of thread 2. Although
not shown in the figure, Anumita also supports nested specu-
lation, where a speculative flow in turn creates a speculative
composition.

To mitigate the impact of introducing speculation into
the already complex world of concurrent programming, no
additional explicit locking is introduced by the speculation
model. In other words, a programmer using the Anumita
API to add speculation to a single-threaded application does
not have to worry about locking or synchronization of any
kind. Of course, if the original application was already multi-
threaded, then locking mechanisms may already be in place,
e.g., to synchronize among the three threads in Figure 1 in
non-speculative regions.

Each speculative flow operates in a context that is iso-
lated from all other speculations, thereby ensuring the safety
of concurrent write operations. Anumita presents a shared
memory model, where each speculative flow is exactly iden-
tical to its parent flow in that it shares the same view (albeit
write-isolated) of memory, i.e., global variables, heap and
more importantly, the stack.

The Anumita programming model provides a flexible
mechanism for identifying the winner and committing the
results of a speculation. The first flow to successfully commit
its results is referred to as the winning speculation. However,
the decision to commit can be made in a variety of ways. The
model easily supports the simplest case, where the first flow
to achieve some programmer-defined goal cancels the re-
maining speculative flows and committs its updates to the
parent flow, which resumes execution at the point of com-
mit. Surrogate estimation illustrates this case in Figure 1.
Alternately, speculative flows may choose to abort them-
selves if they internally detect a failure mode of some kind,

557



multi-threaded
application thread-1

program execution

thread-2

begin 
speculation

estimation

monte-carlo

0

1

commit
speculation

thread-2 
resumes

from commit
cancel

speculation

thread-2 enters
evaluation context

multi-threaded
code block

non speculative
region

non speculative
region

evaluation
function

adaptive

conservative

extrapolation

0

1

2

begin 
speculation

thread-0 enters 
evaluation context

evaluate 
speculation

area!=42
abort

speculationthread-0

commit
speculation

cancel
speculation

speculative flow

abort speculative flow
non-speculative flow

surrogate
winning speculation

speculative region

speculative region

thread-0 
resumes

from commit

non speculative
region

non speculative
region

evaluation
function

evaluate 
speculation

Figure 1. A typical use case scenario for composing coarse-grain speculations. Anumita supports both sequential and multi-
threaded applications.

e.g., surrogate adaptive in the figure, when area != 42.
More generally, each surrogate may define success in terms
of an arbitrary user-defined evaluation function, passed to
an evaluation interface supplied by the parent flow (labeled
“evaluation context” in Figure 1). The evaluation context
safely maintains state that it can use to steer the composi-
tion, deciding which surrogates should continue and which
should terminate. In our example, surrogates conservative
and extrapolation use the evaluation interface to communi-
cate with their parent flow.

3.1 Program Correctness
Any concurrent programming model needs well-defined se-
mantics for propagation of memory updates. Anumita sup-
ports concurrency at three levels: (1) between surrogates in
a speculative composition, (2) between threads in a single
multithreaded surrogate, and (3) between threads in non-
speculative regions of an existing multithreaded application.
We consider each in turn.

Unlike the traditional threads model, where any conflict-
ing accesses to shared memory must be properly synchro-
nized, Anumita avoids synchronization and its associated
complexity by providing isolation among speculative flows
through privatization of the shared address space (global
data and heap). Furthermore, a copy of the stack frame of
the parent flow is passed to each speculative flow. Since up-
dates are isolated, “conflicting” accesses do not require syn-
chronization. Anumita’s commit construct implements a rel-
atively straightforward propagation rule: for a given com-
position, only the updates of a single winning speculative
flow are made visible to its parent flow at the completion
of a composition. Furthermore, compositions within a single
control flow are serialized, in that a control flow cannot start
a speculative composition without completing prior compo-
sitions in program order. Cumulatively, these two proper-
ties are sufficient to ensure program correctness in sequen-
tial applications (a single control flow) even in the presence
of nested speculations. We do not present a formal proof of

558



speculation_t *spec_context;
int num_specs=2, rank, value=0;

/* initialize speculation context */
spec_context = init_speculation();

/* begin speculative context */
begin_speculation (spec_context, num_specs, 0);

/* get rank for a speculation */ 
rank = get_rank (spec_context);

switch (rank)
{
   case 0:
     estimation (...);
     break;

   case 1:
     monte-carlo (...);
     break;

   default:
     printf ("invalid rank\n");
     break;
}

/* commit the speculative composition */
commit_speculation (spec_context);

Figure 2. Pseudo code for composing speculations using
the programming constructs exposed by Anumita. In the
absence of an evaluation function, the fastest surrogate (by
time to solution) wins.

correctness here; however, the rationale behind the proof is
that since the updates of exactly one of the valid outcomes
is committed and since each speculation was isolated while
arriving at this result, relaxing the requirements of explicit
synchronization does not affect program correctness.

Surrogates in Anumita may themselves be multithreaded,
requiring lock based concurrency control between threads,
e.g., surrogate estimation in Figure 1. Since surrogates are
replacements for each other, we would not expect a surrogate
to have synchronization dependencies with one of its sibling
surrogate, e.g., estimation with monte-carlo in the figure.
Hence the correctness of multithreaded surrogates reduces
to the standard case of threaded shared-memory concurrent
programming.

While the above properties ensure program correctness
for concurrent continuations flowing out of a single control
flow, we also need to define how speculative flows can be
composed in a multithreaded environment. Anumita allows
multiple speculative and non-speculative regions to execute
concurrently, e.g., the regions associated with threads 0 and
2, along with thread 1 in Figure 1. However, the model does
not support synchronization between speculative flows from
different speculative regions, or between speculative flows
and other non-specualtive application threads. (We note that
this restriction is also true for value speculation systems such
as [28].) Hence, correctness of such codes stems from the

/* custom evaluation function */
boolean goodness_of_fit (speculation_t *spec_context, void *ptr)
{
   double error = 0.0, *fit = (double *) ptr;

   error = actual - *fit;
   if (error > 0.0005) 
    {
      return ABORT;
    } 

    return CONTINUE;
}

....
switch (rank)
{
   case 0:
     area = adaptive_quadrature (...);

     ptr = get_ir_memory (spec_context);
     memcpy (ptr, area, sizeof(double));

     retval = evaluate_speculation (spec_context, goodness_of_fit, ptr);
     if (retval == ABORT)
        abort_speculation (spec_context);
     break;

   case 1:
     area = conservative_method();
     if (area != 42) 
        cancel_speculation (spec_context, 0);
     break;

   case 2:
     for (t=0; t<100; t++) 
      {
        area = extrapolation_method();

        ptr = get_ir_memory (spec_context);
        memcpy (ptr, area, sizeof(double));

        retval = evaluate_speculation (spec_context, goodness_of_fit, ptr);
        if (retval == ABORT)
           abort_speculation (spec_context);
      }
    break;
}
....

Figure 3. Pseudo code for evaluating speculations in Anu-
mita.

correctness of the original multithreaded code, since each
speculative region exhibits transaction-like semantics with
respect to other threads, i.e., no memory updates from a
given speculative region are visible to other threads until the
commit process finishes, at which point all the updates are
complete, and control resumes in a non-speculative region.

Externally visible I/O actions are not handled by Anumita
in its current form. We are working on extending Anumita to
support disk I/O. However, Anumita performs speculation
aware memory management and garbage collection from
failed speculations. This mechanism correctly hides the side-
effects of system calls such as sbrk etc.

559



3.2 Syntax and Semantics
Figures 2 and 3 show pseudocode corresponding to the sce-
nario illustrated in Figure 1 for composing speculations us-
ing Anumita. Table 1 defines the Anumita API. A specula-
tive composition is initialized by a call to init speculation,
which returns a speculation context. A composition is in-
stantiated by a call to begin speculation, which imple-
ments a concurrent continuation of the parent flow. Each
speculative flow in the concurrent continuation is exactly
identical to its parent flow in that it shares the same view
of memory, but is isolated from other concurrent speculative
flows. In order to distinguish speculative flows from each
other, we associate each speculative flow with a unique rank.
This notion of rank is identical to ranks in MPI and thread
number in OpenMP. A speculation may query its rank (0 to
n-1) in order to map a particular unit of work to itself. The
parent flow then enters an evaluation context, where it waits
(descheduled) for evaluation requests from its speculative
flows.

To implement an interface for evaluation, the call to
begin speculation takes an argument that specifies the
size of a memory region that is used for communication
between speculative flows and the parent evaluation con-
text. Each speculative flow receives a distinct memory re-
gion of the specified size; this region is shared between a
speculative flow and the parent evaluation context. Periodi-
cally, a speculative flow can request an evaluation using the
evaluate speculation call, passing the parent interme-
diate results using the shared memory region. This call syn-
chronously transfers control to the evaluation context (i.e.,
the idled parent flow), which executes the evaluation func-
tion and returns a status indicating whether the speculation
calling the evaluation should continue or abort execution.
The evaluation context may also use the intermediate re-
sults to cancel other speculations based on the results of the
current evaluation, for instance, when the progress of one
surrogate is significantly better than another within the same
composition. In essence, the evaluation mechanism enables
pruning of surrogates based on a user-defined notion of re-
sult quality.

On completing execution, a surrogate terminates the
speculative region by calling commit speculation. The
first call to commit speculation succeeds, canceling all
other speculations in the composition and propagating its
execution context to the parent flow, which then resumes
execution at the point of commit. Selecting by time to solu-
tion (fastest surrogate wins) is trivially implemented by not
specifying an evaluation function, as shown in Figure 2. In
this case the first surrogate to commit would succeed and
cancel its siblings. For completeness, the API also supports
an abort speculation call that can be used by a surro-
gate to terminate itself if it detects that it is not making
progress or has reached some failure mode. We also pro-
vide a cancel speculation call that can be used by any

int num_specs = 3, rank;

/* begin a speculation composition */
# pragma speculate (spec_context, num_specs, 0)
{

 /* get rank for a speculation */ 
 rank = omp_get_thread_num();

 switch (rank) 
 {
     case 0:
        /* code for speculation */
        vns (colors, graph);
        break;
  
     case 1:
        /* code for speculation */
        sa (colors, graph);
        break;

     case 2:
        /* code for speculation */
        tabu (colors, graph);
        break;
      
     default:
        /* invalid rank */  
 }

 /* implicit commit of speculation composition */
}

Figure 4. Composing speculations in OpenMP using the
OpenMP extensions built on top of the programming con-
structs exposed by Anumita. Anumita’s source-source trans-
lator expands the speculate pragma to begin-commit con-
structs.

surrogate to terminate any other surrogate. This can be use-
ful, for example, in a case where a subset of surrogates can
be pruned from the composition when one member of that
subset meets some condition.

Many scientific applications use OpenMP directives for
shared memory programming rather than the underlying
POSIX threads interface. To support such applications,
we provide extensions to OpenMP in the form of a new
OpenMP pragma that provides a natural interface to spec-
ulation. Figure 4 illustrates the OpenMP syntax for cre-
ating a composition. The speculate pragma is scoped be-
tween an open and close brace ({ and }), with an implicit
commit speculation at the end of the speculate pragma.
In traditional OpenMP programming, name space isolation
is achieved through explicit variable scoping (e.g., private,
shared, etc.). To simplify programming, the Anumita run-
time automatically isolates speculative flows without requir-
ing explicit private scoping.

3.3 Overhead
Anumita achieves low runtime overhead since speculative
flows are isolated and mispredictions cause the memory
updates of the failed speculation to be discarded as opposed
to rollback recovery. The memory overhead is proportional

560



Programming Constructs Description
speculation t* init speculation(void) Initialize a speculative composition.
int begin speculation(speculation t *spec context, int
num spec, size t mem)

Begins a speculative composition. Arguments are composi-
tion context, number of speculations and size of memory to
allocate for storing intermediate results used in evaluating
speculations.

int get rank(speculation t *spec context) Gets the rank of the calling speculative flow.
int get size(speculation t *spec context) Gets the number of speculative flows in a composition.
int commit speculation(speculation t *spec context) Attempts to commit the state of the calling speculative flow.
int abort speculation(speculation t *spec context) Aborts the calling speculative flow.
int cancel speculation(speculation t *spec context,
int rank)

Cancels (terminates) the speculation flow with a rank of
‘rank’.

int evaluate speculation(speculation t *spec context,
evaluate t *evaluation fn, void *ptr)

Used to invoke an evaluation of the intermediate results of
the calling speculative flow. Intermediate results are passed
through ‘ptr’.

void * get ir memory(speculation t *spec context) Returns a pointer to the calling speculative flow’s memory
region used to store intermediate results for evaluation.

int (*evaluation fn)(speculation t *spec context, void
*ptr)

Signature of the user defined evaluation function.

Table 1. Programming constructs exposed by Anumita for leveraging speculation. For brevity, C++ and Fortran interfaces are
omitted.

to the write-set of all the speculative flows, which is typically
much smaller than the read set. Given N speculative flows
with the write-set of each flow being W pages, the memory
overhead is O(NW).

4. Implementation
The Anumita implementation consists of a shared library
that exposes our API and a runtime system. The OpenMP
interfaces are implemented using source-to-source transla-
tion. To ensure ease of deployment, Anumita is implemented
completely in user-space with no modifications to the oper-
ating system. The rest of this section describes the Anumita
runtime in detail.

4.1 Shared Address Space
In the POSIX threads model, each thread has a distinct
stack and threads of a process share their address space. In
contrast, distinct processes are fully isolated from each other
and execute in separate virtual address spaces. Neither of
these models satisfies the isolation and selective state sharing
requirements imposed by Anumita. Intuitively, we need an
execution model that provides the ability to selectively share
state between execution contexts.

To create the notion of a shared address space among pro-
cesses, we implemented the cords abstraction first proposed
in [29]. The constructor in our runtime (a shared library) tra-
verses through the link map of the application (ELF binary)
at runtime and identifies the global data (.bss and .data) sec-
tions, i.e., the zero initialized and uninitialized data and non-
zero initialized data, respectively. The runtime then unmaps

these sections from the loaded binary image in memory,
maps them from a SYSV memory mapped shared memory
file and reinitializes these sections to the original values.

This mapping to a shared memory file is done by the
main process before its execution begins at main. Specu-
lative flows are then instantiated as processes (we use the
clone() system call in Linux to ensure that file mappings are
shared as well) and a copy of the address space of the par-
ent is created for each instantiation of a speculation. Conse-
quently, the speculations inherit the shared global data map-
ping. Hence any modifications made by a process to global
data are immediately visible to all processes. Such a tech-
nique guarantees that all the processes have the same view of
global data, similar to a threads model. In essence, this tech-
nique creates a set of processes that are semantically identi-
cal to threads, but operate in distinct virtual address spaces.
By controlling the binding to the shared memory mapping,
data can be selectively isolated or shared based on the re-
quirements of the speculation model.

To implement a shared heap, we modified Doug Lea’s
dlmalloc [15] allocator to operate over shared memory map-
pings so that the allocated memory is visible to all processes.
Our runtime system provides global heap allocation by shar-
ing memory management metadata among processes using
the same shared memory backing mechanism used for .data
and .bss sections. Hence any process can allocate memory
that is visible and usable by other processes. If a process ac-
cesses memory that is not mapped in its address space, it
results in a segmentation violation (a map error). Our run-
time system handles this segmentation violation by consult-

561



ing memory management metadata to check if the reference
is to a valid memory address allocated by a different process.
If so, it maps the shared memory file associated with the
memory, thereby making it available. Note that such an ac-
cess fault only occurs on the first access to a memory region
allocated by a different process, and is conceptually similar
to lazy memory allocation within an operating system.

To ensure program correctness, speculative flows within
the same composition should appear as a concurrent contin-
uation of the parent execution context. To achieve this, our
runtime system ensures that the base address of the stack in
a speculative flow is identical to that of the parent specula-
tion. The default size of a stack is 8MB. When composing
a speculation, the runtime saves only the stack frame of the
parent speculation (not the entire 8MB) and each speculation
within a composition uses a copy of this stack frame for ex-
ecution. Each speculative flow is now identical to its parent
flow, thereby creating a concurrent continuation.

Since each speculative flow is implemented as a process,
it is important to note that in UNIX process semantics, each
process is created with its own copy of the data segment of
the shared libraries. Consequently, by default the runtime
is not shared among speculation flows. To circumvent this
problem and to maintain a shared and consistent view of the
runtime, each newly created process automatically executes
an initialization routine that maps the shared state of the
Anumita runtime.

4.2 Speculative Composition
To mitigate the costs of creating and terminating specula-
tive flows, the runtime instantiates a configurable pool of
speculative flows in the Anumita library constructor before
the main process begins its execution. Additional specula-
tive flows are created as necessary. This pool of speculative
flows is initially idle (blocked), waiting for work from the
main process. On the termination of a speculative flow, it
is returned back to the pool. In principle this is similar to a
worker thread pool used to mitigate the performance impact
of thread creation.

To instantiate a speculation, the parent flow first saves its
current stack frame and execution context (setjmp) before
waking the specified set of speculative flows from the pool.
Upon waking, each speculation adjusts its execution context
(longjmp), restores its stack to that of the parent flow and
isolates its shared virtual memory address (VMA) before
starting execution. The speculations begin their execution
as a concurrent continuation of the begin speculation
construct. The parent flow then enters an evaluation context
and waits for messages from the members of the speculative
composition. The parent flow may be woken up under three
scenarios.

First, if a speculative flow completes its assigned task it
executes a commit speculation. A call to
commit speculation is mutually exclusive to prevent race
conditions on commits from multiple speculations. The first

speculation to invoke commit is designated the winner. The
winning speculation saves its current execution context and
its stack frame so as to allow its parent to continue from
the commit point. Additionally, the winning speculation at-
taches (ptrace) itself to the remaining sibling speculations
and alters their instruction pointer to point to a cleanup rou-
tine. In the cleanup routine, it performs an inclusion (prop-
agation of privatized updates) of the shared virtual memory
address (VMA) and frees any dynamically allocated mem-
ory it allocated before returning to the pool. The winning
speculation then commits its changes, wakes up its parent
with a “winning speculation” message and joins the worker
pool. Upon waking up, the parent flow adjusts its execution
context and stack and returns from commit speculation
to continue its execution.

Second, if a speculative flow requests an evaluation, the
parent flow executes the user defined evaluation function
and returns a boolean value to indicate either a success or
a cancellation. The speculative flow then either continues
or aborts its execution based on the boolean value. Ad-
ditionally, the parent flow can steer the computations of
speculative flows. Anumita also implements a flexible ap-
proach to allow the parent flow to store the intermediate
results of speculative flows for evaluation. In order to ac-
complish this a speculative flow may access memory using
get ir memory. This region of memory is shared between
the parent flow and the speculative flow and it is unique to
each speculative flow. This obviates the need for any syn-
chronization among speculative flows to update their inter-
mediate results.

Finally, in the event that all the speculations in a compo-
sition abort, the last speculation to abort (in program order
within for a composition) signals the parent flow to termi-
nate the program, since no surrogate satisfied the expected
quality criterion.

4.3 Nested Speculative Compositions
Implementing support for nested speculations presents ad-
ditional challenges. Recall that in order to contain updates
within a speculative flow, the pages modified in a specula-
tive flow are privatized. Hence, if a speculative flow in turn
creates a new composition, then it should propagate all its
“privatized updates” to the speculative flows in the new com-
position. This has to be achieved without committing the up-
dates, since the parent of the nested speculation may not be
the winner in its composition. Conversely, the updates by the
speculations in a nested composition should be propagated
only to its parent flow to ensure program correctness.

To resolve this, in the case of nested speculations, the run-
time creates new speculative flows during the call to
begin speculation instead of using a worker pool entry.
This creates a current copy of the parent flow and includes
privatized updates. Since the parent is blocked upon compos-
ing a speculation, the lazy copy-on-write semantics provided

562



shared and
(read-write)

shared and 
write-protected

private
(read/read-write)

W(x): Write to page x

begin 
speculation

if(id == 0)
{
   W (1)
   W (2)
    ... 
   W*(5)
  evaluate
 speculation
}

if(id == 1)
{
   W (2)
   W (3)
    ...
   W*(6)
  evaluate
 speculation
}

if(id == 2)
{
   W (2)
   W (4)
}

commit 
speculation

shared and
(read-write)

text

stack

kernel

low-address

high-address
(45th bit set)

0x200000000000

shared memory
objects

+
memory mapped

les

heap

global data

heap

global data

heap

global data

memory allocated 
for evaluating 
speculations

0x100000000000

1 2 3 4 5

1 2 3 4

6

6

7

7

1 2 3 4 5

2 3 4 5

6 7

71

5

6

1 2 3 4 5

2 4 5

6 7

71 63

1 2 3 4 5 6 7

space allocated 
for evaluation

space freed 
at the end of
composition

2 2

4 4

1 2 3 4

main 
memory

Figure 5. (left) Illustrates the virtual memory address (VMA) layout of each process. The runtime provides memory isolation by using
shared memory objects and memory mapped files to share global state among processes. (right) Illustrates how the VMA is manipulated by
the runtime with a simple example.

by the operating system efficiently creates isolated private
address spaces for the nested speculations.

4.4 Containment
In order to determine the write-set and and contain (priva-
tize) the updates of a speculation, Anumita employs page
level protection and privatization of the shared VMA. Each
speculative flow initially write-protects (PROT READ) its
shared VMA. Read accesses to shared data do not produce
any faults and execute normally. However, if a specula-
tion attempts to write to a shared page (global data, heap),
the runtime handles the access fault (SEGV ACCERR) by
remapping the faulting page from the shared memory in pri-
vate (MAP PRIVATE) mode. The runtime maintains a list
of pages that were modified by each speculation within a
composition. The permissions of the page are then reset to
read-write so that the speculation can continue its execution.

This privatization provides containment of updates by a
speculation. Such a lazy privatization scheme that defers pri-
vatization until the instant memory update happens results

in weak atomicity [8]. Weak atomicity is sufficient to en-
sure program correctness in our speculation model. We do
not present a formal proof of correctness, however, the in-
tuition behind the proof is that once a winning speculation
commits, none of the remaining speculations will be allowed
to commit, thus precluding Write-after-Read or Write-after-
Write hazards. Hence, we chose the lazy privatization ap-
proach over a conservative approach, which privatizes the
entire VMA.

The runtime does not track accesses of local variables on
the stack. Since a copy of the parent stack frame is passed
to each speculation, the stacks do not need to be write-
protected. Instead the parent’s stack frame is updated with
contents of the stack frame from the winning speculation.
Such a strategy works for programs that contain pointers to
stack-allocated data.

4.5 Inclusion
When a speculation composition culminates with a winning
surrogate, the updates of the winning speculation (contained

563



in the privatized data) must be propagated and made visible
to the parent flow and any other non speculative flows in the
program.

In order to perform this inclusion of updates, we imple-
ment the shadow addressing technique similar to [29] that
leverages the large virtual memory address (VMA) provided
by 64-bit operating systems. Recall that the runtime system
maps globals and the heap (described in Section 4.1) using
shared memory objects and memory mapped files. Using the
same shared memory objects and memory mapped file, the
runtime creates an identical secondary shadow mapping of
the global data sections and heap at a high address (45th bit
set) in the VMA of each speculation flow. The program is
unaware of this mapping, and performs its accesses (read-
s/writes) at the original low address space. The high address
space shadow is always shared among speculative flows and
is never privatized. Hence, any updates to it are propagated
across all flows. In effect, the high address mapping cre-
ates a shadow address space for all shared program data and
modifications (unless privatized) are visible in both address
spaces (shown in Figure 5).

To perform this inclusion the runtime employs two dis-
tinct strategies depending on the depth of the speculations
(nested or otherwise). In a single level speculation, where a
flow creates a composition, updates from the winning spec-
ulation must be made visible to the parent flow. To achieve
this, the runtime copies all the pages in the write set of the
winning speculation to the high address shadow region of the
VMA (shown in Figure 5), which automatically propagates
the updates to the parent flow, due to the shared memory
bindings. The runtime then reverts all privatized mappings
within the speculative flows (cleanup) and returns them to
the pool.

In a nested speculation, the runtime creates a new shared
memory mapping equal to the write set of the winning spec-
ulation and it copies the write set of the winning speculation
to the newly created mapping. The parent flow then copies
the write-set from this new mapping into its address space to
perform inclusion.

4.6 Example
We present a simple example to illustrate how the runtime
manipulates the VMA of each speculation flow while pro-
viding isolation, privatization and inclusion. Consider the
scenario as shown in Figure 5 where a control flow creates
a composition involving three speculations. Initially, all the
shared pages (1, 2, 3, 4) of the speculative flows are write-
protected. When the flow with rank 0 attempts to write to
pages (1, 2), the pages are privatized (lazy privatization).
Similarly, the runtime system privatizes the updates of spec-
ulations with ranks 1 and 2, which write to pages (2, 3) and
(2, 4) respectively. If the speculation with rank 2 wins the
composition, the runtime commits the write-set to the shared
high-address space to propagate the updates.

Additionally, in Figure 5 we illustrate how the speculative
flows may request evaluation of their progress. At the begin-
ning of a speculative composition, a program may choose
to request space for storing partial results. In the above ex-
ample, pages (5, 6, 7) are allocated by the runtime system
to store the partial results. Each speculation may use the
get ir memory() to obtain the address of the region used to
store its partial results. The speculative flow at rank 0 writes
its partial results to page 5, before requesting evaluation. Fol-
lowing the same procedure, speculative flow 1 writes to page
6 before requesting evaluation from its parent flow. The par-
ent flow can access these memory locations and execute the
evaluation function to determine the relative quality and/or
progress of the speculative flows.

Recall, that while Anumita supports multi-threaded ap-
plications, caution should be exercised in leveraging specu-
lative parallelism in a multi-threaded environment. As dis-
cussed in Section 3.1, if a surrogate requires concurrency
with other non-speculative threads or other concurrently ex-
ecuting speculative threads then it is not a candidate for spec-
ulation, since such a surrogate is based on concurrency rather
than speculation. Hence, in the presence of data dependen-
cies we expect explicit serialization in composing specula-
tions in order to ensure program correctness.

A complication arises when two distinct threads of a pro-
cess independently instantiate speculative compositions that
execute concurrently. This is depicted in Figure 1, where
threads 0 and 2 enter distinct compositions. While the com-
positions may be distinct, the granularity of our protection
mechanism is at the level of an operating system page, which
can cause false-sharing if updates to distinct bytes from dis-
tinct compositions reside on the same operating system page.
The artifact of this problem is that in the case of concurrent
speculations, the contents on a page subject to false shar-
ing will reflect the updates from the last speculation in pro-
gram order to successfully commit without reflecting any of
the updates from concurrent commits. For example in Fig-
ure 1, if the monte-carlo method updated page 1, which was
also updated (albeit at different locations) by the adaptive
method, the final contents of page 1 will reflect the updates
from adaptive and none of the updates from monte-carlo. In
effect, updates to pages subject to false sharing are mutually
exclusive, which is clearly incorrect.

To solve this problem, we need an efficient mechanism
to propagate updates from a winning speculative flow to all
concurrent speculations. This is achieved by computing and
propagating XOR differences. To see how this works, con-
sider the example shown in Figure 1. When monte-carlo
wins the speculative composition in thread 2, prior to per-
forming inclusion the runtime determines if there are con-
current speculative compositions in other threads. If so, for
each page in the write-set of the first winning flow (monte-
carlo), the runtime computes an XOR of the privatized page
with its counterpart in the high address space. Recall that

564



prior to inclusion, the page in the write-set of monte-carlo
is privatized and includes updates from the flow, whereas its
counterpart in the shadow address space contains the origi-
nal contents of the page. The XOR difference thus yields the
exact set of bits that were updated by monte-carlo method.

The runtime then pushes this XOR difference to all con-
currently executing flows (adaptive, conservative, extrapo-
lation) and performs inclusion of updates from monte-carlo
as before. The concurrent flows apply the differences by
computing the XOR of the difference they received with
their privatized copy of the page (if one exists due to false
sharing). Intuitively this mechanism updates the privatized
contents of a concurrent speculation with the latest updates
from a winning speculation in another composition. In the
example above, when adaptive finally wins its composition,
its write set already contains the updates from monte-carlo
and hence the final resulting update of a falsely shared page
from adaptive correctly contains the cumulative updates
from winning speculations. To minimize time and space
overhead, the XOR difference is only computed on the pages
in the write set that are subject to false sharing (typically
small), which is determined by computing the intersection
of the write sets of the winning flow (monte-carlo) and all
other concurrently executing flows(adaptive, conservative,
extrapolation) .

4.7 Support for OpenMP
To support OpenMP, we provide a simple source to source
translator that expands the #pragma speculate (...){....} di-
rective to begin and commit constructs. Our translator parses
only the speculate pragma leaving the rest of the OpenMP
code intact. This approach does not require any modifica-
tions to existing OpenMP compilers and/or OpenMP run-
time libraries.

Our runtime system overrides mutual exclusion locks,
barriers and condition variables of the POSIX thread in-
terface and a few OpenMP library routines in order to
provide a clean interface to OpenMP. We overload the
omp get thread num call in OpenMP to return the spec-
ulation rank from get rank. The Anumita runtime auto-
matically detects if an OpenMP program is in a specula-
tive context and selectively overloads OpenMP calls, which
fall back to their original OpenMP runtime when execution
is outside a speculative composition. Finally, our OpenMP
subsystem implements a simple static analyzer to perform
lexical scoping of a speculative composition. This can be
used to check for logical errors such as a call to commit
before beginning a speculation.

5. Experimental Evaluation
We evaluated the performance of the Anumati runtime over
three applications: a multi-algorithmic PDE solving frame-
work [32], a graph (vertex) coloring problem [25] and a suite
of sorting algorithms [36].

We ran each benchmark under two scenarios. The first
scenario uses Anumita to speculatively execute multiple
algorithms concurrently. This was done by modifying ap-
proximately 8-10 lines of source code in the above bench-
marks. Since Anumita guarantees isolation, these modifica-
tions were short and required little to no understanding of
the algorithms themselves. In the other scenario we ran the
vanilla benchmark executing each algorithm individually.
All experiments were performed on a 16 core shared mem-
ory machine (NUMA) running Linux 2.6.31-14 with 64GB
of RAM. The system contains four 2 GHz Quad-core AMD
Opteron processors.

5.1 PDE solver
One approach for dealing with the unpredictable input-
dependent performance of PDE solvers is a ‘poly-algorithmic’
strategy, where multiple algorithms are tried in parallel, with
the one finishing first declared the winner, e.g., [4, 6]. This
approach is robust, essentially guaranteeing a solution, and
is easily implemented using our framework.

We consider the scalar linear elliptic equation

−∇2u+
α

(β + x+ y)2
ux +

α

(β + x+ y)2
uy = f(x, y),

with Dirichlet boundary conditions on the unit square, where
β > 0. Discretized with centered finite differences, the
resulting linear system of algebraic equations is increasingly
ill-conditioned for large α and small β. Krylov linear solvers
have difficulty as this problem approaches the singular case,
i.e., as α/β2 grows. What is not so clear is how quickly the
performance degrades, and how much preconditioning can
help. To simplify the case study, we fix β at 0.01 and vary α.

Discretizing the problem using a uniform grid with spac-
ing h = 1/300 results in a linear system of dimension
89401. We consider three iterative methods and one direct
method for solving this system of equations:

1. GMRES(kdim=20) with ILUTP(droptol=.001)

2. GMRES(kdim=50) with ILUTP(droptol=.0001)

3. GMRES(kdim=100) with ILUTP(droptol=.00001)

4. Band Gaussian Elimination

Here kdim is the GMRES restart parameter, ILUTP is
the “incomplete LU with threshold pivoting” precondi-
tioner [33, Chap. 10], and droptol controls the number
of nonzeros kept in the ILU preconditioner. Increasing kdim
or decreasing droptol increases the computational cost per
iteration of the iterative method, but should also increase
the residual reduction per iteration. Hence, one can think of
methods one to four as being ordered form “fast but brittle”
to “slow but sure.” Our PDE-solving framework for these
experiments is ELLPACK [32], with the GMRES imple-
mentation from SPARSKIT [34].

Figure 6 shows the performance of the four methods and
speculation for varying α. For small α the results are consis-

565



1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160

alpha

Ti
m

e 
(s

ec
)

 

 

GMRES(kdim=20,droptol=.001)
GMRES(kdim=50,droptol=.0001)
GMRES(kdim=100,droptol=.00001)
Band GE
Speculation

Figure 6. Time to solution for individual PDE solvers and speculation based version using Anumita. Cases that fail to converge
in 1000 iterations are not shown. The results show that Anumita has relatively small overhead, allowing the speculation based
program to consistently achieve performance comparable to the fastest individual method for each problem.

Speedup
Method Fail Min Max Median

1 51 0.84 2.47 0.94
2 27 0.94 2.89 1.18
3 23 0.94 3.62 1.52
4 0 0.95 36.19 5.01

Table 2. Number of failing cases (out of 125) for each PDE
solver, and speedup of speculative approach relative to each
method.

tent, with Method 1 consistently fastest. As α grows, how-
ever, the performance of the iterative methods vary dramati-
cally, with each method taking turns being the most efficient.
In many cases the GMRES iteration fails to converge (i.e., it-
erations exceeding 1000 are not shown in the figure). Even-
tually, for large enough α, Band GE is the only method that
succeeds.

The write set of the PDE solver is 157156 pages (≈
614MB) of data. The overhead of speculation shrinks steadily
as the problem difficulty grows, with overheads of no more
than 5% for large α. This is to be expected since the time
to solve sparse linear systems grows faster as a function of
problem dimension than the data set size, which largely de-
termines the overhead. However, in cases with small (< 10
sec) runtime, the overhead due to speculation is noticeable
(up to 16%). This is due to initial thread creation and start
up costs which are otherwise amortized over the runtime of
a larger run.

The results show that speculative execution provides clear
benefits over any single static selection of PDE solver. Ta-
ble 2 summarizes the performance of the four methods rela-
tive to the speculatively executed case. Statically choosing
any one of the GMRES methods (Methods 1-3) causes a
serious robustness problem, as many of the problems fail
completely. Even for the cases where GMRES succeeds,
we see that the speculative approach yields noticeable im-
provements. For the problems where method 1 succeeds, it
is faster than speculation more than half the time (median
speedup = 0.94). Compared to methods 2-4 speculation is
significantly faster in the majority of cases. In essence, spec-
ulation dynamically chooses the best algorithm for a given
problem, with minimal overhead.

It must be pointed out that the speculative code uses four
computational cores, while the standalone cases each use
only one core. In the case where we only have sequential
implementations of a given surrogate, speculation gives us a
convenient way to do useful work on multiple cores, mov-
ing more quickly on average to a solution. However, given
parallel implementations of each of the four methods, an al-
ternative to speculation is to choose one method to run (in
parallel) on the four cores. However, this strategy still suf-
fers from the risk of a method failing, in which case one or
more additional methods would have to be tried. In addition,
it is well-known that sparse linear solvers do not exhibit ideal
strong scaling, i.e., parallel performance for a fixed prob-
lem does not scale well to high core counts. By contrast,
running each surrogate on a core is embarrassingly paral-
lel; each core is doing completely independent work. Given
hundreds of cores, the optimal strategy is likely to be to use

566



161820222426
0

20

40

60

80

100

120

140

Colors

Ti
m

e 
(s

ec
)

 

 
tabu
vns
sa
speculation

(a) LE 450 15c, seed=1

161820222426
0

20

40

60

80

100

120

Colors

Ti
m

e 
(s

ec
)

 

 
tabu
vns
sa
speculation

(b) LE 450 15c, seed=12

161820222426
0

20

40

60

80

100

120

140

160

180

Colors

Ti
m

e 
(s

ec
)

 

 
tabu
vns
sa
speculation

(c) LE 450 15c, seed=1234

161820222426
0

20

40

60

80

100

120

140

160

180

200

Colors

Ti
m

e 
(s

ec
)

 

 
tabu
vns
sa
speculation

(d) LE 450 15d, seed=1234

Figure 7. The performance of Graphcol benchmark using two DIMACS data sets LE 450 15c (subfigures (a) through (c)) and
LE 450 15d (subfigure (d)).

speculation at the highest level, with each surrogate running
in parallel on some subset of the cores. Choosing the num-
ber of cores to assign to each surrogate should depend on the
problem and the scalability of each method on that problem,
and is beyond the scope of this paper.

5.2 Graph Coloring Problem
In graph theory, vertex coloring is the problem of finding the
smallest set of colors needed to color a graph G = (V,E)
such that no two vertices vi, vj ∈ V with the same color
share an edge e. The graphcol [25] benchmark implements
three surrogate heuristics for coloring the vertices of a graph:
simulated annealing, tabu search and variable neighborhood
search. The benchmark initializes the graph by randomly
coloring the vertices with a specified set of colors and each
heuristic algorithm iteratively recolors the graph within the
coloring constraints. We used the DIMACS [13] data sets
for the graph coloring benchmark, which are widely used in
evaluating algorithms and serve as the testbed for DIMACS
implementation challenges. Each data set (graph) has a fixed

number of colors that it can use to color a graph. We experi-
mented with over 80 DIMACS data sets using different seeds
(for initial colors) and show the results from representative
runs.

In Figure 7 we present the results of the graph coloring
benchmark using two DIMACS data sets. The results show
several interesting characteristics. First, certain heuristics do
not converge and cannot guarantee a solution. For instance,
simulated annealing (sa) cannot color the graph beyond a
certain number of colors. Second, the choice of the input
seed, which decides the initial random coloring, creates sig-
nificant performance variations among the heuristics (Fig-
ures 7 (a) through (c)) even when the graph is identical.
Third, when the seed is constant, there is performance varia-
tion among the data sets, which represent different graphs as
shown in Figures 7 (c) and (d). In the presence of such strong
input dependence across multiple input parameters, it is dif-
ficult even for a domain expert to predict the best algorithm
a priori.

567



quick merge heap shell insertion bubble speculation
0

0.5

1

1.5

2

2.5

3

3.5

Sort Algorithm

lo
g
 (

T
im

e
 (

s
e
c
))

 

 

sorted

random

overhead

baseline

baseline

Figure 8. Performance of Anumita over a suite of sorting algorithms.

Using Anumita it is possible to obtain the best solution
among multiple heuristics. We found that in some cases
where sa failed to arrive at a solution (unable to color the
graph using specified number of colors), the use of specula-
tion guaranteed not only a solution but also one that is nearly
as fast the fastest alternative. Since the write set is relatively
small at around 50-100 pages, the overhead of speculation
is negligible. Anumita’s speedup, across all the data sets (in
Figure 7), ranges from 0.954 (vns with 26 colors in in Fig-
ure 7 b) in the worst case, when the static selection is the
best surrogate to 7.326 (vns with 21 colors in in Figure 7
d), when the static selection is the worst surrogate. We omit
the results from the sa method in calculating speedup since
sa consistently performs worse than the other algorithms on
these data sets.

5.3 Sorting Algorithms
Since the overhead of speculation in our runtime is propor-
tional to the write set of an application, we chose sort as
our third benchmark since it can be configured to have an
arbitrarily large memory footprint. Sort is relatively easy to
understand, and yet there are wide variety of sorting algo-
rithms with varying performance characteristics depending
on the size of the data, sortedness and cache behavior [3].
Our suite of sorting algorithms includes C implementations
of quick sort, heap sort, shell sort, insertion sort, merge sort
and bubble sort.

The time to completion of the sorting algorithms is based
on several cardinal properties including the input size, their
values (sorted or unsorted) and algorithmic complexity. In
this set of experiments we fixed the input size and used two
sets of input data — completely sorted and completely ran-
dom, each of size 8 GB. Each sorting algorithm is imple-
mented as a separate routine. The input data is generated
using a random number generator. After sorting the data the
benchmark verifies that the data is properly sorted. We mea-
sured the runtime of each sorting algorithm and excluded

the initialization and verification phases. Using Anumita,
we speculatively executed all six sorting algorithms concur-
rently.

In Figure 8 we present the results of the sort benchmark.
Results for insertion sort and bubble sort for random data
were omitted since their runtime exceeds 24 hours. The
results show that insertion sort is the fastest for sorted data
and quick sort performs the best on completely random
data, which is expected. Despite the large write set of 8 GB
per speculation, a total of 6x8GB for the entire speculative
composition, Anumita is at least the second fastest of all the
alternatives considered and is nearly as fast as the fastest
alternative.

The worst case overhead of speculation on sorted data
relative to the best algorithm (insertion sort) is 15.78%
(3.2 sec), which stems from the map faults handled by the
runtime system. The worst case overhead of speculation
compared to the fastest algorithm on the random data is
8.72% (50.34 sec over 616 secs). This overhead stems from
privatization, isolation and inclusion of the large 8 GB data
set. Anumita achieves a speedup ranging from 0.84 (quick
sort/random data) to 62.95 (heap sort/sorted data).

5.4 Energy Overhead
The primary focus of Anumita is to improve run time perfor-
mance. Reducing energy consumption runs counter to this
goal. However, in this section, we demonstrate that adopt-
ing coarse-grain speculation to exploit parallelism on multi-
core systems does not come with a large energy consumption
penalty, and in fact can reduce total energy consumption in
many cases.

Energy consumption in modern multi-core processors is
not proportional to CPU utilization. An idle core consumes
nearly 50% of the energy of a fully loaded core [27]. There is
a significant body of research in the architectures community
on making the energy consumption proportional to offered

568



1800 2000 2200 2400 2600 2800 3000 3200 3400
0

1

2

3

4

5

6

7

8

9
x 10

4

alpha

E
n
e
rg

y
 (

J
o
u
le

)

 

 

GMRES(kdim=20,droptol=.001)

GMRES(kdim=50,droptol=.0001)

GMRES(kdim=100,droptol=.00001)

Band GE

Speculation

Figure 9. Energy consumption of PDE solver using surrogates in Anumita. The results show that Anumita has relatively low
energy overhead.

load, which is motivated by energy consumption of large
data centers that run at an average utilization of 7− 10%.

To measure the energy overhead of coarse-grain specula-
tive execution using Anumita, we connected a Wattsup Pro
wattmeter to the AC input of the 16 core system running
the benchmark. This device measures the total input power
to the entire system. We performed the power measurement
using the SPEC Power daemon (ptd), which samples the in-
put power averaged over 1 sec intervals for the entire run
time of the application. We calculated energy consumption
as the product of the total runtime and the average power.
We measured energy consumption under two scenarios: a)
each algorithm run individually and b) speculatively execute
multiple algorithms using Anumita.

Figure 9 presents the energy consumption of the PDE
solver. We report the results for alpha values greater than
1700 for the PDE solver, since they have a runtime of at
least a few seconds (required to make any meaningful power
measurements). Comparing the most energy efficient algo-
rithm at each alpha with the corresponding speculative exe-
cution, we found that the overall energy overhead of specula-
tion ranged between 7.72% and 19.21%. It is comforting to
see that, even in the presence of running four surrogates con-
currently, Anumita incurred a maximum energy overhead of
19.21% compared to the most energy efficient algorithm.

More importantly, since the most energy efficient algo-
rithm for a given problem in not known a priori, we again
see a large robustness advantage for speculation — this time
with respect to energy consumption. With a static choice of
algorithm there is substantial risk that a method will fail (ne-
cessitating the use of another method) or take much longer
than the best method, all of which consume more energy
than the speculatively executed approach.

Figure 10 shows the energy consumption for two vertex
coloring algorithmic surrogates (tabu, vns) and speculation
using Anumita. In this case, Anumita speculates over three

1617181920212223
0

1

2

3

4
x 10

4

Colors

E
n

e
rg

y
 (

J
o

u
le

)

 

 

tabu

vns

speculation

Figure 10. Energy consumption of the graph coloring
benchmark for the LE 450 15c data set with a seed of 12.

algorithms (sa, tabu and vns) even though one of them con-
sistently fails to color the graph. Comparing the most en-
ergy efficient algorithm at each color with the corresponding
speculation, we found that the overall energy overhead due
to speculation ranged between 6.08% and 16.04%.

The total energy consumed to color the graph is actually
lower for speculation when compared to a static choice of
either algorithmic surrogate. This is because energy is the
product of power and time, and since neither algorithm is
consistently better (strong input dependence), speculation
results in lower time to completion of an entire test case
which translates to lower energy consumption. Speculation
using Anumita takes 252 seconds for the problem set with
a total energy consumption of 107904 joules. Tabu takes a
total of 321 seconds and consumes a total energy of 128531
joules for the problem set. In contrast the best static choice
of the surrogate (vns) runs in 314 seconds and consumes
125194 joules. Speculation here is 24.6% faster in time and
consumes 16.02% less energy, a result that is positive in both
aspects.

569



5.5 Summary
Anumita provides resilience to failure of optimistic algo-
rithmic surrogates. In both graph coloring as well as PDE
solvers, not all algorithmic surrogates successfully run to
completion. In the absence of a system such as Anumita,
the alternative is to run the best known algorithmic surrogate
and if it fails, retry with a fail-safe algorithm that is known
to succeed. While this works for PDE solving example with
Band Gaussian Elimination being the fail-safe, there is no
clear equivalent for graph coloring, with each surrogate fail-
ing at different combinations of graph geometry and initial
coloring. With modest energy overhead and sometimes sav-
ings, Anumita can significantly improve the performance of
otherwise hard to parallelize applications.

6. Related Work
We categorize existing software based speculative execu-
tion models [11, 14, 18–21, 28, 30, 31, 35, 37] into two
categories depending on the granularity at which they per-
form speculation — loops or user defined regions of code.
Loop level models [11, 19–21, 30, 31, 35, 37] achieve paral-
lelism in sequential programs by employing speculative ex-
ecution within loops. While such models transparently par-
allelize sequential applications without requiring any effort
from the programmer, their scope is limited to loops. In
contrast, the second category of speculative execution mod-
els [5, 14, 18, 28, 38] allow the programmer to specify re-
gions of code to be evaluated speculatively. We restrict our
discussion to these models throughout the rest of this sec-
tion.

Berger et al. [5] proposed the Grace framework to specu-
latively execute fork-join based multithreaded applications.
Grace uses processes for state separation with virtual mem-
ory protection and employs page-level versioning to detect
mis-speculations. Grace focuses on eliminating concurrency
bugs through sequential composition of threads.

Ding et al. [14] proposed behavior oriented paralleliza-
tion (BOP). BOP aims to leverage input dependent course
grained parallelism by allowing the programmer to anno-
tate regions of code, denoted by possibly parallel regions
(PPR). BOP uses a lead process to execute the program non-
speculatively and uses processes to execute the possibly par-
allel regions. When the lead process reaches a PPR, it forks
a speculation and continues the execution until it reaches the
end of the PPR. The forked process then jumps to the end
of the PPR region and in turn acts as lead process and con-
tinues to fork speculations. This process is repeated until all
the PPRs in the program are covered. BOP’s PPR execution
model is identical to pipelining. The lead process at the start
of the pipeline waits for the speculation it forked to com-
plete and then checks for conflicts before committing the
results of the speculation. This process is recursively per-
formed by all the speculation processes which assumed the
role of the lead process. BOP employes page-based protec-

tion of shared data by allocating each shared variable in a
separate page and uses a value-based checking algorithm to
validate speculations.

In another study, Kelsey et al. [18] proposed the Fast
Track execution model, which allows unsafe optimization
of sequential code. It executes sequential (normal tracks)
and speculative variants (fast tracks) of the code in paral-
lel and compares the results of both these tracks to validate
speculations. Their model achieves speedup by overlapping
the normal tracks and by starting the next normal track in
program order as soon as the previous fast track is com-
pleted. Fast Track performs source transformation to convert
all global variables to use dynamic memory allocation so its
runtime can track accesses to global variables. Additionally,
Fast Track employes a memory-safety checking tool to insert
memory checks while instrumenting the program. Finally,
Fast Track provides the programmer with configurations that
tradeoff program correctness against performance gains. In
contrast, Anumita provides transparent name space isolation
and it does not require any annotations to the variables in
a program. Additionally, Anumita does not rely on program
instrumentation.

Prabhu et al. [28] proposed a programming language for
speculative execution. Their model uses value speculation
to predict the values of data dependancies between coupled
interactions based on a user specified predictor. Their work
defines a safety condition called rollback freedom and is
combined with static analysis techniques to determine the
safety of speculations. They implemented their constructs
as a C# library. The domains where value speculation is
applicable are orthogonal to our work.

Trachsel and Gross [38, 39] present an approach called
competitive parallel execution (CPE) to leverage multi-core
systems for sequential programs. In their approach they exe-
cute different variants of a single threaded program compet-
itively in parallel on a multicore system. The variants are ei-
ther hand generated surrogates or automatically generated by
selecting different optimization strategies during compila-
tion. The program’s execution is divided into phases and the
variants compete with each other in a phase. The variant that
finishes first (temporal order) determines the execution time
of that phase, thereby reducing the overall execution time. In
contrast, Anumita is capable of supporting both sequential
and parallel applications and provides expressive evaluation
criterion (temporal and qualitative) to evaluate speculations.

Praun et al. [40] propose a programming model called
implicit parallelism with ordered transactions (IPOT) for ex-
ploiting speculative parallelism in sequential or explicitly
parallel programming models. The authors implement an
emulator using the PIN instrumentation tool to collect mem-
ory traces and emulate their proposed speculation model. In
their work, they propose and define various attributes to vari-
ables to enable privatization at compile time and avoid con-
flicts among speculations. In contrast, as mentioned previ-

570



ously, Anumita does not require annotations to variables or
rely on binary instrumentation. Instead, Anumita provides
isolation to shared data at runtime.

In another study, Cledat et al. [12] proposed opportunistic
computing, a technique to increase the performance of ap-
plications depending on responsiveness constraints. In their
model multiple instances of a single program are generated
by varying input parameters to the program, which then
compete with each other. In contrast, Anumita is designed
to support speculation at arbitrary granularity as opposed to
the entire program.

Ansel et. al. [3] proposed the PetaBricks programming
language and compiler infrastructure. PetaBricks provides
language constructs to specify multiple implementations of
algorithms in solving a problem. The PetaBricks compiler
automatically tunes the program based on profiling and gen-
erates an optimized hybrid as a part of the compile process.
In contrast, our approach performs coarse-grain speculation
at runtime and is hence better suited for scenarios where per-
formance is highly input data dependent.

Additionally, certain compiler directed approaches [7, 16,
17, 22, 24, 26] provide support for speculative execution
and operate at the granularity of loops. Such approaches rely
on program instrumentation [17], use hardware counters for
profiling [17] or binary instrumentation to collect traces [24,
26] in order to optimize loops. In contrast to such systems,
Anumita is implemented as a language independent runtime
system. The main goal of Anumita is to simplify the notion
of speculative execution.

Finally, a nondeterministic programming languages (e.g.,
Prolog, Lisp) allows the programmer to specify various al-
ternatives for program flow. The choice among the alterna-
tives is not directly specified by the programmer, however
the program at runtime decides to choose between the al-
ternatives [1]. Several techniques such as backtracking and
reinforcement learning are commonly employed in choosing
a particular alternative. It is unclear if it is the responsibility
of the programmer to ensure and correct the side-effects of
the alternatives. Anumita represents a concurrent implemen-
tation of the non-deterministic choice operator. The contri-
bution here is to introduce this notion and an efficient imple-
mentation to imperative programming.

7. Future Work
We are continuing to improve Anumita. We are presently
working on extending support for disk IO among specula-
tive surrogates. While Anumita simplifies the subtleties of
coarse-grain speculative parallelism by providing simple se-
quential semantics, the programmer must identify the scope
for speculation. We plan to automate this aspect of our sys-
tem. Currently there is an ongoing effort [2, 9, 10] to extend
C++ to include threading models. We propose that specu-
lation should also be a natural extension of the imperative
languages and the speculation model should be a natural

extension to threading models. We plan to to investigate ex-
tending language support for speculation.

8. Conclusions
In this paper we presented Anumita, a language indepen-
dent runtime system to achieve coarse-grain speculative par-
allelism in hard to parallelize and/or highly input depen-
dent applications. We proposed and implemented program-
ming constructs and extensions to the OpenMP program-
ming model to achieve speedup in such applications with-
out sacrificing performance, portability and usability. Exper-
imental results from a performance evaluation of Anumita
show that it is (a) robust in the presence of performance vari-
ations or failure and (b) achieves significant speedup over
statically chosen alternatives with modest overhead. The im-
plementation of Anumita and the benchmarks used in this
study will be made available for public download.

References
[1] H. Abelson and G. J. Sussman. Structure and Interpretation

of Computer Programs. MIT Press, Cambridge, MA, USA,
2nd edition, 1996. ISBN 0262011530.

[2] S. V. Adve and H.-J. Boehm. Memory Models: A Case for
Rethinking Parallel Languages and Hardware. Communica-
tions of the ACM, 53:90–101, August 2010. ISSN 0001-0782.
URL http://doi.acm.org/10.1145/1787234.1787255.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: A Language
and Compiler for Algorithmic Choice. In Proceedings of the
2009 ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’09, pages 38–49, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1.

[4] R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, and C. Romine.
Algorithmic bombardment for the iterative solution of linear
systems: A poly-iterative approach. Jnl. of Computational &
Appl. Math., 74:91–110, 1996.

[5] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe
multithreaded programming for C/C++. In OOPSLA ’09:
Proceeding of the 24th ACM SIGPLAN conference on Object
Oriented Programming Systems Languages and Applications,
pages 81–96. ACM, 2009. ISBN 978-1-60558-766-0.

[6] S. Bhowmick, L. C. McInnes, B. Norris, and P. Raghavan. The
role of multi-method linear solvers in pde-based simulations.
In ICCSA (1), pages 828–839, 2003.

[7] A. Bhowmik and M. Franklin. A general compiler framework
for speculative multithreading. In SPAA ’02: Proceedings of
the fourteenth annual ACM symposium on Parallel algorithms
and architectures, pages 99–108, New York, NY, USA, 2002.
ACM. ISBN 1-58113-529-7.

[8] C. Blundell, E. Lewis, and M. Martin. Subtleties of
transactional memory atomicity semantics. IEEE Computer
Architecture Letters, 5(2):17, 2006. ISSN 1556-6056.

[9] H.-J. Boehm. Threads Cannot be Implemented As a Library.
In Proceedings of the 2005 ACM SIGPLAN conference on
Programming Language Design and Implementation, PLDI

571



’05, pages 261–268, New York, NY, USA, 2005. ACM. ISBN
1-59593-056-6. URL http://doi.acm.org/10.1145/

1065010.1065042.

[10] Boehm, Hans-J. and Adve, Sarita V. Foundations of the
C++ Concurrency Memory Model. In Proceedings of the
2008 ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI 2008, pages 68–78, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2.
URL http://doi.acm.org/10.1145/1375581.1375591.

[11] T. Chen, M. Feng, and R. Gupta. Supporting speculative
parallelization in the presence of dynamic data structures. In
PLDI ’10: Proceedings of ACM SIGPLAN 2010 conference
on Programming Language Design and Implementation,
volume 45, pages 62–73, New York, NY, USA, 2010. ACM.

[12] R. Cledat, T. Kumar, J. Sreeram, and S. Pande. Opportunistic
Computing: A New Paradigm for Scalable Realism on Many-
Cores. In Proceedings of the First USENIX conference on Hot
topics in parallelism, HotPar’09, pages 5–5, Berkeley, CA,
USA, 2009. USENIX Association. URL http://portal.

acm.org/citation.cfm?id=1855591.1855596.

[13] DIMACS. Discrete Mathematics and Theoretical Computer
Science, A National Science Foundation Science and Technol-
ogy Center. http://dimacs.rutgers.edu/, April 2011.

[14] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and
C. Zhang. Software behavior oriented parallelization. In
PLDI ’07: Proceedings of ACM SIGPLAN 2007 conference
on Programming Language Design and Implementation,
volume 42, pages 223–234, New York, NY, USA, 2007.
ACM.

[15] Doug Lea. A memory allocator. http://g.oswego.edu/

dl/html/malloc.html, April 2011.

[16] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-
cut program decomposition for thread-level speculation. In
PLDI ’04: Proceedings of ACM SIGPLAN 2004 conference
on Programming Language Design and Implementation,
volume 39, pages 59–70, New York, NY, USA, 2004. ACM.

[17] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Specu-
lative thread decomposition through empirical optimization.
In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN sym-
posium on Principles and Practice of Parallel Programming,
pages 205–214, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-602-8.

[18] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast Track: A
Software System for Speculative Program Optimization. In
CGO ’09: Proceedings of the 7th annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization,
pages 157–168, Washington, DC, USA, 2009. IEEE Com-
puter Society. ISBN 978-0-7695-3576-0.

[19] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic Parallelism Requires
Abstractions. In PLDI ’07: Proceedings of the 2007 ACM
SIGPLAN conference on Programming Language Design and
Implementation, pages 211–222, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-633-2.

[20] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter,
K. Bala, and L. P. Chew. Optimistic Parallelism Benefits

from Data Partitioning. In ASPLOS XIII: Proceedings of the
13th International conference on Architectural Support for
Programming Languages and Operating Systems, volume 36,
pages 233–243, New York, NY, USA, 2008. ACM.

[21] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and
C. Casçaval. How much Parallelism is There in Irregular
Applications? In PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and Practice of Parallel
Programming, pages 3–14, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-397-6.

[22] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: a TLS compiler that exploits program
structure. In PPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and Practice of Parallel
Programming, pages 158–167, New York, NY, USA, 2006.
ACM. ISBN 1-59593-189-9.

[23] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world concurrency
bug characteristics. In ASPLOS XIII: Proceedings of the
13th International conference on Architectural Support for
Programming Languages and Operating Systems, pages 329–
339. ACM, 2008. ISBN 978-1-59593-958-6.

[24] Y. Luo, V. Packirisamy, W.-C. Hsu, A. Zhai, N. Mungre,
and A. Tarkas. Dynamic performance tuning for speculative
threads. In ISCA ’09: Proceedings of the 22nd annual Inter-
national Symposium on Computer Architecture, volume 37,
pages 462–473, New York, NY, USA, 2009. ACM.

[25] Marco Pagliari. Graphcol: Graph Coloring Heuristic Tool.
http://www.cs.sunysb.edu/~algorith/implement/

graphcol/implement.shtml, April 2011.

[26] P. Marcuello and A. González. Thread-Spawning Schemes
for Speculative Multithreading. In HPCA ’02: Proceedings
of the 8th International Symposium on High-Performance
Computer Architecture, page 55, Washington, DC, USA,
2002. IEEE Computer Society.

[27] Patterson, David A. and Hennessy, John L. Computer
Organization and Design, Fourth Edition, Fourth Edition: The
Hardware/Software Interface (The Morgan Kaufmann Series
in Computer Architecture and Design). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 4th edition, 2008.
ISBN 0123744938, 9780123744937.

[28] P. Prabhu, G. Ramalingam, and K. Vaswani. Safe Pro-
grammable Speculative Parallelism. In PLDI ’10: Proceed-
ings of ACM SIGPLAN 2010 conference on Programming
Language Design and Implementation, volume 45, pages
50–61, New York, NY, USA, 2010. ACM.

[29] H. K. Pyla and S. Varadarajan. Avoiding Deadlock Avoidance.
In PACT 2010: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation
Techniques, 2010.

[30] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I.
August. Speculative parallelization using software multi-
threaded transactions. In ASPLOS XV: Proceedings of the
15th International conference on Architectural Support for
Programming Languages and Operating Systems, volume 38,
pages 65–76, New York, NY, USA, 2010. ACM.

572



[31] L. Rauchwerger and D. A. Padua. The LRPD Test: Specu-
lative Run-Time Parallelization of Loops with Privatization
and Reduction Parallelization. IEEE Transactions on Parallel
Distributed Systems, 10(2):160–180, 1999. ISSN 1045-9219.

[32] J. R. Rice and R. F. Boisvert. Solving Elliptic Problems Using
ELLPACK. Springer–Verlag, 1985.

[33] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS
Publishing, Boston, 1996.

[34] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix
computations. Technical Report 90-20, Research Institute for
Advanced Computer Science, NASA Ames Research Center,
Moffet Field, CA, 1990.

[35] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The
STAMPede approach to thread-level speculation. ACM
Transactions on Computer Systems, 23(3):253–300, 2005.
ISSN 0734-2071.

[36] Thomas Wang. Sorting Algorithm Examples. http:

//www.concentric.net/~ttwang/sort/sort.htm, April
2011.

[37] C. Tian, M. Feng, N. Vijay, and G. Rajiv. Copy or Discard
execution model for speculative parallelization on multicores.
In MICRO 41: Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture, pages 330–
341, Washington, DC, USA, 2008. IEEE Computer Society.
ISBN 978-1-4244-2836-6.

[38] O. Trachsel and T. R. Gross. Variant-based competitive
Parallel Execution of Sequential Programs. In Proceedings of
the 7th ACM international conference on Computing frontiers,
CF ’10, pages 197–206, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0044-5.

[39] O. Trachsel and T. R. Gross. Supporting Application-Specific
Speculation with Competitive Parallel Execution. In 3rd ISCA
Workshop on Parallel Execution of Sequential Programs on
Multi-core Architectures, PESPMA’10, 2010.

[40] C. von Praun, L. Ceze, and C. Caşcaval. Implicit Parallelism
with Ordered Transactions. In Proceedings of the 12th
ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, PPoPP 2007, pages 79–89, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-602-8. URL
http://doi.acm.org/10.1145/1229428.1229443.

[41] W. Zhang, C. Sun, and S. Lu. Conmem: detecting severe
concurrency bugs through an effect-oriented approach. In
ASPLOS XV:Proceedings of the 15th International conference
on Architectural Support for Programming Languages and
Operating Systems, pages 179–192, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-839-1.

573




