
9/17/2013

1

Exploring PL/SQL New Features and

Best Practices for Better Performance

Ami Aharonovich

Oracle ACE & OCP

Ami@DBAces.co.il

Who am I

• Oracle ACE

• Oracle Certified Professional DBA (OCP)

• Founder and CEO, DBAces

• Oracle DBA consultant and instructor, specializes in Oracle

database core technologies

• Specializes in training Oracle courses around the world

• Frequent speaker at the Oracle Open World convention

• President, Israel Oracle User Group

9/17/2013

2

Agenda

• Oracle SQL Developer: Overview

• PL/SQL Performance and Tuning:

– Parsing Time is Important

– Using Bulk Binding

– PL/SQL Function Result Cache

– Subprogram Inlining

– Finer Grained Dependencies

• New Features in Oracle Database 12c

• PL/SQL Best Practices and Guidelines

Oracle SQL Developer: Overview

• Free and fully supported graphical integrated development

environment that simplifies the development and

management of Oracle Database

• Oracle SQL Developer offers a complete:

– End-to-end development of your PL/SQL applications

– Worksheet for running queries and scripts

– DBA console for managing the database

– Reports interface

– Data modeling solution

– Migration platform for moving 3rd party databases to Oracle

9/17/2013

3

Oracle SQL Developer: Overview

• Oracle SQL Developer supports Oracle Database 12c:

– Oracle Database 12c new features

– Manage Multitenant Pluggable Databases

– Oracle Database 12c Data Redaction in SQL Developer

More Info on Oracle SQL Developer

• Prebuilt virtual machine with Database 11.2 & SQL Developer
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

• Oracle SQL Developer on OTN
www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html

• Oracle SQL Developer Documentation
http://docs.oracle.com/cd/E35137_01/index.htm

• Oracle SQL Developer Exchange
http://htmldb.oracle.com/pls/otn/f?p=42626:16:695907153071056::NO:::

• Oracle SQL Developer Forum
http://forums.oracle.com/forums/forum.jspa?forumID=260

• Oracle By Example (OBE), Demos and Tutorials at the Oracle

Learning Library
www.oracle.com/technetwork/developer-tools/sql-developer/obe-082749.html

9/17/2013

4

Parsing Time is Important

BEGIN

FOR i IN 1..100000 LOOP

EXECUTE IMMEDIATE 'INSERT INTO t (x,y)

VALUES ('||i||',''A'')';

END LOOP;

END;

/

PL/SQL procedure successfully completed.

Elapsed: 00:00:42.91
Parsing_Time_is_Important.sql

Parsing Time is Important

BEGIN

FOR i IN 1..100000 LOOP

EXECUTE IMMEDIATE 'INSERT INTO t (x,y)

VALUES (:i,''A'')' USING i;

END LOOP;

END;

/

PL/SQL procedure successfully completed.

Elapsed: 00:00:08.26

9/17/2013

5

Parsing Time is Important

SELECT SUBSTR(sql_text,11,8) "Bind", COUNT(*),

ROUND(SUM(sharable_mem)/1024) "Memory KB"

FROM v$sqlarea

WHERE sql_text LIKE 'INSERT%INTO t (x,y)%'

GROUP BY SUBSTR(sql_text,11,8);

Bind COUNT(*) Memory KB

------------ ------------ ------------

NO_BIND 9,349 131,580

USE_BIND 1 14

Using Bulk Binding

• Save context switch – better performance!

• Bind whole array of values simultaneously rather than

looping to perform fetch, insert, update and delete on

multiple rows

• Use BULK COLLECT – for SELECT statements

• Use FORALL – for DML statements

• Use the RETURNING clause to retrieve information

about the rows that are being modified

• Works also with dynamic SQL

9/17/2013

6

Using Bulk Binding

• In case index numbers are not consecutive

– Use INDICES OF with or without bounds

– Use VALUES OF for associative array indexed by PLS_INTEGER

• Use SAVE EXCEPTIONS in your FORALL statements:

– Exceptions raised during execution are saved in the

%BULK_EXCEPTIONS cursor attribute

– Collection of records with two fields: ERROR_INDEX and

ERROR_CODE

FORALL index IN lower_bound..upper_bound
SAVE EXCEPTIONS
{insert_stmt | update_stmt | delete_stmt}

Bulk SQL – Examples

• SELECT id BULK COLLECT INTO …

• FETCH emp_cur BULK COLLECT INTO …

• DELETE … RETURNING … BULK COLLECT INTO …

• FORALL i IN … UPDATE …

• FORALL i IN INDICES OF … INSERT …

Bulk.sql

9/17/2013

7

It’s All About Caching

• Accessing memory is far quicker than accessing hard drives

• This fact gives rise to caching: the process of storing data in

memory instead of disks

• Caching is a common principle of Oracle database

architecture, in which users are fed data from the buffer

cache instead of the disks on where the database resides

• Oracle database 11g enhances performance by using:

– SQL Query Result Cache

– PL/SQL Function Result Cache

– Client Query Result Cache

What is PL/SQL Function Result Cache?

• In the past, if you called a PL/SQL function 1,000 times and

each function call consumed 1 second, the 1,000 calls would

take 1,000 seconds

• With this new function results cache feature, depending on

the inputs to the function and whether the data underlying

the function changes, 1,000 function calls could take about

1 second, total

9/17/2013

8

PL/SQL Function Result Cache

• Allows storing the results of PL/SQL functions in the SGA

• Caching mechanism is both efficient and easy to use

• Relieves you of the burden of designing and developing your own

caches and cache management policies

• Provides the ability to mark a PL/SQL function to indicate that its

result should be cached to allow lookup, rather than

recalculation, when the same parameter values are called

• Saves significant space and time

• Done transparently using the input parameters as the lookup key

• Instancewide – all distinct sessions invoking the function benefit

Using PL/SQL Function Result Cache

• Include the RESULT_CACHE option in the function

declaration section of a package or function definition

CREATE OR REPLACE FUNCTION ProductName

(prod_id NUMBER, lang_id VARCHAR2)

RETURN NVARCHAR2

RESULT_CACHE

IS

result VARCHAR2(50);

BEGIN

SELECT translated_name INTO result FROM product_descriptions

WHERE product_id = prod_id AND language_id = lang_id;

RETURN result;

END;

PLSQL_Function_Result_Cache.sql

9/17/2013

9

Subprogram Inlining

• Every call to a procedure or function causes a slight, but

measurable, performance overhead, which is especially

noticeable when the subprogram is called within a loop

• Automatic subprogram inlining can reduce the overheads

associated with calling subprograms, whilst leaving your

original source code in its normal modular state

• This is done by replacing the subprogram calls with a copy

of the code in the subprogram at compile time

Subprogram Inlining

• Controlled by the PLSQL_OPTIMIZE_LEVEL parameter and

the INLINE pragma

• PLSQL_OPTIMIZE_LEVEL=2 (the default)

– INLINE pragma determines whether the following statement

or declaration should be inlined or not

• PLSQL_OPTIMIZE_LEVEL=3

– Optimizer may inline code automatically

– INLINE pragma can turn it off inlining for a statement or

increase the likelihood that the optimizer will choose to inline

a statement

Subprogram_Inlining.sql

9/17/2013

10

Finer Grained Dependencies

• In previous releases, metadata recorded mutual

dependencies between objects with the granularity of the

whole object

• This means that dependent objects were sometimes

invalidated when there was no logical requirement to do so

• Oracle Database 11g records dependency metatdata at a

finer level of granularity

Finer Grained Dependencies

• By reducing the consequential invalidation of dependent

objects in response to changes in the objects they depend

upon, application availability is increased

• The benefit is felt both in the development environment

and when a live application is parsed or upgraded

• Changes to schema objects does not cause consequential

invalidations

Finer_Grained_Dependencies.sql

9/17/2013

11

New Features in Oracle Database 12c

• Invisible Columns

• Grant Roles to Code

• PL/SQL from SQL

• Improved Defaults:

– Default to a sequence

– Default when null inserted

– Identity type

• Enhanced Statistics:

– Statistics during loads

– Session private statistics for GTT’s

Calling PL/SQL from SQL

WITH

FUNCTION demo_func (p_var1 IN NUMBER)

RETURN NUMBER

IS

BEGIN

RETURN p_var1;

END;

SELECT demo_func(id),

FROM tbl

WHERE

.......

/

9/17/2013

12

12c Invisible Column

CREATE TABLE demo

(col1 NUMBER, col2 NUMBER, col3 NUMBER INVISIBLE);

DESCRIBE demo

Name Null? Type

--------------- ---------------- ---------------

COL1 NUMBER

COL2 NUMBER

INSERT INTO demo VALUES (1,2);

INSERT INTO demo (col1,col2,col3) VALUES (1,2,3);

12c Invisible Column

SELECT * FROM demo;

COL1 COL2

---------- ----------

1 2

1 2

SELECT col1, col2, col3 FROM demo;

COL1 COL2 COL3

---------- ---------- ----------

1 2

1 2 3

9/17/2013

13

12c Invisible Column

ALTER TABLE demo MODIFY (col2 INVISIBLE);

ALTER TABLE demo MODIFY (col3 VISIBLE);

SELECT column_name,column_id

FROM user_tab_columns

WHERE table_name=’DEMO’;

COLUMN_NAME COLUMN_ID

--------------- ---------------

COL1 1

COL3 2

COL2

PL/SQL Best Practices and Guidelines

• SQL can be faster than PL/SQL

• Avoid using procedural code when SQL code may be better

• Use bulk binds to reduce context switches between the

PL/SQL engine and the SQL engine

• Do not use UTL_FILE to read text files if you can use External

Tables instead

• Do not write PL/SQL merges if you can use SQL MERGE

• Use DML Error Handling (DBMS_ERRLOG) to trap failures in

DML rather than coding PL/SQL

9/17/2013

14

PL/SQL Best Practices and Guidelines

• Use PLS_INTEGER when dealing with integer data

– Efficient data type for integer variables

– Requires less storage than INTEGER or NUMBER

– Operations use machine arithmetic which is faster

• Beware of implicit data type conversions

• Modularize your code:

– Limit the number of lines of code between a BEGIN and END

– Use packaged programs to keep smaller executable sections

– Use local procedures and functions to hide logic

– Use a function interface to hide formulas and business rules

PL/SQL Best Practices and Guidelines

• Write readable code:

– Use UPPER and lower case

– Use indentation

– Avoid using hard-coded literals

– Use anchored declarations when possible

– Use cursor FOR loop

9/17/2013

15

Some Stuff to Read on the Web

• Oracle Database New Features Guide 11g Release 2 (11.2)

http://download.oracle.com/docs/cd/E11882_01/server.112/e17128/toc.htm

• Oracle Database PL/SQL Language Reference 12c Release 1 (12.1)

http://docs.oracle.com/cd/E16655_01/appdev.121/e17622/release_changes.htm

• PL/SQL Performance

http://www.oracle.com/technetwork/articles/sql/11g-plsql-091775.html

• Efficient PL/SQL Coding

http://www.oracle.com/technetwork/articles/sql/11g-efficient-coding-093640.html

• Oracle 12c Articles

http://www.oracle-base.com/articles/12c/articles-12c.php

Exploring PL/SQL New Features and

Best Practices for Better Performance

Ami Aharonovich

Oracle ACE & OCP

Ami@DBAces.co.il

Thank You !

