
External Perfect Hashing for Very Large Key Sets

Fabiano C. Botelho
Dept. of Computer Science

Federal Univ. of Minas Gerais
Belo Horizonte, Brazil

fbotelho@dcc.ufmg.br

Nivio Ziviani
Dept. of Computer Science

Federal Univ. of Minas Gerais
Belo Horizonte, Brazil
nivio@dcc.ufmg.br

ABSTRACT
We present a simple and efficient external perfect hashing
scheme (referred to as EPH algorithm) for very large static
key sets. We use a number of techniques from the liter-
ature to obtain a novel scheme that is theoretically well-
understood and at the same time achieves an order-of-magni-
tude increase in the size of the problem to be solved com-
pared to previous “practical” methods. We demonstrate the
scalability of our algorithm by constructing minimum per-
fect hash functions for a set of 1.024 billion URLs from the
World Wide Web of average length 64 characters in approxi-
mately 62 minutes, using a commodity PC. Our scheme pro-
duces minimal perfect hash functions using approximately
3.8 bits per key. For perfect hash functions in the range
{0, . . . , 2n − 1} the space usage drops to approximately 2.7
bits per key. The main contribution is the first algorithm
that has experimentally proven practicality for sets in the
order of billions of keys and has time and space usage care-
fully analyzed without unrealistic assumptions.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; E.2 [Data
Storage Representations]: Hash-table representations

General Terms
Algorithms, Design, Performance, Theory

Keywords
minimal, perfect, hash, functions, large, key sets

1. INTRODUCTION
Perfect hashing is a space-efficient way of creating com-

pact representation for a static set S of n keys. For appli-
cations with successful searches, the representation of a key
x ∈ S is simply the value h(x), where h is a perfect hash
function for the set S of values considered. A perfect hash

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

function (PHF) maps the elements of S to unique values.
A minimal perfect hash function (MPHF) produces values
that are integers in the range [0, n−1], which is the smallest
possible range. More formally, a PHF maps a static key set
S ⊆ U of size |S| = n to unique values in the range [0, m−1],
where m ≥ n and U is a key universe of size u. If m = n we
have a MPHF.

MPHFs are used for memory efficient storage and fast
retrieval of items from static sets, such as words in nat-
ural languages, reserved words in programming languages
or interactive systems, universal resource locations (URLs)
in web search engines [7], item sets in data mining tech-
niques [8, 9], sparse spatial data [22], graph compression [3],
routing tables and other network applications [28].

Some types of databases are updated only rarely, typi-
cally by periodic batch updates. This is true, for example,
for most data warehousing applications (see [31] for more
examples and discussion). In such scenarios it is possible to
improve query performance by creating very compact repre-
sentations of keys by MPHFs. In applications where the set
of keys is fixed for a long period of time the construction of
a MPHF can be done as part of the preprocessing phase.

A PHF can also be used to implement a data structure
with the same functionality as a Bloom filter [26]. In many
applications where a set S of elements is to be stored, it is
acceptable to include in the set some false positives1 with
a small probability by storing a signature for each perfect
hash value. This data structure requires around 30% less
space usage when compared with Bloom filters, plus the
space for the PHF. Bloom filters have applications in dis-
tributed databases and data mining [8, 9].

Perfect hash functions have also been used to speed up
the partitioned hash-join algorithm presented in [24]. By
using a PHF to reduce the targeted hash-bucket size from 4
tuples to just 1 tuple they have avoided following the bucket-
chain during hash-lookups that causes too many cache and
translation lookaside buffer (TLB) misses.

Though there has been considerable work on how to con-
struct PHFs, there is a gap between theory and practice
among all previous methods on minimal perfect hashing.
On one side, there are good theoretical results without ex-
perimentally proven practicality for large key sets. On the
other side, there are the theoretically analyzed time and
space usage algorithms that assume that truly random hash
functions are available for free, which is an unrealistic as-
sumption.

1False positives are elements that appear to be in S but are
not.

In this paper we attempt to bridge this gap between the-
ory and practice, using a number of techniques from the
literature to obtain a novel external memory based perfect
hashing scheme, referred to as EPH algorithm. The EPH al-
gorithm increases one order of magnitude in the size of the
greatest key set for which a MPHF was obtained in the lit-
erature [4]. This improvement comes from a combination of
a novel, theoretically optimal perfect hashing scheme that
greatly simplifies previous methods, and the fact that our
algorithm is designed to make good use of the memory hi-
erarchy (see Section 4.2 for details).

The minimum amount of space to represent a MPHF for a
given set S is known to be approximately 1.4427 bits per key.
We present a scalable algorithm that produces MPHFs using
approximately 3.8 bits per key. Also, for applications that
can allow values in the range {0, . . . , 2n−1}, the space usage
drops to approximately 2.7 bits per key. We demonstrate
the scalability of the EPH algorithm by considering a set
of 1.024 billion strings (URLs from the world wide web of
average length 64), for which we construct a MPHF on a
commodity PC in approximately 62 minutes. If we use the
range {0, . . . , 2n−1}, the space for the PHF is less than 324
MB, and we still get hash values that can be represented in
a 32 bit word. Thus we believe our MPHF method might
be quite useful for a number of current and practical data
management problems.

2. RELATED WORK
There is a gap between theory and practice among mini-

mal perfect hashing methods. On one side, there are good
theoretical results without experimentally proven practical-
ity for large key sets. We will argue below that these meth-
ods are indeed not practical. On the other side, there are
two categories of practical algorithms: the theoretically an-
alyzed time and space usage algorithms that assume truly
random hash functions for their methods, which is an unre-
alistic assumption because each truly random hash function
h : U → [0, m − 1] require at least u log m bits of storage
space, and the algorithms that present only empirical evi-
dences. The aim of this section is to discuss the existent
gap among these three types of algorithms available in the
literature.

2.1 Theoretical results
In this section we review some of the most important the-

oretical results on minimal perfect hashing. For a complete
survey until 1997 refer to Czech, Havas and Majewski [11].

Fredman, Komlós and Szemerédi [15] proved, using a
counting argument, that at least n log e+log log u−O(log n)
bits are required to represent a MPHF2, provided that
u ≥ n2+ for some > 0 (an easier proof was given
by Radhakrishnan [29]). Mehlhorn [25] has made this
bound almost tight by providing an algorithm that con-
structs a MPHF that can be represented with at most
n log e + log log u + O(log n) bits. However, his algorithm
is far away from practice because its construction and eval-
uation time is exponential on n (i.e., nθ(nenu log u)).

Schmidt and Siegel [30] have proposed the first algorithm
for constructing a MPHF with constant evaluation time
and description size O(n + log log u) bits. Nevertheless, the
scheme is hard to implement and the constants associated

2Logarithms are in base 2.

with the MPHF storage are prohibitive. For a set of n keys,
at least 29n bits are used, which means that the space usage
is similar in practice to schemes using O(n log n) bits.

One important theoretical result was proposed by
Hagerup and Tholey [17]. The MPHF obtained can be
evaluated in O(1) time and stored in n log e + log log u +
O(n(log log n)2/ log n + log log log u) bits. The construction
time is O(n + log log u) using O(n) computer words of the
Fredman, Komlós and Szemerédi [16] model of computa-
tion. In this model, also called the Word RAM model, an
element of the universe U fits into one machine word, and
arithmetic operations and memory accesses have unit cost.
The Hagerup and Tholey [17] algorithm emphasizes asymp-
totic space complexity only. As discussed in [5], for n < 2150

the scheme is not even defined, as it relies on splitting the
key set into buckets of size n̂ ≤ log n/(21 log log n). By let-
ting the bucket size be at least 1, then for n < 2300 buckets
of size one will be used, which means that the space usage
will be at least (3 log log n + log 7) n bits. For a set of a bil-
lion keys, this is more than 17 bits per element. In addition,
the algorithm is also very complicated to implement, but
we will not go into that. Thus, it is safe to conclude that
the Hagerup-Tholey algorithm will not be space efficient in
practical situations.

2.2 Practical results assuming full
randomness

Let us now describe the main practical results analyzed
with the unrealistic assumption that truly random hash
functions are available for free.

The family of algorithms proposed by Czech et al [23] uses
random hypergraphs to construct order preserving MPHFs.
A PHF h is order preserving if the keys in S are arranged
in some given order and h preserves this order in the hash
table. One of the methods uses two truly random hash func-
tions h1(x) : S → [0, cn − 1] and h2(x) : S → [0, cn − 1] to
generate MPHFs in the following form: h(x) = (g[h1(x)] +
g[h2(x)] mod n where c > 2. The resulting MPHFs can be
evaluated in O(1) time and stored in O(n log n) bits (that
is optimal for an order preserving MPHF). The resulting
MPHF is generated in expected O(n) time. Botelho, Ko-
hayakawa and Ziviani [4] improved the space requirement at
the expense of generating functions in the same form that
are not order preserving. Their algorithm is also linear on
n, but runs faster than the ones by Czech et al [23] and the
resulting MPHF are stored using half of the space because
c ∈ [0.93, 1.15]. However, the resulting MPHFs still need
O(n log n) bits to be stored.

Since the space requirements for truly random hash func-
tions makes them unsuitable for implementation, one has
to settle for a more realistic setup. The first step in this
direction was given by Pagh [27]. He proposed a family of
randomized algorithms for constructing MPHFs of the form
h(x) = (f(x) + d[g(x)]) mod n, where f and g are chosen
from a family of universal hash functions and d is a set of
displacement values to resolve collisions that are caused by
the function f . Pagh identified a set of conditions concern-
ing f and g and showed that if these conditions are satisfied,
then a MPHF can be computed in expected time O(n) and
stored in (2 + ǫ)n log n bits.

Dietzfelbinger and Hagerup [12] improved the algorithm
proposed in [27], reducing from (2+ǫ)n log n to (1+ǫ)n log n
the number of bits required to store the function, but in

their approach f and g must be chosen from a class of hash
functions that meet additional requirements. Woelfel [33]
has shown how to decrease the space usage to O(n log log n)
bits asymptotically. However, there is no empirical evidence
on the practicality of this scheme.

Botelho, Pagh and Ziviani [5] presented a family F of
practical algorithms for construction and evaluation of PHFs
of a given set that uses O(n) bits to be stored, runs in lin-
ear time and the evaluation of a function requires constant
time. The algorithms in F use r-uniform random hyper-
graphs given by function values of r hash functions on the
keys of S. For r = 2 they obtained a space usage of (3+ ǫ)n
bits for a MPHF, for any constant ǫ > 0. For r = 3 they
obtained a space usage of approximately 2.62n bits for a
MPHF, which is within a factor of 2 from the information
theoretical lower bound of approximately 1.4427n bits. For
m = 1.23n they obtained a space usage of 1.95n bits, which
is slightly more than two times the information theoretical
lower bound of approximately 0.89n bits.

2.3 Empirical results
In this section we discuss results that present only empir-

ical evidences for specific applications. Fox et al. [14] cre-
ated the first scheme with good average-case performance
for large data sets, i.e., n ≈ 106. They have designed two
algorithms, the first one generates a MPHF that can be eval-
uated in O(1) time and stored in O(n log n) bits. The second
algorithm uses quadratic hashing and adds branching based
on a table of binary values to get a MPHF that can be eval-
uated in O(1) time and stored in c(n + 1/ log n) bits. They
argued that c would be typically lower than 5, however, it
is clear from their experimentation that c grows with n and
they did not discuss this. They claimed that their algorithms
would run in linear time, but, it is shown in [11, Section 6.7]
that the algorithms have exponential running times in the
worst case, although the worst case has small probability of
occurring.

Fox, Chen and Heath [13] improved the result of [14] to
get a function that can be stored in cn bits. The method
uses four truly random hash functions to construct a MPHF.
Again c is only established for small values of n. It could
very well be that c grows with n. So, the limitation of the
three algorithms from [14] and [13] is that no guarantee on
the size of the resulting MPHF is provided.

Lefebvre and Hoppe [22] have recently designed MPHFs
that require up to 7 bits per key to be stored and are tai-
lored to represent sparse spatial data. In the same trend,
Chang, Lin and Chou [8, 9] have designed MPHFs tailored
for mining association rules and traversal patterns in data
mining techniques.

2.4 Differences between the EPH algorithm
and previous results

In this work we propose a practical algorithm that is the-
oretically well-understood and performs efficiently for very
large key sets. To the best of our knowledge the EPH al-
gorithm is the first one that demonstrates the capability of
generating MPHFs for sets in the order of billions of keys,
and the generated functions require less than 4 bits per key
to be stored. This increases one order of magnitude in the
size of the greatest key set for which a MPHF was obtained
in the literature [4], mainly because the EPH algorithm is
designed to make good use of the memory hierarchy, as dis-

cussed in Section 4.2. We need O(N) computer words, where
N ≪ n, for the construction process. Notice that both space
usage for representing the MPHF and the construction time
are carefully proven. Additionally, our scheme is much sim-
pler than previous theoretical well-founded schemes.

3. THE EPH ALGORITHM
Our algorithm uses the well-known idea of partitioning

the key set into a number of small sets3 (called “buckets”)
using a hash function h0. Let Bi = {x ∈ S | h0(x) = i}
denote the ith bucket. If we define offset[i] =

Pi−1
j=0 |Bi| and

let pi denote a MPHF for Bi then clearly

p(x) = pi(x) + offset[h0(x)] (1)

is a MPHF for the whole set S. Thus, the problem is reduced
to computing and storing the offset array, as well as the
MPHF for each bucket.

The EPH algorithm is essentially a two-phase multi-way
merge sort with some nuances to make it work in linear time.
Figure 1 illustrates the two steps of the EPH algorithm: the
partitioning step and the searching step. The partitioning
step takes a key set S and uses a hash function h0 to par-
tition S into 2b buckets. The searching step generates a
MPHF pi for each bucket i, 0 ≤ i ≤ 2b − 1 and computes
the offset array. To compute the MPHF of each bucket we
used one algorithm from the family of algorithms proposed
by Botelho, Pagh and Ziviani [5] (see Section 3.3 for details
on the algorithm).

...

...

...

Key Set S

0 1 n-1

0 1 n-1

Hash Table

MPHF0 MPHF1 MPHF2 MPHF
2b

−1

Partitioning

Searching
0 1 2

Buckets

2b
− 1

Figure 1: Main steps of the EPH algorithm

We will choose h0 such that it has values in {0, 1}b, for
some integer b. Since the offset array holds 2b entries of at
least log n bits we want 2b to be less than around n/ log n,
making the space used for the offset array negligible. On the
other hand, to allow efficient implementation of the func-
tions pi we impose an upper bound ℓ on the size of any
bucket. We will describe later how to choose h0 such that
this upper bound holds.

To create the MPHFs pi we could choose from a number
of alternatives, emphasizing either space usage, construc-
tion time, or evaluation time. We show that all methods
based on the assumption of truly random hash functions
can be made to work, with explicit and provably good hash
functions. For the experiments we have implemented the

3Used in e.g. the perfect hash function constructions of
Schmidt and Siegel [30] and Hagerup and Tholey [17], for
suitable definition of “small”.

algorithm presented in [5] (see Section 3.3 for more details).
Since this computation is done on a small set, we can expect
nearly all memory accesses to be “cache hits”. We believe
that this is the main reason why our method performs better
than previous ones that access memory in a more “random”
fashion.

We consider the situation in which the set of all keys may
not fit in the internal memory and has to be written on disk.
The EPH algorithm first scans the list of keys and computes
the hash function values that will be needed later on in the
algorithm. These values will (with high probability) distin-
guish all keys, so we can discard the original keys. It is well
known that hash values of at least 2 log n bits are required
to make this work. Thus, for sets of a billion keys or more
we cannot expect the list of hash values to fit in the internal
memory of a standard PC.

To form the buckets we sort the hash values of the keys
according to the value of h0. Since we are interested in
scalability to large key sets, this is done using an implemen-
tation of an external memory mergesort [21]. If the merge
sort works in two phases, which is the case for all reasonable
parameters, the total work on the disk consists of reading
the keys, plus writing and reading the hash function values
once. Since the h0 hash values are relatively small (less than
15 decimal digits) we can use radix sort to do the internal
memory sorting.

We have designed two versions of the EPH algorithm.
The first one uses the linear hash function described in Sec-
tion 3.4.2 that are slower and require more storage space,
but guarantee that the EPH algorithm can be made to work
for every key set. The second one uses faster and more
compact pseudo random hash functions proposed by Jenk-
ins [19]. This version is, from now on, referred to as heuristic
EPH algorithm because it is not guaranteed that it can be
made to work for every key set. However, empirical studies
show that limited randomness properties are often as good
as total randomness in practice and, the heuristic EPH has
worked for all key sets we have applied it to.

The detailed description of the partitioning and search-
ing steps are presented in Sections 3.1 and 3.2, respectively.
The internal algorithm used to compute the MPHF of each
bucket is from [5] and is presented in Section 3.3. The inter-
nal algorithm uses two hash functions hi1 and hi2 to compute
a MPHF pi. These hash functions as well as the hash func-
tion h0 used in the partitioning step of the EPH algorithm
are described in Section 3.4.

3.1 The Partitioning Step
The partitioning step performs two important tasks.

First, the variable-length keys are mapped to 128-bit strings
by using the linear hash function h′ presented in Section 3.4.
That is, the variable-length key set S is mapped to a fixed-
length key set F . Second, the set S of n keys is partitioned
into 2b buckets, where b is a suitable parameter chosen to
guarantee that each bucket has at most ℓ = 256 keys with
high probability (see Section 3.4). We have two reasons for
choosing ℓ = 256. The first one is to keep the buckets size
small enough to be represented by 8-bit integers. The sec-
ond one is to allow the memory accesses during the MPHF
evaluation to be done in the cache most of the time. Figure 2
presents the partitioning step algorithm.

The critical point in Figure 2 that allows the partitioning
step to work in linear time is the internal sorting algorithm.

◮ Let β be the size in bytes of the fixed-length key
set F

◮ Let µ be the size in bytes of an a priori reserved
internal memory area

◮ Let N = ⌈β/µ⌉ be the number of key blocks that
will be read from disk into an internal memory area

1. for j = 1 to N do
1.1 Read a key block Sj from disk (one at a time)

and store h′(x), for each x ∈ Sj , into Bj ,
where |Bj | = µ

1.2 Cluster Bj into 2b buckets using an indirect radix
sort algorithm that takes h0(x) for x ∈ Sj as
sorting key(i.e, the b most significant bits of h′(x))

1.3 Dump Bj to the disk into File j

Figure 2: Partitioning step

We have two reasons to choose radix sort. First, it sorts
each key block Bj in linear time, since keys are short integer
numbers (less than 15 decimal digits). Second, it just needs
O(|Bj |) words of extra memory so that we can control the
memory usage independently of the number of keys in S.

At this point one could ask: why not to use the well known
replacement selection algorithm to build files larger than the
internal memory area size? The reason is that the radix sort
algorithm sorts a block Bj in time O(|Bj |) while the replace-
ment selection algorithm requires O(|Bj | log |Bj |). We have
tried out both versions and the one using the radix sort algo-
rithm outperforms the other. A worthwhile optimization we
have used is the last run optimization proposed by Larson
and Graefe [21]. That is, the last block is kept in memory
instead of dumping it to disk to be read again in the second
step of the algorithm.

Figure 3(a) shows a logical view of the 2b buckets gener-
ated in the partitioning step. In reality, the 128-bit strings
belonging to each bucket are distributed among many files,
as depicted in Figure 3(b). In the example of Figure 3(b),
the 128-bit strings in bucket 0 appear in files 1 and N , the
128-bit strings in bucket 1 appear in files 1, 2 and N , and
so on.

a)

...

...

b)

.

.

.

.

.

.

.

.

.

Buckets Physical View

File 1 File 2 File N

0 1 2

Buckets Logical View

2b
− 1

Figure 3: Situation of the buckets at the end of the
partitioning step: (a) Logical view (b) Physical view

This scattering of the 128-bit strings in the buckets could
generate a performance problem because of the potential
number of seeks needed to read the 128-bit strings in each
bucket from the N files on disk during the second step. But,
as we show later on in Section 4.3, the number of seeks can
be kept small using buffering techniques.

3.2 The Searching Step
The searching step is responsible for generating a MPHF

for each bucket and for computing the offset array. Figure 4
presents the searching step algorithm. Statement 1 of Fig-

◮ Let H be a minimum heap of size N , where the
order relation in H is given by
i = x[96, 127] >> (32 − b) for x ∈ F

1. for j = 1 to N do { Heap construction }
1.1 Read the first 128-bit string x from File j on disk
1.2 Insert (i, j, x) in H

2. for i = 0 to 2b − 1 do
2.1 Read bucket Bi from disk driven by heap H
2.2 Generate a MPHF for bucket Bi

2.3 offset [i + 1] = offset [i] + |Bi|
2.4 Write the description of MPHFi and offset [i]

to the disk

Figure 4: Searching step

ure 4 constructs the heap H of size N . This is well known
to be linear on N . The order relation in H is given by the
bucket address i (i.e., the b most significant bits of x ∈ F).
Statement 2 has two important steps. In statement 2.1, a
bucket is read from disk, as described below. In statement
2.2, a MPHF is generated for each bucket Bi using the in-
ternal memory based algorithm presented in Section 3.3. In
statement 2.3, the next entry of the offset array is computed.
Finally, statement 2.4 writes the description of MPHFi and
offset [i] to disk. Note that to compute offset [i + 1] we just
need the current bucket size and offset [i]. So, we just need
to keep two entries of vector offset in memory all the time.

The algorithm to read bucket Bi from disk is presented
in Figure 5. Bucket Bi is distributed among many files and
the heap H is used to drive a multiway merge operation.
Statement 1.1 extracts and removes triple (i, j, x) from H,
where i is a minimum value in H. Statement 1.2 inserts x in
bucket Bi. Statement 1.3 performs a seek operation in File
j on disk for the first read operation and reads sequentially
all 128-bit strings x ∈ F that have the same index i and
inserts them all in bucket Bi. Finally, statement 1.4 inserts
in H the triple (i′, j, x′), where x′ ∈ F is the first 128-bit
string read from File j (in statement 1.3) that does not have
the same bucket address as the previous keys.

1. while bucket Bi is not full do
1.1 Remove (i, j, x) from H
1.2 Insert x into bucket Bi

1.3 Read sequentially all 128-bit strings from File j
that have the same i and insert them into Bi

1.4 Insert the triple (i′, j, x′) in H, where x′ is
the first 128-bit string read from File j that
does not have the same bucket index i

Figure 5: Reading a bucket

It is not difficult to see from this presentation of the
searching step that it runs in linear time. To achieve this
conclusion we use O(N) computer words to allow the merge
operation to be performed in one pass through each file. In
addition, it is also important to observe that:

1. 2b < n
log n

(see Section 3.4),

2. N ≪ n (e.g., see Table 5 in Section 4.3) and

3. the algorithm for the buckets runs in linear time, as
shown in Section 3.3.

In conclusion, our algorithm takes O(n) time because both
the partitioning and the searching steps run in O(n) time.
The space required for constructing the resulting MPHF is
O(N) computer words because the memory usage in the
partitioning step does not depend on the number of keys in S
and, in the searching step, the algorithm used for the buckets
is applied to problems of size up to 256. All together makes
our algorithm the first one that demonstrates the capability
of generating MPHFs for sets in the order of billions of keys.

3.3 The algorithm used for the buckets
For the buckets we decided to use one of the algorithms

from the family F of algorithms4 presented by Botelho, Pagh
and Ziviani [5], because it outperforms the algorithms pre-
sented in Section 2 and also is a simple and near space-
optimal way of constructing a minimal perfect hash func-
tion for a set S of n elements. They assume that it is pos-
sible to create and access two truly random hash functions
f0 : U → [0, m

2
− 1] and f1 : U → [m

2
, m − 1], where m = cn

for c > 2. The Functions f0 and f1 are used to map the keys
in S to a bipartite graph G = (V, E), where V = [0, m − 1]
and E = {{f0(x), f1(x)} | x ∈ S} (i.e, |E| = |S| = n).
Hence, each key in S is associated with only one edge from
E. Figure 6(a) illustrates this step, referred to as mapping
step, for a set S with three keys.

(a)

5

know
ledge

h (x)

h (x)

S

m
an

ag
em

en
t

in
fo

rm
at

io
n

Assigning (b)

g

Hash Table

Ranking

(c)

Mapping
information

knowledge

management

0

1

2

0

1

2

3

4

1

1

0

0
2

2

2

0 2

4

0

13 5

information

management
knowledge

Figure 6: (a) Mapping step generates a bipartite
graph (b) Assigning step generates a labeling g so
that each edge is uniquely associated with one of its
vertices (c) Ranking step builds a function rank :
V → [0, n − 1]

In the following step, referred to as assigning step, a func-
tion g : V → {0, 1, 2} is computed so that each edge is
uniquely represented by one of its vertices. For instance,

4The algorithms in F use r-uniform random hypergraphs
given by function values of r hash functions on the keys of
S. An r-graph is a generalization of a standard graph where
each edge connects r ≥ 2 vertices. For the buckets in the
EPH algorithm we used the 2-uniform hypergraph instance.

in Figure 6(b), edge {0, 3} is associated with vertex 0, edge
{0, 4} with vertex 4 and edge {2, 4} with vertex 2. Then,
a function φ : S → V defined as φ(x) = fi(x), where
i = i(x) = (g(f0(x)) + g(f1(x))) mod 2 is a perfect hash
function on S.

The assigning step splits the set of vertices into two sub-
sets: (i) the assigned ones and (ii) the unassigned ones. A
vertex v is defined as assigned if g(v) 6= 2 and unassigned
otherwise. Also, the number of assigned vertices is guaran-
teed by construction to be equal to |S| = n. Therefore, a
function rank : V → [0, n−1] that counts how many vertices
are assigned before a given assigned vertex v ∈ V is a MPHF
on V . For example, in Figure 6(c), rank(0) = 0, rank(2) = 1
and rank(4) = 2, which means that there is no assigned
vertex before vertex 0, one before vertex 2, and two before
vertex 4. This implies that a function h : S → [0, n − 1] de-
fined as h(x) = rank(φ(x)) is a MPHF on S. The last step
of the algorithm, referred to as ranking step, is responsible
for computing the data structures used to compute function
rank in time O(1).

Botelho, Pagh and Ziviani [5] have shown that g can be
generated in linear time if the bipartite graph G = G(f0, f1)
is acyclic. When a cyclic graph is generated a new pair
(f0, f1) is randomly selected so that the values of f0 and f1

are truly random and independent. Hence the number of
iterations to get an acyclic random graph must be bounded
by a constant to finish the algorithm in linear time. They
have shown that if |V | = m = cn, for c > 2, the probability
of generating an acyclic bipartite random graph is Pra =
p

1 − (2/c)2 and the number of iterations is on average Ni =
1/Pra. For c = 2.09 we have Pra ≈ 0.29 and Ni ≈ 3.4.
Finally, they have shown how to compress g and the data
structures used to compute function rank in time O(1) so
that the resulting MPHFs are stored in (3 + ǫ)n bits for
ǫ > 0.

3.4 Hash functions used by the EPH
algorithm

The aim of this section is threefold. First, in Section 3.4.1,
we define the hash functions hi1 and hi2 used by the algo-
rithm from [5] to generate the MPHF of each bucket, where
0 ≤ i ≤ 2b − 1. Second, in Section 3.4.2, we show how
to efficiently implement the hash functions hi1, hi2, and h0,
which is used to split the key set S into 2b buckets. Third, in
Section 3.4.3, we show the conditions that parameter b must
meet so that no bucket with more than ℓ keys is created by
h0. We also show that hi1 and hi2 are truly random hash
functions for the buckets. This section was mostly derived
from the technical report Botelho, Pagh and Ziviani [6].

3.4.1 Hash functions used in the buckets
The hash functions hi1 and hi2 will be defined based on the

linear hash functions over Galois field 2 (or simply GF(2))
analyzed by Alon, Dietzfelbinger, Miltersen and Petrank [1].
For that, a key is defined as a binary vector of fixed length
L. This is not a restriction as any variable-length key can
be padded with zeros at the end because the ascii character
0 does not appear in any string.

We define hi1 and hi2 as

hi1(x) = ρ(x, si, 0) mod |Bi|

hi2(x) = ρ(x, si, 1) mod |Bi| (2)

where

ρ(x, s, ∆)=

0

@

k
X

j=1

tj [yj(x) ⊕ ∆]+s

2k
X

j=k+1

tj [yj−k(x) ⊕ ∆]

1

Amod p.

The functions y1, . . . , yk are hash functions from {0, 1}L to
{0, 1}r−10, where 2r ≫ ℓ and k are parameters chosen to
make the algorithm work with high probability (see Sec-
tion 3.4.3). Note that the range is the set of r-bit strings
ending with a 0. The purpose of the last 0 is to ensure
that we can have no collision between yj(x1) and yj(x2)⊕1,
1 ≤ j ≤ k, for any pair of elements x1 and x2. The ta-
bles t1, . . . , t2k contain 2r random values from {0, . . . , p−1},
where p is a prime number much larger than |Bi| (i.e., the
size of the desired range of hi1 and hi2). The variable s is a
random seed number and the symbol ⊕ denotes exclusive-
or. The variable si is specific to bucket i. The algorithm
randomly selects si from {1, . . . , p − 1} until the functions
hi1 and hi2 work with the algorithm of Section 3.3, which is
used to generate MPHFs for the buckets. We will sketch a
proof in Section 3.4.3 that a constant fraction of the set of
all functions works.

3.4.2 Implementation of the hash functions
The family of linear hash functions proposed by Alon,

Dietzfelbinger, Miltersen and Petrank [1] enable us to im-
plement the functions h0, y1, y2, y3, . . . , yk to be computed
at once. We use a function h′ from that family that has
the following form: h′(x) = Ax, where x ∈ S and A is a
γ × L matrix in which the elements are randomly chosen
from {0, 1}. The output is a bit string of an a priori defined
size γ. In our implementation γ = 128 bits. It is impor-
tant to realize that this is a matrix multiplication over GF
(2). The implementation can be done using a bitwise-and
operator (&) and a function f : {0, 1}γ → {0, 1} to compute
parity instead of multiplying numbers. The parity function
f(a) produces 1 as a result if a ∈ {0, 1}γ has an odd number
of bits set to 1, otherwise the result is 0. For example, let
us consider L = 3 bits, γ = 3 bits, x = 110 and

A =

2

4

1 0 1
0 0 1
1 1 0

3

5 ·

The number of rows gives the required number of bits in the
output, i.e., γ = 3. The number of columns corresponds to
the value of L. Then,

h′(x) =

2

4

1 0 1
0 0 1
1 1 0

3

5

2

4

1
1
0

3

5 =

2

4

b1
b2
b3

3

5

where b1 = f(101 & 110) = 1, b2 = f(001 & 110) = 0 and
b3 = f(110 & 110) = 0.

To get a fast evaluation time we use a tabulation idea
from [2], where we can get evaluation time O(L/ log σ) by
using space O(Lσ) for σ > 0. Note that if x is short, e.g.
8 bits, we can simply tabulate all the function values and
compute h′(x) by looking up the value h′[x] in an array h′.
To make the same thing work for longer keys, split the ma-
trix A into parts of 8 columns each: A = A1|A2| . . . |A⌈L/8⌉,
and create a lookup table h′

i for each submatrix. Similarly
split x into parts of 8 bits, x = x1x2 . . . x⌈L/8⌉. Now h′(x)
is the exclusive-or of h′

i[xi], for i = 1, . . . , ⌈L/8⌉. Therefore,
we have set σ to 256 so that keys of size L can be processed

in chunks of log σ = 8 bits. In our URL collection the largest
key has 65 bytes, i.e., L = 520 bits.

The 32 most significant bits of h′(x), where x ∈ S, are
used to compute the bucket address of x, i.e., h0(x) =
h′(x)[96, 127] >> (32 − b). We use the symbol >> to de-
note the right shift of bits. The other 96 bits correspond to
y1(x), y2(x), . . . y6(x), taking k = 6. This would give r = 16,
however, to save space for storing the tables used for com-
puting hi1 and hi2, we hard coded the linear hash function
to make the most and the least significant bit of each chunk
of 16 bits equal to zero. Therefore, r = 15. This setup en-
able us to solving problems of up to 500 billion keys, which is
plenty of for all the applications we know of. If our algorithm
fails in any phase, we just restart it. As the parameters are
chosen to have success with high probability, the number of
times that our algorithm is restarted is O(1).

Finally, the last parameter related to the hash functions
we need to talk about is the prime number p. As p must
be much larger than the range of hi1 and hi2, then we
set it to the largest 32-bit integer that is a prime, i.e,
p = 4294967291.

3.4.3 Analyzes of the hash functions
In this section we show that the EPH algorithm can be

made to work with high probability. For that we need to
analyze the following points:

1. The function h′ discussed in Section 3.4.2 that was
used to implement h0, y1, y2, . . . , yk maps the variable-
length keys from S to a fixed-length key set F, where
each key contains b + kr bits. As the keys in S are
assumed to be all distinct, then all keys in F should
be distinct as well. We will show that this is the case
with high probability.

Proof sketch: as the function h′ comes from a family
of universal hash functions [1], the probability that
there exist two keys that have the same values under
all functions is at most

`

n
2

´

/2b+kr. This probability can
be made negligible by choosing k and r appropriately.

2. We have imposed an upper bound ℓ on the size of the
largest bucket created by h0. Therefore, we will use a
result from [1] to argue that if

b ≤ log n − log(ℓ/ log ℓ) + O(1), (3)

then the maximum bucket size is bounded by ℓ with
high probability (some constant close to 1). For the
implementation, we will experimentally determine the
smallest possible choices of b.

Proof sketch: a direct consequence of Theorem 5
in [1] is that, assuming b ≤ log n − log log n, the ex-
pected size of the largest bucket is O(n log b/2b), i.e.,
a factor O(log b) from the average bucket size. So, by
imposing the requirement that ℓ ≥ log n log log n we
justify the choice of b in Eq. (3).

3. we will now analyze the probability (over the choice
of y1, . . . , yk) that x 7→ ρ(x, si, 0) and x 7→ ρ(x, si, 1)
map the elements of Bi uniformly and independently
to {0, . . . , p− 1}, for any choice of the random seed si.

Proof sketch: a sufficient criterion for this is that the
sums

Pk
j=1 tj [yj(x)⊕∆] and

P2k
j=k+1 tj [yj−k(x)⊕∆],

∆∈{0, 1}, have values that are uniform in {0, . . . , p−1}

and independent. This is the case if for every x ∈ Bi

there exists an index jx such that neither yjx
nor yjx

⊕1
belongs to yjx

(Bi−{x}). Since y1, . . . , yk are universal
hash functions, the probability that this is not the case
for a given element x ∈ Bi is bounded by (|Bi|/2r)k ≤
(ℓ/2r)k. If we choose, for example r = ⌈log(3

√
nℓ)⌉ and

k = 6 we have that this probability is o(1/n). Hence,
the probability that this happens for any key in S is
o(1).

4. Finally, we need to show that it is possible to obtain,
with constant probability, a value of si such that the
pair (hi1, hi2) works for the MPHF of the bucket i.
That is, the functions hi1 and hi2 should be truly ran-
dom.

Proof sketch: as argued above, the functions x 7→
ρ(x, si, 0) and x 7→ ρ(x, si, 1) are random and indepen-
dent on each bucket, for every value of si. Then, for a
given bucket and a given value of si there is a probabil-
ity Ω(1) that the pair of hash functions work for that
bucket. Therefore, for any ∆ ∈ {0, 1} and si 6= sj , the
functions x 7→ ρ(x, si, ∆) and x 7→ ρ(x, sj , ∆) are in-
dependent. Thus, by Chebychev’s inequality the prob-
ability that less than a constant fraction of the values
of si work for a given bucket is O(1/p). So with prob-
ability 1 − o(1) there is a constant fraction of “good”
choices of si in every bucket, which means that trying
an expected constant number of random values for si

is sufficient in each bucket.

4. EXPERIMENTAL RESULTS
In this section we present the experimental results. We

start presenting the experimental setup. We then present
the performance of our algorithm considering construction
time, storage space and evaluation time as metrics for the
resulting functions. Finally, we discuss how the amount of
internal memory available affects the runtime of our two-step
external memory based algorithm.

4.1 The data and the experimental setup
The EPH algorithm was implemented in the C language

and is available at http://cmph.sf.net under the GNU
Lesser General Public License (LGPL). All experiments were
carried out on a computer running the Linux operating sys-
tem, version 2.6, with a 1 gigahertz AMD Athlon 64 Pro-
cessor 3200+ and 1 gigabyte of main memory.

Our data consists of a collection of 1.024 billion URLs
collected from the Web, each URL 64 characters long on
average. The collection is stored on disk in 60.5 gigabytes
of space.

4.2 Performance of the EPH algorithm
We are firstly interested in verifying the claim that the

EPH algorithm runs in linear time. Therefore, we run the
algorithm for several numbers n of keys in S. The values
chosen for n were 32, 128, 512 and 1024 million. We limited
the main memory in 512 megabytes for the experiments in
order to show that the algorithm does not need much inter-
nal memory to generate MPHFs. The size µ of the a priori
reserved internal memory area was set to 200 megabytes.
In Section 4.3 we show how µ affects the runtime of the
algorithm. The parameter b (see Eq. (3)) was set to the
minimum value that gives us a maximum bucket size lower

than ℓ = 256. For each value chosen for n, the respective
values for b are 18, 20, 22 and 23 bits.

In order to estimate the number of trials for each value
of n we use a statistical method for determining a suitable
sample size (see, e.g., [18, Chapter 13]). We got that just
one trial for each n would be enough with a confidence level
of 95%. However, we made 10 trials. This number of trials
seems rather small, but, as shown below, the behavior of the
EPH algorithm is very stable and its runtime is almost deter-
ministic (i.e., the standard deviation is very small) because
it is a random variable that follows a (highly concentrated)
normal distribution.

Table 1 presents the runtime average for each n, the re-
spective standard deviations, and the respective confidence
intervals given by the average time ± the distance from av-
erage time considering a confidence level of 95%. Observing
the runtime averages we noticed that the algorithm runs in
expected linear time, as we have claimed. Better still, it out-
puts the resulting MPHF faster than all practical algorithms
we know of, because of the following reasons. First, we make
good use of the memory hierarchy because the memory ac-
cesses during the generation of a MPHF for a given bucket
cause cache hits, once the problem was broken down into
problems of size up to 256. Second, at searching step we
are dealing with 16-byte (128-bit) strings instead of 64-byte
URLs. The percentages of the total time spent in the par-
titioning step and in the searching are approximately 49%
and 51%, respectively.

n (millions) 32 128 512 1024
EPH 2.5 ± 0.02 10.1 ± 0.1 39.7 ± 0.4 83.0 ± 0.9
Heuristic EPH 1.9 ± 0.05 7.3 ± 0.1 30.9 ± 0.5 64.3 ± 1.1

Table 1: EPH algorithm: average time in minutes
for constructing a MPHF with confidence level of
95% in a PC using 200 megabytes of internal mem-
ory.

In Table 1 we see that the runtime of the algorithm is al-
most deterministic. A given bucket i, 0 ≤ i < 2b, is a small
set of keys (at most 256 keys) and, the runtime of the build-
ing block algorithm is a random variable Xi with high fluctu-
ation (it follows a geometric distribution with mean 1/Pr ≈
3.4). However, the runtime Y of the searching step of the
EPH algorithm is given by Y =

P

0≤i<2b Xi. Under the
hypothesis that the Xi are independent and bounded, the
law of large numbers (see, e.g., [18]) implies that the ran-
dom variable Y/2b converges to a constant as n → ∞. This
explains why the runtime is almost deterministic.

The next important metric on MPHFs is the space re-
quired to store the functions. In order to apply the algorithm
used for the buckets to larger sets we randomly choose f0

and f1 from the family of universal hash functions proposed
by Thorup [32]. Botelho, Pagh and Ziviani [5] have ana-
lyzed that algorithm under the full randomness assumption
so that universal hashing is not enough to guarantee that it
works for every key set. But it has been the case for every
key set we have applied it to. Then, we refer to this version
as heuristic BPZ algorithm.

The EPH algorithm is designed to be used when the key
set does not fit in main memory. Table 2 shows that it can
be used for constructing PHFs and MPHFs that require on
average 2.7 and 3.8 bits per key to be stored, respectively.

The lookup tables used by the hash functions of the EPH

n b Bits/key

PHF MPHF
104 6 2.93 3.71
105 9 2.73 3.57
106 13 2.65 3.82
107 16 2.51 3.70
108 20 2.80 4.02
109 23 2.65 3.83

Table 2: EPH algorithm: space usage to respectively
store the resulting PHFs and MPHFs.

algorithm require a fixed storage cost of 1,847,424 bytes.
To avoid the space needed for lookup tables we have im-
plemented the heuristic EPH algorithm. It uses the pseudo
random hash function proposed by Jenkins [19] to replace
the hash functions described in Section 3.4. The Jenkins
function just loops around the key doing bitwise operations
over chunks of 12 bytes. Then, it returns the last chunk.
Thus, in the mapping step, the key set S is mapped to F,
which now contains 12-byte long strings instead of 16-byte
long strings.

The Jenkins function needs just one random seed of 32
bits to be stored instead of quite long lookup tables, a great
improvement from the 1,847,424 bytes necessary to imple-
ment truly random hash functions. Therefore, there is no
fixed cost to store the resulting MPHFs, but two random
seeds of 32 bits are required to describe the functions hi1

and hi2 of each bucket. As a consequence, the MPHFs gen-
eration and the MPHFs efficiency at retrieval time are faster
(see Table 3 and 4). The reasons are twofold. First, we are
dealing with 12-byte strings computed by the Jenkins func-
tion instead of 16-byte strings of the truly random functions
presented in Section 3.4. Second, there are no large lookup
tables to cause cache misses. For example, the construction
time for a set of 1024 million keys has dropped down to
64.3 minutes in the same setup. The disadvantage of using
the Jenkins function is that there is no formal proof that it
works for every key set. That is why the hash functions we
have designed in this paper are required, even being slower.
In the implementation available, the hash functions to be
used can be chosen by the user.

Table 3 presents a comparison of our algorithm with the
ones proposed by Botelho, Pagh and Ziviani [5] (BPZ), by
Pagh [27] (Hash-displace), by Botelho, Kohayakawa and Zi-
viani [4] (BKZ), by Czech, Havas and Majewski [10] (CHM),
and by Fox, Chen and Heath [13] (FCH), considering con-
struction time and storage space as metrics. Notice that
they are the most important practical results on MPHFs
known in the literature. Observing the results, the EPH
algorithm is the fastest one at construction time and the
heuristic BPZ algorithm builds slightly more compact func-
tions.

Finally, we show how efficient are the resulting MPHFs at
retrieval time for the methods aforementioned, which is as
important as construction time and storage space. Table 4
presents the time, in seconds, to evaluate 2 × 106 keys. We
group the BKZ and CHM methods together because the re-
sulting MPHFs have the same form. The MPHFs generated
by the EPH algorithm are slower. Nevertheless, the differ-
ence is not so expressive (each key can be evaluated in few
microseconds) and the EPH algorithm is the first efficient
option for sets that do not fit in main memory.

Time in seconds to construct a MPHF for 2 × 106 keys

Algorithms Function Construction bits/key
type time (seconds)

EPH PHF 6.92 ± 0.04 2.64
Algorithm MPHF 6.98 ± 0.01 3.85

Heuristic EPH MPHF 4.75 ± 0.02 3.7
Algorithm

Heuristic BPZ PHF 12.99 ± 1.01 2.09
Algorithm MPHF 13.94 ± 1.06 3.35

Hash-displace MPHF 46.18 ± 1.06 64.00
BKZ MPHF 8.57 ± 0.31 32.00
CHM MPHF 13.80 ± 0.70 66.88
FCH MPHF 758.66 ± 126.72 5.84

Table 3: Construction time and storage space with-
out considering the fixed cost to store lookup tables.

Time in seconds to evaluate 2 × 106 keys

key length (bytes) Function 8 16 32 64 128
type

EPH PHF 2.05 2.31 2.84 3.99 7.22
Algorithm MPHF 2.55 2.83 3.38 4.63 8.18

Heuristic EPH MPHF 1.19 1.35 1.59 2.11 3.34
Algorithm

Heuristic BPZ PHF 0.41 0.55 0.79 1.29 2.39
Algorithm MPHF 0.85 0.99 1.23 1.73 2.74

Hash-displace MPHF 0.56 0.69 0.93 1.44 2.54
BKZ/CHM MPHF 0.61 0.74 0.98 1.48 2.58

FCH MPHF 0.58 0.72 0.96 1.46 2.56

Table 4: Evaluation time.

It is important to emphasize that the BPZ, BKZ, CHM
and FCH methods were analyzed under the full randomness
assumption. Therefore, the EPH algorithm is the first one
that has experimentally proven practicality for large key sets
and has both space usage for representing the resulting func-
tions and the construction time carefully proven. Addition-
ally, it is the fastest algorithm for constructing the functions
and the resulting functions are much simpler than the ones
generated by previous theoretical well-founded schemes so
that they can be used in practice. Also, it considerably im-
proves the first step given by Pagh with his hash and displace
method [27].

4.3 Controlling disk accesses
In order to bring down the number of seek operations on

disk we benefit from the fact that the EPH algorithm leaves
almost all main memory available to be used as disk I/O
buffer. In this section we evaluate how much the parameter
µ affects the runtime of the EPH algorithm. For that we
fixed n in 1.024 billion of URLs, set the main memory of the
machine used for the experiments to 1 gigabyte and used µ
equal to 100, 200, 300, 400 and 500 megabytes.

In order to amortize the number of seeks performed we
use a buffering technique [20]. We create a buffer j of size� = µ/N for each file j, where 1 ≤ j ≤ N . Every time
a read operation is requested to file j and the data is not
found in the jth buffer, � bytes are read from file j to buffer
j. Hence, the number of seeks performed in the worst case
is given by β/� (remember that β is the size in bytes of
the fixed-length key set F). For that we have made the
pessimistic assumption that one seek happens every time
buffer j is filled in. Thus, the number of seeks performed

in the worst case is 16n/�, since after the partitioning step
we are dealing with 128-bit (16-byte) strings instead of 64-
byte URLs, on average. Therefore, the number of seeks is
linear on n and amortized by �. It is important to emphasize
that the operating system uses techniques to diminish the
number of seeks and the average seek time. This makes the
amortization factor to be greater than � in practice.

Table 5 presents the number of files N , the buffer size
used for all files, the number of seeks in the worst case con-
sidering the pessimistic assumption aforementioned, and the
time to generate a PHF or a MPHF for 1.024 billion of keys
as a function of the amount of internal memory available.
Observing Table 5 we noticed that the time spent in the
construction decreases as the value of µ increases. However,
for µ > 400, the variation on the time is not as significant
as for µ ≤ 400. This can be explained by the fact that
the kernel 2.6 I/O scheduler of Linux has smart policies for
avoiding seeks and diminishing the average seek time (see
http://www.linuxjournal.com/article/6931).

µ (MB) 100 200 300 400 500
N (files) 245 99 63 46 36� (in KB) 418 2, 069 4, 877 8, 905 14, 223
β/� 151, 768 30, 662 13, 008 7, 124 4, 461
EPH (time) 94.8 82.2 79.8 79.2 79.2

Heuristic
71.0 63.2 62.9 62.4 62.4

EPH (time)

Table 5: Influence of the internal memory area
size (µ) in the EPH algorithm runtime to construct
PHFs or MPHFs for 1.024 billion keys (time in min-
utes).

5. CONCLUDING REMARKS
This paper has presented a novel external memory based

algorithm for constructing PHFs and MPHFs. The algo-
rithm can be used with provably good hash functions or
with heuristic hash functions that are faster to compute.

The EPH algorithm contains, as a component, a provably
good implementation of the BPZ algorithm [5]. This means
that the two hash functions hi1 and hi2 (see Eq. (3)) used
instead of f0 and f1 behave as truly random hash functions
(see Section 3.4.3). The resulting PHFs and MPHFs require
approximately 2.7 and 3.8 bits per key to be stored and
are generated faster than the ones generated by all previ-
ous methods. The EPH algorithm is the first one that has
experimentally proven practicality for sets in the order of
billions of keys and has time and space usage carefully an-
alyzed without unrealistic assumptions. As a consequence,
the EPH algorithm will work for every key set.

The resulting functions of the EPH algorithm are approx-
imately four times slower than the ones generated by all
previous practical methods (see Table 4). The reason is
that to compute the involved hash functions we need to ac-
cess lookup tables that do not fit in the cache. To overcome
this problem, at the expense of losing the guarantee that it
works for every key set, we have proposed a heuristic ver-
sion of the EPH algorithm that uses a very efficient pseudo
random hash function proposed by Jenkins [19]. The result-
ing functions require the same storage space, are now less
than twice slower to be computed and are still faster to be
generated.

6. ACKNOWLEDGMENTS
We thank Rasmus Pagh for helping us with the analy-

sis of the EPH algorithm, which was previously published in
Botelho, Pagh and Ziviani [6]. We also thank the partial sup-
port given by GERINDO Project–grant MCT/CNPq/CT-
INFO 552.087/02-5, and CNPq Grants 30.5237/02-0 (Nivio
Ziviani) and 142786/2006-3 (Fabiano C. Botelho).

7. REFERENCES
[1] N. Alon, M. Dietzfelbinger, P. B. Miltersen,

E. Petrank, and G. Tardos. Linear hash functions. J.
of the ACM, 46(5):667–683, 1999.

[2] N. Alon and M. Naor. Derandomization, witnesses for
Boolean matrix multiplication and construction of
perfect hash functions. Algorithmica, 16(4-5):434–449,
1996.

[3] P. Boldi and S. Vigna. The webgraph framework i:
Compression techniques. In Proc. of the 13th Intl.
World Wide Web Conference, pages 595–602, 2004.

[4] F. Botelho, Y. Kohayakawa, and N. Ziviani. A
practical minimal perfect hashing method. In Proc. of
the 4th Intl. Workshop on Efficient and Experimental
Algorithms, pages 488–500. Springer LNCS, 2005.

[5] F. Botelho, R. Pagh, and N. Ziviani. Simple and
space-efficient minimal perfect hash functions. In Proc.
of the 10th Intl. Workshop on Data Structures and
Algorithms, pages 139–150. Springer LNCS, 2007.

[6] F. C. Botelho, R. Pagh, and N. Ziviani. Perfect
hashing for data management applications. Technical
Report TR002/07, Federal University of Minas Gerais,
2007. Available at http://arxiv.org/pdf/cs/0702159.

[7] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proc. of the 7th
Intl. World Wide Web Conference, pages 107–117,
April 1998.

[8] C.-C. Chang and C.-Y. Lin. A perfect hashing
schemes for mining association rules. The Computer
Journal, 48(2):168–179, 2005.

[9] C.-C. Chang, C.-Y. Lin, and H. Chou. Perfect hashing
schemes for mining traversal patterns. J. of
Fundamenta Informaticae, 70(3):185–202, 2006.

[10] Z. Czech, G. Havas, and B. Majewski. An optimal
algorithm for generating minimal perfect hash
functions. Information Processing Letters,
43(5):257–264, 1992.

[11] Z. Czech, G. Havas, and B. Majewski. Fundamental
study perfect hashing. Theoretical Computer Science,
182:1–143, 1997.

[12] M. Dietzfelbinger and T. Hagerup. Simple minimal
perfect hashing in less space. In Proc. of the 9th
European Symposium on Algorithms, pages 109–120.
Springer LNCS vol. 2161, 2001.

[13] E. Fox, Q. Chen, and L. Heath. A faster algorithm for
constructing minimal perfect hash functions. In Proc.
of the 15th Intl. ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
266–273, 1992.

[14] E. Fox, L. S. Heath, Q. Chen, and A. Daoud. Practical
minimal perfect hash functions for large databases.
Communications of the ACM, 35(1):105–121, 1992.

[15] M. L. Fredman, J. Komlós, and E. Szemerédi. On the
size of separating systems and families of perfect

hashing functions. SIAM J. on Algebraic and Discrete
Methods, 5:61–68, 1984.

[16] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a sparse table with O(1) worst case access time. J. of
the ACM, 31(3):538–544, July 1984.

[17] T. Hagerup and T. Tholey. Efficient minimal perfect
hashing in nearly minimal space. In Proc. of the 18th
Symposium on Theoretical Aspects of Computer
Science, pages 317–326. Springer LNCS vol. 2010,
2001.

[18] R. Jain. The art of computer systems performance
analysis: techniques for experimental design,
measurement, simulation, and modeling. John Wiley,
first edition, 1991.

[19] B. Jenkins. Algorithm alley: Hash functions. Dr.
Dobb’s J. of Software Tools, 22(9), 1997.

[20] D. E. Knuth. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison-Wesley,
second edition, 1973.

[21] P. Larson and G. Graefe. Memory management during
run generation in external sorting. In Proc. of the
1998 ACM SIGMOD intl. conference on Management
of data, pages 472–483. ACM Press, 1998.

[22] S. Lefebvre and H. Hoppe. Perfect spatial hashing.
ACM Transactions on Graphics, 25(3):579–588, 2006.

[23] B. Majewski, N. Wormald, G. Havas, and Z. Czech. A
family of perfect hashing methods. The Computer
Journal, 39(6):547–554, 1996.

[24] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing database architecture for the new
bottleneck: Memory access. The VLDB journal,
9:231–246, 2000.

[25] K. Mehlhorn. Data Structures and Algorithms 1:
Sorting and Searching. Springer-Verlag, 1984.

[26] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom
filter replacement. In Proc. of the 16th ACM-SIAM
symposium on Discrete algorithms, pages 823–829,
2005.

[27] R. Pagh. Hash and displace: Efficient evaluation of
minimal perfect hash functions. In Workshop on
Algorithms and Data Structures, pages 49–54, 1999.

[28] B. Prabhakar and F. Bonomi. Perfect hashing for
network applications. In Proc. of the IEEE
International Symposium on Information Theory.
IEEE Press, 2006.

[29] J. Radhakrishnan. Improved bounds for covering
complete uniform hypergraphs. Information
Processing Letters, 41:203–207, 1992.

[30] J. P. Schmidt and A. Siegel. The spatial complexity of
oblivious k-probe hash functions. SIAM J. on
Computing, 19(5):775–786, October 1990.

[31] M. Seltzer. Beyond relational databases. ACM Queue,
3(3), April 2005.

[32] M. Thorup. Even strongly universal hashing is pretty
fast. In Proc. of the 11th ACM-SIAM symposium on
Discrete algorithms, pages 496–497, 2000.

[33] P. Woelfel. Maintaining external memory efficient hash
tables. In Proc. of the 10th International Workshop on
Randomization and Computation (RANDOM’06),
pages 508–519. Springer LNCS vol. 4110, 2006.

