
Fallout: Reading Kernel Writes From User Space

Marina Minkin1, Daniel Moghimi2, Moritz Lipp3, Michael Schwarz3, Jo Van Bulck4, Daniel Genkin1,
Daniel Gruss3, Frank Piessens4, Berk Sunar2, and Yuval Yarom5

1University of Michigan
2Worcester Polytechnic Institute
3Graz University of Technology

4imec-DistriNet, KU Leuven
5The University of Adelaide and Data61

Abstract
Recently, out-of-order execution, an important performance
optimization in modern high-end processors, has been re-
vealed to pose a significant security threat, allowing informa-
tion leaks across security domains. In particular, the Melt-
down attack leaks information from the operating system
kernel to user space, completely eroding the security of the
system. To address this and similar attacks, without incurring
the performance costs of software countermeasures, Intel in-
cludes hardware-based defenses in its recent Coffee Lake R
processors.

In this work, we show that the recent hardware defenses are
not sufficient. Specifically, we present Fallout, a new transient
execution attack that leaks information from a previously un-
explored microarchitectural component called the store buffer.
We show how unprivileged user processes can exploit Fall-
out to reconstruct privileged information recently written by
the kernel. We further show how Fallout can be used to by-
pass kernel address space randomization. Finally, we identify
and explore microcode assists as a hitherto ignored cause of
transient execution.

Fallout affects all processor generations we have tested.
However, we notice a worrying regression, where the newer
Coffee Lake R processors are more vulnerable to Fallout than
older generations.

1 Introduction

The architecture and security communities will remember
2018 as the year of Spectre [32] and Meltdown [37]. Specula-
tive and out-of-order execution, which have been considered
for decades to be harmless and valuable performance fea-
tures, were discovered to have dangerous industry-wide secu-
rity implications, affecting operating systems (OSs) [32, 37],
browsers [1, 32], virtual machines [57], trusted execution en-
vironments (e.g., SGX) [55], AES hardware accelerators [53]
and more.

Meltdown, in particular, is a severe hardware issue. In a
Meltdown attack, an unprivileged attacker performs an ex-

plicit access violation to a privileged memory location con-
taining the OS’s kernel. The CPU responds with the value
from that address, while marking the load operation as faulty.
Perhaps most shockingly, the CPU then allows subsequent
transient computation on the returned value. Finally, by the
time that the CPU recognizes the violation and attempts to
undo the damage caused by transient execution, the attacker
already had sufficient cycles to leak the kernel data using a
microarchitectural covert channel, such as via the processor’s
cache [10, 42].

Recognizing the danger posed by this hardware issue, the
computer industry mobilized. Potentially incurring significant
performance losses [14], all major OS deployed countermea-
sures based on the KAISER patch [16], which removes the
mapping of kernel pages from the address space of user pro-
cesses. At a high level, Kernel Page Table Isolation (KPTI)
relies on the idea that even if the attacker can access the entire
currently mapped address space, the attacker lacks the capa-
bilities of accessing memory outside of the current address
space, thus leaving the kernel safely out of reach.

Unfortunately, with Foreshadow [55] and Foreshadow-
NG [57] it became clear that an attacker can transiently access
even pages that are not mapped into the address space. The at-
tacker then subsequently exploits a Meltdown-like technique
to leak privileged data, including enclave secrets safeguarded
by Intel’s Software Guard eXtensions (SGX) [55] or across
virtual machines running on the same physical host [57].

In an attempt to claw back some of the performance loss,
and to permanently eliminate Foreshadow and Meltdown re-
lated issues, Intel announced already back in 2018 strong,
silicon-based Meltdown defenses in future processors enumer-
ating Rogue Data Cache Load resilience (RDCL_NO) [26].
With the recent release of the 9th generation Coffee Lake R
microarchitecture, such Meltdown-resistant processors are fi-
nally available on the mass consumer market. The RDCL_NO
security feature promises to obviate the need for KPTI and
other defenses, while improving overall performance [8].
However, while Intel claims that these fixes address Meltdown
and Foreshadow, it remains unclear whether new generations

ar
X

iv
:1

90
5.

12
70

1v
1

 [
cs

.C
R

]
 2

9
M

ay
 2

01
9

of Intel processors are properly protected against Meltdown-
type transient execution attacks. Thus, in this work we set out
to investigate the following question:

Is kernel data safe in the new generation of processors?
Can ad-hoc software mitigations be safely disabled on post-
Meltdown Intel hardware?

1.1 Our Contribution
Unfortunately, in this paper, we answer these questions in the
negative. We present Fallout, a new attack on the hardware-
based memory isolation mechanisms in Intel CPUs. Using
Fallout, user-space programs can read data that has recently
been written by the kernel, as well as derandomize Kernel
Address Space Layout Randomization (KASLR). Similarly to
previous transient execution attacks, Fallout does not require
any privileges except for the ability to run code, and does not
exploit any kernel vulnerabilities.
The Mechanism Behind Fallout. Fallout exploits an op-
timization that we call Write Transient Forwarding (WTF),
which incorrectly passes values from memory writes to subse-
quent memory reads. In a nutshell, when the program writes
a value to memory, the processor needs to first translate the
virtual address of the destination to a physical address and
then acquire exclusive access to the location. Rather than
stalling the store instruction and subsequent computation, the
processor records the value and the address in the store buffer,
and continues executing the program. The store buffer then re-
solves the address, acquires the access to the memory location
and stores the data.

When a value is in the store buffer, care should be taken
that subsequent loads from the same address do not read stale
values from memory. To solve this, the processor matches
the addresses of all load instructions against addresses in the
store buffer. In the case of a match, the processor forwards the
matching value from the store buffer to the load instruction. To
increase efficiency, the processor uses partial address matches
to rule out the need for store-to-load forwarding. WTF kicks
in when a load instruction partially matches a preceding store
and the processor determines that the load is bound to fail. In
such cases, instead of cleaning up the state of the processor,
it marks the load as faulty, and incorrectly forwards the value
of the partially matched store.
Exploiting the WTF optimization. Fallout exploits this be-
havior to leak, through a microarchitectural channel, the value
that WTF incorrectly forwards. The attacker deliberately per-
forms a faulty load, causing the CPU to transiently forward
an incorrect value from the store buffer. We subsequently leak
the value using a Flush+Reload [58] side channel. As the store
buffer is a shared resource used by all software running on a
CPU core, the incorrectly-forwarded value might not even be-
long to the attacker’s process. Empirically demonstrating this,
in this paper, we show how to exploit the WTF optimization

to leak values recently written by the kernel from user space
as well as how to derandomize the kernel’s ASLR.
Fallout vs. Meltdown Like all Meltdown-type attacks,
Fallout exploits transient execution past an exception. How-
ever, unlike previous Meltdown-type attacks, in Fallout the
adversary does not read from the address of the protected
value. Instead, the value leaks while the adversary loads from
an unrelated memory address. As a result, the hardware coun-
termeasures for Meltdown and Foreshadow in recent Intel
processors do not protect against Fallout. Finally, we note a
worrying regression in recent Intel processors, where, possibly
due to the added hardware countermeasures, newer processors
seem more vulnerable to Fallout than previous generations.
Security Analysis of Speculation Mechanisms and Coffee
Lake Refresh. We present the first analysis of various
exception-creation and exception-suppression mechanisms
used to mount Fallout across various Intel architectures. As
we show, not all creation and suppression mechanisms are
interchangeable, and the exact combination is, in fact, archi-
tecture dependent. Finally, we show that the hardware change
in exception creation and suppression introduced by Intel in
the latest Coffee Lake Refresh architecture make them more
vulnerable to our attack.
Exploiting Microcode Assists. As a final contribution, we
identify a hitherto unexplored cause of transient execution.
We show that invoking microcode assists to handle corner
cases in the execution of some instructions, results in transient
execution of the instructions. While assists-based transient
execution shares some properties of Meltdown-type transient
execution, assists do not cause exceptions and therefore do
not require any fault-suppression mechanisms.

1.2 Disclosure and Timeline

Following the practice of responsible disclosure, we have
notified CPU vendors about our findings.
Intel. We notified Intel about our findings, including a
preliminary writeup and proof-of-concept code, on January
31st, 2019. Intel had acknowledged the issue and requested
an embargo on the results in this paper, ending May 14th,
2019. Intel has further classified this issue as Microarchi-
tectural Store Buffer Data Sampling (MSBDS), assigning it
CVE-2018-12126 and a CVSS ranking of Medium. Finally,
Intel had indicated that we are the first academic group to
report this issue and that a similar issue was found internally
as well.
AMD. We also notified AMD’s security response team
regarding our findings, including our writeup. AMD had in-
vestigated this issue of their architectures and indicated that
AMD CPUs are not vulnerable to the attacks described in this
paper.
ARM. We have also notified ARM’s security response
team regarding our findings. ARM had investigated this issue

and found that ARM CPUs are not vulnerable to the attacks
described in this paper.
IBM. Finally, we also notified IBM security about the
finding reported in this work. IBM had responded that none
of their CPUs is affected, including System-V and PowerPC.
The RIDL Attack. In a concurrent independent work1, the
RIDL attack [56] analyzes additional buffers present inside
Intel CPUs, with specific attention to the Line Fill Buffer
(LFB) and load ports. There, they show that faulty loads from
the LFB or load ports leak information across various security
domains. We note however that Fallout is different from (and
complementary to) RIDL. This is since the two attacks exploit
different microarchitectural elements (LFB and load ports for
RIDL and Store Buffer and WTF optimization for Fallout). In
particular, RIDL can be used to recover values recently placed
in the LFB while Fallout allows the attacker to recover the
value of a specific attacker-chosen writes in the store buffer.

2 Background

In this section, we provide the background required to under-
stand our attack, including a description of caches and cache
attacks, transient execution attacks, and Intel Transactional
Synchronization Extensions.

2.1 Caches and Cache Attacks

Caches are an essential part of modern processors. They are
small and fast memories where the CPU stores copies of
data from the main memory to hide the main memory access
latency. Modern CPUs have a variety of different caches and
buffers for various purposes. The main cache hierarchy is the
instruction and data cache hierarchy consisting of multiple
levels, which vary in size and latency. The L1 is the smallest
and fastest cache. The L3 cache, also called the last-level
cache (LLC), is typically the largest and slowest.
Cache Organization. Modern caches are typically set-
associative, i.e., a cache line is stored in a fixed set, as deter-
mined by part of its virtual or physical address. Addresses
that map to the same set are called congruent. On modern
processors, the last-level cache is typically physically indexed
and shared across cores. It is also often inclusive of L1 and L2,
which means that all data stored in L1 and L2 is also stored in
the last-level cache. The cache hierarchy exposes the latency
difference between the main memory access (cache miss) and
the cache access (cache hit), i.e., exactly the latency differ-
ence that caches introduce. This can be used in side channels
on a non-colluding victim or in covert channels where sender
and receiver collude to transmit information.

1Both teams made contact on May 7th, provided each other with an
overview of their findings, and coordinated public disclosure as well as
communication with Intel. For a complete timeline describing the flow of
information related to this disclosure, see mdsattacks.com.

Cache Attacks. Different cache attack techniques have
been proposed in the past, such as Prime+Probe [45, 47] and
Flush+Reload [58]. Flush+Reload attacks and its variants [17,
19,36,60] work on shared memory at a cache-line granularity.
The attacker repeatedly flushes a cache line and measures
how long it takes to reload it. The reload time will always
be high unless another process has reloaded the cache line
back into the cache. In contrast, Prime+Probe attacks work
without shared memory, and only at a cache-set granularity.
The attacker repeatedly accesses a set of congruent memory
addresses, filling an entire cache set with its own cache lines,
and measures how long that takes. As this is repeated in a loop,
the cache set is always filled with the attacker’s cache lines.
Hence the access time will always be rather low. However,
if another process accesses a memory location in the same
cache set, it will evict one of the attacker’s cache lines and
the access time will increase.

Cache attacks have been used to break cryptographic
implementations [11, 12, 38, 45, 47, 58, 59], infer user in-
put [19,36,48], and break system-level security [18,24]. Both
Prime+Probe and Flush+Reload have also been used in high-
performance covert channels [17, 38, 42], also as a building
block of transient execution attacks such as Meltdown [37],
Spectre [32], and Foreshadow [55, 57] that we detail below.

2.2 Superscalar Processors
To achieve their high performance, modern processors are
often superscalar, that is, they perform multiple operations
in parallel. In current implementations, e.g., in modern Intel
processors (refer Fig. 1), execution of a program is divided
between two main parts. The frontend is responsible for pro-
cessing the machine-code instructions of the program, decod-
ing them to a stream of micro-ops (µOPs) that are sent to the
Execution Engine for execution.
Out-of-order Execution. The execution engine consists
of multiple execution units, which can execute various µOPs.
To allow superscalar execution, the execution engine follows
a variant of Tomasulo’s algorithm [54], which executes µOPs
when the data they depend on is available, rather than follow-
ing strict program order. Once executed, the µOPs arrive at
the reorder buffer whose purpose is to retire µOPs in program
order, ensuring that architecturally-visible effects of µOPs
execute in the order the programmer specified.
Speculative Execution. The stream of µOPs that the
frontend generates does not necessarily correspond to the
sequence of instructions in the program. A major cause of
deviation is branch prediction. When the frontend reaches a
branch instruction, it often does not yet know where execution
will proceed. Instead of waiting, the frontend attempts to pre-
dict the outcome of the branch and proceed from there. In the
case that the prediction is correct, the generated µOPs match
the program and can be processed. Otherwise, at some later
stage, the processor notices the misprediction. The frontend

mdsattacks.com

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 1: Simplified illustration of a single core of the Intel’s
Skylake microarchitecture (as presented in [37]). Instructions
are decoded into µOPs and executed out-of-order in the exe-
cution engine by individual execution units.

is then steered to the correct instruction, and µOPs generated
as part of the misprediction are dropped by the reorder buffer
without committing any of their results to the architectural
state of the processor. Following [6], we refer to µOPs that
are not retired as transient. Similarly, following [13], we use
refer to µOPs other than the one waiting for retirement as
speculative. We note that speculative µOPs do not necessarily
result from speculative execution. The are called speculative
because the execution engine cannot determine whether they
are transient or not.

2.3 The Memory Subsystem

In this work, we are mainly interested in how memory load
and store operations are implemented. The main two issues
we deal with are how to resolve the physical addresses used by
these instructions and how to ensure that out-of-order execu-

tion does not break dependencies between these instructions.

2.4 Transient Execution Attacks
While transient execution does not influence the architectural
state of the processor, it can change the microarchitectural
state. Transient execution attacks abuse transient execution
to execute a few instructions transiently and modify the mi-
croarchitectural state. The change in the microarchitectural
state is then observed using a covert-channel attack. Spectre-
type [32] attacks exploit different prediction mechanisms,
while Meltdown-type [37, 55] attacks exploit transient execu-
tion following a CPU exception.
Spectre Attacks. The first Spectre attacks focused on the
CPU’s Pattern History Table (PHT), Branch History Buffer
(BHB), and Branch Target Buffer (BTB) as microarchitectural
data structures causing mispredictions [32]. Both transient
loads and stores [31] are possible, leading to a variety of at-
tacks, including reading and writing from out-of-bound mem-
ory locations, transferring control-flow to arbitrary addresses
via mispredicted indirect jumps [32] or returns [33, 40]. In
all Spectre attacks, the attacker mistrains the processor by
performing a certain type of branches, influencing the cor-
responding microarchitectural predictor. Subsequently, the
victim runs with incorrect predictions and thereby leaks data.
While Spectre attacks can only leak architecturally accessible
data, the mistraining works across privilege boundaries, e.g.,
the kernel-to-user boundary, or SGX. Another type of Spectre
attacks is based on unsuccessful load-to-store forwarding [23].
Spectre attacks can even be mounted in remote scenarios, i.e.,
from JavaScript [32] or just by sending requests to a vulnera-
ble system [49].
Meltdown Attacks. Meltdown-type attacks do not exploit
misprediction. Instead, they exploit deferred handling of per-
mission checks. Before the permission check is performed
and the attacker process triggers a processor exception ar-
chitecturally, the data is already handed to the subsequent
instructions that are also transiently executed. The first Melt-
down attack [37] exploits the deferred permission check for
the user/supervisor bit in the page tables, allowing to leak arbi-
trary memory mapped in the kernel address space. Other Melt-
down attacks similarly exploit the deferred check of present
or reserved bits in page table entries [55, 57], the writable bit
in the page table entry [31], or the permission check when
reading system registers [4, 25].
Countermeasures. Recognizing the danger posed by tran-
sient execution attacks, a wide range of defenses have been
proposed to defend against them. However, to date, it is un-
clear which defenses actually increase the security level and
which are trivially bypassable [6, 43]. One defense where the
consensus across academia and industry is that it protects
against Meltdown, if correctly implemented, is KAISER [16].
KAISER is the idea of duplicating the page table hierar-
chies for every process, once with the kernel space map-

pings present and once without. When running in user space
the mapping without the kernel space is used. The idea of
KAISER has been integrated into all major operating systems,
e.g., in Linux as KPTI [39], in Windows as KVA Shadow [28],
and in Apple’s xnu kernel as double map [35]. While KAISER
costs performance, the use of PCID and ASID on modern pro-
cessors reduced the overheads for real-world workloads to
almost zero [14]. More recent processors ship with hardware
patches and hence have the KAISER patch disabled by de-
fault [8].

2.5 Exception Creation

As explained in Section 2.4, in a Meltdown-type attack the
attacker exploits the deferred enforcement of permissions (i.e.,
deferred exception handling) present in Intel CPUs in order
to obtain privileged information. In the original Meltdown
attack [37], the attacker exploits the delayed enforcement of
the User / Supervisor bit in the CPU’s hardware in order to
read privileged information and subsequently leak it through
a covert channel. Next, in Foreshadow [55] and Foreshadow-
NG [57], the attacker exploits the fault cases of a page marked
as non-present and therefore cannot be accessed.

2.6 Exception Suppression

One problem common to Meltdown-type attacks is that the
instructions they exploit cause exceptions, which by default
terminate the program. Four main approaches have been sug-
gested for handling this termination. In the fork-and-crash
approach, a forked process executes the attack, and its parent
resumes after the process terminates. Exception handling sets
up a signal handler to catch the exception and resume exe-
cution. A third option suppresses the exception by wrapping
the attack code in a mispredicted branch or call, which spec-
ulatively executes the attack. Finally, the exception can be
suppressed by wrapping it in a hardware transaction. The last
approach is the most effective [37] and most widely applica-
ble [55, 57]. Given its applicability, in Section 2.7 below, we
provide additional details about exception suppressing using
hardware transactions. We refer interested readers to [37] for
further information on the other approaches.

2.7 Transactional Memory

Intel’s Transactional Synchronization Extensions (TSX) is
an instruction set extension to the x86-64 architecture that
supports hardware transactions. In a nutshell, a transaction is
a sequence of instructions that are either executed atomically
or not executed at all. Atomic execution implies that concur-
rent threads cannot observe intermediate updates from the
transaction and the thread executing the transaction cannot
observe any changes from other threads.

Implementing TSX Transactions. Transactions are de-
limited by two instructions. The XBEGIN instruction starts a
transaction and XEND terminates it. The XBEGIN instruction
also specifies an abort location where execution continues
if the transaction fails. Transaction implementation mostly
relies on existing processor mechanisms. Instructions follow-
ing XBEGIN are not retired and instead are kept in the reorder
buffer until the XEND is executed. If the transaction is aborted,
all pending instructions in the transaction are discarded, and
the architectural state of the processor is reverted to the state
before the XBEGIN. To revert memory state and to maintain
atomicity, memory stores inside a transaction modify the L1
cache but are not evicted to lower memory layers, and mem-
ory lines read in a transaction remain in the last-level cache.
TSX locks the affected lines to protect against concurrent
modifications and reads of modified lines.
Transaction Aborts. If concurrent processes try to write
to these locked lines, the transaction aborts and is rolled back.
Similarly, if the processor runs out of cache space for the
transaction data, the transaction aborts. This behavior of TSX
transactions has been exploited for both side-channel attacks
and defenses [9, 15, 51]. Transactions also abort in other sce-
narios. In particular, transactions abort when the processor
receives an exception or if an instruction within the transac-
tion causes a fault. Thus, when a Meltdown-type attack is
enclosed in a TSX transaction, the faulting instruction causes
a transaction abort, which effectively reverses the architectural
state of the processor to the state prior the XBEGIN instruction,
suppressing the fault. Yet, as [37] observe, the microarchitec-
tural state of the processor is not reverted when a transaction
aborts, allowing the attacker to recover information from the
aborted instructions.

3 The Write Transient Forwarding Optimiza-
tion

In this section, we discuss the WTF optimization that is ex-
ploited with the Fallout attack. First, we will illustrate the
basic idea of Fallout with a simple toy example before dis-
cussing the hardware mechanisms responsible for the attack.

3.1 A Toy Example

Listing 1 shows a simple code snippet which exploits the
WTF optimization to read variables without directly accessing
them. While this example does not have security implications
on its own, it nonetheless shows the general concept behind
Fallout, allowing user-level code to read information stored in
the CPU’s store buffer without directly accessing the address
corresponding to that information.
Setup. First, 2 pages are allocated. The victim_page is a
user space accessible page where the user can store and read
data. However, by setting the protection level to PROT_NONE

1 char* victim_page = mmap(..., PAGE_SIZE, ...);
2 char* attacker_page = mmap(..., PAGE_SIZE,

...);
3 mprotect(attacker_page , PAGE_SIZE, PROT_NONE);
4
5 offset = 7;
6 victim_page[offset] = 42;
7
8 if (tsx_begin() == 0) {
9 memory_access(lut + 4096 * attacker_page[

offset]);
10 tsx_end();
11 }
12
13 for (i = 0; i < 256; i++) {
14 if (flush_reload(lut + i * 4096)) {
15 report(i);
16 }
17 }

Listing 1: Pseudocode of Fallout. Some mmap parameters
were omitted for clarity

on the attacker_page, all access permissions to this page
are revoked and the page is marked as not-present. Thus, any
access to the attacker_page will yield an exception.

Next, we write the value 42 to the offset 7 of the
victim_page. Rather than executing the write to memory
immediately, the processor first notes the operation in the
store buffer. We note that the code in Listing 1 never reads
from the victim_page directly.

Reading Previous Stores. Instead of reading from the
victim page at the specified offset, the code starts a TSX trans-
action (Line 8) and reads from the attacker_page. As the
page is inaccessible, the memory access will fail and the TSX
transaction aborts. However, the exception will be only han-
dled by the reorder buffer when the memory access operation
is retired. In the meantime, due to the WTF optimization, the
CPU will transiently forward the value of the previous store
at the same page offset. Thus, the memory access will pick-up
the value of the store to the victim_page, in this example 42.
Using a cache-based covert channel, the incorrectly forwarded
value is transmitted. Finally, when the failure and transaction
abort are handled, the architectural effects of the transiently
executed code are reverted.

Recovering the Leaked Data. Using Flush+Reload, the
attacker can recover the leaked value from the cache-based
covert channel in Line 14. Fig. 2 displays the results of mea-
sured access times to the look-up-table (lut) on a Meltdown-
resistant i9-9900K CPU. As the figure illustrates, the typical
access time to an array element is above 200 cycles, with the
exception of element 42, where the access time is well below
100 cycles. We note that this position matches the value writ-
ten to target_page. Hence, the code can recover the value
without directly reading it.

 100

 1000

 0 50 100 150 200 250

A
cc

es
s

T
im

e
 (

cy
cl

es
)

Probed Value

Figure 2: Access times to the probing array during the execu-
tion of Listing 1. The dip at 42 represents a correct recovery
of the value from the store buffer.

3.2 The Mechanism Behind Fallout
We now turn our attention to the store buffer, a microarchitec-
tural component, which lies in the core of WTF and Fallout.
The Store Buffer Implementation. When the CPU writes
data to memory, it needs to first resolve the virtual address
to a physical address. Then it acquires exclusive access to
the cache line of the target data. Rather than waiting, the
processor stores the information to the store buffer.

Fig. 3 shows the structure of the store buffer according
to Intel patents [2, 3]. Based on these patents, a store oper-
ation is implemented using two µOPs, store address (STA)
and store data (SDA). Splitting the operation to two µOPs
allows the processor to process the parts independently and
asynchronously.

Asynchronous processing raises the issue of memory or-
dering. Specifically, operations that access the same memory
locations must be performed at the order specified in the pro-
gram and, in particular, load operations should get the value
from preceding stores to the same address. Intel published
some properties of the store buffer [27]. However, we are not
aware of any public documentation of the algorithms used
for resolving memory access conflicts. Intel’s patents on the
topic [2,3,34] suggest that the store buffer is virtually indexed,
but each entry also includes parts of the physical address, such
that mismatches on the partial addresses ensure the absence
of dependencies, allowing loads to proceed without waiting
for full address resolution.
Write Transient Forwarding. An algorithm for handling
partial address matches appears in another Intel patent [22].
Remarkably, the patent explicitly states that:

"if there is a hit at operation 302 [partial match us-
ing page offsets] and the physical address of the
load or the store operations is not valid, the phys-
ical address check at operation 310 [full physical
address match] may be considered as a hit"

That is, if address translation of a load µOP fails and the 12
least significant bits of the load address match those of a
prior store, the processor assumes that the physical addresses
of the load and the store match and forwards the previously
stored value to the load µOP. We note that the failed load is

...

...

ID...Data

ID...Data

...

ID...Data

ID...Data

Store Data
Buffer (SDB)

ID ... VA[:12]

...

...

ID

ID

Store Address
Buffer (SDB)

PA[19:12] VA[11:0]

VA[:12] PA[19:12] VA[11:0]

VA[:12] PA[19:12] VA[11:0]

VA[:12] PA[19:12] VA[11:0]

Index 0

Index 1

Index n-1

Index n

Store Data
(SDA) µOP

Store Address
(STA) µOP

Store Buffer

ID

Stores from
execution engine

Stores to L1
Data Cache

Figure 3: Structure of the store buffer on Intel CPUs.

transient and will not retire, hence WTF has no architectural
implications. However, as this work demonstrates, microar-
chitectural side effects of transient execution following the
failed load may result in inadvertent information leaks. Given
the surprising nature of this optimization and its security con-
sequence, we refer to it as the Write Transient Forwarding
(WTF) optimization.

Fault and Suppression Mechanisms. To better under-
stand the WTF mechanism, we evaluate the toy example in
Listing 1 with multiple combinations of causes of faults and
fault-suppression mechanisms. We experimented with three
Intel processors: a Coffee Lake R i9-9900K, a Kaby Lake
i7-7600U, and a Skylake i7-6700. We summarize the results
in Table 1.

We observe that unlike earlier generations, the Coffee Lake
R processor exhibits a different behavior based on the fault
suppression mechanism. Specifically, in the example in List-
ing 1 replacing the TSX fault suppression mechanism with
branch misprediction does not trigger the WTF optimization,
and the value does not leak. We suspect that the processor
inhibits some forms of speculative execution within branch
misprediction while allowing it in TSX transactions. More-
over, the Coffee Lake R processor does not seem to trigger
the WTF optimization when a load fails due to a read from
a kernel page. We note that transient reads from such pages
is the main cause of the Meltdown bug. Thus, we conjec-
ture that the differences in behavior between the processor
generations are due to the recent mitigations for the Melt-
down and Foreshadow attacks introduced in the Coffee Lake
R architecture [REFS].

Also note that, for completeness, we tested whether WTF
can be triggered by Supervisor Mode Access Prevention
(SMAP) features in recent Intel processors. For this experi-
ment, we explicitly dereference a user space pointer in kernel
mode such that SMAP raises an architectural fault. We ob-
served that SMAP violations may successfully trigger the
WTF optimization. While we do not consider this to be an
exploitable attack scenario, SMAP was to te best of our knowl-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70R
e
a
d
s

o
f

O
ld

e
st

 W
ri

te
 (

%
)

Number Of Writes
SL HT off
SL HT on

SL use HT

KL HT off
KL HT on

KL use HT

CL-R HT off
CL-R HT on

CL-R use HT

Figure 4: Measuring the size of the store buffer on Kaby Lake
and Coffee Lake machines. In the experiment, we perform
multiple writes to the store buffer and subsequently measure
the probability of retrieving the value of the first (oldest) store.
The results agree with 56 entries in the store buffer and with
a static partitioning between hyperthreads.

edge previously considered to be immune to any Meltdown-
type effects [6].
Coffee Lake R Regression. We also note a troubling
regression in Intel’s newest architecture. When accessing a
page marked as non-present, we can only trigger the WTF
optimization on the Coffee Lake Refresh processor.

3.3 Measuring the Store Buffer Size
We now turn our attention to measuring the size of the store
buffer. Intel advertises that Skylake processors have 56 entries
in the store buffer [41]. We could not find any publications
specifying the size of the store buffer in newer processors,
but as both Kaby Lake and Coffee Lake R are not major
architectures, we assume that the size of the store buffers has
not changed. As a final experiment in this section, we now
attempt to use Fallout to confirm this assumption. To that aim,
we perform a sequence of store operations, each to a different
address. We then use a faulty load aiming to trigger a WTF
optimization and retrieve the value stored in the first (oldest)
store instruction. For each number of stores, we attempt 100
times at each of the 4096 page offsets, to a total of 409,600
per number of stores. Fig. 4 shows the likelihood of triggering
the WTF optimization as a function of the number of stores
for each of the processor and configurations we tried. We see
that we can trigger the WTF optimization provided that the
sequence has up to 55 stores. This number matches the known
data for Skylake and confirms our assumption that it has not
changed in the newer processors.

The figure further shows that merely enabling hyperthread-
ing does not change the store buffer capacity available to the
process. However, running code on the second hyperthread
of a core halves the available capacity, even if the code does
not perform any store. This confirms that the store buffers
are statically partitioned between the hyperthreads [27], and

Fault Suppression Transactional Memory (TSX) Branch Misprediction
Architecture Pre Coffee Lake R Coffee Lake R Pre Coffee Lake R Coffee Lake R

User not present 7 3 7 7

Kernel data 3 7 3 7

Kernel code 3 3 3 3
Kernel not present 7 7 7 7

SMAP 3 3 3 7

Table 1: Evaluating different fault-inducing and fault-suppression mechanisms on Intel architectures before Coffee Lake R and
on Coffee Lake R. 3 indicates that our attack can successfully leak data, while 7 indicates no leakage was observed. Finally, we
denote the case of the Coffee Lake R regression with 3©, while changes following hardware countermeasures are marked with 7©.

also shows that partitioning takes effect only when both hy-
perthreads are active.

4 Using Fallout to Break Kernel Isolation

In this section, we show that Fallout can leak information
from the OS kernel to unprivileged users. We first explore a
contrived scenario where a dedicated kernel module writes
data without doing any useful computation. We then proceed
to a more realistic scenario and show leakage from real code
running inside the kernel.

4.1 Leaking Memory Writes from the Kernel
Our proof-of-concept implementation consists of two compo-
nents. The first is a kernel module that writes to a predeter-
mined virtual address in a kernel page. The second is a user
application that performs a faulty load from an address in a
user page, such that the page offset of this address the same
as the page offset the kernel module writes to. Exploiting the
WTF optimization, the user application can retrieve the data
written by the kernel. We now proceed to describe both parts
of our proof-of-concept implementation.
The Kernel Module. Our kernel module performs a se-
quence of write operations each to a different page offset in
a different kernel page. These pages, like other kernel pages,
are not directly accessible to user code. On older processors,
such addresses may be accessible indirectly via Meltdown.
However, we do not exploit this and assume that the user code
does not or cannot exploit Meltdown.
The Attacker Application. The attacker application aims
to retrieve kernel information that would normally be inacces-
sible outside the kernel. The attacker code first uses mprotect
to revoke access to a page. It then invokes the kernel module
to perform the kernel writes. When the kernel module returns,
the attacker performs a faulty load from the protected page,
before transiently leaking the value through a covert cache
channel.
Increasing the Window for the Faulty Load. To increase
the time window for the faulty load, our attacker code further

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50

R
e
a
d

 A
cc

u
ra

cy
 (

%
)

Number of Stores in the Kernel

Skylake
Kaby Lake

Coffee Lake R

Figure 5: Probability of recovering kernel values from user
space as a function of the number of kernel stores.

delays processing the kernel store by performing a sequence
of store operations before invoking the kernel module. Store
buffer entries are processed and stored in the cache in program
order [2, 3, 22, 29]. Thus, filling the store buffer delays pro-
cessing of later stores. We further increase the effect of these
store operations by first flushing the addresses they write to
from the cache.
Experimental Evaluation. We measure the number of
stores that the kernel needs to perform for Fallout to be able
to recover a value it stores before returning user space. We
use our three Intel machines with a fully updated Ubuntu
16.04, keeping the kernel mapped in the process’s address
space. Fig. 5 shows the results of our evaluation, where each
experiment is repeated 409,600 times, 100 at each possible
page offset. As the figure shows, after about 10 kernel writes
the attacker can use Fallout to recover a value written by the
kernel on both machines with about 80% probability.

On processors vulnerable to Meltdown, leaving the kernel
mapped in the process’s address space disables KPTI, allow-
ing Meltdown attacks on the kernel. For the Coffee Lake
R processor, which includes hardware countermeasures for
Meltdown, KPTI is disabled by default. In particular, the ex-
periments for this processor in Fig. 5 are with the default
Ubuntu configuration. Ironically, this means that the hard-
ware countermeasures in Intel’s latest CPU generations make

them more vulnerable to Fallout.

4.2 Attack on the AES-NI Key Schedule
The attack we describe above assumes the most favorable
scenario for the attacker. We now proceed to a more realistic
scenario where we show that when the kernel processes a
secret encryption key it may leak enough information for the
user process to recover the key.

The Linux Kernel cryptography API supports several stan-
dard cryptographic schemes that are available to third-party
kernel modules and device drivers which need cryptography.
For example, the Linux key management facility and disk
encryption services, such as eCryptfs [21], heavily rely on
this cryptographic library.

To show leakage from the standard cryptographic API, we
implemented a kernel module that uses the library to pro-
vide user applications with an encryption oracle. We further
implemented a user application that uses the kernel module.
The AES keys that the kernel module uses are only stored in
the kernel and are never shared with the user. However, our
application exploits Fallout to leak these keys from the kernel.
We now describe the attack in further details.
AES and AES-NI. A 128-bit AES encryption or decryp-
tion operation consists of 10 rounds. The AES key schedule
algorithm expands the AES master key to generate a separate
128-bit subkey for each of these rounds. An important prop-
erty of the key scheduling algorithm is that it is reversible.
Thus, given a subkey, we can reverse the key scheduling algo-
rithm to recover the master key. For further information on
AES, see [44].

Because encryption is a performance-critical operation and
to protect against side-channel attacks [46], recent Intel pro-
cessors implement the AES-NI instruction set [20], which pro-
vides instructions that perform parts of the AES operations. In
particular the AESKEYGENASSIST instruction performs part
of the key schedule algorithm.

1 aeskeygenassist $0x1 , %xmm0 , %xmm1
2 callq <_key_expansion_128 >
3 aeskeygenassist $0x2 , %xmm0 , %xmm1
4 callq <_key_expansion_128 >
5 ...
6 <_key_expansion_128 >:
7 pshufd $0xff ,%xmm1 ,%xmm1
8 shufps $0x10 ,%xmm0 ,%xmm4
9 pxor %xmm4 ,%xmm0

10 shufps $0x8c ,%xmm0 ,%xmm4
11 pxor %xmm4 ,%xmm0
12 pxor %xmm1 ,%xmm0
13 movaps %xmm0 ,(%r10)
14 add $0x10 ,%r10
15 retq

Listing 2: AES-NI Key Schedule

Key Scheduling in Linux. The Linux implementation

0x
01

0

0x
09

0

0x
11

0

0x
19

0

0x
21

0

0x
29

0

0x
31

0

0x
39

0

0x
41

0

0x
49

0

0x
51

0

0x
59

0

0x
61

0

0x
69

0

0x
79

0

0x
81

0

0x
A90

0x
B10

0x
B90

0x
C
10

0x
D
10

0x
D
90

0x
E90

0x
F90

Offset

0

2

4

6

8

10

12

14

F
re

q
u

e
n

c
y

Figure 6: Frequency of observed leaked values. We note that
offset 0x110 shows more leakage then others. Confirming
against the ground truth, we find that all the leaked values at
that offset match the subkey byte.

stores the master key and the 10 subkeys in consecutive mem-
ory locations. With each subkey occupying 16 bytes, the total
size of the expanded key is 176 bytes. Where available, the
Linux Kernel cryptography API uses AES-NI for implement-
ing the AES functionality. Part of the code that performs key
scheduling for 128-bit AES appears in Listing 2. Lines 1
and 3 invoke AESKEYGENASSIST to perform a step of gen-
erating a subkey for a round. The code then calls the func-
tion _key_expansion_128, which completes the generation
of the subkey. The process repeats ten times, once for each
round. (To save space we only show two rounds.)
_key_expansion_128 starts at Line 6. It performs the op-

erations needed to complete the generation of a 128-bit AES
subkey. It then writes the subkey to memory (Line 13) before
advancing the pointer to prepare for storing the next subkey
(Line 14) and returning.
Finding the Page Offset. Our aim is to capture the key by
leaking the values stored in Line 13. For that, the user applica-
tion repeatedly invokes the kernel interface that perform the
key expansion as part of setting up an AES context. Because
the AES context is allocated dynamically, its address depends
on the state of the kernel’s memory allocator at the time the
context is allocated. This prevents immediate use of Fallout
because the attacker does not know where the subkeys are
stored.

We use Fallout to recover the page offset of the AES con-
text. Specifically, the user application scans page offsets. For
each offset it asks the kernel module to initialize the AES
context. It then performs a faulty load from a protected page
at the scanned offset, and checks if any data leaked. To reduce
the number of scanned offsets, we observe that, as described
above, the size of the expanded key is 176 bytes. Hence,
we can scan at offsets that are 128 bytes apart and have the
confidence that at least one of these offsets falls within the
expanded key. Indeed, running the attack for 5 minutes we
get Fig. 6. The figure shows the number of leaked values at
each offset over the full five minutes. We note the spike at

offset 0x110. We compare the result to the ground truth and
find that the expanded key indeed falls at offset 0x110. We
further find that the leaked byte matches the value at page
offset 0x110.
Key Recovery. Once we find one offset within the expanded
key, we know that neighboring offsets also fall within the
expanded key and we can use Fallout to recover the other key
bytes. We experiment with 10 different randomly selected
keys and find that we can recover the 32 bytes of the subkeys
of the two final rounds (rounds 9 and 10) without errors within
two minutes. Reversing the key schedule on the recovered
data gives us the master key.

5 Using Fallout to Break KASLR

We now show how Fallout can be used to break Kernel Ad-
dress Space Layout Randomization (KASLR).

5.1 KASLR Background
Code injection attacks are a type of vulnerability where the
attacker injects code to the address space of the victim and
subsequently diverts the victim’s control flow to execute the
injected code. A common protection for such attacks is to
adopt a policy where memory pages are either writable or
executable, but never both.
ROP and Return-to-Libc Attacks. Return-to-libc [52]
and return oriented programming (ROP) [50] are two related
techniques that reuse existing code for exploiting memory
corruption vulnerabilities. In a nutshell, by overwriting the
stack, the attacker can hijack the control flow, and direct exe-
cution into gadgets that exist in the victim’s code or in linked
libraries. [50] demonstrates that a typical library contains
enough gadgets that, when threaded, can perform arbitrary
computation.
ASLR. Address Space Layout Randomization (ASLR) is
a probabilistic countermeasure for ROP. The main idea is to
introduce randomness the in the victim memory layout, hiding
it from the attacker. That is, when a process is initialized,
ASLR randomizes the locations of the code and the data
(see Fig. 7 (top)). With ASLR, the attacker needs to find the
addresses of code gadgets to be able to use them.
KASLR on Linux Systems. On Linux systems, KASLR
had been supported since kernel version 3.14 and enabled
by default since around 2015. As [30] note, the amount of
entropy present depends on the kernel address range as well
as on the alignment size which is usually multiple of page
size.
KASLR and KPTI. As a countermeasure to the Meltdown
attack [37], OSs running on Intel processors up to the latest
Coffee Lake architecture have deployed the Kernel Page Table
Isolation (KPTI) mechanism, which removes the kernel from
the address space of user processes (see Fig. 7 (bottom)). To

0x7FFFFFFFFFFF 0xFFFF800000000000

Kernel Space

Code

Non CanonicalUser Space

0

Code Stack⋯ ⋯⋯

0x7FFFFFFFFFFF 0xFFFF800000000000

Kernel SpaceNon CanonicalUser Space

0

Code Stack⋯ ⋯⋯

0

Kernel Pages
Mapped After

KPTI

Kernel
Start

const

Kernel
Start

const

Kernel Pages
Mapped After

KPTI

Figure 7: (Top) Address space layout with KASLR but with-
out KPTI. (Bottom) User address space with KASLR and
KPTI. Most of the kernel is not mapped in the process’s ad-
dress space anymore.

allow the process to switch to the kernel address space, the
system leaves at least one kernel page in the address space of
the user process. Because the pages required for the switch
do not contain any secret information, there is no need to hide
it from Meltdown.

The KPTI patch is based on KAISER [16], which was
originally designed to protect the kernel from side-channel
attacks that break KASLR [18, 24, 30]. We now proceed to
show that Fallout can reveal the location of the kernel entry
page left in the user address space, thereby breaking KASLR.

5.2 Using Fallout to Break Kernel ASLR

Attack Overview. Our attack is based on the disparity
between the effects of causes of faults (see Table 1). Specifi-
cally, we note that when accessing an unmapped kernel page,
the WTF optimization is not triggered and the Fallout attack
fails. Thus, to perform the attack, we replace the read from
attacker_page in Line 9 with a read from a page within the
kernel address range. When the page we access is mapped,
Fallout succeeds and we retrieve a value from the store buffer.
Otherwise no value is retrieved from the store buffer.

Experimental Setup. We evaluate Fallout on two Intel
machines, a Kaby Lake i7-7600U and a Coffee Lake R i9-
9900K. Both machines run a fully updated Ubuntu 16.04
system, with all countermeasures in their default configuration.
On both systems, we empirically test the possible locations on
the kernel in its address space obtaining about 490 locations,
implying about 9 bits of entropy.

Experimental Results. We run the attack 1000 times each,
on both the Kaby Lake and the Coffee Lake machines. Our
attack can recover the kernel location with 100% accuracy on
both machines, within about 0.27 seconds.

6 Transient Execution and Microcode Assists

Recall (Section 2.4) that [6] classifies transient execution at-
tacks based on the cause of transient execution. Spectre-type
attacks are caused by misprediction of data or control flow,
whereas Meltdown-type attack are caused by transient execu-
tion beyond a fault. We now investigate microcode assists, a
microarchitectural mechanism that has not yet been explored
in the context of transient execution attacks. We identify µOP
redispatching, which occurs as part of invoking microcode
assists, as a new cause for transient execution that extends the
classification of [6].

6.1 Microcode Assists

µOPs are typically implemented in hardware. However, when
complex processing is required for rare corner cases, it may
not be cost effective to implement some of the functionality
in hardware. Instead, if such a case occurs during the exe-
cution of a µOP, the µOP is redispatched, i.e., sent back to
the dispatch queue for execution, together with a microcode
assist, a microcode procedure that handles the more complex
scenario.

The Intel optimization manual [27] lists two scenarios in
which microcode assists are invoked: when handling sub-
normal floating point numbers and in some cases during the
processing of the VMASKMOV (Conditional SIMD Packed
Loads and Stores) instruction. [7] lists further scenarios.

In this work we are interested in microcode assists that
occur as part of the virtual to physical address translation.
While Intel does not publish official documentation on the
process, it has applied for a related patent [13], on which we
base our discussion. We only describe the parts of the patent
that are relevant to this work. We refer the reader to the patent
application for a more complete description.

When the processor handles a memory access (load or
store) it needs to translate the virtual address specified by
the program to the corresponding physical address. For that,
the processor first consults the Data Translation Look-aside
Buffer (DTLB), which caches the results of recent transla-
tions. In the case of a page miss, i.e., when the virtual address
is not found in the DTLB, the page miss handler (PMH) at-
tempts to consult the page map to find the translation. In most
cases this translation can be done while the µOP is specula-
tive. However, in some cases the page walk has side effects
that cannot take place until the µOP retires. Specifically, store
operations should mark pages as dirty and all memory op-
erations should mark pages as accessed. Performing these
side effects while the µOP is speculative risks generating an
architecturally-visible side effect for a transient µOP. (Recall
that the processor cannot determine whether speculative µOPs
will retire or not.) At the same time, recording all the informa-
tion required for setting the bits on retirement would require a
large amount of hardware that will only be used in relatively

rare cases. Thus, to handle these cases, the processor redis-
patches the µOP and arranges for a microcode assist to set the
bits when the µOP retires.

6.2 Fallout and Microcode Assists
To test the effects of microcode assists on Fallout, Use the
code in Listing 3. The code is basically the same as List-
ing 1, except that we use SGX-Step [5] to replace the call
to mprotect and instead mark attack_page as not accessed
(Line 7). Furthermore, because microcode assists do not gen-
erate faults, we do not need fault suppression, and remove the
TSX transaction.

1 char* victim_page = mmap(..., PAGE_SIZE, ...);
2 char* attacker_page = mmap(..., PAGE_SIZE,

...);
3
4 offset = 7;
5 victim_page[offset] = 42;
6
7 clear_access_bit(attacker_page);
8 memory_access(lut + 4096 * attacker_page[

offset]);
9

10 for (i = 0; i < 256; i++) {
11 if (flush_reload(lut + i * 4096)) {
12 report(i);
13 }
14 }

Listing 3: Pseudocode of Fallout with microcode assists. Note
that no fault suppressison is required.

Recovering the Leaked Data. As in Section 3.1 we use
Flush+Reload to recover the leaked data. We repeat the exper-
iment on three processor generations: Skylake, Kaby Lake,
and Coffee Lake R. In all architectures reading from the entry
in the probe array corresponding to the value 42 has a short
access time.

6.3 Assist-based vs. Meltdown-type
[6] list several properties of Meltdown-type attacks. Assist-
based transient execution shares some properties with Melt-
down. Specifically, it relies on deferred termination of a µOP
to bypass hardware security barriers and attacks based on it
can be mitigated by preventing the original leak. However,
unlike Meltdown-type techniques, assists do not rely on faults.
Consequently, no fault suppression techniques are required.

7 Countermeasures

Flushing-Based Countermeasures. Because the store
buffer is not shared across hyperthreads, leaks can only oc-
cur when the security domain changes within a hyperthread.

Thus, flushing the store buffer on security domain change is
sufficient to mitigate the attack. In particular, we verified that
using MFENCE as part of the switch from kernel mode to user
mode thwarts the attack.
Limitations. As mentioned above, the attacks described in
Section 4 are unable to leak information across hyperthreads
. Moreover, as Meltdown software countermeasures (KPTI)
flush the buffer on leaving the kernel, and as the store buffer
is automatically flushed on change of the CR3 register (i.e.,
on context switch), only latest generation Coffee Lake R ma-
chines are vulnerable to the attack described in Section 4.
Ironically, the hardware mitigations present in newer genera-
tion Coffee Lake R machines make them more vulnerable to
Fallout than older generation hardware.

8 Conclusion

With Fallout, we demonstrate a novel Meltdow-type effect
exploiting a previously unexplored microarchitectural com-
ponent, namely the store buffer. The attack enables an un-
privileged attacker to leak recently written values from the
operating system. Furthermore, we demonstrate how Fallout
allows to break kernel ASLR with 100% accuracy within 0.27
seconds. While Fallout affects various processor generations,
we showed that also recently introduced hardware mitigations
are not sufficient and futher mitigations need to be deployed.

Acknowledgments

This research was supported in part by Intel Corporation. The
research presented in this paper was partially supported by
the Research Fund KU Leuven. Jo Van Bulck is supported
by a grant of the Research Foundation – Flanders (FWO).
The project was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681402).
It was also supported by the Austrian Research Promotion
Agency (FFG) via the K-project DeSSnet, which is funded in
the context of COMET – Competence Centers for Excellent
Technologies by BMVIT, BMWFW, Styria and Carinthia.
Additional funding was provided by a generous gift from
Intel. Researchers from Worcester Polytechnic Institute are
supported by National Science Foundation under the grant
CNS-1618837 and CNS-1814406.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding parties.

References
[1] Speculative store bypass / CVE-2018-3639 / INTEL-SA-00115.

https://software.intel.com/security-software-guidance/
software-guidance/speculative-store-bypass, 2018. [Online;
accessed 30-January-2019].

[2] Jeffery M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hinton,
Kris G Konigsfeld, and Paul D Madland. Method and apparatus for
performing a store operation. US Patent 6,378,062, April 23 2002.

[3] Jeffrey M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hinton,
Kris G Konigsfeld, Paul D Madland, David B Papworth, and Michael A
Fetterman. Method and apparatus for dispatching and executing a load
operation to memory. US Patent 5,717,882, February 10 1998.

[4] ARM Limited. Vulnerability of speculative processors to cache timing
side-channel mechanism, 2018.

[5] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A prac-
tical attack framework for precise enclave execution control. In Sys-
TEX@SOSP, pages 4:1–4:6, 2017.

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. arXiv preprint arXiv:1811.05441, 2018.

[7] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR
Cryptology ePrint Archive, 2016:86, 2016.

[8] Ian Cutress. Analyzing Core i9-9900K performance with Spectre
and Meltdown hardware mitigations. https://www.anandtech.com/
show/13659/analyzing-core-i9-9900k-performance-with-
spectre-and-meltdown-hardware-mitigations, 2018. [Online;
accessed 30-January-2019].

[9] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen.
Prime+Abort: A timer-free high-precision L3 cache attack using Intel
TSX. In USENIX Security, pages 51–67, 2017.

[10] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary
hardware. J. Cryptographic Engineering, 8(1):1–27, 2018.

[11] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-
by key-extraction cache attacks from portable code. In ACNS, pages
83–102, 2018.

[12] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be with
you: A microarchitectural side channel attack on several real-world
applications of Curve25519. In CCS, pages 845–858, 2017.

[13] Andy Glew, Glenn Hinton, and Akkary Haitham. Method and appa-
ratus for performing page table walks in a microprocessor capable of
processing speculative instructions. US Patent 5,680,565, 1997.

[14] Brendan Gregg. KPTI/KAISER Meltdown initial performance regres-
sions, 2018.

[15] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, István
Haller, and Manuel Costa. Strong and efficient cache side-channel
protection using hardware transactional memory. In USENIX Security,
pages 217–233, 2017.

[16] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémen-
tine Maurice, and Stefan Mangard. KASLR is dead: Long live KASLR.
In ESSoS, 2017.

[17] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A fast and stealthy cache attack. In DIMVA, 2016.

[18] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. In CCS, 2016.

[19] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches. In
USENIX Security Symposium, 2015.

[20] Shay Gueron. Intel advanced encryption standard (AES) new instruc-
tions set. White Paper 323641-001, Intel Corp., May 2010.

[21] Michael Austin Halcrow. eCryptfs: An enterprise-class encrypted
filesystem for Linux. In Linux Symposium, pages 209–226, 2005.

https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations
https://www.anandtech.com/show/13659/analyzing-core-i9-9900k-performance-with-spectre-and-meltdown-hardware-mitigations

[22] Sebastien Hily, Zhongying Zhang, and Per Hammarlund. Resolv-
ing false dependencies of speculative load instructions. US Patent
7.603,527, 2009.

[23] Jann Horn. Speculative execution, variant 4: Speculative store bypass,
2018.

[24] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In S&P, 2013.

[25] Intel. Intel analysis of speculative execution side channels, July 2018.

[26] Intel. Speculative Execution Side Channel Mitigations, May 2018.
Revision 3.0.

[27] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Ref-
erence Manual, April 2019.

[28] Alex Ionescu. Windows 17035 kernel ASLR/VA isolation in practice
(like Linux KAISER)., 2017.

[29] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gul-
mezoglu, Thomas Eisenbarth, and Berk Sunar. SPOILER: Speculative
load hazards boost Rowhammer and cache attacks. arXiv preprint
arXiv:1903.00446, 2019.

[30] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with Intel TSX. In CCS, pages 380–392,
2016.

[31] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows:
Attacks and defenses. arXiv:1807.03757, 2018.

[32] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In S&P, 2019.

[33] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song,
and Nael Abu-Ghazaleh. Spectre returns! speculation attacks using the
return stack buffer. In WOOT, 2018.

[34] Steffen Kosinski, Fernando Latorre, Niranjan Cooray, Stanislav
Shwartsman, Ethan Kalifon, Varun Mohandru, Pedro Lopez, Tom
Aviram-Rosenfeld, Jaroslav Topp, and Li-Gao Zei. Store forwarding
for data caches. US Patent 9,507,725, 2012.

[35] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s Core.
John Wiley & Sons, 2012.

[36] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache attacks on mobile devices.
In USENIX Security Symposium, 2016.

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security, 2018.

[38] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In S&P, 2015.

[39] LWN. The current state of kernel page-table isolation, December 2017.

[40] Giorgi Maisuradze and Cihristian Rossow. ret2spec: Speculative exe-
cution using return stack buffers. In CCS, 2018.

[41] Julius Mandelblat. Technology insight: Intel’s next gen-
eration microarchitecture code name Skylake. In Intel
Developer Forum (IDF15). https://en.wikichip.org/
w/images/8/8f/Technology_Insight_Intel%E2%80%
99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf.

[42] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the other side: SSH over robust cache covert channels in
the cloud. In NDSS, 2017.

[43] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels and
speculative execution. arXiv preprint arXiv:1902.05178, 2019.

[44] NIST. FIPS 197, advanced encryption standard (AES), 2001.

[45] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of AES. In CT-RSA, 2006.

[46] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006.

[47] Colin Percival. Cache missing for fun and profit. In BSDCan, 2005.

[48] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémen-
tine Maurice, Raphael Spreitzer, and Stefan Mangard. KeyDrown:
Eliminating software-based keystroke timing side-channel attacks. In
NDSS, 2018.

[49] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
NetSpectre: Read arbitrary memory over network. arXiv:1807.10535,
2018.

[50] Hovav Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In CCS, pages 552–561,
2007.

[51] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-
SGX: eradicating controlled-channel attacks against enclave programs.
In NDSS, 2017.

[52] Solar Designer. Getting around non-executable stack (and fix). Bugtraq
mailing list, August 1997.

[53] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU reg-
ister state using microarchitectural side-channels. arXiv preprint
arXiv:1806.07480, 2018.

[54] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of Research and Development, 11(1):25–
33, 1967.

[55] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution. In USENIX
Security Symposium, 2018.

[56] Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In S&P, 2019.

[57] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F.
Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the virtual
memory abstraction with transient out-of-order execution. https:
//foreshadowattack.eu/foreshadow-NG.pdf, 2018.

[58] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, pages
22–25, 2014.

[59] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a
timing attack on OpenSSL constant-time RSA. J. Cryptographic
Engineering, 7(2):99–112, 2017.

[60] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented
flush-reload side channels on ARM and their implications for android

devices. In CCS, pages 858–870, 2016.

https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf

	1 Introduction
	1.1 Our Contribution
	1.2 Disclosure and Timeline

	2 Background
	2.1 Caches and Cache Attacks
	2.2 Superscalar Processors
	2.3 The Memory Subsystem
	2.4 Transient Execution Attacks
	2.5 Exception Creation
	2.6 Exception Suppression
	2.7 Transactional Memory

	3 The Write Transient Forwarding Optimization
	3.1 A Toy Example
	3.2 The Mechanism Behind Fallout
	3.3 Measuring the Store Buffer Size

	4 Using Fallout to Break Kernel Isolation
	4.1 Leaking Memory Writes from the Kernel
	4.2 Attack on the AES-NI Key Schedule

	5 Using Fallout to Break KASLR
	5.1 KASLR Background
	5.2 Using Fallout to Break Kernel ASLR

	6 Transient Execution and Microcode Assists
	6.1 Microcode Assists
	6.2 Fallout and Microcode Assists
	6.3 Assist-based vs. Meltdown-type

	7 Countermeasures
	8 Conclusion

