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Abstract. We implement two classes of suffix array construction algo-
rithms on the GPU. The first, skew, makes algorithmic improvements
to the previous work of Deo and Keely to achieve a speedup of 1.45x
over their work. The second, a hybrid skew and prefix-doubling imple-
mentation, is the first of its kind on the GPU and achieves a speedup of
2.3–4.4x over Osipov’s prefix-doubling and 2.4–7.9x over our skew imple-
mentation on large datasets. Our implementations rely on two efficient
parallel primitives, a merge and a segmented sort. We also demonstrate
the effectiveness of our implementations in a Burrows-Wheeler transform
and a parallel FM index for pattern searching.

Keywords: suffix array, parallel, GPU, skew, prefix-doubling, Burrows-
Wheeler transform, FM index

1 Introduction

The suffix array (SA) of a string is the sorted set of all suffixes of the string.
This data structure is used in a broad spectrum of applications, including data
compression, bioinformatics, and text indexing. The suffix array, along with its
first construction algorithm, was introduced by Manber and Myers [11] as a more
space- and cache-efficient, and simpler to construct alternative to suffix trees.

The straightforward way to generate a suffix array from a string is to simply
sort all suffixes of that string using a comparison-based sorting algorithm. For
a string of length n, this construction takes O(n log n) suffix comparisons and
each suffix comparison has time complexity O(n), so the total time needed is
O(n2 log n). The key insight to develop a more efficient algorithm is to leverage
the fact that suffixes are not arbitrary strings but related to each other.

The existing suffix array construction algorithms (SACAs) that leverage this
property can be divided into three classes: prefix-doubling, recursive and induced
copying. The first class of SACAs, prefix-doubling, sorts the suffixes of a string
by their prefixes, the length of which is doubled every iteration. The idea was
originally proposed by Karp et al. [7], first applied to suffix array construction by
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Manber and Myers [11] (MM), and later optimized by Larsson and Sadakane [8]
(LS). LS is more efficient than MM, because it removes the unnecessary scan-
ning of fully sorted suffixes from the previous pass. The second class of SACAs
recursively sorts a subset of the suffixes, use the order of the sorted subset to
infer the order of remaining subset, and finally merge the two sorted subsets
to get the order of the entire set. The skew algorithm proposed by Kärkkäinen
and Sanders [6] (KS) is a popular linear-time recursive algorithm. The final class
of SACAs, induced copying, is non-recursive and uses already-sorted suffixes to
quickly induce a complete order of the suffixes. Like the recursive formulation,
their time complexity is O(n).

The recent explosion in data sizes and the emergence of commodity data-
parallel processors motivate efficient parallel implementations of SACAs. In this
paper, we focus on highly data-parallel SACAs that are suitable for implementa-
tion on devices such as many-core GPUs and multi-core CPUs. Because of their
high arithmetic and memory throughput, these processors are well-suited for
data-intensive computing tasks such as SACAs. However, parallelizing SACAs
is a significant challenge.

Both Osipov [15] and Deo and Keely [2] have done seminal work on highly
parallel SACAs on GPUs. Deo and Keely analyze the aforementioned three
SACA classes and conclude that induced copying has numerous data depen-
dencies and note a lack of parallel approaches to exploit this technique. Osipov
concludes that prefix-doubling algorithms are more cost-efficient to implement
on the GPU compared with the linear-time recursive skew approach, because
the former only requires fast GPU radix sorting of (32-bit key, 32-bit value)
pairs, while skew needs to sort large tuples by comparison-based sorting and
merging. On the other hand, Deo and Keely conclude that skew is best suited
for the GPU as all its phases can be readily mapped to a data-parallel architec-
ture, while prefix-doubling has an irregular, data-dependent number of unsorted
groups across phases, and the amount of work per group in each iteration is
non-uniform.

Recently, Liu et al. [10] and Pantaleoni [16] have proposed scalable, space-
efficient methods that exploit the sorting speed of modern GPUs for blockwise
suffix sorting targeting bioinformatics applications to work specifically with large
collections of relatively short DNA strings. Because the GPU has limited mem-
ory, Liu et al. focus on dividing the large inputs into several sets and sorting
each set using a GPU-accelerated method while Pantaleoni solves the problem
using insertion, with GPU sorting new blocks and CPU inserting the symbols
into the external final result.

In this work, we address the parallel SACA problem by designing, implement-
ing, and comparing two different formulations of SACAs on NVIDIA GPUs. We
make three main contributions.

1. Our skew approach incorporates several optimizations that yield a speedup
of 1.45x over Deo and Keely’s implementation.

2. We also implement a hybrid non-recursive skew/prefix-doubling SACA that
overcomes the parallelization challenges identified by Deo and Keely and
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performs much better than Osipov’s plain prefix-doubling. Comparing our
two implementations, we revisit Deo and Keely’s conclusions on the most
appropriate formulation for parallel SACAs, demonstrate that a recursive
doubling-like formulation can be efficiently mapped to GPUs and that our
hybrid implementation in general produces the fastest SACA implementation
on GPUs. The speedup is as high as 12.76× over Deo and Keely’s skew
implementation, up to 4.4× over Osipov’s parallel prefix-doubling, and 7.9×
over our optimized skew implementation.

3. We integrate our hybrid implementation into our GPU implementation of the
Burrows-Wheeler transform (BWT) and an FM index-based pattern search
application.

2 Background & Preliminaries

We begin with the algorithmic background for the string algorithms we imple-
mented. Section 2.1 provides the notation for suffix array construction that we
use throughout the paper. Readers already familiar with the Burrows-Wheeler
Transform (Section 2.2), the FM index (Section 2.3), and GPU terminology
(Section 2.4) can skip to Section 3.

2.1 The Suffix Array

Consider an input string x of length n ≥ 1 ending with a lexicographically
smallest suffix ($). We denote the suffix starting at position i (i.e., x[i, . . . , n−1])
by suffix i. For convenience, let suffixes with starting position i where imod 3 6≡ 0
be S12, suffixes with starting position j where j mod 3 ≡ 0 be S0, and suffixes
with starting position k where k mod 3 ≡ 1 be S1.

The suffix array (SA) of x is defined as an n + 1 length array such that
SA[j]=i means “suffix i is the jth suffix of x in ascending lexicographical order”.
The inverse suffix array (ISA) is defined as follows:

ISA[i]=j ⇐⇒ SA[j]=i

This implies that suffix i has rank j in lexicographic order. ISA is also called
the lexicographic ranks of suffixes. For convenience, we denote the suffix array
of S12 by SA[12] and that of S0 as SA[0], correspondingly for the inverse suffix
array, ISA[12] and ISA[0], and we denote the lexicographic ranks of S1 by ISA[1].

Both algorithms we describe sort prefixes with increasing length h ≥ 1. We
will refer to this partial ordering as an h-order of suffixes. Suffixes that are equal
under h-order are given the same rank, and put into the same h-group. If the
sorting process is stable, h-groups with a larger h are refinements over their
counterparts with a smaller h. Suffixes in a partial h-order are stored with their
indexes in an approximate suffix array SAh, and their ranks in ISAh.
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2.2 The Burrows-Wheeler Transform

The BWT of a string is generated by lexicographically sorting the cyclic shift
of the string to form a string matrix and taking the last column of the matrix.
The BWT groups repeated characters together by permuting the string; it is
also reversible, which means the original string can be recovered. These two
characteristics make BWT a popular choice for a compression pipeline stage
(for instance, bzip2). It is directly related to the suffix array: the sorted rows in
the matrix are essentially the sorted suffixes of the string and the first column
of the matrix reflects a suffix array. The BWT of a string x can be computed
from its SA as follows:

BWT[i] =

{
x[SA[i]− 1] if SA[i] > 0

$ if SA[i] = 0

Table 1 shows an example of the SA, ISA and BWT of the input string “banana”
as follows.

Table 1. SA, ISA and BWT for the example string “banana”.

i Suffix Sorted Suffix SA[i] ISA[i] Sorted Rotations BWT[i]

0 banana$ $ 6 4 $banana a
1 anana$ a$ 5 3 a$banan n
2 nana$ ana$ 3 6 ana$ban n
3 ana$ anana$ 1 2 anana$b b
4 na$ banana$ 0 5 banana$ $
5 a$ na$ 4 1 na$bana a
6 $ nana$ 2 0 nana$ba a

2.3 The FM index

Proposed by Ferragina and Manzini [4], the FM (Full-text, Minute-space) index
is a compressing and indexing method that allows compression of input text while
still supporting fast arbitrary pattern searches. It is a lightweight compressed
suffix array that combines the BWT and the suffix array data structure. The
compressed index can be used to efficiently find the number of occurrences of
a pattern from the text, as well as locate the position of each occurrence. The
authors describe an algorithm called backward search that calculates how many
times a pattern occurs in BWT-compressed text without decompressing it. We
refer the reader to the original paper [4] for further detail.

2.4 The Graphics Processor Unit (GPU)

In the following discussion we use NVIDIA CUDA terminology. Modern GPUs
are massively parallel processors that support tens of thousands of hardware-
scheduled threads running simultaneously. These threads are organized into
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blocks and the hardware schedules blocks of threads onto hardware cores. High-
end NVIDIA GPUs have on the order of 16 streaming-processor (SP) cores,
each of which contains 32-wide SIMD (single-instruction, multiple-data) units
that run 32 threads in lockstep. GPUs also feature a memory hierarchy of per-
thread registers, per-block shared memory, and off-chip global DRAM accessible
to all threads. CUDA programs (“kernels”) specify the number of blocks and
threads per block under a SIMT (single-instruction, multiple-thread) program-
ming model. Lindholm et al. [9] provides more detail on modern GPU hardware
and Nickolls et al. [14] on the GPU programming model.

Efficient GPU programs have enough work per kernel to keep all hardware
cores busy (load-balancing); strive to reduce thread divergence (when neighbor-
ing threads branch in different directions); aim to access memory in large contigu-
ous chunks to maximize achieved memory bandwidth (coalescing); and minimize
communication between CPU and GPU. Designing an SACA that achieves all of
these goals is a significant challenge. We also prioritize using high-performance
parallel algorithmic GPU primitives (e.g., scan, radix sort, compact, segmented
sort) when applicable.

3 Algorithms & Analysis

We implement two fast parallel SACAs, skew (Section 3.1) and a skew/prefix-
doubling hybrid (Section 3.2).

3.1 Parallel Skew Algorithm

1 dk-SA (int* T, int* SA, int length)
2 Initialize Mod12() // form triplet s12, s0
3 RadixSort (s12) // LSD radix sort 1st char
4 RadixSort (s12) // LSD radix sort 2nd char
5 RadixSort (s12) // LSD radix sort 3rd char
6 lexicRankOfTriplets (s12)
7 if (!allUniqueRanks) then
8 dk-SA () // Recurse
9 storeUniqueRanks()

10 else
11 computeSAFromUniqueRank ()
12 RadixSort (ISA[1])

13 RadixSort (s0)
14 Merge (s0,s12)

1 skew-SA (int* T, int* SA, int length)
2 Initialize Mod12() // form triplet s12, s0
3 RadixSort (s12) // LSD radix sort 1st char
4 RadixSort (s12) // LSD radix sort 2nd char
5 RadixSort (s12) // LSD radix sort 3rd char
6 if (!allUniqueRanks) then
7 lexicRankOfTriplets (s12)
8 skew-SA ()// Recurse
9 storeUniqueRanks()

10 Compact (ISA[12]) // compact out the order

of ISA[1]

11 RadixSort (s0)
12 Merge (s0,s12)

Fig. 1. Left, Deo and Keely’s skew implementation pseudocode; right, ours.

Our first approach is implementing the skew algorithm using massively par-
allel kernels based on KS [6] and similar to the OpenCL implementation of Deo
and Keely [2]. We compare our implementation of skew with Deo and Keely’s in
Fig. 1 and now describe several algorithmic optimizations over their work.
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Both methods start by extracting S12 and S0 from an input string (line 2)
and launching a 3-step least significant digit (LSD) radix sort using Merrill and
Grimshaw’s approaches [12] to find the order of S12 based on their first triplets
(line 3 to line 5). In the first iteration, each triplet is composed of the first three
characters of each S12. The ranks of the triplets are then used as the value for
the key-value sort in the recursive iterations.

The ranks are computed by counting unique triplets. In practice, this is
done by first comparing each triplet against its predecessor, storing a flag of 1
whenever they are unequal, and then doing a prefix-sum of the list of flags. We
use the same flagging method as Deo and Keely to tell if S12 are fully sorted
(line 6 right and line 7 left), but we do the prefix-sum only when the suffixes are
not fully sorted instead of immediately after computing the flagging list (line 7
right and line 6 left). This change saves us from having to compute SA[12] from
ISA[12] if we are at the end of the recursion and the suffixes are fully sorted (line
10 and 11 left). After the recursion, they continue to compute SA[0] by sorting
S0 with a 2-step LSD radix sort of (the first character of suffix i, rank of suffix
i+ 1) pairs where suffix i ∈ S0 and thus suffix i+ 1 ∈ S12 whose rank is known
from the previous steps (line 13 and 14 left). We use a faster one-step radix sort
because the order of the ranks of S1 (equivalent to ISA[1]) can be filtered out
from ISA[12] (result of line 7 right) using a compact operation (line 11 and 12
right).

The above optimizations allow our implementation to only use 2/3 of Deo
and Keely’s memory bandwidth in the recursive part, and 3 fewer memory trans-
actions in the last round.

Finally, we optimize the merge step that combines the two sorted suffix arrays
SA[0] and SA[12] while avoiding load-imbalance. Deo and Keely use the merge
technique of Satish et al. [18], binary search, and memory locality optimizations
of Davidson et al. [1]. Their work suffers from load-imbalance due to having two
separate-sized lists being processed independently. Instead, we utilize vectorized
sorted search to map threads and blocks to equally sized sections of each par-
tition, which successfully avoids load-imbalance. This method is based on the
Merge Path approach of Green et al. [5] and implemented as a merge primitive
in the second author’s Modern GPU library4 and is described here for the first
time in the literature.

The two keys to an efficient GPU merge operation are (1) dividing the two
sorted inputs into independent chunks of equal sized work and (2) ensuring that
the outputs of each of those chunks of work are contiguous in the final merged
output. This contrasts with Deo and Keely’s approach, where chunk size is not
uniform. The key operation, then, is to identify the split points. The obvious way
would require a two-dimensional search across both input arrays; Merge Path
instead describes an elegant transformation to an one-dimensional search along
a diagonal that connects the two input arrays.

4 Code is available at http://nvlabs.github.io/moderngpu and described in http:

//nvlabs.github.io/moderngpu/merge.html.
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Our implementation performs a two-part, hierarchical split: first dividing the
entire input into equal-sized tiles that can be assigned to blocks, then dividing
each tile into equal-sized subtiles that can be assigned to threads. The merge is
completely parallel (not cooperative) between threads; its inputs are in shared
memory and its outputs are in registers. The result is a highly load-balanced,
parallel-friendly implementation that achieves a throughput of greater than half
the peak bandwidth of the GPU, compared to 12.1% of the theoretical peak for
the implementation by Green et al. [5].

3.2 Skew/Prefix-doubling

Deo and Keely’s work marked a significant milestone as the first implementation
of a linear-time SACA skew on the GPU. However, skew on GPUs has two
significant disadvantages:

1. As the skew formulation is recursive, we cannot parallelize across iterations.
2. At the end of each iteration, we may have sets of triplets that are fully

sorted. However, to keep the algorithm recursive, we cannot declare these
fully sorted suffixes complete and leave them out of further iterations; instead
we must process them on every iteration, which results in a large amount of
redundant work.

To address these two disadvantages, we turn to a combination of skew and
prefix-doubling, which turns out to be a better fit for modern GPU architectures.

In our implementation, we still leverage our skew framework: we keep the first
step of skew, which reduces the string size by a factor of 2/3, and the final skew
merge stage, which is trivial. Only after the first step of skew do we transition to
our non-recursive better-performing prefix-doubling implementation. In the first
stage, we select all S12 suffixes, forming 3-character substrings, and do a 25-bit
radix sort (25 bits for 3 chars from a constant alphabet in the range [0 . . . 255]
plus a sentinel letter $) on those substrings. Then we compute the ranks of
S12 and assign the ranks into an inverse suffix array (ISA[12]). From now on,
we work with suffixes in partially-sorted order rather than text order. In other
words, after this initial radix sort, all suffixes with the same 3-character prefix
are contiguous in our array (i.e.,“Fun” is next to “Funicular”) no matter where
they appear in the original text.

Next, in our prefix-doubling step, we sort by (ISA[SA[i]+δ], ISA[SA[i]+2δ])
pairs, where δ is the length of prefix which doubles in each iteration until all
suffixes are in their own segments, which we define as a set of suffixes that are
equal up to the current substring length. These are each given a rank (the index
of the first element in the segment within the string). The rank of the segment
next to the current one is used as the key for the next pass, and on each iteration,
we double the length of the prefix. The key to high prefix-doubling performance
is our ability to sort efficiently within segments, even though the number of
segments and their sizes are non-uniform and are not known at compile time
(this is the specific concern about prefix-doubling raised by Deo and Keely). We
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address this with an efficient segmented sort primitive, which we describe next.
In our implementation, we also identify suffixes at the end of each iteration that
are singletons in their own segments—their final positions in the suffix array are
fixed, so we re-rank and compact them out of the working suffix array. This way,
future iterations only need to consider suffixes whose final positions are not yet
fixed.

Segmented sort The input to segmented sort is a contiguous list of segments
with a variable number of unsorted items per segment; the output is the same
list of segments but with items sorted within each segment. One way to solve
this problem is to sort each segment one at a time, but it is likely on a highly
parallel machine that many (or even most) segments will not have enough work
to fill the machine. Another approach is to do a full sort over all items, but this is
inefficient because it ignores the significant work that has already been completed
in classifying the items into segments. We wish to both work on all segments
simultaneously but still leverage the presence of segments. The challenge for an
efficient segmented sort implementation is the variation in the size and number
of segments. This method is implemented as a segmented-sort primitive in the
second author’s Modern GPU library5 and is described here for the first time in
the literature. An efficient segmented sort is the difference-maker in developing
a competitive prefix-doubling implementation.

The core of our segmented sort implementation is merging, in the same style
as the previously-described merge kernel. For illustrative purposes, consider a full
merge sort of a single segment. We would begin by dividing the work into equal-
sized blocks, sort each block of elements independently, then use our efficient
merge to merge blocks of work together, starting with many small merges and
concluding with one large merge. We have previously claimed that the most
efficient way for us to merge is to use fixed-size blocks of work, which gives us
straightforward parallelization and perfect load balancing.

How do we adapt such a merge in the presence of segments? We must respect
the segmentation during the merge, and the way we do this is using a key insight:
During a merge of two contiguous lists, the only segment that is affected by the
merge is one that spans the boundary between two blocks. All other segments
involved in this merge are copied without change from input to output. We
illustrate this in Fig. 2.

The final optimization is early exit. The number of input boundaries is cut
in half on each iteration, so once a segment no longer crosses an active input
boundary, we can conclude that segment is fully sorted and mark it as inactive.
A tile with no active segments is done with its work and can exit. Especially
with a large number of small segments, this early-exit optimization dramatically
decreases the number of passes over the data, the required memory bandwidth,
and the overall runtime.

5 Code is available at http://nvlabs.github.io/moderngpu and described in http:

//nvlabs.github.io/moderngpu/segsort.html.
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Fig. 2. Segmented Sort example. Consider an input string composed of 16 random
characters grouped into four irregular segments (the first row). The head of each seg-
ment is marked with carets. First, we divide the characters equally into four blocks of
four elements each, then launch four “blocksorts” to sort four inputs each while main-
taining segment order. Next, we merge the first block with the second and the third
block with the fourth. Note in the merge of the third and fourth blocks, two separate
segments are involved, but only the first segment—the one that crosses the boundary
between the two inputs—changes as a result of the segmented merge. Finally, there’s
one active input boundary left in the middle but with no segment crossing it, which
means all segments are fully sorted and there’s no need for further merging, so this is
an early-exit. The final result is segments in the same order as the input, but sorted
within each segment (the last row).

Comparison against plain prefix-doubling implementation Our hybrid prefix-
doubling method has several optimizations over the pure prefix-doubling im-
plementation by Osipov [15]. He modifies MM by replacing chunks of (32-bit
key, 32-bit value) radix sort with a single (32-bit key, 64-bit value) radix sort.
At the end of each iteration, he filters out fully-sorted suffixes to avoid unneces-
sary re-sorting, similar to LS. Throughout the implementation, he uses parallel
primitives including prefix-sum, radix sort, random gather from and scatter to
memory based on Merrill’s back40computing library6.

In our method, the first step of skew—a single pass of (32-bit key, 25-bit
value) radix sort—is inexpensive and gives us a reduction ratio of 0.67. This is
significantly better than Osipov’s initial sorting of the first 4 characters. Also,
our massively parallel segmented sort primitive has better locality than radix-
sorting integer tuples across global memory. Furthermore, our induction step in
the skew framework is cheaper than a radix sort when sorting the remaining
1/3 suffixes. Though we need an additional merge in the final step, our parallel
merge primitive is quite efficient (see Section 3.1). We compare our approach
with Osipov’s pure prefix-doubling implementation in Fig. 3.

6 https://code.google.com/p/back40computing/
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1 Initialize SA4 by sorting suffixes by their
first 4 characters

2 Initialize ISA4[i] with the 4-rank of i =head
of i’s 4-group in SA4

3 size = n, h = 4
4 while size > 0 do
5 Scan SAh and generate tuples

(SAh[j] − h,ISAh[SAh[j] −
h],ISAh[SAh[j]])

6 RadixSort tuples by 2nd component
stably // contains SA2h

7 Refine h-heads of h-groups // Re-rank
8 Update ISA2h // contains ISA2h
9 Filter and Compact SA2h

10 size = size of SA2h
11 h = h ∗ 2

1 Initialize Mod12() // form triplets s12, s0
2 RadixSort (s12) // 25-bit radix sort on

triplets s12
3 ComputeRanks ISA[12]

4 size = 2
3n, h = 6

5 while size > 0 do
6 SegmentedSort

(ISA[SA[i]+h],ISA[SA[i]+2h])
7 Update ISA2h and Compact SA2h
8 size = size of SA2h
9 h = h ∗ 2

10 Compact (ISA[12]) // compact out the

order of ISA[1]
11 RadixSort (s0)
12 Merge (s0,s12)

Fig. 3. Left, Osipov’s parallel prefix-doubling description; right, our skew/prefix-
doubling.

Skew vs. prefix-doubling Skew with a difference cover modulo 3 is a “prefix
tripling” technique7, tripling the pace at which it samples its ranks each round.
It is more efficient as a prefix-tripler than an integer alphabet sort, because the
2-integer segmented sort of prefix-doubling is certainly much faster than the 3-
integer radix sort of skew. In its radix sort, skew uses the most significant digit
simply to get the suffix back in its original segment, which comes for free with
prefix-doubling’s segmented sort. Furthermore, skew cannot drop fully-sorted
suffixes, because it needs to transform their ranks into the new coordinate system
in which they will be sampled by the remaining unsorted suffixes. With prefix-
doubling, suffixes are ranked in the same coordinate system (i.e., where they
would be placed in the final sorted suffix array) throughout the computation,
and since there is no need to re-rank fully-sorted suffixes, we can remove them
from the problem.

For real-world texts, this makes prefix-doubling more efficient than skew.
Skew has a solid reduction ratio of 0.67, regardless of the data. Prefix-doubling
has a worst-case reduction ratio of 1.0 (if the pass fails to resolve any suffixes),
but has a reduction ratio on real-world text that is usually favorable.

4 Experiments & Results

In this section we present a detailed experimental evaluation of our implemen-
tations of suffix array algorithms. For a more thorough comparison, we re-
implement Deo and Keely’s method using a current state-of-the-art radix sort
primitive from Merrill’s CUB library8 merge primitive on an NVIDIA GPU
using CUDA. For convenience, we call Deo and Keely’s OpenCL parallel skew

7 A difference cover D modulo h, denoted by Dh, is a set of integers i ∈ {0, . . . , h− 1}
such that i ≡ k − j (mod h) for some j, k ∈ Dh. For example, {1, 2} is a difference
cover modulo 3 and {1, 2, 4} is a difference cover modulo 7.

8 http://nvlabs.github.io/cub/
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implementation on an AMD GPU dk-amd-SA, our CUDA implementation of Deo
and Keely’s approach dk-nvidia-SA, Osipov’s parallel prefix-doubling osipov-SA,
our parallel skew implementation skew-SA, and our parallel hybrid skew/prefix-
doubling implementation spd-SA.

Our experimental setup is an Intel Core i7-3770K 3.5 GHz 4-core machine
with 16 GB RAM and 8 MB L3 cache. We used an NVIDIA Tesla K20c GPU
(launch date: November 2012; process: 28 nm; peak single-precision floating-
point throughput: 3.524 TFLOPS; peak memory bandwidth: 208 GB/s). Deo
and Keely’s OpenCL implementation was on an AMD Radeon 7970 GPU (launch
date: December 2011; process: 28 nm; peak single-precision floating-point through-
put: 3.789 TFLOPS; peak memory bandwidth: 264 GB/s). The AMD GPU has
slight peak performance advantages over the NVIDIA GPU we used, but de-
spite differences in programming environment and GPU architecture, we believe
results from the two GPUs are directly comparable. We compiled and ran dk-
nvidia-SA, skew-SA, spd-SA, and osipov-SA using CUDA 6.0 and Visual Studio
2010 on 64-bit Windows 7.

For evaluation, we use the same input datasets as Deo and Keely along with
two larger datasets. The input strings range in size from 10 KB to 110 MB
and are collected from the Calgary Corpus, Large Canterbury Corpus, Manzinis
Corpus, Protein Corpus, and Silesia Corpus [13]. We compare the four GPU
implementation results against Mori’s highly tuned, OpenMP-assisted CPU im-
plementation libdivsufsort 2.0.1 [13] based on induced copying on a 4-core PC,
using its own internal runtime measurement, which excludes disk access time.

Fig. 4 summarize our performance results and we make the following obser-
vations:

– On datasets of sufficient size (on the order of 1 MB for the skew implemen-
tations, smaller for spd-SA), all four GPU implementations are faster than
the CPU baseline. Roughly speaking, the skew implementations are twice as
fast as the CPU version, osipov-SA has a 4× speedup, and spd-SA’s speedup
ranges from 6× to 11×.

– Macroscopically, the fluctuations in the speedups of spd-SA and osipov-SA
for the same datasets suggest that the behavior of our hybrid prefix-doubling
spd-SA is similar to that of osipov-SA, and our skew-SA with dk-amd-SA
and dk-nvidia-SA.

– spd-SA is 2.3× to 4.4× faster than osipov-SA.
– skew-SA is consistently 1.45× faster than dk-amd-SA and 1.1× faster than

dk-nvidia-SA.
– Both prefix-doubling based GPU implementations outperform the three skew

based methods on most datasets.

In general the performance of the GPU implementations track each other.
The datasets with the highest speedups on GPUs are those with a non-uniform
prefix distribution (e.g., chr22dna, which contains DNA sequences of only 4
different characters), whereas more uniformly distributed prefixes yield smaller
speedups. The peaks of the speedup happen because the GPU implementations
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Fig. 4. Runtimes (top) of five suffix array construction implementations over corpus
datasets; the datasets are those chosen by Deo and Keely [2] in addition to two larger
datasets for which we have no dk-amd-SA measurements. The CPU implementation
libdivsufsort is the baseline for speedup comparisons (bottom). The five GPU imple-
mentations are dk-amd-SA, dk-nvidia-SA, osipov-SA, skew-SA, and spd-SA.
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Fig. 5. Left, throughput on plain text “enwik8” as dataset size scales; right, throughput
on a dataset consisting only of the repeated letter ‘A’, using the same legend as left
graph.

(especially our hybrid skew/prefix-doubling) are faster on non-uniform prefixes.
For skew, a more uniform dataset results in more iterations in the recursive step,
and thus takes longer time. For prefix-doubling, uniform datasets give us fewer
segments for separation and thus result in less parallelism.

We take a closer look at two datasets for skew-SA and spd-SA. The first is a
scalability test on increasing amounts of text data from the English Wikipedia
dump “enwik8”9, shown in Fig. 5 at left. In general, the larger the dataset, the
higher the throughput; it takes an input size of many millions of characters for
both approaches to reach the throughput asymptote. At 10 MB, skew-SA has a
2× speedup and spd-SA a 9× speedup over libdivsufsort.

The second is an artificial dataset composed of only the repeated single char-
acter ‘A’. This is a pathologically bad case for prefix-doubling because (except
for suffixes near the end of the string) every input position has an identical pre-
fix on every iteration until the last one, so spd-SA cannot divide the prefixes
into multiple segments—they all land in the same segment. Moreover, because
those prefixes in that segment are lexicographically identical, they have worst-
case sorting behavior. Skew’s performance is much more predictable; although
skew must recurse all the way to the base case and cannot finish early, it is not
pathologically bad as with prefix-doubling. Nonetheless, except for very large
inputs, spd-SA’s performance still exceeds skew-SA’s. Induced copying is much
better suited for this dataset. For a 10 MB all-‘A’ input, libdivsufsort completes
in 40 ms, compared with 224 ms for skew-SA and 196 ms for spd-SA.

Application tools implementation The most recent release of the CUDA Data
Parallel Primitives (CUDPP) Library10 uses our optimized skew implementation
in its parallel Burrows-Wheeler Transform (BWT) [17] and bzip2 data com-

9 http://cs.fit.edu/~mmahoney/compression/textdata.html
10 http://cudpp.github.io/
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pression functions. As predicted, both gain significant speedups from replacing
string sort with a suffix array algorithm [3]. We also implement our fast hybrid
skew/prefix-doubling in a parallel BWT and use it as a partial step in imple-
menting parallel FM index backward search, along with CUB’s DeviceHistogram
routine and cudppMultiscan from CUDPP 2.2. We measured the performance of
the parallel BWT and FM index based on our fast hybrid skew/prefix-doubling
on “enwik8” and “chr22dna” datasets and show our results in Table 2.

Table 2. Throughput of the BWT and FM index’s backward search using our spd-SA.

Dataset enwik8 chr22.dna

BWT (Millions of characters/s) 132.5 116.4
FM index (Millions of characters/s) 28.6 77

5 Conclusions

Much of the interesting work in GPU computing has been the result of brute-
force techniques, judiciously applied. Often, GPU computing practitioners have
found that the loss of efficiency by using brute force is more than offset by the
performance advantages of the GPU. Of the three classes of suffix array con-
struction algorithms, skew is perhaps the most suitable for brute-force methods,
and was chosen by Deo and Keely, and ourselves when we began our work.

However, the maturation of GPU computing is leading to the development
of elegant, efficient, load-balanced algorithmic building blocks that are designed
for, and run well on the GPU. The merge and segmented sort implementations
in this paper make the difference between an SACA that is uncompetitive vs.
an SACA that is best in class. We expect that the next frontier in GPU SACAs
will be tackling the third class of SACAs—induced copying. The research chal-
lenge is to determine whether the inherent algorithmic efficiency of their CPU
implementation will translate into the GPU domain.
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6. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Pro-
ceedings of the 30th International Conference on Automata, Languages and Pro-
gramming. pp. 943–955. ICALP’03, Springer-Verlag, Berlin, Heidelberg (2003),
http://dl.acm.org/citation.cfm?id=1759210.1759301

7. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated pat-
terns in strings, trees and arrays. In: Proceedings of the Fourth Annual ACM
Symposium on Theory of Computing. pp. 125–136. STOC ’72 (May 1972)

8. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Science
387(3), 258–272 (2007)

9. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro 28(2), 39–55 (Mar/Apr 2008)

10. Liu, C.M., Luo, R., Lam, T.W.: GPU-accelerated BWT construction for large
collection of short reads. arXiv preprint arXiv:1401.7457 (2014)

11. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. In:
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms.
pp. 319–327. SODA ’90 (Jan 1990)

12. Merrill, D., Grimshaw, A.: Revisiting sorting for GPGPU stream architectures.
Tech. Rep. CS2010-03, Department of Computer Science, University of Virginia
(Feb 2010)

13. Mori, Y.: libdivsufsort, version 2.0.1. https://code.google.com/p/

libdivsufsort/wiki/SACA_Benchmarks (2010)
14. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming

with CUDA. ACM Queue pp. 40–53 (Mar/Apr 2008)
15. Osipov, V.: Parallel suffix array construction for shared memory architectures.

In: Proceedings of the 19th International Conference on String Processing and
Information Retrieval. pp. 379–384. SPIRE’12, Springer-Verlag (2012)

16. Pantaleoni, J.: A massively parallel algorithm for constructing the BWT of large
string sets. arXiv.org abs/1410.0562(1410.0562v1) (Oct 2014)

17. Patel, R.A., Zhang, Y., Mak, J., Owens, J.D.: Parallel lossless data compression
on the GPU. In: Proceedings of Innovative Parallel Computing (May 2012)

18. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core GPUs. In: Proceedings of the 23rd IEEE International Parallel and Distributed
Processing Symposium (May 2009)


