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This article describes a technique for implementing the quicksort sorting algorithm. Our method
‘vectorizes’ the computations and leverages the capabilities of the advanced vector extensions (AVX)
instructions, available on Intel Core processors, and of the AVX2 instructions that were introduced
with Intel’s recent architecture codename Haswell. Our solution offers several advantages when com-
pared with other high-performance sorting implementations, such as the radix sort, as implemented
in Intel IPP library, or the introsort, as implemented in the C++ STL. In addition to sorting numeric
arrays, our method can also be used to sort complex structures with numeric keys and even pointers

to such structures.
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1. INTRODUCTION

Sorting is one of the classical problems in computer science, and
it is used in a variety of applications and on a variety of plat-
forms. A few examples are SQL servers, databases, searches and
image processing [1, 2]. A lot of research has been invested in
optimizing various sorting algorithms. In this article, we focus
on ‘quicksort’ [3], which is one of the fastest sorting algorithms
that are used in practice, and as such, it is a target for optimiza-
tions [4–8].

There are numerous sorting algorithms and techniques, and
no single implementation is optimal for all situations. Some
implementations optimize for the data types, the amount of
sorted data and its (expected) distribution or for the avail-
able memory.

Some sorting algorithms can be optimized straightforwardly
by means of parallelization, and in such cases, it is obvious that
single instruction multiple data (SIMD) architecture [9] is a
useful tool. One example is the ‘merge sort’ algorithm [10, 11].
Radix sort is another example [12]. Other special cases, such
as very short arrays, can also be handled efficiently, with SIMD
instructions [13]. However, this is not the case for quicksort
because the steps of this algorithm split a given list of elements
into two ‘sublists’ that may have a different number of ele-
ments. This operation cannot be parallelized straightforwardly

(two adjacent elements in the list can be assigned to different
groups, and this introduces a branch in the implementation).
For this reason, there are no published techniques (to the best of
our knowledge) that leverage SIMD instructions to improve the
performance of quicksort, compared with using the arithmetic
logic unit (ALU) instructions.

In this article, we develop a method for implementing quick-
sort, using the AVX instructions (a set of SIMD instructions)
that were introduced in the Intel’s Sandy Bridge architecture.
The key twist in our method is using lookup tables to gener-
ate a special shuffle mask that accelerates the sort operation.
The method is further improved by the AVX2 instructions
introduced in Intel’s Haswell architecture [14].

2. PRELIMINARIES: QUICKSORT

Quicksort is a very fast comparison-based sorting algorithm.
Although its worst-case time complexity is O(n2), it has aver-
age time complexity of O(n log n) [3], comparable with merge
sort that has both a worst-case and average time complexity of
O(n log n). While the complexities of merge sort and quick-
sort are comparable, quicksort tends to be faster in practice.
A sorting algorithm with an even better complexity is radix
sort [12], having linear complexity O(m × n), where m is the
number of ‘digits’ in the key. As shown in [12, 15], it is the

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2015

 The Computer Journal Advance Access published August 19, 2015
 at Pennsylvania State U

niversity on Septem
ber 17, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/
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fastest performing sort for short keys, as long as the size of the
sorted data does not exceed half the available memory. Radix
sort becomes ineffective as soon as this threshold is crossed
due to a large amount of required page swapping. By compar-
ison, quicksort and merge sort also require additional space
allocation, on top of the space for the sorted data. However, in
quicksort, only the first level of recursion could actually use
the entire space (and on average only half of it), and subse-
quent recursion levels use less space. Quicksort also requires
a deep recursion stack. Both merge sort and quicksort benefit
from sequential access to data, which is much faster than ran-
dom access on modern SSDs (Solid States Drives). Another
disadvantageous property of radix sort is that its performance
decreases linearly with the size of the key.

Quicksort is a simple ‘divide and conquer’ approach for sort-
ing a given unsorted list (array) of elements [2]. We describe
this algorithm briefly. In the first step, a single element of the
unsorted list is chosen as a ‘pivot’ element, according to some
heuristics. Then, all the elements are divided into two (sub)
lists: elements smaller than or equal to the pivot are assigned to
one list, and the remaining elements are assigned to the second
list. The algorithm is then applied recursively to both lists. The
recursion stops when one of the lists includes only one element.
Finally, the concatenation of the two lists is the required sorted
array. Figure 1 illustrates this flow on a small array.

Quicksort can be implemented in two variants. Variant 1 uses
extra space: when an element is compared with the pivot, it is
copied to one of two lists. One of these lists can override the
original list. Variant 2 uses two pointers: one pointer iterates
from the bottom of the list to its top, and the other pointer iter-
ates from the top of the list to its bottom. When the first pointer
finds an element that is larger than the pivot element, and the
second pointer finds an element that is smaller than the pivot
element, these two elements are swapped. The algorithm stops

Pivot >≤

8 2 6 3 14

Chosen pivot

2 8 6 143

Chosen Pivot

2 3 6 8 14

≤

6

Pivot

8

>

14

FIGURE 1. An illustration of the quicksort recursion.

when the two pointers meet, and the pivot element is placed at
that point. This method is implemented in the C library [16].
Such an implementation is not ‘stable’: the order between two
‘equal’ elements is not preserved. It is important to understand
that stable sorting is a significant property of a sorting algo-
rithm, especially for sorting lists by multiple keys, e.g. first by
one key and then by another key. In such cases, keeping the
order that results from the initial sort is desirable.

We also note here that software implementations of these
variants, on a modern out-of-order processor, take a perfor-
mance hit due to branch mispredictions [6].

Our approach here can be applied to Variant 1 of quicksort,
which requires extra space. When the selected pivot element is
the last element in the list, it performs a stable sort.

3. THE UNDERLYING IDEA

SIMD instructions perform, simultaneously, the same opera-
tion on several ‘elements’ that are stored in the instructions’
operands (registers or memory locations) [9]. For some class
of computations, SIMD-based implementations can provide
higher throughput than the throughput achieved by using
ALU operations. However, note that SIMD instructions do not
support different branches for different elements in the same
register.

Recall that, basically, quicksort requires one comparison
and one move in each step, depending on the result of the
comparison—thus a branch is required. The comparison step
of quicksort is naturally ‘SIMD friendly’ because each element
can be compared with the pivot element, independent of the
other elements. However, splitting the elements into two lists
is not SIMD friendly because it seems to require a different
branch for each element. We overcome this problem by gener-
ating a special mask from the comparison result and by using
this mask as an index to a (precomputed) lookup table that
stores shuffle masks. These shuffle masks help us separate the
elements into two lists.

4. IMPLEMENTING QUICKSORT WITH AVX

In this section, we demonstrate our method for sorting 32-bit
integers. However, an analogous method can be used for other
data types, such as 64-bit integers, and single/double preci-
sion real numbers (using the appropriate SIMD instructions, of
course).

With AVX, we use 128-bit registers. Each register can hold
four elements, each one is a 32-bit integer (or a single precision
floating point number). We first describe the algorithm in Fig. 2.

In the following paragraphs, we explain how we can imple-
ment Algorithm 1 efficiently. Our notations use the AT&T
assembler language syntax (i.e. the destination is the rightmost
operand).

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2015

 at Pennsylvania State U
niversity on Septem

ber 17, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


Fast Quicksort Implementation Using AVX Instructions 3

Algorithm 1: The parallelized quicksort loop

--------------------------------------------

Input:

A, an array with N elements.

N, the number of elements in A.

Output:

A, an array with N elements, where the first K-1 elements are smaller-than-equal to the pivot,

the Kth element is the pivot, and the remaining (N-K) elements are larger than the pivot.

K, the index of the chosen pivot in the output array.

Setup:

Choose an element (denoted P) of the array as the pivot.

Larr a pointer to an auxiliary array that stores elements X from the list, such that X <= P.

Garr a pointer to an auxiliary array that stores elements X from the list, such that X > P

Lptr = Larr

Gptr = Garr

While N >= 4:

1. Load 4 elements of A into a 128-bit SIMD register, D.

2. Compare the elements to the pivot, P.

3. Arrange, sequentially, all the elements X such that X <= P, in a SIMD register, L.

4. Arrange, sequentially, all the elements X such that X > P, in a SIMD register, G.

5. lc = the number of elements in L.

6. lg = the number of elements in G.

7. Store L at Lptr

8. Store G at Gptr

9. Lptr = Lptr + 4*lc

10. Gptr = Gptr + 4*lg

11. N = N-4

End while

If N>0 finish serially

Last step:

A = Concatenate (Larr, Garr)

K = (Lptr-Larr)/4 - 1

Output: A, K

FIGURE 2. Pseudo code for the parallelized quicksort loop.

Copies of the pivot element are placed in a SIMD register
using the VPBROADCASTD instruction (this instruction
duplicates a 32-bit value into a SIMD register):

VBROADCASTSS (pivot), P

Step 1 of the algorithm is performed by using the
VMOVDQU instruction (this instruction performs an unaligned
load into a SIMD register):

VMOVDQU (in), D

Step 2 is performed by using the VPCMPGTD instruction
(this instruction compares two vectors of integers. The result
is a vector that holds the element 0xffffffff if the comparison
result was ‘true’ for that element, and 0 otherwise):

VPCMPGTD D, P, C

For floating point numbers, we use the instruction VCMPPS.
Step 3 is where the new algorithmic twist starts. First, we use

the VMOVMSKPS instruction to generate a mask that consists
of the most significant bit of each 32-bit element (the sign bit, if
it is viewed as a floating point number) in a SIMD register and
places it in a GPR (General Purpose Register):

VMOVMSKPS C, r

When this instruction completes, Register r holds a 4-bit
mask that identifies the elements (of the comparison), which
were greater than the pivot element. The 4-bit bitwise comple-
ment of the value in r identifies the elements that are less or
equal to the pivot element.

We can now use the mask to shuffle the register, in a way
that all the required elements are arranged sequentially in the
register. To this end, we use two precomputed tables that hold
an appropriate shuffle mask for each possible value r. One table
holds 16 masks for r, and the other holds 16 masks for its bit-
wise complement. The values in the tables are provided in the
Appendix.

Steps 3 and 4 are, therefore, performed this way:

SHL $4, r
VPERMILPS permTableLesser(, r), D, L
VPERMILPS permTableGreater(, r), D, G

We point out that the instruction VPERMILPS was intro-
duced with the AVX instructions set and is therefore unavailable
on SIMD architectures prior to the Sandy Bridge architecture.
It shuffles the 32-bit elements in the second source operand,
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according to the indices in the first source operand, and stores
the result in the destination register.

Step 6 is performed by using POPCNT (an instruction that
counts the number of set bits in a GPR). Step 5 is actually the
result of subtracting the result of Step 6 from the number 4:

POPCNT r, r0
MOV $4, r1
SUB r0, r1

Now, we store G and L at the right array:

VMOVDQU L, (Lptr)
VMOVDQU G, (Gptr)

Finally, we increment the pointers:

LEA (Lptr, r0, 4), Lptr
LEA (Gptr, r1, 4), Gptr

When the array contains less than four elements, it is handled
using a regular GPR-based code.

This implementation has two advantages: (i) it is capable of
handling four elements in parallel and (ii) it is branch free. Con-
sequently, this leads to an efficient software implementation.

Our implementation takes further advantage of the high
throughput of the SIMD instructions (in the Core i7-4770 pro-
cessor), by handling 40 elements of the list every iteration,
which are stored in a total of 5 SIMD registers. A code snippet
that illustrates our implementation is given in the Appendix.
Figure 3 illustrates the process.

5. QUICKSORT WITH AVX2

The AVX2 instructions (on integers) set was introduced with
the Intel Architecture Codename Haswell. This set provides
additional shuffle instructions and promotes the AVX integer
instructions to operate on 256-bit registers. Another addition of
AVX2, which we use here, are the new ‘Gather’ instructions.
These instructions are able to load, simultaneously, several ele-
ments from separate memory locations. We demonstrate how
these additional instructions can improve our implementation.

5.1. Wider registers with additional shuffle operations

With wider registers, it is possible to double the number of ele-
ments that are handled in a single iteration: we can load eight
32-bit elements or four 64-bit elements. We note that operating
on eight elements is advantageous in terms of operations per
element, but the down side is the significantly larger required
tables: the mask can now have 8 bits, so we need two tables
with 256 entries. In total, this implementation (when run on a
Haswell processor) improves the performance by roughly 5%.
On the other hand, 64-bit elements can be handled similarly to
the way 32-bit elements are handled using AVX, and this leads
to significant speedup, as we show in Section 6.

FIGURE 3. Illustrating vectorized quicksort.

5.2. Gather instructions

With the new Gather instructions, it is possible to sort pointers to
complex data structures. To this end, the implementation should
be slightly modified. For example, suppose that sort pointers to
the following C++ class:

class person
{
public:

long id;
long age;
person();

};

First, the pointers need to be loaded (this is done as shown
above). Then, the Gather instructions are used for loading the
keys that are used for the sorting, as follows:

VMOVDQU (in), D
VPCMPEQQ T, T, T
VPGATHERQQ T, (,D), K

In this case, we loaded the id field as the comparison key.
Similarly, we can use age as comparison by: VPGATHERQQ
T, 8(,D), K.
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Fast Quicksort Implementation Using AVX Instructions 5

The K register is then compared with the pivot element in
order to generate the shuffle mask, and the shuffle mask is
applied to the pointers that reside in D.

By comparison, radix sort can only perform indirect sort of
compound objects. It would require to copy all the keys to an
auxiliary array, apply a special sort that produces an array of
indexes and then sort the pointers according to the indexes.

6. RESULTS

6.1. Technical details

We implemented our technique for the most common data types:
32-/64-/128-bit integers, 32-/64-bit floating point numbers.

We use two libraries for reference. The first one is the IPP
library [15], which is a library of performance primitives that is
specifically optimized for Intel processors. We used the radix
sort implemented of IPP, which is the fastest in-memory sort
we are aware of. It requires an additional space of the size
of the sorted data. We used IPP version 8.1.0 for the perfor-
mance comparison. The IPP library provides functions to sort
32-/64-bit floating point numbers, and 32-bit signed integers,
but lacks functions to sort 64− and 128-bit integers. For these
data types, we interpolate the numbers based on the properties
of radix sort and the available data.

The second library is STL [17], a standard C++ library. In
particular, we compare the performance of our method with that
of the STL sort implementation, which combines introsort and
insertion sort (introsort itself is a combination of quicksort and
heapsort). The STL implementation uses introsort until a recur-
sion threshold is hit and then switches to the insertion sort algo-
rithm. STL’s quicksort implementation uses the median of three
heuristic to select the pivot element. We point out that it is not a
stable sort.

The STL sort is implemented using a C++ template and
therefore available for any data type. When using the g++
compiler (version 4.8.1) with the gcc special type __uint128_t,
it allows for a very efficient sort of 128-bit integers.

When sorting pointers without actually copying the data, the
memory locality principle is not preserved. This leads to a large
number of page faults and, therefore, to significantly slower
performance for all the sort implementations. Consequently,
the performance varies when sorting pointers (our method is
consistently faster than the alternatives). Note that our algo-
rithm provides a stable sort: this property can be important
when sorting pointers (although it is irrelevant when sorting
simple data types).

We also mention that when we have <32 elements in the
sorted array, our implementation switches to insertion sort,
which is more efficient for small arrays.

For the comparison, we generated random arrays of each
data type, having various lengths (using the std::rand() C
function and std::time(0) as the seed). The experiments were
carried out on a 3.4 GHz Core i7-4770 (Haswell architecture)

processor. Intel� Turbo Boost Technology was disabled in
these experiments. Each experiment was repeated 10 000
times (randomizing the input arrays each iteration), and the
performance was determined as the average time for sorting
the arrays. The time was measured in CPU cycles by reading
the time-stamp counters on the CPU before and after the sort.

FIGURE 4. The performance of STL introsort, IPP radix sort and
our AVX2 quicksort algorithms on Intel� Core i7-4770, 32-bit signed
integers.

FIGURE 5. The performance of STL introsort, IPP radix sort and our
AVX2 quicksort algorithms on Intel� Core i7-4770, 32-bit real num-
bers.

FIGURE 6. The performance of STL introsort, radix sort and our
AVX2 quicksort algorithms on Intel� Core i7-4770, 64-bit signed
integers. The IPP performance of radix sort is (optimistically) approx-
imated as twice its 32-bit performance due to the lack of dedicated
function to sort 64-bit signed integers.
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6 S. Gueron and V. Krasnov

FIGURE 7. The performance of STL introsort, IPP radix sort and
our AVX2 quicksort algorithms on Intel� Core i7-4770, 64-bit real
numbers.

FIGURE 8. The performance of STL introsort, radix sort and
our AVX2 quicksort algorithms on Intel� Core i7-4770, 128-bit
unsigned integers. The IPP performance of radix sort is (optimisti-
cally) approximated as four times its 32-bit performance, due to the
lack of dedicated function to sort 128-bit unsigned integers.

We verified that the intermediate averages of 5000 and 7500
repetitions also give similar results.

6.2. In memory sort

In this section, we report performance numbers for the case
when all the sorted data can fit in memory (including the extra
space required by IPP radix sort). Our test-bench machine
had 16 GB of memory, but some of it is used by the OS, and a
significant portion by the call stack (due to deep recursion).

Figures 4–8 show the results. The AVX2 quicksort is faster for
small arrays for 64-bit keys. For 128-bit keys, it is faster on any
amount of data.

6.3. Out of memory sort

In this section, we demonstrate the performance of the various
algorithms when the data exceeds half of the available physical
memory (Fig.9). In this case, the data with the auxiliary space
cannot fit entirely in the memory, and some of it swapped into the
SSD drive. For that experiment, we used 2 147 483 647 elements
for the 32-bit keys, which amounts to almost 8 GB of data (IPP

FIGURE 9. The performance of STL introsort, and our AVX2 quick-
sort algorithms on Intel� Core i7-4770, pointers to a simple class.

TABLE 1. The performance (in CPU cycles/byte) of STL
introsort, radix sort and our AVX2 quicksort algorithms on
Intel� Core i7-4770.

Performance
in cycles/byte 32-Bit signed 32-Bit real 64-Bit real

STL 338 325 183
IPP 530 341 556
AVX2 quicksort 114 137 89

The size of sorted data is half of the size of the physical
memory.

passes the parameter as a signed integer, so we could not use
exactly 8 GB). For 64-bit keys, we used 1 073 741 824 elements
(exactly 8 GB of data). In the experiment, we allocated memory
only for the main array and the auxiliary array, and the rest of
the available memory was used by the OS and the call stack. The
results are summarized in Table 1.

7. CONCLUSION

We introduced the first Quicksort implementation that leverages
SIMD instructions for significant performance gains, for a vari-
ety of data types. The performance benefits are demonstrated
on the Haswell architecture, and show consistent higher perfor-
mance when compared with STL implementation, making it the
fastest implementation of quicksort to date. Although it loses to
the radix sort implementation of IPP, for some data types, our
implementation outperforms the IPP implementation when the
data and the auxiliary array do not fit in memory. Moreover, our
method can be tailored for any data type, with a small effort,
whereas IPP only supports a small set of basic types and the per-
formance of radix sort drops significantly with longer keys.

We conclude with the potential benefits of the recently
introduced AVX512 instruction set [18] that introduce 512-bit
registers. Such architecture allows for operating on twice as
many elements in parallel. In addition, AVX512 introduces new
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instructions that can store sparse elements sequentially in mem-
ory (VCOMPRESSPS and VCOMPRESSPD), using a special
mask register. This eliminates the need for using lookup tables,
while the AVX512 comparison instructions can receive a spe-
cial mask register as the destination, and the output is exactly
the required mask. Therefore, the AVX-512 architecture has
the potential to further speed up our quicksort algorithm by a
significant amount.
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APPENDIX

FIGURE A1. A code snippet (AT&T asm syntax) that demonstrates
the main loop of our quicksort implementation using AVX instructions.

FIGURE A2. The lookup tables, used for sorting 32-bit elements.
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