
Faster Population Counts using
AVX2 Instructions

Wojciech Mu la, Nathan Kurz and Daniel Lemire∗

?Université du Québec (TELUQ), Canada

Email: lemire@gmail.com

Counting the number of ones in a binary stream is a common operation in
database, information-retrieval, cryptographic and machine-learning applications.
Most processors have dedicated instructions to count the number of ones in a word
(e.g., popcnt on x64 processors). Maybe surprisingly, we show that a vectorized
approach using SIMD instructions can be twice as fast as using the dedicated
instructions on recent Intel processors. The benefits can be even greater for
applications such as similarity measures (e.g., the Jaccard index) that require
additional Boolean operations. Our approach has been adopted by LLVM: it is

used by its popular C compiler (clang).

Keywords: Software Performance; SIMD Instructions; Vectorization; Bitset; Jaccard Index

1. INTRODUCTION

We can represent all sets of integers in {0, 1, . . . , 63}
using a single 64-bit word. For example, the word 0xAA
(0b10101010) represents the set {1, 3, 5, 7}. Intersections
and unions between such sets can be computed using
a single bitwise logical operation on each pair of words
(AND, OR). We can generalize this idea to sets of
integers in {0, 1, . . . , n− 1} using dn/64e 64-bit words.
We call such data structures bitsets ; they are also known
as a bit vectors, bit arrays or bitmaps. Bitsets are
ubiquitous in software [1], found in databases [2], version
control systems [3], search engines [4, 5], and so forth.
Languages such as Java and C++ come with their
own bitset classes (java.util.BitSet and std::bitset
respectively).

The cardinality of a bitset (the number of one bits,
each representing an element in the set) is commonly
called a population count, a popcount, a Hamming
weight, a sideways addition, or sideways sum. For
example, the population counts of the words 0xFFFF,
0xAA and 0x00 are 32, 4 and 0 respectively. A frequent
purpose for the population count is to determine the
size of the intersection or union between two bitsets.
In such cases, we must first apply a logical operation
on pairs of words (AND, OR) and then compute the
population count of the resulting words. For example,
the cardinality of the intersection of the sets A =
{4, 5, 6, 7} and B = {1, 3, 5, 7} represented by the
words 0xF0 and 0xAA can be computed as |A ∩ B| =
popcount(0xF0AND 0xAA) = popcount(0xA0) = 2.

One application for these computations is the

determination of the Jaccard index (Tanimoto similarity)
between two sets, defined as the ratio of their intersection
with their union (|A ∩ B|/|A ∪ B|). There are
other relevant measures such as the overlap coefficient
(|A ∩ B|/min(|A|, |B|)) and the cosine similarity
(|A ∩ B|/

√
|A||B|). They are frequently used in

bioinformatics [6, 7, 8], ecology [9], chemistry [10], and
so forth.

The computation of the population count is so
important that commodity processors have dedicated
instructions: popcnt for x64 processors and cnt for the
64-bit ARM architecture.1 The x64 popcnt instruction
is fast: on recent Intel processors, it has a throughput
of one instruction per cycle [12] (it can execute once per
cycle) and a latency of 3 cycles (meaning that the result
is available for use on the third cycle after execution).
It is available in common C and C++ compilers as the
intrinsic _mm_popcnt_u64.

Given the existence of dedicated instructions, it
might seem that the quest for faster implementations is
futile. However, commodity PC processors also support
Single-Instruction-Multiple-Data (SIMD) instructions.
Starting with the Haswell microarchitecture (2013), Intel
processors support the AVX2 instruction set which offers
rich support for 256-bit vector registers. The contest
between a dedicated instruction operating on 64-bits
at a time (popcnt) and a series of vector instructions
operating on 256-bits at a time (AVX2) turns out to be

1The x64 popcnt instruction was first available in the Nehalem
microarchitecture, announced in 2007 and released in November
2008. The ARM cnt instruction was released as part of the Cortex-
A8 microarchitecture, published in 2006 [11].

ar
X

iv
:1

61
1.

07
61

2v
1

 [
cs

.D
S]

 2
3

N
ov

 2
01

6

2 W. Mu la, N. Kurz and D. Lemire

interesting. In fact, we show that we can achieve twice
the speed of the an optimized popcnt-based function
using AVX2: 0.52 versus 1.02 cycles per 8 bytes on large
arrays. Our claim has been thoroughly validated: at
least one major C compiler (LLVM’s clang) uses our
technique [13].

Thus, in several instances, SIMD instructions might
be preferable to dedicated non-SIMD instructions if we
are just interested in the population count of a bitset.
But what if we seek the cardinality of the intersection or
union, or simply the Jaccard index between two bitsets?
Again, the AVX2 instructions prove useful, more than
doubling the speed (2.4×) of the computation against
an optimized function using the popcnt instruction.

2. EXISTING ALGORITHMS AND RE-
LATED WORK

Conceptually, one could compute the population count
by checking the value of each bit individually by calling
count += (word >> i) & 1 for i ranging from 0 to 63,
given that word is a 64-bit word. While this approach is
scales linearly in the number of input words, we expect
it to be slow since it requires multiple operations for
each bit in each word. It is O(n)—the best that we can
do—but with a high constant factor.

Instead, we should prefer approaches with fewer
operations per word. We can achieve the desired result
with a tree of adders and bit-level parallelism. In Fig. 1,
we illustrate the idea over words of 4 bits (for simplicity).
We implement this approach with two lines of code.

1. We can sum the individual bits to 2-bit subwords
with the line of C code: (x & 0b0101) +
((x >> 1) & 0b0101). This takes us from the
bottom of the tree to the second level. We say
to this step exhibits bit-level parallelism since two
sums are executed at once, within the same 4-bit
word.

2. We can then sum the values stored in the
2-bit subwords into a single 4-bit subword
with another line of C code: (x & 0b0011) +
((x >> 2) & 0b0011).

Fig. 2 illustrates a non-optimized (naive) function that
computes the population count of a 64-bit word in this

population count of 4 bits

sum of bits 1 & 2

1st bit 2nd bit

sum of bits 3 & 4

3rd bit 4th bit

FIGURE 1. A tree of adders to compute the population
count of four bits in two steps.

manner.
A fast and widely used tree-of-adder function to

compute the population count has been attributed by
Knuth [14] to a 1957 textbook by Wilkes, Wheeler
and Gill [15]: see Fig. 3. It involves far fewer than
64 instructions and we expect it to be several times faster
than a naive function checking the values of each bit and
faster than the naive tree-of-adder approach on processor
with a sufficiently fast 64-bit integer multiplication
(which includes all x64 processors).

• The first two lines in the count function correspond
to the first two levels of our simplified tree-of-adders
count function from Fig. 1. The first line has
been optimized. We can verify the optimization
by checking that for each possible 2-bit word, we
get the sum of the bit values:

– 0b11 - 0b01 = 0b10 = 2,
– 0b10 - 0b01 = 0b01 = 1,
– 0b01 - 0b00 = 0b01 = 1,
– 0b00 - 0b00 = 0b00 = 0.

• After the first two lines, we have 4-bit population
counts (in {0b0000, 0b0001, 0b0010, 0b0011, 0b0100})
stored in 4-bit subwords. The next line sums
consecutive 4-bit subwords to bytes. We use the fact
that the most significant bit of each 4-bit subword
is zero.

• The multiplication and final shift sum all bytes in an
efficient way. Multiplying x by 0x0101010101010101
is equivalent to summing up x, x << 8, x << 16, . . . ,
x << 56. The total population count is less than
64, so that the sum of all bytes from x fits in a
single byte value (in [0, 256)). In that case, the
most significant 8 bits from the product is the sum
of all eight byte values.

Knuth also attributes another common technique to
Wegner [16] (see Fig. 4) that could be competitive when
the population count is relatively low (e.g., less than 4
one bit per 64-bit word). When the population count
is expected to be high (e.g., more than 60 one bit per

uint64_t c1 = UINT64_C (0 x5555555555555555);
uint64_t c2 = UINT64_C (0 x3333333333333333);
uint64_t c4 = UINT64_C (0 x0F0F0F0F0F0F0F0F);
uint64_t c8 = UINT64_C (0 x00FF00FF00FF00FF);
uint64_t c16 = UINT64_C (0 x0000FFFF0000FFFF);
uint64_t c32 = UINT64_C (0 x00000000FFFFFFFF);

uint64_t count(uint64_t x) {
x = (x & c1) + ((x >> 1) & c1);
x = (x & c2) + ((x >> 2) & c2);
x = (x & c4) + ((x >> 4) & c4);
x = (x & c8) + ((x >> 8) & c8);
x = (x & c16)+ ((x >> 16)) & c16);
return (x & c32) + ((x >> 32) & c32);

}

FIGURE 2. A naive tree-of-adders function in C

Faster Population Counts using AVX2 Instructions 3

64-bit words), one could simply negate the words prior
to using the function so as to count the number of
zeros instead. The core insight behind the Wegner
function is that the line of C code x &= x - 1 sets to
zero the least significant bit of x, as one can readily
check. On an x64 processor, the expression x &= x
- 1 might be compiled to the blsr (reset lowest set
bit) instruction. On current generation processors, this
instruction achieves a throughput of two instructions
per cycle with a latency of one cycle [12]. The downside
of the Wegner approach for modern processors is that
the unpredictable loop termination adds a mispredicted
branch penalty of at least 10 cycles [17], which for
short loops can be more expensive than the operations
performed by the loop.

Another simple and common technique is based on
tabulation. For example, one might create a table that
contains the corresponding population count for each
possible byte value, and then look up and sum the
count for each byte. Such a table would require only
256 bytes. A population count for a 64-bit word would
require only eight table look-ups and seven additions.
On more powerful processor, with more cache, it might
be beneficial to create a larger table, such as one that
has a population count for each possible short value
(2 bytes) using 64 KB. Each doubling of the bit-width
covered by the table halves the number of table lookups,
but squares the memory required for the table.

We can improve the efficiency of tree-of-adders
techniques by merging the trees across words [18]. To
gain an intuition for this approach, consider that in the
Wilkes-Wheeler-Gill approach, we use 4-bit subwords
to store the population count of four consecutive bits.
Such a population count takes a value in {0, 1, 2, 3, 4},
yet a 4-bit integer can represent all integers in [0, 16).
Thus, as a simple optimization, we could accumulate
the 4-bit counts across three different words instead of
a single one. Next consider that if you sum two 4-bit
subwords (representing integers in [0, 16)) the result is in
[0, 32) whereas an 8-bit subword (a byte) can represent
all integers in [0, 256), a range that is four times larger.
Hence, we can accumulate the counts over four triple
of words. These two optimizations combined lead to
a function to compute the population count of twelve

uint64_t c1 = UINT64_C (0 x5555555555555555);
uint64_t c2 = UINT64_C (0 x3333333333333333);
uint64_t c4 = UINT64_C (0 x0F0F0F0F0F0F0F0F);

uint64_t count(uint64_t x) {
x -= (x >> 1) & c1;
x = ((x >> 2) & c2) + (x & c2);
x = (x + (x >> 4)) & c4;
x *= UINT64_C (0 x0101010101010101);
return x >> 56;

}

FIGURE 3. The Wilkes-Wheeler-Gill function in C

int count(uint64_t x) {
int v = 0;
while(x != 0) {

x &= x - 1;
v++;

}
return v;

}

FIGURE 4. The Wegner function in C.

words at once (see Fig. 5) faster than would be possible
if we processed each word individually.

However, even before Lauradoux proposed this
improved function, Warren [19] had presented a superior
alternative attributed to a newsgroup posting from 1997
by Seal, inspired from earlier work by Harley. This
approach, henceforth called Harley-Seal, is based on a
carry-save adder (CSA). Suppose you are given three bit
values (a, b, c ∈ {0, 1}) and you want to compute their
sum (a+ b+ c ∈ {0, 1, 2, 3}). Such a sum fits in a 2-bit
word. The value of the least significant bit is given
by (aXOR b) XOR c whereas the most significant bit
is given by (aAND b) OR((aXOR b) AND c). Table 1
illustrates these expressions: the least significant bit
((aXOR b) XOR c) takes value 1 only when a + b + c
is odd and the most significant bit takes value 1 only
when two or three of the input bits (a, b, c) are set to
1. There are many possible expressions to compute
the most significant bit, but the chosen expression is
convenient because it reuses the aXOR b expression from
the computation of the least significant bit. Thus, we
can sum three bit values to a 2-bit counter using 5 logical
operations. We can generalize this approach to work on
all 64-bits in parallel. Starting with three 64-bit input
words, we can generate two new output words: h, which
holds the 64 most significant bits, and l, which contains
the corresponding 64 least significant bits. We effectively
compute 64 sums in parallel using bit-level parallelism.
Fig. 6 presents an efficient implementation in C of this
idea. The function uses 5 bitwise logical operations
(two XORs, two ANDs and one OR): it is optimal with
respect to the number of such operations [20, 7.1.2].
However, it requires at least three cycles to complete
due to data dependencies.

From such a CSA function, we can derive an efficient
population count. Suppose we start with three words
serving as counters (initialized at zero): one for the least
significant bits (henceforth ones), another one for the
second least significant bits (twos, so named because
each bit set represents 2 input bits), and another for the
third least significant bits (fours, representing 4 input
bits). We can proceed as follows; the first few steps
are illustrated in Fig. 7. We start with a word serving
as a population counter c (initialized at zero). Assume
with we have a number of words d1, d2, . . . divisible by
8. Start with i = 0.

4 W. Mu la, N. Kurz and D. Lemire

uint64_t count(uint64_t *input) {
uint64_t m1 = UINT64_C (0 x5555555555555555);
uint64_t m2 = UINT64_C (0 x3333333333333333);
uint64_t m4 = UINT64_C (0 x0F0F0F0F0F0F0F0F);
uint64_t m8 = UINT64_C (0 x00FF00FF00FF00FF);
uint64_t m16= UINT64_C (0 x0000FFFF0000FFFF);
uint64_t acc = 0;
for (int j = 0; j < 12; j += 3) {

uint64_t count1 = input[j + 0];
uint64_t count2 = input[j + 1];
uint64_t half1 = input[j + 2];
uint64_t half2 = input[j + 2];
half1 &= m1;
half2 = (half2 >> 1) & m1;
count1 -= (count1 >> 1) & m1;
count2 -= (count2 >> 1) & m1;
count1 += half1;
count2 += half2;
count1 = (count1 & m2)

+ ((count1 >> 2) & m2);
count1 += (count2 & m2)

+ ((count2 >> 2) & m2);
acc += (count1 & m4)

+ ((count1 >> 4) & m4);
}
acc = (acc & m8) + ((acc >> 8) & m8);
acc = (acc + (acc >> 16)) & m16;
acc = acc + (acc >> 32);
return acc;

}

FIGURE 5. The Lauradoux population count in C for sets
of 12 words.

TABLE 1. Sum of three bits a + b + c. We use ⊕ for XOR,
∧ for AND and ∨ for OR.

a b c a + b + c (a⊕ b)⊕ c (a ∧ b) ∨
((a⊕b)∧c)

0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 1 1 0
1 0 0 1 1 0
0 1 1 2 0 1
1 0 1 2 0 1
1 1 0 2 0 1
1 1 1 3 1 1

• Load two new words (di, di+1). Use the CSA
function to sum ones, di and di+1, write the least
significant bit of the sum to ones and store the
carry bits in a temporary register (noted twosA).
We repeat with the next two input words. Load
di+2, di+3, use the CSA function to sum ones, di
and da+i, write the least significant bit of the sum
to ones and store the carry bits in a temporary
register (noted twosB).

• At this point, we have three words containing second
least significant bits (twos, twosA, twosB). We sum
them up using a CSA, writing back the result to

twos and the carry bits to a temporary register
foursA.

• We do with di+4, di+5 and di+6, di+7 as we did with
di, di+1 and di+2, di+3. Again we have three words
containing second least significant bits (twos, twosA,
twosB). We sum them up with CSA, writing the
result to twos and to a carry-bit temporary register
foursB.

• At this point, we have three words containing third
least significant bits (fours, foursA, foursB). We
can sum them up with a CSA, write the result
back to fours, storing the carry bits in a temporary
register eights.

• We compute the population count of the
word eights (e.g, using the Wilkes-Wheeler-Gill
population count) and increment the counter c by
the population count.

• Increment i by 8 and continue for as long as we
have new words.

When the algorithm terminates, multiply c by 8.
Compute the population count of fours, multiply the
result by 4 and add to c. Do similarly with twos and
ones. The counter c contains the population count.
If the number of input words is not divisible by 8,
adjust accordingly with the leftover words (e.g, using
the Wilkes-Wheeler-Gill population count).

In that particular implementation of this idea, we
used blocks of eight words. More generally, the Harley-
Seal approach works with blocks of 2n words for n =
3, 4, 5, . . . (8, 16, 32, . . .). We need 2n− 1 CSA function
calls when using 2n words, and one call to an auxiliary
function (e.g., Wilkes-Wheeler-Gill). If we expect the
auxiliary function to be significantly more expensive
than the CSA function calls, then larger blocks should
lead to higher performance, as long as we have enough
input data and many available registers. In practice,
we found that using blocks of sixteen words works well
on current processors (see Fig. 8). This approach is
only worthwhile if we have at least 16 input words (64-
bits/word × 16 words = 128 bytes).

The functions we presented thus far still have their
uses when programming with high-level languages
without convenient access to dedicated functions (e.g.,
JavaScript, Go) or on limited hardware. However,

void CSA(uint64_t* h, uint64_t* l,
uint64_t a, uint64_t b, uint64_t c) {

uint64_t u = a ˆ b;
*h = (a & b) | (u & c);
*l = u ˆ c;

}

FIGURE 6. A C function implementing a bitwise parallel
carry-save adder (CSA). Given three input words a, b, c, it
generates two new words h, l in which each bit represents
the high and low bits in the bitwise sum of the bits from a,
b, and c.

Faster Population Counts using AVX2 Instructions 5

. . . twos
(input)

ones
(input)

di
(input)

di+1

(input)

CSA
di+2

(input)
di+3

(input)

CSA . . .

CSA

fours
(output)

twos
(output)

ones
(output)

FIGURE 7. Harley-Seal algorithm aggregating four
new inputs (di, di+1, di+2, di+3) to inputs ones and twos,
producing new values of ones, twos and fours.

they are otherwise obsolete when a sufficiently fast
instruction is available, as is the case on recent x64
processors with popcnt. The popcnt instruction has
a reciprocal throughput2 of one instruction per cycle.
With a properly constructed loop, the load-popcnt-add
sequence can be executed in a single cycle, allowing for
a population count function that processes 64-bits per
cycle.

2.1. Existing Vectorized Algorithms

To our knowledge, the first published vectorized
population count on Intel processor was proposed by
Mu la in 2008 [21]. It is a vectorized form of tabulation
on 4-bit subwords. Its key ingredient is the SSSE3
vector instruction pshufb (see Table 2). The pshufb
instruction shuffles the input bytes into a new vector
containing the same byte values in a (potentially)
different order. It takes an input register v and a
control mask m, treating both as vectors of sixteen bytes.
Starting from v0, v1, . . . , v16, it outputs a new vector
(vm0

, vm1
, vm2

, vm3
, . . . , vm15

) (assuming that 0 ≤ mi <
16 for i = 0, 1, . . . , 15). Thus, for example, if the mask
m is 0, 1, 2, . . . , 15, then we have the identify function.
If the mask m is 15, 14, . . . , 0, then the byte order
is reversed. Bytes are allowed to be repeated in the
output vector, thus the mask 0, 0, . . . , 0 would produce
a vector containing only the first input byte, repeated
sixteen times. It is a fast instruction with a reciprocal
throughput and latency of one cycle on current Intel
processors, yet it effectively “looks up” 16 values at
once. In our case, we use a fixed input register made
of the input bytes 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
corresponding to the population counts of all possible
4-bit integers 0, 1, 2, 3, . . . , 15. Given an array of sixteen
bytes, we can call pshufb once, after selecting the least

2The reciprocal throughput is the number of processor clocks
it takes for an instruction to execute.

uint64_t harley_seal(uint64_t * d,
size_t size) {

uint64_t total = 0, ones = 0, twos = 0,
fours = 0, eights = 0, sixteens = 0;

uint64_t twosA , twosB , foursA , foursB ,
eightsA , eightsB;

for(size_t i = 0; i < size - size % 16;
i += 16) {

CSA(&twosA , &ones , ones , d[i+0], d[i+1]);
CSA(&twosB , &ones , ones , d[i+2], d[i+3]);
CSA(&foursA , &twos , twos , twosA , twosB);
CSA(&twosA , &ones , ones , d[i+4], d[i+5]);
CSA(&twosB , &ones , ones , d[i+6], d[i+7]);
CSA(&foursB , &twos , twos , twosA , twosB);
CSA(&eightsA , &fours , fours , foursA ,

foursB);
CSA(&twosA , &ones , ones , d[i+8], d[i+9]);
CSA(&twosB , &ones , ones , d[i+10],d[i+11]);
CSA(&foursA , &twos , twos , twosA , twosB);
CSA(&twosA , &ones , ones , d[i+12],d[i+13]);
CSA(&twosB , &ones , ones , d[i+14],d[i+15]);
CSA(&foursB , &twos , twos , twosA , twosB);
CSA(&eightsB , &fours , fours , foursA ,

foursB);
CSA(&sixteens , &eights , eights , eightsA ,

eightsB);
total += count(sixteens);

}
total = 16 * total + 8 * count(eights)

+ 4 * count(fours) + 2 * count(twos)
+ count(ones);

for(size_t i = size - size % 16 ; i < size;
i++)

total += count(d[i]);
return total;

}

FIGURE 8. A C function implementing the Harley-Seal
population count over an array of 64-bit words. The count
function could be the Wilkes-Wheeler-Gill function.

significant 4 bits of each byte (using a bitwise AND)
to gather sixteen population counts on sixteen 4-bit
subwords. Next, we right shift by four bits each byte
value, and call pshufb again to gather sixteen the counts
of the most significant 4 bits of each byte. We can
sum the two results to obtain sixteen population counts,
each corresponding to one of the sixteen initial byte
values. See Fig. 9 for a C implementation. If we
ignore loads and stores as well as control instructions,
Mu la’s approach requires two pshufb, two pand, one
paddb, and one psrlw instruction, so six inexpensive
instructions to compute the population counts of sixteen
bytes. The Mu la algorithm requires fewer instruction
than the part of Wilkes-Wheel-Gill that does the same
work (see Fig. 3), but works on twice as many input
bytes per iteration.

The count_bytes function from Fig. 9 separately
computes the population count for each of the sixteen
input bytes, storing each in a separate byte of the result.

6 W. Mu la, N. Kurz and D. Lemire

As each of these bytes will be in [0, 8], we can sum
the result vectors from up to 31 calls to count_bytes
using the _mm_add_epi8 intrinsic without risk of overflow
before using the psadbw instruction (using the _mm_sad_-
epu8 intrinsic) to horizontally sum the individual bytes
into two 64-bit counters. In our implementation, we
found it adequate to call the count_bytes function
eight times between each call to psadbw.

Morancho observed that we can use both a vector
approach, like Mu la’s, and the popcnt in a hybrid
approach [22]. Morancho proposed a family of hybrid
schemes that could be up to 22% faster than an
implementation based on popcnt for sufficiently large
input arrays.

3. NOVEL VECTORIZED ALGORITHMS

Starting with the Haswell microarchiture released in
2013, Intel processors support the AVX2 instruction
set with 256-bit vectors, instead of the shorter 128-bit
vectors. It supports instructions and intrinsics that are
analogous to the SSE intrinsics (see Table 2).

The Mu la function provides an effective approach
to compute population counts at a speed close to an
x64 processor’s popcnt instruction when using 128-
bit vectors, but after upgrading to AVX2’s 256-bit
vectors, it becomes faster than functions using the
popcnt instruction. We present the basis of such a
function in Fig. 10 using AVX2 intrinsics; the AVX2
intrinsics are analogous to the SSE intrinsics (see Fig. 2).
It returns a 256-bit word that can be interpreted as four
64-bit counts (each having value in [0, 64]). We can then
add the result of repeated calls with the _mm256_add_-
epi64 intrinsic to sum 64-bit counts.

For a slight gain in performance, we can call the Mu la
function several times while skipping the call to _mm256_-
sad_epu8, adding the byte values with _mm256_add_epi8
before calling _mm256_sad_epu8 once. Each time we call
the Mu la function, we process 32 input bytes and get
32 byte values in [0, 8]. We can add sixteen totals before
calling _mm256_sad_epu8 to sum the results into four

__m128i count_bytes(__m128i v) {
__m128i lookup = _mm_setr_epi8

(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4);
__m128i low_mask = _mm_set1_epi8 (0x0f);
__m128i lo = _mm_and_si128(v, low_mask);
__m128i hi = _mm_and_si128(

_mm_srli_epi16(v, 4), low_mask);
__m128i cnt1 =

_mm_shuffle_epi8(lookup , lo);
__m128i cnt2 =

_mm_shuffle_epi8(lookup , hi);
return _mm_add_epi8(cnt1 , cnt2);

}

FIGURE 9. A C function using SSE intrinsics
implementing Mu la’s algorithm to compute sixteen
population counts, corresponding to sixteen input bytes.

64-bit words, thus processing a block of 512 bytes per
call.

__m256i count(__m256i v) {
__m256i lookup =
_mm256_setr_epi8 (0, 1, 1, 2, 1, 2, 2, 3,

1, 2, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2,
1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);

__m256i low_mask = _mm256_set1_epi8 (0x0f);
__m256i lo = = _mm256_and_si256(v,

low_mask);
__m256i hi = _mm256_and_si256(

_mm256_srli_epi32(v, 4), low_mask);
__m256i popcnt1 = _mm256_shuffle_epi8(

lookup , lo);
__m256i popcnt2 = _mm256_shuffle_epi8(

lookup , hi);
__m256i total = _mm256_add_epi8(popcnt1 ,

popcnt2);
return _mm256_sad_epu8(total ,

_mm256_setzero_si256 ());
}

FIGURE 10. A C function using AVX2 intrinsics
implementing Mu la’s algorithm to compute the four
population counts of the four 64-bit words in a 256-bit vector.
The 32 B output vector should be interpreted as four separate
64-bit counts that need to be summed to obtain the final
population count.

Of all the non-vectorized (or scalar) functions, Harley-
Seal approaches are fastest. Thus we were motived to
port the approach to AVX2. The carry-save adder that
worked on 64-bit words (see Fig. 6) can be adapted in a
straight-forward manner to work with AVX2 intrinsics.

void CSA(__m256i* h, __m256i* l, __m256i a
, __m256i b, __m256i c) {

__m256i u = _mm256_xor_si256(a , b);
*h = _mm256_or_si256(_mm256_and_si256(a

, b) , _mm256_and_si256(u , c));
*l = _mm256_xor_si256(u , c);

}

Fig. 11 presents an efficient Harley-Seal function using
an AVX2 carry-save adder. The function processes the
data in blocks of sixteen 256-bit vectors (512 B). It calls
Mu la’s AVX2 function (see Fig. 10).

Processors execute complex machine instructions
using low-level instructions called µops.

• Using the dedicated popcnt instruction for the
population of an array of words requires loading the
word (movq), counting the bits (popcnt), and then
adding the result to the total (addq). The load and
the popcnt can be combined into a single assembly
instruction, but internally they are executed as
separate µops, and thus each 64-bit word requires
three µops. Apart from minimal loop overhead,
these three operations can be executed in a single
cycle on a modern x64 superscalar processor, for a
throughput of just over one cycle per 8 B word.

Faster Population Counts using AVX2 Instructions 7

TABLE 2. Relevant SSE instructions with latencies and reciprocal throughput in CPU cycles on recent (Haswell) Intel
processors .

instruction C intrinsic description latency rec. through-
put

paddb _mm_add_epi8 add sixteen pairs of 8-bit integers 1 0.5
pshufb _mm_shuffle_epi8 shuffle sixteen bytes 1 1
psrlw _mm_srli_epi16 shift right eight 16-bit integers 1 1
pand _mm_and_si128 128-bit AND 1 0.33
psadbw _mm_sad_epu8 sum of the absolute differences of the

byte values to the low 16 bits of each
64-bit word

5 1

• The AVX2 Harley-Seal function processes sixteen
256-bit vectors (512 B) with 98 µops: 16 loads
(vpmov), 32 bitwise ANDs (vpand), 15 bitwise ORs
(vpor), and 30 bitwise XORs (vpxor). Each 64-bit
word (8 B) thus takes just over 1.5 µops—about
half as many as required to use the builtin popcnt
instruction on the same input.

While fewer µops does does not guarantee faster
execution, for computationally intensive tasks such as
this it often proves to be a significant advantage. In this
case, we find that it does in fact result in approximately
twice the speed.

4. BEYOND POPULATION COUNTS

In practice, we often want to compute population counts
on the result of some operations. For example, given
two bitsets, we might want to determine the cardinality
of their intersection (computed as the bit-wise logical
AND) or the cardinality of their union (computed as the
bit-wise logical OR). In such instances, we need to load
input bytes from the two bitsets, generate a temporary
word, process it to determine its population count, and
so forth. When computing the Jaccard index, given that
we have no prior knowledge of the population counts,
we need to compute both the intersection and the union,
and then we need to compute the two corresponding
population counts (see Fig. 12).

Both loads and logical operations benefit greatly from
vectorization, and hybrid scalar/vector approaches can
be difficult because inserting and extracting elements
into and from vectors adds overhead. With AVX2, in
one operation, we can load a 256-bit register or compute
the logical AND between two 256-bit registers. This is
four times the performance of the corresponding 64-bit
operations. Thus we can expect good results from fast
population count functions based on AVX2 adapted for
the computation of the Jaccard index, the cardinality
of the intersection or union, or similar operations.

5. EXPERIMENTAL RESULTS

We implemented our software in C. We use a Linux server
with an Intel i7-4770 processor running at 3.4 GHz. This
Haswell processor has 32 kB of L1 cache and 256 kB of

L2 cache per core with 8 MB of L3 cache. The machine
has 32 GB of RAM (DDR3-1600 with double-channel).
We disabled Turbo Boost and set the processor to run at
its highest clock speed. Our software is freely available
(https://github.com/CountOnes/hamming_weight) and
was compiled using the GNU GCC 5.3 compiler with
the “-O3 -march=native” flags.

Table 3 presents our results in number of cycles per
word, for single-threaded execution. To make sure our
results are reliable, we repeat each test 500 times and
check that the minimum and the average cycle counts
are within 1% of each other. We report the minimum
cycle count divided by the number of words in the
input. All the scalar methods (WWG, Laradoux, and
HS) are significantly slower than the native popcnt-
based function. We omit tabulation-based approaches
from Table 3 because they are not competitive: 16-bit
tabulation uses over 5 cycles even for large arrays. We
can see that for inputs larger than 4 kB, the AVX2-based
Harley-Seal approach is twice as fast as our optimized
popcnt-based function, while for small arrays (fewer
64 words) the popcnt-based function is fastest.

We present the results for Jaccard index computations
in Table 4. Contrary to straight population counts,
the Jaccard-index AVX2 Mu la remains faster than the
popcnt-based function even for small blocks (256 B).
AVX2 HS provides the best speed, requiring only
1.15 cycles to calculate the Jaccard similarity between
each pair of 64-bit inputs. This is more than twice
as fast (2.4×) as the popcnt-based function. Since
the population count is done for each input of the
pair, the speed of the similarity is only slightly greater
than the speed of calculating the two population counts
individually. That is, using AVX2 for both the Boolean
operation and both population counts gives us the
Boolean operation almost for free.

6. CONCLUSION

On recent Intel processors, the fastest approach to
compute the population count on moderately large
arrays (e.g., 4 kB) relies on a vectorized version of the
Harley-Seal function. It is twice as fast as functions
based on the dedicated instruction (popcnt). For the
computation of similarity functions between two bitsets,

https://github.com/CountOnes/hamming_weight

8 W. Mu la, N. Kurz and D. Lemire

TABLE 3. Number of cycles per 64-bit input word required to compute the population of arrays of various sizes.

array size WWG Lauradoux HS popcnt AVX2 Mu la AVX2 HS

256 B 6.00 4.50 3.25 1.12 1.38 —
512 B 5.56 2.88 2.88 1.06 0.94 —
1 kB 5.38 3.62 2.66 1.03 0.81 0.69
2 kB 5.30 3.45 2.55 1.01 0.73 0.61
4 kB 5.24 3.41 2.53 1.01 0.70 0.54
8 kB 5.24 3.36 2.42 1.01 0.69 0.52
16 kB 5.22 3.36 2.40 1.01 0.69 0.52
32 kB 5.23 3.34 2.40 1.01 0.69 0.52
64 kB 5.22 3.34 2.40 1.01 0.69 0.52

TABLE 4. Number of cycles per pair of 64-bit input words
required to compute the Jaccard index of arrays of various
sizes.

array size popcnt AVX2 Mu la AVX2 HS

256 B 3.00 2.50 —
512 B 2.88 2.00 —
1 kB 2.94 2.00 1.53
2 kB 2.83 1.84 1.33
4 kB 2.80 1.76 1.22
8 kB 2.78 1.75 1.16
16 kB 2.77 1.75 1.15
32 kB 2.76 1.75 1.15
64 kB 2.76 1.74 1.15

a vectorized approach based on the Harley-Seal function
is more than twice as fast (2.4×) as an optimized
approach based on the popcnt instruction.

FUNDING

This work was supported by the Natural Sciences and
Engineering Research Council of Canada [261437].

REFERENCES

[1] Gueron, S. and Krasnov, V. (2016) Fast quicksort
implementation using AVX instructions. The Computer
Journal, 59, 83–90.

[2] Lemire, D., Ssi-Yan-Kai, G., and Kaser, O. (2016)
Consistently faster and smaller compressed bitmaps
with roaring. Software: Practice and Experience, 46,
1547–1569.

[3] Mart́ı, V. (2015). Counting objects. GitHub
Engineering Blog, http://githubengineering.com/
counting-objects/ [last checked November 2016].

[4] Lemire, D., Boytsov, L., and Kurz, N. (2016) Simd
compression and the intersection of sorted integers.
Software: Practice and Experience, 46, 723–749.

[5] Grand, A. (2015). Frame of Reference and
Roaring Bitmaps. https://www.elastic.co/blog/
frame-of-reference-and-roaring-bitmaps [last
checked November 2016].

[6] Prokopenko, D., Hecker, J., Silverman, E. K., Pagano,
M., Nöthen, M. M., Dina, C., Lange, C., and Fier, H. L.

(2016) Utilizing the Jaccard index to reveal population
stratification in sequencing data: a simulation study
and an application to the 1000 Genomes Project.
Bioinformatics, 32, 1366–1372.

[7] Lacour, A., Schüller, V., Drichel, D., Herold, C., Jessen,
F., Leber, M., Maier, W., Noethen, M. M., Ramirez,
A., Vaitsiakhovich, T., and Becker, T. (2015) Novel
genetic matching methods for handling population
stratification in genome-wide association studies. BMC
Bioinformatics, 16, 84.

[8] Li, Y., Patel, J. M., and Terrell, A. (2012) WHAM: a
high-throughput sequence alignment method. ACM T.
Database Syst., 37, 28.

[9] Dambros, C. S., Cáceres, N. C., Magnus, L., and Gotelli,
N. J. (2015) Effects of neutrality, geometric constraints,
climate, and habitat quality on species richness and
composition of Atlantic forest small-mammals. Global
Ecol. Biogeogr., 24, 1084–1093.

[10] Zhang, B., Vogt, M., Maggiora, G. M., and Bajorath,
J. (2015) Design of chemical space networks using
a Tanimoto similarity variant based upon maximum
common substructures. J. Comput. Aided Mol., 29,
937–950.

[11] Hill, S. (2006) Design of a reusable 1GHz, superscalar
ARM processor. 2006 IEEE Hot Chips 18 Symposium
(HCS), Washington, DC, USA, Aug, pp. 1–18. IEEE
Computer Society.

[12] Fog, A. (2016) Instruction tables: Lists of instruc-
tion latencies, throughputs and micro-operation break-
downs for Intel, AMD and VIA CPUs. Technical report.
Copenhagen University College of Engineering, Copen-
hagen, Denmark. http://www.agner.org/optimize/
instruction_tables.pdf [last checked May 2016].

[13] Carruth, C. (2015). Implement a faster vector
population count based on the PSHUFB. https:
//reviews.llvm.org/rL238636 [last checked November
2016].

[14] Knuth, D. E. (2009) Bitwise Tricks & Techniques, The
Art of Computer Programming, 4. Addison-Wesley,
Boston, Massachusetts.

[15] Wilkes, M. V., Wheeler, D. J., and Gill, S. (1957)
The Preparation of Programs for an Electronic Digital
Computer, second edition. Addison-Wesley Publishing,
Boston, USA.

[16] Wegner, P. (1960) A technique for counting ones in a
binary computer. Commun. ACM, 3, 322–.

http://githubengineering.com/counting-objects/
http://githubengineering.com/counting-objects/
https://www.elastic.co/blog/frame-of-reference-and-roaring-bitmaps
https://www.elastic.co/blog/frame-of-reference-and-roaring-bitmaps
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://reviews.llvm.org/rL238636
https://reviews.llvm.org/rL238636

Faster Population Counts using AVX2 Instructions 9

[17] Rohou, E., Swamy, B. N., and Seznec, A. (2015) Branch
prediction and the performance of interpreters: Don’t
trust folklore. Proc. 13th IEEE/ACM International
Symposium on Code Generation and Optimization,
Washington, DC, USA, February CGO ’15, pp. 103–
114. IEEE Computer Society.

[18] Lauradoux, C. (2009). Hamming weight. (It was posted
on the author’s website, but is apparently no longer
available online.).

[19] Warren, H. S., Jr. (2007) The quest for an accelerated
population count. In Wilson, G. and Oram, A. (eds.),
Beautiful Code: Leading Programmers Explain How
They Think, chapter 10, pp. 147–160. O’Reilly Media,
Sebastopol, California.

[20] Knuth, D. E. (2011) Combinatorial Algorithms, Part
1, The Art of Computer Programming, 4A. Addison-
Wesley, Boston, Massachusetts.

[21] Mu la, W. SSSE3: fast popcount. http://0x80.pl/
articles/sse-popcount.html [last checked November
2016].

[22] Morancho, E. (2014) A hybrid implementation of
Hamming weight. 2014 22nd Euromicro International
Conference on Parallel, Distributed, and Network-Based
Processing, Sankt Augustin, Germany, Feb, pp. 84–92.
Euromicro.

APPENDIX A. CARRY-SAVE ADDER IN
AVX-512

Though Intel processors through the current Kaby Lake
generation do not yet support the AVX-512 instruction
set, it is straight-forward to generalize our vectorized
algorithms to 512-bit vectors. However, even beyond
the increase in vector width, it should be possible
to implement the carry-save adder more efficiently
with AVX-512, which also adds the vpternlogd
instruction. Available through C intrinsics as _-
mm512_ternarylogic_epi64, this instruction allows us
to compute arbitrary three-input binary functions in
a single operation. Utilizing this, we can replace the
5 logical instructions we needed for AVX2 with just
two instructions. The vpternlogd instruction relies on
an integer parameter i that serves as a look-up table.
Given the input bits x, y, z, the value given that the
(x+ 2y + 4z)th bit of the parameter i is returned. For
example, to compute XOR of the inputs, the i parameter
needs to have a 1-bit at indexes 1, 2, 4 and 7 (i.e.,
i = 21 + 22 + 24 + 27 = 150 or 0x96 in hexadecimal).
Similarly, to compute the most significant bit of the
carry-save adder, the i parameter needs to have a 1-bit
at indexes 3, 5, 6 and 7 (0xe8 in hexadecimal). A C
function implementing a carry-save adder (CSA) using
AVX-512 intrinsics can be written as follows.

void CSA(__m512i* h, __m512i* l, __m512i a
, __m512i b, __m512i c) {

*l = _mm512_ternarylogic_epi32(c, b, a,
0x96);

*h = _mm512_ternarylogic_epi32(c, b, a,
0xe8);

}

uint64_t avx_hs(__m256i* d, uint64_t size) {
__m256i total = _mm256_setzero_si256 ();
__m256i ones = _mm256_setzero_si256 ();
__m256i twos = _mm256_setzero_si256 ();
__m256i fours = _mm256_setzero_si256 ();
__m256i eights = _mm256_setzero_si256 ();
__m256i sixteens = _mm256_setzero_si256 ();
__m256i twosA , twosB , foursA , foursB ,

eightsA , eightsB;
for(uint64_t i = 0; i < size; i += 16) {
CSA(&twosA , &ones , ones , d[i], d[i+1]);
CSA(&twosB , &ones , ones , d[i+1], d[i+3]);
CSA(&foursA , &twos , twos , twosA , twosB);
CSA(&twosA , &ones , ones , d[i+4], d[i+5]);
CSA(&twosB , &ones , ones , d[i+6], d[i+7]);
CSA(&foursB ,& twos , twos , twosA , twosB);
CSA(&eightsA ,&fours , fours , foursA ,foursB)

;
CSA(&twosA , &ones , ones , d[i+8], d[i+9]);
CSA(&twosB , &ones , ones , d[i+10],d[i+11]);
CSA(&foursA , &twos , twos , twosA , twosB);
CSA(&twosA , &ones , ones , d[i+12],d[i+13]);
CSA(&twosB , &ones , ones , d[i+14],d[i+15]);
CSA(&foursB , &twos , twos , twosA , twosB);
CSA(&eightsB , &fours , fours , foursA ,

foursB);
CSA(&sixteens , &eights , eights , eightsA ,

eightsB);
total = _mm256_add_epi64(total , count(

sixteens));
}
total = _mm256_slli_epi64(total , 4);
total = _mm256_add_epi64(total ,

_mm256_slli_epi64(count(eights), 3));
total = _mm256_add_epi64(total ,

_mm256_slli_epi64(count(fours), 2));
total = _mm256_add_epi64(total ,

_mm256_slli_epi64(count(twos), 1));
total =_mm256_add_epi64(total ,count(ones));
return _mm256_extract_epi64(total , 0)

+ _mm256_extract_epi64(total , 1)
+ _mm256_extract_epi64(total , 2)
+ _mm256_extract_epi64(total , 3);

}

FIGURE 11. A C function using AVX2 intrinsics
implementing Harley-Seal’s algorithm. It assumes, for
simplicity, that the input size in 256-bit vectors is divisible
by 16. See Fig. 10 for the count function.

http://0x80.pl/articles/sse-popcount.html
http://0x80.pl/articles/sse-popcount.html

10 W. Mu la, N. Kurz and D. Lemire

void popcnt_jaccard_index(uint64_t* A,
uint64_t* B, size_t n) {

double s = 0;
double i = 0;
for(size_t k = 0; k < n; k++) {

s += _mm_popcnt_u64(A[k] | B[k]);
i += _mm_popcnt_u64(A[k] & B[k]);

}
return i / s;

}

FIGURE 12. A C function using the _mm_popcnt_u64
intrinsic to compute the Jaccard index of a pair of 64-bit
inputs.

	1 Introduction
	2 Existing Algorithms and Related Work
	2.1 Existing Vectorized Algorithms

	3 Novel Vectorized Algorithms
	4 Beyond population counts
	5 Experimental Results
	6 Conclusion
	Appendix A Carry-Save Adder in AVX-512

