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What is this talk about?

Levels of parallelism from Bryce’s talk

Alternative titles

Bit-level parallelism (manipulating bit sequences by chunks)
Abstracting bits
On bit manipulation algorithms for the standard library
What’s wrong with you std::vector<bool>?
Reinventing std::bitset and std::vector<bool>

Counting bits 100× faster than with std::vector<bool>

Playing with 0 and 1
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Using bit utilities in less than 2 minutes (1/2)

Step 1: Clone and download

With git: git clone https://github.com/vreverdy/bit.git

Without git: go on the page https://github.com/vreverdy/bit, click on
Clone or download→Download ZIP, download, and unzip it.

Step 2: Run a minimal test case
1 #include <iostream >

2 #include "./bit/cpp/bit.hpp" // Your path to bit.hpp

3 using namespace bit;

4
5 int main(int argc , char∗ argv []) {

6 using uint_t = unsigned int;

7 uint_t n = 42;

8 auto first = bit_iterator <uint_t∗>(&n);
9 auto last = bit_iterator <uint_t∗>(&n + 1);

10 for (; first != last; ++first) std::cout <<∗first;
11 std::cout <<std::endl;

12 return 0;

13 }

14
15 // Compilation with GCC: g++ −std=c++14 −pedantic −O3 main.cpp −o main

16 // Output: 01010100000000000000000000000000

Compile it and run it, it should display the bits of n from the LSB to the MSB.
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Using bit utilities in less than 2 minutes (2/2)

Step 3: And that’s it
You are all set. . .

Contact and links

GitHub: https://github.com/vreverdy/bit

Contact: vince.rev@gmail.com

ISO C++ proposal (description): P0237R0

ISO C++ proposal (last wording): P0237R2 (in progress)
Collaborations are very welcome! Same for comments! Same for benchmarks!
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...on a small piece of rock...
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...wandering aimlessly in a vast Universe...

...

...a team of astrophysicists was wondering

.

about the nature of life, the Universe, and everything.
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..

Because they knew some maths, some physics

.

some computer science, and some programming,

.

Gµν
=

8πG
c4

Tµν
.

∇2
r Φ = 4πGρ

.

typename std::enable_if<std::is_integer<T>::value>::type
.

tem
pla

te
<c
las
s T

, st
d::
siz
e_
t N

>
.

ρ̇ = −3H (
ρ + p

c 2
)

.

they decided to design a code that could answer

.

their (meta)physical questions.

....

They said: ``Let's take an enormous box...

....

...with periodic boundary conditions...

.

(right/left, top/bottom, and front/back connected together)

....

...and let's fill that enormous box with particles

.

weighing the mass of millions or billions of suns...

.

(note: yes, that's kind of huge)

....

Now, divide the box in cells using a

.

regular grid and apply the following recipe:

....

x⃗i

.

v⃗i

.

ρ

. Φ.

a⃗

.

x⃗i

.

v⃗j

.

x⃗j

.

v⃗j

.

1) For each cell c containing particles with
position x⃗ and velocity v⃗

.

2) Interpolate the density ρ in the cell c
depending on surrounding particles

. 3) From ρ, compute the gravitational potential Φ.

4) From Φ, interpolate back the acceleration a⃗ at
the position of particles

.

5) From a⃗, compute the new speed v⃗ of each particle

.

6) From v⃗, compute the new position x⃗ of each particle

.

7) Restart at 1) with the updated position x⃗
and speed v⃗

....

Using this recipe with millions of particles

.

we can simulate galaxy formation!''
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..

Simulating galaxies is nice, but it was not answering

.

their (meta)physical questions.

..

So they decided to to do better. ``Let's try to investigate

.

larger scales with galaxy-sized particles'' they said.

....

First, they took a supercomputer.

....

G
µ

ν
=

8πGc 4 T
µ

ν

.

Second, they made the box expand as the Universe does*

.

according to the theory of General Relativity (GR)

.

(*here, they did not consider backreaction effects)

.....

measured cosmological
microwave background

.

Third, they filled the box with billions of particles

.

with the same distribution (statistically speaking)

.

as the matter in the primordial Universe

....

Quadtree (2D) Octree (3D)

.

Fourth, they updated their algorithm using an

.

Adaptive Mesh Refinement (AMR) strategy to increase

.

the resolution in regions of interest.

....

And finally, after all this work, they ran their simulation,

.
using millions of computing hours over thousands of cores

. and generating hundreds of terabytes of data..

And this is what they obtained.

.....

Actual cosmic
web structure

observed by the SDSS

.

Simulated cosmic web structure
(each point is of the mass of a Milky Way)

.
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So they decided to go there

.

with the hope to leverage bit manipulation

.

to speed up their trees and their simulations...

.
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Constant-size bit container: std::bitset

template <std::size_t N> class bitset

The class template bitset represents a fixed-size sequence of N bits. Bitsets can be
manipulated by standard logic operators and converted to and from strings and
integers. (source: cppreference.com)

1 // Example from cppreference.com

2 #include <iostream >

3 #include <bitset >

4
5 int main() {

6 // Initialization

7 std::bitset <8> b("00010010");

8 std::cout <<"initial value: "<<b<<’\n’;

9 // Find the first unset bit

10 size_t idx = 0;

11 while (idx < b.size() && b[idx]) ++idx;

12 // Continue setting bits until half the bitset is filled

13 while (idx < b.size() && b.count() < b.size ()/2) {

14 b.set(idx);

15 std::cout <<"setting bit "<<idx <<": "<<b<<’\n’;

16 while (idx < b.size() && b.test(idx)) ++idx;

17 }

18 }

19
20 // Output

21 // initial value: 00010010

22 // setting bit 0: 00010011

23 // setting bit 2: 00010111
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Constant size bit container: std::bitset

What is good with bitsets?

Very simple and easy to use
Set of optimized members like test, all, any, none, count, set, reset, flip

Limitations

Very limited functionality
No begin and end iterators: not compatible with algorithms and standard
containers
No control on the underlying representation

Underlying representation
In terms of implementation, bits are likely to be stored in a contiguous array of
unsigned integers. However, there is no way to access this underlying representation.
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What does std::bitset::operator[] return?

1 std::bitset <8> b(42);

2 bool boolean = b[0];

3 auto something = b[0];

4 boolean += 1;

5 something += 1; // Failure

Limitations

std::bitset::operator[] returns a proxy of type std::bitset::reference

Almost like a bool. . .
But only almost: different promotion rules, different arithmetic, a member flip
and a different behavior for operator∼
Very confusing and error-prone
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Very confusing and error-prone?

1 // Initialization

2 std::bitset <8> b(0);

3 bool boolean = b[0];

4 auto something = b[0];

5
6 // Operations

7 boolean = ∼(∼boolean );

8 something = ∼(∼something );

9
10 // Display

11 std::cout <<boolean <<something <<std::endl;

Question
What does that print? 00, 11, 10 or 01?

Answer
10

Why?

boolean → ∼false → ∼(−1) → boolean = 0 → boolean == 0

something → ∼reference(0) → ∼(true) → something = −2 →
something == 1
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Dynamic size bit container: std::vector<bool>

What is std::vector<bool>?
A mistake

template <class Allocator> class vector<bool, Allocator>

std::vector<bool> is a space-efficient specialization of std::vector for the type
bool. The manner in which std::vector<bool> is made space efficient (as well as
whether it is optimized at all) is implementation defined. One potential optimization
involves coalescing vector elements such that each element occupies a single bit
instead of sizeof(bool) bytes. std::vector<bool> behaves similarly to
std::vector, but in order to be space efficient, it:

Does not necessarily store its elements as a contiguous array (so
&v[0] + n != &v[n])
Exposes class std::vector<bool>::reference as a method of accessing
individual bits. In particular, objects of this class are returned by operator[] by
value.
Does not use std::allocator_traits::construct to construct bit values.
Does not guarantee that different elements in the same container can be modified
concurrently by different threads.

(source: cppreference.com)
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Dynamic size bit container: std::vector<bool>

What is std::vector<bool>?
It’s not a container

What’s wrong with you std::vector<bool>?

“std::vector<bool> is nonconforming, and forces optimization choice”, H.
Sutter (N1185) [1999]
“std::vector<bool> : More problems, better solutions”, H. Sutter (N1847)
[2005]
“Library issue 96: Fixing std::vector<bool>”, B. Dawes (N2160) [2007]
“A specification to deprecate std::vector<bool>”, A. Meredith (N2204) [2007]

⇒ 2016: std::vector<bool> is still alive
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Dynamic size bit container: std::vector<bool>

What is good with vector bool?

Compact storage in memory
begin and end iterators: compatible with standard algorithms

Problems

Poor performances
No access to the underlying representation
No thread safety
Breaks the normal behavior of containers
Error-prone behavior of std::vector<bool>::reference (almost a bool).

On dynamic bitsets
The functionality is ok, but specializing std::vector for it was not the best idea ever.
A std::dynamic_bitset (as in Boost) would have been a far better option. But
even with that, most of the problems remain.
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Bit manipulation

Example of use of bit instructions (Hilewitz, 2008)Table 6.1: Summary of Bit Manipulation Instruction Usage in Various Applications

Application \ Instruction bfly

ibfly

pex pdep setib setb pex.v pdep.v grp bmm

Binary Compression × (×)

Binary Decompression × (×)

LSB Encoding × × (×)

Steganography Decoding × × (×)

Transfer Coding
Encoding × (×)

Decoding × (×)

Integer Compression × (×)

Compression Decompression × (×)

Binary Image Morphology × (×) (×)

Random Number Generation
Von Neumann ×
Toeplitz ×

Bioinformatics

Compression × (×)

BLASTZ Alignment × (×)

BLASTX Translation × (×)

Reversal × (×)

Cryptography

Block Ciphers × × ×
Stream Ciphers × ×
Public Key ×
Future ? ? ? ? ? ? ? ? ?

Cryptanalysis

Linear ×∗

Algebraic ×
Future/Proprietary ? ? ? ? ? ? ? ? ?

DARPA HPCS Discrete Math Matrix Transpose ×∗

Benchmarks Equation Solving ×
Linear Feedback Shift Registers ×

Error Correction

Block Codes ×
Convolutional Codes ×
Puncturing × × (×)

∗bmmt

invariant bit gather and scatter. The pex.v and pdep.v columns indicate use of dynamic

bit gather and scatter.

For the bmm column, × indicates usage of bmm as a multiplication primitive while (×)

indicates usage of bmm as a bit manipulation primitive, as we use (×) for bmm to indicate

those applications where another bit manipulation instruction (like parallel extract, parallel

deposit or bit permutation) can be used. The use of the mov ar instruction is assumed

(but not shown in Table 6.1) whenever the bfly, ibfly, static pex and pdep, or bmm

instructions are used.

131
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The current state of bit manipulation

Instructions
CPUs include more and more very efficient bit manipulation instructions but they are
often left unused because of the lack of standard utilities to access them.

Bit Manipulation Instruction Sets

ABM: Advanced Bit Manipulation, POPCNT, LZCNT (Intel SSE 4.2, AMD ABM)
BMI1: Bit Manipulation Instruction Set 1 (≥ Intel Haswell, AMD Piledriver)
BMI2: Bit Manipulation Instruction Set 2 (≥ Intel Haswell, AMD Excavator)
TBM: Trailing Bit Manipulation (≥ AMD Piledriver)
BME: Bit Manipulation Engine (ARM Cortex)

Compiler intrinsic examples

_bzhi_u32, _bzhi_u64, _pdep_u32, _pdep_u64, _pext_u32, _pext_u64
__builtin_clz, __builtin_ctz, __builtin_clrsb, __builtin_popcount
__builtin_ia32_bextr_u32, __builtin_ia32_bextr_u64
__builtin_ia32_lzcnt_u32, __builtin_ia32_lzcnt_u64
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The current state of bit manipulation

Past proposal
“A constexpr bitwise operations library for C++” (Fioravante, 2014)

Problems

More than 60 bit-specialized functions: too many functions
Too low level and domain specific
Limited to integral arguments
Does not provide tools to manipulate arbitrary long sequence of bits

Genericity
Need of something far more generic
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Chapter III: Introducing The Bit Library
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Summary of The Bit Library and P0237

What?
Designing tools to provide a generic way to operate on bits and sequence of bits.

Why?

To be able to use unsigned integers as sets of bits
To make the most of bit manipulation instruction sets
To provide users with utilities to build fast bit manipulation algorithms
To provide users with utilities to build efficient bit-based data structures

Application areas
Hashing
Video games
Image processing
Cryptography

Random number
generation

Binary compression

Error correction

High-performance
computing
Arbitrary-precision
arithmetic

Concrete examples of use

User-defined bit sets and bit arrays, iteration over bits
Access to the underlying bits of bounded and unbounded integers
Allowing std::count to call a POPCNT instruction when executed on bits
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Motivation

Bjarne Stroustrup - The C++ Programming Language (2013)

“unsigned integer types are ideal for uses that treat storage as a bit array.”

Except that. . .
. . . there is no standard way to access and manipulate bits in C++.

Main motivations

Ease the use of unsigned integers as bit arrays
Provide a standard way to access and manipulate unique bits (set, reset, flip. . . )
Provide an abstraction to leverage bit manipulation instruction sets
Provide efficient versions of standard algorithms on bits
Facilitate the design of fast bit manipulation algorithms on sequences of bits
Facilitate the implementation of data structures based on bit sequences
Provide tools to access the underlying representation of such data structures
Provide tools to easily build alternatives to std::vector<bool>

Objectives
Simplicity, genericity and efficiency.
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Solution summary

Key idea: bit_iterator

All of that can be achieved through a carefully designed bit_iterator acting as an
iterator adaptor (like std::reverse_iterator).

template <class Iterator> class bit_iterator

A bit_iterator is a tool that allows to reinterpret a sequence of unsigned integers as
a sequence of bits. It provides an API that is both:

high-level: easy to use from the general user point of view
low-level: gives access to the underlying representation for optimization purposes

High-level point of view: counting bits (assuming std:: prefix)
1 // Initialization

2 using uint_t = unsigned int;

3 using container_t = std::list <uint_t >;

4 using iterator_t = typename container_t :: iterator;

5 container_t container = {0, 1, 2, 3, 4};

6
7 // From the bit number 5 of container [0], to the end of the container

8 std:: bit_iterator <iterator_t > first(std:: begin(container), 5);

9 std:: bit_iterator <iterator_t > last(std::end(container ));

10
11 // Counts the bits set to 1

12 std::cout <<std:: count(first , last , std:: one_bit)<<std::endl;
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0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 11

0 1 1 0 0 0 00 1 1 0 1 0 1 11 1 1 0 0

unsigned int i = 1751901291;  

1 0 00 1 1 0 1 0 1 1 1
Object representation in memory (lile endian)

Binary value

0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 11

std::list<unsigned int> uintlist = 
{1751901291, 1751901292, 1751901293, 1751901294};  

0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 01

0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 11

0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 01

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

00

01

02

03

- 23 = + 55 = 
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Solution summary

3 key functions

it.base() (bit_iterator::base): returns the underlying iterator, inspired from
std::reverse_iterator::base

it.position() and (∗it).position() (bit_iterator::position and
bit_reference::position): returns the current bit position in the underlying
value, starting from 0 (LSB) to binary_digits<T>::value − 1 (MSB)
(∗it).address() (bit_reference::address): returns a pointer to the
underlying value

Low-level point of view: counting bits (1/2)
1 template <class InputIt >

2 typename bit_iterator <InputIt >:: difference_type

3 count(

4 bit_iterator <InputIt > first ,

5 bit_iterator <InputIt > last ,

6 bit_value value

7 )

8 {

9 // Assertions

10 _assert_range_viability(first , last);

11
12 // Initialization

13 using underlying_type = typename bit_iterator <InputIt >:: underlying_type;

14 using difference_type = typename bit_iterator <InputIt >:: difference_type;

15 constexpr difference_type digits = binary_digits <underlying_type >:: value;
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Solution summary

Low-level point of view: counting bits (2/2)
1 difference_type result = 0;

2 auto it = first.base ();

3
4 // Computation when bits belong to several underlying values

5 if (first.base() != last.base ()) {

6 if (first.position () != 0) {

7 result = _popcnt(∗first.base() >> first.position ());

8 ++it;

9 }

10 for (; it != last.base (); ++it) {

11 result += _popcnt(∗it);

12 }

13 if (last.position () != 0) {

14 result += _popcnt(∗last.base() << (digits − last.position ()));

15 }

16 // Computation when bits belong to the same underlying value

17 } else {

18 result = _popcnt(_bextr <underlying_type >(

19 ∗first.base(),
20 first.position(),

21 last.position () − first.position ()

22 ));

23 }

24
25 // Negates when the number of zero bits is requested

26 if (! static_cast <bool >(value )) {

27 result = std:: distance(first , last) − result;

28 }

29
30 // Finalization

31 return result;

32 }

Efficient Bit Abstractions - Vincent Reverdy - CPPCON 2016 60



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

. . .
Introduction Motivation

. . . . . . . . . .
Current status

. . . . . . . .
The Bit Library

. . . . . . . . .
Details

. . . . . . .
Illustration

. . . .
Conclusions

Design questions

Key design questions

What is bit_iterator<Iterator>::difference_type?
What is bit_iterator<Iterator>::iterator_category?
What is bit_iterator<Iterator>::value_type?
What is bit_iterator<Iterator>::reference?
What is bit_iterator<Iterator>::pointer?

Answer: the easy ones

bit_iterator<Iterator>::difference_type

⇒ Implementation defined, but at least as large as std::ptrdiff_t

bit_iterator<Iterator>::iterator_category

⇒ Same as std::iterator_traits<Iterator>::iterator_category

Answer: the difficult ones
bit_iterator<Iterator>::value_type ⇒ ?
bit_iterator<Iterator>::reference ⇒ ?
bit_iterator<Iterator>::pointer ⇒ ?
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Design questions

Key design questions

What is bit_iterator<Iterator>::difference_type?
What is bit_iterator<Iterator>::iterator_category?
What is bit_iterator<Iterator>::value_type?
What is bit_iterator<Iterator>::reference?
What is bit_iterator<Iterator>::pointer?

Answer: the easy ones

bit_iterator<Iterator>::difference_type

⇒ Implementation defined, but at least as large as std::ptrdiff_t

bit_iterator<Iterator>::iterator_category

⇒ Same as std::iterator_traits<Iterator>::iterator_category

Answer: the difficult ones
bit_iterator<Iterator>::value_type ⇒ ?
bit_iterator<Iterator>::reference ⇒ ?
bit_iterator<Iterator>::pointer ⇒ ?
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Global architecture

std::bit_reference std::bit_iterator std::bit_pointer

Constructor(s)

Assignment

Operator &

Conversion operator(s)

Bit operations

Underlying access

Bitwise operators

Swap specialization

Stream operators

Bit reference maker

Constructor(s)

Assignment

Operators * and []

Operator ->

Increment & decrement

Arithmetic operators

Comparison operators

Bit iterator maker

Constructor(s)

Assignment

Operators *, ->, []

Conversion operator(s)

Arithmetic operators

Comparison operators

Bit pointer maker

Increment & decrement

Iterator

UIntType

std::bit_value

Constructor(s)

Assignment

Conversion operator(s)

Bit operations

Bitwise operators

Comparison operators

Comparison operators

Stream operators

bool

Underlying access

std::binary_digits

std::zero_bit

std::one_bit
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Chapter IV: On some tricky details
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What is bit_iterator<Iterator>::value_type?

What is a bit?
The innocent question, that is actually very complex to answer. . .

Related questions

What functionalities a bit should provide?
What should the arithmetic behaviour of a bit be?

Existing problem in std::bitset and std::vector<bool>

Their boolean value_type has a different behaviour than their reference type
leading to potential errors: as an example, the behaviour of the operator∼ is
different, and operator+= exists for their value type, but not for their reference type.
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What is a bit?

1 struct field {unsigned int b : 1;};

2
3 bool b0 = false; b0 = ∼b0; b0 = ∼b0; // 1

4 auto x0 = std::bitset <1 >{}[0]; x0 = ∼x0; x0 = ∼x0; // 0

5 auto f0 = field {}; f0.b = ∼f0.b; f0.b = ∼f0.b; // 0

6
7 bool b1 = false; b1 = ∼∼b1; // 0

8 auto x1 = std::bitset <1 >{}[0]; x1 = ∼∼x1; // 1

9 auto f1 = field {}; f1.b = ∼∼f1.b; // 0

10
11 bool b2 = false; b2 += 1; b2 += 1; // 1

12 auto x2 = std::bitset <1 >{}[0]; x2 += 1; x2 += 1; // X

13 auto f2 = field {}; f2.b += 1; f2.b += 1; // 0

14
15 bool b3 = false; b2 = b3 + 1; b3 = b3 + 1; // 1

16 auto x3 = std::bitset <1 >{}[0]; x3 = x3 + 1; x3 = x3 + 1; // 1

17 auto f3 = field {}; f3.b = f3.b + 1; f3.b = f3.b + 1; // 0

18
19 bool b4 = false; b4 += 3; // 1

20 auto x4 = std::bitset <1 >{}[0]; x4 += 3; // X

21 auto f4 = field {}; f4.b += 3; // 1
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What is a bit?

According to the C standard (section 3.5)
A bit is a unit of data storage in the execution environment large enough to hold an
object that may have one of two values.

According to the C++ standard ([intro.memory])
A bit is an element of a contiguous sequence forming a byte, a byte being the
fundamental storage unit in the C++ memory model and being at least 8-bit long.

Tentative of mathematical definition (Wikipedia)
The word bit stands for binary digit, a digit being a numeric symbol used in
combinations to represent numbers in positional numeral systems.

What is a boolean data type? (Wikipedia)
A boolean data type is a data type, having two values (usually denoted true and
false), intended to represent the truth values of logic and boolean algebra.
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One of the most important slide of this talk

Summary
A bit is a binary digit A boolean is a logical data type

A bit is not a bool
Bits and booleans are often identified, but they are two very different concepts. Both
just happen to have two values.

On std::vector<bool>

If bits and booleans were the same thing, std::vector<bool> would not raise any
design issue and standardization papers about it would not exist. But they do exist. . .

On std::array<bool, N> and std::bitset<N>

If bits and booleans were the same thing, std::array<bool, N> and std::bitset<N>

would be equivalent. But they are not. . .
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What is bit_iterator<Iterator>::value_type? ⇒ a bit_value

class bit_value

Represents an independent individual bit.

Naming: why bit_value and not bit?
Because a bit_value mimics a bit, but is not actually a bit since bits cannot be
stored individually in memory.

Main functionalities

Take an unsigned integer and a bit position for construction
No arithmetic behavior to avoid confusion (same approach as std::byte)
Bitwise operators
Flip, set and reset members
Explicit conversion to bool

1 bit_value bval(3U, 1); // Get the bit at position 1 of 3

2 bval.flip (); // Flips the bit

3 bval = bit_value (1U); // Same as bit_value (1U, 0)

4 bval.set(); // Sets the bit to one

5 std::cout <<bval <<’\n’; // Prints the value of the bit (1)
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What is bit_iterator<Iterator>::reference? ⇒ a bit_reference

template <class UInt> class bit_reference<UInt>

Represents a bit reference to a bit of an unsigned integer. Can be implemented as a
reference (or a pointer) to an unsigned integer and a position.

Main functionalities

Same behavior as bit_value

Take a reference to an unsigned integer and a bit position for construction
Overloaded operator& to return a bit_pointer

address and position members to get the address of the referenced unsigned
integer and the position of the bit within bit

1 using uint_t = unsigned int; // Sets the type of unsigned integer

2 uint_t ui = 4; // Creates an unsigned integer

3 bit_reference <uint_t > bref(ui , 3); // Creates a ref to the 3rd bit of ui

4 bref.flip (); // Flips the 3rd bit of ui

5 std::cout <<bref <<’\n’; // Prints the 3rd bit of ui (1)

6 std::cout <<bref.position()<<’\n’; // Prints the position of the bit (3)

7 std::cout <<∗(bref.address())<<’\n’; // Prints ui (12)
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What is bit_iterator<Iterator>::pointer? ⇒ a bit_pointer

template <class UInt> class bit_pointer<UInt>

Represents a bit pointer to a bit of an unsigned integer. Can be implemented as a
pointer to an unsigned integer and a position.

Main functionalities

Complementary of bit_reference, mimicking a pointer to a bit
Take a pointer to an unsigned integer and a bit position for construction
Overloaded operator∗ to return a bit_reference

1 using uint_t = unsigned int; // Sets the type of unsigned integer

2 uint_t ui[2] = {4, 10}; // Creates an array of unsigned integer

3 bit_pointer <uint_t > bptr0(&ui[0], 3); // Creates a pointer to the 3rd bit of ui[0]

4 bit_pointer <uint_t > bptr1(&ui[1], 8); // Creates a pointer to the 8th bit of ui[1]

5 bptr0−>flip (); // Flips the 3rd bit of ui[0]

6 std::cout <<∗bptr0 <<’\n’; // Prints the 3rd bit of ui (1)

7 std::cout <<bptr0−>position()<<’\n’; // Prints the position of the bit (3)

8 std::cout <<∗(bptr0−>address ())<<’\n’; // Prints ui (12)

9 std::cout <<bptr1 − bptr0 <<std::endl; // Prints the distance in bits (37)
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On binary_digits and bit_iterator

template <class UInt> struct binary_digits

Helper struct inheriting from std::integral_constant<std::size_t, N> and giving
the number of bits of unsigned integral types. Bit values, references, pointers and
iterators rely on this information. Can be specialized for user types to adapt the bit
library.

template <class Iterator> class bit_iterator

Combine all the preceding and provides a generic tool to manipulate bit sequences.
Can used to design bit manipulation algorithms and bit oriented data structures such
as multiprecision integers.

Main functionalities

Based on bit_value, bit_reference and bit_pointer

Take an iterator on a sequence of unsigned integers and a position for
construction
Overloaded operator∗ to return a bit_reference

base and position members to get the underlying iterator and the current bit
position within the current underlying unsigned integer

Efficient Bit Abstractions - Vincent Reverdy - CPPCON 2016 72



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

. . .
Introduction Motivation

. . . . . . . . . .
Current status

. . . . . . . .
The Bit Library

. . . . . . . . .
Details

. . . . . . .
Illustration

. . . .
Conclusions

Last words on bit_iterator

1 // Initialization

2 using uint_t = unsigned int;

3 using container_t = std::list <uint_t >;

4 using iterator_t = typename container_t :: iterator;

5 container_t container = {0, 1, 2, 3, 4};

6
7 // From the bit number 5 of container [0], to the end of the container

8 bit_iterator <iterator_t > first(std:: begin(container), 5);

9 bit_iterator <iterator_t > last(std::end(container ));

10
11 // Counts the bits set to 1

12 std::cout <<count(first , last , one_bit)<<std::endl;

Advantages: easy to use, generic, efficient

Very generic: can be used to reinterpret any kind of sequence of unsigned
integers as a sequence of bits
Zero overhead: most compilers can optimize the abstraction
Acts as a standard API between users (high level) and implementers of bit
manipulation algorithms or bit oriented data structures (low level)
Good integration with the standard library: standard algorithms can be
specialized to use intrinsics on bit iterators

Efficient Bit Abstractions - Vincent Reverdy - CPPCON 2016 73



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

. . .
Introduction Motivation

. . . . . . . . . .
Current status

. . . . . . . .
The Bit Library

. . . . . . . . .
Details

. . . . . . .
Illustration

. . . .
Conclusions

.

......
Chapter V: Defeating vector bool
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Preliminary words

Previous work
Investigations have been done in the past to iterate of bit sequences efficiently. See in
particular the excellent blog post by Howard Hinnant “On vector bool” (2012).

Bit Twiddling Hacks
The webpage “Bit Twiddling Hacks” by Sean Eron Anderson has been a great source
of inspiration to implement some of the bit manipulation algorithms.
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Benchmark of standard algorithms on vector<bool> vs their bit_iterator specialization (logarithmic scale) [preliminary results]
Average time for 100 benchmarks with a vector size of 100,000,000 bits (speedups are provided at the top of each column)

i7-2630QM @ 2.00GHz, Linux 3.13.0-74-generic, g++ 5.3.0, -O3, -march=native, stdlibc++ 20151204, credit: Vincent Reverdy
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Benchmark of standard algorithms on vector<bool> vs their bit_iterator specialization (linear scale) [preliminary results]
Average time for 100 benchmarks with a vector size of 100,000,000 bits (speedups are provided at the top of each column)
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Implementing a new version of std::reverse for bit iterators (1/3)

1 // Reverses the order of the bits in the provided range

2 template <class BidirIt >

3 void reverse(bit_iterator <BidirIt > first , bit_iterator <BidirIt > last)

4 {

5 // Assertions

6 _assert_range_viability(first , last);

7
8 // Initialization

9 using underlying_type = typename bit_iterator <BidirIt >:: underlying_type;

10 using size_type = typename bit_iterator <BidirIt >:: size_type;

11 constexpr size_type digits = binary_digits <underlying_type >:: value;

12 const bool is_last_null = last.position () == 0;

13 size_type diff = (digits − last.position ()) ∗ !is_last_null;

14 auto it = first.base ();

15 underlying_type first_value = {};

16 underlying_type last_value = {};

17
18 // Reverse when bit iterators are aligned

19 if (first.position () == 0 && last.position () == 0) {

20 std:: reverse(first.base(), last.base ());

21 for (; it != last.base (); ++it) {

22 ∗it = _bitswap(∗it);
23 }
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Implementing a new version of std::reverse for bit iterators (2/3)

1 // Reverse when bit iterators do not belong to the same underlying value

2 } else if (first.base() != last.base ()) {

3 // Save first and last element

4 first_value = ∗first.base ();
5 last_value = ∗std::prev(last.base(), is_last_null );

6 // Reverse the underlying sequence

7 std:: reverse(first.base(), std::next(last.base(), !is_last_null ));

8 // Shift the underlying sequence to the left

9 if (first.position () < diff) {

10 it = first.base ();

11 diff = diff − first.position ();

12 for (; it != last.base (); ++it) {

13 ∗it = _shld <underlying_type >(∗it, ∗std::next(it), diff);

14 }

15 ∗it <<= diff;

16 it = first.base ();

17 // Shift the underlying sequence to the right

18 } else if (first.position () > diff) {

19 it = std::prev(last.base(), is_last_null );

20 diff = first.position () − diff;

21 for (; it != first.base (); −−it) {

22 ∗it = _shrd <underlying_type >(∗it, ∗std::prev(it), diff);

23 }

24 ∗it >>= diff;

25 it = first.base ();

26 }

27 // Bitswap every element of the underlying sequence

28 for (; it != std::next(last.base(), !is_last_null ); ++it) {

29 ∗it = _bitswap(∗it);
30 }
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Implementing a new version of std::reverse for bit iterators (3/3)

1 // Blend bits of the first element

2 if (first.position () != 0) {

3 ∗first.base() = _bitblend <underlying_type >(

4 first_value ,

5 ∗first.base(),
6 first.position(),

7 digits − first.position ()

8 );

9 }

10 // Blend bits of the last element

11 if (last.position () != 0) {

12 ∗last.base() = _bitblend <underlying_type >(

13 ∗last.base(),
14 last_value ,

15 last.position(),

16 digits − last.position ()

17 );

18 }

19 // Reverse when bit iterators belong to the same underlying value

20 } else {

21 ∗it = _bitblend <underlying_type >(

22 ∗it,
23 _bitswap(∗it >> first.position ()) >> diff ,

24 first.position(),

25 last.position () − first.position ()

26 );

27 }

28 }
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Enhanced version of std::reverse

Difference between the two versions

The new version works for all cases, not only aligned bit sequences
The fundamental low level functions like _bitswap have been improved
(bit_details file for details), combining compiler intrinsics, “Bit Twiddling
Hacks” and template metaprogramming

Results

Speed-up of the old version: 31×
Speed-up of the new version: 86×
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Summary

Summary: The Bit Library

std::vector<bool> is broken and std::bitset is very limited
bit_iterator is a good way to combine ease of use, genericity and performance
(orders of magnitude better than std::vector<bool>) for bit manipulation
Abstracting bits is not an easy task
The Bit Library is still work in progress: specialization of most of the standard
algorithms need to be done, bit_value and bit_reference functionalities are
still likely to evolve
The library is available online for everyone to test, benchmark, share and
participate

Summary: standardization

Proposal and wording P0237 already submitted several times
Positive feedback from LEWG
Some issues need to be solved particularly regarding to cv-qualifiers
We are aiming for C++Next
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Open questions and future directions

Open questions

Should bit_value be a template class to allow bit_value& to be implicitly
convertible to bit_reference?
Template and cv-qualifiers do not combine well for proxy classes such as bit
abstractions: for example what should happen for a
const bit_value<volatile T> or a const bit_reference<T>?
⇒ If anyone has a clear view on that problem, please come or contact me!

Future directions (collaborations welcome!)

Specialization of all relevant standard algorithms for bit iterators (for high
performance and low latency computing)
Implementation of bit ranges (Range proposal)
Implementation of container adapters to reinterpret containers as static or
dynamic bitsets
Work on multiprecision integer arithmetic
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