
M. Naumov, A. Vrielink and M. Garland, GTC 2017

Parallel Depth First on GPU

2

AGENDA

Introduction

Directed Trees

Directed Acyclic Graphs (DAGs)

 Path- and SSSP-based variants

 Optimizations

Performance Experiments

3

What is DFS?

a

d b

f e

c

j

g

i

Node: a,b,c,d,e,f,g,i,j
Parent:

Discovery:

Finish:

4

What is DFS?

a

d b

f e

c

j

g

i

Node: a,b,c,d,e,f,g,i,j
Parent: /,a

Discovery: a,b

Finish:

5

What is DFS?

a

d b

f e

c

j

g

i

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,

Discovery: a,b,e

Finish: e

6

What is DFS?

a

d b

f e

c

j

g

i

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,b

Discovery: a,b,e,f

Finish: e

7

What is DFS?

a

d b

f e

c

j

g

i

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,b, ,f

Discovery: a,b,e,f,i

Finish: e,i

8

What is DFS?

a

d b

f e

c

j

g

i

Node: a,b,c,d,e,f,g,i,j
Parent: /,a, b,b, ,f,f

Discovery: a,b,e,f,i,j

Finish: e,i,j

9

What is DFS?

a

d b

f e

c

j

g

i

Node: a,b,c,d,e,f,g,i,j
Parent: /,a,a,a,b,b,d,f,f

Discovery: a,b,e,f,i,j,c,d,g

Finish: e,i,j,f,b,c,g,d,a

10

Previous Work on DFS

Planar Graphs

Time O(log2n)
Processors O(n)

Directed Acyclic Graphs (DAGs)

Time O(log2n)
Processors O(nω/log n)

Directed Graphs with Cycles

Time O(𝑛 log11n)
Processors O(n3)

where ω < 2.373 is the matrix multiplication exponent

Lexicographic DFS

11

Previous Work on DFS

Planar Graphs

Time O(log2n)
Processors O(n)

Directed Acyclic Graphs (DAGs)

Time O(log2n)
Processors O(nω/log n)

Directed Graphs with Cycles

Time O(𝑛 log11n)
Processors O(n3)

where ω < 2.373 is the matrix multiplication exponent

Lexicographic DFS

topological sort, bi-connectivity and planarity testing

12

DIRECTED TREES

13

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0]

Phase 2: Bottom-Up Traversal

14

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,1,1]

Phase 2: Bottom-Up Traversal

15

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0]

[0,1,2]

[0,1]

prefix sum

Phase 2: Bottom-Up Traversal

16

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1] [0,1,3]

[0,1,2]

Phase 2: Bottom-Up Traversal

17

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

prefix sum

[0,1,4]

[0,1,2]

Phase 2: Bottom-Up Traversal

18

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,1,2]

[0,1,4]

[0,1,2]

Phase 2: Bottom-Up Traversal

19

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,6,8]

[0,1,4]

[0,1,2]

Phase 2: Bottom-Up Traversal

20

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,6,8]

[0,1,4]

[0,1,2]

This phase is done, next phase is about to start …

21

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,6,8]

[0,1,4]

[0,1,2]

Phase 3: Top-down Traversal

offset 0

22

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,6,8]

[0,1,4]

[0,1,2]

Phase 3: Top-down Traversal

offset 0

offset 1

23

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,6,8]

[0,1,4]

[0,1,2]

Phase 3: Top-down Traversal

offset 0

offset 6

offset 1

24

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,6,8]

[0,1,4]

[0,1,2]

Phase 3: Top-down Traversal

discovery 0+2

discovery 1+3

discovery = offset + depth

discovery 6+1

25

Directed Tree

a

d b

f e

c

j

g

i

[0] [0]

[0] [0]

[0] [0,1]

[0,5,6,8]

[0,1,4]

[0,1,2]

Phase 3: Top-down Traversal

finish 0+0

finish 1+0

finish = offset + sub-tree size

finish 6+1

26

DIRECTED ACYCLIC GRAPHS
PATH-BASED VARIANT

27

Path-Based (for DAGs)

a

d b

f e

c

j

g

i

left right

[a,b,f] [a,d,f] f

collision

Phase 1

28

Path-Based (for DAGs)

a

d b

f e

c

j

g

i

left right

[a,b,f] [a,d,f] f

collision

• wait until all paths to a node are traversed

• align path sequences

 left [a,b,f]

 right [a,d,f]

• compare left-to-right and choose smallest

 (lexicographically smallest) resolution

Phase 1

29

Path-Based (for DAGs)

a

d b

f e

c

j

g

i

This phase is done

30

OPTIMIZATIONS

31

Path Pruning

[a,c,d,f]

a

b

e d

c

f [a,b,e,f]

32

Path Pruning

[a,c,d,f]

a

b

e d

c

f [a,b,e,f]

When two paths reach the same node
 There exists a parent “a” where
 the path split [a,b,…] and [a,c,…]

33

Path Pruning

[a,c,d,f]

a

b

e d

c

f [a,b,e,f]

When two paths reach the same node
 There exists a parent “a” where
 the path split [a,b,…] and [a,c,…]

 It is the comparison between “b” and “c”
 that allows us to distinguish between paths

34

Path Pruning

[a,c,d,f]

a

b

e d

c

f [a,b,e,f]

When two paths reach the same node
 There exists a parent “a” where
 the path split [a,b,…] and [a,c,…]

 It is the comparison between “b” and “c”
 that allows us to distinguish between paths

 Parent node with a single edge
 will never be a decision point

35

Path Pruning

[a,c,f]

a

b

e d

c

f [a,b,f]

When two paths reach the same node
 There exists a parent “a” where
 the path split [a,b,…] and [a,c,…]

 It is the comparison between “b” and “c”
 that allows us to distinguish between paths

 Parent node with a single edge
 will never be a decision point

 No need to store nodes with such parents

36

Path Pruning

37

Phase Composition

38

SSSP-BASED VARIANT

39

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

[1] [1]

[1] [1]

[1]

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

40

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

[1] [1]

[1] [1]

[1] [1,1]

[1,1,1]

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

41

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

[1] [1]

[1] [1]

[1] [1,2]

[1,2,3]

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

prefix sum

Phase 1: Bottom-Up Traversal

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

42

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

[1] [1]

[1] [1]

[1] [1,2] [1,1,3]

[1,2,3]

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

43

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

[1] [1]

[1] [1]

[1] [1,2] [1,2,4]

[1,2,3]

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

prefix sum

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

44

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

[1] [1]

[1] [1]

[1] [1,2]

[1,5,1,2,1]

[1,2,4]

[1,2,3]

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

45

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

[1] [1]

[1] [1]

[1] [1,2]

[1,6,7,9,10]

[1,2,4]

[1,2,3]

Run the algorithm for Directed Trees, but
 Propagate # of nodes to all the parents
 Start prefix sum with 1 (instead of 0)

Phase 1: Bottom-Up Traversal

46

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

1 2

1 6 7 9

1

1 2

This phase is done, next phase is about to start …

Assign # of nodes

as the edge weight

47

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

1 2

1 6 7 9

1

1 2

Phase 2: Top-down traversal

1+2+2=5 < 9

48

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

1 2

1 6 7 9

1

1 2

Phase 2: Top-down traversal

Shortest Path is the DFS path

1+2+2=5 < 9

49

SSSP-based (for DAGs)

a

d b

f e

c

j

g

i

Phase 2: This phase is done

50

OPTIMIZATIONS

51

Discovery time

 The length of shortest path
 defines an ordering of nodes

a

d b

f e

c

j

g

i

8

1 6 7

2

4 5

3

0

Phase 3a: Sorting

52

Discovery time

 The length of shortest path
 defines an ordering of nodes

 We can sort them to obtain
 discovery time

a

d b

f e

c

j

g

i

8

1 6 7

2

4 5

3

0

Phase 3a: Sorting

53

Discovery time

a

d b

f e

c

j

g

i

8

1 6 7

2

4 5

3

Discovery: a,b,e,f,i,j,c,d,g

0 The length of shortest path
 defines an ordering of nodes

 We can sort them to obtain
 discovery time

Phase 3a: This phase is done
(Phase 3b will find the finish time)

54

Phase composition

55

EXPERIMENTS

56

Data

Graph n m Application

1 coPapersDBLP 540487 15251812 Citations

2 auto 448696 3350678 Numeric Sim.

3 hugebubbles-000… 18318144 30144175 Numeric Sim.

4 delaunay_n24 16777217 52556391 Random Tri.

5 il2010 451555 1166978 Census Data

6 fl2010 484482 1270757 Census Data

7 ca2010 710146 1880571 Census Data

8 tx2010 914232 2403504 Census Data

9 great-britain_osm 7733823 8523976 Road Network

10 germanu_osm 11548846 12793527 Road Network

11 road_central 14081817 21414269 Road Network

12 road_usa 23947348 35246600 Road Network

When necessary DAGs are created from general graphs by dropping back edges

57

Performance

Results obtained with Nvidia Pascal TitanX GPU, Intel Core i7-3930K @3.2GHz CPU, Ubuntu 14.04 LTS OS, CUDA Toolkit 8.0

0

0.5

1

1.5

2

2.5

3

3.5

4

Sp
e

ed
u

p
 (

Pa
ra

lle
l v

s.
 S

eq
. D

FS
)

Path-based

SSSP-based

3 BFS

6x 5x

58

CONCLUSIONS

59

Conclusions

 Parallel DFS for DAGs
 Work-efficient O(m+n)
 The algorithm takes O(z log n) steps,
 where z is the maximum depth of a node

 Performance

 Depends highly on the connectivity/sparsity pattern
 Can achieve up to 6x speedup (but slowdown possible)

 Details

 M. Naumov, A. Vrielink and M. Garland, “Parallel Depth-First Search
for Directed Acyclic Graphs”, Technical Report, NVR-2017-001, 2017

 https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs

60

Thank you

https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs

