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What is DFS? 
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What is DFS? 
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Node:        a,b,c,d,e,f,g,i,j 
Parent:      /,a,a,a,b,b,d,f,f 
 
Discovery: a,b,e,f,i,j,c,d,g 
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Previous Work on DFS 

Planar Graphs 
 

Time    O(log2n) 
Processors O(n) 

Directed Acyclic Graphs (DAGs) 
 

Time              O(log2n) 
Processors O(nω/log n) 

Directed Graphs with Cycles 
 

Time  O( 𝑛 log11n) 
Processors    O(n3) 

where ω < 2.373 is the matrix multiplication exponent 

Lexicographic DFS 
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Previous Work on DFS 

Planar Graphs 
 

Time    O(log2n) 
Processors O(n) 

Directed Acyclic Graphs (DAGs) 
 

Time              O(log2n) 
Processors O(nω/log n) 

Directed Graphs with Cycles 
 

Time  O( 𝑛 log11n) 
Processors    O(n3) 

where ω < 2.373 is the matrix multiplication exponent 

Lexicographic DFS 

topological sort, bi-connectivity and planarity testing 
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DIRECTED TREES 
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Directed Tree 
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Directed Tree 
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Directed Tree 
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Directed Tree 
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Directed Tree 
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DIRECTED ACYCLIC GRAPHS 
PATH-BASED VARIANT 
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Path-Based (for DAGs) 
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Path-Based (for DAGs) 
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collision 

• wait until all paths to a node are traversed 

• align path sequences 

     left   [a,b,f] 

     right [a,d,f] 

• compare left-to-right and choose smallest  

    (lexicographically smallest) resolution 

Phase 1 
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Path-Based (for DAGs) 
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OPTIMIZATIONS 
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Path Pruning 
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Path Pruning 
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When two paths reach the same node 
 There exists a parent “a” where  
     the path split [a,b,…] and [a,c,…] 
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Path Pruning 

[a,c,d,f] 

a 

b 

e d 

c 

f [a,b,e,f] 

When two paths reach the same node 
 There exists a parent “a” where  
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 It is the comparison between “b” and “c” 
    that allows us to distinguish between paths 
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Path Pruning 
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When two paths reach the same node 
 There exists a parent “a” where  
     the path split [a,b,…] and [a,c,…] 
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    that allows us to distinguish between paths 

 
 Parent node with a single edge  
    will never be a decision point  
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Path Pruning 

[a,c,f] 
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When two paths reach the same node 
 There exists a parent “a” where  
     the path split [a,b,…] and [a,c,…] 

 
 It is the comparison between “b” and “c” 
    that allows us to distinguish between paths 

 
 Parent node with a single edge  
    will never be a decision point  

 
 No need to store nodes with such parents 
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Path Pruning 
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Phase Composition 
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SSSP-BASED VARIANT 
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SSSP-based (for DAGs) 
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SSSP-based (for DAGs) 
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SSSP-based (for DAGs) 
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SSSP-based (for DAGs) 
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SSSP-based (for DAGs) 
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SSSP-based (for DAGs) 
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SSSP-based (for DAGs) 
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SSSP-based (for DAGs) 
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Phase 2: Top-down traversal 

Shortest Path is the DFS path 

1+2+2=5 < 9 
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SSSP-based (for DAGs) 
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OPTIMIZATIONS 
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Discovery time 

 The length of shortest path  
     defines an ordering of nodes 
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Discovery time 

 The length of shortest path  
     defines an ordering of nodes 

 
 We can sort them to obtain  
    discovery time 
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Discovery time 

a 

d b 

f e 

c 

j 

g 

i 

8 

1 6 7 

2 

4 5 

3 

Discovery: a,b,e,f,i,j,c,d,g  

0  The length of shortest path  
     defines an ordering of nodes 

 
 We can sort them to obtain  
    discovery time 

Phase 3a: This phase is done  
(Phase 3b will find the finish time) 
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Phase composition 
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EXPERIMENTS 



56  

Data 

# Graph n m Application 

1 coPapersDBLP 540487 15251812  Citations 

2 auto 448696 3350678  Numeric Sim. 

3 hugebubbles-000… 18318144 30144175 Numeric Sim. 

4 delaunay_n24 16777217 52556391 Random Tri. 

5 il2010 451555 1166978 Census Data 

6 fl2010 484482 1270757 Census Data 

7 ca2010 710146  1880571  Census Data 

8 tx2010 914232 2403504 Census Data 

9 great-britain_osm 7733823  8523976 Road Network 

10 germanu_osm 11548846 12793527 Road Network 

11 road_central 14081817 21414269 Road Network 

12 road_usa 23947348 35246600 Road Network 

When necessary DAGs are created from general graphs by dropping back edges 
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Performance 

Results obtained with Nvidia Pascal TitanX GPU, Intel Core i7-3930K @3.2GHz CPU, Ubuntu 14.04 LTS OS, CUDA Toolkit 8.0 
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CONCLUSIONS 
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Conclusions 

  Parallel DFS for DAGs 
 Work-efficient O(m+n) 
 The algorithm takes O(z log n) steps,  
     where z is the maximum depth of a node 

 
  Performance  

 Depends highly on the connectivity/sparsity pattern 
 Can achieve up to 6x speedup (but slowdown possible) 

 
  Details 

 M. Naumov, A. Vrielink and M. Garland, “Parallel Depth-First Search   
for Directed Acyclic Graphs”, Technical Report, NVR-2017-001, 2017 

    https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs 
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Thank you 

https://research.nvidia.com/publication/parallel-depth-first-search-directed-acyclic-graphs 


