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Agenda

 Introduction
 What are histograms?
 How do we define generalized histograms?

 Prior work and our implementation
 Small histograms  - 1-320 bins (normal)
 Medium histograms – 320-2560 bins 
 Large histograms (Tested up to 131 072 bins)

 Performance and results
 Conclusions, future, what could we improve



  

Histograms

 First normal histogram:
 List of frequencies of occurrence of some 

sample in a set
 Pseudocode:
  For each (bin index i){ bin[i] = 0; }

  For each (input x)                     
    { bin[x] = bin[x] + 1; }
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Image Prosessing Example



  

Generalized Histograms

 Sum over input key-value pairs, but restrict sum to 
equal keys

 ”Order independent Reduce-by-key”
 Obtainable from Thrust [http://thrust.github.com] for 

CUDA with ”Sort-by-key” followed by ”Reduce-by-
key” (But performance is modest)

 User defines input-transform and sum-functors
 Pseudocode:

For each (bin index i) { bin[i] = 0 }

For each (input (k[j], x[j]))          
  { bin[k[j]] = bin[k[j]] + x[j] }

 Serial implementation completely trivial



  

Applications

 Function evaluation
 Image processing (weighted histograms, semi-

transparent pixels, feature extraction...)
 Cosmology (angle correlations of galaxies, 

CMB, …)
 Molecular dynamics (radial distribution 

functions)
 Experimental particle physics
 Our use-case: correlation functions from lattice 

data



  

Implementation on Parallel Architectures



  

Parallel Implementation – First idea

 Every thread builds its own histogram
 Easy, fast, accumulate results at the end
 Uses a lot of local resources (shared memory)
 ~64 bins of integers for Fermi-level CUDA 

GPUs
 Extend to 256 bins using 8-bit bins (normal 

histograms) – accumulation into local memory
 Prior implementations used 16-bit bins 

[Nugteren, van den Braak, Corporaal, Mesman]



  



  



  



  



  



  



  



  



  

Medium sized Histograms

 Run out of shared memory - what can you do?
 Serialize access to shared resources
 Previous work [Podlozhnyuk - NVIDIA]:

 One binset (histogram) per Warp (32 threads)
 Intrawarp Collisions → Serialization
 Ok performance for spread out keys – bad when 

degenerate

 We share one binset across all warps
 Degenerate key distributions open problem until 

now ([Shams, Kennedy] also suffer)



  

Partial Fix for Key Degeneracy

 Watch input keys as they come in
 Once high amount of degeneracy found        

(~16 degenerate keys between 32 threads) 
 Do warp-local reduction of values in shared 

memory
 One thread (per unique key) collects the sum
 Write result, free of collisions

 Expensive for well distributed keys → only 
apply when high degeneracy detected



  

Warp Reduction

 Resolve all threads (in the same warp) that 
have the same key

 Do a parallel reduction between those threads
 Run reductions of different keys in parallel
 Take advantage of warp-vote functions

 Finding group-masks is expensive
 Use ballot for every unique key and collect bitmask

 Normal histogram: Result is population count of 
bitmask



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Group-ID Example



  

Large Histograms

 At around 2500 bins we run low on shared 
memory

 First solution: Multiple passes of the medium 
histogram algorithm
 Improved occupancy and cache help

 With very large histograms (~100 000 bins) too 
many passes
 Resort to global memory atomics
 For generalized histograms use a per-warp 

hashtable in shared memory

 Adaptive warp-reduction for degenerate keys



  

Large Histograms

 Performance drops to about same level as 
thrust at around 100 000 bins
 CPU should be ~2x faster here
 Even as is, could be useful to use GPU

 No data transfers across pci Express BUS
 Complex key-value resolving code can amortize 

slow histogram code

 Global atomics will be faster in Kepler
 Coupled with warp-reduction, could be very 

competitive

 Multiwarp hashtable-based algorithm TBD



  

Performance
With Tesla M2070 (ECC on)
(Except some references)



  



  



  



  

Image Histograms

 Comparisons against NVIDIA's NPP library 
[http://developer.nvidia.com/npp]

 Our one channel (monochrome) 8-bit histogram 
with 256 bins reaches 18GK/s, NPP gets 8GK/s 
→ 125% improvement

 Our three-channel histogram with 256 bins per 
channel reaches 12GK/s, NPP reaches 6GK/s 
→ 2x improvement



  

Image sizes – 8bit one channel



  

Generalized histogram 
performance

 Test-case: Sum over every row in a fp32 matrix
 Thrust: Reduce-by-key solution ~ 1.8 GK/s

 Thrust: Normal reduce ~ 20 GK/s (80 GB/s)
 Our algorithm 2-7x faster than                                    

   ”thrust::reduce_by_key()” in this case



  

API Example



  

Features

 CudaStreams (Optional)
 Output to GPU or CPU memory
 Multiple keys / input
 Multidimensional input ranges
 Arbitrary transform / binary operators through 

function objects
 Accumulates on top of previous result
 User-supplied temporary arrays (Optional)



  

Conclusions, future work,...

 Generalized histogram implementation for 
CUDA GPUs 
 Very generic
 Outperforms existing algorithms in all cases
 Available under Apache V.2 License                         

[https://github.com/trantalaiho/Cuda-Histogram]

 Optimize for Kepler (need HW first)
 Needs marketing
 Further testing, ”skip-key”-support,                      

  control over loop-unrolling...

https://github.com/trantalaiho/Cuda-Histogram


  

Thank you

 Ask me questions
 Right now
 From teemu.rantalaiho@helsinki.fi
 Grab me by the elbow later

mailto:teemu.rantalaiho@helsinki.fi


  

Extra slides – Warp Reduction details



  

Warp reduction by key

 Inputs for each thread:
 A key-value pair
 Bitmask which tells which threads belong to our 

group

 Idea: As a normal parallel reduction
 Using bitmask, give each thread order ID in group
 Even threads within group sum values from odd
 Shrink group by dividing by two
 Odd threads write their value to shared memory
 Repeat until whole group consumed



  

Normal parallel reduce



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example



  

Warp Key-Reduce Example
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