
PAGE

Getting Physical
Extreme abuse of Intel based

Paging Systems

Nicolas A. Economou

Enrique E. Nissim

PAGE

About us

- Enrique Elias Nissim
- Information System Engineer
- Previously worked at Core Security as an Information Security

Consultant
- Now joining Intel Corp at Mexico to work in Graphics Security
- Infosec Enthusiast (Exploit Writing, Reversing, Pentest, Programming)
- Discovered some 0Days in Kernel components
- @kiqueNissim

- Nicolas Alejandro Economou

- Exploit Writer specialized in Windows kernel exploitation at Core
Security Technologies for +10 years.

- Infosec Enthusiast (Exploit Writing, Reversing, Patch Diffing and
Programming)

- Several defensive/offensive research, presentations and security tools
as turbodiff, Sentinel and Agafi

- @NicoEconomou

 2

PAGE

Agenda

- Arbitrary Write: Explanation
- Reviewing Modern Kernel Protections
- Current ways of abusing kernel arbitrary writes
- Intel Paging Mechanism
- Windows
 - Implementation
 - Attacks
 - Live Demo

- Linux
 - Implementation
 - Attacks
 - Live Demo

- Conclusions

3

PAGE

What is an arbitrary write?

4

- Arbitrary Write:
- This is the result of exploiting a binary bug.

- You can write a crafted value (or not) where you want (write-what-
where) -> MOV [EAX], EBX

- As a result: If you write in the correct place, you can get
primitives to read/write memory or you can control EIP/RIP

- Examples:
- Heap overflows – overwrite pointers that point to specific structs

- Memory Corruptions – idem above

- Use after free – nt/win32k – Decrementing one unit (“DEC [EAX]”)

PAGE

Reviewing Modern Protections

5

- DEP/NX: is a security feature included in modern operating
systems. It marks areas of memory as either "executable" or
"nonexecutable".

- KASLR: Address-space layout randomization (ASLR) is a well-
known technique to make exploits harder by placing various
objects at random, rather than fixed, memory addresses.

- Integrity Levels: call restrictions for applications running in
low integrity level – since Windows 8.1

PAGE

Reviewing Modern Protections

6

- SMEP: Supervisor Mode Execution Prevention allows pages to
be protected from supervisor-mode instruction fetches. If
SMEP = 1, software operating in supervisor mode cannot
fetch instructions from linear addresses that are accessible in
user mode.

- SMAP: allows pages to be protected from supervisor-mode
data accesses. If SMAP = 1, software operating in supervisor
mode cannot access data at linear addresses that are
accessible in user mode.

PAGE

Current techniques

PAGE

Current techniques

8

- Low Integrity Level in “Windows 8.1” suppressed all the
kernel addresses returned by “NtQuerySystemInformation”

- The most affected exploits are “Local Privilege Escalation”
launched from sandboxes like IE, Chrome, etc.

PAGE

Call Restrictions

9

- Running in Medium Integrity Level
- You know where the kernel base is, process tokens, some kernel

structs, etc

- Exploitation tends to be “trivial”

- Running in Low Integrity Level
- You DON’T know where the kernel base is, process tokens, some

kernel structs, etc

- You need a memory leak (second vulnerability) to get some
predictable kernel address

- Without memory leaks exploitation tends to be much harder.

PAGE

What can be done?

10

If you are running in Low/Medium Integrity Level and you have:
 - Full arbitrary write (DWORD/QWORD):

- You can overwrite GDI objects

- Kernel GDI objects addresses are in USER SPACE – “Keen Team”
technique.

- This technique consists of linking one GDI object to another one

 - Partial arbitrary write (WORD):

- You can overwrite GDI objects

- It depends on the low part of the object address what you want to
overwrite, sometimes it is not possible.

PAGE

What about…

11

- Partial writes?
- Single BIT controlled?
- Decrement a controlled position?
- You don’t have control over the value?

- Let’s see…

PAGE

Intel Paging Mechanism

PAGE

Paging 101

- Paging is a functionality provided by the MMU and used by
the processor to implement virtual memory.

- A virtual address is the one used in processor instructions;
this must be translated into a physical address to actually
refer a memory location.

13

PAGE

PAE Paging

14

PAGE

x64 Paging

15

PAGE

PxE Structure (entry)

16

Interesting fields to know for our purposes:

- R/W: readonly/readwrite

- U/S: if set, the range mapped by the entry is accessible at
CPL3. Otherwise it is only accessible at CPL0.

- PS: if set, the entry describes a LARGE_PAGE.

- XD: if set, instruction fetching is not allowed for the region
mapped by the entry.

63 62:52 51:12 11 10 9 8 7 6 5 4 3 2 1 0

X

D

I PFN (physical address >> 12) I I I G P

S

D A P

C

D

P

W

T

U

/

S

R

/

W

P

PAGE

Paging Implications

- All memory accesses and instruction fetching done by the
processor will use virtual addresses.

- Given that the OS needs to manipulate the table entries not

only for memory allocation but also for page level
protection, all the paging structures of the current process
are mapped to virtual memory.

- In order to comply with performance and memory savings

requirements, a common approach taken by operating
systems is to make use a of self-reference table entry or a
fixed location where all the paging structures will reside.

17

PAGE

Windows Paging
Implementation

PAGE

Windows Implementation

- Each process has its own set of paging tables

- All paging structures virtual addresses can be
calculated

- 512GB of virtual range is assigned for Paging
Structures (x64)

19

PAGE

Windows Implementation

- Only one PML4 entry is used for Paging management
(0x1ED)

- Entry 0x1ED is self-referential (physical address points
to PML4 physical address)

- Virtual range described:

- 0xFFFFF680’00000000 – 0xFFFFF6FF’FFFFFFFF

20

PAGE

Quick Formula

21

_int64 get_pxe_address(_int64 address)

{

 _int64 result = address>>9;

 result = result | 0xFFFFF68000000000;

 result = result & 0xFFFFF6FFFFFFFFF8;

 return result;

}

PAGE

Quick Formula

22

int get_pxe_32(int address)

{

 int result = address>>9;

 result = result | 0xC0000000;

 result = result & 0xC07FFFF8;

 return result;

}

PAGE

- Strengths:

- Paging structures reside in random physical
addresses

- Weaknesses:

- Paging tables are in fixed virtual addresses

- Paging tables are writables

Strengths and Weaknesses

23

PAGE

Windows Paging Attacks
some clarifications

PAGE

- We are going to show 2 different ways of abusing
write-what-where conditions. (3 ways in the full-slide
version)

- They do not require memory leaks.

- The 3 ways work from Low Integrity Level included.

- All Windows versions are affected. Specially Win 8, 8.1
and Win 10.

Techniques Overview

25

PAGE

Windows Paging Attacks
“HAL’s heap”

PAGE

- Same virtual address for all Windows versions:
0xffffffff’ffd00000

- Same physical address by OS version

- Some juicy kernel function pointers located there

HAL’s Heap

27

PAGE

- HAL’s heap x64 – physical address list

HAL’s Heap

28

OS Version Virtual Address Physical Address

Windows 7/2008 R2

0xffffffff’ffd00000

0x100000 (1mb)

Windows 8/2012

0xffffffff’ffd00000

0x100000 (1mb)

Windows 8.1/2012 R2

0xffffffff’ffd00000

0x1000 (4kb)

Windows 10/10 TH2

0xffffffff’ffd00000

0x1000 (4kb)

PAGE

- HAL’s heap x64 – ‘HalpInterruptController’ pointer list:
 +20: hal!HalpApicInitializeLocalUnit
 +28: hal!HalpApicInitializeIoUnit
 +30: hal!HalpApicSetPriority
 +38: hal!HalpApicGetLocalUnitError
 +40: hal!HalpApicClearLocalUnitError
 +48: NULL
 +50: hal!HalpApicSetLogicalId
 +58: NULL
 +60: hal!HalpApicWriteEndOfInterrupt
 +68: hal!HalpApic1EndOfInterrupt
 +70: hal!HalpApicSetLineState
 +78: hal!HalpApicRequestInterrupt

HAL’s Heap

29

PAGE

- We know the physical address of the HAL’s heap

- We know where our Page Table Entries are

- And we are able to allocate memory in USER SPACE
(VirtualAlloc)

- It means that
- We can use an arbitrary write to modify a PTE of our

allocated virtual memory

- We can point this PTE to the HAL’s heap physical address

HAL’s Heap

30

PAGE

HAL’s Heap

31

HAL’s
heap

User
allocation

PTE mapping VA 0xFFFFFFFF’FFD00000

PTE mapping VA 0x401000

Physical address 0x1000

Physical address 0xNNNNNNNN

kernel space
read-write

user space
read-write !

PAGE

- As a result:

 - We get read/write access from USER SPACE to the HAL’s heap

 - We get access to some HAL’s heap function pointers
 - We use this information to get the “HAL.DLL” base address
 - We overwrite “hal!HalpApicRequestInterrupt” pointer

 - We disable SMEP by ROPing (Ekoparty 2015: “Windows SMEP

bypass: U=S”)

 - And finally, we get system privileges …

HAL’s Heap

32

PAGE

Some days before Cansec…

PAGE

- We can improve the approach considerably by using a
LARGE_PAGE.

- If we write a single byte into an EMPTY PDE, we map
2MB starting from PFN 0 (this will include the physical
address of the HAL’s Heap) with R/W access from user
mode.

- E.g:
 00 00 00 00 00 00 00 00 -> E7 00 00 00 00 00 00 00

Improving the Technique

34

PAGE

- Let’s say we have a simple DEC [RAX] (Win32k UAF)

- We can use it to decrement an empty PDE in a shifted
way.

00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
 00 FF FF FF FF FF FF FF – FF 00 00 00 00 00 00 00

- We effectively mapped a User R/W LARGE_PAGE

starting at PFN 0 by enabling all the bits!

Improving -= 1

35

PAGE

Windows Paging Attacks
 “Heap Spraying Page Directories”

PAGE

- PDPTs are in fixed virtual addresses (we can calculate
this)

- PDPT entries point to Page Directories

- A Page Directory maps up to 1GB (if all entries used)

Heap spraying Page Directories

37

PAGE

- Page Directories points to Page Tables or LARGE PAGES

- A Large Page maps 2MB of physical memory (bit PS=1)

- PDPT entries can be overwritten (via a partial arb.write
– value controlled or not)

Heap spraying Page Directories

38

PAGE

- We can heap spray our PROCESS MEMORY with fake
Page Directories with all entries used (by using
“VirtualAlloc” + “memcpy”)

- The idea is to produce a physical memory exhaustion

- If we choose a valid random physical address, we will
probably find our data in high physical addresses!

Heap spraying Page Directories

39

PAGE

- So, if we overwrite a PDPTE that maps memory in our
process (E.g PDPTE that maps VA 1GB ~ 2GB)

- And we point this entry to an “arbitrary physical
address“ used by our heap spray

- It means that we had just mapped 1GB of memory as
read-write

Heap spraying Page Directories

40

PAGE

Heap spraying Page Directories

41

PDPTE mapping VA 1GB-2GB addr. chosen by Windows

addr. chosen by us

user space
read-write

User
Allocation
(Fake PD)

Kernel
allocation
(Real PD)

PAGE

Depending on the chosen physical address, we can:

 - Map the HAL’s heap

 - Find a valid Page Table and dump the rest of the
target memory

 - Find and modify the kernel code, structures, etc,
without any restriction.

Heap spraying Page Directories

42

PAGE

- As a result

- We can insert ring-0 shellcode by replacing kernel
code

- We don’t need to bypass SMEP

- And finally, we get system privileges…

Heap spraying Page Directories

43

PAGE

Windows Paging Attacks
”Self-ref of death”

PAGE

Self-ref of Death

- We know that PML4 entry 0x1ED is used for
Memory Paging management

- We know that this entry is referencing itself

- And we know that it’s at 0xfffff6fb`7dbedf68

45

Sign Extension PML4 PDPT PD PT Offset

0xFFFFF 0x1ED 0x1ED 0x1ED 0x1ED 0xF68

PAGE

Self-ref of Death

46

PML4
PDPT

PDPT

PD

PD

PT

PT

0x1ED

U

U
U

U
U
U
U
U

S
S S

S S
S
S
S
S

If we replace
SUPERVISOR by USER ?

PAGE

Self-ref of Death

47

PML4
PDPT

PDPT

PD

PD

PT

PT

0x1ED

U

U
U

U
U
U
U
U

S
S S

U S
S
S
S
S

We get access
from USER SPACE

to all USER tables !!!

PAGE

Self-ref of Death

- So, if we have a “bit/byte/word/dword” arbitrary
write, we can get access from USER MODE to all User
Tables including the PML4!

- There is a weakness in the self-referential technique,
only one entry is set a SUPERVISOR, the rest is USER

- To be clear, after our arbitrary write, if we read from
user space at 0xfffff6fb`7dbed000, we see our PML4 !

48

PAGE

Self-ref of Death

- It means that we can add/modify/delete entries in
the four paging levels

- So, we can do the same as seen before

 - Point one PTE to the HAL’s heap

 - or dump the complete physical memory

 - or modify kernel parts

49

PAGE

Windows Live Demo

PAGE

Windows Demo

- Target:
- “Windows 10” 64 bits

- Scenario:
- Running in Low Integrity Level

- Objective:
- Dump physical memory and get SYSTEM privileges

by using “Self-ref of Death”

51

PAGE

Linux Paging
Implementation

PAGE

Linux Implementation

- Only one PML4 entry is used for Paging management
(0x110)

- Entry 0x110 is NOT self-referential like Windows

- Virtual range described:

- 0xFFFF8800’00000000 – 0xFFFF887F’FFFFFFFF

53

PAGE

Linux Implementation

- Each process has its own PML4 table in a unique
virtual address (opposite to Windows)

- Physical addresses can be read as virtual addresses by
adding a base.

- This base is called __PAGE_OFFSET:

 - For 32 bits: 0xc0000000

 - For 64 bits: 0xffff8800’00000000

54

PAGE

Linux Implementation

- Most of page table entries reside in random virtual
and physical addresses.

- But… there are some PDPTs, PDs and PTs in fixed
physical addresses.

55

PAGE

Linux Implementation

- PDPT physical address list (pointed by entry 0x110)

56

OS version Virtual Address Physical Address

Debian 8.3 3.16.0-4-
amd64

0xFFFF8800’01AF4000

0x01AF4000 (~26mb)

Xubuntu 14.04 3.19.0-
25-gen

0xFFFF8800’01FD4000

0x01FD4000 (~31mb)

Ubuntu 15.10 4.2.0-
16-gen

0xFFFF8800’01FF0000 0x01FF0000 (~32mb)

Ubuntu 14.04.3 LTS
3.19.0-25-generic

0xC1B51000 0x01B51000 (~27mb)

PAGE

- Strengths:

- None

- Weaknesses:

- Some PDPTs, PDs and PTs are in fixed virtual
addresses

- Paging structures are writable

Strengths and Weaknesses

57

PAGE

Linux Paging Attacks
 “Setting the vDSO as rwx”

PAGE

What is the vDSO?

- vDSO (virtual dynamic shared object)

- Small shared library mapped into all user processes

- It was created to reduce the context-switch overhead

59

PAGE

vDSO Page Entry

- It’s set as “r-x” in user space

- The vDSO virtual address changes per process

- The PDE that describes this user space area is
RANDOM

60

PAGE

Setting the vDSO as “rwx”

- But … the physical address is fixed

- E.g: “Debian 8.3” 64 bits: 0x1805000

- So, we can calculate the kernel virtual address

- E.g: “Debian 8.3” 64 bits: 0xffff880001805000

- For “Debian 8.3”, the PDE (large page) which maps
the vDSO physical address is fixed and writable!

61

PAGE

Setting the vDSO as “rwx”

- Even worse, the PML4 and the PDPT entries are set
with the USER bit!!!

- So, What if we set the PDE as USER by using an
arb.write?

62

PAGE

Setting the vDSO as “rwx”

63

PML4

0x110 U

PDPT

If we set
U ?

0 U

PD

0x0C
S

VA 0xffff880001805000

vDSO
(2mb)

S

PAGE

Setting the vDSO as “rwx”

64

PML4

0x110 U

PDPT

0 U

PD

0x0C
S

VA 0xffff880001805000

vDSO
(2mb)

Now it
can be

read from
USER !

U

PAGE

Setting the vDSO as “rwx”

- As a result:

 - We get read-write access to the vDSO from USER
SPACE

 - We can modify/hook functions located there like
“gettimeofday”

 - When a UID 0 process invokes this function, our
shellcode will be called and will spawn a new root shell

65

PAGE

Linux Paging Attacks
 “Creating self-ref entries”

PAGE

Creating self-ref entries

- There are several entries that always use the same
fixed physical addresses:

- PML4E 0x110

- PML4E 0x192

- PLM4E 0x1FE

- PLM4E 0x1FF

- … To be continued…

- There are fixed entries for ALL levels of the paging hierarchy
(PML4, PDPTs, PDs, PTs)

67

PAGE

Creating self-ref entries

- PML4 entry 0x110 points to a fixed PDPT

- This PML entry is set as USER (0x67)

- We know the virtual and physical address pointed by
this entry

68

PAGE

Creating self-ref entries

69

PML4

0x110 U

PDPT

we’ll add a
self-ref entry

PAGE

Creating self-ref entries

70

PML4

0x110 U

PDPT

0x6 U

PAGE

Creating self-ref entries

71

PDPT

0x6 U

PD

0x6 U

PT

0x6 U

 PDPT

DATA

PAGE

Creating self-ref entries

- Real example - “Debian 8.3 x64”

 - We add a PDPT entry at 0xFFFF8800’01AF4010 (entry 0x2)

 - The written value is “67 04 AF 01 00 00 00 00”

 - This entry is self-referential

 - Calculating the mapped virtual address by this entry:

 va = 0xFFFF8800’00000000

 va += 512gb * 0x110 PML entries

 va += (1gb + 2mb + 4kb) * 0x2 PDPT entries

 va = 0xFFFF8880’80402000

72

PAGE

Creating self-ref entries

- So, we are able to add/modify/delete PDPT entries

- We then add another entry in this PDPT and it’s used
as PTE.

- This SPURIOUS PTE allows us to read and write the
complete target’s physical memory!

73

PAGE

Linux Live Demo

PAGE

Linux Demo

- Target:
- Debian 8.3 64 bits - 3.16.0-4-amd64

- Scenario:
- Running as normal-unprivileged user

- Objective:
- Getting root privileges by modifying the vDSO

75

PAGE

Linux Paging
Attacks(bonus track):

”PaX/Grsec notes”

PAGE

Pax/Grsec notes

- PaX is a patch for the Linux kernel that implements
least privilege protections for memory pages.

- Grsecurity is a set of patches for the Linux kernel
which emphasizes security enhancements.

- Grsec + PaX change the rules of what we saw
previously

77

PAGE

Pax/Grsec notes

- PaX/Grsec implements SMEP/SMAP by software

- It uses two differents PML tables, one for USER MODE
and one for KERNEL MODE

- When a syscall is invoked, the kernel changes CR3 by
pointing to the KERNEL MODE PML table

78

PAGE

Pax/Grsec notes

- The same physical address is used to map the PML for
all current processes

- In our Debian 8.3 compiled/focused to server mode
 - CR3 for kernel mode points to 0x15f0000
 - CR3 for user mode points to 0x15f1000

- Each process has a PGD (Page Global Directory)

79

PAGE

Pax/Grsec notes

- These PGDs are “mirrored “ in CR3 by Pax/Grsec

- For KERNEL SPACE entries: The first three level page
tables are in fixed “virtual/physical” addresses

- For USER SPACE entries: PDPTs, PDs and PTs are
RANDOM

80

PAGE

Pax/Grsec notes

- A small detail, all not RANDOM page tables are set as
READ-ONLY …

- So, it’s not possible to overwrite a fixed page
directory/table entry

- We will find another way to bypass it … ;-)

81

PAGE

Conclusions

PAGE

Windows conclusions

- Paging tables shouldn’t be in fixed VA addresses

- It can be abused by LOCAL and REMOTE kernel
exploits

- The PML entry (0x1ed) should be RANDOMIZED

- 256 entries are available for the OS kernel

- Only ~20 entries are used by Windows

- All fixed paging structures should be read-only

83

PAGE

Linux conclusions

- Paging tables shouldn’t be in fixed addresses

- It can be abused by LOCAL and REMOTE kernel
exploits

- All fixed paging structures should be read-only

- Some advice, compile the kernel with Grsec ;-)

84

PAGE

Enrique Nissim
@kiqueNissim
n3k1990@gmail.com

Nicolas Economou
@NicoEconomou
neconomou@coresecurity.com

Questions?
Thanks

