
Graph theoretic obstacles to perfect hashing

George Havas∗ and Bohdan S. Majewski†

Department of Computer Science

Key Centre for Software Technology

The University of Queensland

Queensland 4072, Australia

Abstract

A number of algorithms based on quasi-random graphs for generating perfect hash
functions have been published. These include Sager’s mincycle algorithm, a modification
by Fox et al. of it and finally probabilistic methods due to Czech, Havas and Majewski.
Each of these algorithms exploits different properties of graphs, such as being bipartite or
being acyclic. In this paper we formally justify the significance of these properties. Also we
indicate causes of failure for some methods. In particular we show that acyclicity of a graph
plays a crucial role in finding order preserving perfect hash functions. It is a sufficient, but
not necessary, condition for algorithms to actually find a perfect hash function. We provide
some examples for which various published methods methods fail, taking exponential time
to do so. Finally, based on our considerations of graph properties, we propose yet another
method for generating perfect hash functions.

1 Introduction

A hash function is a function h : W → I that maps the set of keys W ⊂ U into some given
interval of integers I, say [0, k− 1], where k > 0. U is the universe from which keys in W have
been selected, U = {0, . . . , u − 1}. The hash function, given a key, computes an address (an
integer from I) for the storage or retrieval of that item. The storage area used to store items
is known as a hash table. Keys for which the same address is computed are called synonyms.
Due to the existence of synonyms a situation called collision may arise in which two keys are
mapped into the same address. Several schemes for resolving collisions are known. A perfect

hash function is an injection h : W → I, where W and I are sets as defined above, k ≥ m. If
k = m, then h is a minimal perfect hash function. As the definition implies, a perfect hash
function transforms each key of W into a unique address in the hash table. Since no collisions
occur each item can be retrieved from the table in a single probe. If for any two keys from W ,
wi and wj , i < j implies that h(wi) < h(wj) then the hash function is order preserving. (In
other words, the relative order in the input set is preserved in the hash table.)

Minimal perfect hash functions are used for memory efficient storage and fast retrieval of
items from a static set, such as reserved words in programming languages, command names
in operating systems, commonly used words in natural languages, etc. An overview of perfect
hashing is given in [GBY91, §3.3.16], and the area is surveyed in [LC88, HM92].

∗E-mail: havas@cs.uq.oz.au. The author was supported in part by Australian Research Council grant

A49030651
†E-mail: bohdan@cs.uq.oz.au

1

Various algorithms with different time complexities have been presented for constructing
perfect or minimal perfect hash functions. Some, arguably the most important algorithms,
are based on mapping the set W into a graph, which then is processed to obtain a perfect
hash function. These include Sager’s mincycle algorithm [Sag85], its modifications due to Fox,
Heath, Chen and Daoud [FCHD88, FHC89, FCDH91, FHCD92] and Czech and Majewski
[CM92], and probabilistic methods due to Czech, Havas, Majewski and Wormald [CHM92,
MWCH92]. Even the famous FKS scheme [FKS84] can be viewed as a method of constructing
and coding a special type of acyclic graph.

In this paper we investigate these methods. In particular we concentrate our attention on
the properties of graphs used by the algorithms. We formally justify the significance of such
properties as being bipartite or being acyclic in relation to perfect and order preserving perfect
hash functions. We identify a graph theoretic cause for failure of some of the methods. We
provide examples for which the methods of Sager, of Fox et al. and of Czech and Majewski
fail and run in exponential time. Finally, based on our considerations of graph properties, we
suggest yet another method for generating perfect hash functions.

2 Keys, graphs and hash tables

Graphs prove to be an excellent tool in building hash tables for a given set of keys, especially
if these tables need to be perfect. Let us briefly look at some methods which comply with this
approach.

W

G = T

Figure 1: The FKS method. The keys from W are mapped into primary vertices. Keys with
the same primary vertex are mapped into unique vertices forming a star. The resulting graph
G defines the hash table T for W .

The earliest method which used graphs was published by Fredman, Komlós and Szemerédi
[FKS84]. Although they did not cast their algorithm in graph theoretic terms, it is easy to do
so. In the first step, a set of m keys is mapped into m primary vertices using a polynomial
of degree 1, f1(x) = (kx mod u) mod m. For each group of keys that have been mapped into
the same primary vertex, a second level polynomial is selected, f2,i(x) = (k′ix mod u) mod 2b2i ,
where bi is the size of the group and 0 ≤ i < m. The second function maps each key in the

2

group into a unique vertex. The resulting structure is an acyclic graph, which is a union of
star shaped trees, as shown in Fig. 1. Fredman, Komlós and Szemerédi provide a structure
that efficiently encodes the resulting graph and prove that the number of the vertices, which
determines the size of the structure, does not exceed 11m. As the m primary vertices need
to store parameters of the second level polynomials, the total size of the structure is 13m.
Fredman, Komlós and Szemerédi mention some refinements that allow a reduction in the size
of the encoding.

The next four methods, which use significantly less space than FKS, use similar approaches.
First a set of keys is mapped explicitly into a graph. Then, using different methods, the authors
try to solve the following problem, which we call the perfect assignment problem. For a given
undirected graph G = (V,E), |E| = m, |V | = n find a function g : V → [0,m − 1] such that
the function h : E → [0,m− 1] defined as

h
(

e = (u, v) ∈ E
)

=
(

α(e) + g(u) + g(v)
)

mod m

is a bijection. The α function maps edge e into a constant. In other words the problem asks
for an assignment of values to vertices so that, for each edge, the sum of values associated with
its endpoints (plus a constant), taken modulo the number of edges, is a unique integer in the
range [0,m− 1]. A perfect hash function generated by each of these methods can be stored in
n+O(1) words.

G
T

W

Figure 2: A graph based method of computing a perfect hash function. The input set W is
mapped into graph G which then, after some processing, yields the hash table T for the keys
in W .

Sager’s mincycle algorithm consists of three steps. In step 1, the set W is mapped into
a graph G, called the dependency graph. Sager chooses the number of vertices to be twice
the smallest power of 2 greater than m/3. The dependency graph is always generated to be
bipartite. The graph may contain cycles. In practice, because of its density and the poor
quality of the mapping functions used by Sager, most of the edges belong to one or more
cycles. Cycles, as we will see in the next section, may cause the perfect assignment problem
to be unsolvable and they certainly make it difficult. To find a solution to the assignment
problem, Sager uses an exhaustive search procedure to go through all feasible functions g.
To speed up the search a certain order is imposed on the edges of the dependency graph in
the second step of the algorithm. This arrangement dictates the order in which the searching
procedure tries to solve the perfect assignment problem. The search may result in success
or, after examining all feasible functions g, report a failure. Sager argues that the ordering
step causes the exhaustive search to run in polynomial time. However his algorithm runs in

3

exponential time whenever there is no solution to the assignment problem, since the number
of feasible functions is exponentially large.

Fox, Heath, Chen and Daoud [FHCD92] introduce three major changes to Sager’s method.
Better mapping functions are introduced, which mimic random functions more closely than the
old functions. Consequently, the mapping step creates a graph that is closer to a random graph.
Fox et al. keep the bipartite property of the graph, without elaborating on its importance.
The ordering step uses a less time consuming method, which, despite the lower quality of its
result, gives reasonable performance. In the searching step the authors employ a probabilistic
algorithm, which generates random ‘probe sequences’ determining a possible arrangement of
the keys in the hash table. The Fox et al. algorithm, in the form described in [FHCD92],
runs in exponential time if no solution to the perfect assignment problem can be found. The
authors mention a modification that may avoid an exponential time search, discussed in our
Section 4. Fox, Heath, Chen and Daoud choose the number of vertices to be roughly 0.6m.

Czech and Majewski [CM92] suggest yet another heuristic for the ordering step. They also
modify the exhaustive search, introducing backtrack pruning in order to make it more efficient.
Otherwise their method follows the same path as the methods of Sager and Fox et al.

Czech, Havas and Majewski [CHM92] set α(e) = 0 for all e ∈ E and insist on G being
acyclic. They show that if n = cm with c > 2 the probability of obtaining an acyclic mapping
is a non-zero constant. Hence this can be done in linear time by a probabilistic algorithm.
They also provide a method of finding function g in linear time for acyclic graphs. Because
of the acyclicity of G, the resulting perfect hash function can be made order preserving and
minimal. In [MWCH92] they extend their method to hypergraphs. This allows a reduction
in the size of the program that evaluates the hash function to about 58% of the size of the
program obtained in the case of standard graphs. We stress that despite the fact that graphs
in the FKS and CHM methods are acyclic in both cases, the methods are not equivalent.
Fredman et al. require that for each edge in G there is a unique vertex. This is not so in the
CHM method, and therefore we need an auxiliary tool, like function g, to distinguish between
the keys. The greater density of graphs in the CHM method allows a substantial reduction in
the size of the resulting perfect hash function. Moreover maintaining the acyclicity property
makes the method very flexible.

Thus different authors use different properties to achieve their goal of finding a perfect
hash function. The question we address in this paper is how important are these properties.
Can some of them be weakened, or may we gain something extra by exploiting them more
thoroughly?

3 The perfect assignment problem is not always solvable

Fredman, Komlós and Szemerédi proved that their method is guaranteed to work. (One major
disadvantage of their method is its relatively large space requirements.) Hence we concentrate
on the perfect assignment problem. The problem, perhaps not surprisingly, cannot be always
solved. This section provides a few examples of infinite classes of graphs for which we prove
that no solution exists. For simplicity we assume that α(e) = 0 for all e ∈ E.

A very simple example of a graph for which there is no solution to the assignment problem
is a unicyclic graph, C4j+2, j > 1. Such a graph has 4j + 2 edges and 4j + 2 vertices. The
edges are assigned numbers between 0 and m− 1 = 4j + 1. Hence the total sum of the values
assigned to the edges is (4j + 2)(4j + 1)/2 = (2j + 1)(4j + 1). This number is clearly odd.
On the other hand, each vertex is adjacent to two edges. Thus the sum of values on the edges
is
∑

{v,u}∈E(g(u) + g(v)) mod m = (2
∑

v∈V g(v)) mod m which must be an even number — a

4

contradiction.
Another infinite family is formed by complete graphs on 8k + 5 vertices, k > 0. Again, by

the parity argument, we can show that there is no assignment of values 0 . .m − 1 to edges
such that a suitable function g can be found. The essence of the above examples can be stated
as the following theorem.

Theorem 1 For any graph G with m = 4j − 2 edges, j > 0, such that all the vertices of G
have even degrees, there is no solution to the assignment problem.

Proof. Consider the sum of the values assigned to the edges,
∑

{v,u}∈E(g(v) + g(u)) mod m.
If the number of edges is even, that is m = 2k, and the degrees of all the vertices of G
are even clearly the above sum must be even. On the other hand this sum must be equal
to m(m − 1)/2 = k(2k − 1). In order to make the assignment problem unsolvable, the last
expression needs to be odd, that is k must be odd, k = 2j − 1. Hence m = 4j − 2, and for
such m we always get a parity disagreement. 2

An elegant test can be constructed to verify if the assignment problem can be solved for a
cycle with particular values assigned to its edges. Given a cycle Ck = (v1, v2, . . . , vk), let the
edges of cycle Ck be assigned the values t1, t2, . . . , tk, so that the edge {vj , vj+1} is assigned tj .
For vertex v1 construct any permutation π(v1) = 〈i

1
1, i

1
2, . . . , i

1
k〉, of the numbers from 0 to k−1.

For vertex v2 compute the permutation π(v2) = 〈i
2
1, i

2
2, . . . , i

2
k〉, such that i2j = (t1− i1j) mod k.

For vertex vp, 1 < p ≤ k+1 construct the permutation π(vp) = 〈(tp−1−i
p−1
1) mod k, . . . , (tp−1−

ip−1
k) mod k〉. The cycle has a solution to the assignment problem if there exists a j such that
ik+1
j = i1j . Tracing the whole process back we quickly discover that the cycle has a solution if

there is a j such that (tk− tk−1+ · · ·+(−1)k−1t1+(−1)kij) mod k = i1j . To show that the last
condition is both sufficient and necessary assume that the i-th vertex of cycle Ck is assigned
the value g(vi). The values on the edges are (g(vi)+ g(vi mod k+1)) mod m = ti, for m > k and
1 ≤ i ≤ k. We observe that g(vi mod k+1) = ti − g(vi) (mod m), 1 ≤ i ≤ k. In particular we
have

g(vj) = tj−1 − g(vj−1) =
j−1
∑

p=1

(−1)j−1−ptp + (−1)j+1g(v1) (mod m)

for 2 ≤ j ≤ k. Using the above to evaluate g(vk) in (g(vk) + g(v1)) = tk (mod m) yields

k−1
∑

p=1

(−1)k−1−ptp + (−1)k+1g(v1) + g(v1) = tk (mod m)

so

(−1)k+1g(v1) + g(v1) =
k
∑

p=1

(−1)k−ptp (mod m)

Hence we have the following technical result, which is used to derive a practical corollary and
effective applications:

Theorem 2 For a cycle Ck = (v1, v2, . . . , vk) and an integer m there exists a function g which

maps each vertex into some number in the range [0,m − 1] such that for the edge {vp, vp+1},
(g(vp) + g(vp+1)) mod k = tp, where each tp is a number in the range [0,m− 1], if and only if

for some integer j ∈ [0,m− 1]

k
∑

p=1

(−1)k−ptp + (−1)kj

 ≡ j (mod m)

5

From the above theorem we easily deduce the following corollary:

Corollary 3 Let x =
∑k

p=1(−1)
k−ptp, where tp ∈ {0, . . . ,m − 1} for 1 ≤ p ≤ k are the

values assigned to the edges of some cycle Ck. If k is even then there exists a solution to the

assignment problem if and only if x ≡ 0 (mod m). If k is odd then a solution exists if and

only if x is even or both x and m are odd.

The above corollary provides an quick and easy test. Unfortunately it does not give us a
method for choosing tp’s so that the final condition is fulfilled. Notice that cycles of even
length are in some sense more difficult to deal with than cycles of odd length. However, once
the condition on the alternating sum for an even length cycle is fulfilled, it is much easier to
assign values to its vertices. A similar procedure to that presented for acyclic graphs may be
used (see [CHM92]). For odd length cycles, it is much easier to satisfy the condition for the
alternating sum, but then there are at most 2 valid assignments to the vertices.

Corollary 3 provides us with another proof of Theorem 1 for the case of unicyclic graphs.
First we notice that any alternating sum can be split into two parts, the positive part P and
the negative part N . From any sum, to obtain a different sum we must exchange at least
one element from the positive part with another element from the negative part. Call these
elements π and ν. The initial sum is equal to P −N , while the modified sum will be equal to
P −N +2(ν−π). Thus the minimum change must equal 2 or be a multiple of 2. Now consider
the maximum sum for the case of a unicyclic graph C4j+2. The maximum alternating sum is
equal to (6j + 2)(2j + 1)/2− (2j + 0)(2j + 1)/2 = (2j + 1)2. This sum is odd. Hence it is not
divisible by 4j + 2. Moreover, as we may modify it only by exchanging elements between the
positive and the negative part, all other sums will be odd too. Consequently none of them is
divisible by 4j+2. Hence by Corollary 3 there is no solution for unicyclic graphs if m = k and
k = 4j + 2. Without actually trying to do so, we have discovered the fact that an alternating
sum of the integers {0, 1, . . . , k − 1}, for any permutation of them, must either always be odd
(if k = 4j + 2 or k = 4j + 3) or always be even (if k = 4j or k = 4j + 1).

We can actually prove a stronger version of Theorem 2. Before we do this we need some
definitions from graph theory. A path from v1 to vi is a sequence P = v1, e1, v2, e2, . . . , ei−1, vi

of alternating vertices and edges such that for 1 ≤ j < i, ej is incident with vj and vj+1. If
v1 = vi then P is said to be a cycle. In a simple graph (a graph with no self-loops or multiple
edges) a path or a cycle v1, e1, v2, e2, . . . , ei−1, vi can be more simply specified by the sequence
of vertices v1, . . . , vi. If in a path each vertex appears once, then the sequence is called a
simple path. If each vertex appears only once except that v1 = vi then P is called a simple

cycle. Because we are interested only in simple paths and cycles, these are abbreviated and
the word “simple” is understood. A graph is connected if there is a path joining any pair of
its distinct vertices. A vertex v is said to be an articulation point of a connected graph G if
the graph obtained by deleting v and all its adjacent edges is not connected. G is said to be
biconnected if it is connected and it contains no articulation points, that is, any two vertices of
G are connected by at least two distinct paths. Two cycles, C1 and C2, can be added to form
their sum, C3 = C1 ⊕ C2, where operation ⊕ is the operation of ring-sum. The ring sum of
two graphs G1 = (V1, E1) and G2 = (V2, E2), is the graph ((V1 ∪ V2), ((E1 ∪E2)− (E1 ∩E2)).
The set of all cycles is closed under the operation of ring-sum, forming the cycle space. A
cycle basis of G is a maximal collection of independent cycles of G, or a minimal collection of
cycles on which all cycles depend. In other words, no cycle in a cycle basis can be obtained
from the other cycles by adding any subset of them. There are special cycle bases of a graph
which can be derived from spanning trees of a graph. Let F be a spanning forest of a graph
G. Then, the set of cycles obtained by inserting each of the remaining edges of G into F is a

6

fundamental cycle set of G with respect to F .

Theorem 4 Let G = (V,E) be a biconnected graph with m = |E| > 2 edges. Let each edge

e ∈ E be assigned a value te ∈ [0,m − 1]. Let B be a cycle basis of G with the additional

property that each cycle in B goes through a selected vertex in G, say v1. If there exists an

integer j ∈ [0,m−1] such that for every cycle Ck ∈ B, Ck = (e1, e2, . . . , ek), (
∑k

p=1(−1)
k−ptep

+

(−1)kj) ≡ j (mod m), then there exists a function g : V → {0, . . . ,m− 1} such that for each

edge e = {u, v}, e ∈ E the function (g(u) + g(v)) mod m is equal to te.

Proof. The above result is easy to prove by induction. By Theorem 2, it is true if G consists
of one cycle. Suppose it is true if B of G contains i > 1 cycles. Add a new cycle to B that has
at least one edge, but at most one path in common with some cycle in B. (In the following
argument we restrict our attention to cycles with the above specified property. In doing so we
lose no generality, as a cycle that has more than one disjoint path in common with some other
cycle or cycles can always be modelled by a number of cycles, such that each of them shares
just one path with one other cycle. The case when a new cycle has just one vertex in common
with a basis cycle is trivial, therefore we omit it in our analysis.) If the sum test fails for the
new cycle then G has no solution to the assignment problem. Hence suppose that the sum
test is true. Graph G has no solution to the assignment problem if and only if there exists a
cycle that does not belong to B for which the sum test fails. To show that this is impossible
consider the graph in Fig. 3.

t t

t

t

tt

t

t

i

i+2

i+1

1

t

t

C

C

C3

v
1

1

2

q

p

p-1

j+2

j+3

j+1

Figure 3: The alternating sum for C3 = C1 ⊕ C2

Cycles C1 and C2 are basis cycles, cycle C3 can be created by adding C1 and C2. The
alternating sum for C1 is s1 =

∑p−1
k=0(−1)

ktp−k and the alternating sum for C2 is s2 =
∑q−j−1

k=0 (−1)ktq−k+
∑i−1

k=0(−1)
q−j+kti−k. The alternating sum for C3 is s3 =

∑p−i−1
k=0 (−1)ktp−k+

∑q
k=j+1(−1)

p−i−1+k−jtk. If the length of cycle C1 is odd and the length of cycle C2 is even
then s3 = s1 + s2. By Corollary 3 and the statement of Theorem 4 we know that s1 was either
even or of the same parity as m, and s2 was a multiple of m. Cycle C3 must be of odd length
and naturally s1 + s2 is either even or of the same parity as m. If the lengths of both cycles
are of the same parity, then s3 = s1 − s2 and again the condition on s3 is fulfilled. It is also

7

easy to see that the combination even/odd (s3 = s1 + s2, again) preserves the condition on
the alternating sum of C3. Therefore, if all cycles in a basis pass the sum test, so will any
non-basis cycle. 2

v1

6

0

3

5 6 5

6
5

6

00

0

3
41

2

7

4
1 2

7

1

Figure 4: A sample graph and its cycle basis

Example. Consider the graph in Fig. 4. Its cycle basis based on v1 consists of three cycles,
shown at the bottom. To verify if for the given values on the edges it is possible to find the
appropriate values for vertices we need to calculate the alternating sums for the three basis
cycles. They are equal to 6− 3 + 5− 0 = 8, 6− 1 + 2− 5 + 0 = 2 and 6− 1 + 4− 7 + 0 = 2.
Using Theorem 4 we promptly discover that for all three cycles a suitable j is 1 or 5. Hence
we conclude that there exists a suitable assignment for the graph in Fig. 4. Indeed we may
even give a method for obtaining such an assignment. We start by setting g(v1) to j. Then
we perform a regular search on the graph, say depth-first search, starting with vertex v1.
Whenever we visit a new vertex u, which we have reached via the edge e = {v, u} we set
g(u) := (te− g(v)) mod m. The method is a straightforward modification of the method given
for acyclic graphs (see [CHM92]). Using this method we can easily find function g for the
graph in Fig. 4. 2

The requirement that each cycle in B has to run through a specific vertex is necessary
because of the odd length cycles. For each of them we not only need the permutation to agree
on some position, but additionally two permutations for two different cycles have to agree on
the same position. One way to ensure that is to make all cycles have at least one vertex in
common, hence for all of them the starting permutation is the same. If a graph is a bipartite
graph, that is all its cycles are of even length, then we may restrict our attention only to its
cycles. Once for each cycle the condition on the alternating sum is satisfied we may freely
choose the the values for edges that do not belong to any cycle and still be able to solve the
assignment problem. This is expressed in the next theorem which we state without a proof,
as it follows easily from the two theorems and the corollary given before.

Theorem 5 Let G = (V1 ∪ V2, E) be a bipartite graph with m = |E| edges. Let each edge e ∈
E ⊆ V1×V2 be assigned a unique value te ∈ [0,m−1]. If for every biconnected component Hi of

G and each cycle Ck = (e1, e2, . . . , ek) ∈ Bi, where Bi is a cycle basis of Hi,
∑k

p=1(−1)
k−ptep

≡
0 (mod m) and G has no multiple edges, then there exists a solution to the assignment

problem for G.

8

4 Consequences

Theorem 5 justifies the use of bipartite graphs by the algorithms of Sager [Sag85], Fox et al.
[FHCD92] and Czech and Majewski [CM92]. All of them consider cyclic edges independently of
the other edges. A solution of the perfect assignment problem for all of the cyclic components
can be trivially extended to acyclic parts of the dependency graph if the graph is bipartite.
If the graph has cycles of odd length it might be impossible to do so. Hence the process of
finding a perfect hash function is greatly simplified when bipartite graphs are used. Otherwise
the whole structure needs to be considered.

In the case of order preserving hash functions, acyclicity is a sufficient condition for the
function h to be order preserving. In the presence of cycles the order preserving property
cannot be guaranteed. Some graphs (like K4) resist some assignments, while allowing others.
Others, C6 might serve as a simple example, allow no solution to the perfect assignment
problem. The class of graphs which are unsolvable for some assignments is much larger than
the class of graphs for which there is no solution to the assignment problem. Note that inability
for a graph to have arbitrary numbers assigned to its edges excludes it from the class of graphs
suitable for generating an order preserving perfect hash function. The probabilistic method
[CHM92], by rejecting these types of graphs, can always succeed in solving the assignment
problem for the graph output by the mapping step.

0

1 3

2

4
15

18

14

13

16

12

6
8

5

17

11

10

7

Figure 5: An example of the dependency graph for which the methods of Sager, Fox et al. and
Czech and Majewski are certain to fail. The numbers on the edges give a minimum possible
assignment.

By Theorem 1 we know that if the number of edges in the dependency graph is 4j − 2,
j > 0, and all vertices have even degrees there is no solution to the assignment problem. This
allows us to construct examples of dependency graphs for which the methods of Sager [Sag85],
Fox et al. [FHCD92] and Czech and Majewski [CM92] are certain to fail. One such an example,
with m = 18 edges and n ≈ 0.6m = 10 vertices, is given in Fig. 5. We ran an exhaustive
search along the lines of those specified by Sager [Sag85] and Czech and Majewski [CM92] on
this example. It made 16, 259, 364 iterations before discovering that there is no solution to the
assignment problem for this graph. An upper bound on the number of iterations executed by

the exhaustive search procedure in the above mentioned algorithms is
∑m−n+p(G)

i=1 m!/(m− i)!,

9

where p(G) is the number of connected components of the dependency graph G.
We have also found an optimal perfect mapping for this graph, shown in Fig 5. The

mapping maps the 18 edges into the 19 element range [0, 18]. It is easy to verify that for
any cycle of the graph in Fig. 5 the given assignment meets the conditions specified by the
theorems in the previous section.

Let us investigate the probability that a dependency graph generated in the mapping step
belongs to the class of graphs characterized by Theorem 1. From now on we assume that the
number of edges m is even but not divisible by 4. Notice that our question can be reformulated
as what is the probability that each connected component of a random graph has an Eulerian
cycle. Such graphs are called even graphs.

Even graphs have been enumerated by R. Read [Rea62]. Modifying his approach for
bipartite graphs with n = 2r vertices, r vertices in each part, we get that the number of even
graphs is given by the following expression:

E(Gb) = 2−2r
r
∑

s=0

(

r

s

)

r
∑

t=0

(

r

t

)

m
∑

j=0

(−1)j
(

s(r − t) + t(r − s)

j

)(

st+ (r − s)(r − t)

m− j

)

for bipartite graphs, and

E(G′b) = 2−2r
r
∑

s=0

(

r

s

)

r
∑

t=0

(

r

t

)

×
m
∑

j=0

(−1)j
(

s(r − t) + t(r − s) + j − 1

j

)(

st+ (r − s)(r − t) +m− j − 1

m− j

)

for bipartite multigraphs with no loops. The above expression allow us to compute that
there are 1479792175 even bipartite multigraphs with 18 edges and 10 vertices. Consequently,
finding the one in Fig. 5 was a relatively simple task. However, the even bipartite multigraphs
constitute only about 0.42% of the entire population of bipartite multigraphs with 18 edges
and 10 vertices.

We were not able to find a reasonable general approximation of the formula for E(G′b).

However, for 2r ≤ m, we observe that E(G′b)/
(r2+m−1

m

)

≈ 2−2r+2. This approximation can be
justified by the following simple argument. The probability that a given vertex v in a bipartite

graph with r vertices in each part has degree d is Pr(dg(v) = d) =
(m

d

)

(

1
r

)d (

1− 1
r

)m−d
.

Consequently, the probability that this degree is even is

Pr(dg(v) mod 2 = 0) =
∑

d≥0

(

m

2d

)

(

1

r

)2d (

1−
1

r

)m−2d

As (x + y)m =
∑m

k=0

(m
k

)

xkym−k, selecting x = 1/r and y = (1 − 1/r) and x = −1/r and
y = (1− 1/r) and adding both equations gives

(

1

r
+

(

1−
1

r

))m

+

(

−1

r
+

(

1−
1

r

))m

= 2
∑

k≥0

(

m

2k

)

(

1

r

)2k (

1−
1

r

)m−2k

1 +
(

1− 2
r

)m

2
=

∑

k≥0

(

m

2k

)

(

1

r

)2k (

1−
1

r

)m−2k

Thus, as r →∞, any vertex has approximately 1
2 chances of having an even degree. However,

once the degrees for r − 1 vertices in each part of a bipartite graph are fixed, the degree of

10

the last vertex in each part is determined. (Actually, ‘fixing’ the degree of any vertex modifies
the probabilities for the remaining vertices. But as long as we have ‘enough’ edges, the above
argument gives a reasonable approximation.)

As a consequence, the claimed polynomial time complexities of the algorithms of Sager
[Sag85], Fox, Heath, Chen and Daoud [FHCD92] and Czech and Majewski [CM92] are false.
The expected time complexity of these algorithms is O(nn/2n) rather than polynomial. Even
graphs, however sparse, are still too common for these algorithms. A simple solution that
avoids the above problem is provided by a probabilistic approach. If the claimed complexity
of the algorithm is, say nk, for some constant k, the algorithm should count the number
of operations executed in the searching step. As soon as this number exceeds, say, n2k the
algorithm returns to the mapping step and, by changing some parameters, generates a new
dependency graph. Notice that the trouble caused by even graphs was very unlikely to be
detected by experimental observations. Fox et al. provide experimental data for m ≥ 32. For
32 keys they would require close to a quarter of a million experiments to have a 50% chance
of observing the phenomenon.

5 Yet another algorithm

In this section we propose a new algorithm for generating minimal perfect hash functions. The
algorithm is presented as an open problem, as some details need to be worked out.

Consider the following algorithm. Given a graph G assign m numbers between 0 and m−1
in any order to the edges of G. In the next step construct a cycle basis of G so that each cycle
has a unique edge (that type of a cycle basis is often called a fundamental cycle set). Find a
cycle in the basis for which the alternating sum does not meet the conditions specified in this
section. Find the minimum value v > m such that if it is assigned to the unique edge of the
cycle the conditions on the alternating sum are met. We require that such a minimum must
not be equal to any numbers assigned to other edges. Repeat the whole process until no such
cycle can be found. Solve the assignment problem for the graph with the values computed by
the above method. Question: what is the maximum value on any edge of G? If, for a graph
with m edges and n = m/ logm vertices, all numbers were expected to be bounded by m,
then the above specified algorithm could be used to generate a perfect hash function that uses
O(m) bits. The time required to complete such a process is proportional to the total length
of cycles in a cycle basis.

References

[CHM92] Z.J. Czech, G. Havas, and B.S. Majewski. An optimal algorithm for generating
minimal perfect hash functions. Information Processing Letters, 43(5):257–264,
October 1992.

[CM92] Z.J. Czech and B.S. Majewski. Generating a minimal perfect hashing function in
O(m2) time. Archiwum Informatyki Teoretycznej i Stosowanej, 4:3–20, 1992.

[FCDH91] E. Fox, Q.F. Chen, A. Daoud, and L. Heath. Order preserving minimal perfect
hash functions and information retrieval. ACM Transactions on Information

Systems, 9(3):281–308, July 1991.

11

[FCHD88] E. Fox, Q.F. Chen, L. Heath, and S. Datta. A more cost effective algorithm for
finding perfect hash functions. Technical Report TR-88-30, Virginia Polytechnic
Institute and State University, Blacksburg, VA, September 1988.

[FHC89] E. Fox, L. Heath, and Q.F. Chen. An O(n logn) algorithm for finding minimal
perfect hash functions. Technical Report TR-89-10, Virginia Polytechnic Institute
and State University, Blacksburg, VA, April 1989.

[FHCD92] E.A. Fox, L.S. Heath, Q. Chen, and A.M. Daoud. Practical minimal perfect
hash functions for large databases. Communications of the ACM, 35(1):105–121,
January 1992.

[FKS84] M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538–544, July 1984.

[GBY91] G.H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures.
Addison-Wesley, Reading, Mass., 1991.

[HM92] G. Havas and B.S. Majewski. Optimal algorithms for minimal perfect hashing.
Technical Report 234, The University of Queensland, Key Centre for Software
Technology, Queensland, July 1992.

[LC88] T.G. Lewis and C.R. Cook. Hashing for dynamic and static internal tables.
Computer, 21:45–56, 1988.

[MWCH92] B.S. Majewski, N.C. Wormald, Z.J. Czech, and G. Havas. A family of generators
of minimal perfect hash functions. Technical Report 16, DIMACS, Rutgers
University, New Jersey, USA, April 1992.

[Rea62] R.C. Read. Euler graphs on labelled nodes. Canadian Journal of Mathematics,
14:482–486, 1962.

[Sag85] T.J. Sager. A polynomial time generator for minimal perfect hash functions.
Communications of the ACM, 28(5):523–532, May 1985.

12

