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Abstract

Minimal perfect hash functions are used for memory efficient storage and fast
retrieval of items from static sets. We present an infinite family of efficient and
practical algorithms for generating minimal perfect hash functions which allow an
arbitrary order to be specified for the keys. We show that almost all members of the
family are space and time optimal, and we identify the one with minimum constants.
Members of the family generate a minimal perfect hash function in two steps. First
a special kind of function into an r–graph is computed probabilistically. Then this
function is refined deterministically to a minimal perfect hash function. We give strong
practical and theoretical evidence that the first step uses linear random time. The
second step runs in linear deterministic time. The family not only has theoretical
importance, but also offers the fastest known method for generating perfect hash
functions.

Key words: Data structures, probabilistic algorithms, analysis of algorithms, hash-
ing, generalized random graphs

1 Introduction

Consider a set W of m keys, where W is a subset of some universe U = {0, . . . , u−1}. For
simplicity we assume that the keys in W are either integers or strings of characters. In
the latter case the keys can either be treated as numbers base |Σ| where Σ is the alphabet
in which the keys were encoded, or as sequences of characters over Σ. For convenience we
assume that u is a prime.

A hash function is a function h : W → I that maps the set of keys W into some given
interval of integers I, say [0, k−1], where k ≥ m. The hash function, given a key, computes
an address (an integer from I) for the storage or retrieval of that item. The storage area
used to store items is known as a hash table. Keys for which the same address is computed
are called synonyms. Due to the existence of synonyms a situation called collision may
arise in which two keys are mapped into the same address. Several schemes for resolving
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collisions are known. A perfect hash function is an injection h : W → I, where W and I
are sets as defined above, k ≥ m. If k = m, then we say that h is minimal perfect hash
function. As the definition implies, a perfect hash function transforms each key of W into
a unique address in the hash table. Since no collisions occur each item can be retrieved
from the table in a single probe.

Minimal perfect hash functions are used for memory efficient storage and fast retrieval
of items from a static set, such as reserved words in programming languages, command
names in operating systems, commonly used words in natural languages, etc. An overview
of perfect hashing is given in [GBY91, §3.3.16], the area is surveyed in [LC88, HM92], and
some recent independent developments appear in [FCDH91, FHCD92].

Various other algorithms with different time complexities have been presented for con-
structing perfect or minimal perfect hash functions. They fall into four broad categories:

(i) Number theoretical methods. These solutions involve the determination of a small
number of numeric parameters, using methods based on results in number theory.
These include [Spr77, Jae81, Cha84, CL86, CC88, Win90b].

(ii) Perfect hash functions with segmentation. Keys are initially distributed into smaller
sets, kept in buckets, by an ordinary, first-stage hash function. For all keys in a
bucket a perfect hash function is computed. Algorithms falling into this category
are [FKS84, SvEB84, JvEB86, SS90b, DM90, DGMP92, CHK85, DHJS83, YD85,
Win90a].

(iii) Algorithms based on restricting the search space. These methods use usually some
kind of backtracking procedures to search through the space of all possible functions,
in order to find a perfect hash function. To limit the search space, and in effect to
speed up the search, an ordering heuristic is applied to keys before the search begins.
Solutions belonging to this category include [Cic80, CO82, CBK85, Sag85, HK86,
BT89, GS89, FHCD92, FCH92, CM92].

(iv) Algorithms based on sparse matrix packing. The main idea behind these solutions
is to map m keys uniformly into a matrix m × m. Then, using a matrix packing
algorithm [Meh84, p. 108–118], compress the two-dimensional array into linear space.
This type of approach is adopted in [TY79], [BT90] and [CW91]. A modification of
this approach, which leads to a more compact hash function, is presented in [CCJ91].

The algorithms in each of the categories provide distinct solutions, using similar ideas
but different methods to approach them. Significant advances are made in [FHCD92,
FCH92, CHM92, HM92] where algorithms using linear space and time are described.

We present a related family of algorithms based on generalized random graphs for
finding order preserving minimal perfect hash functions of the form

h(w) = g(f1(w)) ¦ g(f2(w)) ¦ · · · ¦ g(fr(w))

where ¦ is a binary operation. For simplicity we choose ¦ to be addition modulo m.
(Alternatively we could choose exclusive or, giving benefits in speed and avoiding overflow
for large m.) We show that each member of the family, for a suitable choice of parameters,
constructs a minimal perfect hash function for W in O(m) expected time and requires
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O(m logm) space. (The theoretical derivation is based on a reasonable assumption about
uniformity of the graphs involved in our algorithms.) These algorithms are both efficient
and practical.

Throughout this paper log(n) means log2(n), ln(n) stands for loge(n) and yi denotes
the falling factorial y, yi = y(y− 1) · · · (y− i+1). A generalized graph, called an r–graph,
is a graph in which each edge is a subset of V containing precisely r elements, r ≥ 1.

2 Graphs and hashing

The first method which used graphs (implicitly) was published by Fredman, Komlós and
Szemerédi [FKS84]. Although the authors did not cast their algorithm in graph theoretical
terms it is easy to do so. Thus we can regard their first step as mapping a set of m keys
into m primary vertices. For each group of keys that have been mapped into the same
primary vertex, a second mapping takes each key in the group into a unique vertex. The
result is an graph which is a union of star shaped trees. Fredman, Komlós and Szemerédi
provide a structure that efficiently encodes the resulting graph and prove that the number
of the vertices, which determines the size of the structure, does not exceed 11m. Since the
m primary vertices also need to store parameters for the second mapping, the total size of
the structure is 13m. (Fredman, Komlós and Szemerédi mention a complicated refinement
that allows some reduction in the size of the encoding.)

The graph created in this scheme is a union of stars. Such graphs are not very common,
which is why the number of vertices must be much greater than the number of edges
(which correspond to the keys). This reduces the practicality of the method, requiring
more space than desirable. Our techniques rely upon mapping the keys into any acyclic
graph. This leads to two advantages: much smaller constants and the ability to generate
perfect hash functions that allow arbitrary arrangement of keys in the hash table. The
space requirements for our major data structures can be as little as 1.23m.

3 The family

In order to generate a minimal perfect hash function we first compute a special kind of
function from the m keys into an r–graph with m edges and n vertices, where n, depending
onm and r, is determined in section 5. The special feature is that the edges of the resulting
r–graph must be independent, a notion we define later. We achieve edge independence
probabilistically. Then deterministically we refine this function (from the keys into an
r–graph) to a minimal perfect hash function. The expected time for finding the hash
function is O(rm + n). This type of approach is suitable for any r > 0. As the family
of r–graphs, for r > 0 is infinite, we have an infinite family of algorithms for generating
minimal perfect hash functions.

Consider the following assignment problem. For a given r–graph G = (V,E), |E| = m,
|V | = n, where each e ∈ E is an r–subset of V , find a function g : V → [0,m − 1] such
that the function h : E → [0,m− 1] defined as

h(e = {v1, v2, . . . , vr} ∈ E) =
(

g(v1) + g(v2) + · · ·+ g(vr)
)

mod m
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is a bijection. In other words we are looking for an assignment of values to vertices so that
for each edge the sum of values associated with its vertices, modulo the number of edges,
is a unique integer in the range [0,m− 1].

This problem does not always have a solution if arbitrary graphs are considered.
However, if the graph G fulfills an edge independence criterion, a simple procedure can be
used to find values for each vertex. We define the edge independence criterion as follows:

Definition Edges of an r–graph G = (V,E) are independent if and only if repeated

deletion of edges containing vertices of degree 1 results in a graph with no edges in it.

Observe that the definition is equivalent to the requirement that the r–graph does not
contain a subgraph with minimum degree 2. Such subgraphs, discussed in [Duk85, p. 407],
are a natural generalization of cycles in 2–graphs.

To solve the assignment problem we proceed as follows. Associate with each edge a
unique number h(e) ∈ [0,m− 1] in any order. Consider the edges in reverse order to the
order of deletion during a test of independence, and assign values to each as yet unassigned
vertex in that edge. As the definition implies, each edge (at the time it is considered) will
have one (or more) vertices unique to it, to which no value has yet been assigned. Let the
set of unassigned vertices for edge e be {v1, v2, . . . , vj}. For edge e assign 0 to g(v1), g(v2),

. . . , g(vj−1) and set g(vj) =
(

h(e)−
∑

v∈e,v 6=vj
g(v)

)

mod m.

To prove the correctness of the method it is sufficient to show that the value of the
function g is computed exactly once for each vertex, and for each edge we have at least
one unassigned vertex by the time it is considered. This property is clearly fulfilled if the
edges of G are independent and they are processed in the reverse order to that imposed
by the test for independence.

Unfortunately, the independence test suggested directly by the definition is not fast
enough. For r–graphs, with r > 1 it is easy to find examples for which it requires O(m2)
time. Consequently we must find a better method to test and arrange edges of any r–
graph, for r > 0.

One solution has the following form. Initially mark all the edges of the r–graph as not
removed. Then scan all vertices, each vertex only once. If vertex v has degree 1 (that is,
belongs to only one edge) then remove the edge e 3 v from the r–graph. As soon as edge
e is removed check if any other of its vertices has now degree 1. If yes, then for each such
a vertex remove the unique edge to which this vertex belongs. Repeat this recursively
until no further deletions are possible. After all vertices has been scanned, check if the
r–graph contains edges. If so, the r–graph has failed the independence test. If not, the
edges are independent and the reverse order to that in which they were removed is one we
are looking for. This method can be implemented so that the running time is O(rm+ n).
A stack can be used to arrange the edges of G in an appropriate order.

The solution to this assignment problem becomes the second part of our algorithms
for generating minimal perfect hash functions.

Now we are ready to present an algorithm for generating a minimal perfect hash
function. The algorithm comprises two steps: mapping and assignment. In the mapping
step the input set in mapped into an r–graph G = (V,E), where V = {0, . . . , n − 1},
E = {{f1(w), f2(w), . . . , fr(w)} : w ∈ W}, and fi : U → {0, . . . , n − 1}. The step is
repeated until graph G passes the test for edge independence. Once this has been achieved
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the assignment step is executed. Generating a minimal perfect hash function is reduced
to the assignment problem as follows. As each edge e = {v1, v2, . . . , vr} ∈ E corresponds
uniquely to some key w, such that fi(w) = vi, 1 ≤ i ≤ r, the search for the desired
function is straightforward. We simply set h(e = {f1(w), f2(w), . . . fr(w)}) = i− 1 if w is
the ith word of W , yielding the order preserving property. Then values of function g for
each v ∈ V are computed by the assignment step (which solves the assignment problem
for G). The function h is an order preserving minimal perfect hash function for W .

To complete the description of the algorithm we need to define the mapping functions
fi. Ideally the fi functions should map any key w ∈W randomly into the range [0, n− 1].
Total randomness is not efficiently computable, however the situation is far from hopeless.
Limited randomness is often as good as total randomness [CW79a, CW79b, KU86, SS89,
SS90a]. A suitable solution comes from the field originated by Carter and Wegman [CW77]
and called universal hashing. A class of universal hash functions H is a collection of
generally good hash functions from which we can easily select one at random. A class
is called k universal if any member of it maps k or less keys randomly and independent
of each other. Carter and Wegman [CW79a] suggested polynomials to be used as hash
functions. They prove that polynomials of degree d constitute a class of (d+ 1) universal
hash functions. Dietzfelbinger and Mayer auf der Heide proposed another class of universal
hash functions [DM90]. Their class, based on polynomials of a constant degree d and
tables of random numbers of size mδ, 0 < δ < 1, is (d + 1) universal but shares many
properties of truly random functions (see [DM90, Mey90] for details). Another class was
suggested by Siegel [Sie89]. Unfortunately the last class requires a considerable amount
of space. Finally, in 1992 Dietzfelbinger, Gil, Matias and Pippenger [DGMP92] proved
that polynomials of degree d ≥ 3 are reliable, meaning that they perform well with high
probability. An advantage that this class offers is a compact representation of functions,
as each requires only O(d log u) bits of space. Any of the above specified classes can be
used for our purposes. Our experimental results indicate that polynomials of degree 3 or
the class defined by Dietzfelbinger and Mayer auf der Heide [DM90] are the best choices.

The above suggested classes perform quite well for integer keys. Character keys
however are more naturally treated as sequences of characters. For that reason we define
one more class of universal hash functions, Cn, designed specially for character keys. (This
class has been used by others including Fox, Heath, Chen and Daoud [FHCD92].) We
denote the length of the key w by |w| and its i-th character by w[i]. A member of this
class, a function fi : Σ

∗ → {0, . . . , n− 1} is defined as:

fi(w) =





|w|
∑

j=1

Ti(j, w[j])



 mod n

where Ti is a table of random integers modulo n for each character and for each position
of a character in a word. Selecting a member of the class is done by selecting (at random)
the mapping table Ti. We can prove the following theorem:

Theorem 1 The expected number of keys mapped independently by a member of class Cn

is

⌈

logL

log |Σ| − log(|Σ| − 1)

⌉

= O(|Σ| logL).

Outline of proof. Consider the following painting problem. We are given an urn
containing b white balls. At each step we take one ball at random, paint it in red and
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return it to the urn. What is the expected number of white balls in the urn after k steps?
The urn corresponds to one column of the mapping table, and b = |Σ|. Choosing a white
ball represents taking an unused entry of the column, hence the key for which such an
entry is selected will be mapped independently of other keys. Solving the painting problem
for L independent urns proves the above theorem. 2

The above defined class allows us to treat character keys in the most natural way, as
sequences of characters from a finite alphabet Σ. However this approach has an unpleasant
theoretical consequence. For any fixed maximum key length L, the total number of keys
cannot exceed

∑L
i=1 |Σ|

i = |Σ|(|Σ|L − 1)/(|Σ| − 1) ∼ |Σ|L keys. Thus either L cannot be
treated as a constant and L ≥ log|Σ|m = Ω(logm) or, for a fixed L, there is an upper limit
on the number of keys. In the former case, strictly speaking, processing a key character
by character takes nonconstant time. Nevertheless, in practice it is often faster and more
convenient to use the character by character approach than to treat a character key as
a binary string. Other hashing schemes use this approach, asserting that the maximum
key length is bounded (for example [Sag85, HK86, Pea90, FHCD92]). This is an abuse of
the RAM model [AHU74, pp. 5–14], however it is a purely practical abuse. (In the RAM
model with uniform cost measure it is assumed that each operation on a numeric key
takes constant time, which corresponds to being able to process a character key character
by character in constant time.) We make this assumption, keeping in mind that it is a
convenience that works in practice. It can be avoided by use for character keys of the
approach that we proposed earlier in this section. This gives a theoretical validation of
the claims we make. In practice the schemes designed specially for character keys have
superior performance.

4 Some benefits of arbitrary key arrangements

Unlike traditional hashing functions, our method allows the keys to be arranged in any
specified order in the hash table. Furthermore, we can modify the perfect assignment
problem so that for any predefined function h into the cardinal numbers, not necessarily
a bijection, we are able to find a suitable function g in linear time. This can be easily
extended to functions into integers, rational numbers or character strings in natural ways.
It can then provide an effective method for evaluation of various kinds of discrete functions.

This property offers some advantages. One example is a dictionary for character keys.
In a standard application the hash value is an index into an array of pointers that point
to the beginning of the hashed strings. This means that on top of the space required for
the hashing function we need m pointers. With an arbitrary order perfect hash function
we can make each value point directly to the beginning of each string, saving the space
required for the pointers. Another simple example is when keys form disjoint classes.
Instead of storing with each key the name of a class to which it belongs, we simply assign
to all keys from a given class the same hash value. Our hashing scheme also facilitates
implementing a total ordering not otherwise directly computable from the data elements.
These are just a few examples where hashing with arbitrary hash value selection can help.
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5 Complexity analysis

In this section we give strong theoretical evidence that the expected time complexity of
the algorithm is O(rm+n). For r > 1, n is O(m) and thus the method runs in O(m) time
for suitably chosen n.

The second step of the algorithm, assignment as described above, runs in O(rm + n)
time. We now show that each iteration of the mapping step takes O(rm + n) time, and
that we can choose n suitably so that the expected number of iterations is bounded above
by a constant as m increases. For this we use the assumption that the edges in our graphs
appear at random independently of each other. We call this the ”uniformity assumption”
since it implies that all graphs have the same probability of occurring.

In each iteration of the mapping step, the following operations are executed: (i)
selection of a set of r hash functions from some class of universal hash functions; (ii)
computation of values of auxiliary functions for each word in a set; (iii) testing if edges of
the generated graph G are independent. Operation (i) takes no more than O(m+n) time
(for class Cn the time depends on the maximum length of a word in the set W times size of
alphabet Σ times r. For a particular set and predefined alphabet this may be considered to
be O(r)). Operations (ii) and (iii) need O(rm) and O(rm+ n) time, respectively. Hence,
the complexity of a single iteration is O(rm+ n).

The expected number of iterations in the mapping step can be made constant by a
suitable choice of n. Let p denote the probability of generating in one mapping step an
r–graph with m independent edges and n vertices. Then the expected number of iterations
is
∑

i>0 ip(1− p)i−1 = 1/p.
To obtain a high probability of generating an r–graph with independent edges we use

very sparse graphs. We choose n = cm, for some c. In the following subsections we
present three theorems which estimate c’s for each r > 0, such that as m goes to infinity
the associated probability p∞ is a nonzero constant. For r > 2, p∞ = 1. (For detailed
proofs and models see [CHM92, HM92, MWCH92]).

5.1 Case 1; 1–graphs

Theorem 2 The probability that a random 1–graph with n = cm vertices and m edges

has independent edges is a non-zero constant iff c = Ω(m).

Proof. The result follows easily from the solution to the occupancy problem (cf. [Fel68]).
To prove the above result in the case of limited randomness we may use [FKS84, Corol-
lary 2] or [DGMP92, Fact 3.2] 2

The solution for 1–graphs is not acceptable, primarily because of its space requirements.
It also requires O(m2) time to build the hash function.

5.2 Case 2; 2–graphs

This case is described in detail in [CHM92], including pseudocode for the algorithms.

Theorem 3 Let G be a random graph with n vertices and m edges obtained by choosing

m random edges with repetitions. Then if n = cm holds with c > 2 the probability that G
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has independent edges, for n→∞, is

p = e1/c
√

c− 2

c

Proof. For 2−graphs the edge independence is equivalent to acyclicity. By the well known
result of Erdős and Rényi [ER60] the probability that a random graph has no cycles, as

m tends to infinity, is exp(1/c+ 1/c2)
√

c−2
c . As our graphs may have multiple edges, but

no loops, the probability that the graph generated in the mapping step is acyclic is equal
to the probability that there are no multiple edges times the probability that there are
no cycles, conditional upon there being no multiple edges. The j-th edge is unique with
the probability (

(n
2

)

− j + 1)/
(n
2

)

conditional on the earlier edges being distinct. Thus the

probability that all m edges are unique is
(n
2

)m(n
2

)−m
∼ exp(−1/c2 + o(1)). Multiplying

the probabilities proves the theorem. 2

In the case of limited randomness we may use [FKS84, Corollary 4] to prove that
the probability of having no multiple edges tends to a nonzero constant, and differs only
slightly form the result obtained for unlimited randomness. For longer cycles we must rely
on the uniformity assumption.

As a consequence of the above theorem, if c = 2+ε the algorithm constructs a minimal
perfect hash function in Θ(m) random time. For 2–graphs we can speed up the detection
of cycles. One method is to use a set union algorithm [TVL84].

5.3 Case 3; r–graphs for r > 2

Edge independence is equivalent to the requirement that the r–graph does not contain a
subgraph with minimum degree at least 2. For r > 2 the analysis is much more complicated
than that for r ≤ 2. We only show that there exists a constant, cinv, such that if m ≤ cinvn
then the expected number of edge-minimal subgraphs on i edges, E(Yi), of minimum degree
at least 2 tends to 0 for all i ≤ m asm goes to infinity. We determine the minimum possible
c ≤ 1/cinv experimentally.

Theorem 4 For any r–graph there exists a constant cinv depending only on r such that
if m ≤ cinvn the probability that a random r–graph has independent edges tends to 1.

Outline of proof. Here also we use the uniformity assumption. To prove the above
theorem we need to estimate the number of subgraphs of minimum degree at least 2 in a
random r−graph with n vertices and m edges. This number can be shown to be

E(Xi) = O(mi)

(

ir−1rr

er−1nr

)i ir/2
∑

k=r

(

αα

ρ1−α

)ir
(

n

k

)

where α = k/(ir) and ρ = ρ(α) is defined by
eρ − 1− ρ

ρ
= α. Then, using the fact that

for edge-minimal subgraphs removing any edge must reduce the degree of at least one
vertex in the subgraph to 1, we deduce that any such subgraph with i edges must have at
least i/2 vertices. Now, exploiting different approximation techniques, we can show that
for each r there exists a constant cinv depending only on r such that if m ≤ cinvn the
expected number of edge-minimal subgraphs tends to 0. 2
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6 Experimental results

Four algorithms for r ∈ {2, 3, 4, 5} , without any specific improvements, were implemented
in the C language. All experiments were carried out on a Sun SPARC station 2, running
under the SunOStm operating system. For r ∈ {2, 3} and character keys the results are
summarized in Table 1. The values of reps, mapping, assgn and total are the average num-
ber of iterations in the mapping step, time for the mapping step, time for the assignment
step and total time for the algorithm, respectively. All times are in seconds.

r = 2, c = 2.1 r = 3, c = 1.23
m reps mapping assgn total reps mapping assgn total

1024 2.248 0.068 0.016 0.085 2.188 0.105 0.007 0.112
2048 2.540 0.134 0.030 0.164 1.928 0.166 0.013 0.179
4096 2.536 0.246 0.056 0.302 1.664 0.271 0.027 0.298
8192 2.828 0.526 0.123 0.650 1.332 0.444 0.053 0.497

16384 2.620 0.972 0.255 1.227 1.108 0.783 0.111 0.895
24692 2.880 1.565 0.392 1.958 1.061 1.099 0.144 1.243
32768 2.660 2.109 0.529 2.638 1.010 1.584 0.236 1.820
65536 2.700 4.189 1.067 5.256 1.000 3.169 0.495 3.664

131072 2.824 8.582 2.148 10.730 1.000 6.368 1.025 7.393
262144 2.868 18.022 4.620 22.642 1.000 12.176 2.086 14.262
524288 2.756 33.448 8.563 42.011 1.000 24.855 4.201 29.056

Table 1: Experimental results

For integer keys and r = 3 the results are presented in Table 2. The mapping
functions fi, 1 ≤ i ≤ 3 were selected from class H3n and keys were chosen from the
universe U = {0, . . . , 231 − 2}. Each row in the table represents the average taken over
200 experiments. Notice that computing three polynomials of degree 3 takes about twice
as much as evaluating three functions from class Cn. Similarly, as for character keys, for
m > 64000 the number of iterations stabilized at 1. Hence the average is also the worst
case behavior for sufficiently large m.

For r ∈ {3, 4, 5} we experimentally determined constants cr, such that if n = crm then
the expected number of iterations in the mapping step is a nonincreasing function of m.
These values are: c3 = 1.23, c4 = 1.29, c5 = 1.41. For these constants and for increasing
m, the observed average number of iterations in the mapping step approached 1. Thus
r = 3 outperforms r = 2 as the number of keys goes up, because the expected number
of iterations for the mapping step for r = 3 goes down, while the expected number is
constant for r = 2.

The experimental results fully back the theoretical considerations. Also, the time
requirements of the new algorithm are very low. Likewise the mapping, assignment and
total times grow approximately linearly with m.

7 Discussion

The method presented is a special case of solving a set of m linearly independent integer
congruences with a larger number of unknowns. These unknowns are the entries of array
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r = 3, c3 = 1.23

m reps mapping assgn total

1000 2.290 0.222 0.007 0.229
2000 1.655 0.328 0.014 0.343
4000 1.325 0.534 0.026 0.560
8000 1.215 0.978 0.053 1.031

16000 1.100 1.799 0.109 1.908
32000 1.010 3.357 0.231 3.588
64000 1.005 6.693 0.486 7.179

128000 1.000 13.277 1.003 14.280
256000 1.000 26.447 2.034 28.481
512000 1.000 52.676 4.102 56.778

Table 2: Experimental results for integer keys

g. We generate the set of congruences probabilistically in O(m) time. We require that the
congruences are consistent and that there exists a sequence of them such that ‘solving’ i−1
congruences by assignment of values to unknowns leaves at least one unassigned unknown
in the ith congruence. We find the congruences in our mapping step and such a solution
sequence in our independence test. It is conceivable that there are other ways to generate a
suitable set of congruences, with at leastm unknowns, possibly deterministically. It may be
that memory requirements for such a method would be smaller than for the given method.
However, any space saving can only be by a constant factor, since O(m logm) space is
required for order preserving minimal perfect hash functions (see [HM92]). Further, it
remains to be seen if the solution (such values for array g that the resulting function is
minimal and perfect) can then be found in linear time.
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