
Gunrock: A Fast and Programmable Multi-
GPU Graph Processing Library

November 19, 2015, GPU Technology Theater @ SC 15

Yuechao Pan with Yangzihao Wang, Yuduo Wu,

Carl Yang, Leyuan Wang, Andy Riffel and John D. Owens

University of California, Davis

ychpan@ucdavis.edu

Why use GPUs for Graph Processing?
Graphs

● Found everywhere

○ Road & social networks, web, etc.

● Require fast processing

○ Memory bandwidth, computing

power and GOOD software

● Becoming very large

○ Billions of edges

● Irregular data access pattern

and control flow

○ Limits performance and scalability

GPUs

● Found everywhere

○ Data center, desktops, mobiles, etc.

● Very powerful

○ High memory bandwidth (288 GBps)

and computing power (4.3 Tflops)

● Limited memory size

○ 12 GB per NVIDIA K40

● Hard to program

○ Harder to optimize

Scalability

Performance Programmability
Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 2

What we want to achieve with Gunrock?
Performance

● High performance GPU computing

primitives

● High performance framework

● Optimizations

● Multi-GPU capability

Programmability

● A data-centric abstraction designed

specifically for the GPU

● Simple and flexible interface to allow

user-defined operations

● Framework and optimization details

hidden from users, but automatically

applied when suitable

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 3

Idea: Data-Centric Abstraction & Bulk-Synchronous Programming
Data-centric abstraction

- Operations are defined on

 a group of vertices or edges ≝ a frontier

=> Operations = manipulations of frontiers

Bulk-synchronous programming

- Operations are done one by one, in order

- Within a single operation, computing on

multiple elements can be done in parallel,

without order

Loop until
convergence

A group of V or E

Do something

Resulting group of
V or E

Do something

Another resulting
group of V or E

A generic graph algorithm:

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 4

Gunrock’s Operations on Frontiers

Generation

Computation

Advance: visit neighbor lists Filter: select and reorganize

Compute: per-element computation, in parallel

 can be combined with advance or filter

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 5

Example: BFS with Gunrock

0

1

1

1

1

4

3

2

5

6

7

8

9

10

11

12

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

Advance + Compute (+1, AtomicCAS)

243

1

13
+∞

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 6

Example: BFS with Gunrock

1

1

1

1

4

3

2

5

6

7

8

9

10

11

12

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

Advance + Compute (+1, AtomicCAS)

243

1

243

Filter

0
13

+∞

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 7

Example: BFS with Gunrock

1

1

1

1

4

3

2

5

6

7

8

9

10

11

12

2

2

2

2

2

2

+∞

+∞

Advance + Compute (+1, AtomicCAS)

243

1

243

Filter

Advance + Compute (+1, AtomicCAS)

521

0

876 1109 818 53
13

+∞

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 8

Example: BFS with Gunrock

1

1

1

1

4

3

2

5

6

7

8

9

10

11

12

2

2

2

2

2

2

+∞

+∞

Advance + Compute

243

1

243

Filter

Advance + Compute (+1, AtomicCAS)

521

0

876 1109 818 53

P: uneven neighbor list

 lengths (v4 vs. v3)

P: Concurrent discovery

 conflict (v5,8)

13
+∞

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 9

Example: BFS with Gunrock

1

1

1

1

4

3

2

5

6

7

8

9

10

11

12

2

2

2

2

2

2

+∞

+∞

Advance + Compute

243

1

243

Filter

Advance + Compute (+1, AtomicCAS)

521

0

876 1109 818 53
Filter

7 109 8 56

P: uneven neighbor list

 lengths (v4 vs. v3)

P: Concurrent discovery

 conflict (v5,8)

13
+∞

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 10

Example: BFS with Gunrock

1

1

1

1

4

3

2

5

6

7

8

9

10

11

12

2

2

2

2

2

2

3

3

Advance + Compute

243

1

243

Filter

Advance + Compute (+1, AtomicCAS)

521

0

876 1109 818 53
Filter

7 109 8 56
Advance + Compute, Filter

11 12

P: uneven neighbor list

 lengths (v4 vs. v3)

P: Concurrent discovery

 conflict (v5,8)

P: From many to very

 few (v5,6,7,8,9,10 -> v11, 12)

13
+∞

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 11

Optimizations: Workload mapping and load-balancing
P: uneven neighbor list lengths

S: trade-off between extra processing and load balancing

First appeared in various BFS implementations, now available for all advance operations

Block 0 t0 t1 tn t0 t1 tn t0 t1 tn

t0 t1 tn t0 t1 tn t0 t1 tn

t0 t1 tn t0 t1

Block 1

Block 255

t0 t1 tn t0 t1 tn t0 t1 tn t0 t1

Block cooperative Advance of large neighbor lists;

t0 t31 t0 t0 t31 t0 t31t1 t0 t31

Warp cooperative Advance of medium neighbor lists;

t0 t1 t2 tn

Warp 31Warp 1Warp 0

Pre-thread Advance of small neighbor lists.

Load-Balanced Partitioning [3]
Per-thread fine-grained, Per-warp and per-CTA coarse-grained [4]

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 12

label = ?

Input

label = 1

label = 0

Optimizations: Idempotence
P: Concurrent discovery conflict (v5,8)

S: Idempotent operations (frontier reorganization)

- Allow multiple concurrent discoveries on the same output element

- Avoid atomic operations

First appeared in BFS [4], now available to other primitives

2 3 4

1

5 10

Advance
Idempotence

enabled

Idempotence

disabled

6 7 8 9 521
87

6 1
109 8

1
8 5

3

521
87

6 1
109 8

1
8 5

3

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 13

Optimizations: Pull vs. push traversal
P: From many to very few (v5,6,7,8,9,10 -> v11, 12)

S: Pull vs. push operations (frontier generation)

- Automatic selection of advance direction based on ratio of undiscovered vertices

First appeared in DO-BFS [5], now available to other primitives

Advance

7 1113 5 Pull-based

Push-based

11 11 11 1112 12

11 12
Input

label = 2

label = 1 2 3 4

5 106 7 8 9

Unvisited vertices

label = ? 11 12
13

12 12

To: V11 V12 V13 Output frontier

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 14

High-priority

pile

Temp output queue

th = 2.0

Low-priority pile

Optimizations: Priority queue
P: A lot of redundant work in SSSP-like primitives

S: Priority queue (frontier reorganization)

- Expand high-priority vertices first

First appeared in SSSP[3], now available to other primitives

5 7 8 9 10

5 8 7 9 10

Priority Queue

Scan + Compact

Next

Input 2 3 4

5 106 7 8 9
1.3 4.5 1.89.4 7.2 8.6

6

6

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 15

Idea: Multiple GPUs
P: Single GPU is not big and fast enough

S: use multiple GPUs

-> larger combined memory space and computing power

P: Multi-GPU program is very difficult to develop and optimize

S: Make algorithm-independent parts into a multi-GPU framework

-> Hide implementation details, and save user's valuable time

P: Single GPU primitives can’t run on multi-GPU

S: Partition the graph, renumber the vertices in individual sub-graphs

 and do data exchange between super steps

-> Primitives can run on multi-GPUs as it is on single GPU

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 16

Multi-GPU Framework (for programmers)

Iterate till

convergence

Input frontier

Output frontier

Single GPU

Associative data

(label, parent, etc.)

Recap: Gunrock on single GPU

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 17

Multi-GPU Framework (for programmers)

Iterate till

convergence

Input frontier

Output frontier

GPU 0

Associative data

(label, parent, etc.)

Input frontier

Output frontier

GPU 1

Associative data

(label, parent, etc.)

Dream: just duplicate the single GPU implementation

Reality: it won’t work, but good try!

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 18

Now it works

Iterate till all GPUs

convergence

Multi-GPU Framework (for programmers)

Local

input frontier

Local

output frontier

GPU 0

Associative data

(label, parent, etc.)

GPU 1

Associative data

(label, parent, etc.)

Remote

output frontier

Remote

input frontier

Remote input

frontier

Local

input frontier

Remote

output frontier

Local

output frontier

Partition

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 19

Multi-GPU Framework (for programmers)

Local input frontier

Partitioner
Input graph Partition

table Sub-graph builder
Sub-graphs

Local input frontier

Output sub-frontier

Merge

Received data package

Remote input frontier

Output sub-frontier

Full-queue kernels

Merged frontier

Output frontier

Separate

Local
output

frontier

Remote
output
frontier

Data package

Output sub-frontier

Merge

Remote input frontier

Output sub-frontier

Merged frontier

Output frontier

Separate

Local
output

frontier

Remote
output
frontier

Data package
Received data package

FinishConverged? Converged?

GPU0 GPU1

Package data

Push to peer

Unpackage

Sub-queue kernelsSub-queue kernels

Unpackage

Legend:

Package data

Push to peer

Parameters
required from user

User provided
operations

Sub-queue kernels

Full-queue kernels
Single GPU
data flow

Multi GPU
data flow

Sub-queue kernels

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 20

Multi-GPU Framework (for end users)

gunrock_executable input_graph --device=0,1,2,3 other_parameters

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 21

Graph partitioning
- Distribute the vertices

- Host edges on their sources’ host GPU

- Duplicate remote adjacent vertices locally

- Renumber vertices on each GPU

-> Primitives no need to know peer GPUs

-> Local and remote vertices are separated

-> Partitioning algorithm not fixed

P: Still looking for good partitioning algorithm /scheme

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 22

Graph partitioning

1

2

8
7 1

8

9

2

3

10

4

11

5

12

4

9

5

10

6

11

7

6
7

8

1
1

3

8

2

4

9

5

10

6

11

7

9

3

10

4

11

5

12

1

4

3

2

5

6

7

8

9

10

11

12

13

Original vertices

y y
Local vertices

y y
Remote vertices

(with local replicas)

x
y

Local V-id

Remote V-id

xx

xx

GPU 0

|V| = 11

|E| = 23

GPU 1

|V| = 12

|E| = 21

|V| = 13

|E| = 44

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 23

Optimizations: Multi-GPU Support & Memory Allocation
P: Serialized GPU operation dispatch and execution

S: Multi CPU threads and multiple GPU streams

 ≥1 CPU threads with multiple GPU streams to control each individual GPUs

-> overlap computation and transmission

-> avoid false dependency

P: Memory requirement only known after advance / filter

S: Just-enough memory allocation

 check space requirement before every possible overflow

-> minimize memory usage

-> can be turned off for performance, if requirements are known (e.g. from previous runs on similar graphs)

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 24

Results: Single GPU Gunrock vs. Others

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 25

* 17x (avg.) vs. BGL [6], a single thread CPU graph library;
* 2.4x (avg.) vs. Ligra [8], a multi-thread CPU graph library;
* beats Cusha [7] with bitcoin dataset;
* comparable with hardwired GPU implementations,
 some speed-up from applying optimizations across primitives;
* 10x (avg.) vs. MapGraph [9], especially for CC

Results: Multi-GPU Gunrock vs. Others (BFS)
Ref. Ref. hardware Ref.

performance

Our hardware Our performance

rmat_n20_128 Merrill et al. [4] 4x Tesla C2050 8.3 GTEPS 4x Tesla K40 11.2 GTEPS

rmat_n20_16 Zhong et al. [10] 4x Tesla C2050 15.4 ms 4x Tesla K40 9.29 ms

peak performance
Fu et al. [9] 16x Tesla K20 15 GTEPS 6x Tesla K40 22.3 GTEPS

peak performance
Fu et al. [11] 16x Tesla K20 29.1 GTEPS 6x Tesla K40 22.3 GTEPS

* ~ 35% faster than Merrill et al.’s results. Their results on > 3-year-old hardware are

impressive, though only customized to BFS.

* > 50% faster than Medusa (Zhong et al.), another programmable graph framework.

* 6 GPU peak performance comparable to MapGraph (Fu et al.) using 16 GPU cluster

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 26

Results: Multi-GPU Scaling
* Traversed edges per sec (TEPS) for BFS→
* Strong scaling on rmat_n22_48 ↓
* Weak scaling on R-MAT graphs (scale 48,

each GPU hosting ~180M edges) ↘

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 27

Things that we can improve on
* Partitioning

* Inter-iteration overhead

* Long tail / small frontier issue

Speedup of 5 algorithms (→), BFS (↙) and PR (↘)

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 28

Current Status
It has over 10 graph primitives

* traversal-based, node-ranking, global (CC, MST)

* LOC ≤ 10 to use a primitive

* LOC ≤ 300 to program a new primitive

* Good balance between performance and programmability

Multi-GPU framework under major revision

* use circular-queue for better scheduling and smaller overhead

* extendable onto multi-node usage

More graph primitives are coming

* graph coloring, maximum independent set, community detection, subgraph matching

Open source, available @
http://gunrock.github.io/

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 29

http://gunrock.github.io/
http://gunrock.github.io/

Future Work
* Multi-node support with NVLink

* Performance analysis and optimization

* Graph BLAS

* Asynchronized graph algorithms

* Fixed partitioning / 2D partitioning

* Global, neighborhood, and sampling operations

* More graph primitives

* Dynamic graphs

* Kernel fusion

* …

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 30

Acknowledgment
The Gunrock team

Onu Technology and Royal Caliber team

 Erich Elsen, Vishal Vaidyananthan, Oded Green and others

 For their discussion on library development and dataset generating code

All code contributors to the Gunrock library

NVIDIA

 For hardware support, GPU cluster access, and all other supports and discussions

The Gunrock project is funded by

* DARPA XDATA program under AFRL Contract FA8750-13-C-0002

* NSF awards CCF-1017399 and OCI-1032859

* DARPA STTR award D14PC00023

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 31

References
[1] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. “Gunrock: A high-performance graph processing library on the GPU”. CoRR, abs/1501.

05387(1501.05387v4) (Oct. 2015, http://arxiv.org/abs/1501.05387), to appear at PPoPP 2016;

[2] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens. “Multi-GPU Graph Analytics”. CoRR, abs/1504.04804(1504.04804v1) (Apr. 2015, http://arxiv.

org/abs/1504.04804);

[3] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel GPU methods for single source shortest paths. In Proceedings of the 28th

IEEE International Parallel and Distributed Processing Symposium, pages 349–359, May 2014;

[4] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’12, pages 117–128, Feb. 2012;

[5] S. Beamer, K. Asanovic, and D. Patterson. Direction-optimizing ´ breadth-first search. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12, pages 12:1–12:10, Nov. 2012;

[6] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley, Dec. 2001;

[7] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. CuSha: Vertexcentric graph processing on GPUs. In Proceedings of the 23rd International Symposium

on High-performance Parallel and Distributed Computing, HPDC ’14, pages 239–252, June 2014;

[8] J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing framework for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’13, pages 135–146, Feb. 2013;

[9] Z. Fu, M. Personick, and B. Thompson. MapGraph: A high level API for fast development of high performance graph analytics on GPUs. In Proceedings

of Workshop on GRAph Data Management Experiences and Systems, GRADES ’14, pages 2:1–2:6, June 2014;

[10] J. Zhong and B. He. Medusa: Simplified graph processing on GPUs. IEEE Transactions on Parallel and Distributed Systems, 25(6):1543‐1552, June 2014;

[11] Z. Fu, H. K. Dasari, B. Bebee, M. Berzins, and B. Thompson. Parallel breadth first search on GPU clusters. In IEEE International Conference on Big Data,

pages 110‐118, Oct. 2014.
Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 32

http://arxiv.org/abs/1501.05387
http://arxiv.org/abs/1504.04804
http://arxiv.org/abs/1504.04804
http://arxiv.org/abs/1504.04804

Questions?
Q: How can I find Gunrock?

A: http://gunrock.github.io/

Q: Papers, slides, etc.?

A: https://github.com/gunrock/gunrock#publications

Q: Requirements?

A: CUDA ≥ 5.5, GPU compute capability ≥ 3.0, Linux || Mac OS

Q: Language?

A: C/C++, with a simple wrapper connects to Python

Q: … (continue)

Q: Is it free and open?

A: Absolutely (under Apache License v2.0)

Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 33

http://gunrock.github.io/
https://github.com/gunrock/gunrock#publications

Example python interface - breadth-first search
from ctypes import *
load gunrock shared library - libgunrock
gunrock = cdll.LoadLibrary('../../build/lib/libgunrock.so')

read in input CSR arrays from files
row_list = [int(x.strip()) for x in open('toy_graph/row.txt')]
col_list = [int(x.strip()) for x in open('toy_graph/col.txt')]

convert CSR graph inputs for gunrock input
row = pointer((c_int * len(row_list))(*row_list))
col = pointer((c_int * len(col_list))(*col_list))
nodes = len(row_list) - 1
edges = len(col_list)

output array
labels = pointer((c_int * nodes)())

call gunrock function on device
gunrock.bfs(labels, nodes, edges, row, col, 0)

sample results
print ' bfs labels (depth):',
for idx in range(nodes): print labels[0][idx], Gunrock @ GPU Technology Theater, Nov. 19, 2015 | 34

