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Why use GPUs for Graph Processing?
Graphs

● Found everywhere

○ Road & social networks, web, etc.

● Require fast processing

○ Memory bandwidth, computing 

power and GOOD software

● Becoming very large

○ Billions of edges

● Irregular data access pattern  

and control flow

○ Limits performance and scalability

GPUs

● Found everywhere

○ Data center, desktops, mobiles, etc.

● Very powerful

○ High memory bandwidth (288 GBps) 

and computing power (4.3 Tflops)

● Limited memory size

○ 12 GB per NVIDIA K40

● Hard to program

○ Harder to optimize

Scalability

Performance Programmability
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What we want to achieve with Gunrock?
Performance

● High performance GPU computing 

primitives

● High performance framework

● Optimizations

● Multi-GPU capability

Programmability

● A data-centric abstraction designed 

specifically for the GPU

● Simple and flexible interface to allow 

user-defined operations

● Framework and optimization details 

hidden from users, but automatically 

applied when suitable 
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Idea: Data-Centric Abstraction & Bulk-Synchronous Programming
Data-centric abstraction

- Operations are defined on 

   a group of vertices or edges ≝ a frontier

=> Operations = manipulations of frontiers

Bulk-synchronous programming

- Operations are done one by one, in order

- Within a single operation,  computing on 

multiple elements can be done in parallel, 

without order

Loop until 
convergence

A group of V or E

Do something

Resulting group of 
V or E

Do something

Another resulting 
group of V or E

A generic graph algorithm:
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Gunrock’s Operations on Frontiers

Generation

Computation

Advance: visit neighbor lists Filter: select and reorganize

Compute: per-element computation, in parallel

                   can be combined with advance or filter
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Example: BFS with Gunrock
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Example: BFS with Gunrock
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Example: BFS with Gunrock
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Example: BFS with Gunrock
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Optimizations: Workload mapping and load-balancing
P: uneven neighbor list lengths

S: trade-off between extra processing and load balancing

First appeared in various BFS implementations, now available for all advance operations

Block 0 t0 t1 tn t0 t1 tn t0 t1 tn

t0 t1 tn t0 t1 tn t0 t1 tn

t0 t1 tn t0 t1

Block 1

Block 255

t0 t1 tn t0 t1 tn t0 t1 tn t0 t1

Block cooperative Advance of large neighbor lists;

t0 t31 t0 t0 t31 t0 t31t1 t0 t31

Warp cooperative Advance of medium neighbor lists;

t0 t1 t2 tn

Warp 31Warp 1Warp 0

Pre-thread Advance of small neighbor lists.

Load-Balanced Partitioning [3]
Per-thread fine-grained, Per-warp and per-CTA coarse-grained [4]
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label = ?

Input

label = 1

label = 0

Optimizations: Idempotence
P: Concurrent discovery conflict (v5,8)

S: Idempotent operations (frontier reorganization)

- Allow multiple concurrent discoveries on the same output element

- Avoid atomic operations

First appeared in BFS [4], now available to other primitives
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Optimizations: Pull vs. push traversal
P: From many to very few (v5,6,7,8,9,10 -> v11, 12)

S: Pull vs. push operations (frontier generation)

- Automatic selection of advance direction based on ratio of undiscovered vertices

First appeared in DO-BFS [5], now available to other primitives 

Advance

7 1113 5 Pull-based

Push-based

11 11 11 1112 12

11 12
Input

label = 2

label = 1 2 3 4

5 106 7 8 9

Unvisited vertices

label = ? 11 12
13

12 12

To: V11 V12 V13 Output frontier
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High-priority 

pile

Temp output queue

th = 2.0

Low-priority pile

Optimizations: Priority queue
P: A lot of redundant work in SSSP-like primitives

S: Priority queue (frontier reorganization)

- Expand high-priority vertices first

First appeared in SSSP[3], now available to other primitives 

5 7 8 9 10

5 8 7 9 10

Priority Queue

Scan + Compact

Next

Input 2 3 4

5 106 7 8 9
1.3 4.5 1.89.4 7.2 8.6

6

6
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Idea: Multiple GPUs
P: Single GPU is not big and fast enough

S: use multiple GPUs

-> larger combined memory space and computing power

P: Multi-GPU program is very difficult to develop and optimize

S: Make algorithm-independent parts into a multi-GPU framework

-> Hide implementation details, and save user's valuable time

P: Single GPU primitives can’t run on multi-GPU

S: Partition the graph, renumber the vertices in individual sub-graphs

    and do data exchange between super steps

-> Primitives can run on multi-GPUs as it is on single GPU
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Multi-GPU Framework (for programmers)

Iterate till 

convergence

Input frontier

Output frontier

Single GPU

Associative data 

(label, parent, etc.)

Recap: Gunrock on single GPU
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Multi-GPU Framework (for programmers)

Iterate till 

convergence

Input frontier

Output frontier

GPU 0

Associative data 

(label, parent, etc.)

Input frontier

Output frontier

GPU 1

Associative data 

(label, parent, etc.)

Dream: just duplicate the single GPU implementation

Reality: it won’t work, but good try!
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Now it works

Iterate till all GPUs 

convergence

Multi-GPU Framework (for programmers)

Local 

input frontier

Local 

output frontier

GPU 0

Associative data 

(label, parent, etc.)

GPU 1

Associative data 

(label, parent, etc.)

Remote 

output frontier

Remote 

input frontier

Remote input 

frontier

Local 

input frontier

Remote 

output frontier

Local 

output frontier

Partition
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Multi-GPU Framework (for programmers)

Local input frontier

Partitioner
Input graph Partition 

table Sub-graph builder
Sub-graphs

Local input frontier

Output sub-frontier

Merge

Received data package

Remote input frontier

Output sub-frontier

Full-queue kernels

Merged frontier

Output frontier

Separate

Local 
output 

frontier

Remote 
output 
frontier

Data package

Output sub-frontier

Merge

Remote input frontier

Output sub-frontier

Merged frontier

Output frontier

Separate

Local 
output 

frontier

Remote 
output 
frontier

Data package
Received data package

FinishConverged? Converged?

GPU0 GPU1

Package data

Push to peer

Unpackage

Sub-queue kernelsSub-queue kernels

Unpackage

Legend:

Package data

Push to peer

Parameters 
required from user

User provided 
operations

Sub-queue kernels

Full-queue kernels
Single GPU 
data flow

Multi GPU 
data flow

Sub-queue kernels
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Multi-GPU Framework (for end users)

gunrock_executable input_graph --device=0,1,2,3 other_parameters
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Graph partitioning
- Distribute the vertices

- Host edges on their sources’ host GPU

- Duplicate remote adjacent vertices locally

- Renumber vertices on each GPU

-> Primitives no need to know peer GPUs

-> Local and remote vertices are separated

-> Partitioning algorithm not fixed

P: Still looking for good partitioning algorithm /scheme
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Graph partitioning
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Optimizations: Multi-GPU Support & Memory Allocation
P: Serialized GPU operation dispatch and execution

S: Multi CPU threads and multiple GPU streams

    ≥1 CPU threads with multiple GPU streams to control each individual GPUs 

-> overlap computation and transmission

-> avoid false dependency

P: Memory requirement only known after advance / filter

S: Just-enough memory allocation

    check space requirement before every possible overflow

-> minimize memory usage

-> can be turned off for performance, if requirements are known (e.g. from previous runs on similar graphs)
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Results: Single GPU Gunrock vs. Others
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* 17x (avg.) vs. BGL [6], a single thread CPU graph library;
* 2.4x (avg.) vs. Ligra [8], a multi-thread CPU graph library;
* beats Cusha [7] with bitcoin dataset;
* comparable with hardwired GPU implementations, 
   some speed-up from applying optimizations across primitives;
* 10x (avg.) vs. MapGraph [9], especially for CC



Results: Multi-GPU Gunrock vs. Others (BFS)
Ref. Ref. hardware Ref. 

performance

Our hardware Our performance

rmat_n20_128 Merrill et al. [4] 4x Tesla C2050 8.3 GTEPS 4x Tesla K40 11.2 GTEPS

rmat_n20_16 Zhong et al. [10] 4x Tesla C2050 15.4 ms 4x Tesla K40 9.29 ms

peak performance
Fu et al. [9] 16x Tesla K20 15 GTEPS 6x Tesla K40 22.3 GTEPS

peak performance
Fu et al. [11] 16x Tesla K20 29.1 GTEPS 6x Tesla K40 22.3 GTEPS

* ~ 35% faster than Merrill et al.’s results. Their results on > 3-year-old hardware are 

impressive, though only customized to BFS. 

* > 50% faster than Medusa (Zhong et al.), another programmable graph framework.

* 6 GPU peak performance comparable to MapGraph (Fu et al.) using 16 GPU cluster 
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Results: Multi-GPU Scaling
* Traversed edges per sec (TEPS) for BFS→
* Strong scaling on rmat_n22_48 ↓
* Weak scaling on R-MAT graphs (scale 48, 

each GPU hosting ~180M edges) ↘ 
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Things that we can improve on
* Partitioning

* Inter-iteration overhead

* Long tail / small frontier issue

Speedup of 5 algorithms (→), BFS (↙) and PR (↘)
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Current Status
It has over 10 graph primitives

* traversal-based, node-ranking, global (CC, MST)

* LOC ≤ 10 to use a primitive

* LOC ≤ 300 to program a new primitive

* Good balance between performance and programmability

Multi-GPU framework under major revision

* use circular-queue for better scheduling and smaller overhead

* extendable onto multi-node usage

More graph primitives are coming

*  graph coloring, maximum independent set, community detection, subgraph matching

Open source, available @ 
http://gunrock.github.io/
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Future Work
* Multi-node support with NVLink

* Performance analysis and optimization

* Graph BLAS

* Asynchronized graph algorithms

* Fixed partitioning / 2D partitioning

* Global, neighborhood, and sampling operations

* More graph primitives

* Dynamic graphs

* Kernel fusion

* … 
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Questions?
Q: How can I find Gunrock?

A: http://gunrock.github.io/

Q: Papers, slides, etc.?

A: https://github.com/gunrock/gunrock#publications 

Q: Requirements?

A: CUDA ≥ 5.5, GPU compute capability ≥ 3.0, Linux || Mac OS

Q: Language?

A: C/C++, with a simple wrapper connects to Python

Q: … (continue)

Q: Is it free and open?

A: Absolutely (under Apache License v2.0)
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Example python interface - breadth-first search
from ctypes import *
### load gunrock shared library - libgunrock
gunrock = cdll.LoadLibrary('../../build/lib/libgunrock.so')

### read in input CSR arrays from files
row_list = [int(x.strip()) for x in open('toy_graph/row.txt')]
col_list = [int(x.strip()) for x in open('toy_graph/col.txt')]

### convert CSR graph inputs for gunrock input
row = pointer((c_int * len(row_list))(*row_list))
col = pointer((c_int * len(col_list))(*col_list))
nodes = len(row_list) - 1
edges = len(col_list)

### output array
labels = pointer((c_int * nodes)())

### call gunrock function on device
gunrock.bfs(labels, nodes, edges, row, col, 0)

### sample results
print ' bfs labels (depth):',
for idx in range(nodes): print labels[0][idx], Gunrock @ GPU Technology Theater, Nov. 19, 2015    |   34


