Hidden Markov Model

Jia Li
Department of Statistics
The Pennsylvania State University

Hidden Markov Model

- Hidden Markov models have close connection with mixture models.
- A mixture model generates data as follows.

- For sequence or spatial data, the assumption of independent samples is too constrained.
- The statistical dependence among samples may bear critical information.
- Examples:
- Speech signal
- Genomic sequences

Model Setup

- Suppose we have a sequential data

$$
\mathbf{u}=\left\{u_{1}, u_{2}, \ldots, u_{t}, \ldots, u_{T}\right\}, u_{t} \in \mathcal{R}^{d}
$$

- As in the mixture model, every $u_{t}, t=1, \ldots, T$, is generated by a hidden state, s_{t}.

- The underlying states follow a Markov chain.
- Given present, the future is independent of the past:

$$
P\left(s_{t+1} \mid s_{t}, s_{t-1}, \ldots, s_{0}\right)=P\left(s_{t+1} \mid s_{t}\right)
$$

- Transition probabilities:

$$
a_{k, l}=P\left(s_{t+1}=l \mid s_{t}=k\right),
$$

$k, I=1,2, \ldots, M$, where M is the total number of states. Initial probabilities of states: π_{k}.

$$
\sum_{l=1}^{M} a_{k, l}=1 \quad \text { for any } k, \sum_{k=1}^{M} \pi_{k}=1
$$

- $P\left(s_{1}, s_{2}, \ldots, s_{T}\right)=P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{2}\right) \cdots P\left(s_{T} \mid s_{T-1}\right)$ $=\pi_{s_{1}} a_{s_{1}, s_{2}} a_{s_{2}, s_{3}} \cdots a_{s_{T-1}, s_{T}}$.
- Given the state s_{t}, the observation u_{t} is independent of other observations and states.
- For a fixed state, the observation u_{t} is generated according to a fixed probability law.
- Given state k, the probability law of U is specified by $b_{k}(u)$.
- Discrete: suppose U takes finitely many possible values, $b_{k}(u)$ is specified by the pmf (probability mass function).
- Continuous: most often the Gaussian distribution is assumed.

$$
b_{k}(u)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{k}\right|}} \exp \left(-\frac{1}{2}\left(u-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(u-\mu_{k}\right)\right)
$$

- In summary:

$$
\begin{aligned}
P(\mathbf{u}, \mathbf{s}) & =P(\mathbf{s}) P(\mathbf{u} \mid \mathbf{s}) \\
& =\pi_{s_{1}} b_{s_{1}}\left(u_{1}\right) a_{s_{1}, s_{2}} b_{s_{2}}\left(u_{2}\right) \cdots a_{s_{T-1}, s_{T}} b_{s_{T}}\left(u_{T}\right) . \\
P(\mathbf{u}) & =\sum_{\mathbf{s}} P(\mathbf{s}) P(\mathbf{u} \mid \mathbf{s}) \quad \text { total prob. formula } \\
& =\sum_{\mathbf{s}} \pi_{s_{1}} b_{s_{1}}\left(u_{1}\right) a_{s_{1}, s_{2}} b_{s_{2}}\left(u_{2}\right) \cdots a_{s_{T-1}, s_{T}} b_{s_{T}}\left(u_{T}\right)
\end{aligned}
$$

Example

- Suppose we have a video sequence and would like to automatically decide whether a speaker is in a frame.
- Two underlying states: with a speaker (state 1) vs. without a speaker (state 2).
- From frame 1 to T, let $s_{t}, t=1, \ldots, T$ denotes whether there is a speaker in the frame.
- It does not seem appropriate to assume that s_{t} 's are independent. We may assume the state sequence follows a Markov chain.
- If one frame contains a speaker, it is highly likely that the next frame also contains a speaker because of the strong frame-to-frame dependence. On the other hand, a frame without a speaker is much more likely to be followed by another frame without a speaker.
- For a computer program, the states are unknown. Only features can be extracted for each frame. The features are the observation, which can be organized into a vector.
- The goal is to figure out the state sequence given the observed sequence of feature vectors.
- We expect the probability distribution of the feature vector to differ according to the state. However, these distributions may overlap, causing classification errors.
- By using the dependence among states, we may make better guesses of the states than guessing each state separately using only the feature vector of that frame.

Model Estimation

- Parameters involved:
- Transition probabilities: $a_{k}, l, k, l=1, \ldots, M$.
- Initial probabilities: $\pi_{k}, k=1, \ldots, M$.
- For each state k, μ_{k}, Σ_{k}.

Definitions

- Under a given set of parameters, let $L_{k}(t)$ be the conditional probability of being in state k at position t given the entire observed sequence $\mathbf{u}=\left\{u_{1}, u_{2}, \ldots, u_{T}\right\}$.

$$
L_{k}(t)=P\left(s_{t}=k \mid \mathbf{u}\right)=\sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u}) I\left(s_{t}=k\right) .
$$

- Under a given set of parameters, let $H_{k, l}(t)$ be the conditional probability of being in state k at position t and being in state l at position $t+1$, i.e., seeing a transition from k to $/$ at t, given the entire observed sequence \mathbf{u}.

$$
\begin{aligned}
H_{k, l}(t) & =P\left(s_{t}=k, s_{t+1}=I \mid \mathbf{u}\right) \\
& =\sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u}) I\left(s_{t}=k\right) I\left(s_{t+1}=l\right)
\end{aligned}
$$

- Note that $L_{k}(t)=\sum_{l=1}^{M} H_{k, l}(t), \sum_{k=1}^{M} L_{k}(t)=1$.
- Maximum likelihood estimation by EM:
- E step: Under the current set of parameters, compute $L_{k}(t)$ and $H_{k, I}(t)$, for $k, I=1, \ldots, M, t=1, \ldots, T$.
- M step: Update parameters.

$$
\begin{gathered}
\mu_{k}=\frac{\sum_{t=1}^{T} L_{k}(t) u_{t}}{\sum_{t=1}^{T} L_{k}(t)} \\
\Sigma_{k}=\frac{\sum_{t=1}^{T} L_{k}(t)\left(u_{t}-\mu_{k}\right)\left(u_{t}-\mu_{k}\right)^{t}}{\sum_{t=1}^{T} L_{k}(t)} \\
a_{k, l}=\frac{\sum_{t=1}^{T-1} H_{k, l}(t)}{\sum_{t=1}^{T-1} L_{k}(t)} .
\end{gathered}
$$

- Note: the initial probabilities of states π_{k} are often manually determined. We can also estimate them by

$$
\begin{aligned}
\pi_{k} & \propto \sum_{t=1}^{T} L_{k}(t), \quad \sum_{k=1}^{M} \pi_{k}=1 \\
\text { or } \pi_{k} & \propto L_{k}(1)
\end{aligned}
$$

Comparison with the Mixture Model

- $L_{k}(t)$ is playing the same role as the posterior probability of a component (state) given the observation, i.e., $p_{t, k}$.

$$
\begin{aligned}
L_{k}(t) & =P\left(s_{t}=k \mid u_{1}, u_{2}, \ldots, u_{t}, \ldots, u_{T}\right) \\
p_{t, k} & =P\left(s_{t}=k \mid u_{t}\right)
\end{aligned}
$$

If we view a mixture model as a special hidden Markov model with the underlying state process being i.i.d (a reduced Markov chain), $p_{t, k}$ is exactly $L_{k}(t)$.

- The posterior probabilities $p_{t, k}$ in the mixture model can be determined using only sample u_{t} because of the independent sample assumption.
- $L_{k}(t)$ depends on the entire sequence because of the underlying Markov process.
- For a mixture model, we have

$$
\begin{gathered}
\mu_{k}=\frac{\sum_{t=1}^{T} p_{t, k} u_{t}}{\sum_{t=1}^{T} p_{t, k}} \\
\Sigma_{k}=\frac{\sum_{t=1}^{T} p_{t, k}\left(u_{t}-\mu_{k}\right)\left(u_{t}-\mu_{k}\right)^{t}}{\sum_{t=1}^{T} p_{t, k}}
\end{gathered}
$$

Derivation from EM

- The incomplete data are $\mathbf{u}=\left\{u_{t}: t=1, \ldots, T\right\}$. The complete data are $\mathbf{x}=\left\{s_{t}, u_{t}: t=1, \ldots, T\right\}$.
- Note $Q\left(\theta^{\prime} \mid \theta\right)=E\left(\log \left(f\left(\mathbf{x} \mid \theta^{\prime}\right)\right) \mid \mathbf{u}, \theta\right)$.
- Let $\mathcal{M}=\{1,2, \ldots, M\}$.
- The function $f\left(\mathbf{x} \mid \theta^{\prime}\right)$ is

$$
\begin{aligned}
f\left(\mathbf{x} \mid \theta^{\prime}\right) & =P\left(\mathbf{s} \mid \theta^{\prime}\right) P\left(\mathbf{u} \mid \mathbf{s}, \theta^{\prime}\right) \\
& =P\left(\mathbf{s} \mid a_{k, l}^{\prime}: k, l \in \mathcal{M}\right) P\left(\mathbf{u} \mid \mathbf{s}, \mu_{k}^{\prime}, \mathbf{\Sigma}_{k}^{\prime}: k \in \mathcal{M}\right) \\
& =\pi_{s_{1}}^{\prime} \prod_{t=2}^{T} a_{s_{t-1}, s_{t}}^{\prime} \times \prod_{t=1}^{T} P\left(u_{t} \mid \mu_{s_{t}}^{\prime}, \boldsymbol{\Sigma}_{s_{t}}^{\prime}\right) .
\end{aligned}
$$

We then have

$$
\begin{align*}
\log f\left(\mathbf{x} \mid \theta^{\prime}\right)= & \log \left(\pi_{s_{1}}^{\prime}\right)+\sum_{t=2}^{T} \log a_{s_{t-1}, s_{t}}^{\prime}+ \\
& \sum_{t=1}^{T} \log P\left(u_{t} \mid \mu_{s_{t}}^{\prime}, \Sigma_{s_{t}}^{\prime}\right) \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& E\left(\log f\left(\mathbf{x} \mid \theta^{\prime}\right) \mid \mathbf{u}, \theta\right) \\
= & \sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u}, \theta)\left[\log \left(\pi_{s_{1}}^{\prime}\right)+\sum_{t=2}^{T} \log a_{s_{t-1}, s_{t}}^{\prime}+\right. \\
& \left.\sum_{t=1}^{T} \log P\left(u_{t} \mid \mu_{s_{t}}^{\prime}, \boldsymbol{\Sigma}_{s_{t}}^{\prime}\right)\right] \\
= & \sum_{k=1}^{M} L_{k}(1) \log \left(\pi_{k}^{\prime}\right)+\sum_{t=2}^{T} \sum_{k=1}^{M} \sum_{l=1}^{M} H_{k, l}(t) \log a_{k, l}^{\prime} \\
& +\sum_{t=1}^{T} \sum_{k=1}^{M} L_{k}(t) \log P\left(u_{t} \mid \mu_{k}^{\prime}, \Sigma_{k}^{\prime}\right)
\end{aligned}
$$

- Prove the equality of the second term

$$
\begin{aligned}
& \sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u}, \theta) \sum_{t=2}^{T} \log a_{s_{t-1}, s_{t}}^{\prime} \\
= & \sum_{t=2}^{T} \sum_{k=1}^{M} \sum_{l=1}^{M} H_{k, l}(t) \log a_{k, l}^{\prime}
\end{aligned}
$$

Similar proof applies to the equality corresponding to other terms.

$$
\begin{aligned}
& \sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u}, \theta) \sum_{t=2}^{T} \log a_{s_{t-1}, s_{t}}^{\prime} \\
= & \sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u}, \theta) \sum_{t=2}^{T} \sum_{k=1}^{M} \sum_{l=1}^{M} I\left(s_{t-1}=k\right) I\left(s_{t}=l\right) \log a_{k, l}^{\prime} \\
= & \sum_{\mathbf{s}} \sum_{t=2}^{T} \sum_{k=1}^{M} \sum_{l=1}^{M} P(\mathbf{s} \mid \mathbf{u}, \theta) I\left(s_{t-1}=k\right) I\left(s_{t}=l\right) \log a_{k, l}^{\prime} \\
= & \sum_{t=2}^{T} \sum_{k=1}^{M} \sum_{l=1}^{M}\left[\sum_{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u}, \theta) I\left(s_{t-1}=k\right) I\left(s_{t}=l\right)\right] \log a_{k, l}^{\prime} \\
= & \sum_{t=2}^{T} \sum_{k=1}^{M} \sum_{l=1}^{M} H_{k, l}(t) \log a_{k, l}^{\prime}
\end{aligned}
$$

- The maximization of the above expectation gives the update formulas in the M-step.
- Note that the optimization of $\mu_{k}^{\prime}, \Sigma_{k}^{\prime}$ can be separated from that of $a_{k, l}^{\prime}$ and π_{k}. The optimization of $a_{k, l}^{\prime}$ can be separated for different k.
- The optimization of μ_{k}^{\prime} and Σ_{k}^{\prime} is the same as for the mixture model with $p_{t, k}$ replaced by $L_{k}(t)$.

Forward-Backward Algorithm

- The forward-backward algorithm is used to compute $L_{k}(t)$ and $H_{k, l}(t)$ efficiently.
- The amount of computation needed is at the order of $M^{2} T$. Memory required is at the order of $M T$.
- Define the forward probability $\alpha_{k}(t)$ as the joint probability of observing the first t vectors $u_{\tau}, \tau=1, \ldots, t$, and being in state k at time t.

$$
\alpha_{k}(t)=P\left(u_{1}, u_{2}, \ldots, u_{t}, s_{t}=k\right)
$$

- This probability can be evaluated by the following recursive formula:

$$
\begin{aligned}
\alpha_{k}(1)= & \pi_{k} b_{k}\left(u_{1}\right) \quad 1 \leq k \leq M \\
\alpha_{k}(t)= & b_{k}\left(u_{t}\right) \sum_{l=1}^{M} \alpha_{l}(t-1) a_{l, k}, \\
& 1<t \leq T, 1 \leq k \leq M .
\end{aligned}
$$

- Proof:

$$
\begin{aligned}
& \alpha_{k}(t)=P\left(u_{1}, u_{2}, \ldots, u_{t}, s_{t}=k\right) \\
= & \sum_{l=1}^{M} P\left(u_{1}, u_{2}, \ldots, u_{t}, s_{t}=k, s_{t-1}=I\right) \\
= & \sum_{l=1}^{M} P\left(u_{1}, \ldots, u_{t-1}, s_{t-1}=l\right) \cdot P\left(u_{t}, s_{t}=k \mid s_{t-1}=I, u_{1}, \ldots, u_{t-1}\right) \\
= & \sum_{l=1}^{M} \alpha_{l}(t-1) P\left(u_{t}, s_{t}=k \mid s_{t-1}=I\right) \\
= & \sum_{l=1}^{M} \alpha_{l}(t-1) P\left(u_{t} \mid s_{t}=k, s_{t-1}=I\right) \cdot P\left(s_{t}=k \mid s_{t-1}=I\right) \\
= & \sum_{l=1}^{M} \alpha_{l}(t-1) P\left(u_{t} \mid s_{t}=k\right) P\left(s_{t}=k \mid s_{t-1}=I\right) \\
= & \sum_{l=1}^{M} \alpha_{l}(t-1) b_{k}\left(u_{t}\right) a_{l, k}
\end{aligned}
$$

The fourth equality comes from the fact given s_{t-1}, s_{t} is independent of all $s_{\tau}, \tau=1,2, \ldots, t-2$ and hence u_{τ}, $\tau=1, \ldots, t-2$. Also s_{t} is independent of u_{t-1} since s_{t-1} is given.

- Define the backward probability $\beta_{k}(t)$ as the conditional probability of observing the vectors after time t, u_{τ}, $\tau=t+1, \ldots, T$, given the state at time t is k.

$$
\begin{aligned}
\beta_{k}(t)= & P\left(u_{t+1}, \ldots, u_{T} \mid s_{t}=k\right), 1 \leq t \leq T-1 \\
& \text { Set } \beta_{k}(T)=1, \quad \text { for all } k .
\end{aligned}
$$

- As with the forward probability, the backward probability can be evaluated using the following recursion

$$
\begin{aligned}
\beta_{k}(T) & =1 \\
\beta_{k}(t) & =\sum_{l=1}^{M} a_{k, l} b_{l}\left(u_{t+1}\right) \beta_{l}(t+1) \quad 1 \leq t<T .
\end{aligned}
$$

- Proof: $\beta_{k}(t)=P\left(u_{t+1}, \ldots, u_{T} \mid s_{t}=k\right)$

$$
\begin{aligned}
& =\sum_{l=1}^{M} P\left(u_{t+1}, \ldots, u_{T}, s_{t+1}=I \mid s_{t}=k\right) \\
& =\sum_{l=1}^{M} P\left(s_{t+1}=I \mid s_{t}=k\right) P\left(u_{t+1}, \ldots, u_{T} \mid s_{t+1}=I, s_{t}=k\right) \\
& =\sum_{l=1}^{M} a_{k, l} P\left(u_{t+1}, \ldots, u_{T} \mid s_{t+1}=I\right) \\
& =\sum_{l=1}^{M} a_{k, l} P\left(u_{t+1} \mid s_{t+1}=I\right) P\left(u_{t+2}, \ldots, u_{T} \mid s_{t+1}=I, u_{t+1}\right) \\
& =\sum_{l=1}^{M} a_{k, I} P\left(u_{t+1} \mid s_{t+1}=I\right) P\left(u_{t+2}, \ldots, u_{T} \mid s_{t+1}=I\right) \\
& =\sum_{l=1}^{M} a_{k, l} b_{l}\left(u_{t+1}\right) \beta_{l}(t+1)
\end{aligned}
$$

- The probabilities $L_{k}(t)$ and $H_{k, I}(t)$ are solved by

$$
\begin{aligned}
L_{k}(t) & =P\left(s_{t}=k \mid \mathbf{u}\right)=\frac{P\left(\mathbf{u}, s_{t}=k\right)}{P(\mathbf{u})} \\
& =\frac{1}{P(\mathbf{u})} \alpha_{k}(t) \beta_{k}(t) \\
H_{k, l}(t) & =P\left(s_{t}=k, s_{t+1}=I \mid \mathbf{u}\right) \\
& =\frac{P\left(\mathbf{u}, s_{t}=k, s_{t+1}=I\right)}{P(\mathbf{u})} \\
& =\frac{1}{P(\mathbf{u})} \alpha_{k}(t) a_{k, l} b_{l}\left(u_{t+1}\right) \beta_{l}(t+1)
\end{aligned}
$$

- Proof for $L_{k}(t)$:

$$
\begin{aligned}
& P\left(\mathbf{u}, s_{t}=k\right)=P\left(u_{1}, \ldots, u_{t}, \ldots, u_{T}, s_{t}=k\right) \\
= & P\left(u_{1}, \ldots, u_{t}, s_{t}=k\right) P\left(u_{t+1}, \ldots, u_{T} \mid s_{t}=k, u_{1}, \ldots, u_{t}\right) \\
= & \alpha_{k}(t) P\left(u_{t+1}, \ldots, u_{T} \mid s_{t}=k\right) \\
= & \alpha_{k}(t) \beta_{k}(t)
\end{aligned}
$$

- Proof for $H_{k, I}(t)$:

$$
\begin{aligned}
& P\left(\mathbf{u}, s_{t}=k, s_{t+1}=I\right) \\
= & P\left(u_{1}, \ldots, u_{t}, \ldots, u_{T}, s_{t}=k, s_{t+1}=I\right) \\
= & P\left(u_{1}, \ldots, u_{t}, s_{t}=k\right) . \\
& P\left(u_{t+1}, s_{t+1}=I \mid s_{t}=k, u_{1}, \ldots, u_{t}\right) . \\
& P\left(u_{t+2}, \ldots, u_{T} \mid s_{t+1}=I, s_{t}=k, u_{1}, \ldots, u_{t+1}\right) \\
= & \alpha_{k}(t) P\left(u_{t+1}, s_{t+1}=I \mid s_{t}=k\right) . \\
& P\left(u_{t+2}, \ldots, u_{T} \mid s_{t+1}=I\right) \\
= & \alpha_{k}(t) P\left(s_{t+1}=I \mid s_{t}=k\right) . \\
& P\left(u_{t+1} \mid s_{t+1}=I, s_{t}=k\right) \beta_{l}(t+1) \\
= & \alpha_{k}(t) a_{k, I} P\left(u_{t+1} \mid s_{t+1}=I\right) \beta_{l}(t+1) \\
= & \alpha_{k}(t) a_{k, l} b_{l}\left(u_{t+1}\right) \beta_{l}(t+1)
\end{aligned}
$$

- Note that the amount of computation for $L_{k}(t)$ and $H_{k, I}(t)$, $k, I=1, \ldots, M, t=1, \ldots, T$ is at the order of $M^{2} T$.
- Note:

$$
P(\mathbf{u})=\sum_{k=1}^{M} \alpha_{k}(t) \beta_{k}(t), \text { for any } t
$$

- In particular, if we let $t=T$,

$$
P(\mathbf{u})=\sum_{k=1}^{M} \alpha_{k}(T) \beta_{k}(T)=\sum_{k=1}^{M} \alpha_{k}(T)
$$

Proof:

$$
\begin{aligned}
P(\mathbf{u}) & =P\left(u_{1}, \ldots, u_{t}, \ldots, u_{T}\right) \\
& =\sum_{k=1}^{M} P\left(u_{1}, \ldots, u_{t}, \ldots, u_{T}, s_{t}=k\right) \\
& =\sum_{k=1}^{M} P\left(u_{1}, \ldots, u_{t}, s_{t}=k\right) P\left(u_{t+1}, \ldots, u_{T} \mid s_{t}, u_{1}, \ldots, u_{t}\right) \\
& =\sum_{k=1}^{M} \alpha_{k}(t) P\left(u_{t+1}, \ldots, u_{T} \mid s_{t}\right) \\
& =\sum_{k=1}^{M} \alpha_{k}(t) \beta_{k}(t)
\end{aligned}
$$

The Estimation Algorithm

The estimation algorithm iterates the following steps:

- Compute the forward and backward probabilities $\alpha_{k}(t), \beta_{k}(t)$, $k=1, \ldots, M, t=1, \ldots, T$ under the current set of parameters.

$$
\begin{gathered}
\alpha_{k}(1)=\pi_{k} b_{k}\left(u_{1}\right) 1 \leq k \leq M \\
\alpha_{k}(t)=b_{k}\left(u_{t}\right) \sum_{l=1}^{M} \alpha_{l}(t-1) a_{l, k} \\
1<t \leq T, 1 \leq k \leq M \\
\beta_{k}(T)=1 \\
\beta_{k}(t)=\sum_{l=1}^{M} a_{k, l} b_{l}\left(u_{t+1}\right) \beta_{l}(t+1) \quad 1 \leq t<T
\end{gathered}
$$

- Compute $L_{k}(t), H_{k, l}(t)$ using $\alpha_{k}(t), \beta_{k}(t)$. Let $P(\mathbf{u})=\sum_{k=1}^{M} \alpha_{k}(1) \beta_{k}(1)$.

$$
\begin{aligned}
L_{k}(t) & =\frac{1}{P(\mathbf{u})} \alpha_{k}(t) \beta_{k}(t) \\
H_{k, l}(t) & =\frac{1}{P(\mathbf{u})} \alpha_{k}(t) a_{k, l} b_{l}\left(u_{t+1}\right) \beta_{l}(t+1)
\end{aligned}
$$

- Update the parameters using $L_{k}(t), H_{k, I}(t)$.

$$
\begin{gathered}
\mu_{k}=\frac{\sum_{t=1}^{T} L_{k}(t) u_{t}}{\sum_{t=1}^{T} L_{k}(t)} \\
\Sigma_{k}=\frac{\sum_{t=1}^{T} L_{k}(t)\left(u_{t}-\mu_{k}\right)\left(u_{t}-\mu_{k}\right)^{t}}{\sum_{t=1}^{T} L_{k}(t)} \\
a_{k, l}=\frac{\sum_{t=1}^{T-1} H_{k, l}(t)}{\sum_{t=1}^{T-1} L_{k}(t)} .
\end{gathered}
$$

Multiple Sequences

- If we estimate an HMM using multiple sequences, the previous estimation algorithm can be extended naturally.
- For brevity, let's assume all the sequences are of length T. Denote the i th sequence by $\mathbf{u}_{i}=\left\{u_{i, 1}, u_{i, 2}, \ldots, u_{i, T}\right\}$, $i=1, \ldots, N$.
- In each iteration, we compute the forward and backward probabilities for each sequence separately in the same way as previously described.
- Compute $L_{k}(t)$ and $H_{k, l}(t)$ separately for each sequence, also in the same way as previously described.
- Update parameters similarly.
- Compute the forward and backward probabilities $\alpha_{k}^{(i)}(t)$, $\beta_{k}^{(i)}(t), k=1, \ldots, M, t=1, \ldots, T, i=1, \ldots, N$, under the current set of parameters.

$$
\begin{aligned}
& \alpha_{k}^{(i)}(1)= \pi_{k} b_{k}\left(u_{i, 1}\right), 1 \leq k \leq M, 1 \leq i \leq N \\
& \alpha_{k}^{(i)}(t)= b_{k}\left(u_{i, t}\right) \sum_{l=1}^{M} \alpha_{l}^{(i)}(t-1) a_{l, k}, \\
& 1<t \leq T, 1 \leq k \leq M, 1 \leq i \leq N . \\
& \beta_{k}^{(i)}(T)=1,1 \leq k \leq M, 1 \leq i \leq N \\
& \beta_{k}^{(i)}(t)= \sum_{l=1}^{M} a_{k, l} b_{l}\left(u_{i, t+1}\right) \beta_{l}^{(i)}(t+1) \\
& 1 \leq t<T, 1 \leq k \leq M, 1 \leq i \leq N .
\end{aligned}
$$

- Compute $L_{k}^{(i)}(t), H_{k, l}^{(i)}(t)$ using $\alpha_{k}^{(i)}(t), \beta_{k}^{(i)}(t)$. Let $P\left(\mathbf{u}_{i}\right)=\sum_{k=1}^{M} \alpha_{k}^{(i)}(1) \beta_{k}^{(i)}(1)$.

$$
\begin{aligned}
L_{k}^{(i)}(t) & =\frac{1}{P\left(\mathbf{u}_{i}\right)} \alpha_{k}^{(i)}(t) \beta_{k}^{(i)}(t) \\
H_{k, I}^{(i)}(t) & =\frac{1}{P\left(\mathbf{u}_{i}\right)} \alpha_{k}^{(i)}(t) a_{k, l} b_{l}\left(u_{i, t+1}\right) \beta_{l}^{(i)}(t+1)
\end{aligned}
$$

- Update the parameters using $L_{k}(t), H_{k, I}(t)$.

$$
\begin{gathered}
\mu_{k}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T} L_{k}^{(i)}(t) u_{i, t}}{\sum_{i=1}^{N} \sum_{t=1}^{T} L_{k}^{(i)}(t)} \\
\Sigma_{k}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T} L_{k}^{(i)}(t)\left(u_{i, t}-\mu_{k}\right)\left(u_{i, t}-\mu_{k}\right)^{t}}{\sum_{i=1}^{N} \sum_{t=1}^{T} L_{k}^{(i)}(t)} \\
a_{k, l}=\frac{\sum_{i=1}^{N} \sum_{t=1}^{T-1} H_{k, l}^{(i)}(t)}{\sum_{i=1}^{N} \sum_{t=1}^{T-1} L_{k}^{(i)}(t)} .
\end{gathered}
$$

HMM with Discrete Data

- Given a state k, the distribution of the data U is discrete, specified by a pmf.
- Assume $U \in \mathcal{U}=\{1,2, \ldots J\}$. Denote $b_{k}(j)=q_{k, j}$, $j=1, \ldots, J$.
- Parameters in the HMM: $a_{k, l}$ and $q_{k, j}, k, I=1, \ldots, M$, $j=1, \ldots, J$.
- Model estimation by the following iteration:
- Compute the forward and backward probabilities $\alpha_{k}(t), \beta_{k}(t)$. Note that $b_{k}\left(u_{t}\right)=q_{k, u_{t}}$.
- Compute $L_{k}(t), H_{k, I}(t)$ using $\alpha_{k}(t), \beta_{k}(t)$.
- Update the parameters as follows:

$$
\begin{gathered}
a_{k, l}=\frac{\sum_{t=1}^{T-1} H_{k, l}(t)}{\sum_{t=1}^{T-1} L_{k}(t)}, k, I=1, \ldots, M \\
q_{k, j}=\frac{\sum_{t=1}^{T} L_{k}(t) I\left(u_{t}=j\right)}{\sum_{t=1}^{T} L_{k}(t)}, k=1, \ldots, M ; j=1, \ldots, J
\end{gathered}
$$

Viterbi Algorithm

- In many applications using HMM, we need to predict the state sequence $\mathbf{s}=\left\{s_{1}, \ldots, s_{T}\right\}$ based on the observed data $\mathbf{u}=\left\{u_{1}, \ldots, u_{T}\right\}$.
- Optimization criterion: find \mathbf{s} that maximizes $P(\mathbf{s} \mid \mathbf{u})$:

$$
\mathbf{s}^{*}=\arg \max _{\mathbf{s}} P(\mathbf{s} \mid \mathbf{u})=\arg \max _{\mathbf{s}} \frac{P(\mathbf{s}, \mathbf{u})}{P(\mathbf{u})}=\arg \max _{\mathbf{s}} P(\mathbf{s}, \mathbf{u})
$$

- This criterion is called the rule of Maximum A Posteriori (MAP).
- The optimal sequence $\left\{s_{1}, s_{2}, \ldots, s_{T}\right\}$ can be found by the Viterbi algorithm.
- The amount of computation in the Viterbi algorithm is at the order of $M^{2} T$. Memory required is at the order of $M T$.
- The Viterbi algorithm maximizes an objective function $G(\mathbf{s})$, where $\mathbf{s}=\left\{s_{1}, \ldots, s_{T}\right\}, s_{t} \in\{1, \ldots, M\}$, is a state sequence and $G(\mathbf{s})$ has a special property.
- Brute-force optimization of $G(\mathbf{s})$ involves an exhaustive search of all the M^{T} possible sequences.
- Property of $G(\mathbf{s})$:

$$
G(\mathbf{s})=g_{1}\left(s_{1}\right)+g_{2}\left(s_{2}, s_{1}\right)+g_{3}\left(s_{3}, s_{2}\right)+\cdots+g_{T}\left(s_{T}, s_{T-1}\right)
$$

- The key is the objective function can be written as a sum of "merit" functions depending on one state and its preceding one.
- A Markovian kind of property:
- Suppose in the optimal state sequence \mathbf{s}^{*}, the t th position $s_{t}^{*}=k$. To maximize $G\left(s_{1}, s_{2}, \ldots, s_{T}\right)$, we can maximize the following two functions separately:

$$
\begin{array}{r}
G_{t, k}\left(s_{1}, \ldots, s_{t-1}\right)=g_{1}\left(s_{1}\right)+g_{2}\left(s_{2}, s_{1}\right)+\cdots+g_{t}\left(k, s_{t-1}\right) \\
\bar{G}_{t, k}\left(s_{t+1}, \ldots, s_{T}\right)=g_{t+1}\left(s_{t+1}, k\right)+\cdots+g_{T}\left(s_{T}, s_{T-1}\right)
\end{array}
$$

The first function involves only states before t; and the second only states after t.

- Also note the recursion of $G_{t, k}\left(s_{1}, \ldots, s_{t-1}\right)$:

$$
G_{t, l}\left(s_{1}, \ldots, s_{t-2}, k\right)=G_{t-1, k}\left(s_{1}, \ldots, s_{t-2}\right)+g_{t}(I, k) .
$$

Jia Li http://www.stat.psu.edu/~jiali

- Every state sequence \mathbf{s} corresponds to a path from $t=1$ to $t=T$.
- We put weight $g_{t}(k, I)$ on the link from state I at $t-1$ to state k at t.
- At the starting node, we put weight $g_{1}(k)$ for state k.
- $G(\mathbf{s})$ is the sum of the weights on the links in path \mathbf{s}.
- In the figure, suppose the colored path is the optimal one. At $t=3$, this path passes through state 2 . Then the sub-path before $t=3$ should be the best among all paths from $t=1$ to $t=3$ that end at state 2. The sub-path after $t=3$ should be the best among all paths from $t=3$ to $t=6$ that start at state 2.

How the Viterbi Algorithm Works (Pseudocode)

Total number of paths: $4^{\wedge} 6=4096$; Number of candidate paths in Viterbi $=4$

Pseudocode

- At $t=1$, for each node (state) $k=1, \ldots, M$, record $G_{1, k}^{*}=g_{1}(k)$.
- At $t=2$, for each node $k=1, \ldots, M$, only need to record which node is the best preceding one. Suppose node k is linked to node l^{*} at $t=1$, record I^{*} and
$G_{2, k}^{*}=\max _{I=1,2, \ldots, M}\left[G_{1, l}^{*}+g_{2}(k, I)\right]=G_{1, l^{*}}^{*}+g_{2}\left(k, I^{*}\right)$.
- The same procedure is applied successively for $t=2,3, \ldots, T$. At every node, link it to its best preceding one. Set $G_{t, k}^{*}=\max _{I=1,2, \ldots, M}\left[G_{t-1, I}^{*}+g_{t}(k, l)\right]=G_{t-1, l^{*}}^{*}+g_{t}\left(k, l^{*}\right) . G_{t, k}^{*}$ is the sum of weights of the best path up to t and with the end tied at state k and I^{*} is the best preceding state. Record I^{*} and $G_{t, k}^{*}$.
- At the end, only M paths are formed, each ending with a different state at $t=T$. The objective function for a path ending at node k is $G_{T, k}^{*}$. Pick k^{*} that maximizes $G_{T, k}^{*}$. Trace the path backwards from the last state k^{*}.

Proof for the Viterbi Algorithm

Notation:

- Let $\mathbf{s}^{*}(t, k)$ be the sequence $\left\{s_{1}, \ldots, s_{t-1}\right\}$ that maximizes $G_{t, k}\left(s_{1}, \ldots, s_{t-1}\right)$:

$$
\mathbf{s}^{*}(t, k)=\arg \max _{s_{1}, \ldots, s_{t-1}} G_{t, k}\left(s_{1}, \ldots, s_{t-1}\right)
$$

Let $G_{t, k}^{*}=\max _{s_{1}, \ldots, s_{t-1}} G_{t, k}\left(s_{1}, \ldots, s_{t-1}\right)$.

- Let $\overline{\mathbf{s}}^{*}(t, k)$ be the sequence $\left\{s_{t+1}, \ldots, s_{T}\right\}$ that maximizes $\bar{G}_{t, k}\left(s_{t+1}, \ldots, s_{T}\right):$

$$
\overline{\mathbf{s}}^{*}(t, k)=\arg \max _{s_{t+1}, \ldots, s_{T}} \bar{G}_{t, k}\left(s_{t+1}, \ldots, s_{T}\right)
$$

Key facts for proving the Viterbi algorithm:

- If the optimal state sequence \mathbf{s}^{*} has the last state $s_{T}^{*}=k$, then the subsequence of \mathbf{s}^{*} from 1 to $T-1$ should be $\mathbf{s}^{*}(T, k)$ and

$$
\max _{\mathbf{s}} G(\mathbf{s})=G_{T, k}\left(\mathbf{s}^{*}(T, k)\right) .
$$

- Since we don't know what should be s_{T}^{*}, we should compare all the possible states $k=1, \ldots, M$:

$$
\max _{\mathbf{s}} G(\mathbf{s})=\max _{k} G_{T, k}\left(\mathbf{s}^{*}(T, k)\right) .
$$

- $G_{t, k}\left(\mathbf{s}^{*}(t, k)\right)$ and $\mathbf{s}^{*}(t, k)$ can be obtained recursively for $t=1, \ldots, T$.

Proof for the recursion:

- Suppose $G_{t-1, k}\left(\mathbf{s}^{*}(t-1, k)\right)$ and $\mathbf{s}^{*}(t-1, k)$ for $k=1, \ldots, M$ have been obtained. For any $I=1, \ldots, M$:

$$
\begin{aligned}
G_{t, l}\left(\mathbf{s}^{*}(t, l)\right) & =\max _{s_{1}, \ldots, s_{t-1}} G_{t, l}\left(s_{1}, \ldots, s_{t-1}\right) \\
& =\max _{k} \max _{s_{1}, \ldots, s_{t-2}} G_{t, l}\left(s_{1}, \ldots, s_{t-2}, k\right) \\
& =\max _{k} \max _{s_{1}, \ldots, s_{t-2}}\left(G_{t-1, k}\left(s_{1}, \ldots, s_{t-2}\right)+g_{t}(I, k)\right) \\
& =\max _{k}\left(g_{t}(I, k)+\max _{s_{1}, \ldots, s_{t-2}} G_{t-1, k}\left(s_{1}, \ldots, s_{t-2}\right)\right) \\
& =\max _{k}\left(g_{t}(I, k)+G_{t-1, k}\left(\mathbf{s}^{*}(t-1, k)\right)\right.
\end{aligned}
$$

- Suppose k^{*} achieves the maximum, that is, $k^{*}=\arg \max _{k}\left(g_{t}(I, k)+G_{t-1, k}\left(\mathbf{s}^{*}(t-1, k)\right)\right.$. Then $\mathbf{s}^{*}(t, I)=\left\{s^{*}\left(t-1, k^{*}\right), k^{*}\right\}$, that is, for $\mathbf{s}^{*}(t, I)$, the last state $s_{t-1}^{*}=k^{*}$ and the subsequence from position 1 to $t-2$ is $\mathbf{s}^{*}\left(t-1, k^{*}\right)$.
- The amount of computation involved in deciding $G_{t, l}\left(\mathbf{s}^{*}(t, I)\right)$ and $\mathbf{s}^{*}(t, I)$ for all $I=1, \ldots, M$ is at the order of M^{2}. For each l, we have to exhaust M possible k 's to find k^{*}.
- To start the recursion, we have

$$
G_{1, k}(\cdot)=g_{1}(k), \mathbf{s}^{*}(1, k)=\{ \} .
$$

Note: at $\mathrm{t}=1$, there is no preceding state.

Optimal State Sequence for HMM

- We want to find the optimal state sequence \mathbf{s}^{*} :

$$
\mathbf{s}^{*}=\arg \max _{\mathbf{s}} P(\mathbf{s}, \mathbf{u})=\arg \max _{\mathbf{s}} \log P(\mathbf{s}, \mathbf{u})
$$

- The objective function:

$$
\begin{aligned}
G(\mathbf{s})= & \log P(\mathbf{s}, \mathbf{u})=\log \left[\pi_{s_{1}} b_{s_{1}}\left(u_{1}\right) a_{s_{1}, s_{2}} b_{s_{2}}\left(u_{2}\right) \cdots a_{s_{T-1}, s_{T}} b_{s_{T}}\left(u_{T}\right)\right] \\
= & {\left[\log \pi_{s_{1}}+\log b_{s_{1}}\left(u_{1}\right)\right]+\left[\log a_{s_{1}, s_{2}}+\log b_{s_{2}}\left(u_{2}\right)\right]+} \\
& \cdots+\left[\log a_{s_{T-1}, s_{T}}+\log b_{s_{T}}\left(u_{T}\right)\right]
\end{aligned}
$$

If we define

$$
\begin{aligned}
g_{1}\left(s_{1}\right) & =\log \pi_{s_{1}}+\log b_{s_{1}}\left(u_{1}\right) \\
g_{t}\left(s_{t}, s_{t-1}\right) & =\log a_{s_{t}, s_{t-1}}+\log b_{s_{t}}\left(u_{t}\right),
\end{aligned}
$$

then $G(\mathbf{s})=g_{1}\left(s_{1}\right)+\sum_{t=2}^{T} g_{t}\left(s_{t}, s_{t-1}\right)$. Hence, the Viterbi algorithm can be applied.

Viterbi Training

- Viterbi training to HMM resembles the classification EM estimation to a mixture model.
- Replace "soft" classification reflected by $L_{k}(t)$ and $H_{k, l}(t)$ by "hard" classification.
- In particular:
- Replace the step of computing forward and backward probabilities by selecting the optimal state sequence \mathbf{s}^{*} under the current parameters using the Viterbi algorithm.
- Let $L_{k}(t)=I\left(s_{t}^{*}=k\right)$, i.e., $L_{k}(t)$ equals 1 when the optimal state sequence is in state k at t; and zero otherwise. Similarly, let $H_{k, I}(t)=I\left(s_{t-1}=k\right) I\left(s_{t}=I\right)$.
- Update parameters using $L_{k}(t)$ and $H_{k, I}(t)$ and the same formulas.

Applications

Speech recognition:

- Goal: identify words spoken according to speech signals
- Automatic voice recognition systems used by airline companies
- Automatic stock price reporting
- Raw data: voice amplitude sampled at discrete time spots (a time sequence).
- Input data: speech feature vectors computed at the sampling time.

- Methodology:
- Estimate an Hidden Markov Model (HMM) for each word, e.g., State College, San Francisco, Pittsburgh. The training provides a dictionary of models $\left\{\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots\right\}$.
- For a new word, find the HMM that yields the maximum likelihood. Denote the sequence of feature vectors extracted for this voice signal by $\mathbf{u}=\left\{u_{1}, \ldots, u_{T}\right\}$. Classify to word i^{*} if $\mathcal{W}_{i^{*}}$ maximizes $P\left(\mathbf{u} \mid \mathcal{W}_{i}\right)$.
- Recall that $P(\mathbf{u})=\sum_{k=1}^{M} \alpha_{k}(T)$, where $\alpha_{k}(T)$ are the forward probabilities at $t=T$, computed using parameters specified by $\mathcal{W}_{i^{*}}$.
- In the above example, HMM is used for "profiling". Similar ideas have been applied to genomics sequence analysis, e.g., profiling families of protein sequences by HMMs.

Supervised learning:

- Use image classification as an example.
- The image is segmented into man-made and natural regions.

Jia Li http://www.stat.psu.edu/~jiali

- Training data: the original images and their manually labeled segmentation.
- Associate each block in the image with a class label. A block is an element for the interest of learning.
- At each block, compute a feature vector that is anticipated to reflect the difference between the two classes (man-made vs. natural).
- For the purpose of classification, each image is an array of feature vectors, whose true classes are known in training.
- If we ignore the spatial dependence among the blocks, an image becomes a collection of independent samples $\left\{u_{1}, u_{2}, \ldots, u_{T}\right\}$. For training data, we know the true classes $\left\{z_{1}, \ldots, z_{T}\right\}$. Any classification algorithm can be applied.
- Mixture discriminant analysis: model each class by a mixture model.
- What if we want to take spatial dependence into consideration?
- Use a hidden Markov model! A 2-D HMM would be even better.
- Assume each class contains several states. The underlying states follow a Markov chain. We need to scan the image in a certain way, say row by row or zig-zag.
- This HMM is an extension of mixture discriminant analysis with spatial dependence taken into consideration.
- Details:
- Suppose we have M states, each belonging to a certain class. Use $C(k)$ to denote the class state k belongs to. If a block is in a certain class, it can only exist in one of the states that belong to its class.
- Train the HMM using the feature vectors $\left\{u_{1}, u_{2}, \ldots, u_{T}\right\}$ and their classes $\left\{z_{1}, z_{2}, \ldots, z_{T}\right\}$. There are some minor modifications from the training algorithm described before since no class labels are involved there.
- For a test image, find the optimal sequence of states $\left\{s_{1}, s_{2}, \ldots, s_{T}\right\}$ with maximum a posteriori probability (MAP) using the Viterbi algorithm.
- Map the state sequence into classes: $\hat{z}_{t}=C\left(s_{t}^{*}\right)$.

Unsupervised learning:

- Since a mixture model can be used for clustering, HMM can be used for the same purpose. The difference lies in the fact HMM takes spatial dependence into consideration.
- For a given number of states, fit an HMM to a sequential data.
- Find the optimal state sequence \mathbf{s}^{*} by the Viterbi algorithm.
- Each state represents a cluster.
- Examples: image segmentation, etc.

