
Hidden Markov Model

Hidden Markov Model

Jia Li

Department of Statistics
The Pennsylvania State University

Email: jiali@stat.psu.edu
http://www.stat.psu.edu/∼jiali

Jia Li http://www.stat.psu.edu/∼jiali



Hidden Markov Model

Hidden Markov Model

I Hidden Markov models
have close connection
with mixture models.

I A mixture model
generates data as
follows.
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Hidden Markov Model

I For sequence or spatial data, the assumption of independent
samples is too constrained.

I The statistical dependence among samples may bear critical
information.

I Examples:
I Speech signal
I Genomic sequences
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Hidden Markov Model

Model Setup

I Suppose we have a sequential data
u = {u1, u2, ..., ut , ..., uT}, ut ∈ Rd .

I As in the mixture model, every ut , t = 1, ...,T , is generated
by a hidden state, st .

Jia Li http://www.stat.psu.edu/∼jiali



Hidden Markov Model

I The underlying states follow a Markov chain.
I Given present, the future is independent of the past:

P(st+1 | st , st−1, ..., s0) = P(st+1 | st) .

I Transition probabilities:

ak,l = P(st+1 = l | st = k) ,

k, l = 1, 2, ...,M, where M is the total number of states. Initial
probabilities of states: πk .

M∑
l=1

ak,l = 1 for any k ,

M∑
k=1

πk = 1 .
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Hidden Markov Model

I P(s1, s2, ..., sT ) = P(s1)P(s2|s1)P(s3|s2) · · ·P(sT |sT−1)
= πs1as1,s2as2,s3 · · · asT−1,sT .

I Given the state st , the observation ut is independent of other
observations and states.

I For a fixed state, the observation ut is generated according to
a fixed probability law.
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Hidden Markov Model

I Given state k, the probability law of U is specified by bk(u).
I Discrete: suppose U takes finitely many possible values, bk(u)

is specified by the pmf (probability mass function).
I Continuous: most often the Gaussian distribution is assumed.

bk(u) =
1√

(2π)d |Σk |
exp(−1

2
(u − µk)

tΣ−1
k (u − µk))
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Hidden Markov Model

I In summary:

P(u, s) = P(s)P(u | s)
= πs1bs1(u1)as1,s2bs2(u2) · · · asT−1,sT bsT (uT ) .

P(u) =
∑

s

P(s)P(u | s) total prob. formula

=
∑

s

πs1bs1(u1)as1,s2bs2(u2) · · · asT−1,sT bsT (uT )
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Example

I Suppose we have a video sequence and would like to
automatically decide whether a speaker is in a frame.

I Two underlying states: with a speaker (state 1) vs. without a
speaker (state 2).

I From frame 1 to T , let st , t = 1, ...,T denotes whether there
is a speaker in the frame.

I It does not seem appropriate to assume that st ’s are
independent. We may assume the state sequence follows a
Markov chain.

I If one frame contains a speaker, it is highly likely that the next
frame also contains a speaker because of the strong
frame-to-frame dependence. On the other hand, a frame
without a speaker is much more likely to be followed by
another frame without a speaker.
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Hidden Markov Model

I For a computer program, the states are unknown. Only
features can be extracted for each frame. The features are the
observation, which can be organized into a vector.

I The goal is to figure out the state sequence given the
observed sequence of feature vectors.

I We expect the probability distribution of the feature vector to
differ according to the state. However, these distributions may
overlap, causing classification errors.

I By using the dependence among states, we may make better
guesses of the states than guessing each state separately using
only the feature vector of that frame.
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Model Estimation

I Parameters involved:
I Transition probabilities: ak,l , k, l = 1, ...,M.
I Initial probabilities: πk , k = 1, ...,M.
I For each state k, µk , Σk .
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Definitions
I Under a given set of parameters, let Lk(t) be the conditional

probability of being in state k at position t given the entire
observed sequence u = {u1, u2, ..., uT}.

Lk(t) = P(st = k|u) =
∑

s

P(s | u)I (st = k) .

I Under a given set of parameters, let Hk,l(t) be the conditional
probability of being in state k at position t and being in state
l at position t + 1, i.e., seeing a transition from k to l at t,
given the entire observed sequence u.

Hk,l(t) = P(st = k, st+1 = l |u)

=
∑

s

P(s | u)I (st = k)I (st+1 = l)

I Note that Lk(t) =
∑M

l=1 Hk,l(t),
∑M

k=1 Lk(t) = 1.
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I Maximum likelihood estimation by EM:
I E step: Under the current set of parameters, compute Lk(t)

and Hk,l(t), for k, l = 1, ...,M, t = 1, ...,T .
I M step: Update parameters.

µk =

∑T
t=1 Lk(t)ut∑T
t=1 Lk(t)

Σk =

∑T
t=1 Lk(t)(ut − µk)(ut − µk)

t∑T
t=1 Lk(t)

ak,l =

∑T−1
t=1 Hk,l(t)∑T−1
t=1 Lk(t)

.
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Hidden Markov Model

I Note: the initial probabilities of states πk are often manually
determined. We can also estimate them by

πk ∝
T∑

t=1

Lk(t) ,

M∑
k=1

πk = 1

or πk ∝ Lk(1)
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Comparison with the Mixture Model

I Lk(t) is playing the same role as the posterior probability of a
component (state) given the observation, i.e., pt,k .

Lk(t) = P(st = k|u1, u2, ..., ut , ..., uT )

pt,k = P(st = k|ut)

If we view a mixture model as a special hidden Markov model
with the underlying state process being i.i.d (a reduced
Markov chain), pt,k is exactly Lk(t).
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Hidden Markov Model

I The posterior probabilities pt,k in the mixture model can be
determined using only sample ut because of the independent
sample assumption.

I Lk(t) depends on the entire sequence because of the
underlying Markov process.

I For a mixture model, we have

µk =

∑T
t=1 pt,kut∑T
t=1 pt,k

Σk =

∑T
t=1 pt,k(ut − µk)(ut − µk)t∑T

t=1 pt,k
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Derivation from EM

I The incomplete data are u = {ut : t = 1, ...,T}. The
complete data are x = {st , ut : t = 1, ...,T}.

I Note Q(θ′|θ) = E (log(f (x|θ′))|u, θ).

I Let M = {1, 2, ...,M}.
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I The function f (x | θ′) is

f (x | θ′) = P(s | θ′)P(u | s, θ′)
= P(s | a′k,l : k, l ∈M)P(u | s, µ′

k ,Σ′
k : k ∈M)

= π′
s1

T∏
t=2

a′st−1,st ×
T∏

t=1

P(ut | µ′
st ,Σ

′
st ) .

We then have

log f (x | θ′) = log(π′
s1) +

T∑
t=2

log a′st−1,st +

T∑
t=1

log P(ut | µ′
st ,Σ

′
st ) (1)
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Hidden Markov Model

E (log f (x | θ′)|u, θ)

=
∑

s

P(s|u, θ)

[
log(π′

s1) +
T∑

t=2

log a′st−1,st+

T∑
t=1

log P(ut | µ′
st ,Σ

′
st )

]

=
M∑

k=1

Lk(1) log(π′
k) +

T∑
t=2

M∑
k=1

M∑
l=1

Hk,l(t) log a′k,l

+
T∑

t=1

M∑
k=1

Lk(t) log P(ut | µ′
k ,Σ′

k)
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I Prove the equality of the second term

∑
s

P(s|u, θ)
T∑

t=2

log a′st−1,st

=
T∑

t=2

M∑
k=1

M∑
l=1

Hk,l(t) log a′k,l

Similar proof applies to the equality corresponding to other
terms.
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∑
s

P(s|u, θ)
T∑

t=2

log a′st−1,st

=
∑

s

P(s|u, θ)
T∑

t=2

M∑
k=1

M∑
l=1

I (st−1 = k)I (st = l) log a′k,l

=
∑

s

T∑
t=2

M∑
k=1

M∑
l=1

P(s|u, θ)I (st−1 = k)I (st = l) log a′k,l

=
T∑

t=2

M∑
k=1

M∑
l=1

[∑
s

P(s|u, θ)I (st−1 = k)I (st = l)

]
log a′k,l

=
T∑

t=2

M∑
k=1

M∑
l=1

Hk,l(t) log a′k,l
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I The maximization of the above expectation gives the update
formulas in the M-step.

I Note that the optimization of µ′
k , Σ′

k can be separated from
that of a′k,l and πk . The optimization of a′k,l can be separated
for different k.

I The optimization of µ′
k and Σ′

k is the same as for the mixture
model with pt,k replaced by Lk(t).
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Forward-Backward Algorithm

I The forward-backward algorithm is used to compute Lk(t)
and Hk,l(t) efficiently.

I The amount of computation needed is at the order of M2T .
Memory required is at the order of MT .

I Define the forward probability αk(t) as the joint probability of
observing the first t vectors uτ , τ = 1, ..., t, and being in state
k at time t.

αk(t) = P(u1, u2, ..., ut , st = k)
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I This probability can be evaluated by the following recursive
formula:

αk(1) = πkbk(u1) 1 ≤ k ≤ M

αk(t) = bk(ut)
M∑
l=1

αl(t − 1)al ,k ,

1 < t ≤ T , 1 ≤ k ≤ M .
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I Proof:

αk (t) = P(u1, u2, ..., ut , st = k)

=
MX
l=1

P(u1, u2, ..., ut , st = k, st−1 = l)

=
MX
l=1

P(u1, ..., ut−1, st−1 = l) · P(ut , st = k | st−1 = l, u1, ..., ut−1)

=
MX
l=1

αl (t − 1)P(ut , st = k | st−1 = l)

=
MX
l=1

αl (t − 1)P(ut | st = k, st−1 = l) · P(st = k | st−1 = l)

=
MX
l=1

αl (t − 1)P(ut | st = k)P(st = k | st−1 = l)

=
MX
l=1

αl (t − 1)bk (ut )al,k

The fourth equality comes from the fact given st−1, st is
independent of all sτ , τ = 1, 2, ..., t − 2 and hence uτ ,
τ = 1, ..., t − 2. Also st is independent of ut−1 since st−1 is given.
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I Define the backward probability βk(t) as the conditional
probability of observing the vectors after time t, uτ ,
τ = t + 1, ...,T , given the state at time t is k.

βk(t) = P(ut+1, ..., uT | st = k) , 1 ≤ t ≤ T − 1

Set βk(T ) = 1 , for all k .

I As with the forward probability, the backward probability can
be evaluated using the following recursion

βk(T ) = 1

βk(t) =
M∑
l=1

ak,lbl(ut+1)βl(t + 1) 1 ≤ t < T .
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Hidden Markov Model

I Proof: βk(t) = P(ut+1, ..., uT | st = k)

=
M∑
l=1

P(ut+1, ..., uT , st+1 = l | st = k)

=
M∑
l=1

P(st+1 = l | st = k)P(ut+1, ..., uT | st+1 = l , st = k)

=
M∑
l=1

ak,lP(ut+1, ..., uT | st+1 = l)

=
M∑
l=1

ak,lP(ut+1 | st+1 = l)P(ut+2, ..., uT | st+1 = l , ut+1)

=
M∑
l=1

ak,lP(ut+1 | st+1 = l)P(ut+2, ..., uT | st+1 = l)

=
M∑
l=1

ak,lbl(ut+1)βl(t + 1)
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Hidden Markov Model

I The probabilities Lk(t) and Hk,l(t) are solved by

Lk(t) = P(st = k | u) =
P(u, st = k)

P(u)

=
1

P(u)
αk(t)βk(t)

Hk,l(t) = P(st = k, st+1 = l | u)

=
P(u, st = k, st+1 = l)

P(u)

=
1

P(u)
αk(t)ak,lbl(ut+1)βl(t + 1) .
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I Proof for Lk(t):

P(u, st = k) = P(u1, ..., ut , ..., uT , st = k)

= P(u1, ..., ut , st = k)P(ut+1, ..., uT | st = k, u1, ..., ut)

= αk(t)P(ut+1, ..., uT | st = k)

= αk(t)βk(t)
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I Proof for Hk,l(t):

P(u, st = k, st+1 = l)

= P(u1, ..., ut , ..., uT , st = k, st+1 = l)

= P(u1, ..., ut , st = k) ·
P(ut+1, st+1 = l | st = k, u1, ..., ut) ·
P(ut+2, ..., uT | st+1 = l , st = k, u1, ..., ut+1)

= αk(t)P(ut+1, st+1 = l | st = k) ·
P(ut+2, ..., uT | st+1 = l)

= αk(t)P(st+1 = l | st = k) ·
P(ut+1 | st+1 = l , st = k)βl(t + 1)

= αk(t)ak,lP(ut+1 | st+1 = l)βl(t + 1)

= αk(t)ak,lbl(ut+1)βl(t + 1)
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I Note that the amount of computation for Lk(t) and Hk,l(t),
k, l = 1, ...,M, t = 1, ...,T is at the order of M2T .

I Note:

P(u) =
M∑

k=1

αk(t)βk(t) , for any t

I In particular, if we let t = T ,

P(u) =
M∑

k=1

αk(T )βk(T ) =
M∑

k=1

αk(T ) .
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Proof:

P(u) = P(u1, ..., ut , ..., uT )

=
M∑

k=1

P(u1, ..., ut , ..., uT , st = k)

=
M∑

k=1

P(u1, ..., ut , st = k)P(ut+1, ..., uT | st , u1, ..., ut)

=
M∑

k=1

αk(t)P(ut+1, ..., uT | st)

=
M∑

k=1

αk(t)βk(t)
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The Estimation Algorithm
The estimation algorithm iterates the following steps:

I Compute the forward and backward probabilities αk(t), βk(t),
k = 1, ...,M, t = 1, ...,T under the current set of parameters.

αk(1) = πkbk(u1) 1 ≤ k ≤ M

αk(t) = bk(ut)
M∑
l=1

αl(t − 1)al ,k ,

1 < t ≤ T , 1 ≤ k ≤ M .

βk(T ) = 1

βk(t) =
M∑
l=1

ak,lbl(ut+1)βl(t + 1) 1 ≤ t < T .
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I Compute Lk(t), Hk,l(t) using αk(t), βk(t). Let

P(u) =
∑M

k=1 αk(1)βk(1).

Lk(t) =
1

P(u)
αk(t)βk(t)

Hk,l(t) =
1

P(u)
αk(t)ak,lbl(ut+1)βl(t + 1) .
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I Update the parameters using Lk(t), Hk,l(t).

µk =

∑T
t=1 Lk(t)ut∑T
t=1 Lk(t)

Σk =

∑T
t=1 Lk(t)(ut − µk)(ut − µk)t∑T

t=1 Lk(t)

ak,l =

∑T−1
t=1 Hk,l(t)∑T−1
t=1 Lk(t)

.
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Multiple Sequences

I If we estimate an HMM using multiple sequences, the previous
estimation algorithm can be extended naturally.

I For brevity, let’s assume all the sequences are of length T .
Denote the ith sequence by ui = {ui ,1, ui ,2, ..., ui ,T},
i = 1, ...,N.

I In each iteration, we compute the forward and backward
probabilities for each sequence separately in the same way as
previously described.

I Compute Lk(t) and Hk,l(t) separately for each sequence, also
in the same way as previously described.

I Update parameters similarly.
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I Compute the forward and backward probabilities α
(i)
k (t),

β
(i)
k (t), k = 1, ...,M, t = 1, ...,T , i = 1, ...,N, under the

current set of parameters.

α
(i)
k (1) = πkbk(ui ,1) , 1 ≤ k ≤ M, 1 ≤ i ≤ N .

α
(i)
k (t) = bk(ui ,t)

M∑
l=1

α
(i)
l (t − 1)al ,k ,

1 < t ≤ T , 1 ≤ k ≤ M, 1 ≤ i ≤ N .

β
(i)
k (T ) = 1 , 1 ≤ k ≤ M, 1 ≤ i ≤ N

β
(i)
k (t) =

M∑
l=1

ak,lbl(ui ,t+1)β
(i)
l (t + 1)

1 ≤ t < T , 1 ≤ k ≤ M, 1 ≤ i ≤ N .
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I Compute L
(i)
k (t), H

(i)
k,l (t) using α

(i)
k (t), β

(i)
k (t). Let

P(ui ) =
∑M

k=1 α
(i)
k (1)β

(i)
k (1).

L
(i)
k (t) =

1

P(ui )
α

(i)
k (t)β

(i)
k (t)

H
(i)
k,l (t) =

1

P(ui )
α

(i)
k (t)ak,lbl(ui ,t+1)β

(i)
l (t + 1) .
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I Update the parameters using Lk(t), Hk,l(t).

µk =

∑N
i=1

∑T
t=1 L

(i)
k (t)ui ,t∑N

i=1

∑T
t=1 L

(i)
k (t)

Σk =

∑N
i=1

∑T
t=1 L

(i)
k (t)(ui ,t − µk)(ui ,t − µk)t∑N
i=1

∑T
t=1 L

(i)
k (t)

ak,l =

∑N
i=1

∑T−1
t=1 H

(i)
k,l (t)∑N

i=1

∑T−1
t=1 L

(i)
k (t)

.
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HMM with Discrete Data

I Given a state k, the distribution of the data U is discrete,
specified by a pmf.

I Assume U ∈ U = {1, 2, ...J}. Denote bk(j) = qk,j ,
j = 1, ..., J.

I Parameters in the HMM: ak,l and qk,j , k, l = 1, ...,M,
j = 1, ..., J.
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I Model estimation by the following iteration:
I Compute the forward and backward probabilities αk(t), βk(t).

Note that bk(ut) = qk,ut .
I Compute Lk(t), Hk,l(t) using αk(t), βk(t).
I Update the parameters as follows:

ak,l =

∑T−1
t=1 Hk,l(t)∑T−1
t=1 Lk(t)

, k, l = 1, ...,M

qk,j =

∑T
t=1 Lk(t)I (ut = j)∑T

t=1 Lk(t)
, k = 1, ...,M; j = 1, ..., J
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Viterbi Algorithm

I In many applications using HMM, we need to predict the
state sequence s = {s1, ..., sT} based on the observed data
u = {u1, ..., uT}.

I Optimization criterion: find s that maximizes P(s | u):

s∗ = arg max
s

P(s | u) = arg max
s

P(s,u)

P(u)
= arg max

s
P(s,u)

I This criterion is called the rule of Maximum A Posteriori
(MAP).

I The optimal sequence {s1, s2, ..., sT} can be found by the
Viterbi algorithm.

I The amount of computation in the Viterbi algorithm is at the
order of M2T . Memory required is at the order of MT .
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I The Viterbi algorithm maximizes an objective function G (s),
where s = {s1, ..., sT}, st ∈ {1, ...,M}, is a state sequence
and G (s) has a special property.

I Brute-force optimization of G (s) involves an exhaustive search
of all the MT possible sequences.

I Property of G (s):

G (s) = g1(s1) + g2(s2, s1) + g3(s3, s2) + · · ·+ gT (sT , sT−1)

I The key is the objective function can be written as a sum of
“merit” functions depending on one state and its preceding
one.
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I A Markovian kind of property:
I Suppose in the optimal state sequence s∗, the tth position

s∗t = k. To maximize G (s1, s2, ..., sT ), we can maximize the
following two functions separately:

Gt,k(s1, ..., st−1) = g1(s1) + g2(s2, s1) + · · ·+ gt(k, st−1)

Ḡt,k(st+1, ..., sT ) = gt+1(st+1, k) + · · ·+ gT (sT , sT−1)

The first function involves only states before t; and the second
only states after t.

I Also note the recursion of Gt,k(s1, ..., st−1):

Gt,l(s1, ..., st−2, k) = Gt−1,k(s1, ..., st−2) + gt(l , k) .
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I Every state sequence s corresponds to a path from t = 1 to
t = T .

I We put weight gt(k, l) on the link from state l at t − 1 to
state k at t.

I At the starting node, we put weight g1(k) for state k.

I G (s) is the sum of the weights on the links in path s.

I In the figure, suppose the colored path is the optimal one. At
t = 3, this path passes through state 2. Then the sub-path
before t = 3 should be the best among all paths from t = 1
to t = 3 that end at state 2. The sub-path after t = 3 should
be the best among all paths from t = 3 to t = 6 that start at
state 2.

Jia Li http://www.stat.psu.edu/∼jiali



Hidden Markov Model

How the Viterbi Algorithm Works (Pseudocode)
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Pseudocode

I At t = 1, for each node (state) k = 1, ...,M, record G∗
1,k = g1(k).

I At t = 2, for each node k = 1, ...,M, only need to record which
node is the best preceding one. Suppose node k is linked to node l∗

at t = 1, record l∗ and
G∗

2,k = maxl=1,2,...,M [G∗
1,l + g2(k, l)] = G∗

1,l∗ + g2(k, l∗).

I The same procedure is applied successively for t = 2, 3, ...,T . At
every node, link it to its best preceding one. Set
G∗

t,k = maxl=1,2,...,M [G∗
t−1,l + gt(k, l)] = G∗

t−1,l∗ + gt(k, l∗). G∗
t,k is

the sum of weights of the best path up to t and with the end tied at
state k and l∗ is the best preceding state. Record l∗ and G∗

t,k .

I At the end, only M paths are formed, each ending with a different
state at t = T . The objective function for a path ending at node k
is G∗

T ,k . Pick k∗ that maximizes G∗
T ,k . Trace the path backwards

from the last state k∗.
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Proof for the Viterbi Algorithm

Notation:

I Let s∗(t, k) be the sequence {s1, ..., st−1} that maximizes
Gt,k(s1, ..., st−1):

s∗(t, k) = arg max
s1,...,st−1

Gt,k(s1, ..., st−1)

Let G ∗
t,k = maxs1,...,st−1 Gt,k(s1, ..., st−1).

I Let s̄∗(t, k) be the sequence {st+1, ..., sT} that maximizes
Ḡt,k(st+1, ..., sT ):

s̄∗(t, k) = arg max
st+1,...,sT

Ḡt,k(st+1, ..., sT )
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Key facts for proving the Viterbi algorithm:

I If the optimal state sequence s∗ has the last state s∗T = k,
then the subsequence of s∗ from 1 to T − 1 should be
s∗(T , k) and

max
s

G (s) = GT ,k(s∗(T , k)) .

I Since we don’t know what should be s∗T , we should compare
all the possible states k = 1, ...,M:

max
s

G (s) = max
k

GT ,k(s∗(T , k)) .

I Gt,k(s∗(t, k)) and s∗(t, k) can be obtained recursively for
t = 1, ...,T .
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Proof for the recursion:

I Suppose Gt−1,k(s∗(t − 1, k)) and s∗(t − 1, k) for k = 1, ...,M
have been obtained. For any l = 1, ...,M:

Gt,l(s
∗(t, l)) = max

s1,...,st−1

Gt,l(s1, ..., st−1)

= max
k

max
s1,...,st−2

Gt,l(s1, ..., st−2, k)

= max
k

max
s1,...,st−2

(Gt−1,k(s1, ..., st−2) + gt(l , k))

= max
k

(gt(l , k) + max
s1,...,st−2

Gt−1,k(s1, ..., st−2))

= max
k

(gt(l , k) + Gt−1,k(s∗(t − 1, k))
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I Suppose k∗ achieves the maximum, that is,
k∗ = arg maxk(gt(l , k) + Gt−1,k(s∗(t − 1, k)). Then
s∗(t, l) = {s∗(t − 1, k∗), k∗}, that is, for s∗(t, l), the last state
s∗t−1 = k∗ and the subsequence from position 1 to t − 2 is
s∗(t − 1, k∗).

I The amount of computation involved in deciding Gt,l(s
∗(t, l))

and s∗(t, l) for all l = 1, ...,M is at the order of M2. For each
l , we have to exhaust M possible k’s to find k∗.

I To start the recursion, we have

G1,k(·) = g1(k) , s∗(1, k) = {} .

Note: at t=1, there is no preceding state.
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Optimal State Sequence for HMM

I We want to find the optimal state sequence s∗:

s∗ = arg max
s

P(s,u) = arg max
s

log P(s,u)

I The objective function:

G (s) = log P(s,u) = log[πs1bs1(u1)as1,s2bs2(u2) · · · asT−1,sT
bsT

(uT )]

= [log πs1 + log bs1(u1)] + [log as1,s2 + log bs2(u2)] +

· · ·+ [log asT−1,sT
+ log bsT

(uT )]

If we define

g1(s1) = log πs1 + log bs1(u1)

gt(st , st−1) = log ast ,st−1 + log bst (ut) ,

then G (s) = g1(s1) +
∑T

t=2 gt(st , st−1). Hence, the Viterbi
algorithm can be applied.
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Viterbi Training

I Viterbi training to HMM resembles the classification EM
estimation to a mixture model.

I Replace “soft” classification reflected by Lk(t) and Hk,l(t) by
“hard” classification.

I In particular:
I Replace the step of computing forward and backward

probabilities by selecting the optimal state sequence s∗ under
the current parameters using the Viterbi algorithm.

I Let Lk(t) = I (s∗t = k), i.e., Lk(t) equals 1 when the optimal
state sequence is in state k at t; and zero otherwise. Similarly,
let Hk,l(t) = I (st−1 = k)I (st = l).

I Update parameters using Lk(t) and Hk,l(t) and the same
formulas.
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Applications

Speech recognition:

I Goal: identify words spoken according to speech signals
I Automatic voice recognition systems used by airline companies
I Automatic stock price reporting

I Raw data: voice amplitude sampled at discrete time spots (a
time sequence).

I Input data: speech feature vectors computed at the sampling
time.
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I Methodology:
I Estimate an Hidden Markov Model (HMM) for each word,

e.g., State College, San Francisco,
Pittsburgh. The training provides a dictionary of models
{W1,W2, ...}.

I For a new word, find the HMM that yields the maximum
likelihood. Denote the sequence of feature vectors extracted
for this voice signal by u = {u1, ..., uT}. Classify to word i∗ if
Wi∗ maximizes P(u | Wi ).

I Recall that P(u) =
∑M

k=1 αk(T ), where αk(T ) are the forward
probabilities at t = T , computed using parameters specified by
Wi∗ .

I In the above example, HMM is used for “profiling”. Similar
ideas have been applied to genomics sequence analysis, e.g.,
profiling families of protein sequences by HMMs.
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Supervised learning:

I Use image classification as an example.
I The image is segmented into man-made and natural regions.
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I Training data: the original images and their manually labeled
segmentation.

I Associate each block in the image with a class label. A block
is an element for the interest of learning.

I At each block, compute a feature vector that is anticipated to
reflect the difference between the two classes (man-made vs.
natural).

I For the purpose of classification, each image is an array of
feature vectors, whose true classes are known in training.

Jia Li http://www.stat.psu.edu/∼jiali



Hidden Markov Model

I If we ignore the spatial dependence among the blocks, an
image becomes a collection of independent samples
{u1, u2, ..., uT}. For training data, we know the true classes
{z1, ..., zT}. Any classification algorithm can be applied.

I Mixture discriminant analysis: model each class by a mixture
model.

I What if we want to take spatial dependence into
consideration?

I Use a hidden Markov model! A 2-D HMM would be even
better.

I Assume each class contains several states. The underlying
states follow a Markov chain. We need to scan the image in a
certain way, say row by row or zig-zag.

I This HMM is an extension of mixture discriminant analysis
with spatial dependence taken into consideration.
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I Details:
I Suppose we have M states, each belonging to a certain class.

Use C (k) to denote the class state k belongs to. If a block is
in a certain class, it can only exist in one of the states that
belong to its class.

I Train the HMM using the feature vectors
{u1, u2, ..., uT} and their classes {z1, z2, ..., zT}.
There are some minor modifications from the training
algorithm described before since no class labels are involved
there.

I For a test image, find the optimal sequence of states
{s1, s2, ..., sT} with maximum a posteriori probability (MAP)
using the Viterbi algorithm.

I Map the state sequence into classes: ẑt = C (s∗t ).
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Unsupervised learning:

I Since a mixture model can be used for clustering, HMM can
be used for the same purpose. The difference lies in the fact
HMM takes spatial dependence into consideration.

I For a given number of states, fit an HMM to a sequential
data.

I Find the optimal state sequence s∗ by the Viterbi algorithm.

I Each state represents a cluster.

I Examples: image segmentation, etc.
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