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Motivation

I Networks are ubiquitous in modern science,
engineering, and the humanities

I Networks modeled with graphs can only represent
pairwise interactions, not higher-order relationships
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I Many software libraries for graphs exist: NetworkX,
Boost, JUNG, etc.

I Challenge: no libraries for hypergraphs exist that
have both data structures and algorithms. This
leaves a lot of work to do!

What Are Hypergraphs?

Undirected Hypergraphs
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Undirected hyperedges connect groups of nodes.

Directed Hypergraphs

Directed hyperedges connect “tail” groups of nodes to
“head” groups of nodes.

halp: Hypergraph Algorithms Package

Features

Open Source: Thoroughly tested Python package
publicly-available on GitHub [1]

Data Structures: Directed and undirected hypergraph
data structures to easily model complex networks

Usable Algorithms: Implementations of important and
canonical hypergraph algorithms

Utilities: Quick extraction of hypergraph properties and
statistics + conversion to other formats/structures

Algorithms

The algorithms currently implemented in halp span:
I Connectivity [2]

I Hyperpaths [2] [3] [6]

I Hypertrees [2]

I Random Walks and Partitioning [4] [5]

These algorithms are illustrated to the right:
I B-Visit algorithm, for computing B-connectivity
I s-t B-hyperpath algorithm, for computing a minimal

B-connected hyperpath

Example Algorithms
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New Algorithm with Application to Biological Networks

Cellular Signaling Pathways
I Cells respond to environmental

signals through “signaling pathways”
I Many types of reactions can occur

along these paths
I Graphs cannot model these

interactions adequately...but
hypergraphs can!

Shortest B-Hyperpath Algorithm
I The biological interpretation of a

B-hyperpath is a path from node s to
node t that contains all intermediate
reactants and products needed to
reach t from s

I We developed an algorithm using
mixed integer linear programming to
find the shortest acyclic B-hyperpath
of all possible B-hyperpaths in a
directed hypergraph [6]

Shortest B-Hyperpaths in Signaling Pathways
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(a) Shortest B-hyperpath in the Wnt signaling pathway when represented as a directed hypergraph.
Nodes represent complexes (in grey) and standalone proteins (in blue outside of any complexes).
(b, c) Shortest paths in the Wnt signaling pathway when represented as a graph with complexes (b)
or as a graph (c). We see that the hyperpath is much more informative than the path in the graphs.
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