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Outline 

•  Need for compression 
•  Review of probability and stochastic processes 
•  Entropy as measure of uncertainty and lossless coding 

bounds 
•  Huffman coding 
•  Arithmetic coding 
•  Binarization 
•  Scalar quantization 
•  Vector quantization 
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Necessity for Signal Compression 
Image / Video format Size 

One small VGA size picture (640x480, 24-bit color) 922 KB 
One large 12 MB pixel picture (3072x4096) 24-bit 
color still image 

36 MB 

Animation ( 320x640 pixels, 16-bit color, 16 frame/s) 6.25 MB/second 
SD Video (720x480 pixels, 24-bit color, 30 frame/s) 29.7 MB/second 
HD Video (1920x1080 pixels, 24-bit color, 60 frame/s) 356 MB/second 
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Image/Video Coding Standards 
by ITU and ISO 

•  G3,G4: facsimile standard 

•  JBIG: The next generation facsimile standard 
–  ISO Joint Bi-level Image experts Group 

•  JPEG: For coding still images or video frames.  

–  ISO Joint Photographic Experts Group 

•  JPEG2000: For coding still images, more efficient than JPEG 

•  Lossless JPEG: for medical and archiving applications. 
•  MPEGx: audio and video coding standards of ISo 

•  H.26x: video coding standard of ITU-T 

•  ITU: International telecommunications union 

•  ISO: International standards organization 
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Components in a Coding System 
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Binary Encoding 

•  Binary encoding 
–  To represent a finite set of symbols using binary codewords. 

•  Fixed length coding 
–  N levels represented by (int) log2(N) bits. 
–  Ex: simple binary codes 

•  Variable length coding 
–  more frequently appearing symbols represented by shorter 

codewords (Huffman, arithmetic, LZW=zip). 

•  The minimum number of bits required to represent a 
sequence of random variables is bounded by its 
entropy. 



Reviews of Random Variables  
(not covered during the lecture) 

•  What is random variables 
•  A single RV 

–  Pdf (continuous RV), pmf (discrete RV) 
–  Mean, variance 
–  Special distributions (uniform, Gaussian, Laplacian, etc.) 

•  Function of a random variable 
•  Two and multiple RV 

–  Joint probability, marginal probability 
–  Conditional probability 
–  Conditional mean and co-variance 
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Examples of Random Variables 

•  Tossing two coins, X is the number of heads, and Y is 
the number of tails 
–  X and Y take on values {0, 1, 2} 
–  Discrete type 

•  X is the lifetime of a certain brand of light bulbs 
–  X take on values [0, +∞) 
–  Continuous type 
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Distribution, Density, and Mass Functions 

•  The cumulative distribution function (cdf) of a random variable X, is 
defined by 

•  If X is a continuous random variable (taking value over a continuous 
range) 
–  FX(x) is continuous function. 
–  The probability density function (pdf) of X is given by 

•  If X is a discrete random variable (taking a finite number of possible 
values) 
–  FX(x) is step function. 
–  The probability mass function (pmf) of X is given by 

 x.allfor ),.(Pr)( xXxFX ≤=

).(Pr)( xXxpX ==

)()( xF
dx
dxf XX =

The percentage of time that X=x. 
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Special Cases 
•  Binomial (discrete) 

•  Poisson distribution 

•  Normal (or Gaussian) N(µ, σ2)  

•  Uniform over (x1, x2),  

•  Laplacian L(µ, b)  
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Expected Values 

•  The expected (or mean) value of a random variable X:  

•  The variance of a random variable X: 

•  Mean and variance of common distributions: 
–  Uniform over range (x1, x2):  E{x} = (x1+x2)/2, VarX = (x2-x1)2/12 
–  Gaussian N(µ, σ2): Ex = µ, VarX = σ2  
–  Laplace L(µ, b):  Ex = µ, VarX = 2b2  

⎪⎩

⎪
⎨
⎧

=
==
∑
∫
∈

∞

∞−

discrete is X if)(
continuous is X if)(}{

Xx

X
X

xXxP
dxxxfXEη

( )
( )⎪⎩

⎪
⎨
⎧

=−

−
==
∑
∫
∈

∞

∞−

discrete is X if)(

continuous is X if)(
}{

X
2

2
2

x X

XX
X

xXPx

dxxfx
XVar

η
η

σ



© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 12 

Functions of Random Variable 

•  Y=g(X) 
–  Following the example of the lifetime of the bulb, let Y 

represents the cost of a bulb, which depends on its lifetime X 
with relation  

•  Expectation of Y 

•  Variance of Y 
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Two RVs 

•  We only discuss discrete RVs (i.e. X and Y for both 
discrete RVs) 

•  The joint probability mass function (pmf) of X and Y is 
given by 

•  The conditional  probability mass function of X given Y is 

•  Important relations 
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Conditional Mean and Covariance 

•  Conditional mean 

•  Correlation 

•  Correlation matrix 

•  Covariance  

•  Covariance matrix 
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Multiple RVs 

•  The definitions for two RVs can be easily extended to 
multiple (N>2)  RVs, X1,X2, …, XN 

•  The joint probability mass function (pmf) is given by 

•  Covariance matrix is 
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Statistical Characterization  
of Random Sequences 

•  Random sequence (a discrete time random process)  
–  Ex 1: an image that follows a certain statistics 

•  Fn represents the possible value of the n-th pixel of the image, n=(m,n) 
•  fn represents the actual value taken 

–  Ex 2: a video that follows a certain statistics 
•  Fn represents the possible value of the n-th pixel of a video, n=(k,m,n) 
•  fn represents the actual value taken 

–  Continuous source: Fn takes continuous values (analog image) 
–  Discrete source: Fn takes discrete values (digital image) 

•  Stationary source: statistical distribution invariant to time (space) shift 
•  Probability distribution 

–  probability mass function (pmf) or probability density function (pdf): 
–  Joint pmf or pdf: 
–  Conditional pmf or pdf: 

 



Entropy and Mutual Information 

•  Single RV: entropy 
•  Multiple RV: joint entropy, conditional entropy, mutual 

information 
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Entropy of a RV 

•  Consider RV F={f1,f2,…,fK}, with probability pk=Prob.
{F= fK} 

•  Self-Information of one realization fk : Hk=  -log(pk) 
–  pk=1: always happen, no information 
–  Pk ~0: seldom happen, its realization carries a lot of 

information 

•  Entropy = average information: 

–  Entropy is a measure of uncertainty or information content, 
unit=bits 

–  Very uncertain -> high information content  
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Example: Two Possible Symbols 

•  Example: Two possible outcomes 
–  Flip a coin, F={“head”,”tail”}: p1=p2=1/2:  H=1 

(highest uncertainty) 
–  If the coin has defect, so that p1=1, p2=0:  H=0 (no 

uncertainty) 
–  More generally: p1=p, p2=1-p,  

•  H=-(p log p+ (1-p) log (1-p)) 
•  H is maximum when p=1/2 (most uncertain) 

1/2 0 1 p 
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Another Example: English Letters 

•  26 letters, each has a certain probability of occurrence 
–  Some letters occurs more often: “a”,”s”,”t”, … 
–  Some letters occurs less often: “q”,”z”, … 

•  Entropy ~= information you obtained after reading an 
article. 

•  But we actually don’t get information at the alphabet 
level, but at the word level! 
–  Some combination of letters occur more often: “it”, “qu”,… 
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•  Joint entropy of two RVs: 
–  Uncertainty of two RVs together 

•  N-th order entropy 
–  Uncertainty of N successive samples of a random sequence  

•  Entropy rate (lossless coding bound) 
–  Average uncertain per RV  

Joint Entropy 
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Conditional Entropy 

•  Conditional entropy between two RVs: 
–  Uncertainty of one RV  
      given the other RV 

•  M-th order conditional entropy 
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Example: 4-symbol source 

•  Four symbols:  “a”,”b”,”c”,”d” 
•  pmf:  

•  1st order conditional pmf: qij=Prob(fi|fj) 

•  2nd order pmf: 

•  Go through how to compute H1, H2, Hc,1. 

]1154.0,1703.0,2143.0,5000.0[=Tp

0938.01875.0*5.0)"/""(")"(")"("   Ex. === abqapabp
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Mutual Information 

•  Mutual information between two RVs : 
–  Information provided by G about F 

•  N-th order mutual information (lossy coding bound) 



© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 26 

Lossless Coding (Binary Encoding) 

•  Binary encoding is a necessary step in any coding system 
–  Applies to  

•  original symbols (e.g. image pixels) in a discrete source,  
•  or converted symbols (e.g. quantized transformed coefficients) from a continuous 

or discrete source 

•  Binary encoding process (scalar coding) 
 
 

 

Binary Encoding Codeword 
ci 

(bit length li) 

Symbol 
ai 

Probability table 
pi 
 

Bit rate (bit/symbol): 
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Bound for Lossless Coding 

•  Scalar coding: 
–  Assign one codeword to one symbol at a time 
–  Problem: could differ from the entropy by up to 1 bit/symbol 

•  Vector coding: 
–  Assign one codeword for each group of N symbols 
–  Larger N -> Lower Rate, but higher complexity 

•  Conditional coding (context-based coding) 
–  The codeword for the current symbol depends on the pattern (context) formed 

by the previous M symbols 

!!

RN(F):bits!for!N!symbols
RN(F)= RN(F)/N : !bits!per!symbol
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Binary Encoding: Requirement 

•  A good code should be: 
–  Uniquely decodable 
–  Instantaneously decodable – prefix code (aka prefix-free code) 



© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 29 

Huffman Coding 

•  Idea: more frequent symbols -> shorter codewords 
•  Algorithm: 

•   Huffman coding generate prefix code J  
•   Can be applied to one symbol at a time (scalar coding), or a group of symbols 
(vector coding), or one symbol conditioned on previous symbols (conditional coding) 
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Huffman Coding Example: 
Scalar Coding 



Huffman Coding Example: 
Vector Coding 
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Huffman Coding Example: 
Conditional Coding 

6922.1,8829.1,5016.1
7500.1,9375.1,5625.1

1,"","","","",

1,"","","","",

=====

=====

CdCcCbCaC

CdCcCbCaC

HHHHH
RRRRR
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Arithmetic Coding (Not Required) 

•  Basic idea:  
–  Represent a sequence of symbols by an interval  with length d equal to its 

probability p 
–  The interval is specified by its lower boundary (l), upper boundary (u) and 

length d (=probability) 
–  The codeword for the sequence is the common bits in binary representations of 

l and u 
–  Theoretically, no. bits (B) = ceiling( -log2 d)=ceiling (- log2 p) 
–  A more likely sequence=a longer interval=fewer bits 

•  The interval is calculated sequentially starting from the first symbol 
–  The initial interval is determined by the first symbol 
–  The next interval is a subinterval of the previous one, determined by the next 

symbol 



Encoding: 

Decoding: 

P(a)=1/2 
P(b)=1/4 
P(c)=1/4 

1/2 
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Implementation of Arithmetic Coding 

•  Previous example is meant to illustrate the algorithm in 
a conceptual level 
–  Require infinite precision arithmetic 
–  Can be implemented with finite precision or integer precision 

only 
–  Efficient implementation for coding binary symbols 

•  For more details on implementation, see 
–  Witten, Neal and Cleary, “Arithmetic coding for data 

compression”, J. ACM (1987), 30:520-40 
–  Sayood, Introduction to Data Compression, Morgan Kaufmann, 

1996 



Binary Arithmetic Coding 

•  Only two possible input symbols: MPS (More probably 
symbol, pm) and LPS (less probable symbol, pl=1-pm) 

•  Recursively split an interval to 2 
•  Simplified implementation 

–  Instead of using exact probability, consider a finite 
predetermined set. Quantize the actual probability into one of 
those in the set. 

–  Instead of using multiplication to calculate the new interval 
length, use table look up. 
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Context Based Binary Arithmetic Coding 
(CABAC) 

•  Instead of using the probability of the current binary symbol, use 
the conditional probability, conditioned on its context  

•  When coding a 2D binary image, the context can be the previously 
coded pixels in a causal neighborhood. If the context includes N 
pixels, there will be 2N possible contexts. Use a look up table to 
store pm or pl of each context. 

•  The probability under each context is recursively updated after 
coding each new symbol 
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http://web.stanford.edu/class/ee398a/handouts/lectures/03-ArithmeticCoding.pdf 



What if the source symbols are not binary? 

•  First represent each symbol using binary bits 
(binarization) 

•  Then apply BAC to the sequence of binarized bits 
•  We may use different probability for the binary bits 

based on their positions. 
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Simple Binarization 

•  When all symbols are equally likely 
•  Simple binary code: N possible values represented by 

[log2 N] bits  ([ ] represents “ceiling”) 
•  Truncated binary code: use on average less than [log2 

N] when N is not power of 2 
–  2k < N < 2k+1, U=2k+1-N 
–  First U symbols coded using k bits, remaining N-U symbols 

using k+1 bits  
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Truncated Binary Coding Example (N=5) 
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From: http://en.wikipedia.org/wiki/Truncated_binary_encoding 



Unary Coding 
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•  Unary coding is optimal for probability distribution P(n)=2-n, n=1,2,.. 
•  When the actual symbol does not following this distribution, to further reduce 

the bit rate, we can apply BAC to the sequences of bits, with probability 
depending on the position of the bit in a symbol. In this case, we are using the 
position as the context of CABAC. 

http://en.wikipedia.org/wiki/
Unary_coding 



Example: Unary Code + BAC 

•  Input sequence: {1,3, 5, 1, …} 
•  Binarization: 0,110,11110, 0, … 
•  P1=probability of “0” in the first bin 
•  P2=probability of “0” in the second bin 
•  … 

•  BAC(0,P1),BAC(1,P1), BAC(1,P2),BAC(0,P3), 
BAC(1,P1), … 
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Golomb-Rice Coding 

•  Useful for the possible number of symbols is large and 
smaller numbers are more likely 

•  Divide all possible symbols into groups of M symbols, 
represent a symbol by its group number (quotient) and 
its position in the group (remainder). 

•  N= q M + r 
•  Represent q using unary code (followed by BAC) 
•  Represent r using simple binary (if M=power of 2) or 

truncated binary  
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Huffman vs. Arithmetic Coding 

•  Huffman coding (assuming vector coding of N symbols together) 
–  Convert a fixed number of N symbols into a variable length codeword 
–  Efficiency: 

–  To approach entropy rate, must code a large number of symbols together 
–  Used in all earlier image and video coding standards 

•  Arithmetic coding 
–  Convert a variable number of symbols into a variable length codeword 
–  Efficiency: 

–  Can approach the entropy rate by processing one symbol at a time 
–  Easy to adapt to changes in source statistics 
–  Integer implementation is available, but still more complex than Huffman coding 

with a small N 
–  Used as advanced options in earlier image and video coding standards (JPEG, 

H264 and before) 
–  Standard options in newer standards (JPEG2000, HEVC) 

N is sequence length 



LZW coding (Not Required) 

•  LZW coding (Lempel, Ziv, and Welsh) 
–  Assign fixed-length codewords to variable length sequences of 

source symbols 
–  Does not require priori knowledge of the symbol probabilities. 

(universal code) 
–  Not as efficient as Huffman for a given distribution 
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Summary on Binary Coding 

•  Coding system:  
–  original data -> model parameters -> quantization-> binary encoding 
–  Waveform-based vs. content-dependent coding 

•  Characterization of information content by entropy 
–  Entropy, Joint entropy, conditional entropy  
–  Mutual information 

•  Lossless coding 
–  Bit rate bounded by entropy rate of the source 
–  Huffman coding:  

•  Scalar, vector, conditional coding  
•  can achieve the bound only if a large number of symbols are coded together 
•  Huffman coding generates prefix code (instantaneously decodable) 

–  Arithmetic coding 
•  Can achieve the bound by processing one symbol at a time 
•  More complicated than scalar or short vector Huffman coding 
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Lossy Coding 

•  Original source is discrete 
–  Lossless coding: bit rate >= entropy rate 
–  One can further quantize source samples to reach a lower rate 

•  Original source is continuous 
–  Lossless coding will require an infinite bit rate! 
–  One must quantize source samples to reach a finite bit rate 
–  Lossy coding rate is bounded by the mutual information 

between the original source and the quantized source that 
satisfy a distortion criterion 

•  Quantization methods 
•  Scalar quantization 
•  Vector quantization 
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Scalar Quantization 

•  General description 
•  Uniform quantization 
•  MMSE quantizer 
•  Lloyd algorithm 
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SQ as Line Partition 
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Function Representation 

ll BfgfQ ∈=   if  ,)(
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Distortion Measure 

General measure: 

Mean Square Error (MSE):  2
1 )(),( gfgfd −=



© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 52 

Uniform Quantization 

Uniform source: 
 

Each additional bit provides 6dB gain! 



Truncated uniform quantization  
for sources with infinite range 
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f 

Q(f) 

t0 =-∞ t1 t2 t3 t4 t5 t6 t7 fmin fmax 

r0=fmin+q/2 

r1 

r2 

r3 

r4 

r5 

r6 

r7=fmax-q/2 

overload 
region 

overload 
region 

t8 =∞ 



Example 

•  Suppose the signal has the following distribution. We use a uniform 
quantizer with three levels, as indicated below. What is the quantization 
MSE? 
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pF(f) 

f -1 1 

1 

0 2/3 -2/3 1/3 -1/3 
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Minimum MSE (MMSE) Quantizer 

•  Special case: uniform source 
–  MSE optimal quantizer = Uniform quantizer 

MSE minimize   to,   Determine ll gb

 :yields  0 0,  Setting
22

=
∂

=
∂

l

q

l

q

gb
σσ

(Nearest Neighbor  
Condition) 

(Centroid Condition) 

or 



Example 

•  Going back to the previous example. What is the MMSE quantizer 
(partition levels, reconstruction levels) and corresponding MSE? 
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pF(f) 

f -1 1 

1 
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High Resolution Approximation of MMSE 
Quantizer 

•  For a source with arbitrary pdf, when the rate is high so 
that the pdf within each partition region can be 
approximated as flat: 

1  :sourceGaussian for  Bound

VLC) (w/o 71.2  :sourceGaussian  i.i.d

1  :source Uniform

2

2

2

=

=

=

ε
ε

ε



Lloyd Algorithm 

•  In general, one may not 
be able to find closed-
form optimal solution 
given the signal pdf. 

•  Lloyd algorithm is an 
iterative algorithms for 
determining MMSE 
quantizer parameters 

•  Can be based on a pdf 
or training data 

•  Iterate between 
centroid condition and 
nearest neighbor 
condition 
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Vector Quantization 

•  General description 
•  Nearest neighbor quantizer 
•  MMSE quantizer 
•  Generalized Lloyd algorithm 
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Vector Quantization:  
General Description 

•  Motivation: quantize a group of samples (a vector) together, to 
exploit the correlation between these samples 

•  Each sample vector is replaced by one of representative vectors 
(or patterns) that often occur in the signal 

•  Applications: 
–  Color quantization: Quantize all colors appearing in an image to L 

colors for display on a monitor that can only display L distinct colors at 
a time – Adaptive palette 

–  Image quantization: Quantize every NxN block into one of the L typical 
patterns (obtained through training). More efficient with larger block 
size, but block size are limited by complexity. 
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VQ as Space Partition 

Every point in a region (Bl) is replaced by 
(quantized to) the point indicated by the 
circle (gl) 
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Distortion Measure 

General measure: 

MSE: 
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Nearest Neighbor (NN) Quantizer 

Challenge: How to determine the codebook? 



© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 64 

Complexity of NN VQ 

•  Complexity analysis: 
–  Must compare the input vector with all the codewords 
–  Each comparison takes N operations 
–  Need L=2^{NR} comparisons 
–  Total operation = N 2^{NR}  
–  Total storage space = N 2^{NR}  
–  Both computation and storage requirement increases exponentially with N! 

•  Example:  
–  N=4x4 pixels, R=1 bpp: 16x2^16=2^20=1 Million operation/vector 
–  Apply to video frames, 720x480 pels/frame, 30 fps: 2^20*(720x480/16)*30=6.8 

E+11 operations/s ! 
–  When applied to image, block size is typically limited to <= 4x4 

•  Fast algorithms: 
–  Structured codebook so that one can conduct binary tree search 
–  Product VQ: can search subvectors separately 
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MMSE Vector Quantizer 

•  Necessary conditions for MMSE 
–  Nearest neighbor condition 

–  Generalized centroid condition: 

–  MSE as distortion: 
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Caveats L  

Both quantizers satisfy the NN and centroid condition, but the 
quantizer on the right is better! 
 
NN and centroid conditions are necessary but NOT sufficient for 
MSE optimality! 
 



Example 
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Generalized Lloyd 
Algorithm 

(LBG Algorithm) 

•  Start with initial 
codewords 

•  Iterate between finding 
best partition using NN 
condition, and updating 
codewords using 
centroid condition 



Example 
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Rate-Distortion Characterization 
of Lossy Coding 

•  Operational rate-distortion function of a quantizer: 
–  Relates rate and distortion:  R(D) 
–  A vector quantizer reaches a different point on its R(D) curve by using a 

different number of codewords 
–  Can also use distortion-rate function D(R) 

•  Rate distortion bound for a source 
–  Minimum rate R needed to describe the source with distortion <=D 

•  RD optimal quantizer: 
–  Minimize D for given R or vice versa 

Typical D(R) curve 

R

D

(bound)   )(RD

quantizer)given  (a   )(RD
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Lossy Coding Bound  
(Shannon Lossy Coding Theorem, Not required) 

IN(F,G): mutual information between F and G, information provided by G about F 
QD,N: all coding schemes (or mappings q(g|f)) that satisfy distortion criterion dN(f,g)<=D 

 

h(F): differential entropy of source F 
RG(D):  RD bound for Gaussian source with the same variance 
i.i.d. Gaussian source requires highest bit rate!  
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RD Bound for Gaussian Source (Not required) 

•  i.i.d. 1-D Gaussian: 

•  i.i.d. N-D Gaussian with independent components: 

•  N-D Gaussian with covariance matrix C: 

•  Gaussian source with power spectrum (FT of correlation function) 
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Summary on Quantization 

•  Scalar quantization: 
–  Uniform quantizer 
–  MMSE quantizer (Nearest neighbor and centroid condition) 

•  Closed-form solution for some pdf 
•  Lloyd algorithm for numerical solution 

•  Vector quantization 
–  Nearest neighbor quantizer 
–  MMSE quantizer (Nearest neighbor and centroid condition) 
–  Generalized Lloyd alogorithm 
–  Uniform quantizer  

•  Can be realized by lattice quantizer (not discussed here) 
•  Rate distortion characterization of lossy coding (not required) 

–  Bound on lossy coding 
–  Operational RD function of practical quantizers 
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References 

•  Reading assignment: 
–  [Wang2002] Sec. 8.1-8.4 (Sec. 8.3.2,8.3.3 optional) 
–  [Wang2002] Sec. 8.5-8.7 
–  Optional: [Woods2012] Sec. 9.3, 9.4, Appendix on Information Theory 

•  Optional reading on arithmetic coding and CABAC 
–  Witten, Radford, Neal, Cleary, “Arithmetic Coding for Data 

Compression” Communications of the ACM, vol. 30, no. 6, pp. 
520-540, June 1987. 

–  Marpe, Detlev, Heiko Schwarz, and Thomas Wiegand. "Context-based 
adaptive binary arithmetic coding in the H. 264/AVC video 
compression standard." Circuits and Systems for Video Technology, 
IEEE Transactions on 13.7 (2003): 620-636. 

–  http://www.hhi.fraunhofer.de/fields-of-competence/image-processing/
research-groups/image-video-coding/statistical-modeling-coding/fast-
adaptive-binary-arithmetic-coding-m-coder.html 



Written Assignment (1) 

•  Problems from [Wang2002] Prob. 8.1,8.6, 8.11, 8.14 
•  Additional problems in the following slides 
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Written assignment (2) 
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Written assignment (3) 
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Computer assignment (Optional!) 

•  Do one of the two 
–  Option 1: Write a program to perform vector quantization on a gray scale image 

using 4x4 pixels as a vector. You should design your codebook using all the 
blocks in the image as training data, using the generalized Lloyd algorithm. 
Then quantize the image using your codebook. You can choose the codebook 
size, say, L=128 or 256. If your program can work with any specified codebook 
size L, then you can observe the quality of quantized images with different L. 

–  Option 2: Write a program to perform color quantization on a color RGB image. 
Your vector dimension is now 3, containing R,G,B values. The training data are 
the colors of all the pixels. You should design a color palette (i.e. codebook) of 
size L, using generalized Lloyd algorithm, and then replace the color of each 
pixel by one of the color in the palette. You can choose a fixed L or let L be a 
user-selectable variable. In the later case, observe the quality of quantized 
images with different L. 
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