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Abstract. We describe a full implementation of algebraic effects and
handlers as a library in standard and portable C99, where effect oper-
ations can be used just like regular C functions. We use a formal op-
erational semantics to guide the C implementation at every step where
an evaluation context corresponds directly to a particular C execution
context. Finally we show a novel extension to the formal semantics to de-
scribe optimized tail resumptions and prove that the extension is sound.
This gives two orders of magnitude improvement to the performance of
tail resumptive operations (up to about 150 million operations per second
on a Core i7@2.6GHz)
Updates:
2017-06-30: Added Section A.4 on C++ support.
2017-06-19: Initial version.

1. Introduction

Algebraic effects [35] and handlers [36, 37] come from category theory as a way
to reason about effects. Effects come with a set of operations as their interface,
and handlers to give semantics to the operations. Any free monad [2, 17, 40] can
be expressed using algebraic effect handlers: the operations describe an algebra
that gives rise to a free monad, whereas the handler is the fold over that algebra
giving its semantics.

This makes algebraic effects highly expressive and practical, and they can
describe many control flow constructs that are usually built into a language
or compiler. Examples include, exception handling, iterators, backtracking, and
async/await style asynchronous programming. Once you have algebraic effects,
all of these abstractions can be implemented as a library by the user. In this
article, we describe a practical implementation of algebraic effects and handlers
as a library itself in C. In particular,

– We describe a full implementation of algebraic effects and handlers in stan-
dard and portable C99. Using effect operations is just like calling regular
C functions. Stacks are always restored at the same location and regular C
semantics are preserved.



– Even though the semantics of algebraic effects are simple, the implemen-
tation in C is not straightforward. We use a formal operational semantics
to guide the C implementation at every step. In particular, we use context
based semantics where a formal context corresponds directly to a particular
C execution context.

– We show a novel extension to the formal semantics to describe optimized tail
resumptions and prove that the extension is sound. This gives two orders of
magnitude improvement to the performance of tail resumptive operations
(up to about 150 million operations per second on a Core i7).

At this point using effects in C is nice, but defining handlers is still a bit cumber-
some. Its interface could probably be improved by providing a C++ wrapper.
For now, we mainly see the library as a target for library writers or compilers.
For example, the P language [10] is a language for describing verifiable asyn-
chronous state machines, and used for example to implement and verify the core
of the USB device driver stack that ships with Microsoft Windows 8. Compiling
to C involves a complex CPS-style transformation [19, 26] to enable async/await
style programming [5] with a receive statement – using the effects library this
transformation is no longer necessary and we can generate straightforward C
code instead. Similarly, we hope to integrate this library with libuv [29] (the
asynchronous C library underlying Node [43]) and improve programming with
libuv directly from C or C++ using async/await style abstractions [12, 27].

The library is publicly available as libhandler under an open-source li-
cense [28]. For simplicity the description in this paper leaves out many details
and error handling etc. but otherwise follows the real implementation closely.

2. Overview

We necessarily give a short overview here of using algebraic effects in C. For how
this can look if a language natively supports effects, we refer to reader to other
work [3, 18, 26, 27, 30]. Even though the theory of algebraic effects describes
them in terms of monads, we use a more operational view in this article that is
just as valid – and view effects as resumable exceptions. Therefore we start by
describing how to implement regular exceptions using effect handlers.

2.1. Exceptions

We start by implementing exceptions as an algebraic effect. First we declare a
new effect exn with a single operation raise that takes a const char* argument:
DEFINE_EFFECT1(exn, raise)
DEFINE_VOIDOP1(exn, raise, string)

Later we will show exactly what these macros expand to. For now, it is enough
to know that the second line defines a new operation exn_raise that we can
call as any other C function, for example:
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int divexn( int x, int y ) {
return (y!=0 ? x / y : exn_raise("divide by zero")); }

Since using an effect operation is just like calling a regular C function, this makes
the library very easy to use from a user perspective.

Defining handlers is a bit more involved. Here is a possible handler function
for our raise operation:
value handle_exn_raise(resume* r, value local, value arg) {
printf("exception raised: %s\n", string_value(arg));
return value_null; }

The value type is used here to simulate parametric polymorphism in C and is
typedef’d to a long long, together with some suitable conversion macros; in
the example we use string_value to cast the value back to the const char*
argument that was passed to exn_raise.

Using the new operation handler is done using the handle library function.
It is a bit cumbersome as we need to set up a handler definition (handlerdef)
that contains a table of all operation handlers1:
const operation _exn_ops[] = {

{ OP_NORESUME, OPTAG(exn,raise), &handle_exn_raise } };
const handlerdef _exn_def = { EFFECT(exn), NULL, NULL, NULL, _exn_ops };

value my_exn_handle(value(*action)(value), value arg) {
return handle(&_exn_def, value_null, action, arg); }

Using the handler, we can run the full example as:
value divide_by(value x) {

return value_long(divexn(42,long_value(x)));
}
int main() {

my_exn_handle( divide_by, value_long(0));
return 0; }

When running this program, we’ll see:
exception raised: divide by zero

A handler definition has as its last field a list of operations, defined as:
typedef struct _operation {

const opkind opkind;
const optag optag;
value (*opfun)(resume* r, value local, value arg);

} operation;

The operation tag optag uniquely identifies the operation, while the opkind
describes the kind of operation handler:
typedef enum _opkind {

OP_NULL,

1 Ah, if only we had lambda expressions and virtual methods in C99 ;-)
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OP_NORESUME, // never resumes
OP_TAIL, // only uses `resume` in tail-call position
OP_SCOPED, // only uses `resume` inside the handler
OP_GENERAL // `resume` is a first-class value

} opkind;

These operation kinds are used for optimization and restrict what an operation
handler can do. In this case we used OP_NORESUME to signify that our operation
handler never resumes. We’ll see examples of the other kinds in the following
sections.

The DEFINE_EFFECT macro defines a new effect. For our example, it expands
into something like:
const char* effect_exn[3] = {"exn","exn_raise",NULL};
const optag optag_exn_raise = { effect_exn, 1 };

An effect can now be uniquely identified by the address of the effect_exn array,
and EFFECT(exn) expands simply into effect_exn. Similarly, OPTAG(exn,raise)
expands into optag_exn_raise. Finally, the DEFINE_VOIDOP1 definition in our
example expands into a small wrapper around the library yield function:
void exn_raise( const char* s ) {

yield( optag_exn_raise, value_string(s) ); }

which “yields” to the innermost handler for exn_raise.

2.2. Ambient State

As we saw in the exception example, the handler for the raise operation took a
resume* argument. This can be used to resume an operation at the point where
it was issued. This is where the true power of algebraic effects come from (and
why we can view them as resumable exceptions). As another example, we are
going to implement ambient state [27].
DEFINE_EFFECT(state,put,get)
DEFINE_OP0(state,get,int)
DEFINE_VOIDOP1(state,put,int)

This defines a new effect state with the operations void state_put(int) and
int state_get(). We can use them as any other C function:
void loop() {

int i;
while((i = state_get()) > 0) {
printf("state: %i\n", i);
state_put(i-1);

}
}

We call this ambient state since it is dynamically bound to the innermost state
handler – instead of being global or local state. This captures many common
patterns in practice. For example, when writing a web server, the “current”
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request object needs to be passed around manually to each function in general;
with algebraic effects you can just create a request effect that gives access to
the current request without having to pass it explicitly to every function. The
handler for state uses the local argument to store the current state:
value handle_state_get( resume* r, value local, value arg ) {

return tail_resume(r,local,local);
}
value handle_state_put( resume* r, value local, value arg ) {

return tail_resume(r,arg,value_null);
}

The tail_resume (or resume) library function resumes an operation at its yield
point. It takes three arguments: the resumption object r, the new value of the
local handler state local, and the return value for the yield operation. Here
the handle_state_get handler simply returns the current local state, whereas
handle_state_put returns a null value but resumes with its local state set to
arg. The tail_resume operation can only be used in a tail-call position and
only with OP_TAIL operations, but it is much more efficient than using a general
resume function (as shown in Section 5).

2.3. Backtracking

You can enter a room once, yet leave it twice.
— Peter Landin [23, 24]

In the previous examples we looked at an abstractions that never resume (e.g.
exceptions), and an abstractions that resumes once (e.g. state). Such abstractions
are common in most programming languages. Less common are abstractions that
can resume more than once. Examples of this behavior can usually only be found
in languages like Lisp and Scheme, that implement some variant of callcc [42].
A nice example to illustrate multiple resumptions is the ambiguity effect:
DEFINE_EFFECT1(amb,flip)
DEFINE_BOOLOP0(amb,flip,bool)

which defines one operation bool amb_flip() that returns a boolean. We can
use it as:
bool xor() {

bool p = amb_flip();
bool q = amb_flip();
return ((p || q) && !(p && q)); }

One possible handler just returns a random boolean on every flip:
value random_amb_flip( resume* r, value local, value arg ) {

return tail_resume(r, local, value_bool( rand()%2 )); }

but a more interesting handler resumes twice: once with a true result, and once
with false. That way we can return a list of all results from the handler:
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value all_amb_flip( resume* r, value local, value arg ) {
value xs = resume(r,local, value_bool(true));
value ys = resume(r,local, value_bool(false)); // resume again at `r`!
return list_append(xs,ys); }

Note that the results of the resume operations are lists themselves since a re-
sumption runs itself under the handler. When we run the xor function under
the all_amb handler, we get back a list of all possible results of running xor,
printed as:
[false,true,true,false]

In general, resuming more than once is a dangerous thing to do in C. When
using mutable state or external resources, most C code assumes it runs at most
once, for example closing file handles or releasing memory when exiting a lexical
scope. Resuming again from inside such scope would give invalid results.

Nevertheless, you can make this work safely if you for example manage state
using effect handlers themselves which take care of releasing resources correctly.
Multiple resumptions are also needed for implementing async/await interleaving
where the resumptions are safe by construction.

Combining the state and amb handlers is also possible; if we put state as
the outermost handler, we get a “global” state per ambiguous strand, while if
we switch the order, we get a “local” state per ambiguous strand. We refer to
other work for a more in-depth explanation [3, 26].

2.4. Asynchronous Programming

Recent work shows how to build async/await abstractions on top of algebraic
effects [12, 27]. We plan to use a similar approach to implement a nice interface
to programming libuv directly in C. This is still work in progress and we only
sketch here the basic approach to show how algebraic effects can enable this. We
define an asynchronous effect as:
DEFINE_EFFECT1(async,await)
int await( uv_req_t* req );
void async_callback(uv_req_t* req);

The handler for async only needs to implement await. This operation receives an
asynchronous libuv request object uv_req_t where it only stores its resumption
in the request custom data field. However, it does not resume itself! Instead
it returns directly to the outer libuv event loop which invokes the registered
callbacks when an asynchronous operation completes.
value handle_async_await( resume* r, value local, value arg ) {

uv_req_t* req = (uv_req_t*)ptr_value(arg);
req->data = r;
return value_null; }

We ensure that the asynchronous libuv functions all use the same async_callback
function as their callback. This in turn calls the actual resumption that was
stored in the data field by await:
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Expressions e ::= e(e) application
| val x = e; e binding
| handleh(e) handler
| v value

Values v ::= x | c | op | λx. e

Clauses h ::= return x→ e
| op(x)→ e; h op ∈/ h

Figure 1. Syntax of expressions in λeff

void async_callback( uv_req_t* req ) {
resume* r = (resume*)req->data;
resume(r, req->result); }

In other words, instead of explicit callbacks with the current state encoded in
the data field, the current execution context is fully captured by the first-class
resumption provided by our library. We can now write small wrappers around
the libuv asynchronous API to use the new await operation, for example, here
is the wrapper for an asynchronous file stat:
int async_stat( const char* path, uv_stat_t* stat ) {

uv_fs_t* req = (uv_fs_t*)malloc(sizeof(uv_fs_t));
uv_stat(uv_default_loop(), req, path, async_callback); // register
int err = await((uv_req_t*)req); // and await
*stat = req->statbuf;
uv_fs_req_cleanup(req);
free(req);
return content; }

The asynchronous functions can be called just like regular functions:
uv_stat_t stat;
int err = async_stat("foo.txt", &stat); // asynchronous!
printf("Last access time: %li\n", (err < 0 ? 0 : stat.st_atim.tv_sec));

This would make it as easy to use libuv as using the standard C libraries for
doing I/O.

3. Operational Semantics

An attractive feature of algebraic effects and handlers is that they have a simple
operational semantics that is well-understood. To guide our implementation in C
we define a tiny core calculus for algebraic effects and handlers that is well-suited
to reason about the operational behavior.

Figure 1 shows the syntax of our core calculus, λeff. This is equivalent to
the definition given by Leijen [26]. It consists of basic lambda calculus extended
with handler definitions h and operations op. The calculus can also be typed

7



Evaluation contexts:
E ::= [] |E(e) | v(E) | op(E) | val x = E; e | handleh(E)
Xop ::= [] |Xop(e) | v(Xop) | val x = Xop; e

| handleh(Xop) if op ∈/ h

Reduction rules:

(δ) c(v) −→ δ(c, v) if δ(c, v) is defined
(β) (λx. e)(v) −→ e[x 7→ v]
(let) val x = v; e −→ e[x 7→ v]

(return) handleh(v) −→ e[x 7→ v]
with
(return x→ e) ∈ h

(handle) handleh(Xop[op(v)]) −→ e[x 7→ v, resume 7→λy. handleh(Xop[y])]
with
(op(x)→ e) ∈ h

Figure 2. Reduction rules and evaluation contexts

using regular static typing rules [18, 26, 38]. However, we can still give a dy-
namic untyped operational semantics: this is important in practice as it allows
an implementation algebraic effects without needing explicit types at runtime.

Figure 2 defines the semantics of λeff in just five evaluation rules. It has been
shown that well-typed programs cannot go ‘wrong’ under these semantics [26].
We use two evaluation contexts: the E context is the usual one for a call-by-
value lambda calculus. The Xop context is used for handlers and evaluates down
through any handlers that do not handle the operation op. This is used to express
concisely that the ‘innermost handler’ handles particular operations.

The E context concisely captures the entire evaluation context, and is used
to define the evaluation function over the basic reduction rules: E[e] 7−→E[e′] iff
e−→ e′. The first three reduction rules, (δ), (β), and (let) are the standard rules
of call-by-value evaluation. The final two rules evaluate handlers. Rule (return)
applies the return clause of a handler when the argument is fully evaluated. Note
that this evaluation rule subsumes both lambda- and let-bindings and we can
define both as a reduction to a handler without any operations:

(λx. e1)(e2) ≡ handle{return x→ e1}(e2)
val x = e1; e2 ≡ handle{return x→ e2}(e1)

These equivalences are used in the Frank language [30] to express everything in
terms of handlers.

The next rule, (handle), is where all the action is. Here we see how algebraic
effect handlers are closely related to delimited continuations as the evaluation
rules captures a delimited ‘stack’ Xop[op(v)] under the handler h. Using a Xop
context ensures by construction that only the innermost handler containing a
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clause for op, can handle the operation op(v). Evaluation continues with the
expression ϵ but besides binding the parameter x to v, also the resume variable
is bound to the continuation: λy. handleh(Xop[y]). Applying resume results in
continuing evaluation at Xop with the supplied argument as the result. Moreover,
the continued evaluation occurs again under the handler h.

Resuming under the same handler is important as it ensures that our se-
mantics correspond to the original categorical interpretation of algebraic effect
handlers as a fold over the effect algebra [37]. If the continuation is not resumed
under the same handler, it behaves more like a case statement doing only one
level of the fold. Such handlers are sometimes called shallow handlers [21, 30].

For this article we do not formalize parameterized handlers as shown in Sec-
tion 2.2. However the reduction rule is straightforward. For example, a handler
with a single parameter p is reduced as:

handleh(p = vp)(Xop[op(v)]) −→ { op(v)→ e ∈ h }
e[x 7→ v, p 7→ vp, resume 7→λq y. handleh(p = q)(Xop[y])]

3.1. Dot Notation
The C implementation closely follows the formal semantics. We will see that we
can consider the contexts as the current evaluation context in C, i.e. the call
stack and instruction pointer. To make this more explicit, we use dot notation
to express the notion of a context as call stack more clearly. We write · as a
right-associative operator where e· e′ ≡ e(e′) and E· e≡E[e]. Using this notation,
we can for example write the (handle) rule as:

handleh · Xop · op(v) −→ e[x 7→ v, resume 7→λy. handleh · Xop · y]

where (op(x)→ e) ∈ h. This more clearly shows that we evaluate op(v) under a
current “call stack” handleh · Xop (where h is the innermost handler for op as
induced by the grammar of Xop).

4. Implementing Effect Handlers in C
The main contribution of this paper is showing how we can go from the op-
erational semantics on an idealized lambda-calculus to an implementation as a
C library. All the regular evaluation rules like application and let-bindings are
already part of the C language. Of course, there are no first-class lambda expres-
sions either so we must make do with top-level functions only. So, our challenge
is to implement the (handle) rule:

handleh · Xop · op(v)−→ e[x 7→ v, resume 7→λy. handleh · Xop · y]

where (op(x)→ e) ∈ h. For this rule, we can view “handleh .Xop” as our current
execution context, i.e. as a stack and instruction pointer. In C, the execution
context is represented by the current call stack and the current register context,
including the instruction pointer. That means:
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1. When we enter a handler, push a handleh frame on the stack.
2. When we encounter an operation op(v), walk down the call stack “E· handleh · Xop”

until we find a handler for our operation.
3. Capture the current execution context “handleh · Xop” (call stack and regis-

ters) into a resume structure.
4. Jump to the handler h (restoring its execution context), and pass it the

operation op, the argument v, and the captured resumption.

In the rest of this article, we assume that a stack always grows up with any
parent frames “below” the child frames. In practice though, most platforms have
downward growing stacks and the library adapts dynamically to that.

4.1. Entering a Handler

When we enter a handler, we need to push a handler frame on the stack. Effect
handler frames are defined as:
typedef struct _handler {

jmp_buf entry; // used to jump back to a handler
const handlerdef* hdef; // operation definitions
volatile value arg; // the operation argument is passed here
const operation* arg_op; // the yielded operation is passed here
resume* arg_resume; // the resumption function
void* stackbase; // stack frame address of the handler function

} handler;

Each handler needs to keep track of its stackbase – when an operation captures
its resumption, it only needs to save the stack up to its handler’s stackbase.
The handle function starts by recording the stackbase:
value handle( const handlerdef* hdef,

value (*action)(value), value arg ) {
void* base = NULL;
return handle_upto( hdef, &base, action, arg );

}

The stack base is found by taking the address of the local variable base itself;
this is a good conservative estimate of an address just below the frame of the
handler. We mark handle_upto as noinline to ensure it gets its own stack
frame just above base:
noinline value handle_upto( hdef, base, action, arg ) {

handler* h = hstack_push();
h->hdef = hdef;
h->stackbase = base;
value res;
if (setjmp(h->entry) == 0) {
// (H1): we recorded our register context
...

}
else {
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// (H2): we long jumped here from an operation
...

}
// (H3): returning from the handler
return res; }

This function pushes first a fresh handler on a shadow handler stack. In princi-
ple, we could have used the C stack to “push” our handlers simply by declaring
it as a local variable. However, as we will see later, it is more convenient to
maintain a separate shadow stack of handlers which is simply a thread-local ar-
ray of handlers. Next the handler uses setjmp to save its execution context in
h->entry. This is used later by an operation to longjmp back to the handler.
On its invocation, setjmp returns always 0 and the (H1) block is executed next.
When it is long jumped to, the (H2) block will execute.

For our purposes, we need a standard C compliant setjmp/longjmp imple-
mentation; namely one that just saves all the necessary registers and flags in
setjmp, and restores them all again in longjmp. Since that includes the stack
pointer and instruction pointer, longjmp will effectively “jump” back to where
setjmp was called with the registers restored. Unfortunately, we sometimes need
to resort to our own assembly implementations on some platforms. For example,
the Microsoft Visual C++ compiler (msvc) will unwind the stack on a longjmp
to invoke destructors and finalizers for C++ code [33]. On other platforms, not
always all register context is saved correctly for floating point registers. We have
seen this in library code for the ARM Cortex-M for example. Fortunately, a
compliant implementation of these routines is straightforward as they just move
registers to and from the entry block. Appendix A.1 shows an example of the
assembly code for setjmp on 32-bit x86.

4.1.1. Handling Return The (H1) block in handle_upto is executed when
setjmp finished saving the register context. It starts by calling the action with
its argument:

if (setjmp(h->entry) == 0) {
// (H1): we recorded our register context
res = action(arg);
hstack_pop(); // pop our handler
res = hdef->retfun(res); // invoke the return handler

}

If the action returns normally, we are in the (return) rule:

handleh · v−→ e[x 7→ v] with (return→ e) ∈ h

We have a handler h on the handler stack, and the result value v in res. To
proceed, we call the return handler function retfun (i.e. e) with the argument
res (i.e. x 7→ v) – but only after popping the handleh frame.
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4.1.2. Handling an Operation The (H2) block of handle_upto executes
when an operation long jumps back to our handler entry:

else {
// we long jumped here from an operation
value arg = h->arg; // load our parameters
const operation* op = h->arg_op;
resume* resume = h->arg_resume;
hstack_pop(); // pop our handler
res = op->opfun(resume,arg); // and call the operation

}

This is one part of the (handle) rule:

handleh · Xop · op(v)−→ e[x 7→ v, resume 7→λy. handleh · Xop · y]

where (op(x)→ e) ∈ h. At this point, the yielding operation just jumped back
and the Xop part of the stack has been “popped” by the long jump. Moreover,
the yielding operation has already captured the resumption resume and stored
it in the handler frame arg_resume field together with the argument v in arg
(Section 4.2). We store them in local variables, pop the handler frame handleh,
and execute the operation handler function e, namely op->opfun, passing the
resumption and the argument.

4.2. Yielding an Operation

Calling an operation op(v) is done by a function call yield(OPTAG(op),v):
value yield(const optag* optag, value arg) {

const operation* op;
handler* h = hstack_find(optag,&op);
if (op->opkind==OP_NORESUME) yield_to_handler(h,op,arg,NULL);

else return capture_resume_yield(h,op,arg); }

First we call hstack_find(optag,&op) to find the first handler on the handler
stack that can handle optag. It returns the a pointer to the handler frame and a
pointer to the operation description in &op. Next we make our first optimization:
if the operation handler does not need a resumption, i.e. op->opkind==OP_NORESUME,
we can pass NULL for the resumption and not bother capturing the execution
context. In that case we immediately call yield_to_handler with a NULL ar-
gument for the resumption. Otherwise, we capture the resumption first using
capture_resume_yield. The yield_to_handler function just long jumps back
to the handler:
noreturn void yield_to_handler( handler* h, const operation* op,

value oparg, resume* resume ) {
hstack_pop_upto(h); // pop handler frames up to `h`
h->arg = oparg; // pass the arguments in then handler fields
h->arg_op = op; h->arg_resume = resume;
longjmp(h->entry,1); } // and jump back down! (to (H2))
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4.2.1. Capturing a Resumption At this point we have a working imple-
mentation of effect handlers without resume and basically implemented custom
exception handling. The real power comes from having first-class resumptions
though. In the (handle) rule, the resumption is captured as:

resume 7→λy. handleh · Xop · y

This means we need to capture the current execution context, “handleh · Xop”,
so we can later resume in the context with a result y. The execution context in
C would be the stack up to the handler together with the registers. This is done
by capture_resume_yield:
value capture_resume_yield(handler* h, const operation* op, oparg ) {

resume* r = (resume*)malloc(sizeof(resume));
r->refcount = 1; r->arg = lh_value_null;
// set a jump point for resuming
if (setjmp(r->entry) == 0) {
// (Y1) we recorded the register context in `r->entry`
void* top = get_stack_top();
capture_cstack(&r->cstack, h->stackbase, top);
capture_hstack(&r->hstack, h);
yield_to_handler(h, op, oparg, r); } // back to (H2)

else {
// (Y2) we are resumed (and long jumped here from (R1))
value res = r->arg;
resume_release(r);
return res;

} }

A resumption structure is allocated first; it is defined as:
typedef struct _resume {

ptrdiff_t refcount; // resumptions are heap allocated
jmp_buf entry; // jump point where the resume was captured
cstack cstack; // captured call stack
hstack hstack; // captured handler stack
value arg; // the argument to `resume` is passed through `arg`.

} resume;

Once allocated, we initialize its reference count to 1 and record the current
register context in its entry. We then proceed to the (Y1) block to capture the
current call stack and handler stack.
These structures are defined as:
typedef struct _hstack {

ptrdiff_t count; // number of valid handlers in hframes
ptrdiff_t size; // total entries available
handler* hframes; // array of handlers (0 is bottom frame)

} hstack;

typedef struct _cstack {
void* base; // The base of the stack part
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ptrdiff_t size; // The byte size of the captured stack
byte* frames // The captured stack data (allocated in the heap)

} cstack;

Capturing the handler stack is easy and capture_hstack(&r->hstack,h) just
copies all handlers up to and including h into r’s hstack field (allocating as
necessary). Capturing the C call stack is a bit more subtle. To determine the
current top of the stack, we cannot use our earlier trick of just taking the address
of a local variable, for example as:

void* top = (void*)&top;

since that may underestimate the actual stack used: the compiler may have put
some temporaries above the top variable, and ABI’s like the System V amd64
include a red zone which is a part of the stack above the stack pointer where
the compiler can freely spill registers [32,3.2.2]. Instead, we call a child function
that captures its stack top instead as a guaranteed conservative estimate:

noinline void* get_stack_top() {
void* top = (void*)&top;
return top; }

The above code is often found on the internet as a way to get the stack top
address but it is wrong in general; an optimizing compiler may detect that the
address of a local is returned which is undefined behavior in C. This allows it
to return any value! In particular, both clang and gcc always return 0 with
optimizations enabled. The trick is to use a separate identity function to pass
back the local stack address:

noinline void* stack_addr( void* p ) {
return p;

}
noinline void* get_stack_top() {

void* top = NULL;
return stack_addr(&top);

}

This code works as expected even with aggressive optimizations enabled.
The piece of stack that needs to be captured is exactly between the lower

estimate of the handler stackbase up to the upper estimate of our stack top.
The capture_cstack(&r->cstack,h->stackbase,top) allocates a cstack and
memcpy’s into that from the C stack.

At this point the resumption structure is fully initialized and captures the
delimited execution context. We can now use the previous yield_to_handler
to jump back to the handler with the operation, its argument, and a first-class
resume structure.
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Figure 3. Resuming a resumption r that captured the stack up to a handler h. The
captured stack will overwrite the striped part of the existing stack, which is saved by
a fragment handler. The argument v is passed in the arg field of the resumption r.

4.3. Resuming
Now that we can capture a resumption, we can define how to resume one. In our
operational semantics, a resumption is just a lambda expression:

resume 7→λy. handleh · Xop · y

and resuming is just application, E· resume(v)−→E· handleh · Xop · v. For the C
implementation, this means pushing the captured stack onto the main stacks
and passing the argument v in the arg field of the resumption. Unfortunately,
we cannot just push our captured stack on the regular call stack. In C, often local
variables on the stack are passed by reference to child functions. For example,
char buf[N]; snprintf(buf,N,"address of buf: %p", buf);

Suppose inside snprintf we call an operation that captures the stack. If we
resume and restore the stack at a different starting location, then all those stack
relative addresses are wrong! In the example, buf is now at a different location
in the stack, but the address passed to snprintf is still the same.

Therefore, we must always restore a stack at the exact same location, and
we need to do extra work in the C implementation to maintain proper stacks.
In particular, when jumping back to an operation (H2), the operation may call
the resumption. At that point, restoring the original captured stack will need to
overwrite part of the current stack of the operation handler!

4.3.1. Fragments This is situation is shown in Figure 3. It shows a resumption
r that captured the stack up to a handler h. The arrow from h points to the
stackbase which is below the current stack pointer. Upon restoring the saved
stack in r, the striped part of the stack is overwritten. This means:

1. We first save that part of the stack in a fragment which saves the register
context and part of a C stack.

2. We push a special fragment handler frame on the handler stack just below
the newly restored handler h. When h returns, we can now restore the original
part of the call stack from the fragment.
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The implementation of resuming becomes:
value resume(resume* r, value arg) {

fragment* f = (fragment*)malloc(sizeof(fragment));
f->refcount = 1; f->res = value_null;
if (setjmp(f->entry) == 0) {
// (R1) we saved our register context
void* top = get_stack_top();
capture_cstack(&f->cstack, cstack_bottom(&r->cstack), top);
hstack_push_fragment(f); // push the fragment frame
hstack_push_frames(r->hstack); // push the handler frames
r->arg = arg; // pass the argument to resume
jumpto(r->cstack, r->entry); } // and jump (to (Y2))

else {
// (R2) we jumped back to our fragment from (H3).
value res = f->res; // save the resume result to a local
hstack_pop(hs); // pop our fragment frame
return res; // and return the resume result

} }

The capture_cstack saves the part of the current stack that can be overwritten
into our fragment. Note that this may capture an “empty” stack if the stack hap-
pens to be below the part that is restored. This only happens with resumptions
though that escape the scope of an operation handler (i.e. non-scoped resump-
tions). The jumpto function restores an execution context by restoring a C stack
and register context. We discuss the implementation in the next section.

First, we need to supplement the handler function handle_upto to take
fragment handler frames into account. In particular, every handler checks whether
it has a fragment frame below it: if so, it was part of a resumption and we need
to restore the original part of the call stack saved in the fragment. We add the
following code to (H3):
noinline value handle_upto( hdef, base, action, arg ) {

...
// (H3): returning from the handler
fragment* f = hstack_try_pop_fragment();
if (f != NULL) {
f->res = res; // pass the result
jumpto(f->cstack,f->entry); // and restore the fragment (to (R2))

}
return res; }

Here we use the same jumpto function to restore the execution context. Un-
winding through fragments also needs to be done with care to restore the stack
correctly; we discuss this in detail in Appendix A.2.

4.3.2. Jumpto: Restoring an Execution Context The jumpto function
takes a C stack and register context and restores the C stack at the original
location and long jumps. We cannot implement this directly though as:
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Compiler Native (s) Effects (s) Slowdown Operation Cost Ops/s
msvc 2015 /O2 0.00057 0.1852 326× 162·sqrt 1.158·106

clang 3.8.0 -O3 0.00056 0.1565 279× 139·sqrt 1.402·106

gcc 5.4.0 -O3 0.00056 0.1883 336× 167·sqrt 1.193·106

Figure 4. Performance using full resumptions. All measurements are on a 2016 Surface
Book with an Intel Core i7-6600U at 2.6GHz with 8GB ram (LPDDR3-1866) using 64-
bit Windows 10 & Ubuntu 16.04. The benchmark ran for 100000 iterations. The Native
version is a plain C loop, while the Effect version uses effect handlers to implement
state. Operation cost is the approximate cost of an effect operation relative to a double
precision sqrt instruction. Ops/s are effect operations per second performed without
doing any work.

noreturn void jumpto( cstack* cstack, jmp_buf* entry ) {
// wrong!
memcpy(c->base,c->frames,c->size); // restore the stack
longjmp(*entry,1); } // restore the registers

In particular, the memcpy may well overwrite the current stack frame of jumpto,
including the entry variable! Moreover, some platforms use a longjmp imple-
mentation that aborts if we try to jump up the stack [14].

The trick is to do jumpto in two parts: first we reserve in jumpto enough
stack space to contain the stack we are going to restore and a bit more. Then
we call a helper function _jumpto to actually restore the context. This function
is now guaranteed to have a proper stack frame that will not be overwritten:
noreturn noinline
void _jumpto( byte* space, cstack* cstack, jmp_buf* entry ) {

space[0] = 0; // make sure is live
memcpy(c->base,c->frames,c->size); // restore the stack
longjmp(*entry,1); // restore the registers

}
noreturn void jumpto(cstack* cstack, jmp_buf* entry ) {

void* top = get_stack_top();
ptrdiff_t extra = top - cstack_top(cstack);
extra += 128; // safety margin
byte* space = alloca(extra); // reserve enough stack space
_jumpto(space,cstack,entry); }

As before, for clarity we left out error checking and assume the stack grows up
and extra is always positive. By using alloca we reserve enough stack space
to restore the cstack safely. We pass the space parameter and write to it to
prevent optimizing compilers to optimize it away as an unused variable.

4.4. Performance

To measure the performance of operations in isolation, we use a simple loop that
calls a work function. The native C version is:
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int counter_native(int i) {
int sum = 0;
while (i > 0) { sum += work(i); i--; }
return sum; }

The effectful version mirrors this but uses a state effect to implement the counter,
performing two effect operations per loop iteration:

int counter() {
int i; int sum = 0;
while ((i = state_get()) > 0) {

sum += work(i);
state_put(i - 1); }

return sum; }

The work function is there to measure the relative performance; the native C
loop is almost “free” on a modern processors as it does almost nothing with a
loop variable in a register. The work function performs a double precision square
root:

noinline int work(int i) { return (int)(sqrt((double)i)); }

This gives us a baseline to compare how expensive effect operations are compared
to the cost of a square root instruction.
Figure 4 shows the results of running 100,000 iteration on a 64-bit platform.
The effectful version is around 300× times slower, and we can execute about 1.3
million of effect operations per second.

The reason for the somewhat slow execution is that we capture many re-
sumptions and fragments, moving a lot of memory and putting pressure on the
allocator. There are various ways to optimize this. First of all, we almost never
need a first-class resumption that can escape the scope of the operation. For
example, if we use a OP_NORESUME operation that never resumes, we need to
capture no state and the operation can be as cheap as a longjmp.

Another really important optimization opportunity is tail resumptions: these
are resumes in a tail-call position in the operation handler. In the benchmark,
each resume remembers its continuation in a fragment so it can return execution
there – just to return directly without doing any more work! This leads to an ever
growing handler stack with fragment frames on it. It turns out that in practice,
almost all operation implementations use resume in a tail-call position. And
fortunately, we can optimize this case very nicely giving orders of magnitude
improvement as discussed in the next section.

5. Optimized Tail Resumptions

In this section we expand on the earlier observation that tail resumptions can
be implemented more efficiently. We consider in particular a operation handler
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Evaluation contexts:
F ::= [] |F(e) | v(F) | op(F) | val x = F; e | handleh(F) | yieldop(F)

Yop ::= [] |Yop(e) | v(Yop) | op(Yop) | val x = Yop; e
| handleh(Yop) if op ∈/ h
| handleh(Yop′ [yieldop′(Yop)]) if op′ ∈ h

New Reduction rules:

(handle) handleh · Yop · op(v) −̄→ e[x 7→ v, resume 7→λy. handleh · Yop · y]
with (op(x)→ e) ∈ h

(thandle) handleh · Yop · op(v) −̄→ handleh · Yop · yieldop · resume(e)[x 7→ v]
with (op(x)→ resume(e)) ∈ h

resume ∈/ fv(e)

(tail) handleh · Yop · yieldop · resume(v) −̄→ handleh · Yop · v with (op ∈ h)

Figure 5. Optimized reduction rules with yield frames. Rules (δ), (β), (let), and
(return) are the same as in Figure 2.

of the form (op(x)→ resume(e)) ∈ h where resume ∈/ fv(e). In that case:

handleh · Xop · op(v)−→
resume(e)[x 7→ v, resume 7→λy. handleh · Xop · y]−→ { resume ∈/ e }
(λy. handleh · Xop · y)(e[x 7→ v])−→∗ { e[x 7→ v]−→∗ v′ }
(λy. handleh · Xop · y)(v′)−→
handleh · Xop · v′

Since we end up with the same stack, handleh · Xop, we do not need to capture and
restore the context handleop · Xop at all but can directly evaluate the operation
expression e as if it was a regular function call! However, if we leave the stack in
place, we need to take special precautions to ensure that any operations yielded
in the evaluation of e[x 7→ v] are not handled by any handler in handleh · Xop.

5.1. A Tail Optimized Semantics
In order to evaluate such tail resumptive expressions under the stack handleop · Xop,
but prevent yielded operations from being handled by handlers in that stack, we
introduce a new yield frame yieldop(e). Intuitively, a piece of stack of the from
handleop · Xop · yieldop can be ignored – the yieldop specifies that any handlers up
to h (where op ∈ h) should be skipped when looking for an operation handler.

This is made formal in Figure 5. We have a new evaluation context F that
evaluates under the new yield expression, and we define a new handler context
Yop that is like Xop but now also skips over parts of the handler stack that are
skipped by yield frames, i.e. it finds the innermost handler that is not skipped.

The reduction rules in Figure 5 use a new reduction arrow −̄→ to signify that
this reduction can contain yieldop frames. The first five rules are equivalent to the
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Compiler Native (s) Effects (s) Slowdown Operation Cost Ops/s
msvc 2015 /O2 0.059 0.197 3.3× 1.15·sqrt 134·106

clang 3.8.0 -O3 0.059 0.153 2.6× 0.79·sqrt 150·106

gcc 5.4.0 -O3 0.059 0.167 2.8× 0.90·sqrt 141·106

Figure 6. Performance using tail optimized resumptions. Same benchmark as in Fig-
ure 4 but with 10·106 iterations.

usual rules except that the the (handle) rule uses the Yop context now instead of
Xop to correctly select the innermost handler for op skipping any handlers that
are part of a handleh · Yop · yieldop (with op ∈ h) sequence.

The essence of our optimization is in the (thandle) rule which applies when
the resume operation is only used in the tail-position. In this case we can (1)
keep the stack as is, just pushing a yieldop frame, and (2) we can skip capturing a
resumption and binding resume since resume ∈/ fv(e). The “unbound” tail resume
is now handled explicitly in the (tail) rule: it can just pop the yieldop frame and
continue evaluation under the original stack.

5.1.1. Soundness We would like to preserve the original semantics with our
new optimized rules: if we reduce using our new −̄→ reduction, we should get
the same result if we reduce using the original reduction rule −→. To state this
formally, we define a ignore function on expression, e, and contexts F and Y.
This function removes any handleh · Yop · yieldop sub expressions where op ∈ h,
effectively turning any of our extended expressions into an original one, and
taking F to E, and Yop to Xop. Using this function, we can define soundness as:
Theorem 1. (Soundness)
If F· e −̄→F· e′ then F· e−→F· e′.
The proof is given in Appendix A.3.

5.2. Implementing Tail Optimized Operations

The implementation of tail resumptions only requires a modification to yielding
operations:
value yield(const optag* optag, value arg) {

const operation* op;
handler* h = hstack_find(optag,&op);
if (op->opkind==OP_NORESUME) yield_to_handler(h,op,arg,NULL);
else if (op->opkind==OP_TAIL) {

hstack_push_yield(h); // push a yield frame
value res = op->opfun(NULL,op,arg); // call operation directly
hstack_pop_yield(); // pop the yield again
return res;

}
else return capture_resume_yield(h,op,arg); }
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We simply add a new operation kind OP_TAIL that signifies that the operation is
a tail resumption, i.e. the operation promises to end in a tail call to tail_resume.
We then push a yield frame, and directly call the operation. It will return with the
final result (as a tail_resume) and we can pop the yield frame and continue. We
completely avoid capturing the stack and allocating memory. The tail_resume
is now just an identity function:
value tail_resume(const resume* r, value arg) { return arg; }

In the real implementation, we do more error checking and also allow OP_TAIL
operations to not resume at all (and behave like and OP_NORESUME). We also
need to adjust the hstack_find and hstack_pop_upto functions to skip over
handlers as designated by the yield frames.

5.3. Performance, again

With our new optimized implementation of tail-call resumptions, let’s repeat our
earlier counter benchmark of Section 4.4. Figure 6 shows the new results where
we see three orders of magnitude improvements and we can perform up to 150
million (!) tail resuming operations per second with the clang compiler. That is
quite good as that is only about 18 instruction cycles on our processor running
at 2.6GHz.

6. What doesn’t work?

Libraries for co-routines and threading in C are notorious for breaking common
C idioms. We believe that the structured and scoped form of algebraic effects
prevents many potential issues. Nevertheless, with stacks being copied, we make
certain assumptions about the runtime:

– We assume that the C stack is contiguous and does not move. This is the
case for all major platforms. For platforms that support “linked” stacks, we
could even optimize our library more since we can then capture a piece of
stack by reference instead of copying! The “not moving” assumption though
means we cannot resume a resumption on another thread than where it was
captured. Otherwise any C idioms work as expected and arguments can be
passed by stack reference. Except..

– When calling yield and (tail_)resume, we cannot pass parameters by stack
reference but must allocate them in the heap instead. We feel this is a rea-
sonable restriction since it only applies to new code specifically written with
algebraic effects. When running in debug mode the library checks for this.

– For resumes in the scope of a handler, we always restore the stack and
fragments at the exact same location as the handler stack base. This way the
stack is always valid and can be unwound by other tools like debuggers. This
is not always the case for a first-class resumption that escapes the handler
scope – in that case a resumption stack may restore into an arbitrary C stack,
and the new C stack is (temporarily) only valid above the resume base. We
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have not seen any problems with this though in practice with either gdb or
Microsoft’s debugger and profiler. Of course, in practice almost all effects use
either tail resumptions or resumptions that stay in the scope of the handler.
The only exception is really the async effect but that in that case we happen
to still resume at the right spot since we always resume from the same event
loop.

7. Related Work

This is the first library to implement algebraic effects and handlers for the
C language, but many similar techniques have been used to implement co-
routines [22,1.4.2] and cooperative threading [1, 4, 6, 7, 11]. In particular, stack
copying/switching, and judicious use of longjmp and setjmp [14]. Many of these
libraries have various drawbacks though and restrict various C idioms. For ex-
ample, most co-routines libraries require a fixed C stack [9, 15, 25, 41], move
stack locations on resumptions [31], or restrict to one-shot continuations [8].

We believe that is mostly a reflection that general co-routines and first-class
continuations (call/cc) are too general – the simple typing and added structure
of algebraic effects make them more “safe” by construction. As Andrej Bauer,
co-creator of the Eff [3] language puts it as: effects+handlers are to delimited
continuations as what while is to goto [21].

Recently, there are various implementations of algebraic effects, either em-
bedded in Haskell [21, 44], or built into a language, like Eff [3], Links [18],
Frank [30], and Koka [26]. Most closely related to this article is Multi-core
OCaml [12, 13] which implements algebraic effect natively in the OCaml runtime
system. The prevent copying the stack, it uses linked stacks in combination with
explicit copying when resuming more than once.
Multi-core OCaml supports default handlers [12]: these are handlers defined at
the outermost level that have an implicit resume over their result. These are very
efficient and implemented just as a function call. Indeed, these are a special case
of the tail-resumptive optimization shown in Section 5.1: the implicit resume
guarantees that the resumption is in a tail-call position, while the outermost
level ensures that the handler stack is always empty and thus does not need a
yieldop frame specifically but can use a simple flag to prevent handling of other
operations.

8. Conclusion

We are excited by this library to provide powerful new control abstractions in C.
For the near future we plan in integrate this into a compiler backend for the P
language [10], and to create a nice wrapper for libuv. As part of the P language
backend, we are also working on a C++ interface to our library which requires
special care to run destructors correctly.
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A. Appendix

A.1. Implementing Setjmp and Longjmp

Here is some example of the assembly code for setjmp and longjmp for 32-bit
x86 with the cdecl calling convention is [16]. The setjmp function just moves
the registers into the jmp_buf structure:
; called with:
; [esp + 4]: _jmp_buf address (cleaned up by caller)
; [esp] : return address
mov ecx, [esp+4] ; _jmp_buf to ecx
mov [ecx+ 0], ebp ; save registers
mov [ecx+ 4], ebx
mov [ecx+ 8], edi
mov [ecx+12], esi
lea eax, [esp+4] ; save esp (minus return address)
mov [ecx+16], eax
mov eax, [esp] ; save the return address (eip)
mov [ecx+20], eax
stmxcsr [ecx+24] ; save sse control word
fnstcw [ecx+28] ; save fpu control word
xor eax, eax ; return zero
ret

Note that we only need to save the callee save registers; all other temporary
registers will have already been spilled by compiler when calling the setjmp
function.

The longjmp function reloads the saved registers and in the end jumps di-
rectly to the stored instruction pointer (which was the return address of setjmp):
; called with:
; [esp+8]: argument
; [esp+4]: jmp_buf adress
; [esp] : return address (unused!)
_lh_longjmp PROC

mov eax, [esp+8] ; set eax to the return value (arg)
mov ecx, [esp+4] ; ecx to jmp_buf
mov ebp, [ecx+ 0] ; restore registers
mov ebx, [ecx+ 4]
mov edi, [ecx+ 8]
mov esi, [ecx+12]
ldmxcsr [ecx+24] ; load sse control word
fnclex ; clear fpu exception flags
fldcw [ecx+28] ; restore fpu control word
test eax, eax ; longjmp should never return 0
jnz ok
inc eax

ok:
mov esp, [ecx+16] ; restore esp
jmp dword ptr [ecx+20] ; and jump to the eip
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Figure 7. Unwinding a stack with fragments

Actually, it turns out that on 32-bit Windows we also need to extend the as-
sembly to save and restore the exception handler frames that are linked on the
stack (pointed to by the first field of the thread local storage block at fs:[0]).
See Section A.4 for more information.

A.2. Unwinding through fragments

This section shows in more detail how to unwind the handler stack in the presence
of fragments (as discussed in Section 4.3.1). The hstack_pop_upto function
without fragments can just pop handlers, skipping over yield segments, until it
reaches the handler h. In the presence of fragment handlers though, it also needs
to restore the C stack as it was when the handler h was on top of the stack.

Figure 7 illustrates this. When unwinding to handler h, there are three frag-
ment handlers on the stack. In the figure, the top of the gray part of the stack
shows the stackbase for h. When unwinding the handler stack, a new composite
fragment is created that applies each fragment on the handler stack in order.
After unwinding, the C stack can be properly restored to its original state.

Note that when unwinding with fragments, you cannot skip over yield seg-
ments – all fragment frames up to the final handler must be taken into account
to restore the C stack as it was when the handler was originally installed.

A.3. Proof of Soundness

Here we prove soundness of the tail resumptive optimization discussed in Sec-
tion 5. Useful properties of the ignore function are v = v, and F· handleh · Yop · yieldop
(with op ∈ h) equals F.
Proof. (Of Theorem 1, Section 5.1.1) We show this by case analysis on reduction
rules. The first five rules are equivalent to the original rules. For (yhandle) we
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have:

F· handleh · Yop · op(v)
=

F· handleh · Yop · op(v)
=

F· handleh · Yop · op(v)
−→

F· e[x 7→ v, resume 7→λy. handleh · Yop · y]
= { resume ∈/ fv(e) }

F· e[x 7→ v]
= { op ∈ h }

F· handleh · Yop · yieldop · e[x 7→ v]
=

F· handleh · Yop · yieldop · e[x 7→ v]

In the (tail) rule, we know by construction that in the original reduction rules,
resume would have been bound as a regular resume 7→λy· handleh · Yop · y:

F· handleh · Yop · yieldop · resume(v)
=

F· handleh · Yop · yieldop · (λy· handleh · Yop · y)(v)
= { op ∈ h }

F· (λy· handleh · Yop · y)(v)
−→

F· handleh · Yop · v
=

F· handleh · Yop · v

⊓⊔

A.4. C++ and Exception Handling

Making the library work with C++ is not entirely straightforward. In particular,
we need to adapt the library to deal with exceptions and destructors. Fortunately,
there are just a few places that need to be adapted:

1. When pushing a handler frame, we ensure that the handler gets popped even
in the presence of exceptions.

2. When an exception reaches a fragment frame, we need to restore the C stack
and continue throwing the exception.

3. When a resumption is never resumed, we should ensure that all destructors
captured by that resumption are still executed.
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A.4.1. Popping Handler Frames To ensure that a pushed handler frame is
always popped when exiting the scope, even in the presence of exceptions, we
use the C++ RAII idiom [39, 16.5].
class raii_hstack_pop {
public:

raii_hstack_pop() { }
~raii_hstack_pop() { hstack_pop(); }

};

When pushing a handler frame, we also create a corresponding pop object in the
scope whose destructor will automatically pop the handler frame when either
exiting the scope normally, or through an exception. For example, we adjust the
code for tail resumptions in Section 5.2 to pop the yield frame on exit:
value yield(const optag* optag, value arg) {

const operation* op;
handler* h = hstack_find(optag,&op);
if (op->opkind==OP_NORESUME) yield_to_handler(h,op,arg,NULL);
else if (op->opkind==OP_TAIL) {

hstack_push_yield(h); // push a yield frame
raii_hstack_pop pop_yield();
return op->opfun(NULL,op,arg); // call operation directly

}
else return capture_resume_yield(h,op,arg); }

A.4.2. Raising through Fragment Frames Things become more complex
when an exception reaches a fragment frame as described in Section 4.3.1. In
this case, the original C stack stored in the fragment first needs to be restored,
and then the exception needs to be re-thrown given the new execution context.
First, we extend the fragment structure to also hold a first-class exception:
typedef struct _fragment {

count ref_count;
jmp_buf entry; // point where the fragment was captured
struct _cstack cstack; // the C stack to restore
value arg; // when jumped to, the result is passed here
std::exception_ptr eptr; // non-null if an exception happened

} fragment;

When a fragment returns with a non-null eptr the exception is re-thrown in the
new context. We adapt the code for resuming from Section 4.3.1 as:
value resume(resume* r, value arg) {

fragment* f = (fragment*)malloc(sizeof(fragment));
f->refcount = 1;
f->res = value_null;
f->eptr = NULL;
if (setjmp(f->entry) == 0) {
// (R1) we saved our register context
...
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}
else {
// (R2) we jumped back to our fragment from (H3).
value res = f->res; // save the resume result to a local
std:exception_ptr eptr; // swap the eptr to a local
std::swap(eptr,f->eptr);
hstack_pop(hs); // pop our fragment frame
if (eptr) {
std::rethrow_exception(eptr); // rethrow if propagating an exception

}
return res; // and return the resume result

}
}

We use std::swap here to save the exception pointer locally in order to ensure we
use it linearly such that it gets properly released when re-throwing the exception.

The code for handlers now needs to catch any exceptions in order to prop-
agate them through fragments. The code of Section 4.1 is adapted to do this.
First we call the helper handle_uptox instead of handle_upto:

value handle( const handlerdef* hdef,
value (*action)(value), value arg ) {

void* base = NULL;
return handle_uptox( hdef, &base, action, arg );

}

where handle_uptox takes care of handling fragments even in the case of excep-
tions:

noinline value handle_uptox( const handlerdef* hdef, base, action arg ) {
fragment* f;
value res;
try {
res = handle_upto(hdef, base, action, arg);
f = hstack_try_pop_fragment();

}
catch (...) {
f = hstack_try_pop_fragment();
if (fragment==NULL) throw; // re-throw immediately if there is no fragment
f->eptr = std::current_exception(); // remember to re-throw!
res = lh_value_null;

}
// (H4): returning from the handler
if (f != NULL) {
f->res = res; // pass the result
jumpto(f->cstack,f->entry); // and restore the fragment (to (R2))

}
// otherwise just return normally
return res;

}
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We also moved the original code for fragments in the handle_upto function
(Section 4.3.1, (H3)) to handle_uptox (as (H4)) so it is outside the exception
handler. The handle_upto function now just returns the result directly:
noinline value handle_upto( hdef, base, action, arg ) {

value res;
...
// (H3): returning from the handler
return res;

}

A.4.3. Calling Destructors Finally, we need to ensure that when an OP_NORESUME
operation never resumes, that we still invoke all the destructors up to the handler.
To properly unwind the stack we resort to throwing a special unwind_exception
instead of long jumping directly. We adapt the implementation of yield (Sec-
tion 5.2) to use exceptions:
value yield(const optag* optag, value arg) {

const operation* op;
handler* h = hstack_find(optag,&op);
if (op->opkind==OP_NORESUMEX) {

yield_to_handler(h,op,arg,NULL);
}
else if (op->opkind==OP_NORESUME {
throw unwind_exception(h,op->opfun,arg);

}
...

}

We added a new category OP_NORESUMEX which returns to a handler in the
old way without calling destructors which can still be useful in specific cases.
For the normal OP_NORESUME an unwind exception is thrown. The exception
will propagate down the stack invoking destructors as usual. As shown in the
previous section, unwinding also proceeds correctly through fragment handlers.

Eventually, the unwind exception is caught by operation handler. This is
done by adapting the (H1) block in Section 4.1.1 for handling returns:
value handle_upto(hdef,base,action,arg) {

value res;
handler* h = hstack_push(hdef,base);
count id = h->id; // save id of the handler locally
h->hdef = hdef;
h->stackbase = base;
if (setjmp(h->entry) == 0) {
// (H1): we recorded our register context
try {
raii_hstack_pop pop_handler();
res = action(arg);

}
catch( const unwind_exception& e ) {
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if (e.handler->id != id) throw; // re-throw if not for us
res = e.opfun(e.arg); // call the operation

}
res = hdef->retfun(res); // invoke the return handler

}
else {
// (H2): we come back from a long jump
...

}
return res;

}

Note that we need to give handlers unique id’s to identify them. We cannot
directly compare the handler pointers since they may be moved when a handler
stack is re-allocated. The identifier is used to see if an unwind exception is meant
for us or another handler further down the stack. If we catch an unwind excep-
tion for our handler, we invoke the passed operation (which is an OP_NORESUME
operation).

Besides OP_NORESUME operations, there is one other possibility to not re-
sume: a first-class resumption (OP_GENERAL) can never be resumed! To detect
this situation, we add a resumptions counter to a resume structure. When a
resumption is released, and the resumptions counter is still zero, we need to
invoke any destructors captured by the resumption:
void resume_release( resume* r ) {

if (r->refcount == 1 && r->resumptions == 0) {
try {
r->resumptions = -1; // so resume will raise an exception
resume(r, value_null); // resume it, with resumption set to -1
assert(false); // we should never get here

}
catch (const resume_unwind_exception& e) {
if (e.resume != r) throw; // re-throw if it is not our resumption

}
}
...

}

By setting the resumptions field to -1, the resume call will first restore the
execution context as normal, but then raise a resume_unwind_exception. This
is propagated as usual and finally caught in the catch block of resume_release.
At that point we know all the captured destructors have been invoked and we
can safely free the resumption.

A.4.4. Maintaining Exception Handler Chains Most C++ implementa-
tions use “zero cost” exception handling as initially specified by the Itanium C++
ABI [20]. This uses compile time tables to find the correct exception handlers and
requires no special exception frames in the C stack. On some platforms though,
and in particular 32-bit Windows, C++ exception handling is implemented us-
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Figure 8. Resuming with linked exception handlers (adapted from Figure 3). The
register ep points to the top of the exception handler list and is system dependent.
On 32-bit Windows it is stored in the first field of the thread local storage block, i.e.
fs:[0].

ing a chain of exceptions handlers on the stack. On 32-bit Windows this is part
of the operation system known as structured exception handling (SEH) [34].

When using resumptions in tail-call position, or when they do not escape the
scope of the operation, any resumption is always restored at the same valid stack
location. This ensures that any return addresses and also the exception handler
frames always form a valid chain. However, this is not the case for a first-class
resumption that is resumed in another arbitrary stack – since we always restore
a stack at the same address, the resumed stack part is only valid up to that
address.

This is in principle no problem: since we use fragment frames and a try
block at any handler, we always restore the original stack before returning or
re-throwing an exception at run-time. Nevertheless, this can be troublesome
for tools like debuggers or profilers. For example, the Microsoft Visual Studio
debugger always expects a valid chain of exception handlers when an exception is
thrown and returns an error if the chain is broken across a resumption. Therefore,
on platforms that require it (currently only 32-bit Windows), we also ensure we
always have a valid exception handler chain when calling a resumption. This is
shown in detail in Figure 8.

At initialization time we find the bottom exception handler frame which
is usually put on the stack by the OS or the C runtime even before running
main. Whenever a first-class resumption is entered, we find the bottom exception
handler frame in the stack part of the resumption and patch it to point to
the bottom-most exception frame. This way, there is always a valid exception
handler chain on the stack. When an actual exception happens, we know that
the bottom exception handler in the resumption stack is the try frame of the
handle function which catches all exceptions – so at run-time the exception
chain is never actually unwound beyond that point.
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A.5. Resource Management and Handler Local State

Todo.

Created with Madoko.net.
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