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Abstract

Over the years, many different indexing techniques and search algorithms
have been proposed, including CSS-trees, CSB+-trees, k-ary binary search,
and fast architecture sensitive tree search. There have also been papers on
how best to set the many different parameters of these index structures, such
as the node size of CSB+-trees.

These indices have been proposed because CPU speeds have been increas-
ing at a dramatically higher rate than memory speeds, giving rise to the Von
Neumann CPU–Memory bottleneck. To hide the long latencies caused by
memory access, it has become very important to well-utilize the features of
modern CPUs. In order to drive down the average number of CPU clock
cycles required to execute CPU instructions, and thus increase throughput, it
has become important to achieve a good utilization of CPU resources. Some
of these are the data and instruction caches, and the translation lookaside
buffers. But it also has become important to avoid branch misprediction
penalties, and utilize vectorization provided by CPUs in the form of SIMD
instructions.

While the layout of index structures has been heavily optimized for the
data cache of modern CPUs, the instruction cache has been neglected so far.
In this paper, we present NitroGen, a framework for utilizing code generation
for speeding up index traversal in main memory database systems. By
bringing together data and code, we make index structures use the dormant
resource of the instruction cache. We show how to combine index compilation
with previous approaches, such as binary tree search, cache-sensitive tree
search, and the architecture-sensitive tree search presented by Kim et al.
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Chapter 1

Introduction

“[T]here is a direct tradeoff between capacity and speed in DRAM
chips, and the highest priority has been for increasing capacity.
The result is that from the perspective of the processor, memory
has been getting slower at a dramatic rate. This affects all
computer systems, making it increasingly difficult to achieve high
processor efficiencies.” — Stefan Manegold et al. [MBK00]

This chapter will start out with a brief description of the problem of
index search, and the different classes of algorithms involved therein.

The main focus will be on a subset of representative index search problems
with some restrictions, e.g. assuming read-intensive workloads, such as the
ones commonly seen in online analytical processing.

Most of the ideas presented, however, apply to index search in general
and can be adapted for other types of index search problems with relative
ease.

After giving a definition for index search, we will give a brief overview
of modern hardware architecture, present a motivation for this work, and
describe the contribution of this work.

This chapter will then discuss related work, and conclude by describing
the structure of the remaining chapters.
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1.1 On Index Search Algorithms

“An index makes the query fast.”

— Markus Winand [Win10]

Just like the searching chapter of Knuth’s book on the Art of Computer

Programming [Knu98], most of this thesis is devoted to the study of a very

fundamental search problem: how to find the data item that has been stored

with a specific identification key.

This is sufficient for solving a wide assortment of search problems like

finding the values of a mathematical function for some specific set of argu-

ments, looking up the definition of a word in a dictionary, or the telephone

number of a person based on that person’s name in a telephone book.

In fact the only thing this view of index search requires is a set of records.

Some part of each of those records should be designated as the key, used for

identifying that record in the search index. It is possible to have multiple

indices on the same data, keyed with different parts of the records. For

example, there could be two indices for the same list of students: One of the

indices allows finding students by their student ID number, and the other

allows finding them based on their last name.

In this work, we will not consider finding multiple records at the same

time. The algorithms given in pseudo-code will not directly support range

queries. In case there is multiple matching records for the same key, the

algorithms will only return one of the matching records. For most of the

algorithms given here, it is however simple to extend them for range queries,

or returning all of the records matching a key.

We also will not consider set queries, where all records matching a set

of keys are returned from one search operation. There is some potential for

follow-up work in this area — most of the index search algorithms discussed

2



in this work are not explicitly concerned with that case. However, there

is potential for performing better than just sequentially probing the index

for all of the keys in the set. Current commercial database systems already

know when to switch from index probing to a full table scan. There might

be some potential for performing better than both of those when explicitly

considering this case in index structures.

The algorithms given in pseudo-code in this work will return one specific

value in case there is a match for the specified key, or the special value of

nil in case there was no match. One can think of the value as being either

some concrete part of a record (such as the definition of a word), the full

record itself, or some kind of identifier that can be used for reading the full

record from somewhere else. In either case, it does not change the semantics

of the algorithms.

Figure 1.1 illustrates one possible classification of search algorithms:

• Linear search just linearly searches through an array of key-value data,

stopping at the first match. It works on any key-value data without

any kind of build-time preparation. Its run time is in the order of O
(
n
)

where n is the size of the key-value data.

• Hash-based search at build time uses a hashing function to distribute

the n tuples of the key-value data into k buckets. The hashing function

should yield an uniform distribution even for non-uniformly distributed

key data. At search time it only needs to check the key-data in the

bucket belonging to the search key. Its asymptotic run time is in the

•  Linear search 
–  Linear complexity 
–  Useful for small datasets 

•  Hash-based search 
–  Constant (best) complexity 
–  Additional space requirements 
–  Bad performance for range/nearest-key queries 

•  Tree-based search 
–  Logarithmic complexity 
–  Good update properties 

•  Sort-based search 
–  Logarithmic complexity 
–  No additional space requirements 
–  Cache-conscious range scans 
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Figure 1.1: Classes of search algorithms [SGL09]
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order of O
(
n/k

)
. For a large enough k this can result in O

(
1
)
.

• Sort-based search at build time sorts the array of n key-value pairs by

key, saving time at search. Asymptotic run time is O
(
log n

)
.

• Tree-based search creates an index tree out of the n key-value pairs at

build time. At run time, it traverses that tree to find the specified key.

Asymptotic run time is in the order of O
(
log n

)
.

All of these approaches have two operations in common: Index build-up1,

and search operations.

This work is mainly concerned with sort-based and tree-based search

algorithms. There is potential for optimizing hash-based search for modern

CPUs [Ros07]. We will assume that index modification will be done through

a full rebuild of the index, due to focusing on read-intensive workloads, such

as the ones commonly seen in online analytical processing. There is some

potential for optimizing this. We will briefly talk about it later.

1.2 Overview of Modern Hardware Architecture

“Reading from L1 cache is like grabbing a piece of paper from

your desk (3 seconds), L2 cache is picking up a book from a nearby

shelf (14 seconds), main system memory is taking a 4-minute

walk down the hall to buy a Twix bar, and waiting for a hard

drive seek is like leaving the building to roam the earth for one

year and three months.” — Gustavo Duarte [Dua08]

CPU speed has increased at a much faster pace than main memory speed.

To avoid CPUs spending most of their time idly waiting for data to arrive
1Which is an empty operation for linear search.
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from main memory, CPU vendors have added significant amounts of very

fast cache organized into multiple layers [Int10].

Whenever a CPU instruction needs to fetch data from main memory, it

first checks the caches to see if a copy of the data has already been stored

here. If that is the case, it can load the data from the cache, which is much

faster than needing to go through main memory. Otherwise the data is

fetched from main memory, and a copy of the data is kept in the cache,

potentially evicting other data that was already in the cache.

The primary cache resources of a typical modern CPU are displayed in

Figure 1.2. It can be seen that fetching data from the Level 1 and Level 2

caches carries a much lower latency than needing to read data from main

memory. Level 1 Cache is split into separate data and code parts: The only

way of getting things into the instruction cache is through executing code.

Requests missing the Level 1 caches go to Level 2 Cache, which is unified:

CPU Registers

Level 1
Code Cache

Level 1
Data Cache

Level 2 
Unified Cache

Latency:
15 Cycles

Latency:
~200 Cycles

Size:
128 Bytes

Latency:
3 Cycles

Size:
32 KB + 32 KB

Size:
6 MB

Size:
16 GB

Latency:
0 Cycles

Big

Fast

Slow

Small

Main
Memory

Figure 1.2: The cache hierarchy of modern CPUs: Storage at the top is
faster, but smaller. Storage at the bottom is slower, but larger.
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There is no separation of data and instructions in Level 2 Cache.

In addition to the primary cache resources that are directly used to store

copies of data and code, modern CPUs also include a translation lookaside

buffer: Every memory access must go through a virtual-to-physical address

translation, which is in the critical path of program execution. To improve

translation speed, a translation look aside buffer (TLB) is used to cache

translation of most frequently accessed pages. If the translation is not found

in the TLB, processor pipeline stalls until the TLB miss is served [KCS+10].

TLB misses carry the same penalty that uncached reads from main

memory would carry. This means, that for a single read of data from main

memory we can potentially trigger two cache misses and read requests needing

to be served by main memory: One request for fetching the physical page

address, and one request for fetching the actual data.

Current hardware offers support for prefetching data. The automatic

prefetching done by hardware is not effective for irregular memory accesses

like tree traversal, because the hardware can not predict complex access

patterns. Software prefetching instructions are hard to insert for tree traversal,

tree nodes far down from the current node can create a large fan out and

prefetching all tree elements down wastes memory bandwidth significantly

since only one of prefetches will be useful [KCS+10].

If data structures are too big to fit in caches, we should ensure that a

cache line brought from the memory is fully utilized before being evicted out

of caches [KCS+10].

Current hardware also offers SIMD instruction support, allowing us to

use one instruction for executing the same task on multiple data elements

in a single clock cycle. If it were not for SIMD, we would have to use one

instruction per data element. Effectively we can save clock cycles by doing

more in one cycle.
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1.3 Motivation of this Work

Searching is the most time-consuming part of many programs, and using a

good search method instead of a bad one often leads to a substantial increase

in speed [Knu98].

One of the most critical database primitives is tree-structured index

search, which is used for a wide range of applications where low latency and

high throughput matter, such as data mining, financial analysis, scientific

workloads and more [KCS+10]. Since searching is the most time-consuming

part of many programs [Knu98], much time has been invested into finding

good algorithms for it. The earliest search algorithm — binary search — was

first mentioned by John Mauchly more than six decades ago, 25 years before

the advent of relational databases [Mau46, Cod70, Knu98].

When only considering the number of comparisons needed to find a

key inside an index, binary search on a sorted array is the optimal search

algorithm. However, it is not true that all key comparisons come at the same

cost — some comparisons are more expensive than others because of the

effects of cache misses and seeks. Binary search is not optimal in reality.

Databases have traditionally wanted to avoid random access to disk at

all cost due to the high seek latency of platter-based hard disk drives which

vastly overshadows the computational cost of key comparison [BM72]. Index

structures like B+-trees reduce the number of expensive seeks required to find

a key inside the index [Com79]. In recent years, as main memory continued

to get much bigger and cheaper [McC09], the size of main memory available

to databases has kept increasing. For most workloads, it has become possible

to simply keep all data in main memory [MKB09, HAMS08, SMA+07]. Hard

disk latencies have become much less important.

However, it is still not the case that all key comparisons needed for index

search come at the same cost [Kam10]. If there is a cache miss for a key

7



CPU

Level 1
Code Cache

Latency:
15 Cycles

Latency:
~200 Cycles

Size:
128 Bytes

Latency:
3 Cycles

Size:
32 KB + 32 KB

Size:
6 MB

Size:
16 GB

Latency:
0 Cycles

Level 2
Unified Cache

Level 1
Data Cache

Registers

Main
Memory

Figure 1.3: Utilization of CPU caches in traditional index search approaches.
Blue parts are utilized by index search, gray parts are not utilized by index
search. Instruction cache remains underutilized.

comparison, it can take up to ∼70× the amount of time a key comparison

without a cache miss would need.

To avoid waiting for slow main memory, databases should well utilize these

cache resource [MKB09]. Cache optimization in a main memory databases

is similar to main memory optimization in disk-based ones [RR99].

Prior research has focused mainly on how best to optimize the data layout

of index structures for the data cache [KCS+10, RR00, RR99]. However,

modern CPUs split the Level 1 cache into data cache (which is well-utilized

by existing approaches) and instruction cache (which is not, see Figure 1.3).
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1.4 Related Work

In the following we are going to briefly outline the most important pieces

of work related to the ideas behind NitroGen, and index structures and

algorithms.

1.4.1 Performance surveys

Ailamaki et al. [ADHW99] show that the optimizations found in contempo-

rary commercial database systems did not help with taking advantage of

advancements in modern CPU architecture. They report that commercial

database systems spend as much as half of their execution time in stalls, not

actively making use of CPU resources. Interestingly, memory stalls occur

two times more frequently when using index search instead of a sequential

scan in query evaluation for finding records satisfying query predicates.

Unsurprisingly, a performance evaluation done eight years later by Stone-

braker et al. shows that commercial database systems still employ disk-

optimized techniques for a main memory market and can be beat by up to

two orders of magnitude by specialized main memory systems even in the

last of their remaining application areas [SMA+07].

Manegold et al. note that a promising way of overcoming these limitations

and cross the chasms between L1/L2 cache and RAM as well as utilize

the processing speeds of multi-core systems is by improving the design of

algorithms and data structures involved in database systems [MKB09].

1.4.2 Traditional index structures

The fundamental index structure used in database systems are B-trees. B-

trees were originally designed as an improvement over binary tree search with

the goal of avoiding slow random hard disk access as much as possible [BM72].

9



It achieves that goal by grouping multiple nodes of a binary search tree

into bigger nodes. Whereas binary tree search executes just one comparison

per tree node, B-trees can do multiple comparisons before moving onto

the next node and imposing the cost of another hard disk seek. The same

basic approach can be used for reducing the number of cache line misses in

main memory. B+-trees [Com79] increase the efficiency of B-trees by only

storing key and node pointers (no value data) inside the internal nodes. This

effectively lets them store more keys per node with the same node size. Leaf

nodes are linked into a list to efficiently support range scans.

1.4.3 CPU-optimized index structures

Cache sensitive search trees [RR99] are similar to B+-trees without internal

node pointers. Instead, all nodes are stored in one single contiguous block of

memory. In node traversal the location of the next node inside this block of

memory is obtained by index arithmetic. This increases efficiency, allowing

more keys to be stored per node with the same node size. Node size is tuned

to match the size of a cache line, drastically reducing the number of L1/L2

cache misses. Due to all the nodes being stored in one contiguous block

of memory, insertion is a costly operation. CSS-trees are best suited for

read-intensive work loads such as those of decision support systems.

CSB+-trees [RR00] are a compromise between the read performance of

CSS-trees and the insertion performance of unmodified B+-trees. By storing

all children of a node of the search tree together in one contiguous block

of memory, only one node pointer needs to be stored per internal node.

While this does not achieve exactly the same level of efficiency as CSS-trees,

CSB+-trees are much easier to update than CSS-trees and still much more

efficient in exploiting the cache of modern CPUs than unmodified B+-trees.

Hankins and Patel [HP03] report that by tuning the node size of a CSB+-

10



tree to be significantly bigger than cache line size they are able to reduce

the number of instructions executed, TLB misses and branch mispredictions.

They report that the run time effects of this overshadow the additional cache

misses introduced by the bigger node size, obtaining performance of up to

1.21× the performance of CSB+-trees with cache line sized nodes. We have

not been able to observe a similar effect when increasing the node size of

CSS-trees on present hardware architecture. This is consistent with the

findings by Büttcher and Clarke [BC07].

In 1999 Intel extended the instruction set of their Pentium III processors

by adding single-instruction multiple-data operations under the name of

SSE. In the context of index search problems, CPUs with 128-bit registers

can essentially compare four 32-bit integers in the same amount of time it

would take to do a single comparison. Zhou and Ross [ZR02] propose taking

advantage of this: Instead of only comparing the search key against a single

separator element, they utilize SIMD to compare the search key against

the separator and its neighbors. Schlegel et al. [SGL09] improve upon this:

Instead of picking only one separator and splitting data into two partitions,

they propose picking k − 1 unconnected partitioning elements and splitting

the elements into k partitions. Due to SIMD not supporting unconnected

load operations, they reorder the key array to match the order of a linearized

k-ary search tree.

Fast architecture sensitive tree search [KCS+10] combines together the

ideas of CSS search trees [RR99] and k-ary SIMD search [SGL09]. By

employing a hierarchical blocking where the data is first blocked into groups

matching SIMD register width, secondly blocked into groups matching cache

line size, and lastly, blocked into groups matching page size Kim et al. can

utilize the speed-up of SIMD, reduce data cache misses with cache line

blocking, and reduce TLB misses with page blocking which is a novelty. They

11



also optimize their tree search algorithm for GPUs and employ compression

and query pipelining to further increase throughput.

1.4.4 Compilation in Database Systems

Previous research by Rao et al. has used run-time compilation in database

systems to reduce the overhead of passing data between the operators of a

query plan [RPML06] which is similar to context threading for efficiently

interpreting dynamic programming languages [BVZB05]. Earlier research

proposed the use of buffer operators for reducing branch misses and thus

avoid some of the overhead of passing data between operators [ZR04].

1.5 Description of Remaining Chapters

Chapter 2 is concerned with the most basic search techniques used in database

systems. They were developed at a time when all main memory available to

a database system had the size of cache resources available in today’s CPUs.

Consequently, those techniques are not optimized for modern hardware.

Chapter 3 then deals with search techniques which were specifically

optimized for modern CPU architecture, such as CSS-Trees, CSB+-Trees,

k-ary Search, and FAST-Tree search.

Our contribution, NitroGen, will be covered in Chapter 4. It encompasses

a detailed description of the idea of index compilation, the current status of

its implementation, and future work.

Chapter 5 covers the experimental evaluation of existing indexing ap-

proaches, and our new technique of using code generation to speed up index

search.

Finally, Chapter 6 concludes this work by summarizing its most important

results, as well as briefly describing problems left unresolved.
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Chapter 2

Traditional Index Structures

and Search Algorithms

“We are concerned with the process of collecting information in

a computer’s memory, in such a way that the information can

subsequently be recovered as quickly as possible.”

— Donald Knuth [Knu98]

All index structures are founded on one very simple idea: When a lot of

time is spent searching inside the same large set of information, then it makes

a lot of sense to invest a little time upfront, and organize the information in

a suitable way, such that less time needs to be spent searching later on. The

goal is to organize data for fast retrieval of individual pieces of information.

Less time spent searching allows us to have faster database systems.

This chapter is concerned with the most basic search techniques used in

database systems. They were developed at a time when all main memory

available to a database system had the size of cache resources available in

today’s CPUs. Consequently, these search techniques are not optimized for

modern hardware. Yet, one of them is used as a part of all the more modern

13



techniques we will focus on in Chapter 3, and the other one already uses

principles very similar to those of the more modern techniques1.

In the following, I will first briefly outline why binary search on a sorted

array performs sub-optimally for searching large main memory databases on

modern hardware by not optimally utilizing modern hardware resources.

I will then give a quick overview of B-trees and B+-trees, which were

designed to work well with large disk-based databases. I will show that

they perform better than binary search on modern hardware, but still fail to

optimally utilize the resources of modern hardware.

2.1 What’s wrong with Binary Search?

Binary search operates on a linear array of sorted data, shrinking the search

area by around half of the remaining keys on each search step [Mau46].

Figure 2.1 shows a sample run of binary search.

When only considering the number of comparisons needed to find a

key inside an index, binary search on a sorted array is the optimal search

algorithm, provably requiring the minimal possible number of comparisons.

Algorithm 2.1 shows one possible implementation of binary search.

However, in order to compare the search key against an index key, we

first need to fetch that index key into a CPU register. Traditionally, this

fetching meant waiting for a very slow hard disk. Recently, it has become

possible to keep an increasingly larger amount of data in main memory.

While it is not as slow as waiting for disks, a read from main memory is

still much slower than accessing data already present in a CPU register or

already available in CPU cache due to previous memory reads.
1The first one is binary search and the other one is B+-tree search.
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Modern CPUs fetch data from main memory in units of cache lines [Int10].

Reading multiple elements of data from the same cache line is much faster

than reading the equivalent amount of data spread over many cache lines:

The first read of data from a cache line will fetch that data to the cache if it

is not already there. Subsequent reads will be able to directly read the data

from cache instead of needing to go to main memory, when the temporal

distance of all the reads is sufficiently low.

Because of the large distance between search keys compared in step n

of binary search and keys compared in step n + 1 of binary search, one full

cache line is read in step n, but only one of its keys is accessed. In step n + 1

another full cache line is read, but again only one of its keys is accessed.

Figure 2.2 shows that even for the simple sample run from Figure 2.1

where only four key comparisons are made in total, there are three cache
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Figure 2.1: Binary search decreases search area by 50% after each compar-
ison until no keys remain to be compared or a matching value is found.
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misses for a cache size of four key-value pairs. Cache misses mean that we

have to read data from main memory. Fetching data from main memory

into registers takes much more time than the comparison of two integer

numbers. The memory loads dominate actual comparison costs. While the

number of comparisons performed by binary search is optimal, the total

computational time needed is clearly suboptimal when considering the effects

of cache behavior in modern CPUs.

Binary search does not map well to cache architecture of modern CPUs.

Throughput could be much higher if subsequent reads of keys had some cache

locality. This is very similar to why pure binary search is not traditionally

used when reading data from disk. The same ideas used to improve disk

locality can be used to improve cache locality in main memory databases.
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input: Key to search for key
input: Number of data items n
input: Array of keys keys, array of values vals, both of size n

low ← 0; high← n− 1; mid← midKey ← nil;

while low < high do
mid← (low + high)/2;
midKey ← keys[mid];

if key > midKey then
low ← mid + 1;

else
high← mid;

end
end

if midKey = key then
return vals[mid];

else
return nil ;

end

Algorithm 2.1: An iterative implementation of binary search.

2.2 B-trees and B+-trees

Instead of only fetching and comparing a single index key per search step

like in binary search, B-tree2 search compares and fetches blocks of multiple

index keys3 per search step with the motivation of reducing hard disk seeks.

The idea of grouping multiple items into nodes was originally used to

reduce the number of hard disk seeks per index lookup in traditional database

systems [BM72]. It can, however, be used in main memory databases to

reduce the number of page misses for an index lookup as well.

B+-trees [Com79] are an improvement over B-trees in that they do not
2The etymology of the name seems to be unknown: B-trees were developed by Bayer et

al. at Boeing. They are balanced, broader than binary trees, and bushy.
3Bayer et al. call these blocks “pages” in their paper on B-trees [BM72].
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store value data in leaf nodes, allowing better storage utilization and higher

node fanout. Additionally, B+-trees arrange leaf nodes as a linked list in

order to allow fast handling of range queries.

Algorithm 2.2 shows a sample implementation of the B+-tree search

algorithm. That algorithm refers to a binary search on key ranges: The

idea behind this is to perform a binary search on the keys of the node

using the ≤ operator to compare keys, instead of using the = operator: If

key ≤ node.keys[0], we branch to the first child node. If node.keys[0] ≤
key ≤ node.keys[1], we branch to the second child node etc. If the key is

larger than the last of the node keys, we branch to the last child node4.

In addition to storing keys in internal nodes, B+-trees also need to store

one pointer per child node. This was not necessary in binary search due

to using one contiguous array of main memory: The index of the next key
4This is a common operation in search trees, but it appears that it does not have a

proper name so far.

input: Key to search for key
input: Root node of tree root

node← root;

while node is not a leaf node do
childIdx← perform binary search on key ranges for key in keys of
node;
node← node.children[childIdx];

end

keyIdx← perform binary search for key in keys of node;

if keyIdx 6= nil then
return node.values[keyIdx];

else
return nil ;

end

Algorithm 2.2: An implementation of the B+-tree search algorithm.

18



to compare could simply be computed from the index of the previously

compared key. Figure 2.3 shows the logical and physical layouts of B+-trees

and B-trees. Here each page node has three levels of binary nodes, resulting

in seven keys and eight child page node pointers per page node.

Storing one pointer per child node imposes significant space overhead

in B+-trees: Assuming 32-bit-width integer keys and 32-bit-width pointers,

more than 50% of storage space is wasted for storing internal pointer data.

As a consequence, more than 50% of cache space is not used for caching

actual data.
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B+-trees:
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overhead = 15 / 22 = 68%
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Figure 2.3: Logical and physical layout of B- and B+-trees.
(a) Logical layout: Binary nodes are grouped into pages (red triangles).
(b) Physical layout of B+-tree Node 1: More than 50% of space is wasted.
(c) Physical layout of B-tree Node 1: More than 66% of space is wasted.
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Chapter 3

CPU-optimized Index

Structures and Search

Algorithms

“Would you believe me if I claimed that an algorithm that has

been on the books as “optimal” for 46 years, which has been

analyzed in excruciating detail by geniuses like Knuth and taught

in all computer science courses in the world, can be optimized to

run 10 times faster?” — Poul-Henning Kamp [Kam10]

Taking into account the concrete properties and functionality of hardware

in algorithm design leads to better performance of algorithms. Traditional

search algorithms have not taken into account things such as the vast differ-

ence in speed between CPUs and main memory, which can be narrowed by

good use of CPU cache resources, or the advent of SIMD technology, which

allows us to perform an operation on multiple data items in the same time it

would take to complete the operation for one single data item.

This chapter is concerned with search techniques that take into account

the properties and functionality of modern hardware. In the following,
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we briefly outline how CSS-tree search [RR99] is similar to B+-tree search

[Com79], but with the benefit of making more efficient use of CPU caches.

This comes at the cost of less flexibility in the structure of the trees, making

incremental updates impossible, and requiring a full rebuild of the index

structure on most changes. They are, however, still a good match for OLAP

workloads.

Subsequently we will show how CSB+-trees [RR00] overcome that limita-

tion while still making much better use of CPU caches than B+-trees could.

They are more suitable than CSS-trees [RR99] for update-heavy workloads,

such as the ones that seen in OLTP environments.

Next we will show how k-ary search [SGL09] elegantly makes use of SIMD

instructions to speed up search in a sorted array, cutting in half the number

of steps required for finding a key when compared to binary search when

specialized for modern CPUs. However, as non-consecutive fetching of data

from memory to SIMD registers is fairly expensive1, we will see that it makes

more sense to reorganize the underlying key array into a linearized tree

that closely resembles the consecutive node storage already seen in CSS-tree

search [RR99]. We will then show that it is desirable to have the benefits of

CSS-tree search and k-ary search both at the same time to obtain optimal

utilization of cache- and SIMD-resources.

We will then see how fast architecture sensitive tree search [KCS+10]

achieves both goals at the same time, while also adding optimal utilization

of translation-lookaside buffers to further reduce the cost of memory reads

in the average case.

1Not possible in current CPU generations without doing one separate read per data
item plus costs for recombination of the data items.
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3.1 CSS-Trees

Cache sensitive search trees (CSS-trees, [RR99]) are an implicit data structure
form of B+-trees [Com79]: The parent-child hierarchy of the tree structure
is mapped to a linearized array.

Figure 3.1 shows the structure of an example CSS-tree. Dashed lines
represent references to children that need not be physically stored as pointers.
The index of the next child node to process can be calculated from the index
of the current node. By encoding all the tree structure in one contiguous
array, pointers to children no longer need to be stored.

We can still think of the tree as being composed of nodes, they have
just been linearized into a sequential array of nodes. The size of the nodes
should be optimized for two factors: a) matching the size of cache line as
closely as possible to drive down cache accessing costs, and b) decreasing
computational overhead costs in node processing.

By not having to store any child pointers, the amount of necessary storage
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Figure 3.1: Logical and physical layout of CSS-trees.
(a) Logical layout: Binary nodes are grouped into nodes (red triangles).

References to child nodes are virtual: No pointer is stored.
(b) Physical layout of CSS-tree Node 1: Only the keys are stored.
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shrinks to 50% of the storage needed by B+-trees for storing the same amount
of data2. The benefit of this is a better utilization of storage space, and
much more importantly, better utilization of cache space. This leads to fewer
cache misses and faster index lookups.

Index search in CSS-trees works much the same as in B+-trees: The main
difference is using node index calculation instead of pointers to traverse the
tree. Algorithm 3.1 shows the resulting algorithm.

However, due to the removal of pointers and storing everything in one
consecutive array of data, CSS-tree structure is more ‘rigid’: CSS-trees cannot
grow dynamically. Insert, delete, and update operations are handled is by
means of a full rebuild of the tree. For usage in online analytical processing
where write operations are processed overnight in batches this is viable. But
it does mean that special care needs to be exercised when using CSS-trees
in write-heavy online transactional processing. Possible improvements are
using techniques like differential indexing to batch together updates [SL76].

2Assuming 32-bit integer keys and 32-bit child pointers.

input: Key to search for key
input: Array of node data nodes
input: Maximum number of node children fanout

nodeIdx← 0;

while nodeIdx does not refer to a leaf node do
childIdx← perform binary range search for key

in keys of node nodes[nodeIdx];
nodeIdx← nodeIdx ∗ fanout + childIdx + 1;

end

keyIdx← perform binary search for key
in keys of node nodes[nodeIdx];

if keyIdx 6= nil then
return nodes[nodeIdx].values[keyIdx];

else
return nil ;

end

Algorithm 3.1: An implementation of the CSS-tree search algorithm.
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3.2 CSB+-Trees

Another way to overcome the inflexibility of CSS-trees is by changing the

structure to a hybrid scheme: Cache-sensitive B+-trees (CSB+-trees, [RR00])

are an interesting compromise between CSS-trees and B+-trees.

Figure 3.2 shows the structure of CSB+-trees, which is similar to the

structure of CSS- and B+-trees. Solid lines between nodes visualize physical

pointers that need to be stored as part of the physical layout. Dashed lines

between nodes visualize virtual references to child nodes: The exact address

of a child node needs to be calculated based on the index of the child and

the pointer to the first child node.

By storing all children of a node together in one contiguous memory area,
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Figure 3.2: Logical and physical layout of CSB+-trees.

(a) Logical layout: Binary nodes are grouped into nodes (red triangles).
References to all but the first child nodes are virtual: No pointer is stored.

(b) Physical layout of Node 1: Only one pointer is stored per node.
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input: Key to search for key
input: Root node of tree root

node← root;

while node is not a leaf node do
childIdx← perform binary range search for key in keys of node;
node← ∗(node.firstChild + childIdx ∗ childSize)3;

end

keyIdx← perform binary search for key in keys of node;

if keyIdx 6= nil then
return node.values[keyIdx];

else
return nil ;

end

Algorithm 3.2: Implementation of the CSB+-tree search algorithm.

they only need to store one pointer for all children. At the same time it is

still possible for parts of the tree to grow in size without needing to perform

a full rebuild of the CSB+-tree. This means that CSB+-trees can support

incremental updates in a fashion similar to B+-trees, but with much lower

space and cache utilization overhead than B+-trees, making them a good

match for update-frequent workloads, for example in OLTP. In particular,

they are a better match than CSS-trees for those workloads.

Algorithm 3.2 shows the implementation of CSB+-tree search. Apart

from the arithmetic needed to calculate the address of child nodes, it is

identical with B+-tree search.

3Note: If this is implemented in C and node.firstChild is appropriately typed then
adding n to that automatically advances n full child items – the multiplication by childSize
would need to be removed. It is just used in the algorithm pseudo-code because it is not C.

26



3.3 k-ary Search

Binary search does only one comparison at a time to split the search domain
into two partitions. This is optimal from an asymptotic point of view.

Modern CPUs provide support for SIMD instructions. These allow us to
execute multiple parallel operations with one CPU instruction. Currently,
they allow us to do four 32-bit integer comparisons in one cycle [Int10].

However, binary search only performs one comparison per cycle. It only
utilizes one of four comparisons that the CPU could be doing in one cycle,
throwing away computational power by not utilizing it.

The idea behind k-ary search [SGL09] is simple: Instead of performing
only one comparison and obtaining two partitions, it performs k comparisons
and obtains k + 1 partitions. For current CPU generations the optimal value
for k is 4. Figure 3.3 shows a sample run of k-ary search on the same sorted
data that binary search was run on in Figure 2.1 on page 15. Binary search
needs four steps to completion; k-ary search needs only two.

But there is a big issue with directly running k-ary search on a sorted
array: SIMD instructions require all of the data to be present contiguously in
one SIMD register. While it is possible to load data that is not contiguous in
main memory into a SIMD register, this is very inefficient. It is much faster
when all four 32-bit integer numbers, which we want to compare against the
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Figure 3.3: k-ary search with k = 4 decreases search area by 75% after
each step until no keys remain to be compared or a matching value is found.
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search key in one step, are kept contiguously in memory. This is easy to
achieve when we reorganize the elements of the key array before running the
algorithm. Figure 3.4 shows a run of k-ary search with a reorganized array.

Interestingly, the array we obtain by this reorganization is very similar
to the linearized tree representation of CSS search: In fact both have the
very same underlying structure; the only difference is in the size of nodes.

Let us briefly summarize existing approaches before moving on:
k-ary search performs better than binary search. Binary search just

reads and compares one key per step. k-ary search on a linearized tree
representation reads and compares k consecutive keys per step. k-ary search
shares one of binary search’s problems: What happens when k is smaller
than the number of keys that could fit into one cache line?4 The CPU will
fetch a full cache line, but we will only look at a part of it before requesting
the next cache line and only using part of it again.

CSS search reorganizes key data into blocks of cache-line-sized nodes.
k-ary search reorganizes key data into blocks of SIMD-register-sized nodes.
On current hardware, cache line size is four times that of SIMD registers.
With these approaches we can either have cache-optimal or SIMD-optimal
behavior, but not both. Is there a way of unifying them, obtaining cache-
and SIMD-optimal behavior at the same time?

4This is already the case for modern CPUs. Current CPUs use cache line sizes of 128
bytes. k-ary search with k = 4 and 32-bit integer keys would only read 32 bytes at a time,
wasting 75% of the data in a cache line.
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3.4 Fast Architecture Sensitive Tree Search

Fast architecture sensitive tree search (FAST, [KCS+10]) unifies the opti-
mality properties of CSS-tree search and k-ary search. Just like those two
approaches, it uses a binary tree and organizes it inside of a single contigu-
ous array in such a way that the resulting node access sequence is closely
optimized to features of modern hardware architecture. In contrast to those
earlier approaches, however, it can actually optimize for multiple hardware
architecture features at the same time.

The ideas behind FAST are new: They have only recently been published
in June at SIGMOD 2010, just three months before the publication of this
thesis. Unfortunately, despite requests, the reference implementation is not
available. All of the following information is from the paper and our own
reimplementation of the ideas presented therein.

In addition to optimizing data layout for SIMD register size and cache
line size, FAST also optimizes data layout for page size. Virtual memory
management on modern hardware works by using virtual addresses for every
memory request. Virtual addresses are split into a page selector and an
offset into that page. Before it can actually read the data for a memory
request, the CPU needs to look up the physical start address of that page in
memory. The mapping of a page selector to a physical page start address
is done by lookup in the page table, which is also located in memory. In
order to speed up the process of virtual address translation, CPUs have a so
called translation lookaside buffer where the physical start addresses of most
recently accessed pages are stored5.

The goal of page-, cache-line-, and SIMD-blocking in FAST is to keep
memory requests inside the same memory page, cache line, and SIMD data
for as long as possible. Page blocking allows FAST to make optimal use of
the translation lookaside buffer, cache line blocking allows FAST to optimally
utilize data cache resources, and SIMD blocking allows for using k-ary SIMD
search with fast SIMD register loading from contiguous memory.

The way this is achieved is by multi-level reordering of key data: Figure 3.5
shows the structure of nodes inside a single page node employed by FAST.

5This was in fact the first cache that became part of CPUs.
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Figure 3.5: Intra-page layout of FAST-trees with sketch of inter-page layout.

Page nodes themselves form a tree and do have other page nodes as children,
but these are only sketched at the bottom of Figure 3.5. All page nodes have
the same structure as the one displayed.

In the figure and the following explanation we decided to use the following
parameters for the hierarchical blocking. These are not the optimal parame-
ters from a run-time point of view — they are, however, the ones that make
the principles underlying the hierarchical blocking easily comprehensible:

• SIMD nodes are composed of two levels of binary search key nodes.
Note that this results in only three keys per SIMD node, and only three
comparisons at a time in k-ary SIMD search. Current CPU generations
could actually perform four comparisons, however. SIMD nodes have a
fanout of four SIMD child nodes. SIMD node size is 12 bytes6. This is
consistent with the parameters from Kim et al.7

• Cache line nodes are composed of two levels of SIMD nodes. This
results in a total of five SIMD nodes per cache line node, of which two

6Assuming 32-bit integer keys.
7Our reimplementation actually supports the general case of an arbitrary number of

SIMD keys. If we let the underlying key nodes have a fanout of three, we obtain SIMD
nodes with four keys and five SIMD child nodes.
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are visited per search. There is a total of fifteen keys per cache line
node. Cache line node size is 60 bytes6. The typical cache line size of
current CPUs is 64 bytes. Cache line nodes have a fanout of sixteen
cache line child nodes. This is consistent with the parameters from the
paper.

• In this example, page nodes are composed of two levels of cache line
nodes. This results in a total of 17 cache line nodes per page node, of
which two are visited per search. There is a total of 85 SIMD nodes
per page node, of which four are visited per search. This results in a
total of 255 keys per page node, and a page node size of 1020 bytes6.
Page nodes have a fanout of 256 page child nodes. These values are
not optimal, but make it easier to explain hierarchical blocking. The
original paper uses page node depths of 10, or 19 binary search key
nodes8. A typical value for page size in current operating systems is
4096 bytes. A page node depth of 10 binary search key nodes would
result in a total page node size of 4092 bytes.

Keys are laid out from largest to smallest block units:

• First, the data is split into page nodes. Page nodes are processed level
by level, starting from the top of the tree to the bottom of the tree.

• Inside each page node, data is split into cache line nodes. Cache line
nodes inside of the current page node are again processed level by level,
starting from the top of the page node’s subtree to the bottom of the
page node’s subtree.

• Finally, cache line nodes are split into SIMD nodes. SIMD nodes inside
of the current cache line node are processed level by level, starting from
the top of the cache line node’s subtree to the bottom of the subtree.

The resulting processing order is also visualized by the faded, dashed
arrow in Figure 3.5. In search the layout allows us to process data in block
units, hierarchically proceeding from the largest to the smallest block unit:

8The depth of 19 is only used when the operating system offers support for huge memory
pages. This results in even less TLB misses.
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1. At the beginning, we find a full page node at the start of the key array.
We process this page node.

(a) At the start of this page node, we find a full cache line node. We
process this cache line node.

i. At the start of this cache line node, we find a full SIMD node.
We process this SIMD node. We use k-ary search to find the
branch index of the SIMD node child of the current SIMD
node that we should next process.

ii. We process this SIMD node. We use k-ary search to find the
index of the appropriate child branch.

By combining together the two SIMD child branch indices from
steps 1(a)i and 1(a)ii, we find the branch index of the cache line
node child of the current cache line node that we should next
process.

(b) At the start of this cache line node, we find a full SIMD node...

i. Process this SIMD node. Find the next SIMD node to process.

ii. Process this SIMD node. Find the next SIMD child branch.

By combining together the two SIMD child branch indices from
steps 1(b)i and 1(b)ii, we find the next cache line branch index.

By combining together the two cache line branch indices from steps 1a
and 1b, we find the branch index of the page node children of the
current page node that we should next process. We have just processed
the first page node.

2. We can use the same approach to process the next page node, and the
cache line nodes inside that page node, and the SIMD nodes inside
that cache line nodes, and so on until we reach the end of the page
node hierarchy. We can then combine together the page branch indices,
to find the index of the leaf node potentially containing the search key.

3. Inside that leaf node, we can then use regular SIMD search to find the
position of the search key, if it exists.

32



Chapter 4

The NitroGen Approach

“In programming, we deal with two kinds of elements: Proce-

dures and data. (Later we will discover that they are really not

so distinct.)”1 — Abelson & Sussman [AS96]

All of the CPU-optimized index structures we have seen so far have dealt

with optimizing the layout of the involved index structures in such a way

that the CPU’s caches are optimally utilized2.

In achieving that goal they have focused solely on the data caches and

the translation-lookaside buffer of modern CPUs. However, all modern CPUs

also come with fast instruction caches for caching an application’s code.

Table 4.1 shows the size of the code responsible for performing the index

search operations in implementations of select index structures and search

algorithms. These numbers ignore code that is not part of the index search

itself, such as the code for bulk-loading data into an index etc. These numbers

have been obtained by analyzing the executables produced by GNU’s C

compiler with the objdump tool for Linux and otool for Mac OS X. They take

into account the concrete encoding of machine instructions. The executables
1Or, more extremely: “Data is just dumb code, and code is just smart data.”
2k-ary index search has focused on the orthogonal goal of utilizing non-cache CPU

resources. Binary search is not optimized for modern CPUs.
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Algorithm Tuned for Size Remaining
Instruction Cache3

Binary Search
Performance 193 byte 99.4%
Code size 128 byte 99.6%

CSS-tree Search
Performance 686 byte 97.9%
Code size 348 byte 98.9%

FAST-tree Search
Performance 1503 byte 95.4%
Code size 1503 byte4 95.4%

Table 4.1: Code size for index search implementations: The instruction
cache of modern CPUs is largely under-utilized in index search.

have been tuned with flags -Os for code size and -O3 for performance.

As can be seen in Table 4.1 the size of the code used in index lookup

operations tends to be much smaller than the available instruction cache size.

Instruction cache remains largely under-utilized during index search.

In all of the approaches discussed so far, instruction cache has been

completely ignored. Nobody has thought of ways for optimizing index

structures to take into account instruction cache.

Instruction cache remains the only CPU cache resource that index struc-

tures have not been optimized for so far.

However, there is no way of directly loading data from main memory into

or through the instruction cache. It has been designed to be used for caching

code. The only way of getting code into the instruction cache is through

executing the code.

So one question remains: Is there a way of utilizing the instruction cache

for storing the actual data of our index structures when it has only been

designed to be used for caching code?

3Assuming an instruction cache size of 32 KB, which is the case for current generations
of Intel CPUs. Current generations of AMD CPUs use 64 KB of instruction cache.

4Telling GCC to tune this code for size actually results in bigger code than telling it to
tune for speed, resulting in 2056 bytes of code. This is because the additional inlining it
performs when tuning for speed allows it to throw away unused portions of code that it
would otherwise have to keep around.
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4.1 The Fundamental Idea of NitroGen

The NitroGen framework aims to add utilization of instruction caches to the

repertoire of existing index structures and algorithms. As it is only possible

to store code in the instruction cache, and the only way of getting code there

is by executing it, NitroGen achieves its goal by using code generation to

transform data into code. It needs to create a copy of the functions used in

index search and specialize those copies with the actual key data.

By transforming the top of an index structure into code specialized

with concrete data, the top of the index can then be stored in the CPU’s

instruction cache. We can just execute the dynamically created code to

search the top of the tree, and switch back to the generic non-specialized

version of the algorithm to search through the remaining data.

Figure 4.1 shows one sample application of NitroGen. To illustrate the

concepts by example we use NitroGen to add instruction cache utilization

to the simplest possible search algorithm: Linear search on unsorted arrays

Traditional
Approach

12 47 30 26 70

G A D J M
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Figure 4.1: Sample run of NitroGen for linear search.
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of key and value data. Figure 4.1a shows the index search code and data

for one sample instance of unmodified linear search. Figure 4.1b shows the

result of using NitroGen to merge together the index search code with the

concrete data for this sample instance of linear search.

Just like CSS- and FAST-trees, NitroGen is heavily optimized for read-

intensive workloads, such as the ones commonly seen in OLAP environments.

This is because every update triggers run-time code generation. Compared to

OLTP index structures like B+-trees, updates are more expensive. NitroGen

however only converts the top n levels of the index tree into code. The top

of an index tree changes less frequently than the lower levels, due to the way

node splits propagate up the tree.

Update costs can further be decreased by using JIT run-time code gener-

ation libraries to directly generate machine instructions instead of generating

C code at run time and invoking a compiler. Due to usage of jmp instructions,

it is also possible to split the generated code into pieces allocated in separate

memory, and only update the affected pieces. This can further reduce the

cost of update operations.

In order to obtain the biggest possible performance gain from the available

instruction cache, it is imperative to efficiently encode the data into code.

The better the encoding, the more data can be fit into the instruction cache.

4.2 Current Status

In the following, we briefly describe the current state of our implementation

of NitroGen for different base index structures and algorithms. We will start

with describing the implementation of NitroGen for binary search, which is

reasonably simple.

Our current prototype implementations do not yet employ run-time code

generation. To ease initial development and experimental exploration, we

decided to use a static upfront code generation scheme implemented in a

high level programming language. This allowed us to quickly move through
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iterations of the implementation process, experimenting with different ways of

implementing the conceptual ideas. It requires all of the data to be available

at compile time. Our prototype implementations are evaluated in Chapter 5.

4.2.1 NitroGen for Binary Search

For binary search it turned out to be viable to make our prototype directly

emit C code, and use GCC to generate the resulting machine code instructions.

The prototype of the code generator could be implemented in only 270 lines

of high level programming language code.

Figure 4.2 shows the code resulting from using NitroGen to fuse a sample

instance of binary search together with its data into code. The implementa-

tion of binary search that was used is based on Algorithm 2.1 described on

page 17. The structure of the resulting code (Figure 4.2a) is very similar to

that of the key-value data array (Figure 4.2b).
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Figure 4.2: Sample run of NitroGen for binary search.
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4.2.2 NitroGen for CSS-Tree Search

Our initial prototype implementation for CSS-tree search also directly gener-

ated C code, and used GCC to generate the resulting machine code instruc-

tions. However, this soon turned out to be much too slow to carry out any

serious experimental evaluation of the performance of the resulting code5.

So we replaced the prototype implementation emitting C code. Instead

we decided to emit assembler code, and use the GNU assembler to turn that

into machine code instructions. This allowed us to compile code that took

GCC more than 20 hours to compile in less than half an hour.

Figure 4.3 shows the code resulting from using NitroGen to fuse a sam-

ple instance of CSS-tree search together with its data into code. The

underlying implementation of CSS-tree which was used here is based on
5For reasonably sized input data sizes (e.g. 128 MB), GCC took more than 20 hours of

time to compile the code. For slightly bigger inputs (but still < 1 GB), it was possible for
GCC to run out of virtual memory while compiling, despite running on a machine with
10 GB of main memory, and despite turning off compiler optimizations with the -O0 flag.
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Figure 4.3: Sample run of NitroGen for CSS-tree search.
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Figure 4.4: Preamble of NitroGen CSS-tree

search code: Careful setup allows for a more

efficient encoding of the generated search code.

Algorithm 3.1 described on

page 24. The structure of the

resulting code (Figure 4.3a)

is very similar to that of the

base CSS-tree (Figure 4.3b).

To achieve good effi-

ciency in encoding data to

code, we use some inter-

esting tricks. Figure 4.4

shows the preamble, which

is called for each lookup of

a key in the NitroGen index-

compiled CSS-tree. It then

calls the generated SEARCH

code from Figure 4.3 which

encodes the actual data. By

intricate setup of the pream-

ble, we can reduce the size

of the generated search code. Let us examine some of the optimizations:

1. The preamble uses call to invoke the search code: This lets the

SEARCH use ret (instead of jmp) in leaf nodes to end the search. A

ret instruction can be encoded as 1 byte, a jmp needs 3 bytes if the

target address is nearby. Otherwise it needs 5 bytes. In this case we

would need to jump back to the very beginning of the preamble, which

would not be nearby. We save four out of five bytes, or 80%.

2. The checks for whether the key was found or not, and the logic for

handling those cases is entirely contained in the preamble. The search

code in leaf nodes just keeps comparing keys until it reaches the end

of the leaf node. In case it finds a key larger than or equal to the

requested search key, it directly jumps to the end of the leaf node.
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On every comparison (done with cmp) the CPU updates the so called

flag register which contains the result of the last comparison. The

contents of the flag register are set to the result of the last comparison

when returning from the search code back to the preamble. At the

end of the leaf node, the last comparison will have been against the

first key ≥ the search key. The preamble can then use the flag register

to check whether the last compared key is equal to the search key, and

do the right thing. This allows us to save more than 20 bytes per leaf

node, equivalent to around two key-value pairs.

3. By storing the search key in register eax we can use a more efficient

encoding for the cmp instructions, saving 1 byte per comparison.

4. The search code unconditionally moves the value into a CPU register,

without checking whether it actually belongs to the search key. Wrong

values just get overridden later on. At the very end, the preamble can

check whether the last written value corresponds to the search key by

checking the CPU flag register. This allows us to save one conditional

jump per pair of key-value data, which is equivalent to 4 bytes.

Assuming a leaf node size of 64 key-value-pairs, this results in roughly

14 bytes to store one single key-value pair as code. Assuming an internal

node size of 32 keys, this results in roughly 10 bytes to store one key as

code. There is still potential for optimizing the encoding, for example by

introducing k-ary SIMD comparison.

4.3 Future Work

NitroGen shows potential for improving existing index structures and algo-

rithms. We next intend to implement a variant of it for FAST-tree search,

making use of k-ary SIMD comparison, and adding optimizations for the

page size employed by the operating system.
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Chapter 5

Experimental Evaluation

This chapter is concerned with evaluating the performance of index structures
and search algorithms on concrete modern hardware systems.

We will have an in-depth look at the configuration of the hardware
used to run the experiments, examine the parameter space of index search
algorithms, pick a subset of index search algorithms to evaluate in detail,
pick experiments to run, and present the results of running them, all in the
hope of answering some basic questions on index search algorithms:

• What are the optimal parameters of the index search approaches we
discussed in Chapters 2 and 3? What is the difference between optimal
parameters for different platforms?

• How do these index search approaches perform when parametrized with
those optimal parameters on concrete instances of modern hardware?

• Is it possible to improve these base approaches with index compilation?

• How do we pick the parameters of index compilation?

• What can be gained by applying index compilation to these base
approaches?

• What is the effect of the node size on index search approaches?

• What is the effect of key skew on index response times?
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5.1 Experimental Setup

For our evaluation of index search algorithms, we used two differently config-
ured hardware systems, whose most important properties are described in
Table 5.1. System A is a Intel Xeon system utilizing the Xeon E5430 CPU,
which was released at the end of 2007. System B is an AMD Opteron system
with an Opteron 2378, released at the end of 2008. Both are running SUSE
Linux with recent versions of the Linux kernel and GCC. System A has a
slightly larger amount of main memory than System B (10 GB vs. 8 GB). Sys-
tem A has a slightly higher CPU clock than A (2.6 GHz vs. 2.4 GHz). It also
has a larger amount of second and third level CPU cache (12 MB vs. 8 MB). In
contrast, System B has more Level 1 cache than System A (128 KB vs. 64 KB
in total). Both use the same cache line and SIMD register sizes.

There is a large space of algorithms and parameters in index search.

Property System A System B

CPU Vendor & Model: Intel Xeon E5430 AMD Opteron 2378

CPU Architecture: Harpertown (45 nm) Shanghai (45 nm)

CPU Release Date: November 11, 2007 November 13, 2008

CPU Frequency: 2.6 GHz 2.4 GHz

CPU Cores: 4 cores 4 cores

Main Memory: 10 GB 8 GB

L1 Data Cache: 32 KB 64 KB

L1 Instruction Cache: 32 KB 64 KB

L2 Unified Cache: 12 MB 2 MB

L3 Unified Cache: None 6 MB

Cache Line Size: 64 byte 64 byte

TLB Size: 512 4 KB pages 1024 4 KB pages

SIMD Register Size: 128 bytes per register 128 bytes per register

Operating System: SUSE Linux 2.6.34.7 SUSE Linux 2.6.34.12

Compiler: GCC 4.5.0 GCC 4.5.0

Table 5.1: Configuration of hardware systems used in experiments.
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Approach Parameters

Common: • Key element size

• Pointer size

• Workload parameters1

• Hardware parameters2

Binary Search: • Implementation parameters3

B+-Tree and B-Tree Search: • Keys per internal node, and resulting fanout

• Internal node layout

• Binary search strategy for internal nodes

• Key-value pairs per leaf node

• Leaf node layout

• Binary search strategy for leaf nodes

Table 5.2: List of traditional search algorithms and their parameters.

Table 5.2 lists the parameters for the index search algorithms which we have
seen in Chapter 2. Even for a relatively simple algorithm such as B+-tree
search we have to pick optimal values for internal node size, leaf node size, if
and how to arrange keys in leaf nodes, and what binary search strategies to
use in leaf and internal nodes.

For binary search we are going to use a straightforward iterative C
implementation based on Algorithm 2.1 from page 17, but with one significant
change: We are going to use a cutoff, and switch to linear search when there
is less than a specific amount of elements remaining in the key range. Our
experiments confirmed the expectation of this being faster than running
regular binary search to completion.

We are not going to evaluate B+-tree search, nor B-tree search.
1Such as the size of the input data, the number of queries, the key distribution in

queries, other access pattern parameters of queries, and the input key distribution.
2Especially page size, cache line size, SIMD register size, CPU clock, memory clock,

and memory size, but see Table 5.1 for a more complete list.
3This includes questions such as these: Does the implementation use iteration or

recursion? At what number of remaining elements do we switch over to linear search? Is
the case of key equality handled for each comparison, or when the search range has been
shrunk to one element? See [Knu98] for a good overview of such details.
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Approach Parameters

CSS-Tree Search: Same as B+-Tree Search

CSB+-Tree Search: Same as CSS-Tree Search

k-ary Search: • Choice of k

• Alignment of keys

• Whether to use tree layout or discontinuous loads

• Implementation parameters similar to binary search

FAST-Tree Search: • Keys per SIMD node, and resulting fanout

• Parameters of k-ary search in SIMD nodes

• Depth of cache line nodes in SIMD nodes

• Depth of page nodes in SIMD nodes

• Key-value pairs per leaf node

• Leaf node layout

• Search strategy for leaf nodes

• Whether to use SIMD search in internal nodes

• Whether to perform cache line blocking

• Whether to perform page blocking

NitroGen: • Number of index-compiled internal node levels

• Code layout for internal nodes

• Code layout for leaf nodes

• Choice of base approach

• Parameters of base approach in index-compiled levels4

• Parameters of base approach in non-compiled levels

Table 5.3: List of CPU-optimized search algorithms and their parameters.

Table 5.2 lists the parameters for the more complex CPU-optimized index
search algorithms from Chapters 3 and 4. There is many parameters involved
in optimally configuring these approaches.

To ensure a fair comparison of the approaches, we will tune the parameters
of the algorithms for the hardware systems from Table 5.1.

4It makes sense for these to picked independently of the base approach parameters in
non-compiled levels as the optimal values can be quite different.
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For the evaluation of CSS-trees we are using the implementation from
the original paper by Rao et al. [RR99], which has been published as a part
of their implementation of CSB+-trees [RR00]. Out of those two approaches,
we are only going to evaluate CSS-trees, due to our focus on OLAP and to
the paper on CSB+-trees measuring the read performance of CSB+-trees to
be quite similar to one of CSS-trees.

We decided not to evaluate the non-tree-based form of k-ary search. We
consider the tree-based form to be more interesting as it does not require
the use of SIMD register loading from discontiguous memory access which is
quite slow in current CPU hardware generations [SGL09]. We only evaluate
k-ary search as part of our reimplementation of FAST-tree search.

We would have liked to use the original implementation of FAST-tree
search as described by Kim et al. [KCS+10], and have tried to obtain a
copy of their implementation. Unfortunately, despite requests, the reference
implementation is not available.

We have implemented index-compilation as part of the NitroGen frame-
work for binary search, and CSS-trees. We are currently working on also
implementing index-compilation for FAST-tree search, and intend to make
this available as a part of the NitroGen framework.

To summarize, we are going to evaluate binary search, CSS-tree search,
FAST-tree search, index-compiled binary search, and index-compiled CSS-
tree search. For FAST-tree search we are going to use a custom reimplemen-
tation based on the ideas from the paper by Kim et al. [KCS+10]. We use the
original implementation of CSS-trees [RR99], and a tuned implementation
of binary search as the base lines.

We are going to run the following experiments: An experiment measuring
the effect of NitroGen on the performance of CSS-tree and binary search
with random and skewed access patterns, an experiment measuring the effect
of the keys per internal node has on the performance of index search for
32 MB of input data, and an experiment measuring the performance of the
first version our reimplementation of FAST.
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5.2 Experimental Results

5.2.1 Binary Search, CSS-Tree Search, and NitroGen

Figure 5.1 shows the performance of CSS-tree search, as well as binary search,
both with and without NitroGen index compilation. There is two copies of the
lines: The top group of lines represents uniformly random key references in
index lookups. The bottom group obtains more realistic key access patterns,
by using frequencies modeled after a Zipf distribution. The gain of index
compilation on binary search can be a performance improvement of up to
33%. With this first prototype, we obtain a performance improvement of
6–10% for CSS-tree search, depending on input size and access pattern.
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Figure 5.1: The performance of CSS-tree search and binary search, both
with and without NitroGen. The top four lines represent random key access
patterns. The bottom four lines represent key access pattern with key
frequencies modeled after Zipf distribution.
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5.2.2 Effect of Internal Node Size in CSS-Trees

Figure 5.2 shows the effect of the keys per internal node parameter on
performance in CSS-tree search for 32 MB of input data as measured on
System A.

Whereas the optimal value for CSS-tree search is 32 keys per internal
node (equivalent to two cache lines), the optimal value for NitroGen CSS-tree
search is 16 keys per internal node. This is consistent with the overhead of
turning internal node key data into code.

In this case NitroGen CSS search outperforms regular CSS search by 5%
for 16 keys per node.
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Figure 5.2: The effect of the keys per internal node parameter on perfor-
mance in CSS-tree search for 32 MB of input data as measured on System A.
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5.2.3 Performance of FAST reimplementation

Figure 5.3 compares the performance of our reimplementation of FAST
against the performance numbers reported in the original paper. The original
graph reports the relative performance gain obtained by individual features.
We also report absolute cycle numbers. These absolute numbers are com-
parable to those of the original paper. The relative performance gains due
to individual features differ. This could be due to a variety of reasons, for
example due to different choice of implementation details, hardware architec-
tural differences, or suboptimal algorithmic tuning. Without access to the
reference implementation, it is impossible to tell with certainty.

It will be interesting to see how performance is affected after incomplete
nodes are handled in the same way in both of the implementations.

large tree (512 MB of data) small tree (512 KB of data)
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Default + Page Blocking + Cache line Blocking + SIMD

Platform Peak GFlops Peak BW Total Frequency
Core i7 103.0 30 12.8

GTX 280 933.3 141.7 39

Table 1: Peak compute (GFlops), bandwidth (GB/sec), and total fre-
quency (Cores * GHz) on the Core i7 and the GTX 280.

Figure 6: Normalized search time with various architectural opti-
mization techniques (lower is faster). The fastest reported performance
on CPUs [28] and GPUs [2] is also shown (for comparison).

(core count · frequency) of the two platforms are shown in Table 1.
We generate 32-bit (key, rid) tuples, with both keys and rids gen-
erated randomly. The tuples are sorted based on the key value and
we vary the number of tuples from 64K to 64M6. The search keys
are also 32-bit wide, and generated uniformly at random. Random
search keys exercise the worst case for index tree search with no
coherence between tree traversals of subsequent queries.

We first show the impact of various architecture techniques on
search performance for both CPUs and GPUs and compare search
performance with the best reported number on each architecture.
Then, we compare the throughput of CPU search and GPU search
and analyze the performance bottlenecks for each architecture.

5.3.1 Impact of Various Optimizations
Figure 6 shows the normalized search time, measured in cycles

per query on CPUs and GPUs by applying optimization techniques
one by one. We first show the default search when no optimiza-
tion technique is applied and a simple binary search is used. Then,
we incrementally apply page blocking, cache line blocking, SIMD
blocking, and software pipelining with prefetch. The label of “+SW
Pipelining” shows the final relative search time when all optimiza-
tion techniques are applied. We report our timings on the two ex-
treme cases – small trees (with 64K keys) and large trees (with 64M
keys). The relative performance for intermediate tree sizes fall in
between the two analyzed cases, and are not reported.

For CPU search, the benefit of each architecture technique is
more noticeable for large trees than small trees because large trees
are more latency bound. First, we observe that search gets 33%
faster with page blocking, which translates to around 1.5X speedup
in throughput. Adding cache line blocking on top of page blocking
results in an overall speedup of 2.2X. This reduction of search time
comes from reducing the average TLB misses and LLC misses sig-
nificantly – especially when traversing the lower levels of the tree.
However, page blocking and cache line blocking do not help small
trees because there are no TLB and cache misses in the first place;
in fact, cache line blocking results in a slight increase of instruc-
tions with extra address computations. Once the impact of latency
is reduced, SIMD blocking exploits data-level parallelism and pro-
vides an additional 20% – 30% gain for both small and large trees.

664M is the max. number of tuples that fit in GTX 280 memory of 1GB.

Figure 7: Comparison between the CPU search and the GPU search.
”CPU-BW” shows the throughput projection when CPU search be-
comes memory bandwidth bound

Finally, the software pipelining technique with prefetch relaxes the
impact of instruction dependency and further hides cache misses.

Our final search performance is 4.8X faster for large trees and
2.5X faster for small trees than the best reported numbers [28]. As
shown in Figure 6, our scalar performance with page and cache line
blocking outperforms the best reported SIMD search by around
1.6X. This emphasizes the fact that SIMD is only beneficial once
the search algorithm is compute bound, and not bound by various
other architectural latencies. Applications that are latency bound
do not exploit the additional compute resources provided by SIMD
instructions. Also note that our comparison numbers are based on a
single-thread execution (for fair comparison with the best reported
CPU number). When we execute independent search queries on
multiple cores, we achieve near-linear speedup (3.9X on 4-cores).
The default GPU search (Fig. 6) executes one independent binary
search per SIMD lane, for a total of 32 searches for SIMD execu-
tion. Unlike CPU search, GPU search is less sensitive to blocking
for latency. We do not report the number for cache line blocking
since the cache line size is not disclosed. While the default GPU
search suffers from gathering 32 tree elements, SIMD blocking al-
lows reading data from contiguous memory locations thus remov-
ing the overhead of gather. Since the overhead of gather is more sig-
nificant for large trees, our GPU search obtains 1.7X performance
improvement for large trees, and 1.4X improvement for small trees
with SIMD blocking. Our GPU implementation is compute bound.

5.3.2 CPU search VS. GPU search
We compare the performance of search optimized for CPU and

GPU architectures. Figure 7 shows the throughput of search with
various tree sizes from 64K keys to 64M keys. When the tree fits
in the LLC, CPUs outperform GPUs by around 2X. This result
matches well with analytically computed performance difference.
As described in the previous subsections, our optimized search re-
quires 4 ops per level per query for both CPUs and GPUs. Since
GPUs take 4 cycles per op, they consume 4X more cycles per op
as compared to the CPU. On the other hand, GPUs have 3X more
total frequency than CPUs (Table 1). On small trees, CPUs are not
bound by memory latency and can operate on the maximum in-
struction throughput rate. Unlike GPUs, CPUs can issue multiple
instructions per cycle and we observe an IPC of around 1.5. There-
fore, the total throughout ratio evaluates to around (1.5*4/3) ∼2X
in the favor of CPUs.

As the tree size grows, CPUs suffer from TLB/LLC misses and
get lower instruction throughput rate. The dotted line, labeled “CPU-
BW” shows the throughput projection when CPU search becomes
memory bandwidth bound. This projection shows that CPUs are
compute bound on small trees and become closer to bandwidth
bound on large trees. GPUs provide 4.6X higher memory band-
width than CPUs and are far from bandwidth bound. In the next
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Platform Peak GFlops Peak BW Total Frequency
Core i7 103.0 30 12.8

GTX 280 933.3 141.7 39

Table 1: Peak compute (GFlops), bandwidth (GB/sec), and total fre-
quency (Cores * GHz) on the Core i7 and the GTX 280.
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Then, we compare the throughput of CPU search and GPU search
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struction throughput rate. Unlike GPUs, CPUs can issue multiple
instructions per cycle and we observe an IPC of around 1.5. There-
fore, the total throughout ratio evaluates to around (1.5*4/3) ∼2X
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• Cache line depth is 2
• Page depth is 5 (+ large page support in OS)
• Internal nodes have 3 keys,  4 children
• Unknown leaf node layout
• Partial nodes are avoided
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we vary the number of tuples from 64K to 64M6. The search keys
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performance with the best reported number on each architecture.
Then, we compare the throughput of CPU search and GPU search
and analyze the performance bottlenecks for each architecture.

5.3.1 Impact of Various Optimizations
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per query on CPUs and GPUs by applying optimization techniques
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tion technique is applied and a simple binary search is used. Then,
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treme cases – small trees (with 64K keys) and large trees (with 64M
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more noticeable for large trees than small trees because large trees
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faster with page blocking, which translates to around 1.5X speedup
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nificantly – especially when traversing the lower levels of the tree.
However, page blocking and cache line blocking do not help small
trees because there are no TLB and cache misses in the first place;
in fact, cache line blocking results in a slight increase of instruc-
tions with extra address computations. Once the impact of latency
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shown in Figure 6, our scalar performance with page and cache line
blocking outperforms the best reported SIMD search by around
1.6X. This emphasizes the fact that SIMD is only beneficial once
the search algorithm is compute bound, and not bound by various
other architectural latencies. Applications that are latency bound
do not exploit the additional compute resources provided by SIMD
instructions. Also note that our comparison numbers are based on a
single-thread execution (for fair comparison with the best reported
CPU number). When we execute independent search queries on
multiple cores, we achieve near-linear speedup (3.9X on 4-cores).
The default GPU search (Fig. 6) executes one independent binary
search per SIMD lane, for a total of 32 searches for SIMD execu-
tion. Unlike CPU search, GPU search is less sensitive to blocking
for latency. We do not report the number for cache line blocking
since the cache line size is not disclosed. While the default GPU
search suffers from gathering 32 tree elements, SIMD blocking al-
lows reading data from contiguous memory locations thus remov-
ing the overhead of gather. Since the overhead of gather is more sig-
nificant for large trees, our GPU search obtains 1.7X performance
improvement for large trees, and 1.4X improvement for small trees
with SIMD blocking. Our GPU implementation is compute bound.

5.3.2 CPU search VS. GPU search
We compare the performance of search optimized for CPU and

GPU architectures. Figure 7 shows the throughput of search with
various tree sizes from 64K keys to 64M keys. When the tree fits
in the LLC, CPUs outperform GPUs by around 2X. This result
matches well with analytically computed performance difference.
As described in the previous subsections, our optimized search re-
quires 4 ops per level per query for both CPUs and GPUs. Since
GPUs take 4 cycles per op, they consume 4X more cycles per op
as compared to the CPU. On the other hand, GPUs have 3X more
total frequency than CPUs (Table 1). On small trees, CPUs are not
bound by memory latency and can operate on the maximum in-
struction throughput rate. Unlike GPUs, CPUs can issue multiple
instructions per cycle and we observe an IPC of around 1.5. There-
fore, the total throughout ratio evaluates to around (1.5*4/3) ∼2X
in the favor of CPUs.

As the tree size grows, CPUs suffer from TLB/LLC misses and
get lower instruction throughput rate. The dotted line, labeled “CPU-
BW” shows the throughput projection when CPU search becomes
memory bandwidth bound. This projection shows that CPUs are
compute bound on small trees and become closer to bandwidth
bound on large trees. GPUs provide 4.6X higher memory band-
width than CPUs and are far from bandwidth bound. In the next
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Figure 5.3: Performance of FAST reimplementation: (a) Performance as
measured in experiments by Kim et al. [KCS+10]
(b) Performance of our reimplementation
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Chapter 6

Conclusion

6.1 Statement of Results

We have discussed the backgrounds and advantages of a wide array of index

structures and search algorithms. We have evaluated a representative subset

against each other, and discussed the merits of a novel idea: The use of code

generation to speed up index structures. We have engineered a prototype

implementation, NitroGen, of index compilation for two widely-deployed

index search algorithms, and obtained encouraging initial results.

There is ongoing work on a reimplementation of the state of the art index

search algorithm, FAST, and ways of utilizing index compilation to make it

utilize the instruction caches of modern CPUs, and, ideally, make it even

faster.
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6.2 Statement of Problems left unresolved

Due to the timing of the publication of FAST, we have only had very limited

time to discuss some of the results we obtained. It would be interesting

to come up with a model for predicting the performance impact of index

compilation based on hardware events, such as cache misses. There is ongoing

work on reimplementing a regular and an index-compiled version of FAST.

Additionally, there seems to be a wide array of opportunities for follow-up

work in the area of index structures, such as the effects of fusing together

multiple index structures to obtain best of both worlds hybrid index structures

optimized for both OLAP and OLTP. Is it viable to use a read-optimized

index structure to represent the root levels of an index, which are less likely

to change, while using one supporting inexpensive update operations for the

lower levels of the same index, which are more likely to change?
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