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Overview 

• SIMD 

• MMX architectures 

• MMX instructions 

• Examples 

• SSE/SSE2/SSE3/SSE4 

 

 

 

• SIMD instructions are probably the best place to use assembly  

– Compilers usually do not do a good job on using these 
instructions 
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Performance boost 

• Increasing clock rate is not fast enough for boosting performance 

• Architecture improvements (such as pipeline/cache/SIMD) are 

more significant  

• Multimedia applications share the following characteristics: 

– Small native data types (8-bit pixel, 16-bit audio) 

– Recurring operations 

– Inherent parallelism 
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SIMD 
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• SIMD (single instruction multiple data) architecture 

performs the same operation on multiple data elements 

in parallel 

  PADDW MM0, MM1 



SISD/SIMD/Streaming 
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IA-32 SIMD development 

• MMX (Multimedia Extension) was introduced in 1996  

– Pentium with MMX and Pentium II 

• SSE (Streaming SIMD Extension) was introduced with Pentium III 

• SSE2 was introduced with Pentium 4 

• SSE3 was introduced with Pentium 4  

– For supporting hyper-threading technology 

– 13 more instructions 

• SSSE3 (Supplemental) in June 2006 in the “Woodcrest” Xeons 

– 16 new discrete instructions 

• SSE4 in spring 2007 has 54 new instructions 

– 47 in SSE4.1 

– 7 in SSE 4.2 

• SSE4a from AMD are different from SSE4.1 
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MMX 

• Typical elements in many applications are small 

– 8 bits for pixels 

– 16 bits for audio  

– 32 bits for general computing 

• New data type: 64-bit packed data type. Why 64 bits? 

– Good enough 

– Practical, see in a moment 
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MMX data types 
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MMX integration into IA-32 
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79 

11…11 
NaN or infinity as real 

because bits 79-64 are 

ones. 

Even if MMX registers 

are 64-bit, they don’t 

extend Pentium to a 

64-bit CPU since only 

logic instructions are 

provided for 64-bit  

data.    
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Compatibility 

• Fully compatible with existing IA  

– No new mode or state was created 

– No extra state needs to be saved for context switching 

• MMX is hidden behind FPU  

– When floating-point state is saved or restored, MMX is saved or 

restored. 

• Existing OS to perform context switching on the processes 

executing MMX instruction without be aware of MMX 

– MMX and FPU cannot be used at the same time 

• It may be a bad decision  

• OS can just provide a service pack or get updated 

• Intel introduced SSE later without any aliasing 
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MMX instructions 

• 57 MMX instructions 

– add, subtract, multiply, multiply-add 

– compare 

– shift, logical operation 

– data conversion  

– 64-bit data move 

• All instructions except for data move use MMX registers as 

operands 

– All starts with p except for movd, movq, and emms 

• Most complete support for 16-bit operations 

11 



MMX instructions 
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MMX instructions 
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Call it before you switch to FPU from MMX 



Saturation arithmetic 
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wrap-around saturating 

• Useful in graphics applications. 

• When an operation overflows or underflows, the result 

becomes the largest or smallest possible representable 

number. 

• Two types: signed and unsigned saturation 



Arithmetic 

• PADDB/PADDW/PADDD: add two packed numbers, no EFLAGS 

is set, ensure overflow never occurs by yourself 

• Multiplication: two steps 

• PMULLW: multiplies four words and stores the four lo words of 

the four double word results 

• PMULHW/PMULHUW: multiplies four words and stores the four hi 

words of the four double word results. PMULHUW for unsigned. 
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Arithmetic 

• PMADDWD 
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Example: add a constant to a vector 

char d[]={5, 5, 5, 5, 5, 5, 5, 5};  

char clr[]={65,66,68,...,87,88}; // 24 bytes 

__asm{ 

    movq  mm1, d  

    mov  cx, 3 

    mov  esi, 0 

L1: movq  mm0, clr[esi]  

    paddb mm0, mm1  

    movq  clr[esi], mm0  

    add  esi, 8 

    loop  L1 

    emms 

}  
17 



Comparison 
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• No CFLAGS, how many flags will you need? 

Results are stored in destination. 

• EQ/GT, no LT 

 



Change data types 

• Pack: converts a larger data type to the next smaller data type. 

• Unpack: takes two operands and interleave them. It can be used 

for expand data type for immediate calculation. 
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Pack with signed saturation 

20 



Pack with signed saturation 
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Unpack low portion 
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Unpack low portion 
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Unpack low portion 
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Unpack high portion 
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Performance boost (data from 1996) 

Benchmark kernels: FFT, 

FIR, vector dot-product, 

IDCT, motion compensation. 

 

65% performance gain 

 

Lower the cost of 

multimedia programs by 

removing the need of 

specialized DSP chips 
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Keys to SIMD programming 

• Efficient data layout 

• Elimination of branches 
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Application: frame difference 
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A B 

|A-B| 



Application: frame difference 
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A-B B-A 

(A-B) or (B-A) 



Application: frame difference 

MOVQ      mm1, A //move 8 pixels of image A 

MOVQ      mm2, B //move 8 pixels of image B 

MOVQ      mm3, mm1 // mm3=A 

PSUBSB    mm1, mm2 // mm1=A-B 

PSUBSB    mm2, mm3 // mm2=B-A 

POR       mm1, mm2 // mm1=|A-B| 
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Example: image fade-in-fade-out 

A*α+B*(1-α) = B+α(A-B) 
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A 

 

B 

 



α=0.75 
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α=0.5 
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α=0.25 
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Example: image fade-in-fade-out 

• Two formats: planar and chunky 

• In Chunky format, 16 bits of 64 bits are wasted 

• So, we use planar in the following example 
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Example: image fade-in-fade-out 
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Image A Image B 



Example: image fade-in-fade-out 

MOVQ      mm0, alpha //4 16-b zero-padding α  

MOVD      mm1, A   //move 4 pixels of image A 

MOVD      mm2, B   //move 4 pixels of image B 

PXOR      mm3, mm3  //clear mm3 to all zeroes 

 

//unpack 4 pixels to 4 words 

PUNPCKLBW mm1, mm3  // Because B-A could be  

PUNPCKLBW mm2, mm3  // negative, need 16 bits 

PSUBW     mm1, mm2  //(B-A) 

PMULHW    mm1, mm0  //(B-A)*fade/256 

PADDW     mm1, mm2  //(B-A)*fade + B 

 

//pack four words back to four bytes 

PACKUSWB  mm1, mm3 
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Data-independent computation 

• Each operation can execute without needing to know the results 

of a previous operation. 

• Example, sprite overlay 

for i=1 to sprite_Size 

   if  sprite[i]=clr  

   then out_color[i]=bg[i] 

   else out_color[i]=sprite[i] 
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Application: sprite overlay 

39 



Application: sprite overlay 

MOVQ    mm0, sprite 

MOVQ    mm2, mm0 

MOVQ    mm4, bg 

MOVQ    mm1, clr 

PCMPEQW mm0, mm1 

PAND    mm4, mm0 

PANDN   mm0, mm2 

POR     mm0, mm4 
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Application: matrix transpose 

41 



Application: matrix transpose (C code) 

char M1[4][8];// matrix to be transposed 

char M2[8][4];// transposed matrix 

int n=0; 

for (int i=0;i<4;i++) 

  for (int j=0;j<8;j++) 

    { M1[i][j]=n; n++; } 
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Application: matrix transpose (MMX) - 1 

__asm{ 

//move the 4 rows of M1 into MMX registers 

movq mm1,M1 

movq mm2,M1+8 

movq mm3,M1+16 

movq mm4,M1+24 

 

//generate rows 1 to 4 of M2 

punpcklbw mm1, mm2  

punpcklbw mm3, mm4 

movq mm0, mm1 

punpcklwd mm1, mm3 //mm1 has row 2 & row 1 

punpckhwd mm0, mm3 //mm0 has row 4 & row 3 

movq M2, mm1 

movq M2+8, mm0 
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Application: matrix transpose (MMX) - 2 

//generate rows 5 to 8 of M2 

movq mm1, M1 //get row 1 of M1 

movq mm3, M1+16 //get row 3 of M1 

punpckhbw mm1, mm2 

punpckhbw mm3, mm4 

movq mm0, mm1 

punpcklwd mm1, mm3 //mm1 has row 6 & row 5 

punpckhwd mm0, mm3 //mm0 has row 8 & row 7 

//save results to M2 

movq M2+16, mm1 

movq M2+24, mm0 

emms 

} //end 
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How to use assembly in projects 

• Write the whole project in assembly 

– Link with high-level languages 

• Inline assembly 

• Intrinsics 
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Detect MMX/SSE 

mov   eax, 1 ; request version info  

cpuid    ; supported since Pentium 

test  edx, 00800000h ;bit 23 

         ; 02000000h (bit 25) SSE 

         ; 04000000h (bit 26) SSE2 

jnz   HasMMX 
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cpuid 
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: 

: 





Link ASM and High-level Language programs 

• Assembly is rarely used to develop the entire program. 

• Use high-level language for overall project development 

– Relieves programmer from low-level details 

• Use assembly language code 

– Speed up critical sections of code 

– Access nonstandard hardware devices 

– Write platform-specific code 

– Extend the high-level language's capabilities 
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General conventions 

• Considerations when calling assembly language procedures from 

high-level languages: 

– Both must use the same naming convention (rules regarding the 

naming of variables and procedures) 

– Both must use the same memory model, with compatible segment 

names 

– Both must use the same calling convention 
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Inline assembly code 

• Assembly language source code that is inserted directly into a 

HLL program. 

• Compilers such as Microsoft Visual C++ and Borland C++ 

have compiler-specific directives that identify inline ASM 

code. 

• Efficient inline code executes quickly because CALL and 

RET instructions are not required. 

• Simple to code because there are no external names, memory 

models, or naming conventions involved. 

• Decidedly not portable because it is written for a single 

platform. 
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__asm directive in Microsoft Visual C++ 

• Can be placed at the beginning of a single statement 

• Or, It can mark the beginning of a block of assembly language 

statements 

• Syntax: 
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__asm  statement 

 

__asm { 

  statement-1 

  statement-2 

  ... 

  statement-n 

} 



Intrinsics 

• An intrinsic is a function known by the compiler that directly 
maps to a sequence of one or more assembly language 
instructions.  

• The compiler manages things that the user would normally have 
to be concerned with, such as register names, register allocations, 
and memory locations of data.  

• Intrinsic functions are inherently more efficient than called 
functions because no calling linkage is required. But, not 
necessarily as efficient as assembly. 

• _mm_<opcode>_<suffix> 
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ps: packed single-precision 

ss: scalar single-precision 



Intrinsics 

#include <xmmintrin.h> 

__m128 a , b , c; 

c = _mm_add_ps( a , b ); 

 

float a[4] , b[4] , c[4]; 

for( int i = 0 ; i < 4 ; ++ i ) 

    c[i] = a[i] + b[i]; 

 

// a = b * c + d / e;  

__m128 a = _mm_add_ps( _mm_mul_ps( b , c ) ,  

                       _mm_div_ps( d , e ) );  
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SSE features 

• Add eight 128-bit data registers (XMM registers)  

• Sixteen XMM registers are available in 64-bit mode 

• 32-bit MXCSR register (control and status) 

• Add a new data type 

– 4 single-precision floating-point numbers in a 128-bit register 

• New instructions:  

– Instruction to perform SIMD operations on 128-bit packed single-

precision FP  

– Additional 64-bit SIMD integer operations 

• Instructions that explicitly prefetch data, control data cacheability 

and ordering of store 
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Advantages of SSE 

In MMX 

• An application cannot execute MMX instructions and perform 

floating-point operations simultaneously. 

• A large number of processor clock cycles are needed to change 

the state of executing MMX instructions to the state of executing 

FP operations and vice versa.   
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SSE programming environment 

XMM0 

 | 

XMM7 

MM0 

 | 

MM7 

EAX, EBX, ECX, EDX 

EBP, ESI, EDI, ESP 



Exception 

_MM_ALIGN16 float test1[4] = { 0, 0, 0, 1 };  

_MM_ALIGN16 float test2[4] = { 1, 2, 3, 0 };  

_MM_ALIGN16 float out[4];  

_MM_SET_EXCEPTION_MASK(0);//enable exception  

__try {  

__m128 a = _mm_load_ps(test1);  

__m128 b = _mm_load_ps(test2);  

a = _mm_div_ps(a, b);  

_mm_store_ps(out, a);  

}  

__except(EXCEPTION_EXECUTE_HANDLER) {   

if(_mm_getcsr() & _MM_EXCEPT_DIV_ZERO) 

cout << "Divide by zero" << endl; 

return;  

}  
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Without this, result is 1.#INF 



MXCSR control and status register 
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Generally faster, but not compatible with IEEE 754 



SSE Packed FP Operation 

Packed single-precision FP 

ADDPS, SUBPS, MULPS, DIVPS, RCPPS, SQRTPS, RSQRTPS, 

MAXPS, MINPS 
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SSE Scalar FP Operation 
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Scalar single-precision FP used as FPU 

ADDSS, SUBSS, MULSS, DIVSS, RCPSS, SQRTSS, RSQRTSS, 

MAXSS, MINSS 



SSE Shuffle Packed Single-Precision (SHUFPS) 

SHUFPS xmm1, xmm2, imm8 

Select [1..0] select DEST[0] from DEST // xmm1 

Select [3..2] select DEST[1] from DEST 

Select [5..4] select DEST[2] from SRC // xmm2 

Select [7..6] select DEST[3] from SRC 



SSE Shuffle Packed Single-Precision (SHUFPS) - 2 



Swap bytes with SHUFPS 
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Broadcast with SHUFPS 
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Rotate with SHUFPS 
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SSE Unpack Shuffle (UNPCKLPS and UNPCKHPS) 



SSE MOVLPS, MOVLHPS, MOVAPS 

Many types: SS, LPS, HPS, APS, UPS, HLPS, LHPS 



SSE Comparison for Single-precision FP 
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Two versions: packed (ps) and scalar (ss) 

CMPEQPS, CMPNEQPS, CMPLTPS, CMPNLTPS, CMPLEPS, CMPNLEPS 

CMPEQSS, CMPNEQSS, CMPLTSS, CMPNLTSS, CMPLESS, CMPNLESS 



SSE Instruction Set (Floating-point Instructions)  

• Memory-to-Register / Register-to-Memory / Register-to-Register data movement  

– Scalar – MOVSS  

– Packed – MOVAPS, MOVUPS, MOVLPS, MOVHPS, MOVLHPS, 
MOVHLPS  

• Arithmetic  

– Scalar – ADDSS, SUBSS, MULSS, DIVSS, RCPSS, SQRTSS, MAXSS, 
MINSS, RSQRTSS  

– Packed – ADDPS, SUBPS, MULPS, DIVPS, RCPPS, SQRTPS, MAXPS, 
MINPS, RSQRTPS  

• Compare  

– Scalar – CMPSS, COMISS, UCOMISS  

– Packed – CMPPS  

• Data shuffle and unpacking  

– Packed – SHUFPS, UNPCKHPS, UNPCKLPS  

• Data-type conversion  

– Scalar – CVTSI2SS, CVTSS2SI, CVTTSS2SI  

– Packed – CVTPI2PS, CVTPS2PI, CVTTPS2PI  

• Bitwise logical operations  

– Packed – ANDPS, ORPS, XORPS, ANDNPS  

 



SSE Instruction Set (Integer and Other) 

Integer instructions 

• Arithmetic  

– PMULHUW, PSADBW, PAVGB, PAVGW, PMAXUB, PMINUB, 
PMAXSW, PMINSW  

• Data movement  

– PEXTRW, PINSRW  

• Other  

– PMOVMSKB, PSHUFW  

Other instructions 

• MXCSR management  

– LDMXCSR, STMXCSR  

• Cache and Memory management  

– PREFETCH0, PREFETCH1, PREFETCHNTA 

– MOVNTQ, MOVNTPS, MASKMOVQ, SFENCE  



SSE Example: Packed Floating-point Addition 

void add(float *a, float *b, float *c) { 

  for (int i = 0; i < 4; i++) 

    c[i] = a[i] + b[i]; 

} 

 

__asm { 

mov    eax, a 

mov    edx, b 

mov    ecx, c 

movaps xmm0, XMMWORD PTR [eax] 

addps  xmm0, XMMWORD PTR [edx] 

movaps XMMWORD PTR [ecx], xmm0 

} 

movaps: move aligned packed SP FP 

addps: add packed SP FP 



SSE Example: PS Addition with Intrinsics 

_MM_ALIGN16 float input1[4] 

              = { 1.2f, 3.5f, 1.7f, 2.8f };  

_MM_ALIGN16 float input2[4] 

              = { -0.7f, 2.6f, 3.3f, -0.8f };  

_MM_ALIGN16 float output[4];  

 

__m128 a = _mm_load_ps(input1);  

__m128 b = _mm_load_ps(input2);  

__m128 t = _mm_add_ps(a, b);  

_mm_store_ps(output, t);  



SSE Example: Cross Product (C code) 

Vector cross(const Vector& a , const Vector& b ) { 

    return Vector( 

        ( a[1] * b[2] - a[2] * b[1] ) , 

        ( a[2] * b[0] - a[0] * b[2] ) , 

        ( a[0] * b[1] - a[1] * b[0] ) ); 

} 



SSE Example: Cross Product 

__m128 _mm_cross_ps( __m128 a , __m128 b ) { 

 

__m128 ea , eb; 

 

// set to a[1][2][0][3] , b[2][0][1][3] 

ea = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,0,2,1) ); 

eb = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,1,0,2) ); 

 

// multiply 

__m128 xa = _mm_mul_ps( ea , eb ); 

 

// set to a[2][0][1][3] , b[1][2][0][3] 

a = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,1,0,2) ); 

b = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,0,2,1) ); 

 

__m128 xb = _mm_mul_ps( a , b ); // multiply 

 

return _mm_sub_ps( xa , xb ); // subtract 

} 
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SSE Example: Dot Product 

• Given a set of vectors {v1,v2,…vn}={(x1,y1,z1), (x2,y2,z2),…, 

(xn,yn,zn)} and a vector vc=(xc,yc,zc), calculate {vcvi} 

• Two options for memory layout 

• Array of structure (AoS) 
 

typedef struct { float dc, x, y, z; } Vertex; 

Vertex v[n]; 

 

• Structure of array (SoA) 
 

typedef struct { float x[n], y[n], z[n]; } 

        VerticesList; 

VerticesList v; 
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SSE Example: Dot Product (AoS) 

movaps xmm0, v    ; xmm0 = DC,   x0,   y0,   z0 

movaps xmm1, vc   ; xmm1 = DC,   xc,   yc,   zc 

mulps  xmm0, xmm1 ; xmm0 = DC,x0*xc,y0*yc,z0*zc 

movhlps xmm1, xmm0 ;xmm1 = DC,   DC,   DC,x0*xc 

addps  xmm1, xmm0 ; xmm1 = DC,   DC,   DC,  x+z 

                  ;                 x0*xc+z0*zc 

 

movaps xmm2, xmm0 

shufps xmm2, xmm2, 55h ; xmm2=DC, DC,  DC,y0*yc 

addps  xmm1, xmm2 ; xmm1 = DC,   DC,   DC,x+y+z 

                  ;           x0*xc+y0*yc+z0*zc 

77 

movhlps:DEST[63..0] := SRC[127..64] 



SSE Example: Dot Product (SoA) 

; X = x1,x2,...,x3 

; Y = y1,y2,...,y3 

; Z = z1,z2,...,z3 

; A = xc,xc,xc,xc 

; B = yc,yc,yc,yc 

; C = zc,zc,zc,zc 

movaps xmm0, X ; xmm0 = x1,x2,x3,x4 

movaps xmm1, Y ; xmm1 = y1,y2,y3,y4 

movaps xmm2, Z ; xmm2 = z1,z2,z3,z4 

mulps  xmm0, A ;xmm0=x1*xc,x2*xc,x3*xc,x4*xc 

mulps  xmm1, B ;xmm1=y1*yc,y2*yc,y3*xc,y4*yc 

mulps  xmm2, C ;xmm2=z1*zc,z2*zc,z3*zc,z4*zc 

addps  xmm0, xmm1 

addps  xmm0, xmm2 ;xmm0=(x0*xc+y0*yc+z0*zc)… 
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SSE Example: Dot Product (SoA),  Intrinsics 

__m128 x1 = _mm_load_ps(vec1_x);  

__m128 y1 = _mm_load_ps(vec1_y);  

__m128 z1 = _mm_load_ps(vec1_z);  

__m128 x2 = _mm_load_ps(vec2_x);  

__m128 y2 = _mm_load_ps(vec2_y);  

__m128 z2 = _mm_load_ps(vec2_z);  

 

__m128 t1 = _mm_mul_ps(x1, x2); // x1 * x2 

__m128 t2 = _mm_mul_ps(y1, y2); // y1 * y2 

       t1 = _mm_add_ps(t1, t2); // x + y 

       t2 = _mm_mul_ps(z1, z2); // z1 * z2 

       t1 = _mm_add_ps(t1, t2); // x + y + z 

 

_mm_store_ps(output, t1);  

 



SSE Cache Control 

• prefetch (_mm_prefetch): a hint for CPU to load operands 

for the next instructions so that data loading can be executed in 

parallel with computation. 

 

• movntps (_mm_stream_ps): ask CPU not to write data into 

cache, but to the memory directly. 
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SSE Example: Dot Product with Prefetch 

__m128 x1 = _mm_load_ps(vec1_x);  

__m128 y1 = _mm_load_ps(vec1_y);  

__m128 z1 = _mm_load_ps(vec1_z);  

__m128 x2 = _mm_load_ps(vec2_x);  

__m128 y2 = _mm_load_ps(vec2_y);  

__m128 z2 = _mm_load_ps(vec2_z);  

 

_mm_prefetch((const char*)(vec1_x + next), _MM_HINT_NTA);  

_mm_prefetch((const char*)(vec1_y + next), _MM_HINT_NTA);  

_mm_prefetch((const char*)(vec1_z + next), _MM_HINT_NTA); 

_mm_prefetch((const char*)(vec2_x + next), _MM_HINT_NTA);  

_mm_prefetch((const char*)(vec2_y + next), _MM_HINT_NTA);  

_mm_prefetch((const char*)(vec2_z + next), _MM_HINT_NTA);  

 

// 1.5x speedup 

… 
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SSE Example: Exponential Function 

float result = coeff[8] * x;  

int i;  

 

for(i = 7; i >= 2; i--) {  

result += coeff[i];  

result *= x;  

}  

 

return (result + 1) * x + 1;  
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Example: Exponential with Intrinsics 

int i;  

__m128 X = _mm_load_ps(data);  

__m128 result = _mm_mul_ps(X,coeff_sse[8]);  

 

for(i = 7; i >=2; i--) {  

result = _mm_add_ps(result, coeff_sse[i]);  

result = _mm_mul_ps(result, X);  

}  

 

result = _mm_add_ps(result, sse_one);  

result = _mm_mul_ps(result, X);  

result = _mm_add_ps(result, sse_one);  

_mm_store_ps(out, result);  
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SSE2 

• Introduced into the IA-32 architecture in the Pentium 4 and Intel 

Xeon processors in 2001 

• Allowing advanced graphics such as 3-D graphics, video 

decoding/encoding, speech recognition 

• What is new?  

– SIMD operations on 128-bit packed double-precision FP 

– SIMD operations on 128-bit packed 64-bit integers 

• Offers more flexibility in big numbers 

• 144 new instructions 

  

• AMD didn't support SSE2 until 2003, with their Opteron and 

Athlon64 processors  



SSE2 Features 

• Add data types and instructions for them 

 

 

 

 

 

 

 

 

 

 

• Programming environment unchanged (also packed and scalar) 



SSE2 Instructions (ARITHMETIC) 

 
addpd - Adds 2 64bit doubles. 
addsd - Adds bottom 64bit doubles. 
subpd - Subtracts 2 64bit doubles. 
subsd - Subtracts bottom 64bit doubles. 
mulpd - Multiplies 2 64bit doubles. 
mulsd - Multiplies bottom 64bit doubles. 
divpd - Divides 2 64bit doubles. 
divsd - Divides bottom 64bit doubles. 
maxpd - Gets largest of 2 64bit doubles for 2 sets. 
maxsd - Gets largest of 2 64bit doubles to bottom set. 
minpd - Gets smallest of 2 64bit doubles for 2 sets. 
minsd - Gets smallest of 2 64bit values for bottom set. 
paddb - Adds 16 8bit integers. 
paddw - Adds 8 16bit integers. 
paddd - Adds 4 32bit integers. 
paddq - Adds 2 64bit integers. 
paddsb - Adds 16 8bit integers with saturation. 
paddsw - Adds 8 16bit integers using saturation. 
paddusb - Adds 16 8bit unsigned integers using saturation. 
paddusw - Adds 8 16bit unsigned integers using saturation. 
psubb - Subtracts 16 8bit integers. 
psubw - Subtracts 8 16bit integers. 
psubd - Subtracts 4 32bit integers. 
psubq - Subtracts 2 64bit integers. 
psubsb - Subtracts 16 8bit integers using saturation. 
psubsw - Subtracts 8 16bit integers using saturation. 
psubusb - Subtracts 16 8bit unsigned integers using saturation. 
psubusw - Subtracts 8 16bit unsigned integers using saturation. 
pmaddwd - Multiplies 16bit integers into 32bit results and adds results. 
pmulhw - Multiplies 16bit integers and returns the high 16bits of the result. 
pmullw - Multiplies 16bit integers and returns the low 16bits of the result. 
pmuludq - Multiplies 2 32bit pairs and stores 2 64bit results. 
rcpps - Approximates the reciprocal of 4 32bit singles. 
rcpss - Approximates the reciprocal of bottom 32bit single. 
sqrtpd - Returns square root of 2 64bit doubles. 
sqrtsd - Returns square root of bottom 64bit double.  



SSE2 Instructions  (Logic) 

 andnpd - Logically NOT ANDs 2 64bit doubles. 
andnps - Logically NOT ANDs 4 32bit singles. 
andpd - Logically ANDs 2 64bit doubles. 
pand - Logically ANDs 2 128bit registers. 
pandn - Logically Inverts the first 128bit operand and ANDs 
with the second. 
por - Logically ORs 2 128bit registers. 
pslldq - Logically left shifts 1 128bit value. 
psllq - Logically left shifts 2 64bit values. 
pslld - Logically left shifts 4 32bit values. 
psllw - Logically left shifts 8 16bit values. 
psrad - Arithmetically right shifts 4 32bit values. 
psraw - Arithmetically right shifts 8 16bit values. 
psrldq - Logically right shifts 1 128bit values. 
psrlq - Logically right shifts 2 64bit values. 
psrld - Logically right shifts 4 32bit values. 
psrlw - Logically right shifts 8 16bit values. 
pxor - Logically XORs 2 128bit registers. 
orpd - Logically ORs 2 64bit doubles. 
xorpd - Logically XORs 2 64bit doubles.  



SSE2 Instructions  (Compare) 

 cmppd - Compares 2 pairs of 64bit doubles.  
cmpsd - Compares bottom 64bit doubles. 
comisd - Compares bottom 64bit doubles and stores result in 
EFLAGS. 
ucomisd - Compares bottom 64bit doubles and stores result in 
EFLAGS. (QNaNs don't throw exceptions with ucomisd, unlike 
comisd. 
pcmpxxb - Compares 16 8bit integers. 
pcmpxxw - Compares 8 16bit integers. 
pcmpxxd - Compares 4 32bit integers. 
Compare Codes (the xx parts above): 
eq - Equal to. 
lt - Less than. 
le - Less than or equal to. 
ne - Not equal. 
nlt - Not less than. 
nle - Not less than or equal to. 
ord - Ordered. 
unord - Unordered. 

 
 



SSE2 Instructions (Conversion) 

 cvtdq2pd - Converts 2 32bit integers into 2 64bit doubles. 
cvtdq2ps - Converts 4 32bit integers into 4 32bit singles. 
cvtpd2pi - Converts 2 64bit doubles into 2 32bit integers in an MMX register. 
cvtpd2dq - Converts 2 64bit doubles into 2 32bit integers in the bottom of an XMM 
register. 
cvtpd2ps - Converts 2 64bit doubles into 2 32bit singles in the bottom of an XMM 
register. 
cvtpi2pd - Converts 2 32bit integers into 2 32bit singles in the bottom of an XMM 
register. 
cvtps2dq - Converts 4 32bit singles into 4 32bit integers. 
cvtps2pd - Converts 2 32bit singles into 2 64bit doubles. 
cvtsd2si - Converts 1 64bit double to a 32bit integer in a GPR. 
cvtsd2ss - Converts bottom 64bit double to a bottom 32bit single. Tops are 
unchanged. 
cvtsi2sd - Converts a 32bit integer to the bottom 64bit double. 
cvtsi2ss - Converts a 32bit integer to the bottom 32bit single. 
cvtss2sd - Converts bottom 32bit single to bottom 64bit double. 
cvtss2si - Converts bottom 32bit single to a 32bit integer in a GPR. 
cvttpd2pi - Converts 2 64bit doubles to 2 32bit integers using truncation into an 
MMX register. 
cvttpd2dq - Converts 2 64bit doubles to 2 32bit integers using truncation. 
cvttps2dq - Converts 4 32bit singles to 4 32bit integers using truncation. 
cvttps2pi - Converts 2 32bit singles to 2 32bit integers using truncation into an 
MMX register. 
cvttsd2si - Converts a 64bit double to a 32bit integer using truncation into a GPR. 
cvttss2si - Converts a 32bit single to a 32bit integer using truncation into a GPR.  



SSE2 Instructions 
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SSE2 Instructions 

Load/Store: 
(is "minimize cache pollution" the same as "without using cache"??) 
movq - Moves a 64bit value, clearing the top 64bits of an XMM register. 
movsd - Moves a 64bit double, leaving tops unchanged if move is between two 
XMMregisters. 
movapd - Moves 2 aligned 64bit doubles. 
movupd - Moves 2 unaligned 64bit doubles. 
movhpd - Moves top 64bit value to or from an XMM register. 
movlpd - Moves bottom 64bit value to or from an XMM register. 
movdq2q - Moves bottom 64bit value into an MMX register. 
movq2dq - Moves an MMX register value to the bottom of an XMM register. Top is 
cleared to zero. 
movntpd - Moves a 128bit value to memory without using the cache. NT is "Non 
Temporal." 
movntdq - Moves a 128bit value to memory without using the cache. 
movnti - Moves a 32bit value without using the cache. 
maskmovdqu - Moves 16 bytes based on sign bits of another XMM register. 
pmovmskb - Generates a 16bit Mask from the sign bits of each byte in an XMM 
register. 
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SSE2 Instructions 

Shuffling: 
pshufd - Shuffles 32bit values in a complex way. 
pshufhw - Shuffles high 16bit values in a complex way. 
pshuflw - Shuffles low 16bit values in a complex way. 
unpckhpd - Unpacks and interleaves top 64bit doubles from 2 128bit sources into 1. 
unpcklpd - Unpacks and interleaves bottom 64bit doubles from 2 128 bit sources into 1. 
punpckhbw - Unpacks and interleaves top 8 8bit integers from 2 128bit sources into 1. 
punpckhwd - Unpacks and interleaves top 4 16bit integers from 2 128bit sources into 1. 
punpckhdq - Unpacks and interleaves top 2 32bit integers from 2 128bit sources into 1. 
punpckhqdq - Unpacks and interleaces top 64bit integers from 2 128bit sources into 1. 
punpcklbw - Unpacks and interleaves bottom 8 8bit integers from 2 128bit sources into 1. 
punpcklwd - Unpacks and interleaves bottom 4 16bit integers from 2 128bit sources into 1. 
punpckldq - Unpacks and interleaves bottom 2 32bit integers from 2 128bit sources into 1. 
punpcklqdq - Unpacks and interleaces bottom 64bit integers from 2 128bit sources into 1. 
packssdw - Packs 32bit integers to 16bit integers using saturation. 
packsswb - Packs 16bit integers to 8bit integers using saturation. 
packuswb - Packs 16bit integers to 8bit unsigned integers unsing saturation. 

 

Cache Control: 
clflush - Flushes a Cache Line from all levels of cache. 
lfence - Guarantees that all memory loads issued before the lfence instruction are completed before 
anyloads after the lfence instruction. 
mfence - Guarantees that all memory reads and writes issued before the mfence instruction are completed 
before any reads or writes after the mfence instruction. 
pause - Pauses execution for a set amount of time.  



SSE3/SSSE3/SSE4 

• Introduced for Pentium 4 processor supporting Hyper-Threading 
Technology in 2004. 

  

• The Intel Xeon processor 5100 series, Intel Core 2 processor 
families introduced Supplemental Streaming SIMD Extensions 3 
(SSSE3) 

 

• SSE4 are introduced in Intel processor generations built from 
45nm process technology in 2006 

 

• SSE3/SSSE3/SSE4 do not introduce new data types  

– XMM registers are used to operate on packed data types 

• integer, single-precision FP, or double-precision FP 

 



SSE3 

• 13 new instructions 

– Support horizontal operations across a single register  

• Instead of down through multiple registers  

– Asymmetric processing 

• Unaligned access instructions are new type of instructions 

• Process control instructions to boost performance with Intel's 

hyper-threading feature 

 

• AMD started to support SSE3 in 2005   
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SSE3 Instructions ADDSUBPD 

Asymmetric processing: ADDSUBPD  

Add and Sub of packed double-precision FP 

The second operand may be from memory 
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SSE3 Instructions: HADDPD 

Horizontal data movement: HADDPD 

Horizontal add of packed double-precision FP  

The second operand may be from memory 

 



SSE3 Instructions Summary 

Arithmetic: 
addsubpd – DP. Additon on higher pair, subtraction on lower pair  (+, - ). 
addsubps – SP. Two adds and two subs interleaved (+, -, +, -). 
haddpd – DP. Horizontal addition. (src1+src0, dst1+dst0) 
haddps – SP. Horizontal addition. (src3+src2, src1+src0, dst3+dst2, dst1+dst0) 
hsubpd – DP. Horizontal addition. (src1+src0, dst1+dst0)  
hsubps – SP. Horizontal addition. (src3+src2, src1+src0, dst3+dst2, dst1+dst0) 
 

Load/Store: 
lddqu – Loads an unaligned 128bit value 
movddup – Loads or move a DP into lower half and duplicate to the higher 
movshdup – Duplicates the higher singles. (src3, src3, src1, src1) 
movsldup – Duplicates the lower singles. (src2, src2, src0, src0) 
fisttp – Converts a floating-point value to an integer using truncation 
 

Process Control: 
monitor – Sets up a region to monitor for activity 
mwait – Waits until activity happens in a region specified by monitor 



SSSE3 

• New 32 instructions designed for to accelerate a variety of 

multimedia and signal processing applications 

– Only 16, for both MMX and XMM 

  

• Integer data types include packed byte, word, or double word  

  

• Operands can be 64 or 128 bit in MMX registers, XMM 

registers, or memory 
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SSSE3 Instructions: PHADDD 

Horizontal data movement: PHADDD 

Horizontal add of packed DW  

The second operand may be from memory 



SSSE3 Instructions Summary 

• 12 for horizontal addition or subtraction operations 
– ADDW, ADDD, ADDSW, and three for SUB 

• 6 for evaluating absolute values 
– PABSB, PABSW, PABSD 

• 2 for multiply and add operations  
– PMADDUBSW (byte mul, add pairs, and to saturated words) 

– Speed up dot products 

• 2 for packed-integer multiply operations  
– PMULHRSW (Q.15 multiplications, with rounding and scaling) 

• 2 for a byte-wise, in-place shuffle 
– PSHUFB (similar to PERMUTE) 

• 6 instructions negating packed integers in the destination 
– B, W, and D version 

• 2 for alignment data from the composite of two operands 
– PALIGNR (similar to SHIFT PAIR) 



SSE4 

• SSE4 comprises of two sets of extensions 

– SSE4.1 includes 47 new instructions 

• Targets media, imaging and 3D graphics 

• Adds instructions for  improving compiler vectorization  

• Significantly increases support for packed dword computation 

– SSE4.2 has 7 new instructions 

• Improves performance in string and text processing 

• Registers 

– Two SSE4.2 instructions operate on general-purpose registers 

– All other instructions operate on XMM registers 

• No MMX registers  
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SSE4.1 Instructions Summary (1) 

• Six instructions for conditional copying 

– BLENDPS, BLENDPD, BLENDVPS, BLENDVPD 

– PBLENDVB, PBLENDW 

• Eight instructions expand support for packed integer MIN/MAX 

– PMINSB, PMINUW, PMINUD, PMINSD and PMAX versions 

• Four instructions for floating-point rounding  

– ROUNDPS, ROUNDSS, ROUNDPD, ROUNDSD 

– One of the four rounding modes specified by an immediate 

• Seven instructions for data insertion and extractions 

– INSERTPS, PINSRB, PINSRD/Q 

– EXTRACTPS, PEXTRB, PEXTRW, PEXTRD/PEXTRQ 

• Twelve instructions converting packed integer format to D 

– PMOVSXBW, PMOVZXBW, also BQ, WD, WQ, DQ 

– Sign and zero extensions 



SSE 4.1 Insructions Summary (2) 

• Two instructions perform packed DW multiplications 

– PMULDQ, 32-bit to 64-bit, two DW from the source are used 

– PMULLD, 32-bit to 32-bit 

• Two instructions floating-point dot products 

– DPPS, dot product of PS, result in any (one or more) locations 

– DPPD, dot product of PD 

• MPSADBW – Computes 8 offset sums of absolute differences 

• PTEST – Compare two 128 bits values and set ZF and CF flags 

• PCMPEQQ – QD equality comparison 

• PACKUSDW – Signed DW to unsigned W with saturation 

• MOVNTDQA – Move DQ  

• PHMINPOSUW – Packed horizontal word minimum 

– Value in lower 16 bits and 3-bit index are bits 16 – 18 

 

103 



SSE 4.1 BLEND Instructions 

• Copy PS of PD from SRC if the control bit is 1 

– PS needs four bits while PD needs only two bits 

• V versions use XMM0 as control 

– Use the MSB 
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SSE4.2 Instructions 

• CRC32 – Use the polynomial 0x11EDC6F41  

– R32 or R64 mode 

• Four string comparison instructions  

– PCMPESTRI 

– PCMPESTRM 

– PCMPISTRI 

– PCMPISTRM 

• PCMPGTQ – Compare packed QW for greater than 

 

 

• POPCNT – Population count 

• LZCNT – Leading zero count 



Other SIMD architectures 

• Graphics Processing Unit (GPU): nVidia 7800, 24 pipelines (8 

vector/16 fragment) 
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NVidia GeForce 8800, 2006 

• Each GeForce 8800 GPU stream processor is a fully generalized, 

fully decoupled, scalar, processor that supports IEEE 754 

floating point precision.  

• Up to 128 stream processors 
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Cell processor 

• Cell Processor (IBM/Toshiba/Sony): 1 PPE (Power Processing 

Unit) +8 SPEs (Synergistic Processing Unit) 

• An SPE is a RISC processor with 128-bit SIMD for 

single/double precision instructions, 128 128-bit registers, 256K 

local cache 

• used in PS3. 
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Cell processor 
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