
Intel SIMD architecture

Z. Jerry Shi

Associate Professor of Computer Science and Engineering

University of Connecticut

Revised from Yung-Yu Chuang’s slides , 2007

Overview

• SIMD

• MMX architectures

• MMX instructions

• Examples

• SSE/SSE2/SSE3/SSE4

• SIMD instructions are probably the best place to use assembly

– Compilers usually do not do a good job on using these
instructions

2

Performance boost

• Increasing clock rate is not fast enough for boosting performance

• Architecture improvements (such as pipeline/cache/SIMD) are

more significant

• Multimedia applications share the following characteristics:

– Small native data types (8-bit pixel, 16-bit audio)

– Recurring operations

– Inherent parallelism

3

SIMD

4

• SIMD (single instruction multiple data) architecture

performs the same operation on multiple data elements

in parallel

 PADDW MM0, MM1

SISD/SIMD/Streaming

5

IA-32 SIMD development

• MMX (Multimedia Extension) was introduced in 1996

– Pentium with MMX and Pentium II

• SSE (Streaming SIMD Extension) was introduced with Pentium III

• SSE2 was introduced with Pentium 4

• SSE3 was introduced with Pentium 4

– For supporting hyper-threading technology

– 13 more instructions

• SSSE3 (Supplemental) in June 2006 in the “Woodcrest” Xeons

– 16 new discrete instructions

• SSE4 in spring 2007 has 54 new instructions

– 47 in SSE4.1

– 7 in SSE 4.2

• SSE4a from AMD are different from SSE4.1

6

MMX

• Typical elements in many applications are small

– 8 bits for pixels

– 16 bits for audio

– 32 bits for general computing

• New data type: 64-bit packed data type. Why 64 bits?

– Good enough

– Practical, see in a moment

7

MMX data types

8

MMX integration into IA-32

9

79

11…11
NaN or infinity as real

because bits 79-64 are

ones.

Even if MMX registers

are 64-bit, they don’t

extend Pentium to a

64-bit CPU since only

logic instructions are

provided for 64-bit

data.

8 MM0~MM7

Compatibility

• Fully compatible with existing IA

– No new mode or state was created

– No extra state needs to be saved for context switching

• MMX is hidden behind FPU

– When floating-point state is saved or restored, MMX is saved or

restored.

• Existing OS to perform context switching on the processes

executing MMX instruction without be aware of MMX

– MMX and FPU cannot be used at the same time

• It may be a bad decision

• OS can just provide a service pack or get updated

• Intel introduced SSE later without any aliasing

10

MMX instructions

• 57 MMX instructions

– add, subtract, multiply, multiply-add

– compare

– shift, logical operation

– data conversion

– 64-bit data move

• All instructions except for data move use MMX registers as

operands

– All starts with p except for movd, movq, and emms

• Most complete support for 16-bit operations

11

MMX instructions

12

MMX instructions

13

Call it before you switch to FPU from MMX

Saturation arithmetic

14

wrap-around saturating

• Useful in graphics applications.

• When an operation overflows or underflows, the result

becomes the largest or smallest possible representable

number.

• Two types: signed and unsigned saturation

Arithmetic

• PADDB/PADDW/PADDD: add two packed numbers, no EFLAGS

is set, ensure overflow never occurs by yourself

• Multiplication: two steps

• PMULLW: multiplies four words and stores the four lo words of

the four double word results

• PMULHW/PMULHUW: multiplies four words and stores the four hi

words of the four double word results. PMULHUW for unsigned.

15

Arithmetic

• PMADDWD

16

Example: add a constant to a vector

char d[]={5, 5, 5, 5, 5, 5, 5, 5};

char clr[]={65,66,68,...,87,88}; // 24 bytes

__asm{

 movq mm1, d

 mov cx, 3

 mov esi, 0

L1: movq mm0, clr[esi]

 paddb mm0, mm1

 movq clr[esi], mm0

 add esi, 8

 loop L1

 emms

}
17

Comparison

18

• No CFLAGS, how many flags will you need?

Results are stored in destination.

• EQ/GT, no LT

Change data types

• Pack: converts a larger data type to the next smaller data type.

• Unpack: takes two operands and interleave them. It can be used

for expand data type for immediate calculation.

19

Pack with signed saturation

20

Pack with signed saturation

21

Unpack low portion

22

Unpack low portion

23

Unpack low portion

24

Unpack high portion

25

Performance boost (data from 1996)

Benchmark kernels: FFT,

FIR, vector dot-product,

IDCT, motion compensation.

65% performance gain

Lower the cost of

multimedia programs by

removing the need of

specialized DSP chips

26

Keys to SIMD programming

• Efficient data layout

• Elimination of branches

27

Application: frame difference

28

A B

|A-B|

Application: frame difference

29

A-B B-A

(A-B) or (B-A)

Application: frame difference

MOVQ mm1, A //move 8 pixels of image A

MOVQ mm2, B //move 8 pixels of image B

MOVQ mm3, mm1 // mm3=A

PSUBSB mm1, mm2 // mm1=A-B

PSUBSB mm2, mm3 // mm2=B-A

POR mm1, mm2 // mm1=|A-B|

30

Example: image fade-in-fade-out

A*α+B*(1-α) = B+α(A-B)

31

A

B

α=0.75

32

α=0.5

33

α=0.25

34

Example: image fade-in-fade-out

• Two formats: planar and chunky

• In Chunky format, 16 bits of 64 bits are wasted

• So, we use planar in the following example

35

R G B A R G B A

Example: image fade-in-fade-out

36

Image A Image B

Example: image fade-in-fade-out

MOVQ mm0, alpha //4 16-b zero-padding α

MOVD mm1, A //move 4 pixels of image A

MOVD mm2, B //move 4 pixels of image B

PXOR mm3, mm3 //clear mm3 to all zeroes

//unpack 4 pixels to 4 words

PUNPCKLBW mm1, mm3 // Because B-A could be

PUNPCKLBW mm2, mm3 // negative, need 16 bits

PSUBW mm1, mm2 //(B-A)

PMULHW mm1, mm0 //(B-A)*fade/256

PADDW mm1, mm2 //(B-A)*fade + B

//pack four words back to four bytes

PACKUSWB mm1, mm3

37

Data-independent computation

• Each operation can execute without needing to know the results

of a previous operation.

• Example, sprite overlay

for i=1 to sprite_Size

 if sprite[i]=clr

 then out_color[i]=bg[i]

 else out_color[i]=sprite[i]

38

Application: sprite overlay

39

Application: sprite overlay

MOVQ mm0, sprite

MOVQ mm2, mm0

MOVQ mm4, bg

MOVQ mm1, clr

PCMPEQW mm0, mm1

PAND mm4, mm0

PANDN mm0, mm2

POR mm0, mm4

40

Application: matrix transpose

41

Application: matrix transpose (C code)

char M1[4][8];// matrix to be transposed

char M2[8][4];// transposed matrix

int n=0;

for (int i=0;i<4;i++)

 for (int j=0;j<8;j++)

 { M1[i][j]=n; n++; }

42

Application: matrix transpose (MMX) - 1

__asm{

//move the 4 rows of M1 into MMX registers

movq mm1,M1

movq mm2,M1+8

movq mm3,M1+16

movq mm4,M1+24

//generate rows 1 to 4 of M2

punpcklbw mm1, mm2

punpcklbw mm3, mm4

movq mm0, mm1

punpcklwd mm1, mm3 //mm1 has row 2 & row 1

punpckhwd mm0, mm3 //mm0 has row 4 & row 3

movq M2, mm1

movq M2+8, mm0

43

Application: matrix transpose (MMX) - 2

//generate rows 5 to 8 of M2

movq mm1, M1 //get row 1 of M1

movq mm3, M1+16 //get row 3 of M1

punpckhbw mm1, mm2

punpckhbw mm3, mm4

movq mm0, mm1

punpcklwd mm1, mm3 //mm1 has row 6 & row 5

punpckhwd mm0, mm3 //mm0 has row 8 & row 7

//save results to M2

movq M2+16, mm1

movq M2+24, mm0

emms

} //end

44

How to use assembly in projects

• Write the whole project in assembly

– Link with high-level languages

• Inline assembly

• Intrinsics

45

Detect MMX/SSE

mov eax, 1 ; request version info

cpuid ; supported since Pentium

test edx, 00800000h ;bit 23

 ; 02000000h (bit 25) SSE

 ; 04000000h (bit 26) SSE2

jnz HasMMX

46

cpuid

47

:

:

Link ASM and High-level Language programs

• Assembly is rarely used to develop the entire program.

• Use high-level language for overall project development

– Relieves programmer from low-level details

• Use assembly language code

– Speed up critical sections of code

– Access nonstandard hardware devices

– Write platform-specific code

– Extend the high-level language's capabilities

49

General conventions

• Considerations when calling assembly language procedures from

high-level languages:

– Both must use the same naming convention (rules regarding the

naming of variables and procedures)

– Both must use the same memory model, with compatible segment

names

– Both must use the same calling convention

50

Inline assembly code

• Assembly language source code that is inserted directly into a

HLL program.

• Compilers such as Microsoft Visual C++ and Borland C++

have compiler-specific directives that identify inline ASM

code.

• Efficient inline code executes quickly because CALL and

RET instructions are not required.

• Simple to code because there are no external names, memory

models, or naming conventions involved.

• Decidedly not portable because it is written for a single

platform.

51

__asm directive in Microsoft Visual C++

• Can be placed at the beginning of a single statement

• Or, It can mark the beginning of a block of assembly language

statements

• Syntax:

52

__asm statement

__asm {

 statement-1

 statement-2

 ...

 statement-n

}

Intrinsics

• An intrinsic is a function known by the compiler that directly
maps to a sequence of one or more assembly language
instructions.

• The compiler manages things that the user would normally have
to be concerned with, such as register names, register allocations,
and memory locations of data.

• Intrinsic functions are inherently more efficient than called
functions because no calling linkage is required. But, not
necessarily as efficient as assembly.

• _mm_<opcode>_<suffix>

53

ps: packed single-precision

ss: scalar single-precision

Intrinsics

#include <xmmintrin.h>

__m128 a , b , c;

c = _mm_add_ps(a , b);

float a[4] , b[4] , c[4];

for(int i = 0 ; i < 4 ; ++ i)

 c[i] = a[i] + b[i];

// a = b * c + d / e;

__m128 a = _mm_add_ps(_mm_mul_ps(b , c) ,

 _mm_div_ps(d , e));

54

SSE features

• Add eight 128-bit data registers (XMM registers)

• Sixteen XMM registers are available in 64-bit mode

• 32-bit MXCSR register (control and status)

• Add a new data type

– 4 single-precision floating-point numbers in a 128-bit register

• New instructions:

– Instruction to perform SIMD operations on 128-bit packed single-

precision FP

– Additional 64-bit SIMD integer operations

• Instructions that explicitly prefetch data, control data cacheability

and ordering of store

55

56

Advantages of SSE

In MMX

• An application cannot execute MMX instructions and perform

floating-point operations simultaneously.

• A large number of processor clock cycles are needed to change

the state of executing MMX instructions to the state of executing

FP operations and vice versa.

57

SSE programming environment

XMM0

 |

XMM7

MM0

 |

MM7

EAX, EBX, ECX, EDX

EBP, ESI, EDI, ESP

Exception

_MM_ALIGN16 float test1[4] = { 0, 0, 0, 1 };

_MM_ALIGN16 float test2[4] = { 1, 2, 3, 0 };

_MM_ALIGN16 float out[4];

_MM_SET_EXCEPTION_MASK(0);//enable exception

__try {

__m128 a = _mm_load_ps(test1);

__m128 b = _mm_load_ps(test2);

a = _mm_div_ps(a, b);

_mm_store_ps(out, a);

}

__except(EXCEPTION_EXECUTE_HANDLER) {

if(_mm_getcsr() & _MM_EXCEPT_DIV_ZERO)

cout << "Divide by zero" << endl;

return;

}

58

Without this, result is 1.#INF

MXCSR control and status register

59

Generally faster, but not compatible with IEEE 754

SSE Packed FP Operation

Packed single-precision FP

ADDPS, SUBPS, MULPS, DIVPS, RCPPS, SQRTPS, RSQRTPS,

MAXPS, MINPS

 60

SSE Scalar FP Operation

61

Scalar single-precision FP used as FPU

ADDSS, SUBSS, MULSS, DIVSS, RCPSS, SQRTSS, RSQRTSS,

MAXSS, MINSS

SSE Shuffle Packed Single-Precision (SHUFPS)

SHUFPS xmm1, xmm2, imm8

Select [1..0] select DEST[0] from DEST // xmm1

Select [3..2] select DEST[1] from DEST

Select [5..4] select DEST[2] from SRC // xmm2

Select [7..6] select DEST[3] from SRC

SSE Shuffle Packed Single-Precision (SHUFPS) - 2

Swap bytes with SHUFPS

64

Broadcast with SHUFPS

65

Rotate with SHUFPS

66

SSE Unpack Shuffle (UNPCKLPS and UNPCKHPS)

SSE MOVLPS, MOVLHPS, MOVAPS

Many types: SS, LPS, HPS, APS, UPS, HLPS, LHPS

SSE Comparison for Single-precision FP

69

Two versions: packed (ps) and scalar (ss)

CMPEQPS, CMPNEQPS, CMPLTPS, CMPNLTPS, CMPLEPS, CMPNLEPS

CMPEQSS, CMPNEQSS, CMPLTSS, CMPNLTSS, CMPLESS, CMPNLESS

SSE Instruction Set (Floating-point Instructions)

• Memory-to-Register / Register-to-Memory / Register-to-Register data movement

– Scalar – MOVSS

– Packed – MOVAPS, MOVUPS, MOVLPS, MOVHPS, MOVLHPS,
MOVHLPS

• Arithmetic

– Scalar – ADDSS, SUBSS, MULSS, DIVSS, RCPSS, SQRTSS, MAXSS,
MINSS, RSQRTSS

– Packed – ADDPS, SUBPS, MULPS, DIVPS, RCPPS, SQRTPS, MAXPS,
MINPS, RSQRTPS

• Compare

– Scalar – CMPSS, COMISS, UCOMISS

– Packed – CMPPS

• Data shuffle and unpacking

– Packed – SHUFPS, UNPCKHPS, UNPCKLPS

• Data-type conversion

– Scalar – CVTSI2SS, CVTSS2SI, CVTTSS2SI

– Packed – CVTPI2PS, CVTPS2PI, CVTTPS2PI

• Bitwise logical operations

– Packed – ANDPS, ORPS, XORPS, ANDNPS

SSE Instruction Set (Integer and Other)

Integer instructions

• Arithmetic

– PMULHUW, PSADBW, PAVGB, PAVGW, PMAXUB, PMINUB,
PMAXSW, PMINSW

• Data movement

– PEXTRW, PINSRW

• Other

– PMOVMSKB, PSHUFW

Other instructions

• MXCSR management

– LDMXCSR, STMXCSR

• Cache and Memory management

– PREFETCH0, PREFETCH1, PREFETCHNTA

– MOVNTQ, MOVNTPS, MASKMOVQ, SFENCE

SSE Example: Packed Floating-point Addition

void add(float *a, float *b, float *c) {

 for (int i = 0; i < 4; i++)

 c[i] = a[i] + b[i];

}

__asm {

mov eax, a

mov edx, b

mov ecx, c

movaps xmm0, XMMWORD PTR [eax]

addps xmm0, XMMWORD PTR [edx]

movaps XMMWORD PTR [ecx], xmm0

}

movaps: move aligned packed SP FP

addps: add packed SP FP

SSE Example: PS Addition with Intrinsics

_MM_ALIGN16 float input1[4]

 = { 1.2f, 3.5f, 1.7f, 2.8f };

_MM_ALIGN16 float input2[4]

 = { -0.7f, 2.6f, 3.3f, -0.8f };

_MM_ALIGN16 float output[4];

__m128 a = _mm_load_ps(input1);

__m128 b = _mm_load_ps(input2);

__m128 t = _mm_add_ps(a, b);

_mm_store_ps(output, t);

SSE Example: Cross Product (C code)

Vector cross(const Vector& a , const Vector& b) {

 return Vector(

 (a[1] * b[2] - a[2] * b[1]) ,

 (a[2] * b[0] - a[0] * b[2]) ,

 (a[0] * b[1] - a[1] * b[0]));

}

SSE Example: Cross Product

__m128 _mm_cross_ps(__m128 a , __m128 b) {

__m128 ea , eb;

// set to a[1][2][0][3] , b[2][0][1][3]

ea = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,0,2,1));

eb = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,1,0,2));

// multiply

__m128 xa = _mm_mul_ps(ea , eb);

// set to a[2][0][1][3] , b[1][2][0][3]

a = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,1,0,2));

b = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,0,2,1));

__m128 xb = _mm_mul_ps(a , b); // multiply

return _mm_sub_ps(xa , xb); // subtract

}

75

SSE Example: Dot Product

• Given a set of vectors {v1,v2,…vn}={(x1,y1,z1), (x2,y2,z2),…,

(xn,yn,zn)} and a vector vc=(xc,yc,zc), calculate {vcvi}

• Two options for memory layout

• Array of structure (AoS)

typedef struct { float dc, x, y, z; } Vertex;

Vertex v[n];

• Structure of array (SoA)

typedef struct { float x[n], y[n], z[n]; }

 VerticesList;

VerticesList v;

76

SSE Example: Dot Product (AoS)

movaps xmm0, v ; xmm0 = DC, x0, y0, z0

movaps xmm1, vc ; xmm1 = DC, xc, yc, zc

mulps xmm0, xmm1 ; xmm0 = DC,x0*xc,y0*yc,z0*zc

movhlps xmm1, xmm0 ;xmm1 = DC, DC, DC,x0*xc

addps xmm1, xmm0 ; xmm1 = DC, DC, DC, x+z

 ; x0*xc+z0*zc

movaps xmm2, xmm0

shufps xmm2, xmm2, 55h ; xmm2=DC, DC, DC,y0*yc

addps xmm1, xmm2 ; xmm1 = DC, DC, DC,x+y+z

 ; x0*xc+y0*yc+z0*zc

77

movhlps:DEST[63..0] := SRC[127..64]

SSE Example: Dot Product (SoA)

; X = x1,x2,...,x3

; Y = y1,y2,...,y3

; Z = z1,z2,...,z3

; A = xc,xc,xc,xc

; B = yc,yc,yc,yc

; C = zc,zc,zc,zc

movaps xmm0, X ; xmm0 = x1,x2,x3,x4

movaps xmm1, Y ; xmm1 = y1,y2,y3,y4

movaps xmm2, Z ; xmm2 = z1,z2,z3,z4

mulps xmm0, A ;xmm0=x1*xc,x2*xc,x3*xc,x4*xc

mulps xmm1, B ;xmm1=y1*yc,y2*yc,y3*xc,y4*yc

mulps xmm2, C ;xmm2=z1*zc,z2*zc,z3*zc,z4*zc

addps xmm0, xmm1

addps xmm0, xmm2 ;xmm0=(x0*xc+y0*yc+z0*zc)…

78

SSE Example: Dot Product (SoA), Intrinsics

__m128 x1 = _mm_load_ps(vec1_x);

__m128 y1 = _mm_load_ps(vec1_y);

__m128 z1 = _mm_load_ps(vec1_z);

__m128 x2 = _mm_load_ps(vec2_x);

__m128 y2 = _mm_load_ps(vec2_y);

__m128 z2 = _mm_load_ps(vec2_z);

__m128 t1 = _mm_mul_ps(x1, x2); // x1 * x2

__m128 t2 = _mm_mul_ps(y1, y2); // y1 * y2

 t1 = _mm_add_ps(t1, t2); // x + y

 t2 = _mm_mul_ps(z1, z2); // z1 * z2

 t1 = _mm_add_ps(t1, t2); // x + y + z

_mm_store_ps(output, t1);

SSE Cache Control

• prefetch (_mm_prefetch): a hint for CPU to load operands

for the next instructions so that data loading can be executed in

parallel with computation.

• movntps (_mm_stream_ps): ask CPU not to write data into

cache, but to the memory directly.

80

SSE Example: Dot Product with Prefetch

__m128 x1 = _mm_load_ps(vec1_x);

__m128 y1 = _mm_load_ps(vec1_y);

__m128 z1 = _mm_load_ps(vec1_z);

__m128 x2 = _mm_load_ps(vec2_x);

__m128 y2 = _mm_load_ps(vec2_y);

__m128 z2 = _mm_load_ps(vec2_z);

_mm_prefetch((const char*)(vec1_x + next), _MM_HINT_NTA);

_mm_prefetch((const char*)(vec1_y + next), _MM_HINT_NTA);

_mm_prefetch((const char*)(vec1_z + next), _MM_HINT_NTA);

_mm_prefetch((const char*)(vec2_x + next), _MM_HINT_NTA);

_mm_prefetch((const char*)(vec2_y + next), _MM_HINT_NTA);

_mm_prefetch((const char*)(vec2_z + next), _MM_HINT_NTA);

// 1.5x speedup

…

81

SSE Example: Exponential Function

float result = coeff[8] * x;

int i;

for(i = 7; i >= 2; i--) {

result += coeff[i];

result *= x;

}

return (result + 1) * x + 1;

82

...
!4!3!2

1
432

xxx

xex

Example: Exponential with Intrinsics

int i;

__m128 X = _mm_load_ps(data);

__m128 result = _mm_mul_ps(X,coeff_sse[8]);

for(i = 7; i >=2; i--) {

result = _mm_add_ps(result, coeff_sse[i]);

result = _mm_mul_ps(result, X);

}

result = _mm_add_ps(result, sse_one);

result = _mm_mul_ps(result, X);

result = _mm_add_ps(result, sse_one);

_mm_store_ps(out, result);

83

84

SSE2

• Introduced into the IA-32 architecture in the Pentium 4 and Intel

Xeon processors in 2001

• Allowing advanced graphics such as 3-D graphics, video

decoding/encoding, speech recognition

• What is new?

– SIMD operations on 128-bit packed double-precision FP

– SIMD operations on 128-bit packed 64-bit integers

• Offers more flexibility in big numbers

• 144 new instructions

• AMD didn't support SSE2 until 2003, with their Opteron and

Athlon64 processors

SSE2 Features

• Add data types and instructions for them

• Programming environment unchanged (also packed and scalar)

SSE2 Instructions (ARITHMETIC)

addpd - Adds 2 64bit doubles.
addsd - Adds bottom 64bit doubles.
subpd - Subtracts 2 64bit doubles.
subsd - Subtracts bottom 64bit doubles.
mulpd - Multiplies 2 64bit doubles.
mulsd - Multiplies bottom 64bit doubles.
divpd - Divides 2 64bit doubles.
divsd - Divides bottom 64bit doubles.
maxpd - Gets largest of 2 64bit doubles for 2 sets.
maxsd - Gets largest of 2 64bit doubles to bottom set.
minpd - Gets smallest of 2 64bit doubles for 2 sets.
minsd - Gets smallest of 2 64bit values for bottom set.
paddb - Adds 16 8bit integers.
paddw - Adds 8 16bit integers.
paddd - Adds 4 32bit integers.
paddq - Adds 2 64bit integers.
paddsb - Adds 16 8bit integers with saturation.
paddsw - Adds 8 16bit integers using saturation.
paddusb - Adds 16 8bit unsigned integers using saturation.
paddusw - Adds 8 16bit unsigned integers using saturation.
psubb - Subtracts 16 8bit integers.
psubw - Subtracts 8 16bit integers.
psubd - Subtracts 4 32bit integers.
psubq - Subtracts 2 64bit integers.
psubsb - Subtracts 16 8bit integers using saturation.
psubsw - Subtracts 8 16bit integers using saturation.
psubusb - Subtracts 16 8bit unsigned integers using saturation.
psubusw - Subtracts 8 16bit unsigned integers using saturation.
pmaddwd - Multiplies 16bit integers into 32bit results and adds results.
pmulhw - Multiplies 16bit integers and returns the high 16bits of the result.
pmullw - Multiplies 16bit integers and returns the low 16bits of the result.
pmuludq - Multiplies 2 32bit pairs and stores 2 64bit results.
rcpps - Approximates the reciprocal of 4 32bit singles.
rcpss - Approximates the reciprocal of bottom 32bit single.
sqrtpd - Returns square root of 2 64bit doubles.
sqrtsd - Returns square root of bottom 64bit double.

SSE2 Instructions (Logic)

 andnpd - Logically NOT ANDs 2 64bit doubles.
andnps - Logically NOT ANDs 4 32bit singles.
andpd - Logically ANDs 2 64bit doubles.
pand - Logically ANDs 2 128bit registers.
pandn - Logically Inverts the first 128bit operand and ANDs
with the second.
por - Logically ORs 2 128bit registers.
pslldq - Logically left shifts 1 128bit value.
psllq - Logically left shifts 2 64bit values.
pslld - Logically left shifts 4 32bit values.
psllw - Logically left shifts 8 16bit values.
psrad - Arithmetically right shifts 4 32bit values.
psraw - Arithmetically right shifts 8 16bit values.
psrldq - Logically right shifts 1 128bit values.
psrlq - Logically right shifts 2 64bit values.
psrld - Logically right shifts 4 32bit values.
psrlw - Logically right shifts 8 16bit values.
pxor - Logically XORs 2 128bit registers.
orpd - Logically ORs 2 64bit doubles.
xorpd - Logically XORs 2 64bit doubles.

SSE2 Instructions (Compare)

 cmppd - Compares 2 pairs of 64bit doubles.
cmpsd - Compares bottom 64bit doubles.
comisd - Compares bottom 64bit doubles and stores result in
EFLAGS.
ucomisd - Compares bottom 64bit doubles and stores result in
EFLAGS. (QNaNs don't throw exceptions with ucomisd, unlike
comisd.
pcmpxxb - Compares 16 8bit integers.
pcmpxxw - Compares 8 16bit integers.
pcmpxxd - Compares 4 32bit integers.
Compare Codes (the xx parts above):
eq - Equal to.
lt - Less than.
le - Less than or equal to.
ne - Not equal.
nlt - Not less than.
nle - Not less than or equal to.
ord - Ordered.
unord - Unordered.

SSE2 Instructions (Conversion)

 cvtdq2pd - Converts 2 32bit integers into 2 64bit doubles.
cvtdq2ps - Converts 4 32bit integers into 4 32bit singles.
cvtpd2pi - Converts 2 64bit doubles into 2 32bit integers in an MMX register.
cvtpd2dq - Converts 2 64bit doubles into 2 32bit integers in the bottom of an XMM
register.
cvtpd2ps - Converts 2 64bit doubles into 2 32bit singles in the bottom of an XMM
register.
cvtpi2pd - Converts 2 32bit integers into 2 32bit singles in the bottom of an XMM
register.
cvtps2dq - Converts 4 32bit singles into 4 32bit integers.
cvtps2pd - Converts 2 32bit singles into 2 64bit doubles.
cvtsd2si - Converts 1 64bit double to a 32bit integer in a GPR.
cvtsd2ss - Converts bottom 64bit double to a bottom 32bit single. Tops are
unchanged.
cvtsi2sd - Converts a 32bit integer to the bottom 64bit double.
cvtsi2ss - Converts a 32bit integer to the bottom 32bit single.
cvtss2sd - Converts bottom 32bit single to bottom 64bit double.
cvtss2si - Converts bottom 32bit single to a 32bit integer in a GPR.
cvttpd2pi - Converts 2 64bit doubles to 2 32bit integers using truncation into an
MMX register.
cvttpd2dq - Converts 2 64bit doubles to 2 32bit integers using truncation.
cvttps2dq - Converts 4 32bit singles to 4 32bit integers using truncation.
cvttps2pi - Converts 2 32bit singles to 2 32bit integers using truncation into an
MMX register.
cvttsd2si - Converts a 64bit double to a 32bit integer using truncation into a GPR.
cvttss2si - Converts a 32bit single to a 32bit integer using truncation into a GPR.

SSE2 Instructions

91

SSE2 Instructions

Load/Store:
(is "minimize cache pollution" the same as "without using cache"??)
movq - Moves a 64bit value, clearing the top 64bits of an XMM register.
movsd - Moves a 64bit double, leaving tops unchanged if move is between two
XMMregisters.
movapd - Moves 2 aligned 64bit doubles.
movupd - Moves 2 unaligned 64bit doubles.
movhpd - Moves top 64bit value to or from an XMM register.
movlpd - Moves bottom 64bit value to or from an XMM register.
movdq2q - Moves bottom 64bit value into an MMX register.
movq2dq - Moves an MMX register value to the bottom of an XMM register. Top is
cleared to zero.
movntpd - Moves a 128bit value to memory without using the cache. NT is "Non
Temporal."
movntdq - Moves a 128bit value to memory without using the cache.
movnti - Moves a 32bit value without using the cache.
maskmovdqu - Moves 16 bytes based on sign bits of another XMM register.
pmovmskb - Generates a 16bit Mask from the sign bits of each byte in an XMM
register.

92

SSE2 Instructions

Shuffling:
pshufd - Shuffles 32bit values in a complex way.
pshufhw - Shuffles high 16bit values in a complex way.
pshuflw - Shuffles low 16bit values in a complex way.
unpckhpd - Unpacks and interleaves top 64bit doubles from 2 128bit sources into 1.
unpcklpd - Unpacks and interleaves bottom 64bit doubles from 2 128 bit sources into 1.
punpckhbw - Unpacks and interleaves top 8 8bit integers from 2 128bit sources into 1.
punpckhwd - Unpacks and interleaves top 4 16bit integers from 2 128bit sources into 1.
punpckhdq - Unpacks and interleaves top 2 32bit integers from 2 128bit sources into 1.
punpckhqdq - Unpacks and interleaces top 64bit integers from 2 128bit sources into 1.
punpcklbw - Unpacks and interleaves bottom 8 8bit integers from 2 128bit sources into 1.
punpcklwd - Unpacks and interleaves bottom 4 16bit integers from 2 128bit sources into 1.
punpckldq - Unpacks and interleaves bottom 2 32bit integers from 2 128bit sources into 1.
punpcklqdq - Unpacks and interleaces bottom 64bit integers from 2 128bit sources into 1.
packssdw - Packs 32bit integers to 16bit integers using saturation.
packsswb - Packs 16bit integers to 8bit integers using saturation.
packuswb - Packs 16bit integers to 8bit unsigned integers unsing saturation.

Cache Control:
clflush - Flushes a Cache Line from all levels of cache.
lfence - Guarantees that all memory loads issued before the lfence instruction are completed before
anyloads after the lfence instruction.
mfence - Guarantees that all memory reads and writes issued before the mfence instruction are completed
before any reads or writes after the mfence instruction.
pause - Pauses execution for a set amount of time.

SSE3/SSSE3/SSE4

• Introduced for Pentium 4 processor supporting Hyper-Threading
Technology in 2004.

• The Intel Xeon processor 5100 series, Intel Core 2 processor
families introduced Supplemental Streaming SIMD Extensions 3
(SSSE3)

• SSE4 are introduced in Intel processor generations built from
45nm process technology in 2006

• SSE3/SSSE3/SSE4 do not introduce new data types

– XMM registers are used to operate on packed data types

• integer, single-precision FP, or double-precision FP

SSE3

• 13 new instructions

– Support horizontal operations across a single register

• Instead of down through multiple registers

– Asymmetric processing

• Unaligned access instructions are new type of instructions

• Process control instructions to boost performance with Intel's

hyper-threading feature

• AMD started to support SSE3 in 2005

95

SSE3 Instructions ADDSUBPD

Asymmetric processing: ADDSUBPD

Add and Sub of packed double-precision FP

The second operand may be from memory

96

SSE3 Instructions: HADDPD

Horizontal data movement: HADDPD

Horizontal add of packed double-precision FP

The second operand may be from memory

SSE3 Instructions Summary

Arithmetic:
addsubpd – DP. Additon on higher pair, subtraction on lower pair (+, -).
addsubps – SP. Two adds and two subs interleaved (+, -, +, -).
haddpd – DP. Horizontal addition. (src1+src0, dst1+dst0)
haddps – SP. Horizontal addition. (src3+src2, src1+src0, dst3+dst2, dst1+dst0)
hsubpd – DP. Horizontal addition. (src1+src0, dst1+dst0)
hsubps – SP. Horizontal addition. (src3+src2, src1+src0, dst3+dst2, dst1+dst0)

Load/Store:
lddqu – Loads an unaligned 128bit value
movddup – Loads or move a DP into lower half and duplicate to the higher
movshdup – Duplicates the higher singles. (src3, src3, src1, src1)
movsldup – Duplicates the lower singles. (src2, src2, src0, src0)
fisttp – Converts a floating-point value to an integer using truncation

Process Control:
monitor – Sets up a region to monitor for activity
mwait – Waits until activity happens in a region specified by monitor

SSSE3

• New 32 instructions designed for to accelerate a variety of

multimedia and signal processing applications

– Only 16, for both MMX and XMM

• Integer data types include packed byte, word, or double word

• Operands can be 64 or 128 bit in MMX registers, XMM

registers, or memory

99

SSSE3 Instructions: PHADDD

Horizontal data movement: PHADDD

Horizontal add of packed DW

The second operand may be from memory

SSSE3 Instructions Summary

• 12 for horizontal addition or subtraction operations
– ADDW, ADDD, ADDSW, and three for SUB

• 6 for evaluating absolute values
– PABSB, PABSW, PABSD

• 2 for multiply and add operations
– PMADDUBSW (byte mul, add pairs, and to saturated words)

– Speed up dot products

• 2 for packed-integer multiply operations
– PMULHRSW (Q.15 multiplications, with rounding and scaling)

• 2 for a byte-wise, in-place shuffle
– PSHUFB (similar to PERMUTE)

• 6 instructions negating packed integers in the destination
– B, W, and D version

• 2 for alignment data from the composite of two operands
– PALIGNR (similar to SHIFT PAIR)

SSE4

• SSE4 comprises of two sets of extensions

– SSE4.1 includes 47 new instructions

• Targets media, imaging and 3D graphics

• Adds instructions for improving compiler vectorization

• Significantly increases support for packed dword computation

– SSE4.2 has 7 new instructions

• Improves performance in string and text processing

• Registers

– Two SSE4.2 instructions operate on general-purpose registers

– All other instructions operate on XMM registers

• No MMX registers

101

SSE4.1 Instructions Summary (1)

• Six instructions for conditional copying

– BLENDPS, BLENDPD, BLENDVPS, BLENDVPD

– PBLENDVB, PBLENDW

• Eight instructions expand support for packed integer MIN/MAX

– PMINSB, PMINUW, PMINUD, PMINSD and PMAX versions

• Four instructions for floating-point rounding

– ROUNDPS, ROUNDSS, ROUNDPD, ROUNDSD

– One of the four rounding modes specified by an immediate

• Seven instructions for data insertion and extractions

– INSERTPS, PINSRB, PINSRD/Q

– EXTRACTPS, PEXTRB, PEXTRW, PEXTRD/PEXTRQ

• Twelve instructions converting packed integer format to D

– PMOVSXBW, PMOVZXBW, also BQ, WD, WQ, DQ

– Sign and zero extensions

SSE 4.1 Insructions Summary (2)

• Two instructions perform packed DW multiplications

– PMULDQ, 32-bit to 64-bit, two DW from the source are used

– PMULLD, 32-bit to 32-bit

• Two instructions floating-point dot products

– DPPS, dot product of PS, result in any (one or more) locations

– DPPD, dot product of PD

• MPSADBW – Computes 8 offset sums of absolute differences

• PTEST – Compare two 128 bits values and set ZF and CF flags

• PCMPEQQ – QD equality comparison

• PACKUSDW – Signed DW to unsigned W with saturation

• MOVNTDQA – Move DQ

• PHMINPOSUW – Packed horizontal word minimum

– Value in lower 16 bits and 3-bit index are bits 16 – 18

103

SSE 4.1 BLEND Instructions

• Copy PS of PD from SRC if the control bit is 1

– PS needs four bits while PD needs only two bits

• V versions use XMM0 as control

– Use the MSB

104

SSE4.2 Instructions

• CRC32 – Use the polynomial 0x11EDC6F41

– R32 or R64 mode

• Four string comparison instructions

– PCMPESTRI

– PCMPESTRM

– PCMPISTRI

– PCMPISTRM

• PCMPGTQ – Compare packed QW for greater than

• POPCNT – Population count

• LZCNT – Leading zero count

Other SIMD architectures

• Graphics Processing Unit (GPU): nVidia 7800, 24 pipelines (8

vector/16 fragment)

106

NVidia GeForce 8800, 2006

• Each GeForce 8800 GPU stream processor is a fully generalized,

fully decoupled, scalar, processor that supports IEEE 754

floating point precision.

• Up to 128 stream processors

107

Cell processor

• Cell Processor (IBM/Toshiba/Sony): 1 PPE (Power Processing

Unit) +8 SPEs (Synergistic Processing Unit)

• An SPE is a RISC processor with 128-bit SIMD for

single/double precision instructions, 128 128-bit registers, 256K

local cache

• used in PS3.

108

Cell processor

109

References

• Intel MMX for Multimedia PCs, CACM, Jan. 1997

• Chapter 11 The MMX Instruction Set, The Art of Assembly

• Chap. 9, 10, 11 of IA-32 Intel Architecture Software Developer’s

Manual: Volume 1: Basic Architecture

• http://www.csie.ntu.edu.tw/~r89004/hive/sse/page_1.html

110

http://www.csie.ntu.edu.tw/~r89004/hive/sse/page_1.html

