
Interval hash tree: An eÆcient index structure for searching object

queries in large image databases

T. F. Syeda-Mahmood, P. Raghav an,N. Megiddo

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

stf,raghavan,megiddo@almaden.ibm.com

Abstract

As image databases grow large in size, index structures

for fast navigation become important. In particular, when

the goal is to lo cate obje ct queries in image databases under

changes in pose, occlusions and spurious data, traditional

index structures used in databases become unsuitable. This

paper presents a novel index structur e called the interval

hash tree, for lo cating multi-region obje ct queries in image

databases. The utility of the index structure is demonstrated

for query localization in a large image database.

1. In troduction

As image databases grow large in size, index structures
for fast na vigation become important. In particular, when
the goal is to robustly locate object queries under changes
in imaging conditions, eÆcient index structures are needed
that can consolidate information within and across images
in a compact and eÆciently searc hable form to avoid a lin-
ear searc h of the database. This problem is often recognized
but has not been explicitly addressed. Current approaches
rely on conventional spatial access structures such as R-
trees[4], R�-trees[1], R+-trees[8], SR-trees[5], SS-tree[11],K-
D-B trees[7], etc. For example, R-trees and their varian ts,
assume the object-containing region in the image can be en-
closed by bounding rectangles and focus on eÆcient group-
ing of the enclosing rectangles at successive levels to yield
a balanced search tree that is optimized for disk accesses.
The search for object queries in such index structures in-
volv es �nding all database rectangles that overlap a query
rectangle. Under changes in pose, the bounding rectangles
undergo considerable change including translation, so that
the search using these index structures no longer yields a
match to the query. Moreover, when the object query con-
sists of multiple regions, the spatial layout of regions is
not adequately taken in to account through bounding rect-
angles. Hence traditional index structures are not directly
applicable for the general object localization problem unless
the spatial layout of regions can be modeled.
In this paper, we present a novel geometric index struc-

ture called the interval hash tree for locating multi-region
object queries in image databases. Speci�cally, the interval
hash tree (IHT) is a tw o-w ay interval tree in which the la y-
out of regions in images of a database is represented in an

aÆne-invarian tfashion through aÆne intervals computed
with respect to chosen basis features. Localizing object
queries in volv es represen ting the query aÆne intervals also
as an in terval hash tree, and �nding database intervals that
overlap with the aÆne intervals represented at each node of
the query IHT through careful tree exploration. The over-
all goal of such indexing is to accumulate evidence for the
most common occurrence of basis features.

The interval hash tree has several desirable properties.
First, by representing object layout information using aÆne
intervals rather than bounding rectangles, the localization
is made aÆne-invariant. Secondly, by building suÆcient re-
dundancy in the representation of aÆne intervals, tolerance
to occlusions and background clutter is achieved. Third, us-
ing a balanced binary search tree based on median-based
partitioning of aÆne space, the search for o verlapping inter-
vals for a single query interval is made eÆcient. Finally, by
consolidating the search for query aÆne intervals through
query IHT, repeated exploration of database IHT can be
avoided.

2. Localizing objects through region hash-
ing

To motivate the need for IHT, we briey review the tech-
nique of representing and recognizing objects.

It is well-kno wn that the shape of a 2d object can be de-
scribed in an aÆne-invarian t fashion by recording the aÆne
coordinates of features within object computed with respect
to a triple of basis features chosen as an object-based refer-
ence frame[6]. A simpler yet e�ective way of describing their
relativ e location is by recording the aÆne interval, i.e., the
2d-interval in which aÆne coordinates of features lie w.r.t to
the chosen basis triple. Since such intervals bound the aÆne
coordinates, they are also aÆne-invariant. The uniqueness
of the aÆne intervals is not guaranteed though, since tw o
di�erent distributions of aÆne coordinates could be bound
by the same interval. However, the chance of this can be
minimized if we accumulate evidence from multiple object
region pairs. Thus one way of recognizing or localizing an
object is to hash for, i.e., �nd evidence for as many common
aÆne intervals betw een the query regionpairs and region
pairs in candidate images, in a manner similar to geomet-
ric hashing[6] and is termed region hashing. In practice, to

0-7695-0695-X/00 $10.00 (c) 2000 IEEE

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on July 20, 2009 at 17:59 from IEEE Xplore. Restrictions apply.

accoun t for occlusions and region segmentation errors that
shrink the image aÆne intervals to become a subset of the
corresponding object aÆne intervals, region hashing actu-
ally looks for overlap rather than exact registration of aÆne
intervals.
In summary, to localize a multi-region query object us-

ing region hashing, we represen t the spatial layout of region
pairs on query object as well as images of the database
through aÆne intervals, and look for as many database
aÆne intervals that o verlap with query aÆne intervals. For
each such common interval found, the count of the associ-
ated image basis feature set can be updated. A t the end
of this process, the top hit image basis features and their
associated enclosing image regions can be declared as cor-
responding to query basis feature set and the associated
query region pairs, thus localizing the query object.

3. In terval Hash T rees

From the above formulation, it is clear that the most
computationally intensiv e part of object localization is the
process of determining database intervals that o verlap with
query aÆne intervals. We now present an index structure
called the interval hash tree to address the above problem.
An interval hash tree(IHT) is a t w o-dimensional interval
tree. It extends the concept of 1d interval trees kno wn in
computational geometry [2, 3] to organizing a set of 2d in-
tervals as balanced binary search trees. Speci�cally, it uses
the �rst coordinate of intervals, namely, the x coordinate
and organizes the x-end points of in tervals as a regular in-
terval tree (called x-in terval tree)1 The cen tral branch of
the this tree at each node is modi�ed to be another interval
tree, now on the secondcoordinate, i.e., the y-coordinate
(called a y-interval tree).
T o construct an interval hash tree, aÆne intervals are

sorted based on the �rst coordinate (i.e. the � coordinate).
Let the sorted set of intervals be denoted by I. Let Xmid
be the median end poin tin set I. We split the interval I
into three subsets, namely, Ixleft, Ixright, and Ixmid, to
correspond to the set of intervals whose left and righ t x-
end points are to left of Xmid, to the right of Xmid, and
whose left x-end point is to the left and right x-end points
are to the righ t of Xmid respectiv ely. A bounding rect-
angle for the aÆne coordinates spanned by the set I can
additionally be included for ease of searching at the node.
The interval Ixmid then forms the central branch of a node
of the x-interval tree and the Ixleft and Ixright form left
and right subtrees. Eac h of the left and right subtrees are
recursiv ely constructed in a similar manner by repeatedly
picking their median x-end point and splitting into the three
subsets explained above. The central branc h of each node
of the x-interval tree is similarly organized as a y-interval
tree using the y-end poin tsof the set Ixmid. The corre-
sponding set Lybelow to Ixleft is sorted in increasing order

1For ease of notation w e refer to the coordinates as x and

y coordinates. In the case of aÆne intervals for region hash-

ing, the x-coordinate corresponds to the � coordinate, and the

y-coordinate corresponds to the � coordinate. For other appli-

cations there may be other coordinate interpretations.

while Lyabove is sorted in decreasing order to enable range
searching. Note that unlike in the case of non-leaf nodes of
the x-interval tree, the data associated with aÆne intervals
is listed under the central branch of a node in the y-interval
tree. In the case of region hashing, this data constitutes the
image index,the region index, and the basis triple index,
necessary for query localization.
Figure 1c depicts an interval hash tree for a set of aÆne

intervals. These intervals are obtained by pairing region
marked 1 on the object depicted in Figure 1a w.r.t. to all
other marked regions on the object. The aÆne intervals
themselves are indicated in Figure 1b. Here xlij,xrij stand
for the left and right end points of the aÆne interval of
region j computed w.r.t. a basis triple in region i (in this
case, the middle basis triple on region 1's contour). The
empty branches of the tree are denoted by circles and single
interval branches by the interval itself. Although the lists
Ixmid and Iymid are indicated at the nodes for purpose of
illustration, only the median point Xmid (Ymid) and the
bounding rectangle of the intervals under a tree node are
stored at each node. For a leaf node, this reduces to the
aÆne interval itself.

3.1. Searching In terval hash trees

We now address the problem of searching for all database
intervals that overlap with a given set of query intervals.
The basic idea is to organize the aÆne intervals of the query
also as an interval hash tree, and perform a careful simul-
taneous search of database and query IHT in a way that
maintains the property that a database interval that o ver-
laps more than one query interval is disco vered only once.
To perform this search, we use a version of the IHT con-
struction that retains the bounding box of all aÆne intervals
under a tree node (x or y-tree node) as part of the node in-
formation. Using this additional piece of information and
a pre-order traversal at both the x and y query IHT levels,
nodes of the query IHT are successively searched against the
nodes of the database IHT. If we denote the x and y-interval
trees at the current query node by Vqx and Vqy), then the
order of exploration is Vqx� > fVqy; Lcy(Vqy); Rcy(Vqy)g
followed by Lcx(Vqx) and Rcx(Vqx). For each such ex-
ploration against a database IHT node Vd, w e use the
bounding rectangle range (Qlx;Qrx;Qby;Qay) to deter-
mine which of the subtrees to explore. For example, if
Qlx < Xmid(Vxd) < Qly then matching intervals can be
found in either the y-interval tree under Vxd i.e. Vyd, or the
left and right subtrees Lcx(Vxd) and Rcx(Vd) of Vxd. Specif-
ically , the algorithm uses the range (Qby;Qay), and the
relativ e placement of the median point of query y-interval
tree Ymid(Vqy) w.r.t the median point Ymid(Vyd) of the
database node to decide the order of exploration. For ex-
ample if Qby � Ymid(Vyd) � Qay, and Iymid(V qy) >

Iymid(V yd), then by w alking along Lybelow(V qy) and
lyabove(Vyd) from their top-most end point, we can report
all database intervals that contain the current query end
point.

2

0-7695-0695-X/00 $10.00 (c) 2000 IEEE

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on July 20, 2009 at 17:59 from IEEE Xplore. Restrictions apply.

−20 −15 −10 −5 0 5
−25

−20

−15

−10

−5

0

5

alpha

b
e

ta

affine intervals for region pairs (1 1 magenta) (1 2 red) (1 3 green) (1 4 blue) (1 5 cyan)

Figure 1: Illustration of aÆne in tervalsand their corresponding interval hash tree. (a) regions on an example
object (b) The aÆne intervals of the spatial layout of all regions w.r.t. region 1 using the middle basis triple from
those on the boundary curve of region 1. (c) In terval hash tree for the aÆne intervals in (b).

Figure 2: Illustration of IHT search using a set of query aÆne intervals. (a) The aÆne intervals of database shown
in red. AÆne intervals of a sample query object are shown in blue. The orthogonal projections used to form the
query interval hash tree are labeled. (b) The interval hash tree of the query in (a). The database IHT in this
example is the one shown in �gure 1c.

S.No. Query regions Query intervals P ercentage database touched
aÆne intervals IHT nodes Images

1. 5 200 14.5 12.3 2.3
2. 6 144 13.9 23.4 4.3
3. 4 64 13.3 15.2 1.2
4. 9 324 25.4 34.5 5.7
5. 7 196 17.9 16.3 9.8
6. 10 400 27.4 44.2 15.4

Table 1: Illustration of e�ectiveness of indexing using IHT. The complexity of the query is indicated by the number
of query regions. Here four basis features per query region were used to generate the query aÆne intervals. The
fraction of the database touched is shown in terms of aÆne intervals touched, the IHT nodes actually visited and
the images indexed.

3

0-7695-0695-X/00 $10.00 (c) 2000 IEEE

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on July 20, 2009 at 17:59 from IEEE Xplore. Restrictions apply.

In addition, we can report,without further searc h, this
overlap to hold for all query intervals inVxq whose bottom-
end points are belo w the curren t query end poin t. This
critical step avoids the repetitious search for multiple query

intervals.

We illustrate IHT search through an example in Figure 2.
The database IHT is shown in Figure 1c. The correspond-
ing aÆne intervals are redra wn in red in Figure 2a. For
searching in this tree, we select a query whose aÆne inter-
vals are as shown in Figure 2a colored in blue. The corre-
sponding query IHT is shown in Figure 2b. A node number
is assignedto eac h node in the tw o trees to illustrate the
order of navigation. The order in which nodes will be exam-
ined and the overlap disco vered is sho wn in Figure 2c.We
encourage the reader to walk through this example using
the algorithm to con�rm the result. Note that the left or
the righ t subtree branches are left out during some recur-
sive traversals (eg. (q2,v7) (q2,v6) but not (q2,v5)). Also
note that the overlap of region-pair (pt,14) is automatically
deriv ed from the overlap of region pair (ps,14) without ex-
plicit search. Note also that all overlapping intervals are
found by this process.

3.2 Region hashing using IHT

Since the purpose of designing the IHT was to demonstrate
its use for query localization, w e evaluated the indexing
performance of IHT for use in region hashing. The exper-
iments were conducted on a database of images assembled
from multiple sources. These include: the MPEG-7 test
data set (4000 images), the HIPS dataset from University
of Michigan (200 images), the COREL database (500 im-
ages), the Kodak PhotoCD database (500 images), and a
home-brewed dataset (400 images) assembled for 2d and
3d objects depicted in the presence of occlusion and clutter
under indoor orescent and tungsten light sources. Some of
the database images were obtained by placing objects from
one collection (eg. HIPS collection) in di�erent settings to
generate images. Eac h of the images of the database, and
the query objects underwent similar image processing and
feature extraction to generate the aÆne intervals needed
for IHT. Speci�cally, regions in images of the database and
queries were extracted using color information. We adopted
an approach based on surface color classes to detect and
recognize color regions as described in[10, 9]. Next, images
are processed using an edge detector to form curves, which
are segmented at zero crossings to generate corner features.
The enclosing region information is associated with the cor-
ners. T riples of adjacent corner features are used to form
basis sets (using both directions of curv e ordering). For
each distinct pair of regions on the object, aÆne coordi-
nates of corner features on curves on the boundaries of one
region are computed w.r.t each basis triple on the other re-
gion. The aÆne intervals are used to construct a database
IHT. Similar processing is done on the query features to
generate a query IHT. Each node of the query IHT w as
used to search for overlapping intervals in the database IHT
as indicated in Section . A histogram of the indexed basis

triples is tak en and the maxima noted. The basis triples,
and their associated images corresponding to the peaks of
the basis histogram are taken as potential locations where
the query object is present.

4. Results

We now report on the indexing performanceof IHT in
comparison with region hashing without an index structure.
First, we show that the use of index structure results in a
small fraction of the database being examined as compared
to linear search. Next, w e show that the indexing time
performance is not signi�cantly impacted by paging issues
because the size of overall structure for most database sizes,
is small enough to �t in main memory.

E�ect of indexing using IHT

To evaluate the e�ect of indexing, we searched for a total
of 200 object queries against the 5600 image database and
noted the fraction of the database touched by indexing. The
fraction of database touched was noted using three param-
eters, namely, the percentage of aÆne intervals that were
found to overlap, the percentage of IHT nodes touched, and
the percentage of images indexed. The result for a few sam-
ple queries is listed in Table 1. Here the query complexity
is indicated by its number of regions. Also, four basis fea-
tures were used to generate the query aÆne intervals. As
can be seen from Column 6 of this table, only a small frac-
tion of the images are touched as against linear search that
w ould examine all the images for possible matches. Also,
from Column 4, w e notice that the fraction of aÆne in-
tervals touched though larger than the number of images
touched, is still small indicating that only a small number
of image locations are examined as potential candidates for
containing the query object. Finally, the number of IHT
nodes visited remains less than 50% indicating the worst-
case searc h scenario in IHT is rarely reached.

E�ect of indexing on precision and recall

Since fewer database images are touched one can expect
that the precision using IHT indexing would be higher.
False positives may still be present among the indexed im-
ages since the discovery of o verlapping aÆne intervals does
not guarantee the evidence for an object. As for recall,
w e note that since all overlapping database intervals are
found during search, there should be no false negatives in
theory . In practice, how ever, depending on the manner
in which aÆne intervals are computed (using one or more
basis triples per region pair), the database aÆne intervals
may not come up as a match to query aÆne intervals if
there are no corresponding basis features. False negatives
are also possible since the region hashing technique ranks
the indexed images w.r.t their relevance to the query, and
can prune the matches returned by indexing. To evaluate
the e�ect of IHT indexing on the precision and recall of

4

0-7695-0695-X/00 $10.00 (c) 2000 IEEE

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on July 20, 2009 at 17:59 from IEEE Xplore. Restrictions apply.

Query Query Occurrences Occurences
in top 20 pairs

1. 17 14
2. 8 5
3. 11 7
4. 16 10
5. 13 9
6. 2 2

Table 2: Illustration of precision and recall using IHT
in region hashing.

Database size Avg. # regions aÆne intervals IHT nodes

100 13.6 21496 1849
500 17.8 88420 6752
1000 19.56 362454 9122
2000 24.3 980980 12239
5600 26.5 3932600 48315

Table 3: Illustration of storage size of IHT.

region hashing, we noted the number of query occurrences
in the database for each query tested. We also recorded
the n umber of indexed occurrences using IHT in the top 20
matches declared. The result for a few sample queries is
indicated in Table 2. As can be seen, the use of IHT does
not adversely a�ect the precision and recall performance of
region hashing.

Storage performance

T o estimate the amount of storage used by the index
structure, we gradually increased the size of our database
from 100 images onw ards until the entire 5600 image
database w as populated in the IHT. The result is shown
in Table 3. As can be seen, the number of aÆne intervals
grows quadratically with the number of regions in images,
and linearly with the number of images. The number of IHT
nodes remains a few Mbytes, a size small enough to avoid
excessive paging problems relating to I/O. As database size
becomes increasingly larger, how ever, w e expect it to face
paging problems.

Indexing time performance

Even though fewer images are indexed using IHT, this
w ould not be an adv an tageunless the actual time per-
formance of IHT indexing w as good as w ell. As men-
tioned above, the size of the interval hash tree for even the
large collection of images we tested was a few megabytes,
making it possible to index images without any paging-
related I/O problems. The average indexing time using a
C/C++ implementation on a Windows NT platform (200
Mhz CPU and 250Mbytes paging size) involv ed processing
of the query features which was about 0.5 second, followed
by the retrieval which was about 1.2 seconds.

5. Conclusions

In this paper we have presented a novel index structure
called the interval hash tree for localizing 2d object queries
in image databases. We ha ve shown by using this index
structure, objects can be localized under changes in pose,
occlusions and in the presence of scene clutter. We have
shown that the number of images that are searched is dra-
matically reduced by the use of interval hash trees.

References

[1] N. Beckmann et al. The r�-tree: An eÆcient and ro-
bust access method for points and rectangles. In Proc.

ACM SIGMOD, pages 322{331, 1990.

[2] T.H. Cormen, C.E. Lieserson, and R.L. Rivest. In-

troduction to A lgorithms. New York: McGraw Hill,
Cambridge: MIT Press, 1990.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzk opf. Computational Geometry. Berlin:
Springer Verlag, 1997.

[4] A. Guttman. R-trees: A dynamic index structure for
spatial searc hing.In Proc. ACM SIGMOD, pages 47{
57, 1984.

[5] N. Katayama and S. Satoh. The sr tree: An in-
dex structure for high-dimensional nearest neighbor
queries. In Proc. ACM SIGMOD, pages 369{380, 1997.

[6] Y. Lamdan and H.J. Wolfson. Geometric hashing: A
general and eÆcient model-based recognition scheme.
In Pr oceedings of the International Conference on

Computer Vision, pages 218{249, 1988.

[7] J.T. Robinson. The k-d-b-tree: A search structure
for large multidimensional dynamic indexes. In Pr oc.

ACM SIGMOD, pages 10{18, 1981.

[8] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
r+ -tree: A dynamic index for multi-dimensional ob-
jects. In Pr oceedings of Conf. on Very Large Databases,
pages 507{518, 1987.

[9] T. Syeda-Mahmood. Indexing of topics using foils. In
IEEE Conf. on Computer Vision and Pattern R ecog-

nition, 2000.

[10] T.F. Syeda-Mahmood and Y-Q. Cheng. Indexing col-
ored surfaces in images. In Proceedings Int. Conf. on

Pattern Recognition, 1996.

[11] D.A. White and R. Jain. Similarity indexing with the
ss-tree. In Proc. 12th Intl. Conf. on Data Engineering,
pages 516{523, 1996.

5

0-7695-0695-X/00 $10.00 (c) 2000 IEEE

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on July 20, 2009 at 17:59 from IEEE Xplore. Restrictions apply.

