
Introduction to dpdk
Network Platforms Group – September 2015

Network Platforms Group

Legal Disclaimer

Technology Disclaimer:

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Performance varies depending on system configuration. No
computer system can be absolutely secure. Check with your system manufacturer or retailer or learn
more at [intel.com].

Performance Disclaimers (include only the relevant ones):

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in
the specified circumstances and configurations, may affect future costs and provide cost savings.
Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or
modeling, and provided to you for informational purposes. Any differences in your system hardware,
software or configuration may affect your actual performance.

General Disclaimer:

© Copyright 2015 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, the Intel Inside
logo, Intel. Experience What’s Inside are trademarks of Intel. Corporation in the U.S. and/or other
countries. *Other names and brands may be claimed as the property of others.

2

Network Platforms Group

Overview of DPDK

• Why DPDK – PMD vs Linux interrupt driver, memory config, user space.

• Licensing

• Packet processing concepts

• DPDK component libraries

• Memory IA – NUMA, Caching, huge pages, TLBs on IA

• Memory DPDK – mem pools, buffers, allocation etc.

Topics

Network Platforms Group

Data Plane Development Kit (DPDK)

• Big Idea

Software solution for accelerating Packet Processing workloads on IA.

• Deployment Models • Performance

• Commercial Support

• Delivers 25X performance jump over Linux • Free, Open Source, BSD License

• Comprehensive Virtualization support • Enjoys vibrant community support

Concepts Code Commercial

1.1

28.5

0

10

20

30

Linux Intel® DPDK

P
e

r
C

o
re

 L
3

P
e

rf
o

rm
a

n
ce

(M
p

p
s)

Platform

Disclaimer: Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products.

Network Platforms Group

5

Where is DPDK today?

Free, Open-sourced, community driven, BSD
Licensed
• Git: http://dpdk.org/git/dpdk

Multiple CPU architectures supported (on dpdk.org)
• Intel x86_64, ia32, Power 7/8, Tilera (EZChip)

Multiple vendor NICs supported in open source
• R2.1: Intel, Cisco (VIC), Mellanox, Broadcom (Qlogic), Chelsio
• R2.2: +NetFPGA, +others

Multiple OS Distributions

Multiple virtualized environments
• KVM, VMware, Xen

Some closed source drivers/ports

Virtual
Router

Virtual
VPN

Virtual
Firewall

NFV and SDN Infrastructure

NIC
Silicon

Switch
Silicon

Chipset &
Acceleration

x86
CPU

Linux

http://dpdk.org/git/dpdk

Network Platforms Group

dpdk.org

 Multiple maintainers and patch policy established

 Lack of community support for TSC or moving to
a Linux Foundation project

1.53M lines of code - 128 contributors

 Test framework and test cases expediting
quality of patches and automated daily
regression testing

DPDK Community

0

20

40

60

80

100

0

200

400

600

800

1000

1.5 1.6 1.7 1.8 2.0 2.1

DPDK Release Stats

Total Contributors Non-Intel/6Wind Contributors

Total Commits

Network Platforms Group

• DPDK is BSD licensed:

• http://opensource.org/licenses/BSD-3-Clause

• User is free to modify, copy and re-use code

• No need to provide source code in derived software (unlike GPL license)

Licensing

http://opensource.org/licenses/BSD-3-Clause

Network Platforms Group

• DPDK was officially launched on Sep 17, 2010 under the most liberal BSD
open source license.

• Since April 2013, DPDK is available at www.dpdk.org as a fully independent,
open source community.

• Many silicon suppliers have independently built and publically announced
support for DPDK, such as Tilera, Netronome, Cavium and Xilinx.

• DPDK now available on Red Hat Enterprise Linux Extras channel

DPDK: a full open source community effort

http://www.dpdk.org/

Network Platforms Group

Data Plane Development Kit

• Libraries for network application development
on Intel Platforms

• Speeds up networking functions

• Enables user space application development

• Facilitates both run-to-completion and pipeline
models

• Free, Open-sourced, BSD Licensed

• http://www.intel.com/go/dpdk

• Git: http://dpdk.org/git/dpdk

• Scales from Intel Atom to multi-socket Intel
Xeon architecture platforms

• About 30 pre-built example applications

EAL

MALLOC

MBUF

MEMPOO
L

RING

TIMER

Core
Libraries

KNI

POWER

IVSHMEM

Platform

LPM

EXACT
MATCH

ACL

Classify

E1000

IXGBE

VMXNET3

IGB

i40e

VIRTIO

Packet Access
(PMD – Native & Virtual)

ETHDEV

XENVIRT

PCAP

RING

METER

SCHED

QoS

DPDK Sample
Applications

Linux Kernel

User Space

KNI IGB_UIO

Customer Applications
ISV Eco-System

Applications

3rd Party
NIC

http://www.intel.com/go/dpdk
http://dpdk.org/git/dpdk

Network Platforms Group

Build with DPDK
Provided Sample Applications

Test PMD

CLI

Core
Cmpnts

L2 Fwd

IPv4 Re-
assmbly

IPv4
M’Cast

IPv4 Frag

Link
Status

QAT

VM Pwr
Mgmt

Linux
Excptn

Path

Multi-
Process

Load
Balancing

Quota &
W’marks

QoS
Metering

QoS
Schdling

Green L3
Fwd

Virt L3
Fwd

Packet
Distri-
butor

IPv4 L3
Fwd

KNI

VLAN-
based

Filtering

VHost

Timer

DPDK

• Over 30 pre-built sample
applications

• Provide a great jump start
for accelerating
workloads with DPDK

IP
Pipeline

Network Platforms Group

Intel Packet Processing Concepts

• DPDK is designed for high-speed packet processing on IA. This is achieved by optimizing the software libraries to IA with some of the following concepts
• Huge Pages Cache alignment Ptheads with Affinity
• Prefetching New Instructions NUMA
• Intel® DDIO Memory Interleave Memory Channel

• Intel® Data Direct I/O Technology (Intel® DDIO)

– Enabled by default in all Intel® Xeon® processor E5-based platforms

– Enables PCIe adapters to route I/O traffic directly to L3 cache, reducing unnecessary trips to system memory, providing more than double the throughput of previous-generation servers, while
further reducing power consumption and I/O latency.

• Pthreads

– On startup of the DPDK specifies the cores to be used via the Pthread call with affinity to tie an application to a core. Reducing the kernel’s ability of moving the application to another local or
remote core affecting performance.

– The user may still use Ptheads or Fork calls after the DPDK has started to allow threads to float or multiple thread to be tied to a single core.

• NUMA

– DPDK utilizes NUMA memory for allocation of resources to improve performance for processing and PCIe I/O local to a processor.

– With out the NUMA set in a dual socket system memory is interleaved between the two sockets.

 Huge Pages

– DPDK utilizes 2M and 1G hugepages to reduce the case of TLB misses which can significantly affect a cores overall performance.

• Cache Alignment

– Better performance by aligning structures on 64 Byte cache lines.

• Software Prefetching

– needs to be issued “appropriately” ahead of time to be effective. Too early could cause eviction before use

– Allows cache to be populated before data is accessed

• Memory channel use

– Memory pools add padding to objects to ensure even use of memory channels

– Number of channels specified at application start up

Network Platforms Group

The libraries/components (1)

Library

librte_eal Environment Abstraction Layer. Meant to hide system/OS specifics from
“common” upper layers

librte_malloc rte_malloc() - replacement for malloc(). Allows allocation of data structures
backed by huge pages

librte_mempool
librte_mbuf

Memory management: DPDK buffer pool management and packet buffer
implementations

librte_ring High speed ring for inter-core/process pointer passing

librte_timer Timer routines

librte_lpm Accelerated longest prefix match

librte_hash Hash driven key-value exact match for tuple matching

librte_acl Accelerated implementation of an Access Control List

Network Platforms Group

The libraries/components (2)

Library

librte_meter Meter/mark library: Implements srTCM (RFC 2697) and trTCM RFC 2698)

librte_sched Hierarchical traffic shaper in software

librte_pmd* Packet Access “Poll” mode drivers

librte_ether Generic Ethernet device abstraction – the DPDK PMD API

librte_cmdline Command line parser library

librte_distributor A work queue distributor

librte_power Power management primitives

librte_ivshmem Shared memory implementation for inter-VM communication

KNI, librte_kni Kernel Network Interface – implements a kernel netdev for passing packets into
the kernel from DPDK

Network Platforms Group

Relationship of DPDK Libraries

Network Platforms Group

The Buffer manager allocates memory from the
EAL and creates pools with fixed element sizes

 Typical usage is packet buffers, descriptor ring buffers
etc.

 Intent is to speed up runtime allocation/deallocation

 Does not support runtime resizing of pools

Handles striping of buffers across a contiguous
memory space

 Required to make sure we balance incoming packet load
across all available memory channels

Optimized for performance

 Cache alignment/page alignment

 Per core buffer caches for each buffer pool so that can
allocate/deallocate without locks

 Bulk allocation/deallocation support

Memory Pool
Pkt Buffers

(60K 2K buffers)
Events

(2K 100B buffers)
Events

(2K 100B buffers)

Processor 0

10G

DPDK

C4

Data
Plane

DPDK

C3

Data
Plane

DPDK

C2

Data
Plane

DPDK

C1

Data
Plane

10G

Rings
for

Cached
buffers

The Buffer Management API
(librte_mempool)

Network Platforms Group

Concept is similar to Linux SKB or BSD mbuf

 Used to manage packet + metadata associated with the packet

 mbufs can be chained to provide a larger virtual buffer to
transmit/receive jumbo packets

Optimized for performance

 Alignment, and structure of elements is taken care of

 Immediately precedes the packet buffer

Will have macros/functions that allow operations

 To insert data at head or tail (pull/push)

 Chain manipulation etc.

Packet Buffer Management Structure
(librte_mbuf)

Network Platforms Group

Queue/Ring Management API
(librte_ring)

Effectively a FIFO implementation in software

 Lockless implementations for single or multi-producer, single consumer enqueue/dequeue

 Supports bulk enqueue/dequeue to support packet-bunching

 Implements high & low water mark thresholds for backpresssure/flow control

Essential to optimizing for throughput

 Used to decouple stages of a pipeline (example later in slide-deck)

Network Platforms Group

DPDK Feature List

• Supported Operating Systems
 Fedora release Ubuntu*
 Wind River* Linux* Red Hat* Enterprise Linux
 SUSE Enterprise Linux*

• Core components
 rte_mempool: allocator for fixed-sized objects
 rte_ring: single- or multi- consumer/producer queue

implementation
 rte_timer: implementation of timers
 rte_malloc: malloc-like allocator
 rte_mbuf: network packet buffers, including

fragmented buffers
 rte_hash: support for exact-match flow classification in

software
 rte_lpm: support for longest prefix match in software

for IPv4 and IPv6
 rte_sched: support for QoS scheduling
 rte_meter: support for QoS traffic metering
 rte_power: support for power management

• Environment Abstraction Layer (librte_eal)
 Multi-process support
 Multi-thread support
 1 Gbyte and 2 Mbyte page support
 Atomic integer operations
 Querying CPU support of specific features
 High Precision Event Timer support (HPET)
 PCI device enumeration and blacklisting
 Spin locks and R/W locks

• Poll Mode Driver - Common (rte_ether)
 VLAN support
 Support for Receive Side Scaling (RSS)
 IEEE1588
 Buffer chaining; Jumbo frames
 TX checksum calculation
 Configuration of promiscuous mode, and multicast

packet receive filtering
 L2 Mac address filtering
 Statistics recording

• Poll Mode Driver - 1 GbE Controllers (librte_pmd_e1000)
support for

 Intel® 82576 Gigabit Ethernet Controller (previously
code named “Kawela”)

 Intel® 82580 Gigabit Ethernet Controller (previously
code named “Barton Hills”)

 Intel® I350 Gigabit Ethernet Controller (previously code
named “Powerville”)

 Intel® 82574L Gigabit Ethernet Controller - Intel®
Gigabit CT

 Desktop Adapter (previously code named “Hartwell”)
 Intel® Ethernet Controller I210 (previously code named

“Springville”)

Network Platforms Group

DPDK Feature List Continued…

• Poll Mode Driver - 10 GbE Controllers
(librte_pmd_ixgbe) support for

 Intel® 82599 10 Gigabit Ethernet Controller (previously
code named “Niantic”)

 Intel® Ethernet Server Adapter X520-T2 (previously
code named “Iron Pond”)

 Intel® Ethernet Controller X540-T2 (previously code
named “Twin Pond”)

 Virtual Machine Device Queues (VMDq) and Data
Center Bridging (DCB) to divide incoming traffic into
128 RX queues. DCB is also supported for transmitting
packets.

 auto negotiation down to 1 Gb
 Flow Director

• Quality of Service (QoS)
 Hierarchical scheduler implementing 5-level

scheduling hierarchy (port, subport, pipe, traffic class,
queue) with 64K leaf nodes (packet queues).

 Packet dropper based on Random Early Detection
(RED) congestion control mechanism.

 Traffic Metering based on Single Rate Three Color
Marker (srTCM) and Two Rate Three Color Marker
(trTCM).

 Quality of Service (QoS) Hierarchical Scheduler:
Subport Traffic Class Oversubscription

• Virtualization (KVM)
 Para-virtualization supports

• virtio front-end poll mode driver in guest virtual machine
• vHost raw socket interface as virtio back-end via KNI

 SR-IOV Switching for the 10G Ethernet Controller supports
• Support Physical Function to start/stop Virtual Function

Traffic
• Support Traffic Mirroring (Pool, VLAN, Uplink and

Downlink)
• Support VF multiple MAC addresses (Exact/Hash match),

VLAN filtering
• Support VF receive mode configuration

• Miscellaneous
 New libpcap-based poll-mode driver, including support for

reading from 3rd Party NICs using Linux kernel drivers
 Support for building the DPDK as a shared library
 Support for multiple instances of the DPDK
 Multi-thread Kernel NIC Interface (KNI) for interaction with

kernel

Network Platforms Group

Processor 0
Physical
Core 0
Linux* Control Plane

NUMA
Pool Caches
Queue/Rings
Buffers

10 GbE

10 GbE

Physical
Core 1
DPDK

PMD Packet I/O
Packet work

Rx
Tx

Physical
Core 2
DPDK

PMD Packet I/O
Flow work

Rx
Tx

Physical
Core 3
DPDK

PMD Packet I/O
Flow
Classification
App A, B, C

Rx
Tx

Physical
Core 5
DPDK

PMD Packet I/O
Flow Classification
App A, B, C

Rx
Tx

Run to Completion model
• I/O and Application workload can be handled on a single core
• I/O can be scaled over multiple cores

PCIe* connectivity and core usage
Using run-to-completion or pipeline software models

10 GbE

Pipeline model
• I/O application disperses packets to other cores
• Application work performed on other cores

Processor 1

Physical
Core 4
DPDK

10 GbE

Physical
Core 5
DPDK

Physical
Core 0
DPDK

PMD Packet I/O
Hash

Physical
Core 1
DPDK

App
A

App
B

App
C

Physical
Core 2
DPDK

App
A

App
B

App
C

Physical
Core 3
DPDK

Rx
Tx

10 GbE

Pkt Pkt

Physical
Core 4
DPDK

PMD Packet I/O
Flow Classification
App A, B, C

Rx
Tx

Pkt Pkt

Pkt Pkt

Pkt

Pkt

RSS
Mode

QPI

P
C

Ie
P

C
Ie

P
C

Ie
P

C
Ie

P
C

Ie
P

C
Ie

NUMA
Pool Caches
Queue/Rings
Buffers

Look at more I/O on
fewer cores with
vectorization

Network Platforms Group

Applications will generally employ both models

Technical questions to consider:

 How many cycles/packet do I need for my algorithms?

 Are there large data structures that need to be shared
with read/write access across packets?

 Will I support timer / packet ordering functions?

 Can I take advantage of a specific optimization
if you restrict an algorithm to one core?

 How much data would I need to exchange between
software modules?

When to Choose Run-to-Completion vs. Pipeline

Network Platforms Group

General architecture questions to consider:

 Do some cores have easier/faster access to a hw resource?

 Do you want to view cores as offload engines?

Development environment questions to consider:

 Do you need to employ legacy software modules?

 Does ease-of-code-maintenance trump performance?

More Run-to-Completion vs. Pipeline…

NUMA
Non Uniform Memory Access

Network Platforms Group

Non-Uniform Memory Access (NUMA)

FSB architecture (legacy)

 All memory in one location

Starting with Intel® Core™ microarchitecture (Nehalem)

 Memory located in multiple places

Latency to memory dependent on location

Local memory

 Highest BW

 Lowest latency

Remote Memory

 Higher latency

IVB
EP

IVB
EP

Ensure software is NUMA-optimized for best performance

PCH

l

Network Platforms Group

NIC

PCH

Core 0

I$ D$

Core 1

I$ D$

L2 Cache

Core 2

I$ D$

Core 3

I$ D$

L2 Cache

rx_queue 0
rx_queue 1

rx_queue 3

hash = (tcp->th_sport) ^
(tcp->th_dport) ^
(ip->ip_src.s_addr) ^
(ip->ip_dst.s_addr);

hash = hash % PRIME_NUMBER;
return lookup_table[hash];

DCA

Memory

Memory

Memory

Memory

Memory

Memory

rx_queue 2

PTU Metrics
• MEM_UNCORE_RETIRED.REMOTE_DRAM

• MEM_INSTRUCTIONS_RETIRED.LATENCY_ABOVE_THRESHOLD

DMI

PCIe

QPI

NUMA Considerations for Data Structure Allocation

Caching on Intel Architecture

Network Platforms Group

Caching on IA

• IA Processors have cache integrated on processor die.

• Fast access SRAM

• Code & data from system memory (DRAM) stored in fast access cache
memory

• Without a cache – CPU runs out of instructions from system memory

• CPU Core “stalls” – waiting for data

• Cache miss (data not in cache)

• CPU needs to get data from system memory

• Cache populated with required data

• Not just the data required, but a block of info is copied

• “Cache line” – 64 Bytes on IA (IVB, HSW etc.)

• Cache hit – data present in cache

Network Platforms Group

Caching on IA

•What can be cached?

• Only DRAM can be cached

• IO, MMIO never cached

•L1 cache is smallest, and fastest.

•L1 Code cache is read-only

•Address residing in L1/L2 must be present in L3 cache – “inclusive cache”

Network Platforms Group

•TLBs – Translation Lookaside Buffers – 2 types

• Instruction TLB

• Data TLB

•TLB is cache – maps virtual memory to physical memory

• When memory requested by application, OS maps virtual address from
process to physical address in memory

• Mapping of virtual to physical memory – Page Table Entry (PTE)

• TLB is a cache for the Page Table

• If data is found in TLB during address lookup

• TLB hit

• Otherwise – TLB miss (page walk) - performance hit

• Huge pages (Linux) – can alleviate

Translation Lookaside Buffers (TLBs)

Network Platforms Group

Translation Lookaside Buffers (TLBs)

• TLBs are a cache for page tables

• If memory address lookup is not in TLB -> TLB miss

• We must then “walk the page tables”

• This is slow, and costly

• We need to minimise TLB misses

• Solution is to use huge pages

• Use 2M or 1G huge pages instead of default 4k pages

Huge pages

Network Platforms Group

• All memory addresses virtual

 Memory appears contiguous to applications, even if physically
fragmented

• Map virtual address to physical address

 Use page tables to translate virtual address to physical address

 Default page size in Linux on IA is 4kb.

 4 layers of page tables

Huge Pages

Network Platforms Group

1

2

Why Hugepages?

DTLB:
• 4K pages 64 entries, maps 256 KB, so to access 16G of memory 32MB of PTE tables read by CPU
• 2M pages 32 entries, maps 64 MB, so to access 16G of memory 64Kb of PDE tables read by CPU, fits into CPU cache

One 2MB page = 512 of 4KB pages,
512 less page cross penalties

Four memory accesses to get
to the page data

Three memory accesses to get
to the page data

TLB maps page numbers to page frames. Each TLB miss requires page walk.

Network Platforms Group

• Use Linux hugepage support through “hugetlbfs” filesystem

• Each page is 2MB in size equivalent to 512 4KB pages

• Each page requires only 1 DTLB entry

• Reduce DTLB misses, and therefore page walks

• Gives improved performance

• Need to enable & allocate huge pages with Linux boot command (in GRUB
file)

 Better to enable at boot time – prevents fragmentation in physical
memory

Huge Pages

Memory Configuration
DPDK

Network Platforms Group

• For DPDK application – allocated all memory from huge pages

• Allocate all memory at initialisation time (not during run time).

• Pools of buffers created.

 Buffers taken from pools as needed for packet processing

 Returned to pool after use

 Never need to use “malloc” at runtime.

 DPDK takes care of aligning memory to cache lines

Memory allocation

Network Platforms Group

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Memory Segment 0 Memory Segment 1 Memory Segment N

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Physically

contiguous memory

Physically
contiguous memory

Memory
Zone:

RG_RX_RING_0 Memory Zone: MP_mbuf_pool

Memory
Zone:

RG_TX_RING_0

Ring:
RX_RING_0

Ring:
TX_RING_0

Memory Pool: mbuf_pool

Memory Zone:
MALLOC_HEAP0

Malloc heap

Memory Object Hierarchy

Network Platforms Group

Hugepages

• Use Linux hugepage support through “hugetlbfs” filesystem

• Each page is 2MB in size equivalent to 512 4KB pages

• Each page requires only 1 DTLB entry

• Reduce DTLB misses, and therefore page walks

• Gives improved performance

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Memory Segment 0 Memory Segment 1 Memory Segment N

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Physically

contiguous memory

Physically
contiguous memory

Memory
Zone:

RG_RX_RING_0

Memory Zone: MP_mbuf_pool
Memory

Zone:
RG_TX_RING_0

Ring:
RX_RING_0

Ring:
TX_RING_0

Memory Pool: mbuf_pool

Memory
Zone:

MALLOC_HEAP
0

Malloc heap

Network Platforms Group

Memory Segments

• Internal unit for memory management is the memory segment

• Always backed by Huge Page (2 MB/1 GB page) memory

• Each segment is contiguous in physical and virtual memory

• Broken out into smaller memory zones for individual objects

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Memory Segment 0 Memory Segment 1 Memory Segment N

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Physically

contiguous memory

Physically
contiguous memory

Memory
Zone:

RG_RX_RING_0

Memory Zone: MP_mbuf_pool
Memory

Zone:
RG_TX_RING_0

Ring:
RX_RING_0

Ring:
TX_RING_0

Memory Pool: mbuf_pool

Memory
Zone:

MALLOC_HEAP
0

Malloc heap

Network Platforms Group

Memory Zones

• Most basic unit of memory allocation – named block of memory

• Allocate-only, cannot free

• Cannot span a segment boundary – contiguous memory

• Physical address of allocated block available to caller

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Memory Segment 0 Memory Segment 1 Memory Segment N

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Physically

contiguous memory

Physically
contiguous memory

Memory
Zone:

RG_RX_RING_0

Memory Zone: MP_mbuf_pool

Memory
Zone:

RG_TX_RING_0

Ring:
RX_RING_0

Ring:
TX_RING_0

Memory Pool: mbuf_pool

Memory Zone:
MALLOC_HEAP0

Malloc heap

Network Platforms Group

Malloc support – rte_malloc/rte_free

• Malloc library provided to allow easier application porting

• Backed by one or more memzones

• Uses hugepage memory, but supports memory freeing

• Not lock-free – avoid in data path

• Physical address information not available per-allocation

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Memory Segment 0 Memory Segment 1 Memory Segment N

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Physically

contiguous memory

Physically
contiguous memory

Memory
Zone:

RG_RX_RING_0

Memory Zone: MP_mbuf_pool
Memory

Zone:
RG_TX_RING_0

Ring:
RX_RING_0

Ring:
TX_RING_0

Memory Pool: mbuf_pool

Memory
Zone:

MALLOC_HEAP
0

Malloc heap

Network Platforms Group

Memory Pools

• Pool of fixed-size buffers

• One pool can be safely shared among many threads

• Lock-free allocation and freeing of buffers to/from pool

• Designed for fast-path use

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Memory Segment 0 Memory Segment 1 Memory Segment N

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

2MB
page

Physically

contiguous memory
Physically
contiguous memory

Memory
Zone:

RG_RX_RING_0

Memory Zone: MP_mbuf_pool
Memory

Zone:
RG_TX_RING_0

Ring:
RX_RING_0

Ring:
TX_RING_0

Memory Pool: mbuf_pool

Memory
Zone:

MALLOC_HEAP
0

Malloc heap

Network Platforms Group

Memory Pools (continued)

Memory Pool
Pkt Buffers
(60K 2K
buffers)

Events
(2K 100B
buffers)

Events
(2K 100B
buffers)

Processor 0

10G

DPDK

C4

Data
Plane

DPDK

C3

Data
Plane

DPDK

C2

Data
Plane

DPDK

C1

Data
Plane

10G

Per-core
cached
buffers

• Size fixed at creation time:
• Fixed size elements
• Fixed number of elements

• Multi-producer / multi-consumer safe

• Safe for fast-path use

• Typical usage is packet buffers

• Optimized for performance:
• No locking, use CAS instructions
• All objects cache aligned
• Per core caches to minimise contention / use

of CAS instructions
• Support for bulk allocation / freeing of buffers

Network Platforms Group

• rte_eal_init()

 Initialises Environment Abstraction Layer

 Takes care of allocating memory from huge pages

• rte_mempool_create()

 Create pool of message buffers (mbufs)

 This pool is used to hold packet data

 mbufs taken from and returned to this pool

Memory allocation

Network Platforms Group

Memory Buffer - mbuf

Memory buffer structure used throughout DPDK

Header holds meta-data about packet and buffer

 Buffer & packet length

 Buffer physical address

 RSS hash or flow director filter information

 Offload flags

Body holds packet data plus room for additional headers and footers.

Network Platforms Group

Memory Buffer – chained mbuf

Mbufs generally used with memory pools

Size of mbuf fixed when the mempool is created

For packets too big for a single mbuf, the mbufs can be linked together in an
“mbuf chain”

Network Platforms Group

DPDK version 2.1 currently available on www.dpdk.org

Some of the new Features in 2.1:

Watch out for:

• DPDK 2.2 Coming November 2015

• Further BrightTalks in this series on DPDK

• DPDK Userspace 2015 Summit – Dublin, Ireland – October 8-9th 2015

DPDK Versions

 Cuckoo Hash + Updated Jhash.
 IEEE1588 Support
 PCI Hot Plug – PMD Support

o e1000 hotplug
o ixgbe hotplug
o i40e hotplug
o fm10k hotplug

 Packet Framework Enhancements
o New configuration file syntax
o New implementation of pass-through

pipeline, firewall pipeline, routing
pipeline, and flow classification

o Master pipeline with CLI interface

 I40e: Mirroring Rule
 I40e: Double VLAN Strip/Insert
 I40e: Unified Packet Type
 I40e Flow Director (L2_payload Type and VF Filtering)
 VXLAN Offload Sample Application
 Extended NIC statistics
 Dynamic Memzone
 Red Rock Canyon (FM10K) Features

o fm10k promiscuous
o mac vlan filtering,
o Tx checksum offload)

 Interrupt Mode
 Cisco Ethtool (excl. sample app)

http://www.dpdk.org/

