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ABSTRACT
Assembly code analysis is one of the critical processes for de-
tecting and proving software plagiarism and software patent
infringements when the source code is unavailable. It is also
a common practice to discover exploits and vulnerabilities
in existing software. However, it is a manually intensive and
time-consuming process even for experienced reverse engi-
neers. An effective and efficient assembly code clone search
engine can greatly reduce the effort of this process, since
it can identify the cloned parts that have been previously
analyzed. The assembly code clone search problem belongs
to the field of software engineering. However, it strongly
depends on practical nearest neighbor search techniques in
data mining and databases. By closely collaborating with
reverse engineers and Defence Research and Development
Canada (DRDC ), we study the concerns and challenges that
make existing assembly code clone approaches not practi-
cally applicable from the perspective of data mining. We
propose a new variant of LSH scheme and incorporate it with
graph matching to address these challenges. We implement
an integrated assembly clone search engine called Kam1n0.
It is the first clone search engine that can efficiently identify
the given query assembly function’s subgraph clones from a
large assembly code repository. Kam1n0 is built upon the
Apache Spark computation framework and Cassandra-like
key-value distributed storage. A deployed demo system is
publicly available.1 Extensive experimental results suggest
that Kam1n0 is accurate, efficient, and scalable for handling
large volume of assembly code.

Keywords
Assembly clone search; Information retrieval; Mining soft-
ware repositories

1Kam1n0 online demo (no installation required). Both the user
name and password are “sigkdd2016”. Use Chrome for best expe-
rience. http://dmas.lab.mcgill.ca/projects/kam1n0.htm
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16 August 13–17, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/XXXX.XXXX

1. INTRODUCTION
Code reuse is a common but uncontrolled issue in software

engineering [15]. Mockus [25] found that more than 50%
of files were reused in more than one open source project.
Sojer’s survey [29] indicates that more than 50% of the de-
velopers modify the components before reusing them. This
massively uncontrolled reuse of source code does not only
introduce legal issues such as GNU General Public License
(GPL) violation [36, 17]. It also implies security concerns,
as the source code and the vulnerabilities are uncontrollably
shared between projects [4].

Identifying all these infringements and vulnerabilities re-
quires intensive effort from reverse engineers. However, the
learning curve to master reverse engineering is much steeper
than for programming [4]. Reverse engineering is a time
consuming process which involves inspecting the execution
flow of the program in assembly code and determining the
functionalities of the components. Given the fact that code
reuse is prevalent in software development, there is a press-
ing need to develop an efficient and effective assembly clone
search engine for reverse engineers. Previous clone search
approaches only focus on the search accuracy. However,
designing a practically useful clone search engine is a non-
trivial task which involves multiple factors to be considered.
By closely collaborating with reverse engineers and Defence
Research and Development Canada (DRDC ), we outline the
deployment challenges and requirements as follows:

Interpretability and usability: An assembly function
can be represented as a control flow graph consisting of con-
nected basic blocks. Given an assembly function as query, all
of the previous assembly code clone search approaches [7, 6,
18, 26] only provide the top-listed candidate assembly func-
tions. They are useful when there exists a function in the
repository that shares a high degree of similarity with the
query. However, due to the unpredictable effects of differ-
ent compilers, compiler optimization, and obfuscation tech-
niques, given an unknown function, it is less probable to have
a very similar function in the repository. Returning a list of
clones with a low degree of similarity values is not useful.
As per our discussions with DRDC, a practical search en-
gine should be able to decompose the given query assembly
function to different known subgraph clones which can help
reverse engineers better understand the function’s composi-
tion. We define a subgraph clone as one of its subgraphs that
can be found in the other function. Refer to the example
in Figure 1. The previous clone search approaches cannot
address this challenge.
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 push  ebp
 mov  ebp, esp
 push  ecx

 mov  [ebp+key], 1A9Ch
 mov  eax, [ebp+msg]
 push  eax
 push  offset Format
 call  ds:printf
 add  esp, 8
 mov  [ebp+msg], 1
 cmp  [ebp+msg], 0
 jz  short loc_40103E

mov  ecx, [ebp+key]
push  ecx
push  offset aTheKeyIsD
call  ds:printf
add  esp, 8
jmp  short loc_401050

loc_40103E:
 mov  edx, [ebp+arg_0]
 push  edx
 push  offset aInvMsg
 call  ds:printf
 add  esp, 8

loc_401050:
xor  eax, eax
mov  esp, ebp
pop  ebp
retn

 push  ebp
 mov  ebp, esp
 push  ecx
 

 mov  [ebp+var_4], 1A9Ch
 mov  eax, [ebp+arg_0]
 push  eax
 push  offset aD       
 call  ds:printf
 add  esp, 8
 mov  [ebp+arg_0], 1
 cmp  [ebp+arg_0], 0
 jz  short loc_4010BC

mov  ecx, [ebp+var_4]
push  ecx
push  offset aTheKeyIsD_0
call  ds:printf
add  esp, 8
jmp  short loc_4010D5

 loc_4010C3:
 mov  eax, [ebp+arg_0]
 push  eax
 push  offset aInvMsg
 call  ds:printf
 add  esp, 8

loc_4010D5:
xor  eax, eax
mov  esp, ebp
pop  ebp
retn

mov  edx, [ebp+var_4]
imul  edx, [ebp+arg_0]
push  edx
push  offset 
aTheKeyIsD_1
call  ds:printf
add  esp, 8
jmp  short loc_4010D5

loc_40109E:
mov  [ebp+arg_0], 2
cmp  [ebp+arg_0], 0
jz  short loc_4010C3

+push  offset aWelcome
+call  ds:printf
+add  esp, 4

loc_40109E

[ebp+var_4]

loc_4010D5

push  ebp
 mov  ebp, esp
push  ecx

 mov  [ebp+key], 1A9Ch
mov  eax, [ebp+msg]
 push  eax
push  offset Format
 call  ds:printf
add  esp, 8
 mov  [ebp+msg], 1
cmp  [ebp+msg], 0
jz  short loc_40103E

mov  ecx, [ebp+key]
push  ecx
push  offset aTheKeyIsD
call  ds:printf
add  esp, 8
jmp  short loc_401050

loc_40103E:
 mov  edx, [ebp+arg_0]
push  edx
 push  offset aInvMsg
call  ds:printf
add esp, 8

loc_401050:
xor  eax, eax
mov  esp, ebp
pop  ebp
retn

 push  ebp
 mov  ebp, esp
push  ecx

 mov  [ebp+ , 1A9Ch
 mov  eax, [ebp+
 push  eax
 push  offset
 call  ds:printf
 add  esp, 8
 mov  [ebp+ , 1
 cmp  [ebp+ , 0
 jz  short

mov  ecx,
push  ecx
push  offset
call  ds:printf
add  esp, 8
jmp  short 

 loc_4010C3:
mov  eax, [ebp+arg_0]
 push  eax
push  offset aInvMsg
 call  ds:printf
add  esp, 8

loc_4010D5:
xor  eax, eax
mov  esp, ebp
pop  ebp
retn

mov  edx, [ebp+var_4]
imul  edx, [ebp+arg_0]
push  edx
push  offset 
aTheKeyIsD_1
call  ds:printf
add  esp, 8
jmp  short loc_4010D5

loc_40109E:
mov  [ebp+arg_0], 2
cmp  [ebp+arg_0], 0
jz  short loc_4010C3

 push  ecx

momov [ b[ebp[ebp+ 1A91A9 hChCh

+push  offset aWelcome
+call  ds:printf
+add  espp, , 4

,
 loc__40109E

 l[ebp+var_4][ p _ ]

8
loc_4010D5_

t aaaaDD      
intnttffff

offset aMsg

Type III
 Clone

Type II
 Clone

Type III
 Clone

Type I
 Clone

Query: Target Function

+++ ]]]
[[[[[[[ bbbebp+ebp+
+++ ]]]]]]]var_4 ,

+++aaarg_000000]]]]]]
]]]
+++aaamsg

8
+++ ]]]]arg_0
+++aaarg 00]]]
t

g_ ]]]]
loc 4

+++ g_ ]]]
+++aaargarg 000]]]

arg_0
arg_0

t aTaTaTaThh KheKeyheKeyI D 0IsD 0IsD_0
intntttfff

aTheKeyIsD_0

loc_401100:
mov  eax, 1
mov  esp, ebp
pop  ebp
retn

 add  espp, , 8
+cmp  [ebp+msg], 0
+Jz  short loc_401100

Clone: Repository Function

A basic block

A block to block clone pair

A jump link between two 
basic blocks of the same 
function

An explanation label

Figure 1: An example of the clone search problem.
Basic blocks with a white background form a sub-
graph clone between two functions. Three types of
code clones are considered in this paper. Type I:
literally identical; Type II: syntactically equivalent;
and Type III: minor modifications.

Efficiency and Scalability: An efficient engine can help
reverse engineers retrieve clone search results on-the-fly when
they are conducting an analysis. Instant feedback tells the
reverse engineer the composition of a given function that is
under investigation. Scalability is a critical factor as the
number of assembly functions in the repository needs to
scale up to millions. The degradation of search performance
against the repository size has to be considered. Previous
approaches in [6, 7], which trade efficiency and scalability
for better accuracy, have a high latency for queries and are
thus not practically applicable.

Incremental updates: The clone search engine should
support incremental updates to the repository, without re-
indexing existing assembly functions. [7] requires median
statistics to index each vector and [26] requires data-dependent
settings for its index, so they do not satisfy this requirement.

Clone search quality: Practically, clones among assem-
bly functions are one-to-many mappings, i.e., a function has
multiple cloned functions with different degrees of similar-
ity. However, all previous approaches [6, 7, 18, 26] assume
that clones are one-to-one mappings in the experiment. This
is due to the difficulty of acquiring such a one-to-many la-
beled dataset. Moreover, they use different evaluation met-
rics. Therefore, it is difficult to have a direct comparison
among them with respect to the search quality. We need to
develop a one-to-many labeled dataset and an unified eval-
uation framework to quantify the clone search quality.

To address the above requirements and challenges, we pro-
pose a new variant of LSH scheme and incorporate it with
a graph matching technique. We also develop and deploy
a new assembly clone search engine called Kam1n0. Our
major contributions can be summarized as follows:

• Solved a challenging problem for the reverse en-
gineering community: Kam1n0 is the first assem-

bly code clone search engine that supports subgraph
clone search. Refer to the example in Figure 1. It pro-
motes the interpretability and usability by providing
subgraph clones as results, which helps reverse engi-
neers analyzing new and unknown assembly functions.
Kam1n0 won the second prize at the 2015 Hex-Rays
plugin Contest2 and its code is publicly accessible on
GitHub.3

• Efficient inexact assembly code search: The as-
sembly code vector space is highly skewed. Small blocks
tend to be similar to each other and large blocks tend
to be sparsely distributed in the space. Original hy-
perplane hashing with banding technique equally par-
titions the space and does not handle the unevenly dis-
tributed data well. We propose a new adaptive locality
sensitive hashing (ALSH ) scheme to approximate the
cosine similarity. To our best knowledge, ALSH is the
first incremental locality sensitive hashing scheme that
solves this issue specifically for cosine space with theo-
retical guarantee. It retrieves fewer points for dense ar-
eas and more points for sparse ones in the cosine space.
It is therefore efficient in searching nearest neighbors.

• Scalable sub-linear subgraph search: We propose
a MapReduce subgraph search algorithm based on the
Apache Spark computational framework without an
additional index. Different to the existing subgraph
isomorphism search problem in data mining, we need
to retrieve subgraphs that are both isomorphic to the
query and the repository functions as graphs. Thus,
existing algorithms are not directly applicable. Algo-
rithmically, our approach is bounded by polynomial
complexity. However, our experiment suggests that it
is sub-linear in practice.

• Accurate and robust function clone search: Kam1n0
is the first approach that integrates both the inexact
assembly code and subgraph search. Previous solu-
tions do not consider both of them together. Our ex-
tensive experiments suggest that it boosts the clone
search quality and yields stable results across different
datasets and metrics.

• Develop a labeled dataset and benchmark state-
of-the-art assembly code clone solutions. We
carefully construct a new labeled one-to-many assem-
bly code clone dataset that is available to the research
community by linking the source code and assembly
function level clones. We benchmark and report the
performance of twelve existing state-of-the-art solu-
tions with Kam1n0 on the dataset using several met-
rics. We also setup a mini-cluster to evaluate the scal-
ability of Kam1n0.

The remainder of this paper is organized as follows. Sec-
tion 2 situates our study within the literature of three differ-
ent research problems. Section 3 formally defines the studied
problem. Section 4 provides an overview of our solution and
system design. Section 5 presents the preprocessing steps
and the chosen vector space. Section 6 introduces our pro-
posed locality sensitive hashing scheme. Section 7 presents
our graph search algorithm. Section 8 presents our bench-
mark experiments. Section 9 provides the conclusion.
2https://hex-rays.com/contests/2015/#kam1n0
3https://github.com/McGill-DMaS/Kam1n0-Plugin-IDA-Pro
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2. RELATED WORK
Locality sensitive hashing. Locality sensitive hash-

ing (LSH ) has been studied for decades to solve the ε-
approximated Nearest Neighbor (εNN) problem, since exact
nearest neighbor is not scalable to high dimensional data.
One of the prevalent problems of LSH is the uneven data dis-
tribution issue, as LSH equally partitions the data space. To
mitigate this issue, several approaches have been proposed
including the LSH-Forest [2], LSB-Forest [32], C2LSH [10]
and SK-LSH [22]. It has been shown that the cosine vector
space is robust to different compiler settings [18] in assembly
code clone search. However, LSH-Forest, C2LSH and SK-
LSH are designed for the p-stable distribution, which does
not fit the cosine space. LSB-Forest dynamically and un-
equally partition the data space. As pointed out by [33],
it requires the hash family to possess the (ε, f(ε)) property.
However, to our best knowledge, such a family in cosine
space is still unknown. There are other learning-based ap-
proaches [11], which do not meet our incremental require-
ment. Wang et al. [35] provide a more comprehensive sur-
vey on LSH. To satisfy our requirements, we propose the
ALSH scheme specifically for the cosine space. Different to
the LSH-Forest, ALSH takes more than one bit when going
down the tree structure and does not require the (ε, f(ε))
property for the LSH family to have theoretical guarantee.
Unlike LSB forest [2], we dynamically construct the buckets
to adapt to different data distributions.

Subgraph isomorphism. Ullmann [34] proposed the
first practical subgraph isomorphism algorithm for small
graphs. Several approaches were proposed afterwards for
large scale graph data, such as TurboISO [13] and STwig [31].
It has been shown that they can solve the subgraph iso-
morphism problem in a reasonable time. However, they do
not completely meet our problem settings. The subgraph
isomorphism problem needs to retrieve subgraphs that are
isomorphic to the graphs in the repository and identical to
the query. However, we need to retrieve subgraphs that are
isomorphic to the graphs in the repository and isomorphic
to the graph of the query, which significantly increases the
complexity. More details will be discussed in Section 7. Such
a difference requires us to propose a specialized search algo-
rithm. Lee et al. [21] provide a comprehensive survey and
performance benchmark on subgraph isomorphism.

Assembly code clone search. The studies on the as-
sembly code clone search problem are recent. Only a few
approaches exist [6, 7, 18, 26]. They all rely on the inexact
text search techniques of data mining. BinClone [7] models
assembly code into an Euclidean space based on frequency
values of selected features. It is inefficient and not scal-
able due to the exponential 2-combination of features which
approximates the 2-norm distance. LSH-S in [26] models
assembly code into a cosine space based on token frequency
and approximate the distance by hyperplane hashing and
banding scheme. It equally partitions the space and suffers
from the uneven data distribution problem. Graphlet [18]
models assembly code into a cosine space based on extracted
signatures from assembly code. However, it cannot detect
any subgraph clones that is smaller than the graphlet size.
Tracelet [6] models assembly code according to string edit-
ing distance. It compares function one by one, which is not
scalable. Kam1n0 is fundamentally different to the previous
approaches. It is an integration of inexact assembly code
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Figure 2: The overall solution stack of the Kam1n0
engine.

search and the subgraph search. It enables clone subgraph
search of any size.

3. PROBLEM STATEMENT
Reverse engineering starts from a binary file. After being

unpacked and disassembled, it becomes a list of assembly
functions. In this paper, function represents an assembly
function; block represents a basic block; source function rep-
resents the actual function written in source code, such as
C++; repository function stands for the assembly function
that is indexed inside the repository; target function denotes
the assembly function that is given as a query; and corre-
spondingly, repository blocks and target blocks refer to their
respective basic blocks. Each function f is represented as
a control flow graph denoted by (B,E), where B indicates
its basic blocks and E, indicates the edges that connect the
blocks. Let B(RP) be the complete set of basic blocks in
the repository and F (RP) be the complete set of functions
in the repository. Given an assembly function, our goal is to
search all its subgraph clones inside the repository RP. We
formally define the search problem as follows:

Definition 1. (Assembly function subgraph clone search)
Given a target function ft and its control flow graph (Bt, Et),
the search problem is to retrieve all the repository func-
tions fs ∈ RP, which share at least one subgraph clone
with ft. The shared list of subgraph clones between fs and
ft is denoted by sgs[1 : a], where sgs[a] represents one of
them. A subgraph clone is a set of basic block clone pairs
sgs[a] = {〈bt, bs〉 , . . . } between fs and ft, where bt ∈ Bt,
bs ∈ Bs, and 〈bt, bs〉 is a type I, type II, or type III clone
(see Figure 1). Formally, given ft, the problem is to retrieve
all {fs|fs ∈ RP and |sgs| > 0}. �

4. OVERALL ARCHITECTURE
The Kam1n0 engine is designed for general key-value stor-

age and the Apache Spark4 computational framework. Its
solution stack, as shown in Figure 2, consists of three layers.
The data storage layer is concerned with how the data is
stored and indexed. The distributed/local execution layer
manages and executes the jobs submitted by the Kam1n0

4Apache Spark, available at: http://spark.apache.org/
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engine. The Kam1n0 engine splits a search query into mul-
tiple jobs and coordinates their execution flow. It also pro-
vides the RESTful APIs. We have implemented a web-based
user interface and an Hex-Rays IDA Pro plugin5 as clients.
IDA Pro is a popular interactive disassembler that is used
by reverse engineers.

Figure 3 depicts the data flow of the clone search pro-
cess. It consists of the following steps. Preprocessing : After
parsing the input (either a binary file or assembly functions)
into control flow graphs, this step normalizes assembly code
into a general form, which will be elaborated in Section 5.
Find basic blocks clone pairs: Given a list of assembly basic
blocks from the previous step, it finds all the clone pairs of
blocks using ALSH. Search the subgraph clones: Given the
list of clone block pairs, the MapReduce module merges and
constructs the subgraph clones. Note that this clone search
process does not require any source code.

5. PREPROCESSING AND VECTOR SPACE
We choose the cosine vector space to characterize the se-

mantic similarity of assembly code. It has been shown that
the cosine vector space is robust to different compiler set-
tings [18]. It can mitigate the linear transformation of as-
sembly code. For example, to optimize the program for
speed, the compiler may unroll and flatten a loop struc-
ture in assembly code by repeating the code inside the loop
multiple times. In this case, the cosine similarity between
the unrolled and original loop is still high, due to the fact
that the cosine distance only considers the included angle be-
tween two vectors. The features selected in Kam1n0 include
mnemonics, combinations of mnemonics and operands, as
well as mnemonics n-gram, which are typically used in as-
sembly code analysis [7, 26]. The equivalent assembly code
fragments can be represented in different forms. To miti-
gate this issue, we normalize the operands in assembly code
during the preprocessing. We extend the normalization tree
used in BinClone [7] with more types. There are three nor-
malization levels: root, type, and specific. Each of them
corresponds to a different generalization level of assembly
code. More details can be found in our technical report.6

6. LOCALITY SENSITIVE HASHING
In this section, we introduce an Adaptive Locality Sensi-

tive Hashing (ALSH ) scheme for searching the block-level
semantic clones. As discussed in Section 2, exact nearest
neighbor search is not scalable. Thus, we started from the
reduction of the ε-approximated k-NN problem:

5IDA Pro, available at: http://www.hex-rays.com/
6Kam1n0 technical report, available at:
http://dmas.lab.mcgill.ca/fung/pub/DFC16kdd.pdf

Definition 2. (ε-approximated NN search problem) Given
a dataset D ⊂ R

d (R denotes real numbers) and a query
point q, let r denote the distance between the query point
q and its nearest neighbor o∗. This problem is to find an
approximated data point within the distance ε × r where
ε > 1 �

The ε-approximated k-NN search problem can be reduced
to the εNN problem by finding the k data points where each
is an ε-approximated point of the exact k-NN of q [10]. The
locality sensitive hashing approaches do not solve the εNN
problem directly. εNN is further reduced into another prob-
lem: (ε, r)-approximated ball cover problem [1, 14].

Definition 3. ((ε, r)-approximated ball cover problem) Given
a dataset D ⊂ R

d and a query point q, let B(q, r) denote
a ball with center q and radius r. The query q returns the
results as follows:

• if there exists a point o∗ ∈ B(q,R), then return a data
point from B(q, εR)

• if B(q, εR) does not contain any data object in D, then
return nothing. �

One can solve the (ε, r) ball cover problem by using the
Locality Sensitive Hashing (LSH) families. A locality sen-
sitive hashing family consists of hashing functions that can
preserve the distance between points.

Definition 4. (Locality Sensitive Hashing Family) Given a
distance r under a specific metric space, an approximation
ratio ε, and two probabilities p1 > p2, a hash function family
H → {h : Rd → U} is (r, εr, p1, p2)-sensitive such that:

• if o ∈ B(q, r), then PrH[h(q) = h(o)] � p1

• if o /∈ B(q, εr), then PrH[h(q) = h(o)] � p2 �
LSH families are available for many metric spaces such as

cosine similarity [3], hamming distance [14], Jaccard coef-
ficient, and p-stable distributions [5]. Based on our chosen
cosine vector space, we adopt the random hyperplane hash
[3] family, where sign(·) output the sign of the input.

h(�o) = sign(�o · �a) (1)

By substituting the random vector �a we can obtain different
hash functions in the family. The collision probability of two
data points �o1 and �o2 on Equation 1 can be formulated as:

P [h(�o1) = h(�o2)] = 1− θ �o1, �o2

π
(2)

θ �o1, �o2 is the included angle between �o1 and �o2. The prob-
ability that two vectors have the same projected direction
on a random hyperplane is high when their included angle
is small.

Theorem 1. The random hyperplane hash function is a
(r, εr, 1− r/π, 1− εr/π) sensitive hashing family. �

Proof. According to Definition 4 and Equation 2: p1 =
1− r/π and p2 = 1− εr/π

To use the locality sensitive hashing families to solve the
ball cover problem, it needs a hashing scheme to meet the
quality requirement. The E2LSH approach was originally
proposed by [14] and extended by[5]. It concatenates k dif-
ferent hash functions [h1, . . . , hk] from a given LSH family H
into a function g(o) = (h1(o), . . . , hk(o)), and adopts l such
functions. The parameters k and l are chosen to ensure the
following two properties are satisfied:

Property 1. (P1): if there exists p
∗ ∈ B(q, r), then gj(p

∗) =
gj(q) from some j = 1 . . . l. �

Property 2. (P2): the total number of points /∈ B(q, εr)
that collides with q is less than 2l. �
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It is proven that if the above two properties hold with
constant probability, the algorithm can correctly solve the
(ε, r)-approximated ball cover problem [14]. For E2LSH, by

picking k = logp2(1/n) and l = nρ where ρ = ln1/p1
ln1/p2

, both

Properties 1 and 2 hold with constant probability.
However, the ball cover problem is a strong reduction to

the NN problem since it adopts the same radius r for all
points. Real-life data cannot always be evenly distributed.
Therefore, it is difficult to pick an appropriate r. We de-
note this as the uneven data distribution issue. In [12],
a magic rm is adopted heuristically. But as pointed out
by [32], such a magic radius may not exist. A weaker re-
duction was proposed in [14], where the NN problem is re-
duced to multiple (r, ε)-NN ball cover problems with varying
r = {1, ε2, ε3, . . . }. The intuition is that points in different
density areas can find a suitable r. However, such a reduc-
tion requires a large space consumption and longer response
time. Other indexing structures have been proposed to solve
this issue. Per our discussion in Section 2, existing tech-
niques do not meet our requirement. Thus, we customize
the LSH-forest approach and propose the ALSH structure.

6.1 Adaptive LSH Structure
We found that the limitation of the expanding sequence

of r in previous section is too strong. It is unnecessary to
exactly follow the sequence r = {1, ε2, ε3, . . . }, as long as r
is increasing in a similar manner to rt+1 = rt × ε. Thus, we
customize the ε-approximated NN problem as follows:

Definition 5. (f(r)-approximated NN search problem) Given
a dataset D ⊂ R

d and a query point q, let r denote the dis-
tance between the query point q and its nearest neighbor o∗.
The problem is to find an approximated data point within
the distance f(r), where f(r)/r > 1 �

Instead of using a fix approximation ratio, we approxi-
mate the search by using a function on r. We issue a differ-
ent sequence of expanding r. The expanding sequence of r
is formulated as r0, r1, . . . , rt, rt+1, . . . , rm, where rt < rt+1.
Similar to the E2LSH approach, we concatenate multiple
hash functions from the random hyperplane hash family
H into one. However, we concatenate different number of
hash functions for different values of r. This number is de-
noted by kt for rt, and the sequence of k is denoted by
k0, k1, . . . , kt, kt+1, . . . , km, where kt > kt+1. Recall that
the concatenated function is denoted by g. Consequently,
there will be a different function g at position t, which is de-
noted by gt. Yet, function gt and function g(t+1) can share
kt+1 hash functions. With pm to be specified later, we set
the r value at position t as follows:

rt = π × (1− p(1/kt)
m ) (3)

This allows us to have the effect of increasing the r value
by decreasing the k value. We calculate the value of k at
position t as follows:

kt = c× kt+1,where c > 1 (4)

By getting tt+1 from Equation 3, substituting kt using Equa-
tion 4, and substituting pm using Equation 3, we have:

rt+1 = π × (
1− (1− rt

π
)c
)
= fc(rt) fc(rt)/rt > 1 (5)

By setting c equals to 2, we can get an approximately similar
curve of r sequence to the original sequence rt+1 = rt × ε

rm

rm-1

rt+1

rt......

km

km-1 = ckm

kt+1 = ckt+2

kt = ckt��

k0 r0

k decreases� r increase�

Level m

Level m-1

Level t+1

Level t

Level 0

............

......

......

Figure 4: The index structure for the Adaptive Lo-
cality Sensitive Hashing (ALSH). There are m + 1
levels on this tree. Moving from level t to level t+1
is equivalent of increasing the search radius from rt
to rt+1.

where ε equals to 2. Following the aforementioned logic, we
construct an Adaptive Locality Sensitive Hashing (ALSH)
index in the form of prefix trees.

As shown in Figure 4, the index structure is a prefix tree of
the signature values calculated by G = {gm, gm−1, . . . , g0}.
Level t corresponds to the position t in the r expanding
sequence. By introducing different values of kt, each level
represents a different radius rt. Each level denotes a different
gt function and the gt function is a concatenation of kt hash
functions. Moving up from a node at level t to its parent at
level t+1 indicates that it requires a shorter matched prefix.
The nodes which have the same parent at level t share the
same prefix that is generated by gt.
To locate the leaf for a given data point q ∈ R

d, ALSH
dynamically constructs the hash functions by trying gt ∈
G in sequence. The signature of gt can be generated by
padding additional hash values to gt+1 since kt = c × kt+1.
Following [14, 32], with l to be specified later, we adopt
l such prefix trees as the ALSH’s index. Given a query
point q, we first locate the corresponding leaves in all prefix
trees. With l to be specified later, we collect the first 2l
points from all the leaf buckets. To index a point, we locate
its corresponding leaf in each tree and insert it to the leaf
bucket. Suppose a leaf is on level tt+1. If the number of
points in that leaf is more than 2l, we split all the data points
of that leaf into the next level t by using gt. All the trees are
dynamically constructed based on the incoming points to be
indexed in sequence. Therefore, they can be incrementally
maintained. Unlike the learning-based LSH [11], Kam1n0
does not require the whole repository to estimate the hash
functions to build the index.

It can be easily proved that gt is a (rt, rt+1, pm, pcm)-sensi-
tive hash family and gt can correctly solve the (rt+1/rt, rt)-
approximated ball cover problem by setting pcm = 1/n and

l = n1/c. The proof follows [14]. Details and implemen-
tation on key-value data store can be found in our techni-
cal report.6 Another parameter rm controls the starting km
value at the root value. It indicates the maximum distance
that two points can be considered as valid neighbors. For
sparse points far away from each other, they are not consid-
ered as neighbors unless their distance is within rm.

For a single ALSH tree, the depth in the worst case is
k0, and all the leaves are at level 0. In this case, the tree
is equivalent to the E2LSH with k = k0. Therefore, the
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Figure 5: The MapReduce-based subgraph clone
construction process.

space consumption for l = n1/c ALSH trees are bounded by
O(dn+n1+1/c), where O(dn) is the data points in a dataset

and O(n1+1/c) is the space of indexes for the trees. The
query time for a single ALSH prefix tree is bounded by its
height. Given the maximum k value k0 and the minimum
k value km, its depth in the worst case is logc(k0/km) + 1.

Thus, the query time for l = n1/c prefix trees is bounded by
O(logc(k0/km)×n1/c). The ALSH index needs to build n1/c

prefix trees for the full theoretical quality to be guaranteed.
Based on our observation, setting l to 1 and 2 is already
sufficient for providing good quality assembly code clones.

7. SUBGRAPH CLONE SEARCH
Even subgraph isomorphism is NP-hard in theory [21, 28],

many algorithms have been proposed to solve it in a reason-
able time. Formally, the subgraph isomorphism algorithm
solved by most of these systems [13, 21, 31] is defined as:

Definition 6. (Subgraph Isomorphism Search) A graph is
denoted by a triplet (V,E, L) where V represents the set of
vertices, E represents the set of edges, and L represents the
labels for each vertex. Given a query graph q = (V,E, L) and
a data graph g = (V ′, E′, L′) a subgraph isomorphism (also
known as embedding) is an injective function M : V → V ′

such that the following conditions hold: (1) ∀u ∈ V, L(u) ∈
L′(M(u)), (2) ∀(ui, uj) ∈ E, (M(ui),M(uj)) ∈ E′, and (3)
L(ui, uj) = L′(M(ui),M(uj)). The search problem is to
find all distinct embeddings of q in g. �

The difference between this problem and ours in Defini-
tion 1 is two-fold. First, our problem is to retrieve all the
subgraph clones of the target function ft’s control flow graph
from the repository. In contrast, this problem only needs to
retrieve the exact matches of query graph q within g. Re-
fer to Conditions 1, 2, and 3 in Definition 6, or the termi-
nation condition of the procedure on Line 1 of subroutine
SubgraphSearch in [21]. Our problem is more challenging
and can be reduced to the problem in Definition 6 by issuing
all the subgraphs of ft as queries, which introduces a higher
algorithmic complexity. Second, there is no such L data la-
bel attribute in our problem, but two types of edges: the
control flow graph which links the basic blocks and the se-
mantic relationship between basic blocks which is evaluated
at the querying phase. Existing algorithms for subgraph iso-

Algorithm 1 Mapper

Input A basic block clone pair 〈bt, bs〉
Output A pair consisting of 〈fs, sgs〉
1: fs ← getFunctionId(bs)
2: sgs ← [ ] � create an empty list of sub-

graph clones
3: cloneGraph← {〈bt, bs〉} � create a subgraph clone with

one clone pair
4: sgs[0]← cloneGraph � list of subgraph clones but at

this moment, it has only one.
5: return 〈fs, sgs〉 with fs as key index

morphism are not directly applicable. Assembly code con-
trol graphs are sparser than other graph data as there are
less number of links between vertices and typically, basic
blocks are only linked to each other within the same func-
tion. Given such properties, we can efficiently construct the
subgraph clones respectively for each repository function fs
if it has more than one clone blocks in the previous step.

7.1 MapReduce Subgraph Search
We adopt two functions in the Apache Spark MapRe-

duce execution framework, namely the map function and
the reduce-by-key function. In our case, the map function
transforms the clone pairs generated by ALSH (refer to the
data flow in Figure 3) and the reduce-by-key function con-
structs subgraph clone respectively for different repository
function fs. Figure 5 shows the overview of our subgraph
clone search approach.

The signature for the map function (Algorithm 1) is 〈bt, bs〉
→ 〈fs, sgs[1 : a]〉. Each execution of the map function takes
a clone pair 〈bt, bs〉 produced by ALSH and transforms it to
〈fs, sgs[1 : a]〉, which is a pair of repository function id fs
and its list of subgraph clones sgs in Definition 1. The map
functions are independent to each other.

The outputs of the map functions correspond to the first
row in Figure 5. A red circle represents a target basic block
bs and a green triangle represents a source basic block bt.
The link between them indicates that they are a block-to-
block clone pair 〈bt, bs〉, which is produced in the previous
step. A white rectangle represents a list of subgraph clones
and the colored rectangle inside it represents a subgraph
clone. Algorithm 1 maps each clone pair into a list of sub-
graph clones which contains only one subgraph clone. Each
subgraph clone is initialized with only one clone pair.

After the map transformation functions, the reduce-by-
key function reduces the produced lists of subgraph clones.
The reducer merges a pair of lists sg1s and sg2s into a single
one, by considering their subgraph clones’ connectivity. The
reduce process is executed for the links from the second row
to the last row in Figure 5. Only the lists of subgraph clones
with the same fs will be merged. As indicated by the links
between the first and second row in Figure 5, only rectangles
with the same orange background can be reduced together.
Rectangles with other background colors are reduced with
their own group.

Algorithm 2 shows the reduce function in details. Given
two lists of subgraph clones under the same repository func-
tion fs, the reduce function compares their subgraph clones
(Lines 1 and 2) and checks if two graphs can be connected
(Lines 4 to 13) by referring to the the control flow graph
edges Es and Et . If the two subgraph clones can be con-
nected by one clone pair, then they can be merged into a
single one (Lines 6 and 7). If a subgraph clone from sg2s
cannot be merged into any subgraph clones in sg2s , it will be
appended to the list sg1s (Lines 20 and 21). At the end of the
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Algorithm 2 Reducer

Input subgraph lists of same fs: sg1
s [1 : a1] and sg2

s [1 : a2]

Output a single subgraph list sg1
s [1 : a]

1: for a1 → |sg1
s | do

2: for a2 → |sg2
s | do

3: canMerge← false
4: for each

〈
b
a1
t , ba1

s

〉 ∈ sg1
s [a1] do

5: for each
〈
b
a2
t , ba2

s

〉 ∈ sg2
s [a2] do

6: if Et(b
a1
t , b

a2
t ) exists then

7: if Es(b
a1
s , ba2

s ) exists then
8: canMerge← true
9: goto Line 14.
10: end if
11: end if
12: end for
13: end for
14: if canMerge is true then
15: sg1

s [a1]← sg1
s [a1]

⋃
sg2

s [a2]

16: sg2
s ← sg2

s − sg2
s [a2]

17: end if
18: end for
19: end for
20: if sg2

s is not ∅ then � for graphs in sg2
s that cannot be

merged, append them to the list
21: sg1

s ← sg1
s

⋃
sg2

s
22: end if
23: return sg1

s

graph search algorithm, we solve the problem in Definition 1.
In order to obtain a ranked list of repository functions for
fs, we calculate the similarity value by checking how much
its subgraphs sgs cover the graph of the query ft: sims =
(|uniqueEdges(sgs)|+ |uniqueNodes(sgs)|)/(|Bt|+ |Et|).

Compared to other join-based or graph-exploration-based
search approach, our MapReduce-based search procedure
avoids recursive search and is bounded by polynomial com-
plexity. Let ms be the number of clone pairs for a target
function ft. There are at most O(m2

s) connectivity checks
between the clone pairs (no merge can be found) and the
map function requires O(ms) executions. ms corresponds
to the number of rectangles in the second row of Figure 5.
Refer from the second row to the last one. The reduce func-
tion are bounded by O(m2

s) comparisons. ms is bounded
by O(|Bt| × |Bs|), which implies that each basic block of
ft is a clone with all the basic blocks of fs. However, this
extreme case rarely happens. Given the nature of assembly
functions and search scenarios, ms is sufficiently bounded
by O(max(|Bt|, |Bs|)). According to the descriptive statis-
tics of our experiment, 99% of them have less than 200 basic
blocks.

8. EXPERIMENTS
This section presents comprehensive experimental results

for the task of assembly code clone search. First, we ex-

Library
Name

Branch
Count

Function
Count

Block
Count

Clone Pair
Count

bzip2 5 590 15,181 1,329
curl 16 9,468 176,174 49,317
expat 3 2,025 35,801 14,054
jsoncpp 14 11,779 43,734 204,701
libpng 9 4,605 82,257 18,946
libtiff 13 7,276 124,974 51,925
openssl 9 13,732 200,415 29,767
sqlite 12 9,437 202,777 23,674
tinyxml 7 3,286 30,401 22,798
zlib 8 1,741 30,585 6,854
total 96 63,939 942,299 423,365

Table 1: The assembly code clone dataset summary.

plain how to construct a labeled dataset that can be used
for benchmarking in future research. Then, we evaluate the
effect of assembly code normalization. Although normaliza-
tion has been extensively used in previous works, its effects
have not been thoroughly studied yet. Next, we present
the benchmark results which compares Kam1n0 with state-
of-the-art clone search approaches in terms of clone search
quality. Finally, we demonstrate the scalability and capac-
ity of the Kam1n0 engine by presenting the experimental
results from a mini-cluster.

8.1 Labeled Dataset Generation
One of the challenging problems for assembly code clone

search is the lack of labeled (ground truth) dataset, since
the most effective labeled dataset requires intensive manual
identification of assembly code clones [7]. To facilitate future
studies on assembly clone search, we have developed a tool to
systematically generate the assembly function clones based
on source code clones. The tool performs four steps: Step 1:
Parse all the source code functions from different branches or
versions of a project and identify all the function-to-function
clones using CCFINDERX [16], which estimates source code
similarity based on the sequence of normalized tokens. Step
2: Compile the given branches or versions of a project with
an additional debug flag to enable the compiler output debug
symbols. Step 3: Link the source code functions to the
assembly code functions using the compiler output debug
symbols, where such information is available. Step 4: For
each pair of source code clone, generate a pair of assembly
function clone and transfer the similarity to the new pair.

The intuition is that the source code function-level clones
indicate the functional clones between their corresponding
assembly code. In [7, 25], the source code and assembly
code are manually linked with an injected identifier in the
form of variable declarations. However, after the automa-
tion of such process, we find that the link rate is very low
due to the impact of compiler optimizations. The generated
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M Approach Bzip2 Curl Expat Jsoncpp Libpng Libtiff Openssl Sqlite Tinyxml Zlib Avg.

A
U
R
O
C

BinClone .985 Ø Ø Ø Ø Ø Ø Ø Ø *.894 .188
Composite .857 .766 .693 .725 .814 .772 .688 .726 .688 .729 .746
Constant .769 .759 .723 .665 .829 .764 .689 .776 .683 .768 .743
Graphlet .775 .688 .673 .563 .714 .653 .682 .746 .676 .685 .685

Graphlet-C .743 .761 .705 .604 .764 .729 .731 .748 .677 .668 .713
Graphlet-E .523 .526 .505 .516 .519 .521 .512 .513 .524 .514 .517
MixGram .900 .840 .728 .726 .830 .808 .809 .765 .707 .732 .785
MixGraph .769 .733 .706 .587 .755 .692 .713 .765 .674 .708 .710

N-gram .950 .860 .727 .713 .843 .809 .819 .789 .714 .766 .799
N-perm .886 .847 .731 .729 .834 .813 .811 .769 .709 .736 .787
Tracelet .830 Ø Ø Ø Ø Ø Ø Ø Ø .799 .163
LSH-S .965 .901 .794 .854 .894 .922 .882 .845 .768 .758 .858

Kam1n0 *.992 *.989 *.843 *.890 *.944 *.967 *.891 *.895 *.864 .830 *.911

A
U
P
R

BinClone .294 Ø Ø Ø Ø Ø Ø Ø Ø .091 .038
Composite .645 .495 .375 .353 *.541 .482 .288 .405 .261 .409 .425
Constant .247 .280 .301 .158 .311 .349 .072 .157 .142 .240 .226
Graphlet .162 .133 .138 .051 .115 .103 .041 .108 .150 .106 .111

Graphlet-C .455 .482 .296 .176 .413 .369 .366 .437 .245 .338 .358
Graphlet-E .022 .024 .013 .020 .012 .015 .004 .010 .020 .026 .017
MixGram .727 .598 .363 .337 .513 .512 *.464 .471 .286 .383 .465
MixGraph .247 .242 .228 .098 .196 .184 .078 .180 .163 .175 .179

N-gram .638 .491 .297 .275 .408 .428 .301 .417 .264 .314 .383
N-perm .613 .589 .360 .344 .523 *.515 .438 .465 .288 .370 .450
Tracelet .057 Ø Ø Ø Ø Ø Ø Ø Ø .027 .008
LSH-S .227 .014 .095 .049 .035 .038 .012 .018 .079 .041 .061

Kam1n0 *.780 *.633 *.473 *.504 .477 .387 .411 *.610 *.413 *.465 *.515

M
A
P
@
10

BinClone .495 Ø Ø Ø Ø Ø Ø Ø Ø .398 .089
Composite .505 .525 .489 .190 .493 .536 .238 .382 .303 .472 .413
Constant .354 .459 .539 .132 .473 .502 .199 .379 .229 .495 .376
Graphlet .274 .309 .408 .030 .264 .276 .154 .303 .233 .302 .255

Graphlet-C .339 .499 .586 .084 .412 .449 .284 .416 .272 .361 .370
Graphlet-E .021 .053 .010 .011 .024 .040 .012 .019 .039 .028 .026
MixGram .559 .641 .625 .191 .511 .589 .392 .445 .321 .474 .475
MixGraph .334 .407 .572 .064 .345 .351 .211 .387 .244 .371 .329

N-gram .620 .636 .615 .176 .512 .567 .398 .481 .310 .506 .482
N-perm .532 .653 .628 .191 .516 .597 .394 .452 .317 .483 .476
Tracelet .228 Ø Ø Ø Ø Ø Ø Ø Ø .265 .049
LSH-S .322 .069 .198 .032 .145 .078 .086 .111 .130 .101 .127

Kam1n0 *.672 *.680 *.690 *.196 *.548 *.587 *.434 *.605 *.375 *.573 *.536

Table 2: Benchmark results of different assembly code clone search approaches. We employed three evaluation
metrics: the Area Under the Receiver Operating Characteristic Curve (AUROC ), the Area Under the Precision-
Recall Curve (AUPR), and the Mean Average Precision at Position 10 (MAP@10). Ø denotes that the method
is not scalable and we cannot obtain a result for this dataset within 24 hours.

assembly code clone is in fact the combined result of source
code patches and compiler optimizations. The source code
evolves from version to version, and different versions may
have different default compiler settings. Thus, the labeled
dataset simulates the real-world assembly clone evolvement.
This tool is applicable only if the source code is available.

Refer to Table 1 for some popular open source libraries
with different versions. We applied the aforementioned tool
on them to generate the labeled dataset for the experiments.
There are 63,939 assembly functions which successfully link
to the source code functions. The labeled dataset is a list
of one-to-multiple assembly function clones with the trans-
ferred similarity from their source code clones.

See Figure 6c and Figure 6d. The assembly function basic
block count follows a long-tail distribution. Most of them
have between 0 and 5 assembly basic blocks, and 99% of
them is bounded by 200. We find that this is the typical
distribution of assembly function block count. This distri-
bution facilitates our graph search because the worst case
is bounded by O(|Bt| × |Bs|) and P [|Bs| < 200] > 0.99.
Figure 6b shows the cosine similarity distribution of each
basic block’s 20th-nearest neighbor. It reflects variations of
density in the vector space and calls for an adaptive LSH.

74% of the source code clones given by CCFINDERX are
exact clones (see Figure 6a). However, by applying a strong
hash on their assembly code, we find that only 30% of them
are exact clones (Type I clones). Thus, the total percentage

of inexact clones is 70%×74%+26% = 77.8%. CCFINDERX
classifies tokens in source code into different types before
clone detection. If two source code fragments are identified
as clones with a low similarity, there is a higher chance that
the underlying assembly code is indeed not a clone due to
the normalization of the source code. To mitigate this issue,
we heuristically set a 0.4 threshold for clones to be included
in our dataset. Thus, we have 66.8% of inexact clones.

8.2 Normalization Level
None Root Specific

Root < 2e−16 - -

Specific < 2e−16 1 -

Type < 2e−16 1 1

Table 3: Paired t-test on the normalization level.

Assembly code normalization is used in [7, 27]. However,
its effects were not formally studied. In this section, we
present the results of the statistical test on the effects of the
normalization level. Details on normalization can be found
in our technical report.6 We start by using a strong hash
clone search with different normalization levels on each of
the generated datasets. Then, we collect the corresponding
precision value to the given normalization level as samples
and test the relationship between precision and the chosen
normalization level. Normalization can increase the recall,
but we want to evaluate the trade-off between the precision
and different normalization levels. According to the ANOVA
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Figure 7: Scalability study. (a): Average Indexing
Time vs. Number of Functions in the Repository.
(b): Average Query Response Time vs. Number of
Functions in the Repository. The red line represents
the plotted time and the blue line represents the
smoothed polynomial approximation.

test (p < 2e−16), the difference of applying normalization or
not is statistically significant. Consider Table 3. However,
the difference of applying different levels, namely Root, Type,
or Specific, is not statistically significant.

8.3 Clone Search Approach Benchmark
In this section, we benchmark twelve assembly code clone

search approaches: BinClone [8, 19], Graphlets [17, 18],
LSH-S [29], and Tracelet [6]. [18] includes several approaches:
mnemonic n-grams (denoted as n-gram), mnemonic n-perms
(denoted as n-perm), Graphlets (denoted as Graphlet), Ex-
tended Graphlets (denoted as Graphlet-E), Colored Graphlets
(denoted as Graphlet-C), Mixed Graphlets (denoted as Mix-
Graph), Mixed n-grams/perms (denoted as MixGram), Con-
stants, and the Composite of n-grams/perms and Graphlets
(denoted as Composite). The idea of using Graphlet orig-
inated from [20]. We re-implemented all these approaches
under a unified evaluation framework and all parameters
were configured according to the papers. We did not in-
clude the re-write engine in [6] because it is not scalable.

Several metrics are used in previous research to evaluate
the clone search quality, but there is no common agreement
on what should be used. Precision, recall and F1 are used in
BinClone [7], while [36] maintains that a F2 measure is more
appropriate. However, these two values will change as the
search similarity threshold value changes. To evaluate the
trade-off between recall and precision, we use three typical
information retrieval metrics, namely Area Under the Re-
ceiver Operating Characteristic Curve (AUROC ), Area Un-
der the Precision-Recall Curve (AUPR), and Mean Average
Precision at Position 10 (MAP@10 ). These three metrics
flavor different information retrieval scenarios. Therefore,
we employ all of them. AUROC and AUPR can test a clas-
sifier by issuing different threshold values consecutively [9,

24, 30], while MAP@10 can evaluate the quality of the top-
ranked list simulating the real user experience [23].

Table 2 presents the benchmark results. The highest score
of each evaluation metric is highlighted for each dataset.
Also, the micro-average of all the results for each approach
is given in the Avg column. Kam1n0 out-performs the other
approaches in almost every case for all evaluation metrics.
Kam1n0 also achieves the best averaged AUROC, AUPRC,
and MAP@10 scores. The overall performance also suggests
that it is the most stable one. Each approach is given a
24-hour time frame to finish the clone search and it is only
allowed to use a single thread. Some results for BinClone
and Tracelet are empty, which indicate that they are not
scalable enough to obtain the search result within the given
time frame. Also, we notice that BinClone consumes more
memory than the others for building the index, due to its
combination of features which enlarges the feature space.
We notice that the experimental results are limited within
the context of CCFinder. In the future, we will investigate
other source code clone detection techniques to generate the
ground truth data.

8.4 Scalability Study
In this section, we evaluate Kam1n0’s scalability on a large

repository of assembly functions. We set up a mini-cluster
on Google Cloud with four computational nodes. Each of
them is a n1-highmem-4 machine with 2 virtual cores and
13 GB of RAM. We only use regular persistent disks rather
than solid state drives. Each machine is given 500 GB of disk
storage. All the machines run on CentOS. Three machines
run the Spark Computation Framework and the Apache Cas-
sandra Database and the other runs our Kam1n0 engine.
To conduct the experiment, we prepare a large collection
of binary files. All these files are either open source li-
braries or applications, such as Chromium. In total, there
are more than 2,310,000 assembly functions and 27,666,692
basic blocks. Altogether, there are more than 8 GB of as-
sembly code. We gradually index this collection of binaries
in random order, and query the zlib binary file of version
2.7.0 on Kam1n0 at every 10,000 assembly function index-
ing interval. As zlib is a widely used library, it is expected
that it has a large number of clones in the repository. We
collect the average indexing time for each function to be in-
dexed, as well as the average time it takes to respond to a
function query. Figure 7 depicts the average indexing and
query response time for each function. The two diagrams
suggest that Kam1n0 has a good scalability with respect to
the repository size. Even as the number of functions in the
repository increases from 10,000 to 2,310,000, the impact on
the response time is negligible. There is a spike up at 910,000
due to the regular compaction routine in Cassandra, which
increases I/O contention in the database.

9. CONCLUSION AND LESSON LEARNED
Through the collaboration with Defence Research and De-

velopment Canada (DRDC), we learned that scalability, which
was not considered in previous studies, is a critical issue for
deploying a successful assembly clone search engine. To ad-
dress this, we present the first assembly search engine that
combines LSH and subgraph search. Existing off-the-shelf
LSH nearest neighbor algorithms and subgraph isomorphism
search techniques do not fit our problem setting. Therefore,
we propose new variants of LSH scheme and incorporate it
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with graph search to address the challenges. Experimen-
tal results suggest that our proposed MapReduce-based sys-
tem, Kam1n0, is accurate, efficient, and scalable. Currently
Kam1n0 can only identify clones for x86/amd64 processor.
In the future, we will extend it to the other processors and
investigate approaches that can find clones between different
processors. Kam1n0 provides a practical solution of assem-
bly clone search for both DRDC and the reverse engineering
community. The contribution is partially reflected by the
award received at the 2015 Hex-Rays Plug-In Contest.
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