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Abstract

Key-value (KV) stores have become a backbone of large-
scale applications in today’s data centers. The data set
of the store on a single server can grow to billions of
KV items or many terabytes, while individual data items
are often small (with their values as small as a couple of
bytes). It is a daunting task to efficiently organize such
an ultra-large KV store to support fast access. Current
KV storage systems have one or more of the following
inadequacies: (1) very high data write amplifications, (2)
large index set, and (3) dramatic degradation of read per-
formance with overspill index out of memory.

To address the issue, we propose LSM-trie, a KV stor-
age system that substantially reduces metadata for locat-
ing KV items, reduces write amplification by an order
of magnitude, and needs only two disk accesses with
each KV read even when only less than 10% of meta-
data (Bloom filters) can be held in memory. To this end,
LSM-trie constructs a trie, or a prefix tree, that stores
data in a hierarchical structure and keeps re-organizing
them using a compaction method much more efficient
than that adopted for LSM-tree. Our experiments show
that LSM-trie can improve write and read throughput of
LevelDB, a state-of-the-art KV system, by up to 20 times
and up to 10 times, respectively.

1 Introduction

Key-value (KV) stores play a critical role in the assur-
ance of service quality and user experience in many web-
sites, including Dynamo [22] at Amazon, Voldemort [7]
at LinkedIn, Cassandra [1] at Apache, LevelDB [4] at
Google, and RocksDB [11] at Facebook. Many highly-
demanding data-intensive internet applications, such as
social networking, e-commerce, and online gaming, rely
on quick access of data in the stores for quality service.

A KV store has its unique advantage on efficient
implementation with a flat data organization and a

much simplified interface using commands such as
Put(key,value) for writing data, Get(key) for reading
data, and Delete(key). However, there are several trends
on workload characteristics that are seriously challeng-
ing today’s state-of-the-art KV store implementations for
high performance and high scalability.

First, very small KV items are widespread. As an
example, Facebook had reported that 90% of its Mem-
cached KV pools store KV items whose values are
smaller than 500 bytes [13]. In one KV pool (USR) ded-
icated for storing user-account statuses all values are of
2 bytes. In its nonspecific, general-purpose pool (ETC)
2-, 3-, or 11-byte values add up to 40% of the to-
tal requests to the store. In a replicated pool for fre-
quently accessed data, 99% of KV items are smaller than
68 bytes [26]. In the wildcard (the default pool) and a
pool devoted for a specific application, 75% of items are
smaller than 363 bytes. In Twitter’s KV workloads, after
compression each tweet has only 362 bytes, which con-
tains only 46 bytes of text [3]. In one of Instagram’s KV
workloads the key is the media ID and the value is the
user ID. Each KV item is just as large as a couple of
bytes [10]. For a store of a given capacity, smaller KV
items demand more metadata to locate them. The meta-
data may include index for locating a data block (e.g., a
4 KB disk block) and Bloom filters for determining data
existence in the block.

Second, demand on a KV store’s capacity at individ-
ual KV servers keeps increasing. The rising demand is
not only due to data-intensive applications, but also be-
cause of the cost benefit of using fewer servers to host a
distributed KV store. Today it is an economical choice
to host a multi-terabytes KV store on one server using
either hard disks or SSDs. However, this would signif-
icantly increase metadata size and make memory con-
strained, which is especially the case when significant
applications, such as MapReduce jobs, are scheduled to
the cluster hosting the store, competing the memory re-
source with the storage service [19, 33].



Third, many KV stores require high performance for
both reads and writes. It has been reported that ratio of
read and write counts in typical low-latency workloads
at Yahoo had shifted from anywhere between 2 and 9 to
around 1 in recent years [29]. Among the five core work-
loads in Yahoo’s YCSB benchmark suite two of them
have equal share of read and write requests [18]. There
are KV stores, such as LevelDB, that are optimized for
writes by organizing data in multiple levels. However,
when not all metadata can be held in memory, multiple
disk reads, each for medadata of a level, are needed to
serve a read request, degrading read performance. In
the meantime, for some KV stores, such as SILT [24],
major efforts are made to optimize reads by minimizing
metadata size, while write performance can be compro-
mised without conducting multi-level incremental com-
pactions.

In this paper, we propose LSM-trie, a KV storage sys-
tem that can accommodate multi-billions of small items
with a capacity of multi-terabytes at one server with lim-
ited memory demand. It supports a sustained through-
put of over 500 K writes per second, and a sustained
throughput of over 50 K reads per second even for work-
loads without any locality and thus with little help from
caching1. To achieve this, LSM-trie uses three novel
techniques. First, it integrates exponential growth pat-
tern in the LSM tree (Log-Structured Merge-tree)—a
commonly adopted KV-store organization—with a lin-
ear growth pattern. This enables a compaction design
that can reduce write amplification by an order of mag-
nitude and leads to much improved write throughput. A
high write throughput is desired as data modifications
and deletions are also processed as writes in the store
implementation. Second, using a trie, or a prefix tree,
to organize data in the store, LSM-trie almost eliminates
index. This allows more and stronger Bloom filters to be
held in memory, making service of read requests faster.
Third, when Bloom filters become too large to be en-
tirely held in the memory, LSM-trie ensures that on-disk
Bloom filters are clustered so that in most cases only one
4 KB-block read is required to locate the data.

Experiments show that LSM-trie significantly im-
proves write throughput over schemes in comparison, in-
cluding LevelDB, RocksDB, and SILT, by up to 20 times
regardless of system configurations such as memory size,
store size, storage devices (SSD or HDD), and access
pattern (uniform or Zipfian key distributions). LSM-trie
can also substantially improve read throughput, espe-
cially when memory available for running the KV store
is limited, by up to 10 times.

Note that LSM-trie uses hash functions to organize

1The throughput of read is significantly lower than that of write be-
cause one read needs access of at least one 4 KB block, while multiple
small KV items in write requests can be compacted into one block.

its data and accordingly does not support range search.
This is a choice similarly made in the design of many
important KV stores, including Amazon’s Dynamo [22],
LinkedIn’s Voldermort [7], and SILT [24], as this com-
mand is not always required by their users. Furthermore,
there are techniques available to support the command by
maintaining an index above these hash-based stores with
B-link tree [17] or dPi-tree [25], and experimental stud-
ies indicate that “there is no absolute winner” in terms of
range-search performance between stores natively sup-
porting it and those relying on external support [28].

2 The design of LSM-trie

The design of LSM-trie was motivated by the excessively
large write amplification of LSM-tree due to its data or-
ganization and compaction scheme [27]. In this section
we will describe the issue in the context of LevelDB, a
popular implementation of LSM-tree from Google. Then
we will describe a trie-based LSM-tree implementation
that can dramatically reduce write amplification in Sec-
tion 2.3. However, this optimized LSM-tree still retains
an index, which grows with the store size and eventually
becomes a barrier to the system’s scalability. In addition,
it may require multiple reads of Bloom filters on the disk
with a large store. In Section 2.4, we describe LSM-
trie, where KV items are hashed into individual buckets,
indices are accordingly removed, and Bloom filters are
grouped together to support efficient access.

2.1 Write Amplification in LSM-tree
A KV store design based on LSM-tree has two goals:
(1) new data must be quickly admitted into the store to
support high-throughput write; and (2) KV items in the
store are sorted to support fast data location. We use a
representative design, LevelDB, as an example to explain
the challenges on simultaneously achieving both of the
goals.

To meet the first goal LevelDB writes to the disk in a
large unit (a couple of megabytes) to generate an on-disk
data structure called SSTable. Specifically, LevelDB first
uses an in-memory buffer, called MemTable, to receive
incoming KV items. When a MemTable is full, it is writ-
ten to the disk to become an immutable SSTable. KV
items in an SSTable are sorted according to their keys.
An SSTable is stored as a file, and KV items are placed
in 4 KB blocks of the file. To locate a KV item in the
SSTable, LevelDB places an index in the file recording
the key of the first KV item in each block. Conduct-
ing binary search on the index, LevelDB knows in which
block a KV item can possibly be located. Because 4 KB
block is a disk access unit, it is not necessary to maintain
a larger index to determine byte offset of each item in a
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Figure 1: Using multi-level structure to grow an LSM-tree store.

Each solid rectangle represents an SSTable.

block. However, the index does not tell whether an item
is actually in the block. If not, accessing the block is
unnecessary and can substantially increase read latency.
To this end, LevelDB maintains a Bloom filter for each
block to indicate whether an item is in it [16]. To min-
imize its false positive rate, the filter must be sized pro-
portionally to the number of items in a block, usually
10–16 bits per item.

To meet the second goal LevelDB builds a multi-
level tree-like structure to progressively sort KV items.
As shown in Figure 1a, new SSTables, which are just
converted from MemTables, are placed in Level 0. To
quickly admit incoming items, items in new SSTa-
bles are not immediately sorted with those in exist-
ing SSTables at Level 0. Instead, each of the SSTa-
bles becomes a sub-level (L0.0,L0.1,L0.2, . . . ) of Level 0
(See Figure 1a). In the background, LevelDB merge-
sorts a number of L0 SSTables to produce a list of
non-overlapping SSTables at Level 1 (L1), an operation
called compaction. To quickly have more data sorted
into one list, starting from Level 1 there are no sub-
levels and the ratio of two adjacent levels’ sizes is large
(Size(Lk+1)/Size(Lk),where k = 0,1, . . . ). We name the
ratio amplification factor, or AF in short, which is 10 in
LevelDB by default. As every level (Lk+1) can be 10
times as large as its immediate upper level (Lk), the store
keeps producing exponentially larger sorted list at each
level and becomes very large with only a few levels.

However, this exponential growth pattern leads to an
excessively large write amplification ratio, a ratio be-
tween actual write amount to the disk and the amount
of data requested for writing by users. Because the range
of keys covered by each level is roughly the same, to
push one SSTable at a level down to its next lower level
LevelDB needs to read this SSTable and ten SSTables
in the lower level (in the worst case) whose entire key
range matches the SSTable’s key range. It then merge-
sorts them and writes the 11 resulting SSTables to the
lower level. That is, the write amplification ratio is

11, or AF + 1. For a new KV item to reach Level k
(k = 0,1,2, . . . ), the write amplification ratio can go up to
k× (AF + 1). When the k value reaches 5 or larger, the
amplification ratio can become unacceptably large (55
or larger). Such an expensive compaction operation can
consume most of the I/O bandwidth and leave little for
servicing frontend user requests.

For a store of given capacity, efforts on reducing the
write amplification by limiting number of levels would
have counter effect. One example is the SILT KV
store [24], which essentially has two levels (HashStore
and SortedStore). When the store grows large, its Sort-
edStore has to be much larger than HashStore (even
when multiple HashStores are employed). This causes
its very high write amplification (see Section 3 for mea-
surements), which justifies the use of multiple levels for
progressive compaction in the LSM-tree-based stores.

2.2 Challenge on Reducing Write Amplifi-
cation in the LSM-tree Compaction

A compaction entails reading sorted lists (one SSTable
from Lk and a number of SSTables matching its key range
from Lk+1), merging-sorting them into one sorted list,
and writing it back to Lk+1. While any data involved in
the operation contribute to the write amplification, it is
the larger data set from the lower level (Lk+1) that makes
the amplification ratio excessively large. Because the
purpose of the compaction is to push data to the lower
level, the contribution to the amplification from access-
ing data at the upper level is necessary. If we manage
to allow only data at the upper level to be involved in a
compaction, the write amplification can be minimized.

To this end, we introduce the linear growth pattern.
As shown in Figure 1b, in addition to Level 0 other lev-
els also consist of a number of its sub-levels. Sub-levels
belonging to the same level are of the same (maximum)
size. When a new sub-level is produced at a level, the
store linearly grows at this level. However, when a new
level is produced, the store exponentially grows (by AF
times). During growth of the store, new (sub)-levels are
produced alternatively using the linear and exponential
growth patterns. In other words, each LevelDB’s level is
replaced by multiple sub-levels. To minimize write am-
plification, we can merge-sort data in the sub-levels of
a level (Lk) to produce a new sub-level of its next lower
level (Lk+1). As similar amount of data in each sub-level,
but no data in the next lower level, are involved in a com-
paction, write amplification can be minimized.

A key consideration in LevelDB’s implementation is
to bound each compaction’s maximum cost in terms of
number of SSTables involved, or AF +1, to keep service
of user requests from being disruptively slowed down by
the background operation. For the same purpose, in the
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use of linear growth pattern in a compaction we select
one SSTable at each sub-level of a level (Lk), and merge-
sort these SSTables into a sequence of non-overlapping
SSTables at Level Lk+1. The range of keys involved
in a compaction represents the compaction’s key range.
Among all compactions moving data from Lk to Lk+1, we
must make sure their key ranges are not overlapped to
keep any two SSTables at Level Lk+1 from having over-
lapped key ranges. However, this cannot be achieved
with the LevelDB data organization because the sorted
KV-items at each sub-level are placed into the SSTables
according to the tables’ fixed capacity (e.g., 32 MB). The
key range size of an SSTable can be highly variable and
the ranges’ distribution can be different in different sub-
levels. Therefore, ranges of the aforementioned com-
pactions are unlikely to be un-overlapped.

2.3 SSTable-trie: A Design for Minimizing
Write Amplification

To enable distinct key range in a compaction, we do not
use a KV-item’s ranking (or its position) in a sorted list
to determine the SSTable it belongs to in a level. In-
stead, we first apply a cryptographic hash function, such
as SHA-1, on the key, and then use the hashed key, or
hashkey in short, to make the determination. This essen-
tially converts the LevelDB’s multi-level structure into a
trie, as illustrated in Figure 2. Accordingly we name this
optimized LevelDB SSTable-trie.

An SSTable-trie is a prefix tree whose nodes are table
containers, each containing a number of SSTables. Each
node has a fixed number of child nodes and the number is
equivalent to the AF (amplification factor) in LevelDB. If
the number is assumed to be 8, a node’s children can be
distinguished by a three-bit binary (000,001, . . . ,or 111).
A node in the trie can also be identified by a binary, usu-
ally of more bits. Starting from the root node, we can
segment the binary into consecutive three-bit groups with
the first group indicating a root’s child. As each bit group
identifies a corresponding node’s child, we can follow
the bit groups to find a path to the node corresponding

Before Compaction:

After Compaction:

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Figure 3: A compaction operation in the trie.

to the binary. All nodes of the same depth in a trie con-
stitute a level in the trie structure, which is equivalent to
a level in LevelDB. Each container has a pile of SSTa-
bles (see Figure 2). A trie level consists of a number of
SSTable piles. All SStables at the same position of the
piles at a trie level constitute a sub-level of the trie, which
corresponds to a sub-level in LevelDB.

As each KV item is also identified by a binary (the
hashkey), its location in a level is determined by match-
ing the hashkey’s prefix to the identity of a node in the
level (see Figure 2). In contrast to the KV-item placement
in a level of LevelDB, a KV-item’s location in a trie level
is independent of other keys in the same level. A com-
paction operation involves a pile of SSTables in only one
container. After a compaction KV items in a pile are
moved into the container’s children according to their re-
spective hashkeys, rather than their rankings in the sorted
list as LevelDB does. By using hashkeys each com-
paction’s key range is unique and SSTables produced by
a compaction are non-overlapping. Such a compaction
incurs minimal write amplification. Figure 3 illustrates
a compaction operation in a trie. Note that use of SHA-
1 as the hash function to generate hashkey guarantees a
uniform distribution of KV items at each (sub)-level re-
gardless of distribution of original keys.

2.4 LSM-trie: a Large Store for Small
Items

Our goal is to enable very large KV stores in terms of
both capacity and KV-item count in a server. A big chal-
lenge on designing such a store is the management of its
metadata that often have to be out of core (the DRAM).

2.4.1 Out-of-Core Metadata

For a given KV item, there is at most one SSTable at each
(sub)-level that may store the item in LevelDB because
every (sub)-level is sorted and its SSTables’ key ranges
are not overlapped. The store maintains a very small in-
memory search tree to identify the SSTable at each level.
At the end of each SSTable file an index and Bloom fil-
ters are stored to facilitate search in the table. The index



is employed to identify a 4 KB block and a Bloom filter
is maintained for each block to tell whether a KV item
is possibly in the block. The indices and Bloom filters
in a KV store can grow very large. Specifically, the size
of the indices is proportional to the store’s capacity (or
number of 4 KB blocks), and the size of the Bloom filters
is proportional to total item count. For a large store the
metadata can hardly be accommodated in memory. For
example, a 10 TB store holding 100 B-KV-items would
require about 125 GB space for 10-bit-per-key Bloom-
filters and 30 GB for indices. While it is well affordable
now and even so in the near future to have an HDD ar-
ray or even an SSD array as large as 10 TB in a server,
it is not cost-effective to dedicate such a large DRAM
only for the metadata. Therefore, we have to assume that
significant portion of the metadata is only on the disk
when the store grows large. Because locality is usually
not assumed in KV-store workloads [14, 31], the fact can
be that most reads require retrieval of metadata from the
disk before data can be read. The critical issue is how to
minimize number of metadata reads in serving a read re-
quest for a KV item. These metadata are possibly stored
in multiple SSTables, each at a different level. As the
metadata are associated with individual SSTables and are
distributed over them, having multiple reads seems to be
unavoidable in the current LSM-tree’s structure.

SSTable-trie introduces the linear growth pattern,
which leads to the design of LSM-trie that removes al-
most all indices and enables one metadata disk access
per read request. Before describing the design, let us
first address a concern with SSTable-trie. Using the lin-
ear growth pattern one can substantially increase number
of levels. As a multi-level KV-item organization requires
continuous search of levels, starting from Level 0, for a
requested item until it is found, it relies on Bloom filters
in each level to skip as many levels without the item as
possible. However, as each Bloom filter has a false pos-
itive rate (about 0.82% for a setting of 10 bits per item),
the probability of searching levels without the item in-
creases with the increase of level count (e.g., from 5.7%
for a 7-level structure to 46% for a 56-level one). There-
fore, the Bloom filter must be beefed up by using more
bits. For example, using a setting of 16 bits per item
would ensure less than 5% false positive rate for an entire
120-level structure. Compared with the disk capacity,
the additional on-disk space for the larger Bloom filters
is minimal. As we will show, LSM-trie removes indices
and uses only one disk access to read Bloom filters.

2.4.2 Removing Indices by Using HTables

LSM-trie represents an improvement over SSTable-trie
by incorporating an efficient metadata management. A
major change is to replace the SSTable in SSTable-trie
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of aggregate size of KV items in a bucket.

with HTable, a hash-based KV-item organization (see
Figure 4). In an SSTable, items are sorted and index
is needed for locating a block. In HTable, each block
is considered as a bucket for receiving KV items whose
keys are hashed into it. While each KV item has a SHA-
1-generated 160 bit hashkey and its prefix has been used
to identify an SSTable in SSTable-trie, or an HTable in
LSM-trie, we use its suffix to determine a bucket within
an HTable for the KV item. Specifically, if there are m
buckets in an HTable, a KV item with Hashkey h would
be placed in Bucket (h mod m).

To eliminate the index in an HTable, LSM-trie must
use buckets of fixed size. Further, as Bloom filter is
applied on individual buckets, an entire bucket would
be read should its filter indicate a possible existence
of a lookup item in the bucket. Therefore, for access
efficiency buckets should be of the same size as disk
blocks (4 KB). However, a challenging issue is whether
the buckets can be load balanced in terms of aggregate
size of KV items hashed into them. It is known that us-
ing a cryptographic hash function allows each bucket to
have statistically equal chance to receive a new item, and
item count in each bucket follows a normal distribution.
In addition to key’s distribution, item size2 and variation
of item size also add to variation of the bucket load.

Figure 5 shows the distribution of bucket load across
the buckets in an HTable after we store KV items, whose
keys are of the Zipfian distribution, into a 32 MB HTable
of 8192 4 KB-buckets. For each plot, the item size is of

2With larger KV items it is harder to balance the load across the
buckets in an HTable.
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Figure 6: Balancing the load across buckets in an HTable.

the uniform distribution with different average sizes, and
the size is in the range from 1 B to a size about doubling
their respective averages. In each experiment we keep
writing KV items to the store until it is 95% full. By
using the highly-skewed Zipfian distribution, the results
represent a conservative estimation of non-uniformity of
bucket load distribution.3 As shown, there are increas-
ingly more over-loaded buckets and more under-loaded
buckets with the increase of average item size.

Obviously LSM-trie must move excessive items out
of over-loaded buckets to make sure every bucket has
4 KB or less data. Like SSTable, HTable is also im-
mutable. During the construction of an HTable, we use a
greedy algorithm to migrate some items that were origi-
nally hashed to an overloaded bucket to an under-loaded
bucket for storage. As illustrated in Figure 6, the buckets
are first sorted into a list according to their initial loads.
We then conduct a paired migration operation within the
list, in which a minimal number of KV items are moved
out of the most overloaded bucket (the source) to the
most under-loaded bucket (the destination) until the re-
maining items in the source can fit in the bucket. The
source bucket is removed from the list and we keep the
list sorted. We then repeat the migration operation on
the shorter list. The operation continues until either a
list’s source bucket is not overloaded or the list’s destina-
tion bucket is also overloaded. To minimize the chance

3Interestingly the results are little affected by the key distribution.
Even the uniform key distribution produces similar results.
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Figure 7: Bucket load distribution after load balancing for HTables

with different average item sizes.
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Figure 8: Uses of a 160-bit SHA1 key: (1) the prefix is used for trie

encoding; (2) The infix is used for sorting KV items in a bucket; and (3)

the suffix is used for locating the KV items in an HTable.

of having the second scenario, we set a limit on the ag-
gregate size of KV items that can be stored in an HTable,
which is 95% of the fixed HTable capacity (32 MB by de-
fault). This approach is effective. For example, with such
a small reduction on usable capacity we have not ob-
served a single item that is moved out of an over-loaded
bucket but cannot be accommodated in an under-loaded
bucket for HTables whose item sizes are 400 B on aver-
age and are uniformly distributed between 1 B and 800 B.
Figure 7 shows the bucket load distribution after the load
is balanced.

To handle the case of overflown items that cannot be
accepted into any regular buckets, mostly due to exces-
sively large KV items, during creation of a new HTable,
LSM-trie sets up a special bucket to receive them. Items
in the special bucket are fully indexed. The index is saved
in the HTable file and is also cached in memory for ef-
ficiently locating the items. As the bucket is designed
only for a few large KV items, its index should be of
minimal size. Generally, workloads for accessing con-
sistently large items (a few KBs or larger) should use
SSTable-trie. In fact, such workloads do not pose a chal-
lenge on their metadata management in most KV stores.

There are several issues to address on the load bal-
ancing strategy. One is how to efficiently identify KV
items overflown out of a bucket. To minimize the book-
keeping cost for the purpose, we use a hash function on
the keys to rank KV items in a bucket and logically place
them into the bucket according to their rankings. We then
use the bucket capacity (4 KB) as the watermark. Any
items that are across or above the watermark are con-
sidered as overflown items for migration. We only need
to record the hash value for the item at the watermark,
named HashMark, for future lookups to know whether
an item has been migrated. For the hash function, we
simply select a 32-bit infix in the 160-bit hashkey (e.g.,
from 64th bit to 95th bit), as illustrated in Figure 8. We



also record where the items are migrated (the destination
bucket ID). A migrated item can be further migrated and
searching for the item would need to walk over multiple
buckets. To minimize the chance for an item to be re-
peatedly migrated, we tune the hash function by rotating
the 32-bit infix by a particular number of bits, where the
number is a function of bucket ID. In this way, different
functions can be applied on different buckets, and an item
is less likely to keep staying above buckets’ watermarks
for repeated migrations.

The metadata for each bucket about its overflown
items comprise a source bucket ID (2 B), a migration des-
tination ID (2 B), and a HashMark (4 B). They are stored
in the bucket on the disk. A design issue is whether
to cache the metadata in memory. If we cache every
bucket’s metadata, the cost would be comparable to the
indices in SSTable, which records one key for each block
(bucket). Actually it is not necessary to record all buck-
ets’ metadata if we do not require exactly one bucket read
in an HTable lookup. As shown in Figure 5, distribution
of overflown items over the buckets is highly skewed.
So we only need to cache metadata for the most over-
loaded buckets (20% by default) and make lookup of
these items be re-directed to their respective destination
buckets without a disk read. In this way, with slightly
increased disk reads LSM-trie can significantly reduce
its cached metadata. For example, when KV items are
of 100 B in average and their sizes are uniformly dis-
tributed between 1 B and 200 B, only 1.01 bucket reads
per lookup are needed with only 14 KB (1792 × 8 B)
of the metadata cached, about 1/10 of the size of an
SSTable’s indices.

Similar to LevelDB, LSM-trie maintains a Bloom fil-
ter for each bucket to quickly determine whether a KV
item could be there. The migration of KV items out of a
bucket does not require updating the bucket’s Bloom fil-
ter, as these KV items still logically remain in the bucket
and are only physically stored in other bucket(s). Their
physical locations are later revealed through the bucket’s
migration-related metadata.

2.4.3 Clustering Bloom Filters for Efficient Access

LSM-trie does not assume that all Bloom filters can al-
ways be cached in memory. A Bloom filter at each
(sub)-level needs to be inspected until a requested item
is found. LSM-trie makes sure that all Bloom filters that
are required to service a read request in a level but are not
cached can be retrieved into memory with only one disk
read. To this end LSM-trie gathers all Bloom filters asso-
ciated with a column of buckets4 at different sub-levels
of an HTable container into a single disk block named

4As shown in Figure 9, the column of buckets refers to all buckets
at the same position of respective HTables in a container.

HTable
Disk block
Bloom-filter

Hash(key) = 3

Clusters of Bloom-Filters

Figure 9: Clustering Bloom filters

bits/key 50 Levels 100 Levels 150 Levels
10 40.95% 81.90% 122.85%
12 15.70% 31.40% 47.10%
14 6.00% 12.00% 18.00%
16 2.30% 4.59% 6.89%
18 0.88% 1.76% 2.64%

Table 1: Bloom filter false-positive rate.

BloomCluster, as illustrated in Figure 9. Because the
same hash function is applied across the sub-levels, a KV
item can appear only in one particular column of buckets
if it is in the container. In this way, only one disk read of
Bloom filters is needed for a level.

While LSM-trie is designed to support up to a 10 TB
store, its data is organized so that at most one read of
metadata (Bloom filters) is required to access any item in
the store. The prototyped LSM-trie system uses 32 MB
HTables and an amplification factor (AF) of 8. The store
has five levels. In the first four levels, LSM-trie uses
both linear and exponential growth pattern. That is, each
level consists of eight sub-levels.5 All the Bloom fil-
ters for the first 32 sub-levels are of 4.5 GB, assuming
a 64 B average item size and 16 bit Bloom filter per key.
Adding metadata about item migration within individ-
ual HTables (up to 0.5 GB), LSM-trie needs up to only
5 GB memory to hold all necessary metadata. At the fifth
level, which is the last level, LSM-trie uses only linear
growth pattern. As one sub-level of this level has a ca-
pacity of 128 G, it needs 8 such sub-levels for the store
to reach 1 TB, and 80 such sub-levels to reach 10 TB.
All the sub-levels’ Bloom filters are well clustered into a
BloomCluster so that only one disk read of Bloom filter
is required for a read request. Though the false positive
rate increases with level count, it can be well capped by
using additional bits per KV item, as shown in Table 1.
When LSM-trie uses 16-bit-per-item Bloom filters, the
false positive rate is only about 5% even for a 112-sub-
level 10 TB KV store. In the worse case there are only
2.05 disk reads, one for a BloomCluster and 1.05 on av-
erage for data.

5Actual number of sub-levels in a level can change during com-
paction operations. It varies between 0 and 16 with an average of 8.



SSD HDD
Random Read 4KB (IOPS) 52,400 70
Sequential Write (MB/s) 230 144
Sequential Read (MB/s) 298 138

Table 2: Basic disk performance measurements.

In the LSM-trie structure, multiple KV items of the
same key, including special items for Delete operations,
can simultaneously stay in different sub-levels of the last
level without being merged as there are no merge-sort op-
erations at this level. Among the items of the same key,
only the item at the highest sub-level is alive and the oth-
ers are considered as garbage. This may lead to under-
utilized disk space, especially when the level contains
substantial amount of garbage. To ameliorate the effect,
we periodically sample a few random HTable containers
and assess their average garbage ratio. When the ratio is
larger than a threshold, we schedule garbage-collection
operations in a container-by-container manner either pe-
riodically or when the system is not loaded.

3 Performance Evaluation

To evaluate LSM-trie’s performance, we implement a
prototype and extensively conduct experiments to reveal
insights of its performance behaviors.

3.1 Experiment Setup
The experiments are run on a Dell CS23-SH server with
two Intel Xeon L5410 4-core processors, 64 GB FB-
DIMM memory, and 64-bit Linux 3.14. The SSD (Sam-
sung 840 EVO, MZ-7TE1T0BW) has 1 TB capacity. Be-
cause of its limited storage capacity (1 TB), we install
DRAM of moderate size on the computer (64 GB), a
configuration equivalent to 256 GB memory with a 4 TB
store. We also build a KV store on a hard disk, which is
3 TB Seagate Barracuda (ST3000DM001) with 64 MB
cache and 7200 RPM. Table 2 lists the disks’ perfor-
mance measurements. As we can see, the hard disk’s
random read throughput is too small and it’s not compet-
itive considering SSD’s rapidly dropping price. There-
fore, we do not run read benchmarks on the hard disk.
All experiments are run on the SSD(s) unless stated oth-
erwise. In LSM-trie immediately after a table is written
to the disk, we issue fsync() to persist its data.

In the evaluation, we compare LSM-trie with Lev-
elDB [4], RocksDB (an optimized LevelDB from Face-
book) [11], and SILT [24]. LSM-trie uses 32 MB HTa-
bles, LevelDB and RocksDB use 32 MB SSTables, and
SILT uses 32 MB HashStore. We run SILT using its
source code provided by its authors with its default
setup [9]. We do not include experiments for SSTable-
trie as its write performance is the same as LSM-trie, but

Figure 10: Write throughput of different stores. For each store,

the execution stops when either the store reaches 1TB or the run time

reaches 24 hours, whichever occurs earlier.

its read performance can be unacceptably worse than that
of LevelDB when there are many levels and Bloom filters
cannot be cached.

We use Yahoo’s YCSB benchmark suite to generate
read and write requests [18]. Average value size of the
KV items is 100 B with a uniform distribution between
1 B to 200 B. The key size is 16 B. We use constant value
size (100 B) for SILT as it does not support varied value
size. By default, we use the uniform key distribution, as
it represents the least locality and minimal overwrites in
the workload, which helps increase a store’s write pres-
sure.6

3.2 Experiment Results
In this section we present and analyze experiment results
for write and read requests.

3.2.1 Write Throughput

Figure 10 plots the write throughput, in terms of number
of PUT queries served per second (QPS), for LSM-trie,
LevelDB, RocksDB, and SILT with different store sizes,
or numbers of KV items in the store. We have a number
of interesting observations on the plots.

The LSM-trie store has throughput way higher than
other stores. Even the throughput for LSM-trie on the
hard disk (see the “LSM-trie-HDD” curve) more than
doubles those of other stores on the SSD. It takes about
24 hours for LSM-trie to build a 1TB store containing
nearly 8 billions of small items on an HDD. As it is too
slow for the other stores to reach the size of 1TB within
a reasonable time period, we stop their executions af-
ter they run for 24 hours. By estimation it would take
RocksDB and LevelDB about 4–6 days and even longer
time for SILT to build such a large store on the SSD.

6We do have a test for the Zipfian distribution in Section 3.2.



Figure 11: Write amplification ratios of different stores. For each

store, the execution stops when either the store reaches 1TB or the run

time reaches 24 hours, whichever occurs earlier.

Admittedly SILT is designed mainly to service read re-
quests [24]. However, taking so long to build a large
store is less desirable in the first place. To understand
their big performance gaps, we draw the write amplifica-
tion ratio (WAR) plots for the stores in Figure 11.

It’s not a surprise to see SLIT’s WAR increases almost
linearly with the store size, as SILT does not adopt a
multi-level organization. By maintaining a large Sorted-
Store and merge-sorting much smaller HashStores into
it, most of its compaction I/O is to access data in the
SortedStore, and contributes to the WAR. While both
LevelDB and RocksDB adopt LSM-tree’s multi-level or-
ganization, its exponential growth pattern significantly
compromises its WAR. The WAR curve of RocksDB
is obtained by running its performance monitoring tool
(db_bench). The curve exhibits large variations, mainly
because of its choice of sampling points for performance
measurements. While RocksDB generally has a higher
WAR, its write throughput is higher than that of LevelDB
because of its use of multiple threads to better utilize par-
allelism available in SSD and CPU. The WAR curves for
LSM-trie (“LSM-trie-*” curves in Figure 11) have small
jumps at about 0.12 and 1.0 billion items in the KV store,
corresponding to the timings when the store grows into
Levels 3 and 4, respectively (Figure 11). Once the store
reaches its last level (Level 4), the WAR curves become
flat at around 5 while the store increases up to 10TB.

The write throughput curve for the hard disk (“LSM-
trie-HDD”) in Figure 10 has two step-downs, well
matching the two jumps in its corresponding WAR curve.
After the store reaches 1 billion items, its throughput
does not reduce with the increase of the store. For LSM-
trie on the SSD, we do see the first and second step-
downs on the curve (“LSM-trie-1SSD” in Figure 10) cor-
responding to the two WAR jumps. However, we had
been confused by the third step-down, as marked in Fig-
ure 10, when the store size reaches about 1.7 billion items

or 210GB. One might attribute this throughput loss to
the garbage collection. However, we had made efforts to
use large HTables (32MB) and aligned them to the erase
block boundaries. After investigation, it turns to be due
to SSD’s internal static wear-leveling.

As we know, frequency of data re-writing at different
levels dramatically varies. The ratio of the frequencies
between two adjacent levels (lower level vs. upper level)
can be as high as 8. For data at Level 4 and at Level 0,
the ratio of their re-write frequencies could be 4096 (84)!
With such a large gap between the frequencies, dynam-
ical wear-leveling is insufficient and SSD’s FTL (Flash
Translation Layer) has to proactively move data at the
lower level(s) around to even out flash wear across the
disk. The impact of the wear-levering becomes increas-
ingly serious when more and more SSD’s space is occu-
pied. To confirm our speculation, we introduce a second
SSD and move data at the two upper level (about only
2.5GB) to it, and run LSM-trie on the two SSDs (see
“LSM-trie-2SSD” in Figure 10). The third step-down is
postponed to a significantly later time (from about 1.7
billion items to about 5.2 billion items). The new third
step-down is caused by re-write frequency gaps among
data at Levels 2, 3, and 4 in the first SSD. Using more
SSDs and separating them onto different SSDs would
eliminate the step-down. In practice, it is a viable so-
lution to have a few small but wear-resistent SSDs (e.g.,
SLC SSD) to separate the first several levels of data.

We also issue write requests with the Zipfian key dis-
tribution to LSM-trie on two SSDs. It has a smaller
WAR than those with the uniform key distribution (see
“LSM-trie-2-zipf” in Figure 11), and higher through-
put (see “LSM-trie-2-zipf” in Figure 10). Strong lo-
cality of the workload produces substantial overwrites,
which are merged during the compactions. As a re-
sult, about one third of items are removed before they
reach the last level, reducing write amplification and in-
creasing throughput. The Zipfian distribution also al-
lows LevelDB to significantly reduce its WAR (com-
pare “LevelDB” and “LevelDB-zipf” in Figure 11) and
to increase its write throughput (compare “LevelDB” and
“LevelDB-zipf” in Figure 10).

In almost all scenarios, LSM-trie dramatically im-
proves WAR, leading to significantly increased write
throughput. The major reason of the improvements is the
introduction of the linear growth pattern into the LSM
tree and the adoption of the trie structure to enable it.

3.2.2 Performance of Read

Figures 12 and 13 plot the read throughput for various
stores on one SSD with 64Gb and 4GB memory, respec-
tively, except SILT. Keys of read requests are uniformly
distributed. As explained, we cannot build a sufficiently



Figure 12: Read throughput with 64 GB memory.

Figure 13: Read throughput with 4 GB memory.

large SILT store to measure its read performance. In-
stead, we will use the results reported in its paper for
comparison [24]. To accelerate the building of the Lev-
elDB and RocksDB stores, we use YCSB to generate a
trace of write requests whose keys are sorted. The stores
can then be quickly built without any compactions.

As shown in Figure 12, when the store size is rela-
tively small (with fewer than about 1 billion KV items
or 128 GB data), almost half of accessed data can be
cached in memory and the throughput is very high (much
higher than 80K QPS). This throughput is not explicitly
shown in the figure, as it is less I/O related. LSM-trie
has higher throughputs than LevelDB and RocksDB for
both small and large store sizes. With a small store size,
LSM-trie uses less memory to cache metadata and leaves
more for caching data than other stores, producing higher
hit ratios and read throughputs. When the store becomes
larger, theh working set becomes larger due to uniform
key distribution and the memory size becomes less rel-
evant to the throughput. LSM-trie’s higher throughputs
with larger store are due to the alignment of its block to
the SSD pages in its implementation. Without the align-
ment, one access of an SSTable-file’s block may result
in access of an additional page. For the following exper-
iment we augment LevelDB and RocksDB by aligning
their blocks to the SSD pages. LSM-trie’s throughput
with a large store (over 6 billions KV items) is around
96% of one SSD’s raw read throughput in terms of num-
ber of 4 KB-blocks read per second. This is the same
percentage reported in the SILT paper [24].

Considering the scenario where a server running a KV

Latency Percentile 5% read 50% read 95% read
95% 690 µs 790 µs 700 µs
99% 860 µs 940 µs 830 µs

Table 3: Read Latency under mixed read/write workload.

store may simultaneously run other application(s) de-
manding substantial memory resource, or where a KV
store runs within a disk drive with small memory [8],
we evaluate LSM-trie’s performance with a constrained
memory size. Figure 13 shows read throughput when
the memory is only 4 GB 7. Current LSM-trie’s imple-
mentation always keeps metadata for the first four lev-
els in the memory. More and more requests require one
read of out-of-core metadata in addition to one read of
data after the store grows beyond the first four levels.
This is why the curve for LSM-trie starts to drop be-
yond 1.2-billion-item store size. The throughput curves
of LevelDB and RocksDB also drop with the increase of
store size. They drop much more than that of LSM-trie.
RocksDB’s throughput is higher than that of LevelDB
initially, as it caches more metadata by giving metadata
a caching priority higher than data.

Our measurements show that all requests can be com-
pleted in 1 ms, and its 99% percentile latency is 0.92
ms. To know how read latency is affected by concurrent
write requests, we list the 95% and 99% percentile laten-
cies for different percentages of read requests among all
the read/write requests in Table 3. The read latencies are
not sensitive to write intensity. The KV store store many
small items in write requests into one block while each
read request has to retrieve an entire block. Thanks to the
much reduced write compaction in LSM-trie, intensity of
write requests has a small impact on read latency.

4 Related Work

Key-value stores have become an increasingly popular
data management system with its sustained high perfor-
mance with workloads challenging other systems, such
as those generating a huge number of small data items.
Most related works aim for efficient writes and reads.

4.1 Efforts on Supporting Efficient Writes
Most KV stores support fast writes/updates by us-
ing log-based write, such as FAWN [12], Flash-
Store [20], SkimpyStash [21], SILT [24], LevelDB [4],
and bLSM [29]. Though log-appending is efficient for
admitting new data, it is not sufficient for high write effi-
ciency. There can be significant writes caused by internal
data re-organization and their efficiency can be critical to
the write throughput observed by users. A primary ob-
jective of the re-organization is to remove garbage from

7Note that write performance is not affected by the small memory.



the log. Some systems, such as FAWN, FlashStore, and
SkimpyStash, focus mostly on this objective and incurs
a relatively small number of additional writes. Though
these systems are efficient for serving writes, they leave
the data not well organized, and produce a large metadata
set leading to slow reads with relatively small memory.

Another group of systems, such as LevelDB, SILT, and
bLSM, aim to build a fully organized data structure—one
(almost) sorted list of KV items. This is apparently ideal
for reducing metadata size and facilitating fast reads. It is
also essential for a scalable system. However, it can gen-
erate a very large write amplification. The issue quickly
deteriorates with the growth of the store. To address the
issue, RocksDB compacts more than two contiguous lev-
els at once intending to sort and push data faster to the
lower level [11]. However, the improvement is limited as
the amplification is fundamentally due to the difference
of the data set sizes at different levels. To mitigate the
compaction cost, TokuDB uses a Fractal Tree, in which
data is pushed to its next level by simply being appended
into log files at corresponding tree nodes [23, 15]. With-
out well sorting its data, TokuDB has to maintain a much
larger index, leading to larger memory demand and/or
additional disk access for metadata. In contrast, with the
support of the trie structure and use of linear growth pat-
tern, LSM-trie minimizes write amplification.

4.2 Efforts on Supporting Efficient Reads
Read efficiency is mostly determined by two factors. One
is metadata size and the other is the efficiency of retriev-
ing metadata from the disk. Both determine how many
disk reads are needed to locate a requested KV item.

As SILT has a fully sorted list of KV items and uses
a highly compact index representation, it produces very
small metadata [24]. In contrast, LevelDB’s metadata
can be much larger as they include both indices and
Bloom filters. It may take multiple reads for LevelDB
to load its out-of-memory metadata. FAWN [12] and
FlashStore [20] have very large metadata as they directly
store pointers to the on-disk items, especially when the
items are small and the store is large. SkimpyStash stores
hash table buckets on the disk, essentially leaving most
metadata on the disk and may require many disk reads
of metadata to locate the data [21]. In contrast, LSM-trie
substantially reduces metadata by removing almost all
indices. It requires at most one metadata read for each
read request with its well clustered metadata.

4.3 Other Related Works
Sharding (or partitioning), as a technique to distribute
heavy system load such as large working sets and in-
tensive I/O requests across nodes in a cluster, has been

widely used in database systems and KV stores [6, 5, 2].
It has been proposed as a potential method for reducing
merge (or compaction) overhead by maintaining multi-
ple smaller store instances (shards) at a node [24]. How-
ever, if the number of shards is moderate (fewer than one
hundred) at a node, each shard has to grow into four or
larger number of levels when the store becomes large.
Accordingly write amplification cannot be substantially
reduced. Meanwhile, because memory demand, includ-
ing MemTables and metadata, is about proportional to
the number of shards, using many shards increase pres-
sure on memory. In contrast, LSM-trie fundamentally
addresses the issue by improving store growth pattern to
minimize compaction cost without concerns of sharding.

Being aware of large compaction cost in LevelDB,
VT-Tree opportunistically looks for any block at a level
whose key range does not overlap with that of blocks at
another level during merge-sorting of the two levels’ KV
items [30]. Effectiveness of this method relies on proba-
bility of having non-overlapping blocks. For workloads
with small items, there are a large number of keys in a
block, reducing the probability. Though it had been re-
ported that this method can reduce write amplification by
about 1

3 to 2
3 , it is far from enough. In contrast, LSM-trie

reduces the amplification by up to an order of magnitude.
While LSM-trie trades some disk space (around 5%)

for much improved performance, Yu et al. proposed a
method to improve performance of the disk array by trad-
ing capacity for performance [32]. They trade 50% of the
disk space for a throughput improvement of 160%.

5 Conclusions

In this paper we describe LSM-trie, a key-value store de-
signed to manage a very large data set in terms of both its
data volume and KV item count. By introducing linear
growth pattern, LSM-trie minimizes compaction cost for
LSM-tree-based KV systems. As our extensive experi-
ments demonstrate, LSM-trie can manage billions of KV
items with a write amplification of only five. By design it
can manage a store of up to 10 TB. LSM-trie can service
a read request with only two SSD reads even when over
90% of the bloom-filters is not in the memory. Further-
more, with a second small SSD (only 20 GB) to store the
bloom-filters, the overall throughput can reach the peak
throughput of the raw device (50 K QPS vs. 52 K IOPS),
and 99% of its read latency is below 1 ms.
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