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Abstract

General-purpose computing on graphics processing units (GPGPU) has become
a hot topic for computer scientists. Especially within the High-Performance
Computing (HPC) community, these massively parallel graphics processors have
received much attention, and with good reason. Benchmarking of common
problems solved on the newest GPUs from NVIDIA and other vendors shows
a speedup of up to 70 times that of a single CPU implementation. Among the
heart of all this innovation is the NVIDIA Tesla architecture, capable of scaling
beyond that of modern CPUs, reaching a total of 240 streaming processors with
its latest models. Much attention has been given to the architecture and imple-
mentation details, but little or no focus has been given upon the components
surrounding the GPU, namely the computer and its components.

The process of moving data to and from the GPU is influenced by two
important metrics, latency and bandwidth. For small transfers, the latency can
severely impact the performance, while for larger transfers the bandwidth comes
more and more into play. These metrics are therefore the metrics that will be
used throughout this report to judge the important of various properties of
the host system. These properties include processor clock frequencies, chipsets,
memory frequencies and architecture, as well as the PCI Express bus.

Our measurements performed shows how the PCI Express bus is a major
bottleneck for the transfers to and from the GPU, making overclocking this bus
an action worth considering. The CPU clock frequency which one would assume
to have great influence, proved not to affect the bandwidth at all, and affected
the latency only to a small extent. The architecture of the CPU, however proved
to be a crucial aspect. The Intel CPU we tested, greatly outperformed the AMD
counterparts on all metrics.

Finally, note that there is still one important fact that has not yet been men-
tioned, and that is that the GPU is still not capable of performing all the tasks
required of a realistic application. This makes the high-end general CPU still
a necessity to achieve peak performance. However as more and more computa-
tions are moved over to the GPU, the trade-of between cost and performance
can soon make the investment in high-end computers unacceptably large for a
marginal improvement.
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Chapter 1

Introduction

The field of High Performance Computing (HPC) is a large industry with many
large installations trying to maximize the computing power accessible to the
researchers. The modern processors suffers from physical constraints, and are
today near their maximum frequency achievable with existing production tech-
niques [4]. This combined with the development of programmable pipelines on
the Graphics Processing Unit (GPU) has become the origin of a new research
field for General-Purpose computing on the GPU (GPGPU). The graphics pro-
cessor is a massively multi-core processor optimized for floating-point operations
done in parallel. These properties suites the HPC community since a single GPU
may hence provide computing power equivalent to small supercomputers [26].

Bigger is better is a statement which well has described the HPC community
for the last decades. The eagerness to achieve higher and higher number of flops
has been a metric for success. But with GPU, the landscape has changed; leaving
the computers as mere supporting devices which only purpose is to facilitate for
the graphics processors. The performance of a GPU is the same regardless of
the surrounding system with respect to pure calculations. This has reduced
the computer to a device whose purpose is to provide the GPU with the data
required to perform the calculations. For at this key area, the GPU has yet to
venture, since the GPU is not an alternative to a CPU, but rather an accelerator
card. With this in mind, this report will put the focus on the surrounding system
to determine wetter the high-end systems are still required or if a mere budget
computer would suffice at achieving peak performance from the GPU.

GPGPU receives much attention from HPC-researchers due to its possibil-
ities, but many properties of this field have yet to be unveiled. In this report
the influence of some of these properties will be determined. By conducting
these measurements and checking for the comformance with the model given
in Section 3.2, this report seeks to provide the GPGPU developers and system
administrators with one additional metric when considering computer systems
and their suitability for GPGPU applications. There is a vast number of in-
dividual properties which may affect the performance of the GPU, This report
focuses primarily on the external properties such as CPU frequency, memory
bandwidth and others. Through isolating each of these properties in designated
test-systems, the properties can be adjusted to measure the impact of different
settings. This approach is somewhat limited in the sense that there might be
combination of settings which may give unexpected results, but the vast num-
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ber of combinations makes it impossible to test all these under the scope of this
report.

1.1 Outline

This report will start with a brief introduction to the graphics processor and
GPGPU programming in Chapter 2, and then continue on to describe the vari-
ous components in a computer system which have properties that can affect the
performance with respect to GPGPU applications.

Chapter 3 contains an explanation of latency and bandwidth, as well as a
description of the methods which are used to test these two metrics. It then
describes a theoretical model which seeks to give an abstraction of a GPGPU
system. After that, the various system used in this report to isolate the dif-
ferent properties are described, including a brief introduction to the HPC-Lab
located at Department of Computer and Information Science at the Norwegian
University of Science and Technology, which was set up during the writing of
this report. This chapter also includes a description of the proprietary soft-
ware developed to perform the measurements used in this report, and finally a
discussion of the various potential sources of error.

The results of the measurements and discussion of these are presented in
Chapter 4, starting first with a test of the various graphics cards available,
followed by a presentation of the properties tested with its results and a short
comment on the impact these properties may have on GPGPU applications.

Finally, the conclusion and recommendations regarding various properties for
GPGPU-systems, as well as an outline of future work will be given in Chapter 5.

2



Chapter 2

Background

This chapter will give a brief introduction to main concepts which are used in
this report. First it starts with an overview of the field of benchmarking. Later
it continues with a overview of the GPGPU and the NVIDIA Tesla architecture
as well as CUDA which is used to develop for the Tesla architecture. Finally,
the different hardware components tested in this report are described.

2.1 Benchmarking

A key aspect of choosing the right computing system for a calculation is knowing
which system will perform the calculations fastest. But running the calculations
on several machines just to test this would be pointless since it would require
more time than running the calculations. To overcome this obstacle, a set
of benchmarking tests can be performed. These tests seek to give a certain
number of metrics to which on can derive the expected performance of a given
calculation on the specified system. There exists many ways to perform these
benchmarks, but common for most of them is that they give no complete view
of the performanceof the system. As described by [13], the benchmarking can
be biased with respect to the various metrics. In his case, he describes the
relation between bandwidth and latency. These two metrics will be described
more thoroughly in Section 3.1.1 and 3.1.2.

2.1.1 Hockney model

The two metrics latency and bandwidth are both part of a simple computer
system model developed by Hockney [13]. The model describes in its simplest
form how the bandwidth and latency affects the time it takes to transfer a given
set of data. This relationship is described in Equation 2.1, where the time T is
given as a function of the latency α, bandwidth β and transfer size m in bytes.

T = α+ β ∗m (2.1)

2.1.2 Dwarfs and Motifs

Another approach to benchmarking a system is to consider how the system
would perform on a set of problems considered to be representative of the full
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set of problems which could be solved at the given system. These problems
where first described by Phil Colella under the name dwarfs [4]. The seven
dwarfs where later expanded to 13 problems and renamed to Motifs by a group
of scientists in the important Berkeley view article [4] by Patterson et al. This
extension where made to include the many new areas computers are used today,
such as machine learning, database software and computer graphics.

These reference problems try to give metrics for a system without considering
the details of the system, but rather focus on the performance. This approach
also removes the hardware details from the metrics, allowing the metrics to be
compared between a vast number of different computer architectures. Recently
a group of researchers and students at the University of Virginia used some
of these reference problems to measure the use performance of GPGPU with
CUDA compared to single and multi-core CPU implementations [7].

2.2 Graphics Processors

The GPUs were primarily designed to output a 2D surface which can be dis-
played on screen. This has influenced the architecture of the graphics processors.
Due to the highly parallelizable nature of this task the graphics processor has
developed into a parallel processor which consists of several hundred streaming
processors [24][2].

2.2.1 General-purpose computing on graphics processing
units

With the introduction of programmable vertex and fragment-shaders in the
graphics processor, the possibility to manipulate the graphics calculations emerged
[6]. The fact that still the graphics processor was foremost a graphics processor
and thus only had a instruction set intended for graphics forced the general
purpose calculations to be masked as graphics calculations. This was done by
mapping the calculations into polygons and textures, and passing them through
the graphics pipeline. The results could then be read from the resulting tex-
tures and images produced [12][28]. This process required a great creativity
of the programmers, and was thus not suited for the general market. These
camouflaged calculations were done using shading languages which were used
to manipulate the appearance of polygons and its textures. While the shading
languages originally developed for just this purpose was not suited for general
purpose calculations, and new languages had to be developed which hid the
graphical computations from the developers. One of these attempts is CUDA
which will be described more in Section 2.2.3.

Because of the vast number of parallel processors located on the GPU, it
is such a sought after computing medium. Modern GPUs have up to 800
streaming processing units working in parallel [2]. Being able to utilize this
massive parallelism would enable the scientist to have access to a personal mini-
supercomputer. Utilizing this power properly can result in great speedups for
calculations as shown by a group of researchers a University of Virginia [7]
which achieved speedups ranging from 3 to 70 times that of a modern single
core processor.
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2.2.2 The Tesla Architecture

In November 2006, NVIDIA released its Tesla architecture which enabled general-
purpose computations on the graphics cards [21]. Other vendors such as ATI
also has similar architectures. The Tesla architecture is used in all of NVIDIAs
resent graphics processors as of GeForce 8xxx. The intention is to create a
scalable, general-purpose architecture which can be used in a wide range of
graphics processors. This is achieved through a SIMT (single-instruction, mul-
tiplethread) multiprocessor with 16 streaming processors, designed to handle
32 threads in parallel, called a warp. These 32 threads are executed 8 at a
time, and all 32 threads execute the same instruction. On the graphics proces-
sor the multiprocessor is duplicated to achieve the desired number of streaming
processors.

Figure 2.1: Architecture of modern NVIDIA graphics card [6].

2.2.3 CUDA

CUDA is a programming language extension created by NVIDIA Corporation.
It allows the developer access to performing calculations on the graphics pro-
cessor implementing the Tesla Architecture without having to camouflage the
calculations as graphical calculations. The language extension is developed for
the C language, but there has also been developed support for Python [16],
and more languages will probably follow. CUDA allows the developer to write
kernels which will be performed in parallel on the streaming processors on the
GPU.

2.3 Computer architecture

Even though this report seeks to enhance the performance of GPGPU systems,
it does not focus on the graphics processor itself since there are many other
components within the computer which also play a role in the performance of
the graphics card. The influence of many of these components will be tested
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throughout this report, and a brief description of the various components is
given here.

2.3.1 Processors

The Central Processing Unit (CPU) is traditionally the main computational
resource in the computer. It is responsible for interpret and execute the in-
structions in a program, and thus has a finger involved in all that happens
during program execution. The clock frequency of the processor determines
how fast the processor is able to process each instruction, and can thus play
a crucial part in the overall performance of the system. The increase in CPU
clock frequency has stagnated in the last couple of years due to the brick wall
discussed in the Berkeley view article [4]. As a least-effort solution to increase
system performance, the CPU manufacturers have begun creating multi-core
CPUs instead of trying to increase the clock frequency. As of 2008, most pro-
cessors are either dual or quad-core processors. This focus on parallelism forces
the developers to redesign their programs for parallelism to achieve speedups.

In this report three recent processors are used during the tests, Intel Core
2 Quad Q9300, Intel Core 2 Quad Q9550 and AMD Phenom X4 9850 Black
Edition. The two Intel processors [14] are both quad-core processors of the same
series, but with different cache size and processor speed. The AMD processor
[3] is also a quad-core. The key difference between the Intel and AMD processor
is that the AMD has the memory-controller integrated on the chip instead of on
the chipset, and also has lower cache size than the Intel counterparts. The Intel
Q9300 and the AMD processors both have the same clock frequency, while the
Intel Q9550 have a higher clock frequency.

2.3.2 Chipsets

The chipset is the infrastructure in the modern computer. It is responsible
for connecting the processor(s) to the memory and peripheral units such as
graphics cards. Vital in this infrastructure is the buses allowing data to be
transported between the various locations. The chipset is normally divided into
two parts, Northbridge and Southbridge. The Northbridge connects the high
speed demanding units such as processors, memory and PCIe x16 ports, while
the Southbridge connects the units with lower bus speed requirements such
as PCI x1 ports, PCI, USB and so on. The Southbridge is connected to the
Northbridge giving the chipset a hierarchical layout, where the peripheral units
are connected on the layer providing the required bandwidth, without requiring
peek-performance buses unless necessary. This approach reduces the cost of the
chipsets.

During these tests, three different chipsets will be used, Intel X48[15], NVIDIA
nForce 790i [25] and AMD 790FX [1]. These chipsets have somewhat differ-
ent architecture and performance characteristics, but these details are beyond
the scope of this report. And vital difference however is which processors the
chipsets are designed for. While the NVIDIA chipset support Intel, the two
other chipsets only supports its own vendors processors naturally. The AMD
processor supported by the 790FX chipset has an integrated memory controller,
and this is thus removed from the chipset as well.
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2.3.3 Random Access Memory

The memory is the backbone of the data storage of a modern computer. To
overcome the high access time for data located on harddrives, Random Ac-
cess Memory (RAM) has become a vital level in the cache-hierarchy designed
to camouflage these access times. The most common RAM used as of 2008
is Double-Data-Rate Synchronous Dynamic RAM (DDR-SDRAM or DDR for
short). The DDR modules can operate on many different clock frequencies,
and this in correlation with the timings [30] determines how fast the module
can supply the computer with the required data. Once a request for data has
been made to the memory module, the module requires a number of clock cy-
cles to prepare and fetch the first piece of a set of data, and then usually a
lower number of clock cycles to fetch the following pieces. The number of cy-
cles required is given by the timings of the memory module. How long time a
cycle takes is determined by the clock frequency the memory operates on and
thus a speedup of the memory can be achieved both by reducing the timings
and by increasing the clock frequency. However, an increase in the clock fre-
quency may also require an increase in the timings of the module, and wetter a
clock frequency increase would speed up the performance is situation dependent
[17]. Most modern motherboards would automatically adjust the timings to a
suitable level based on the clock frequency.

2.3.4 PCI Express bus

The PCI Express bus [5] technology was aimed to replace the aging PCI and
AGP bus, due to the increased demand for bandwidth over the bus, mainly
by the graphics cards producers. The design of the bus is modular with the
possibility to change the number of lanes for each connection. The standard
numbers of lanes are 1, 2, 4, 8 and 16. 32 lanes are also allowed but rarely
seen. The notation for a connector is PCIe x16, where the number specifies
the number for lanes. There are also possible to create connections with high
number of lane connectors, while only using a lower number of bus-lanes. The
extension card would then operate on a bus with a lower bandwidth than a card
placed in a PCI Express connector with a full number of bus-lanes. This mode
is denoted as PCIe x16 (x8 mode), where the number inside the parentheses
gives the actual number of lanes used on the bus. This reduction of lanes is
common for the second PCIe x16 port for budget-motherboards.

The first version of the PCI Express was capable of delivering 250 MB/s per
lane, giving a total of 8 GB/s for a 16 lane bus [29]. The version mostly in used
for graphics cards as of 2008 are version 2.0 which doubles this bandwidth. A
version 3.0 is under development, promising another doubling of the bandwidth
giving a total of 32 GB/s for a 16 lane bus.
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Chapter 3

Methodology and models

This chapter will discuss the various properties to test, and the hardware and
software used to perform these tests. The validity of the test and how they
should behave according to the theoretical model defined in this chapter is also
discussed.

3.1 Properties to test

The intention of this paper is to investigate the properties exterior to the graph-
ics processor which may affect its performance. Due to this focus the only mea-
surable properties are bandwidth and latency when transferring data to and
from the GPU. These two metrics are the key metrics in the Hockney model
described in 2.1.1, and will be described in more detail in the following two
sections.

3.1.1 Latency

Latency is the time between a given task is initiated and the task is beginning to
execute. In terms of data-transfer, the latency is the time between the instruc-
tions to transfer is given and the data-transfer actually commence. This delay
may occur due to instruction decoding, memory latency, waiting for bus-access
and other causes. The latency may have a great impact on performance when
transferring small amounts of data, since the latency is a constant startup cost,
which must be paid regardless of how many items are to be transferred.

Testing the latency is not a trivial task to test correctly, but there are ways
to approximate the measurements by measuring transfer times. The latency is
as given the startup time of a transfer, and can thus be measured by transferring
as small as possible amount of data and use the timing as an approximation of
the latency. Due to the possibility of computer components being optimized
for transfers of data in blocks, the latency measurements will be done on sev-
eral sizes and choosing the lowest time, under the assumption that this is the
measurements closest to the actual latency. In this particular case the test
will be performed for 1, 2, 4, . . . , 1024 floats (32 bit), and averaging the time
measurement over 10 000 transfers.
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3.1.2 Bandwidth

Bandwidth is the amount of data which can be transfer in a given amount of
time. This property has great impact on the performance of a graphic processor
since all data which shall be used in the computation must be copied to the
graphics processor. To measure the bandwidth one has to take into account the
latency, since each transfer will have a period of time before the actual transfer
commence. The formula for calculating the bandwidth is given in Formula 3.1
as a function of size, time and latency.

bandwidth =
size

time− latency
(3.1)

Measuring the bandwidth will be done by conducting the test for a wide
range of sizes and measuring the time each transfer took. For the tests in this
report the sizes and number of transfers for each test is given in Table 3.1.

Table 3.1: Transfer sizes and number of transfers used for bandwidth tests.
Transfer size 4KB 16KB 64KB 256KB 1MB 4MB 16MB
# of transfers 5718 3270 1870 1069 611 349 200

3.2 Model

The computer is a complex machinery, with numerous connections and compo-
nents. To try to encompass all this in a model over the common GPPGU system
and how memory is copied between host and device-memory would render the
results to complex to interpret. To overcome this obstacle, a simplified model
has been constructed. This model as given in Figure 3.1 generalizes the system
to such a coarse model that each single property can be isolated and tested.

The first important assumption used in this model is that the system com-
plies with Hockneys model [13]. The Hockney model describes the relationship
between the time needed to transfer a given amount of data between two places
based on the parameters latency and bandwidth. To adapt this model to the
model used in this report, the transfer can be thought of as a chain of transfers
between the components on the path between the memory and GPU. This gives
that the latency would be the sum of latencies on the chain of transfers, and that
the bandwidth would be dictated by the transfer with the lowest bandwidth in
the chain.

The model used in this report assumes the use of Direct Memory Access
(DMA), since this is used by the graphics card. In case of copying from a
non-DMA accessible memory location, the graphics card requires the data to
be copied to a DMA-accessible location. To encompass this into the model,
the reduction in performance will be view upon as a lower bandwidth from a
non-DMA accessible location due to the extra memory copying. Also the buses
between the memory, memory controller and chipset are considered to offer the
required bandwidth and thus not affect the performance. When considering
latency for these buses, this latency is considered to be a part of the latency
inflicted by the chipset.
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Figure 3.1: Proposed model of GPGPU system.

The use of DMA would require the CPU only to decode and interpret the
copy-instruction, and signal the CPU to perform the copy. Thus the CPU should
only be active during the initialization of the transfer, and thus only affect the
latency and not the bandwidth. For the CPU, the only parameter adjustable in
this model is the clock frequency.

The memory is considered to be a single memory module with equal access
time regardless of location. This abstraction could be false for few test-runs,
but due to the high number of runs the memory would statistically behave in
accordance with the given abstraction. The timings of the memory module
are considered to be directly linked to the clock frequency and are thus not
tunable, but rather set by the system itself based on the given clock frequency.
In addition to the clock frequency, both the size and architecture (DDR2 or
DDR3) are tunable parameters. The memory‘s parameters are expected to
affect both latency and bandwidth, with the exception of the size which should
only affect the latency.

The chipset does in real life consist of many components with numerous
interconnects between, but in this model these are abstracted down to a single
component with no tunable parameters. The only alteration which can be made
is choosing different chipsets. This abstraction is done due to the inability to
adjust the low-level parameters of the chipset to such a degree that it can be
isolated as independent properties. This, as well as the fact that the chipset
is merely a transporting stage in the transfer; this abstraction will suffice for
this report. As for the influence of the chipset towards the performance, it is
considered to affect both the bandwidth and latency due to its involvement in
routing packets between the various components connected to the chipset.

The transfer between the chipset and the GPU is conducted over the PCI
Express bus. The bandwidth of this bus is expected to be a bottleneck and
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is therefore emphasized as a separate component in the model. Packet switch-
ing and setup time are considered to be parts of the bandwidth and latency
respectively, and the PCI Express bus will therefore be able to affect both.

The GPU are in this model considered to behave in the same way as a
memory module with respect to memory transfers, but without its tunable
parameters. These parameters are fixed for each graphics card model, and are
not tunable. Even though graphics cards can be tuned for these parameters,
this operation is considered to be outside the scope of this report. The various
graphics cards models can however be changed. In the same way as the memory,
the graphics card is expected to affect both latency and bandwidth.

3.3 Test hardware

The test systems are all various machines located at the HPC-Lab [9] [10] at the
Department of Computer and Information Science at the Norwegian University
of Science and Technology. The lab and its machines were assembled during fall
2008 to facilitate for research within GPGPU and other HPC activities. The
participated in the construction of this lab has been a part of this project, trying
to assure a wide range of systems which enables the user to develop applications
for a wide range of systems. With this intention in mind the lab is also highly
customizable, allowing the students and researchers to customize the hardware
to fit their current needs. Each machine has been labeled HCPx and the default
configuration for each system used in this report is given in Appendix A. In
the following sections the reason for using each of the systems will be given.
During the tests many alterations were conducted to the machines and these
alterations are described in a separate section along with the test in question.
The important differences are listed in Table 3.2.

Table 3.2: Comparison of important aspects of the machines.
Processor Chipset Memory

HPC2 AMD Phenom, AMD 790FX, DDR2 DDR2, 4GB, z
2.50GHz, 4MB cache 1066MH

HPC3 Intel Core 2 Quad, Intel X48 Express DDR2, 4GB,
2.50GHz, 6MB cache 1066MHz

HPC4 Intel Core 2 Quad, Intel X48 Express DDR2, 4GB,
2.83GH, 12MB cache 1066MHz

HPC5 Intel Core 2 Quad, Intel X48 Express DDR3, 4GB,
2.83GH, 12MB cache 1600MHz

HPC6 Intel Core 2 Quad, NVIDIA nForce DDR3, 4GB,
2.83GH, 12MB cache 790i Ultra SLI 1600MHz

For the tests conducted the NVIDIA GeForce GTX 280 graphics card were
used since it was at the time the most powerful GPU available at the lab. At
a later time the Tesla C1060 were also made available giving a wide range of
available graphics card available at the lab, as can be seen in Table 3.3.
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Table 3.3: List of available graphics card at the HPC-Lab as of December 2008.
Graphics card Quantity
NVIDIA GeForce 8400 GS 1
NVIDIA GeForce 8600 GT 1
NVIDIA GeForce 8800 GTX 1
NVIDIA Tesla C870 2
NVIDIA Quadro FX 5600 1
NVIDIA GeForce 9800 GTX 1
NVIDIA GeForce 9800 GX2 2
NVIDIA GeForce GTX280 2
NVIDIA Tesla C1060 2

3.3.1 HPC2

HPC2 is the only AMD machine used in this series of testing, and is included
only to be able to test the Intel processor versus the AMD processor, and the
effect integrated memory controller might have on transfers between host and
device-memory.

3.3.2 HCP3

The HPC3 machine is not particularly interesting hardware vise, but it is used
in these tests to compare against HPC2 in the processor architecture tests. The
reason for choosing HPC3 over one of the others is the default frequency of the
processor in HPC3 which matches the AMD processor in HPC2.

3.3.3 HPC4

HPC4 is included in these tests due to the DDR2 memory. It is the only
difference compared to the HPC5 machine, and thus enables the testing of
different memory architecture.

3.3.4 HPC5

HPC5 is the main machine used in these tests. The reason for this choice is due
to this machine being the one which can most easily be compared to the other
machines and thus giving easy access to several properties desirable to test.
It is also a machine that in my opinion closely resembles a standard machine
configured to run GPGPU applications on.

3.3.5 HPC6

This machine is included in the tests mainly because of its NVIDIA nForce
chipset which enables tests of different chipsets.
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3.4 Test software

Even though there without doubt exists several programs capable of testing the
properties which are to be tested throughout this report, the extra time needed
to locate and verify the fitness of these programs would exceed the time required
to write the program. Thus, the program used for this report was written from
scratch using C++ and Cuda. Due to the crude testing methods the program
is a simple ping pong program with timings for a group of transfers, In addition
there has been created a program which simulates load on the host-memory by
conducting copies of data between various memory locations.

3.4.1 Test program

The test program is an implementation of the latency and bandwidth test de-
scribed in 3.1. It was implemented in C++ using CUDA to communicate with
the graphics processor. The program contains a vital method testTransfer which
accepts two memory locations and a transfertype-enum, as well as data size,
number of iterations, which allows the method to perform the test as given by
the parameters and return the average time per run. This complies with the
remark in 3.1, which stated that the latency test is just a bandwidth test with ne-
glectable amount of data. The method is located in common.cu along with other
usefull code-snppets. The measureMalloc.cu and measureCudaMallocHost.cu is
responsible for initiating the test of testing with malloc and cudaMallocHost,
and also writes the results to the output file. The complete code can be found
in Appendix B.

3.4.2 Load simulator

The load simulator simulates memory load by allocating four memory locations
of a given size, and copying data between these locations in a circle. By doing
so the memory’s bandwidth is being used, and would potentially affect the
performance of the host to device transfers. The constant copying of memory
would also require the processor to run the program and oversee the data copy.
The program may have several instances of it running at the same time, and
takes as an optional parameter the number of kilobytes which are to be copied
between the memory locations. The code can be seen in Appendix C.

3.5 Potential sources of error

Even though the systems described in the previous sections were put together
to provide the possibility to be able to alter single properties with the system
for testing purposes, there are several potential sources of error.

3.5.1 Test methods

The testing methods used in these experiments are simple tests designed to
give an indication of the properties. To be able to fully and correctly test
the properties tested in this report, more accurate testing methods must be
developed. This however would include testing done in hardware, not in software
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as is done her, and is beyond both my level of expertise and the scope of this
report.

3.5.2 Multi-property variations

The machines used for these tests were selected because they were in many
ways similar so the changes in hardware between two systems would be as few
as possible. This enabled the possibility to make configurations where only sin-
gle properties where different. However there might be other properties which
are not accounted for which differentiates the systems and affect the results.
For instance between the HPC4 and HPC5 machines there might be other dif-
ferences between the machines other than the memory architecture due to the
fact that they have different motherboards even if the motherboards uses the
same chipsets. These hidden properties are hard to remove from the tests and
must be taken into account when reviewing the results.

3.5.3 Background noise

These tests were performed in a controlled environment assuring the machines
were unchanged between each group of tests. But due to the need for an oper-
ating system to run the tests on there are possibilities for background processes
having affected the performance. These as well as process scheduling are factors
which add indeterminism to the execution of the tests, but statistically would
even out in the long run. To counter this, the tests are performed several times
averaging the results over the multiple measurements. This approach reduces
the likelihood of one of these factors to greatly influence the result, but does
not remove it completely.
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Chapter 4

Benchmarks

Through this chapter several different properties which can affect the perfor-
mance of data transfer to and from the GPU will be examined. The first sec-
tion covers the selection of a suitable graphics card to conduct the tests on.
Further on the various properties are tested. Giving first a description of the
configuration of the system which the tests are conducted, and the a review
of the results for the latency and bandwidth tests, this chapter tries to give
the reader an insight in how each of the properties affect the performance of
GPGPU applications.

4.1 Graphics cards

Of course, when running GPGPU applications the graphics card which these
applications are vital to the performance. However, this report does not focus
on the graphics card itself, but rather on the properties of the system which
are external to the graphics card. The following comparison of various graphics
cards is merely to determine a fit graphics card to use throughout the tests
conducted in this report.

4.1.1 NVIDIA G80 series

The G80 series from NVIDIA introduced the Tesla architecture, and is thus
the first CUDA-enabled graphics cards. In that occasion NVIDIA also intro-
duced the Tesla product lines, which are computational versions of its graphics
counterparts. This is reality is basically a graphic cards without monitor connec-
tors, and with extra device-memory. As can be seen in Figure 4.1, the GeForce
8800GTX and the Tesla c870 performs equally well. Also from the G80 series
is the Quadro FX5600, which is a combination of the GeForce and the Tesla,
providing large memory and graphical output.

4.1.2 NVIDIA G90 series

The G90 series did not provide a new card for the Tesla series, but provided a
new type of card for the GeForce series, the GX2 cards as well as PCI Express
2.0 support. The 9800GX2 card [19] is basically two 9800GTX cores on the
same graphics cards. They share the PCI Express connection, but besides that
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Figure 4.1: Performance of the cards of the G80 series.

operate independently as two separate cards. This sharing of the PCI Express
bus gives a performance reduction in some cases as can be seen in Figure 4.2.
Other cards tested from the G90 series is the 9800GTX [18].

Figure 4.2: Performance of the cards of the G90 series.

4.1.3 NVIDIA G200 series

The G200 series is the newest of the NVIDIA graphics cards series. It does, like
its predecessors, conform to the Tesla architecture, but provides a total of 30
Streaming Multiprocessors giving it a total of 240 Streaming processors. The
G200 series does as the G90 series support PCI Express 2.0 over its connector.
New with this series is the support for double precision, even though there is
not fully supported due to the way double precision is implemented. For each
Streaming Multiprocessor, there is added a single double precision unit, forcing
a performance reduction when using double precision.

The G200 series provides cards for the GeForce, Tesla and Quadro product
lines from NVIDIA with its GeForce GTX280 [20], Tesla c1060 [23] and Quadro
FX5800 [22]. The GeForce card was the only card accessible at the lab when this
report was started and was therefore the card of choice for the tests conducted.
At the end of the period the Tesla c1060 was also made available so it is included
in the tests of the various G200 series cards, but not used in the other tests. As
the tests in Figure 4.3 show, there are only minor differences between the two
cards, and the only difference between the two cards in respect to these tests
would be the memory size, which in any case is large enough for both cards. The
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Quadro FX5800 was regrettably not available for testing at the time of writing.
For the remainder of this report, the GeForce GTX280 card will be used.

Figure 4.3: Performance of the cards of the G200 series.

NVIDIA has also announced some new models which will be available from
January 2009. These models continue the trend from the earlier series, providing
a high performance, low production technique version of the GTX280, named
GTX285, as well as a new dual core card named GTX295. If NVIDIA has
implemented their bus-sharing better than on the 9800GX2 cards, the GTX295,
may prove to be a potent addition to any CUDA environment, as well as for
the gaming enthusiasts.

4.2 Memory allocation

When using CUDA to do calculations on the GPU, the data on which to perform
the calculations must be copied to the GPU. The location in memory of the data
to be copied can affect the performance, and thus this may be an important
aspect to consider. CUDA provides its own method cudaMallocHost in addition
to C/C++’s malloc. It will be shown how the new CUDA method performs
relative to malloc in both latency and bandwidth.

4.2.1 Setup

These tests were conducted on the HPC5 machine, with standard DDR3 memory
running at 1600MHz.

4.2.2 Latency

While one would assume the latency should be the same, since the memory is
allocated on the same memory modules, the test shows significant difference in
latency as seen in Figure 4.4. The memory allocated which cudaMallocHost have
one important feature, and that is that it is page-locked [21]. Why this is impor-
tant is the way the NVIDIA GPUs transfer memory between the host-memory
and device-memory. All transfers must be using DMA, and this requires that
the memory is not pageable. To use DMA with pageable memory, the data
must be copied to a location accessible to the DMA before it can be copied to
the GPU [27]. While this effect should not affect the latency of the transfer, the
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measurements show a reduced latency for cudaMallocHost allocated memory.
This effect is an artifact of the way the latency is measured, since the measure-
ment actually is a measurement of transfer time for a neglectable amount of
data. Due to this way to measure the latency, each measurement of latency for
the malloc allocated memory also include the overhead of a memcpy-instruction.

Figure 4.4: Latency when transferring to and from memory allocated using
malloc and cudaMallocHost (CMH).

4.2.3 Bandwidth

Since the first obstacle one encounters in a GPGPU enabled application is the
bandwidth on transfers to and from the GPU, this is an important issue. As
mentioned in 4.2.2, there is a requirement for page-locked memory when trans-
ferring to the GPU. The extra copying of data required to fulfill this requirement
when using malloc should have a noticeable effect on the measured bandwidth
when copying to and from the GPU. As one can see in Figure 4.4, the band-
width when using cudaMallocHost is at the best 300 percent better than the
bandwidth achievable with malloc-allocated memory. The interesting aspect of
this measurement is the fact that the transfers from cudaMallocHost-allocated
memory are seemingly not affected by the memory-load on the host-system. On
the other hand, malloc-allocated memory is greatly affected with a 50 percent
reduction in bandwidth when there is heavy memory-load on the system.

4.3 Memory architecture

The preferred memory technology is in a change, since the introduction of
DDR3, which aims to supersede DDR2. Both technologies are part of the Syn-
chronous Dynamic Random Access Memory (SDRAM) family.

DDR3 provides several improvements over the DDR2 memory [8]. Most no-
ticeable is the increased speed which the DDR3 can offer. This improvement
comes from the change in hardware architecture for the DDR3. The DDR2s
architecture does not permit higher speeds due to mechanical reasons, even
though it is theoretically possible, but the mechanical technology is not just
good enough to maintain the memory’s integrity at increased speeds. The ar-
chitecture used in DDR3 however is more suited for higher speeds, and according
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Figure 4.5: Bandwidth to and from memory allocated using malloc and cud-
aMallocHost (CMH).

to the specifications its speeds can reach twice that of the DDR2. Another im-
provement for the DDR3 is the decrease in power consumptions. As while the
DDR2 required 1.8V as a base power, the DDR3 has reduced this requirement
to 1.5V. This reduction may not seem important to a normal consumer, but
to the large installations such as super computers and server farms, the power
consumptions is one of the main financial burdens.

One of the drawbacks with DDR3 compared to DDR2 is the increased cost
of purchase. Another vital difference is the lack of compatibility between DDR2
and DDR3 which forces a substitution of motherboard as well if one is to consider
DDR3.

4.3.1 Setup

To test DDR2 and DDR3 against each other, the two systems HPC4 and HPC5
proved to be the most similar with only the memory being different. To allow the
two memory architecture to compete on equal terms, the speed of the DDR3
memory on HPC5 were reduced to 1066MHz which is the standard running
speed for the DDR2 memory on HPC4.

4.3.2 Latency

When it comes to latency, DDR3 is said to improve the latency compared to
DDR2 but the initial DDR3 memory had the same latencies or worse as equiva-
lent DDR2 memory [11]. This however is expected to change as the production
techniques for DDR3 improves. The DDR3 memory contained in HPC5 has
higher latencies than the ones contained in HPC4.

Measurement of latency when transferring between memory allocated with
cudaMallocHost and the GPU however shows that the use of DDR3 memory
gives on average a 0.4 percent reduction in latency. The specific latencies for each
measurement can be seen in Figure 4.6. This reduction varies across the different
level of memory load. On zero background load on the memory, the DDR2
memory outperformed the DDR3 memory as expected since the DDR3 memory
has a higher latency. When the background load on the memory increases the
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DDR3 performs better. The average reduction on latencies with background
memory load is 0.7 percent. This may be due to the increased bandwidth,
which makes the DDR3 memory perform the memory operations faster and
thus reducing the latency.

Figure 4.6: Latency to and from memory allocated on DDR2 and DDR3.

4.3.3 Bandwidth

The improvement DDR3 provides over DDR2 is the possibility for increased
speed, which in turn give an increased bandwidth. However the intention with
this test is not to check whether increased bandwidth gives increased bandwidth
with use of CUDA. This test seeks to determine the difference in bandwidth with
CUDA when using DDR3 compared to DDR2 with equal speed. The highest
common speed achievable for both memory architectures was 1066MHz, which
is slower than the default speed for the DDR3 modules. It is no ideal to alter
the speed for the module, but due to the lack of a module with the correct
speed, this is the alternative which gives the most correct test environment.
The measurement of the bandwidth for DDR3 shows the same bandwidth as for
the DDR2 with low or no memory load in the background. This is most likely
because most of the memory load does not require the usage of the memory
module due to caching. However, for high background memory load, the DDR3
memory outperforms the DDR2 memory by 4.4 percent when transferring to the
GPU, and 7.6 percent when transferring from the GPU as seen in Figure 4.7. As
the DDR2 and DDR3 in theory should have the same bandwidth, this difference
may be due to the reduced latency of the DDR3 memory.

4.4 Memory speed

There is a direct relation between the speed of the memory and the bandwidth,
and then since bandwidth is an important issue for GPGPU applications, this
should be an important property of the computing system. Through these
tests the impact on both bandwidth and latency shall be measured for various
memory speeds, to determine the importance of high-speed memory for GPGU
applications.
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Figure 4.7: Speedup of bandwidth for DDR3 memory versus DDR2 memory

4.4.1 Setup

These tests are performed on HPC5 which has a DDR3 memory with a default
speed of 1600MHz. The speeds 800MHz, 1066MHz, 1333MHz and 1600MHz
are tested. The timings for the various speeds are determined by the system
automatically to allow suitable timings for each memory speed. Adjusting the
timings manually would require fine-tuning of the parameters and could lead to
overclocking the memory which is unwanted in these tests.

4.4.2 Latency

The timings of a memory module affect latency by giving how many cycles it
takes from the request for the data is made to the data is available at the pins
of the memory. By increasing the memory’s speed these cycles becomes shorter,
and thus giving a lower latency. As one can see from Figure 4.8, this effect is
noticeable. However there is not a one-to-one correlation between the speed and
the latency, and this is due to the fact that higher memory speeds require higher
timings to guaranty the correctness of the signal placed on the memory-pins,
but still one can see an improvement in the latency for higher memory speeds.

Figure 4.8: Latency up and down for increasing memory speeds.
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4.4.3 Bandwidth

The bandwidth should, in the same way as the latency, be greatly related to
the speed of the memory, since the bandwidth is related to the timings of the
memory module, and thus also related to the speed. However, as with the
latency, the bandwidth is not expected to have a one-to-one relationship due to
the increase in timings for higher memory speeds. The measured bandwidths
are shown in Figure 4.9, where the bandwidth is the average over the various
transfer sizes. As one can see from the graphs the speed of the memory affects
the bandwidth when transferring from the GPU, but the same effect is not
visible for transfers to the GPU. This is most likely due to the fact that the
memory is not the limiting factor in the transfer.

Figure 4.9: Average bandwidth up and down for increasing memory speeds.

4.5 Memory size

When configuring a computer system, one usually has the possibility to insert
up to four memory modules to achieve a maximum size of the memory. These
memory modules share two buses giving the situation where two and two mod-
ules share a bus if all four slots are occupied. Given this limitation, using more
memory modules than necessary for the task to compute could affect the per-
formanceboth in a positive and negative direction, and this test will try to shed
some light on the effects of inserting all four memory modules compared to just
using two.

4.5.1 Setup

The system used in this test is HPC5 with 4 and 8GB of DDR3 RAM. For
the 4GB test two OCZ DDR3 4 GB Platinum EB XTC Dual Channel memory
modules are used. When testing with 8GB, two additional modules of the same
type are inserted.

4.5.2 Latency

The effect this alteration in memory configurations should have on the latency
should if any be due to the fact that the bus to the memory is now shared
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between two memory modules. Since none of the tests exceed the available
storage on the memory modules, the memory size itself should have no affect on
the performance. As seen in Figure 4.10, the latency is unaffected at no memory
load, but at higher load the latency improves slightly for the 8GB configuration.
However, if this effect is due to CUDA utilizing the memory better, or Ubuntu
allocating the memory in a different way is difficult to determine based on this
simple test.

Figure 4.10: Latency up and down for memory size of 4GB and 8GB.

4.5.3 Bandwidth

As for the latency, the bandwidth may be affected both ways from the increase
in memory size, and the results show the same. As one can see from Figure 4.11,
there are cases which favors both the 4GB and 8GB configuration, and based on
these results it is difficult to determine wetter the extra memory had a positive
or negative effect. However, added memory may benefits other parts of the
applications, so the added memory may not be a wasted investment after all.

Figure 4.11: Bandwidth up and down for memory size of 4GB and 8GB.
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4.6 CPU Architecture

The two companies Intel and AMD each produce state-of-the-art processors
for the same instruction-set, but these processors and their related chipsets are
different in architecture. Since the transfer from the host-memory to the device-
memory also includes the interference of CPU, this is a property of a GPGPU
system to be looked upon. As the two processors require different chipsets, this
test will not be an entirely correct view upon the performance of the processors
itself, but will also contain any difference in the performance of the two chipsets.

4.6.1 Setup

This test is performed using the AMD based HPC2 and Intel based HPC3. The
use of HPC3 instead of HPC4 is to eliminate the need to reduce the speed of the
processor, and thus adding another uncertainty to the test. Due to a lower cache
size on both the Intel and AMD processor, the performance is not measured for
512KB memory load. Other tests however show that the increase in memory
load does not affect the performance noticeable before it exceeds the available
cache, and this should therefore not reduce the value of this test. Since there is
no DDR3 enabled AMD machine available for testing, this test is conducted on
two machines with DDR2 memory to allow an impartial comparison.

4.6.2 Latency

Since the transfer between the host-memory and device-memory is conducted
using DMA, one would assume that the transfer is not to a great extent affected
by the architecture of the CPU. This however proves to be incorrect as can
be seen in Figure 4.13. The latency on the Intel-based system is half of the
one measured on the AMD-based system. An important difference for between
the AMD and Intel processors is the use of integrated memory controller for
the AMD processor. This makes the data transfer pass through the processor
on its way to the GPU, thus increasing the length of the wires as shown in
Figure 4.12, and possibly reducing the performance. The benefit of having an
on-board memory controller is the increased performance for memory operations
performed by the CPU, which shows in Figure 15 where one can see the latency
increases for the Intel processors and decreases for the AMD processor when the
memory load on the system increases.

4.6.3 Bandwidth

The bandwidth is in the same way as the latency affected by the increased length
as discussed in 4.6.2. This does reduce the bandwidth for the AMD processor
versus the Intel processor. What is worth noticing is the reduction for the AMD
processor when there is heavy memory load as can be seen in Figure 4.14. As
opposed to the Intel processor, the AMD processor experiences a performance
hit in this case.
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Figure 4.12: Paths for data transfer between memory and GPU on AMD (to
the left) and Intel (to the right) processors.

Figure 4.13: Latency up and down for Intel and AMD processors.

4.7 CPU Speed

Due to the use of DMA when transferring between host and device-memory,
the speed of the processor should not have an impact on the bandwidth of the
transfer. However, the speed may contribute to the latency, and this will be
shown in Section 4.7.2.

4.7.1 Setup

The machine used in this test is HPC5, which has a Intel Core 2 Quad Q9550
processor with a speed of 2.83 GHz. To test the various speeds the multiplier of
the processor were adjusted between 6 and 9.5. This gave the following speeds
to test 2.00GHz, 2.33GHz, 2.50GHz, 2.67GHz and 2.83GHz. The computer did
not manage to stabilize at 2.17GHz, and is thus not included in the test.

4.7.2 Latency

Even though the transfers between host and device-memory are conducted us-
ing DMA, there are still involvement from the CPU in terms of initialization
and thus can the processors speed have an effect on the latency. However this
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Figure 4.14: Bandwidth up and down for Intel and AMD processors.

improvement should not be very significant due to the low involvement of the
CPU. This is also shown by the measurements presented in Figure 4.15, where
one can see that a 40 percent increase in processor speed only yields a 3 percent
reduction of latency in the best case.

Figure 4.15: Latency up and down for various processor speeds.

4.7.3 Bandwidth

The bandwidth for the transfer between host and device-memory should how-
ever not be affected by the CPU speed since as mention earlier, the transfer
is conducted using DMA. This implies that once the transfer is initialized, the
CPU has no more involvement in the transfer, and should in theory have no ef-
fect on the transfer. Having measured the bandwidth for various memory loads
under different CPU-speeds and different transfer sizes, it is evident that the
speed of the processor does not affect the bandwidth. The results can be viewed
in Figure 4.16 where the averages of the bandwidth for different memory loads
are displayed. This generalization is done since there were no alterations in the
ratio between the performances under different memory loads for the different
CPU speeds.
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Figure 4.16: Average bandwidth up and down for various processor speeds.

4.8 Chipsets

The chipsets on the motherboard is the infrastructure of any computer. It
contains the logic which processes requests for use of the bus and access to
memory. This makes the implementation of the chipset an important property
with respect to transfers between host and device memory.

4.8.1 Setup

In this test the two machines HPC5 and HPC6 were used to measure the differ-
ences between the Intel X48 chipset located In HPC5 and the NVIDIA nForce
790i chipset which is found in HPC6. Besides the difference in chipset these two
systems are similar.

4.8.2 Latency

As part of latency, initialization of transfer in hardware is a vital part. The
GPU has to request for memory access and use of the bus. This including the
actual latency on the signal transmitted over the bus adds up to a significant
factor in the latency. The PCI Express bus is also subject to differences on the
various chipsets, in terms of transfer speeds and initialization latencies. As can
be seen in Figure 4.17, the difference in latency is noticeable, and measuring
the NVIDIA nForce 790i chipsets to have a much lower latency.

4.8.3 Bandwidth

As well as with the latency, bandwidth is also subject to influence by the im-
plementation details of the chipset in terms of speed of the PCI express bus
and load-handling. The load handling capabilities comes into play when there
are several simultaneous requests for data located in memory and the chipset
has to prioritize them. This also occurs for the busses on the motherboard,
including the PCI Express bus. It is then up to the vendor to device algo-
rithms which decides which request should have priority and how the resources
should be timeshared. One noticeable result from this test is how the NVIDIA
chipset suffers a performance penalty when there is heavy background memory
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Figure 4.17: Latency up and down for Intel X48 and NVIDIA nForce 790i
chipsets.

load, while the Intel chipset only has a minor reduction in bandwidth. Besides
this effect, the NVIDIA chipset outperforms its counterpart from Intel, but the
performance hit is worth having in mind when deciding between the various
chipsets.

Figure 4.18: Average bandwidth up and down for Intel X48 and NVIDIA nForce
790i chipsets.

4.9 PCI Express bus clock frequency

Once the memory controller has allowed the transfer between the host-memory
and device-memory, the transfer is conducted over the PCI-express bus. As
one of many possible bottlenecks limiting the speed of the transfer, the PCI-
express bus is one place where a performance gain could be achieved using
overclocking should it prove to be the bottleneck. Overclocking however is not
an exact science, and could prove damaging for the hardware, so this test will
not overclock beyond what is possible by just changing the PCI-express bus
clock frequency.
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4.9.1 Setup

For this test, the HPC5 machine was used, due to the ability to adjust the clock
frequency of the PCI Express bus. It was possible to achieve a stable system
using clock frequencies ranging from 100 MHz to 115 MHz, so this test will
measure the performance within this range for increases of 5 MHz for each step.

4.9.2 Latency

It is expected that the PCI Express bus would be one of the bottlenecks limiting
the transfer to the GPU. This assumption proves correctly when one sees the
measurements shown in Figure 4.19. Here one can see that a 15 percent increase
in bandwidth yields a 7 percent reduction in latency. Most of this gain is
achieved through the first 5 percent increase in clock frequency which yields a
5 percent reduction in latency. These results clearly show that the PCI Express
bus is a key bottleneck for the data transfers between host and device memory.

Figure 4.19: Latency up and down for various PCI Express bus clock frequencies.

Figure 4.20: Bandwidth up and down for various PCI Express bus clock fre-
quencies.
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4.9.3 Bandwidth

After achieving such significant reductions in latency for adjustment of the clock
frequency of the PCI Express bus, one would assume there to be equal improve-
ments in bandwidth. If one look at the bandwidth for transfers from host to
device-memory one improvements ranging from 6 to 13 percent as seen in Fig-
ure 4.20, For transfers the opposite way there are only minor improvements
which suggests that the PCI Express bus is not the only bottleneck limiting the
transfers in that direction.
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Chapter 5

Conclusion and Future
Works

This chapter summarizes the findings in this report and discusses the validity of
the model defined in Chapter 3. It also gives a list of suggestions for future work,
as well as gives some final thoughts on hardware configurations for GPGPU
systems.

5.1 Our CPU-GPU System Model versus Test
Results

Our model of general GPU - CPU systems, is a fairly simple one, but by mod-
elling the GPU as a black box, allowed the examination of individual system
properties such as memory bandwidth and latency. Expected property behavior
of our model were provided and compared with actual benchmarks to verify the
correctness of our assumptions.

Our model complied well with the results. regarding memory and memory
lated properties such as size, clock frequency and memory architecture. The
newer DDR3 architecture seems to improve the latency and bandwidth in the
high-load cases, ragrdless of memory frequency. The clock frequency affects
both latency and bandwidth greatly. However, the amount of available memory
gave inconclusive results with regards to latency and bandwidth.

The properties regarding the CPU should not have too much influence on
the performance due to the use of DMA. However, for the test of architecture
and its influence, the tests gave huge influence. This test tries to put the Intel
and AMD processors up against each other in a test designed to allow them to
be compared on equal terms. However, due to the massive differences in both
latency and bandwidth, the test must be further refined to give a conclusive
result. In terms of clock frequency, the CPU performed exactly as predicted in
the model, having no influence over the bandwidth, and gave a small reduction
in latency.

The chipset proved to give the expected influence over the latency and the
bandwidth. However, the two Intel and NVIDIA chipsets we tested probably
had different design goals, given that one is mainly a processor manufacturer
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whereas the other is primarily a graphics cards manufacturer. Our point was not
to show that one is better than the other, but that one needs to pay attention
to the chipset and ones goal when building a CPU - GPU system for HPC.
However, performance for the two chipsets supports the model in the sense that
the chipset are a key component in the GPU system.

One of our more clear results, was the influence of the PCI Express bus.
Both the latency and bandwidth showed good improvements when overclocking
the bus. Overclocking is not an exact science, and there might be additional
effects from this alteration, but the results show an improvement.

5.2 Future works

While this report covered several CPU- GPU properties, many still remain. As
mentioned earlier, there are possibilities for many dependent properties which
have not been tested here due to the sheer number of such combinations. Many
of these properties might also behave differently for other combinations of hard-
ware. Therefore these tests must be further verified for other architectures and
combinations of hardware.

Just a month prior to the completion of this report, the specifications for
OpenCL where released. OpenCL is a language extentions designed to provide
the HPC community with a language capable of addressing all forms of pro-
cessing platforms ranging from multi-core CPU, Cell BE and GPUs. It also
aims to be vendor independent which would allow it to utilize both NVIDIA
and ATI graphics cards. The introduction of OpenCL would allow more tests
to be developed and an easier comparing between NVIDIA and ATI, as well as
GPGPU versus Cell BE for instance. However, the late release of OpenCL and
its lack of support yet for graphics cards leaves this as a task for future work.
Here one could draw upon the findings in this report and that of one of my
fellow students who is assessing the usability of OpenCL compared to Cuda.

5.3 Final thoughts

While this report has given the reader an indication of which components of
the GPGPU system which affects the performance and which who does not, the
reader must not forget that the system might be used for more than just pure
GPGPU. Even if the system is intended for GPGPU, the graphics cards are not
optimal for all types of tasks, and a GPGPU application might perform faster
by ofloading some of the calculations to the CPU. With this in mind, the Bigger
is better statement still holds for purchases of new equipment, but this report
might have shifted the prioritization among the components.
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Appendix A

Hardware specifications

Table A.1: HPC2 Specifications.
Processor

AMD Phenom X4 9850 Black Edition
Clock frequency 2.50 GHz
L2 Cache 2 MB
L3 Cache 2 MB

Motherboard
Gigabyte GA-MA790FX-DQ6 AMD790FX DDR2
Chipset AMD 790FX

Memory
Mushkin DDR2 4096MB REDLINE extreme performance
Frequency 1066 MHz
Size 2x 2048 MB

Table A.2: HPC3 Specifications.
Processor

Intel Core 2 Quad Q9300, 64 bit
Clock frequency 2.50 GHz
L2 Cache 6 MB
Bus speed 1333 MHz

Motherboard
ASUS Rampage Formula X48
Chipset Intel X48 Express

Memory
Mushkin DDR2 4096MB REDLINE extreme performance
Frequency 1066 MHz
Size 2x 2048 MB
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Table A.3: HPC4 Specifications.
Processor

Intel Core 2 Quad Q9550, 64 bit
Clock frequency 2.83 GHz
L2 Cache 12 MB
Bus speed 1333 MHz

Motherboard
ASUS Rampage Formula X48
Chipset Intel X48 Express

Memory
Mushkin DDR2 4096MB REDLINE extreme performance
Frequency 1066 MHz
Size 2x 2048 MB

Table A.4: HPC5 Specifications.
Processor

Intel Core 2 Quad Q9550, 64 bit
Clock frequency 2.83 GHz
L2 Cache 12 MB
Bus speed 1333 MHz

Motherboard
ASUS P5E3 Premium
Chipset Intel X48 Express

Memory
OCZ DDR3 4 GB Platinum EB XTC Dual Channel
Frequency 1600 MHz
Size 2x 2048 MB

Table A.5: HPC6 Specifications.
Processor

Intel Core 2 Quad Q9550, 64 bit
Clock frequency 2.83 GHz
L2 Cache 12 MB
Bus speed 1333 MHz

Motherboard
EVGA nForce 790i Ultra SLI
Chipset NVIDIA nForce 790i Ultra SLI

Memory
OCZ DDR3 4 GB Platinum EB XTC Dual Channel
Frequency 1600 MHz
Size 2x 2048 MB
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Appendix B

Test Program

Here follows the code used in the testing software

B.1 main.cu

1 /∗
2 The MIT License
3
4 Copyright ( c ) 2008 Rune Johan Hovland
5
6 Permission i s hereby granted , f r e e o f charge , to any

person ob t a in ing a copy o f t h i s so f tware and
a s s o c i a t e d documentation f i l e s ( the ” Sof tware ”) , to
dea l in the Sof tware wi thout r e s t r i c t i o n , i n c l u d i n g
wi thout l im i t a t i o n the r i g h t s to use , copy , modify ,
merge , pub l i s h , d i s t r i b u t e , s u b l i c en s e , and/or s e l l
c op i e s o f the Software , and to permit persons to whom
the Sof tware i s f u rn i sh ed to do so , s u b j e c t to the
f o l l ow i n g cond i t i on s :

7
8 The above copy r i g h t no t i c e and t h i s permiss ion no t i c e

s h a l l be inc luded in a l l cop i e s or s u b s t a n t i a l
po r t i on s o f the Sof tware .

9
10 THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY , WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

11 ∗/
12
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13 #include <s t d l i b . h>
14 #include <s t d i o . h>
15 #include <s t r i n g . h>
16 #include <math . h>
17 #include <c u t i l . h>
18 #include <common . cu>
19
20 #include ” measureTransferMal loc . cu”
21 #include ” measureTransferCudaMallocHost . cu”
22
23 int
24 main ( int argc , char∗∗ argv )
25 {
26 i f ( argc > 0) {
27 int core = a t o i ( argv [ 1 ] ) ;
28
29 // measure bandwidth and l a t ency up and down with

mal loc
30 measureTransferMal loc ( core ) ;
31
32 // measure bandwidth up and down with cudaMalloc
33 measureTransferCudaMallocHost ( core ) ;
34 }
35 }

B.2 common.cu

1 /∗
2 The MIT License
3
4 Copyright ( c ) 2008 Rune Johan Hovland
5
6 Permission i s hereby granted , f r e e o f charge , to any

person ob t a in ing a copy o f t h i s so f tware and
a s s o c i a t e d documentation f i l e s ( the ” Sof tware ”) , to
dea l in the Sof tware wi thout r e s t r i c t i o n , i n c l u d i n g
wi thout l im i t a t i o n the r i g h t s to use , copy , modify ,
merge , pub l i s h , d i s t r i b u t e , s u b l i c en s e , and/or s e l l
c op i e s o f the Software , and to permit persons to whom
the Sof tware i s f u rn i sh ed to do so , s u b j e c t to the
f o l l ow i n g cond i t i on s :

7
8 The above copy r i g h t no t i c e and t h i s permiss ion no t i c e

s h a l l be inc luded in a l l cop i e s or s u b s t a n t i a l
po r t i on s o f the Sof tware .

9
10 THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
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SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY , WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

11 ∗/
12
13 #ifndef common
14 #define common
15
16 #include <s t d i o . h>
17 #include <s t d l i b . h>
18 #include <sys / time . h>
19 #include <cmath>
20 #include <cuda . h>
21
22 #define MB (1024 ∗ 1024)
23 #define ITERATIONS FEW 200
24 #define ITERATIONS MANY 10000
25 #define LATENCY LIMIT 4096
26
27 #define startTiming gett imeofday(&startTime , NULL) ;
28 #define endTiming gett imeofday(&endTime , NULL) ;

measuredTime = t i m e d i f f ( endTime , startTime ) ;
29 #define setDummy dummyMeasurement = true ;
30 #define checkDummy i f (dummyMeasurement ) { dummyMeasurement

= fa l se ; i−=2; continue ;}
31 #define forLoop for ( int i = 8 ; i < 24 ; i +=2){ int

d a t a s i z e = 1 << i ; i t e r a t i o n s = ITERATIONS FEW ∗ pow
(1.32237785818103 ,22− i ) ;

32 #define pr in t ( r e s u l t , da ta s i z e , i t e r a t i o n s ) p r i n t f ( ”%.15 f
\ t%d\ t%d\n” , r e s u l t , data s i z e , i t e r a t i o n s ) ; f f l u s h ( stdout )
;

33
34 int i t e r a t i o n s ;
35 struct t imeva l startTime , endTime ;
36 double measuredTime ;
37 bool dummyMeasurement ;
38
39 // Ca l cu l a t e d i f f e r e n c e in time between two t imes .
40 double
41 t i m e d i f f ( t imeval end , t imeva l s t a r t )
42 {
43 double t s = s t a r t . t v s e c + ( s t a r t . t v u s e c / 1000000 .0) ;
44 double te = end . t v s e c + ( end . tv us e c / 1000000 .0) ;
45 return te − t s ;
46 }
47
48 // Tests the time needed to perform the g iven

t r an s f e r t y p e and data s i z e .
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49 double
50 t e s t T r a n s f e r ( int datas i z e , int tes tcount , f loat ∗ from ,

f loat ∗ to , enum cudaMemcpyKind type )
51 {
52 // A l l o ca t e and crea t e t e s t d a t a
53 s i z e t s i z e = d a t a s i z e ∗ s izeof ( f loat ) ;
54
55 // A l l o ca t e l o c a l memory and f i l l w i th data .
56 i f ( type == cudaMemcpyHostToDevice | | type ==

cudaMemcpyHostToHost )
57 {
58 for ( int i = 0 ; i < d a t a s i z e ; i++)
59 {
60 from [ i ] = ( f loat ) i ;
61 }
62 }
63
64 // A l l o ca t e memory on dev i c e and f i l l w i th memory .
65 else i f ( type == cudaMemcpyDeviceToHost | | type ==

cudaMemcpyDeviceToDevice )
66 {
67 f loat ∗ data = ( f loat ∗) mal loc ( d a t a s i z e ∗ s izeof ( f loat ) ) ;
68 for ( int i = 0 ; i < d a t a s i z e ; i++)
69 {
70 data [ i ] = ( f loat ) i ;
71 }
72 cudaMemcpy( data , from , s i z e , cudaMemcpyHostToDevice ) ;
73 f r e e ( data ) ;
74 }
75
76 // I n i t i a l i z e and s t a r t t imer
77 startTiming
78 for ( int i = 0 ; i < t e s t count ; i++ )
79 {
80 cudaMemcpy( to , from , s i z e , type ) ;
81 }
82 endTiming
83
84 // re turn measured time
85 return measuredTime / ( ( double ) t e s t count ) ;
86 }
87
88 #endif

B.3 measureTransferMalloc.cu

1 /∗
2 The MIT License
3
4 Copyright ( c ) 2008 Rune Johan Hovland
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5
6 Permission i s hereby granted , f r e e o f charge , to any

person ob t a in ing a copy o f t h i s so f tware and
a s s o c i a t e d documentation f i l e s ( the ” Sof tware ”) , to
dea l in the Sof tware wi thout r e s t r i c t i o n , i n c l u d i n g
wi thout l im i t a t i o n the r i g h t s to use , copy , modify ,
merge , pub l i s h , d i s t r i b u t e , s u b l i c en s e , and/or s e l l
c op i e s o f the Software , and to permit persons to whom
the Sof tware i s f u rn i sh ed to do so , s u b j e c t to the
f o l l ow i n g cond i t i on s :

7
8 The above copy r i g h t no t i c e and t h i s permiss ion no t i c e

s h a l l be inc luded in a l l cop i e s or s u b s t a n t i a l
po r t i on s o f the Sof tware .

9
10 THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY , WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

11 ∗/
12
13 #ifndef measureTrans ferMal loc
14 #define measureTrans ferMal loc
15
16 #include ”common . cu”
17
18 void
19 measureTransferMal loc ( int core )
20 {
21 p r i n t f ( ”\n” ) ;
22 p r i n t f ( ”

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>\
n” ) ;

23 p r i n t f ( ” | Measuring t r a n s f e r s with mal loc .\n” ) ;
24 p r i n t f ( ” | ( core %d) \n” , core ) ;
25 p r i n t f ( ”

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>\
n” ) ;

26 p r i n t f ( ”\n” ) ;
27
28 f loat ∗ from , ∗ to ;
29
30 // Measure l a t ency up
31 p r i n t f ( ” Latency up\n” ) ;
32 double meanTsUp = 100000;
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33
34 for ( int i = 1 ; i <= LATENCY LIMIT; i ∗=2)
35 {
36 // A l l o ca t e memory .
37 from = ( f loat ∗) mal loc ( i ∗ s izeof ( f loat ) ) ;
38 cudaMalloc ( ( void ∗∗)&to , i ∗ s izeof ( f loat ) ) ;
39
40 // Perform t e s t .
41 double meanTsUpTmp = t e s t T r a n s f e r ( i , ITERATIONS MANY,

from , to , cudaMemcpyHostToDevice ) ;
42
43 i f (meanTsUpTmp < meanTsUp) {
44 meanTsUp = meanTsUpTmp;
45 }
46
47 // Free memory .
48 f r e e ( from ) ;
49 cudaFree ( to ) ;
50 p r i n t (meanTsUpTmp, i , ITERATIONS MANY) ;
51 }
52 p r i n t f ( ”\n” ) ;
53
54 // Measure l a t ency down
55 p r i n t f ( ” Latency down\n” ) ;
56 double meanTsDown = 100000;
57
58 for ( int i = 1 ; i <= LATENCY LIMIT; i∗= 2)
59 {
60 // A l l o ca t e memory .
61 cudaMalloc ( ( void ∗∗)&from , i ∗ s izeof ( f loat ) ) ;
62 to = ( f loat ∗) mal loc ( i ∗ s izeof ( f loat ) ) ;
63
64 // Perform t e s t .
65 double meanTsDownTmp = t e s t T r a n s f e r ( i ,

ITERATIONS MANY, from , to , cudaMemcpyDeviceToHost )
;

66
67 i f (meanTsDownTmp < meanTsDown) {
68 meanTsDown = meanTsDownTmp ;
69 }
70
71 // Free memory .
72 cudaFree ( from ) ;
73 f r e e ( to ) ;
74 p r i n t (meanTsDownTmp, i , ITERATIONS MANY) ;
75 }
76 p r i n t f ( ”\n” ) ;
77
78 // Measure bandwidth up
79 p r i n t f ( ”Bandwidth up\n” ) ;
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80 setDummy
81 forLoop
82 // A l l o ca t e memory .
83 from = ( f loat ∗) mal loc ( d a t a s i z e ∗ s izeof ( f loat ) ) ;
84 cudaMalloc ( ( void ∗∗)&to , d a t a s i z e ∗ s izeof ( f loat ) ) ;
85
86 // Perform t e s t .
87 double betaTime = t e s t T r a n s f e r ( data s i z e , i t e r a t i o n s ,

from , to , cudaMemcpyHostToDevice ) ;
88
89 // Free memory .
90 f r e e ( from ) ;
91 cudaFree ( to ) ;
92
93 // Ca l cu l a t e bandwidth .
94 double meanBeta = ( ( betaTime − meanTsUp) / d a t a s i z e

) ∗ (MB / s izeof ( f loat ) ) ;
95 double bandwidth = 1 / meanBeta ;
96
97 // Redo run i f dummy−t e s t .
98 checkDummy
99 p r i n t ( bandwidth , datas i z e , i t e r a t i o n s ) ;

100 }
101 p r i n t f ( ”\n” ) ;
102
103 // Measure bandwidth down
104 p r i n t f ( ”Bandwidth down\n” ) ;
105 setDummy
106 forLoop
107 // A l l o ca t e memory .
108 cudaMalloc ( ( void ∗∗)&from , d a t a s i z e ∗ s izeof ( f loat ) ) ;
109 to = ( f loat ∗) mal loc ( d a t a s i z e ∗ s izeof ( f loat ) ) ;
110
111 // Perform t e s t .
112 double betaTime = t e s t T r a n s f e r ( data s i z e , i t e r a t i o n s ,

from , to , cudaMemcpyDeviceToHost ) ;
113
114 // Free memory .
115 cudaFree ( from ) ;
116 f r e e ( to ) ;
117
118 // Ca l cu l a t e bandwidth .
119 double meanBeta = ( ( betaTime − meanTsDown) /

d a t a s i z e ) ∗ (MB / s izeof ( f loat ) ) ;
120 double bandwidth = 1 / meanBeta ;
121
122 // Redo run i f dummy−t e s t .
123 checkDummy
124 pr i n t ( bandwidth , datas i z e , i t e r a t i o n s ) ;
125 }
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126 p r i n t f ( ”\n” ) ;
127 }
128
129 #endif

B.4 measureTransferCudaMallocHost.cu

1 /∗
2 The MIT License
3
4 Copyright ( c ) 2008 Rune Johan Hovland
5
6 Permission i s hereby granted , f r e e o f charge , to any

person ob t a in ing a copy o f t h i s so f tware and
a s s o c i a t e d documentation f i l e s ( the ” Sof tware ”) , to
dea l in the Sof tware wi thout r e s t r i c t i o n , i n c l u d i n g
wi thout l im i t a t i o n the r i g h t s to use , copy , modify ,
merge , pub l i s h , d i s t r i b u t e , s u b l i c en s e , and/or s e l l
c op i e s o f the Software , and to permit persons to whom
the Sof tware i s f u rn i sh ed to do so , s u b j e c t to the
f o l l ow i n g cond i t i on s :

7
8 The above copy r i g h t no t i c e and t h i s permiss ion no t i c e

s h a l l be inc luded in a l l cop i e s or s u b s t a n t i a l
po r t i on s o f the Sof tware .

9
10 THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY , WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

11 ∗/
12
13 #ifndef measureTransferCudaMallocHost
14 #define meausreTransferCudaMallocHost
15
16 void
17 measureTransferCudaMallocHost ( int core )
18 {
19 p r i n t f ( ”\n” ) ;
20 p r i n t f ( ”

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>\
n” ) ;

21 p r i n t f ( ” | Measuring t r a n s f e r s with cudaMallocHost .\n” ) ;
22 p r i n t f ( ” | ( core %d) \n” , core ) ;
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23 p r i n t f ( ”
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>\
n” ) ;

24 p r i n t f ( ”\n” ) ;
25
26 f loat ∗ from , ∗ to ;
27
28 // Measure l a t ency up
29 p r i n t f ( ” Latency up\n” ) ;
30 double meanTsUp = 100000;
31
32 for ( int i = 1 ; i <= LATENCY LIMIT; i ∗=2)
33 {
34 // A l l o ca t e memory l o c a t i o n s
35 cudaMallocHost ( ( void ∗∗)&from , i ∗ s izeof ( f loat ) ) ;
36 cudaMalloc ( ( void ∗∗)&to , i ∗ s izeof ( f loat ) ) ;
37
38 // Perform t e s t .
39 double meanTsUpTmp = t e s t T r a n s f e r ( i , ITERATIONS MANY,

from , to , cudaMemcpyHostToDevice ) ;
40
41 i f (meanTsUpTmp < meanTsUp) {
42 meanTsUp = meanTsUpTmp;
43 }
44
45 // Free memory .
46 cudaFreeHost ( from ) ;
47 cudaFree ( to ) ;
48 p r i n t (meanTsUpTmp, i , ITERATIONS MANY) ;
49 }
50 p r i n t f ( ”\n” ) ;
51
52 // Measure l a t ency down
53 p r i n t f ( ” Latency down\n” ) ;
54 double meanTsDown = 100000;
55
56 for ( int i = 1 ; i <= LATENCY LIMIT; i∗= 2)
57 {
58 // A l l o ca t e memory l o c a t i o n s
59 cudaMalloc ( ( void ∗∗)&from , i ∗ s izeof ( f loat ) ) ;
60 cudaMallocHost ( ( void ∗∗)&to , i ∗ s izeof ( f loat ) ) ;
61
62 // Perform t e s t .
63 double meanTsDownTmp = t e s t T r a n s f e r ( i ,

ITERATIONS MANY, from , to , cudaMemcpyDeviceToHost )
;

64
65 i f (meanTsDownTmp < meanTsDown) {
66 meanTsDown = meanTsDownTmp ;
67 }
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68
69 // Free memory .
70 cudaFree ( from ) ;
71 cudaFreeHost ( to ) ;
72 p r i n t (meanTsDownTmp, i , ITERATIONS MANY) ;
73 }
74 p r i n t f ( ”\n” ) ;
75
76 // Measure bandwidth up
77 p r i n t f ( ”Bandwidth up\n” ) ;
78 setDummy
79 forLoop
80 // A l l o ca t e memory .
81 cudaMallocHost ( ( void ∗∗)&from , d a t a s i z e ∗ s izeof ( f loat ) )

;
82 cudaMalloc ( ( void ∗∗)&to , d a t a s i z e ∗ s izeof ( f loat ) ) ;
83
84 // Perform t e s t .
85 double betaTime = t e s t T r a n s f e r ( data s i z e , i t e r a t i o n s ,

from , to , cudaMemcpyHostToDevice ) ;
86
87 // Free memory .
88 cudaFreeHost ( from ) ;
89 cudaFree ( to ) ;
90
91 // Ca l cu l a t e bandwidth .
92 double meanBeta = ( ( betaTime − meanTsUp) / d a t a s i z e

) ∗ (MB / s izeof ( f loat ) ) ;
93 double bandwidth = 1 / meanBeta ;
94
95 // Redo run i f dummy−t e s t .
96 checkDummy
97 p r i n t ( bandwidth , datas i z e , i t e r a t i o n s ) ;
98 }
99 p r i n t f ( ”\n” ) ;

100
101 // Measure bandwidth down
102 p r i n t f ( ”Bandwidth down\n” ) ;
103 setDummy
104 forLoop
105 // A l l o ca t e memory .
106 cudaMalloc ( ( void ∗∗)&from , d a t a s i z e ∗ s izeof ( f loat ) ) ;
107 cudaMallocHost ( ( void ∗∗)&to , d a t a s i z e ∗ s izeof ( f loat ) ) ;
108
109 // Perform t e s t .
110 double betaTime = t e s t T r a n s f e r ( data s i z e , i t e r a t i o n s ,

from , to , cudaMemcpyDeviceToHost ) ;
111
112 // Free memory .
113 cudaFree ( from ) ;
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114 cudaFreeHost ( to ) ;
115
116 // Ca l cu l a t e bandwidth .
117 double meanBeta = ( ( betaTime − meanTsDown) /

d a t a s i z e ) ∗ (MB / s izeof ( f loat ) ) ;
118 double bandwidth = 1 / meanBeta ;
119
120 // Redo run i f dummy−t e s t .
121 checkDummy
122 pr i n t ( bandwidth , datas i z e , i t e r a t i o n s ) ;
123 }
124 p r i n t f ( ”\n” ) ;
125 }
126
127 #endif
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Appendix C

Load-Simulator Software

Here follows the code used in the load simulator.

C.1 loadSimulator.cu

1 /∗
2 The MIT License
3
4 Copyright ( c ) 2008 Rune Johan Hovland
5
6 Permission i s hereby granted , f r e e o f charge , to any

per sonob ta in ing a copy o f t h i s so f tware and a s s o c i a t e d
documentation f i l e s ( the ” Sof tware ”) , to dea l in the

Sof tware wi thout r e s t r i c t i o n , i n c l u d i n g wi thout
l im i t a t i o n the r i g h t s to use , copy , modify , merge ,
pub l i s h , d i s t r i b u t e , s u b l i c en s e , and/or s e l l c op i e s o f
the Software , and to permit persons to whom the

Sof tware i s f u rn i sh ed to do so , s u b j e c t to the
f o l l ow i n g cond i t i on s :

7
8 The above copy r i g h t no t i c e and t h i s permiss ion no t i c e

s h a l l be inc luded in a l l cop i e s or s u b s t a n t i a l
po r t i on s o f the Sof tware .

9
10 THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY , WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

11 ∗/
12
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13 #include ” s t d i o . h”
14 #include <c s t d l i b>
15
16 int
17 main ( int argc , char∗∗ argv )
18 {
19 // S i z e o f a l l o c a t i o n .
20 int s i z e = 2∗1024∗1024;
21
22 // change s i z e i f s p e c i f i e d .
23 i f ( argc > 1)
24 {
25 s i z e = a t o i ( argv [ 1 ] ) ∗ 1024 ;
26 }
27
28 // A l l o ca t e memory to copy between .
29 f loat ∗ a = ( f loat ∗) mal loc ( s i z e ) ;
30 f loat ∗ b = ( f loat ∗) mal loc ( s i z e ) ;
31 f loat ∗ c = ( f loat ∗) mal loc ( s i z e ) ;
32 f loat ∗ d = ( f loat ∗) mal loc ( s i z e ) ;
33
34 // F i l l memory wi th data .
35 for ( int i = 0 ; i < s i z e / 4 ; i++)
36 {
37 a [ i ] = i ;
38 }
39
40 // Inform user t ha t l oad s imu la to r has s t a r t e t .
41 p r i n t f ( ”Load s imu la t i on s t a r t e d (%db) \n” , s i z e ) ;
42
43 // Copy memory between var ious l o c a t i o n s f o r e v e r .
44 while ( true )
45 {
46 memcpy(b , a , s i z e ) ;
47 memcpy( c , b , s i z e ) ;
48 memcpy(d , c , s i z e ) ;
49 memcpy( a , d , s i z e ) ;
50 }
51 }
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