
© 2012 IBM Corporation

Let your GPU do the heavy lifting in your
data Warehouse

Tim Kaldewey, Rene Mueller

Mar 19 2013

© 2012 IBM Corporation 2

Agenda

■  A closer look at data warehousing queries
–  From queries down to operators
–  Where does time go?
–  Hash Join operators
–  Data Access Patterns

§ Drill-down: Hash Tables on GPUs
–  Hash computation
–  Hash Tables = Hash computation + Memory access
–  Optimizations

■  From Hash Tables to Relational Joins
–  Hash Join Implementation
–  Query Performance
–  Processing 100s of GBs in seconds

© 2012 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales of
US products for the last 5 years by city

3

© 2012 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales
of US products for the last 5 years by city

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE lo.custkey = c.custkey
 AND lo.suppkey = s.suppkey
 AND lo.orderdate = d.datekey
 AND c.nation = ’UNITED STATES’
 AND s.nation = ’UNITED STATES'
 AND d.year >= 1998 AND d.year <= 2012

 GROUP BY c.city, s.city, d.year
 ORDER BY d.year asc, revenue desc;

4

© 2012 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales of
US products for the last 5 years by city

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE lo.custkey = c.custkey
 AND lo.suppkey = s.suppkey
 AND lo.orderdate = d.datekey
 AND c.nation = ’UNITED STATES’
 AND s.nation = ’UNITED STATES'
 AND d.year >= 1998 AND d.year <= 2012

 GROUP BY c.city, s.city, d.year
 ORDER BY d.year asc, revenue desc;

5

?

© 2012 IBM Corporation

Star Schema – typical for DWH

Query:
SELECT c.city, s.city, d.year, SUM(lo.revenue) FROM lineorder lo, customer c, supplier s, date d
WHERE lo.custkey = c.custkey AND lo.suppkey = s.suppkey AND lo.orderdate = d.datekey AND
c.nation = ’UNITED STATES’ AND s.nation = ’UNITED STATES’ AND d.year >= 1998 AND d.year <= 2012
GROUP BY c.city, s.city, d.year ORDER BY d.year asc, revenue desc;

A closer look at DWH queries

ORDERKEY!

LINENUMBER!

CUSTKEY!

PARTKEY!

SUPPKEY!

ORDERDATE!

ORDPRIORITY!

…!

…!

COMMITDATE!

SHIPMODE!

CUSTKEY!

NAME!

ADDRESS!

CITY!

…!

SUPPKEY!

NAME!

ADDRESS!

CITY!

…!

PARTKEY!

NAME!

MFGR!

CATEGORY!

BRAND!

…!

DATEKEY!

DATE!

DAYOFWEEK!

MONTH!

YEAR!

…!

Customer

Date

Lineorder

Supplier

Part

6

© 2012 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales of
US products for the last 5 years by city

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE lo.custkey = c.custkey
 AND lo.suppkey = s.suppkey
 AND lo.orderdate = d.datekey
 AND c.nation = ’UNITED STATES’
 AND s.nation = ’UNITED STATES'
 AND d.year >= 1998 AND d.year <= 2012

 GROUP BY c.city, s.city, d.year
 ORDER BY d.year asc, revenue desc;

7

Database primitives (operators):
– Predicate(s): customer, supplier, and date direct filter (yes/no)
– Join(s): lineorder with part, supplier, and date correlate tables & filter
– Group By (aggregate): city and date correlate tables & sum
– Order By: year and revenue sort

 What are the most time-consuming operations?

© 2012 IBM Corporation

Where does time go?
A closer look at DWH queries

SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE c.nation = ’UNITED STATES’ AND lo.custkey = c.custkey
 AND s.nation = ’UNITED STATES’ AND lo.suppkey = s.suppkey
 AND d.year >= 1998 AND d.year <= 2012 AND lo.orderdate = d.datekey
 GROUP BY c.city, s.city, d.year

 ORDER BY d.year asc, revenue desc;

8

© 2012 IBM Corporation

Relational Joins

9

Key Zip
11 95014
23 94303
27 95040
39 95134

Revenue Customer

$10.99 23
$49.00 14
$11.00 56

$103.00 11
$84.50 39
$60.10 27

$7.60 23

Sales (Fact Table)
Customers (living in US)

Revenue Zip
$10.99 94303

$103.00 95014
$84.50 95134
$60.10 95040

$7.60 94303

=

Join
Results Payload

Foreign Key

Primary Key

Measure

A closer look at DWH queries

© 2012 IBM Corporation

Hash Join

10

Key Zip
11 95014
23 94303
27 95040
39 95134

Revenue Customer

$10.99 23
$49.00 14
$11.00 56

$103.00 11
$84.50 39
$60.10 27

$7.60 23

Sales (Fact Table)
Customers (living in US)

Hash Table (HT)

Probe Inputs

Revenue Zip
$10.99 94303

$103.00 95014
$84.50 95134
$60.10 95040

$7.60 94303

=

Join
Results Payload Primary Key

Foreign Key

A closer look at DWH queries

© 2012 IBM Corporation

Join two tables (|S| < |R|) in 2 steps
1.  Build a hash table

–  Scan S and compute a location (hash)
based on a unique (primary) key

–  Insert primary key k with payload p into
the hash table

–  If the location is occupied pick the next
free one (open addressing)

A closer look at DWH queries

 k2,p2

Hash table S

S
ca

n k1,p1 k1,p1

 k2,p2

Hash Join

11

© 2012 IBM Corporation

Join two tables (|S| < |R|) in 2 steps
1.  Build a hash table

–  Scan S and compute a location (hash)
based on a unique (primary) key

–  Insert primary key k with payload p into
the hash table

–  If the location is occupied pick the next
free one (open addressing)

2.  Probe the hash table
–  Scan R and compute a location (hash)

based on the reference to S (foreign
key)

–  Compare foreign key fk and key k in
hash table

–  If there is a match store the result (m,p)

fk2,m2

 k6,p6

Hash table R

S
ca

n

A closer look at DWH queries

...
fk1,m1

 k2,p2

 k5,p5

 k1,p1

 k3,p3

 k4,p4

 k7,p7

Hash Join

12

© 2012 IBM Corporation

Join two tables (|S| < |R|) in 2 steps
1.  Build a hash table

–  Scan S and compute a location (hash)
based on a unique (primary) key

–  Insert primary key k with payload p into
the hash table

–  If the location is occupied pick the next
free one (open addressing)

2.  Probe the hash table
–  Scan R and compute a location (hash)

based on the reference to S (foreign
key)

–  Compare foreign key fk and key k in
hash table

–  If there is a match store the result (m,p)

Build and Probe produce a random data
access pattern!

fk2,m2

 k6,p6

Hash table R

S
ca

n

A closer look at DWH queries

...
fk1,m1

 k2,p2

 k5,p5

 k1,p1

 k3,p3

 k4,p4

 k7,p7

Hash Join

13

 k2,p2

Hash table S

S
ca

n k1,p1 k1,p1

 k2,p2

© 2012 IBM Corporation

Hash Join – Data Access Patterns
A closer look at DWH queries

■  Primary data access patterns:
– Scan the input table(s) for HT creation and probe
– Compare and swap when inserting data into HT
– Random read when probing the HT

14

© 2012 IBM Corporation

Hash Join - Summary
A closer look at DWH queries

■  Primary data access patterns:
– Scan the input table(s) for HT creation and probe
– Compare and swap when inserting data into HT
– Random read when probing the HT

■  Data (memory) access on

GPU
(GTX580)

CPU
(i7-2600)

Peak memory bandwidth [spec] 1) 179 GB/s 21 GB/s

Peak memory bandwidth [measured] 2) 153 GB/s 18 GB/s Scan R, S

vs.

Upper bound for:

15

(1) Nvidia: 192.4 × 106 B/s ≈ 179.2 GB/s
(2) 64-bit accesses over 1 GB of device memory

© 2012 IBM Corporation

Hash Join - Summary
A closer look at DWH queries

■  Primary data access patterns:
– Scan the input table(s) for HT creation and probe
– Compare and swap when inserting data into HT
– Random read when probing the HT

■  Data (memory) access on

GPU
(GTX580)

CPU
(i7-2600)

Peak memory bandwidth [spec] 1) 179 GB/s 21 GB/s

Peak memory bandwidth [measured] 2) 153 GB/s 18 GB/s

Random access [measured] 2) 6.6 GB/s 0.8 GB/s

Compare and swap [measured] 3) 4.6 GB/s 0.4 GB/s

vs.

Build HT
Probe

Upper bound for:

16

(1) Nvidia: 192.4 × 106 B/s ≈ 179.2 GB/s
(2) 64-bit accesses over 1 GB of device memory
(3) 64-bit compare-and-swap to random locations over 1 GB device memory

© 2012 IBM Corporation 17

Agenda

■  A closer look at data warehousing queries
–  From queries down to operators
–  Where does time go?
–  Hash Join operators
–  Data Access Patterns

§ Drill-down: Hash Tables on GPUs
–  Hash computation
–  Hash Tables = Hash computation + Memory access
–  Optimizations

■  From Hash Tables to Relational Joins
–  Hash Join Implementation
–  Query Performance
–  Processing 100s of GBs in seconds

© 2012 IBM Corporation

Computing Hash Functions on GTX580 – No Reads

18

Hash Function/
Key Ingest GB/s

Seq keys+
Hash

LSB 338
Fowler-Noll-Vo 1a 129
Jenkins Lookup3 79
Murmur3 111
One-at-a-time 85
CRC32 78
MD5 4.5
SHA1 0.81

^

seq.
keys

h(x)

sum

^

seq.
keys

h(x)

sum

^

seq.
keys

h(x)

sum

^

seq.
keys

h(x)

sum

32

sum

threads

§  Threads generate sequential keys
§  Hashes are XOR-summed locally

Cryptographic message
digests

32-bit keys, 32-bit hashes

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Hash Table Probe: Keys from Device Memory – No results

19

Hash Function/
Key Ingest GB/s

Seq keys+
Hash

HT Probe
keys: dev
values: sum

LSB 338 2.7
Fowler-Noll-Vo 1a 129 2.8
Jenkins Lookup3 79 2.7
Murmur3 111 2.7
One-at-a-time 85 2.7
CRC32 78 2.7
MD5 4.5 2.4
SHA1 0.81 0.7

§  1 GB hash table on device memory (load factor = 0.33)
§  Keys are read from device memory
§  20% of the probed keys find match in hash table
§  Values are XOR-summed locally

32-bit hashes, 32-bit values

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Hash Table Probe: Keys and Values from/to Device Memory

20

Hash Function/
Key Ingest GB/s

Seq keys+
Hash

HT Probe
keys: dev
values: sum

HT Probe
keys: dev
values: dev

LSB 338 2.7 1.7
Fowler-Noll-Vo 1a 129 2.8 1.7
Jenkins Lookup3 79 2.7 1.7
Murmur3 111 2.7 1.7
One-at-a-time 85 2.7 1.7
CRC32 78 2.7 1.7
MD5 4.5 2.4 1.7
SHA1 0.81 0.7 0.7

§  1 GB hash table on device memory (load factor = 0.33)
§  Keys are read from device memory
§  20% of the probed keys find match in hash table
§  Values are written back to device memory

32-bit hashes, 32-bit values

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Result Cache

21

k1 k2 k3 k4 k32 …

T1 T2 T3 T4 T32 …

Host/Device
Memory Load probe keys

Coalesced
load

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Result Cache

22

k1 k2 k3 k4 k32 …

T1 T2 T3 T4 T32 …

Host/Device
Memory Load probe keys

Coalesced
load

h(k1) … h(k2) h(k3) h(k4) h(k32) Compute hashes

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Result Cache

23

k1 k2 k3 k4 k32 …

T1 T2 T3 T4 T32 …

Host/Device
Memory Load probe keys

… p2 p3 p32

Hash Table Probe hash table

Values of matching entries

Coalesced
load

h(k1) … h(k2) h(k3) h(k4) h(k32) Compute hashes

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Result Cache

24

k1 k2 k3 k4 k32 …

T1 T2 T3 T4 T32 …

Host/Device
Memory Load probe keys

… p2 p3 p32

Hash Table Probe hash table

Values of matching entries

p2 p3 p32 Insert into Result Cache

Coalesced
load

atomicAdd() & regular store
(both to shared memory)

h(k1) … h(k2) h(k3) h(k4) h(k32) Compute hashes

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Result Cache

25

k1 k2 k3 k4 k32 …

T1 T2 T3 T4 T32 …

Host/Device
Memory Load probe keys

… p2 p3 p32

Hash Table Probe hash table

Values of matching entries

p2 p3 p32 Insert into Result Cache

Coalesced
load

atomicAdd() & regular store
(both to shared memory)

p2 p3 p32 p4 p7 p13
Host/Device

Memory

…

Coalesced
store

Write back Result Cache

h(k1) … h(k2) h(k3) h(k4) h(k32) Compute hashes

T1 T2 T3 T4 T32 …

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Probe with Result Cache: Keys and Values from/to Device Memory

26

Hash Function/
Key Ingest GB/s

Seq keys+
Hash

HT Probe
keys: dev
values: sum

HT Probe
keys: dev
values: dev

Res. Cache
keys: dev
values: dev

LSB 338 2.7 1.7 2.4
Fowler-Noll-Vo 1a 129 2.8 1.7 2.5
Jenkins Lookup3 79 2.7 1.7 2.4
Murmur3 111 2.7 1.7 2.4
One-at-a-time 85 2.7 1.7 2.4
CRC32 78 2.7 1.7 2.4
MD5 4.5 2.4 1.7 1.8
SHA1 0.81 0.7 0.7 0.6

§  1 GB hash table on device memory (load factor = 0.33)
§  Keys are read from device memory
§  20% of the probed keys find match in hash table
§  Individual values are written back to buffer in shared memory

and then coalesced to device memory

32-bit hashes, 32-bit values

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

Probe with Result Cache: Keys and Values from/to Host Memory

27

Hash Function/
Key Ingest GB/s

HT Probe
keys: dev
values: sum

HT Probe
keys: dev
values: dev

Res. Cache
keys: dev
Values: dev

Res. Cache
keys: host
Values: host

LSB 2.7 1.7 2.4 2.3
Fowler-Noll-Vo 1a 2.8 1.7 2.5 2.4
Jenkins Lookup3 2.7 1.7 2.4 2.3
Murmur3 2.7 1.7 2.4 2.3
One-at-a-time 2.7 1.7 2.4 2.3
CRC32 2.7 1.7 2.4 2.3
MD5 2.4 1.7 1.8 1.8
SHA1 0.7 0.7 0.6 0.6

§  Keys are read from host memory (zero-copy access)
§  20% of the probed keys find match in hash table
§  Individual values are written back to buffer in shared memory

and then coalesced to host memory (zero-copy access)

32-bit hashes, 32-bit values, 1 GB hash table on device memory (load factor = 0.33)

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation

End-to-end comparison of Hash Table Probe: GPU vs. CPU

28

Hash Function/
Key Ingest GB/s

GTX580
keys: host
values: host

i7-2600
4 cores
8 threads

Speedup

LSB 2.3 0.48 4.8×
Fowler-Noll-Vo 1a 2.4 0.47 5.1×
Jenkins Lookup3 2.3 0.46 5.0×
Murmur3 2.3 0.46 5.0×
One-at-a-time 2.3 0.43 5.3×
CRC32 2.3 0.481) 4.8×
MD5 1.8 0.11 16×
SHA1 0.6 0.06 10×

§  Result cache used in both implementations
§  GPU: keys from host memory, values back to host memory
§  CPU: software prefetching instructions for hash table loads

1) Use of CRC32 instruction in SSE 4.2

32-bit hashes, 32-bit values, 1 GB hash table (load factor = 0.33)

Drill Down: Hash Tables on GPUs

© 2012 IBM Corporation 29

Agenda

■  A closer look at data warehousing queries
–  From queries down to operators
–  Where does time go?
–  Hash Join operators
–  Data Access Patterns

§ Drill-down: Hash Tables on GPUs
–  Hash computation
–  Hash Tables = Hash computation + Memory access
–  Optimizations

■  From Hash Tables to Relational Joins
–  Hash Join Implementation
–  Query Performance
–  Processing 100s of GBs in seconds

© 2012 IBM Corporation

From Hash Tables back to Relational Joins

§  Equijoin return all pairs (mi,pj)
where fki=kj

§ During probing (fk,m) pairs need
to be transferred to the GPU not
just fk.

Example: fk, m are 32 bit

§ HT lookup 2.3 GB/s for 32 bit keys

§  Ingest Bandwidth to GPU needed:
2×2.3 GB/s = 4.6 GB/s

30

fk2,m2

 k6,p6

Hash table R

S
ca

n

...

fk1,m1

 k2,p2

 k5,p5

 k1,p1

 k3,p3

 k4,p4

 k7,p7

Probe:

Join Results:
(m1,p1), (m2,p6), …

From Hash Tables to Relational Joins

© 2012 IBM Corporation

Hash Join Implementation
1.  Pin table S for Build in host memory

2.  Simultaneously read table S from host memory

 & create hash table on device

Hash Table Build Table (S)

k1
k2
k3
k4
k5
k6

p1
p2
p3
p4
p5
p6

Create HT

31

k1
k2
k3
k4
k5
k6

p1
p2
p3
p4
p5
p6

From Hash Tables to Relational Joins

© 2012 IBM Corporation

Hash Join Implementation
1.  Pin table S for Build in host memory

2.  Simultaneously read table S from host memory

 & create hash table on device

3. Simultaneously read table R for Probe from host memory

 & probe hash table on device

 & store results in host memory

 Hash table
fk1
fk2
fk3
fk4
fk5
fk6

m1

Probe Table (R)

m2
m3
m4
m5
m6

Probe HT

Store results

m2
m5

p3

Join result

p4

32

k1
k2
k3
k4
k5
k6

p1
p2
p3
p4
p5
p6

From Hash Tables to Relational Joins

© 2012 IBM Corporation

Results: Complete Join from Star Schema Benchmark

Conservative Assumptions for
previous micro-benchmarks:

§  large hash table (1 GB)

§  large match rate (20%)

Now: Query from a Benchmark

Star Schema Benchmark:

§  First join in Query Q3.2:
 lineorder customer

§ DB Size: 714 GB
Scale Factor 1,000 (6 billion rows)

§  Match rate 4%

§ Measured ingest rate on GTX580:
 5.77 GiB/s

§ This corresponds to 92% of the
theoretical PCI-E 2.0 x16
bandwidth.

33

PCI-E 2.0 x16: 8 GB/s with 128 B TLP payload/152 B TLP total = 6.274 GiB/s

From Hash Tables to Relational Joins

© 2012 IBM Corporation

Processing hundreds of Gigabytes in seconds

34

…

…

…
Create hash table

Probe hash table

From Hash Tables to Relational Joins

§ Machines with ½ TB of memory are not commodity yet (even at IBM ;-)

§ How about reading the input tables on the fly from flash?

§ Storage solution delivering data at GPU join speed (>5.7 GB/s):
– 3x 900 GB IBM Texas Memory Systems RamSan-70 SSDs
– IBM Global Parallel File System (GPFS)

à Visit us at the IBM booth #607 in the exhibition hall for a live demo !

