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TCP Connection Passing

Werner Almesberger
werner@almesberger.net

Abstract

tcpcp is an experimental mechanism that al-
lows cooperating applications to pass owner-
ship of TCP connection endpoints from one
Linux host to another one. tcpcp can be used
between hosts using different architectures and
does not need the other endpoint of the con-
nection to cooperate (or even to know what’s
going on).

1 Introduction

When designing systems for load-balancing,
process migration, or fail-over, there is even-
tually the point where one would like to be
able to “move” a socket from one machine to
another one, without losing the connection on
that socket, similar to file descriptor passing on
a single host. Such a move operation usually
involves at least three elements:

1. Moving any application space state re-
lated to the connection to the new owner.
E.g. in the case of a Web server serv-
ing large static files, the application state
could simply be the file name and the cur-
rent position in the file.

2. Making sure that packets belonging to the
connection are sent to the new owner of
the socket. Normally this also means that
the previous owner should no longer re-
ceive them.

3. Last but not least, creating compatible
network state in the kernel of the new con-
nection owner, such that it can resume the
communication where the previous owner
left off.

Origin (server)

Destination (server)

Application state

Kernel state

Packet routing

User space
Kernel

(client)
Peer

App

App

Figure 1: Passing one end of a TCP connection
from one host to another.

Figure 1 illustrates this for the case of a client-
server application, where one server passes
ownership of a connection to another server.
We shall call the host from which ownership of
the connection endpoint is taken theorigin, the
host to which it is transferred thedestination,
and the host on the other end of the connection
(which does not change) thepeer.

Details of moving the application state are be-
yond the scope of this paper, and we will only
sketch relatively simple examples. Similarly,
we will mention a few ways for how the redi-
rection in the network can be accomplished,
but without going into too much detail.
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The complexity of the kernel state of a network
connection, and the difficulty of moving this
state from one host to another, varies greatly
with the transport protocol being used. Among
the two major transport protocols of the Inter-
net, UDP [1] and TCP [2], the latter clearly
presents more of a challenge in this regard.
Nevertheless, some issues also apply to UDP.

tcpcp (TCP Connection Passing) is a proof of
concept implementation of a mechanism that
allows applications to transport the kernel state
of a TCP endpoint from one host to another,
while the connection is established, and with-
out requiring the peer to cooperate in any way.
tcpcp is not a complete process migration or
load-balancing solution, but rather a building
block that can be integrated into such systems.
tcpcp consists of a kernel patch (at the time
of writing for version 2.6.4 of the Linux ker-
nel) that implements the operations for dump-
ing and restoring the TCP connection end-
point, a library with wrapper functions (see
Section 3), and a few applications for debug-
ging and demonstration.

The project’s home page is athttp://
tcpcp.sourceforge.net/

The remainder of this paper is organized as fol-
lows: this section continues with a description
of the context in which connection passing ex-
ists. Section 2 explains the connection pass-
ing operation in detail. Section 3 introduces
the APIs tcpcp provides. The information that
defines a TCP connection and its state is de-
scribed in Section 4. Sections 5 and 6 discuss
congestion control and the limitations TCP im-
poses on checkpointing. Security implications
of the availability and use of tcpcp are exam-
ined in Section 7. We conclude with an outlook
on future direction the work on tcpcp will take
in Section 8, and the conclusions in Section 9.

The excellent “TCP/IP Illustrated” [3] is rec-
ommended for readers who wish to refresh

their memory of TCP/IP concepts and termi-
nology.

1.1 There is more than one way to do it

tcpcp is only one of several possible meth-
ods for passing TCP connections among hosts.
Here are some alternatives:

In some cases, the solution is to avoid pass-
ing the “live” TCP connection, but to termi-
nate the connection between the origin and the
peer, and rely on higher protocol layers to re-
establish a new connection between the des-
tination and the peer. Drawbacks of this ap-
proach include that those higher layers need to
know that they have to re-establish the connec-
tion, and that they need to do this within an
acceptable amount of time. Furthermore, they
may only be able to do this at a few specific
points during a communication.

The use of HTTP redirection [4] is a simple
example of connection passing above the trans-
port layer.

Another approach is to introduce an intermedi-
ate layer between the application and the ker-
nel, for the purpose of handling such redirec-
tion. This approach is fairly common in pro-
cess migration solutions, such as Mosix [5],
MIGSOCK [6], etc. It requires that the peer
be equipped with the same intermediate layer.

1.2 Transparency

The key feature of tcpcp is that the peer can be
left completely unaware that the connection is
passed from one host to another. In detail, this
means:

• The peer’s networking stack can be used
“as is,” without modification and without
requiring non-standard functionality

• The connection is not interrupted
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• The peer does not have to stop sending

• No contradictory information is sent to the
peer

• These properties apply to all protocol lay-
ers visible to the peer

Furthermore, tcpcp allows the connection to be
passed at any time, without needing to syn-
chronize the data stream with the peer.

The kernels of the hosts between which the
connection is passed both need to support
tcpcp, and the application(s) on these hosts will
typically have to be modified to perform the
connection passing.

1.3 Various uses

Application scenarios in which the functional-
ity provided by tcpcp could be useful include
load balancing, process migration, and fail-
over.

In the case of load balancing, an application
can send connections (and whatever processing
is associated with them) to another host if the
local one gets overloaded. Or, one could have a
host acting as a dispatcher that may perform an
initial dialog and then assigns the connection
to a machine in a farm.

For process migration, tcpcp would be in-
voked when moving a file descriptor linked to a
socket. If process migration is implemented in
the kernel, an interface would have to be added
to tcpcp to allow calling it in this way.

Fail-over is tricker, because there is normally
no prior indication when the origin will be-
come unavailable. We discuss the issues aris-
ing from this in more detail in Section 6.

2 Passing the connection

Figure 2 illustrates the connection passing pro-
cedure in detail.

1. The application at the origin initiates the
procedure by requesting retrieval of what
we call theInternal Connection Informa-
tion (ICI) of a socket. The ICI contains
all the information the kernel needs to re-
create a TCP connection endpoint

2. As a side-effect of retrieving the ICI,
tcpcp isolatesthe connection: all incom-
ing packets are silently discarded, and no
packets are sent. This is accomplished
by setting up a per-socket filter, and by
changing the output function. Isolating
the socket ensures that the state of the con-
nection being passed remains stable at ei-
ther end.

3. The kernel copies all relevant variables,
plus the contents of the out-of-order and
send/retransmit buffers to the ICI. The
out-of-order buffer contains TCP seg-
ments that have not been acknowledged
yet, because an earlier segment is still
missing.

4. After retrieving the ICI, the application
empties the receive buffer. It can either
process this data directly, or send it along
with the other information, for the desti-
nation to process.

5. The origin sends the ICI and any relevant
application state to the destination. The
application at the origin keeps the socket
open, to ensure that it stays isolated.

6. The destination opens a new socket. It
may then bind it to a new port (there are
other choices, described below).
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Vars Send/Retr OutOfOrder

Receive OutOfOrder

Receive OutOfOrder

Send/Retransmit

Send/Retransmit ACK
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Isolate connection (2)

Copy kernel state to ICI (3)

Switch network traffic (8)
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Figure 2: Passing a TCP connection endpoint in ten easy steps.

7. The application at the destination now sets
the ICI on the socket. The kernel creates
and populates the necessary data struc-
tures, but does not send any data yet. The
current implementation makes no use of
the out-of-order data.

8. Network traffic belonging to the connec-
tion is redirected from the origin to the
destination host. Scenarios for this are de-
scribed in more detail below. The applica-
tion at the origin can now close the socket.

9. The application at the destination makes a
call toactivatethe connection.

10. If there is data to transmit, the kernel
will do so. If there is no data, an other-
wise empty ACK segment (like a window
probe) is sent to wake up the peer.

Note that, at the end of this procedure, the
socket at the destination is a perfectly normal
TCP endpoint. In particular, this endpoint can
be passed to another host (or back to the origi-
nal one) with tcpcp.

2.1 Local port selection

The local port at the destination can be selected
in three ways:

• The destination can simply try to use the
same port as the origin. This is necessary
if no address translation is performed on
the connection.

• The application can bind the socket before
setting the ICI. In this case, the port in the
ICI is ignored.
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• The application can also clear the port
information in the ICI, which will cause
the socket to be bound to any available
port. Compared to binding the socket be-
fore setting the ICI, this approach has the
advantage of using the local port number
space much more efficiently.

The choice of the port selection method de-
pends on how the environment in which tcpcp
operates is structured. Normally, either the first
or the last method would be used.

2.2 Switching network traffic

There are countless ways for redirecting IP
packets from one host to another, without help
from the transport layer protocol. They in-
clude redirecting part of the link layer, inge-
nious modifications of how link and network
layer interact [7], all kinds of tunnels, network
address translation (NAT), etc.

Since many of the techniques are similar to
network-based load balancing, the Linux Vir-
tual Server Project [8] is a good starting point
for exploring these issues.

While a comprehensive study of this topic if
beyond the scope of this paper, we will briefly
sketch an approach using a static route, be-
cause this is conceptually straightforward and
relatively easy to implement.

Server A

Server B

GW Client

ipA, ipX

ipB, ipX

ipX

ipX gw ipA ipX gw ipB

Figure 3: Redirecting network traffic using a
static route.

The scenario shown in Figure 3 consists of two
serversA andB, with interfaces with the IP ad-
dressesipA andipB, respectively. Each server
also has a virtual interface with the address
ipX . ipA , ipB, andipX are on the same subnet,
and also the gateway machine has an interface
on this subnet.

At the gateway, we create a static route as fol-
lows:

route add ipX gw ipA

When the client connects to the addressipX , it
reaches hostA. We can now pass the connec-
tion to hostB, as outlined in Section 2. In Step
8, we change the static route on the gateway as
follows:

route del ipX
route add ipX gw ipB

One major limitation of this approach is of
course that this routing change affects all con-
nections toipX , which is usually undesirable.
Nevertheless, this simple setup can be used to
demonstrate the operation of tcpcp.

3 APIs

The API for tcpcp consists of a low-level part
that is based on getting and setting socket op-
tions, and a high-level library that provides
convenient wrappers for the low-level API.

We mention only the most important aspects of
both APIs here. They are described in more de-
tail in the documentation that is included with
tcpcp.

3.1 Low-level API

The ICI is retrieved by getting theTCP_ICI
socket option. As a side-effect, the connection
is isolated, as described in Section 2. The ap-
plication can determine the maximum ICI size
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for the connection in question by getting the
TCP_MAXICISIZE socket option.

Example:

void *buf;
int ici_size;
size_t size = sizeof(int);

getsockopt(s,SOL_TCP,TCP_MAXICISIZE,
&ici_size,&size);

buf = malloc(ici_size);
size = ici_size;
getsockopt(s,SOL_TCP,TCP_ICI,

buf,&size);

The connection endpoint at the destination is
created by setting theTCP_ICI socket option,
and the connection is activated by “setting”
the TCP_CP_FNsocket option to the value
TCPCP_ACTIVATE.1

Example:

int sub_function = TCPCP_ACTIVATE;

setsockopt(s,SOL_TCP,TCP_ICI,
buf,size);

/* ... */
setsockopt(s,SOL_TCP,TCP_CP_FN,

&sub_function,
sizeof(sub_function));

3.2 High-level API

These are the most important functions pro-
vided by the high-level API:

void *tcpcp_get(int s);
int tcpcp_size(const void *ici);
int tcpcp_create(const void *ici);
int tcpcp_activate(int s);

1The use of a multiplexed socket option is admittedly
ugly, although convenient during development.

tcpcp_get allocates a buffer for the ICI, and
retrieves that ICI (isolating the connection as a
side-effect). The amount of data in the ICI can
be queried by callingtcpcp_size on it.

tcpcp_create sets an ICI on a socket, and
tcpcp_activate activates the connection.

4 Describing a TCP endpoint

In this section, we describe the parameters that
define a TCP connection and its state. tcpcp
collects all the information it needs to re-create
a TCP connection endpoint in a data structure
we callInternal Connection Information(ICI).

The ICI is portable among systems supporting
tcpcp, irrespective of their CPU architecture.

Besides this data, the kernel maintains a large
number of additional variables that can either
be reset to default values at the destination
(such as congestion control state), or that are
only rarely used and not essential for correct
operation of TCP (such as statistics).

4.1 Connection identifier

Each TCP connection in the global Internet or
any private internet [9] is uniquely identified by
the IP addresses of the source and destination
host, and the port numbers used at both ends.

tcpcp currently only supports IPv4, but can
be extended to support IPv6, should the need
arise.

4.2 Fixed data

A few parameters of a TCP connection are ne-
gotiated during the initial handshake, and re-
main unchanged during the life time of the
connection. These parameters include whether
window scaling, timestamps, or selective ac-
knowledgments are used, the number of bits by
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Connection identifier
ip.v4.ip_src IPv4 address of the host on which the ICI was recorded (source)
ip.v4.ip_dst IPv4 address of the peer (destination)
tcp_sport Port at the source host
tcp_dport Port at the destination host
Fixed at connection setup
tcp_flags TCP flags (window scale, SACK, ECN, etc.)
snd_wscale Send window scale
rcv_wscale Receive window scale
snd_mss Maximum Segment Size at the source host
rcv_mss MSS at the destination host
Connection state
state TCP connection state (e.g. ESTABLISHED)
Sequence numbers
snd_nxt Sequence number of next new byte to send
rcv_nxt Sequence number of next new byte expected to receive
Windows (flow-control)
snd_wnd Window received from peer
rcv_wnd Window advertised to peer
Timestamps
ts_gen Current value of the timestamp generator
ts_recent Most recently received timestamp

Table 1: TCP variables recorded in tcpcp’s Internal Connection Information (ICI) structure.

which the window is shifted, and the maximum
segment sizes (MSS).

These parameters are used mainly for sanity
checks, and to determine whether the destina-
tion host is able to handle the connection. The
received MSS continues of course to limit the
segment size.

4.3 Sequence numbers

The sequence numbers are used to synchronize
all aspects of a TCP connection.

Only the sequence numbers we expect to see
in the network, in either direction, are needed
when re-creating the endpoint. The kernel uses
several variables that are derived from these se-
quence numbers. The values of these variables

either coincide withsnd_nxt andrcv_nxt
in the state we set up, or they can be calculated
by examining the send buffer.

4.4 Windows (flow-control)

The (flow-control) window determines how
much more data can be sent or received with-
out overrunning the receiver’s buffer.

The window the origin received from the peer
is also the window we can use after re-creating
the endpoint.

The window the origin advertised to the peer
defines the minimum receive buffer size at the
destination.
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4.5 Timestamps

TCP can use timestamps to detect old segments
with wrapped sequence numbers [10]. This
mechanism is calledProtect Against Wrapped
Sequence numbers(PAWS).

Linux uses a global counter (tcp_time_
stamp ) to generate local timestamps. If a
moved connection were to use the counter at
the new host, local round-trip-time calculation
may be confused when receiving timestamp
replies from the previous connection, and the
peer’s PAWS algorithm will discard segments
if timestamps appear to have jumped back in
time.

Just turning off timestamps when moving the
connection is not an acceptable solution, even
though [10] seems to allow TCP to just stop
sending timestamps, because doing so would
bring back the problem PAWS tries to solve
in the first place, and it would also reduce the
accuracy of round-trip-time estimates, possibly
degrading the throughput of the connection.

A more satisfying solution is to synchroniza-
tion the local timestamp generator. This is
accomplished by introducing a per-connection
timestamp offset that is added to the value
of tcp_time_stamp . This calculation is
hidden in the macrotp_time_stamp(tp) ,
which just becomestcp_time_stamp if the
kernel is configured without tcpcp.

The addition of the timestamp offset is the only
major change tcpcp requires in the existing
TCP/IP stack.

4.6 Receive buffers

There are two buffers at the receiving side:
the buffer containing segments received out-of-
order (see Section 2), and the buffer with data
that is ready for retrieval by the application.

tcpcp currently ignores both buffers: the out-
of-order buffer is copied into the ICI, but not
used when setting up the new socket. Any data
in the receive buffer is left for the application
to read and process.

4.7 Send buffer

The send and retransmit buffer contains data
that is no longer accessible through the socket
API, and that cannot be discarded. It is there-
fore placed in the ICI, and used to populate the
send buffer at the destination.

4.8 Selective acknowledgments

In Section 5 of [11], the use of inbound SACK
information is left optional. tcpcp takes advan-
tage of this, and neither preserves SACK infor-
mation collected from inbound segments, nor
the history of SACK information sent to the
peer.

Outbound SACKs convey information about
the receiver’s out-of-order queue. Fortunately,
[11] declares this information as purely advi-
sory. In particular, if reception of data has been
acknowledged with a SACK, this does not im-
ply that the receiver has to remember having
done so. First, it can request retransmission of
this data, and second, when constructing new
SACKs, the receiver is encouraged to include
information from previous SACKs, but is un-
der no obligation to do so.

Therefore, while [11] discourages losing
SACK information, doing so does not violate
its requirements.

Losing SACK information may temporarily
degrade the throughput of the TCP connec-
tion. This is currently of little concern, be-
cause tcpcp forces the connection into slow
start, which has even more drastic performance
implications.



Linux Symposium 2004 • 19

SACK recovery may need to be reconsid-
ered once tcpcp implements more sophisticated
congestion control.

4.9 Other data

The TCP connection state is currently always
ESTABLISHED. It may be useful to also al-
low passing connections in earlier states, e.g.
SYN_RCVD. This is for further study.

Congestion control data and statistics are cur-
rently omitted. The new connection starts with
slow-start, to allow TCP to discover the char-
acteristics of the new path to the peer.

5 Congestion control

Most of the complexity of TCP is in its conges-
tion control. tcpcp currently avoids touching
congestion control almost entirely, by setting
the destination to slow start.

This is a highly conservative approach that is
appropriate if knowing the characteristics of
the path between the origin and the peer does
not give us any information on the characteris-
tics of the path between the destination and the
peer, as shown in the lower part of Figure 4.

However, if the characteristics of the two paths
can be expected to be very similar, e.g. if the
hosts passing the connection are on the same
LAN, better performance could be achieved by
allowing tcpcp to resume the connection at or
nearly at full speed.

Re-establishing congestion control state is for
further study. To avoid abuse, such an opera-
tion can be made available only to sufficiently
trusted applications.

Origin

Destination

? Peer

High−speed LAN

WAN

Characteristics may differ
Go to slow−start

Characteristics are identical
Reuse congestion control state

Figure 4: Depending on the structure of the
network, the congestion control state of the
original connection may or may not be reused.

6 Checkpointing

tcpcp is primarily designed for scenarios,
where the old and the new connection owner
are both functional during the process of con-
nection passing.

A similar usage scenario would if the node
owning the connection occasionally retrieves
(“checkpoints”) the momentary state of the
connection, and after failure of the connection
owner, another node would then use the check-
point data to resurrect the connection.

While apparently similar to connection pass-
ing, checkpointing presents several problems
which we discuss in this section. Note that this
is speculative and that the current implementa-
tion of tcpcp does not support any of the exten-
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sions discussed here.

We consider the send and receive flow of the
TCP connection separately, and we assume that
sequence numbers can be directly translated to
application state (e.g. when transferring a file,
application state consists only of the actual file
position, which can be trivially mapped to and
from TCP sequence numbers). Furthermore,
we assume the connection to be in ESTAB-
LISHED state at both ends.

6.1 Outbound data

One or more of the following events may occur
between the last checkpoint and the moment
the connection is resurrected:

• the sender may have enqueued more data

• the receiver may have acknowledged
more data

• the receiver may have retrieved more data,
thereby growing its window

Assuming that no additional data has been re-
ceived from the peer, the new sender can sim-
ply re-transmit the last segment. (Alternatively,
tcp_xmit_probe_skb might be useful for
the same purpose.) In this case, the following
protocol violations can occur:

• The sequence number may have wrapped.
This can be avoided by making sure
that a checkpoint is never older than the
Maximum Segment Lifetime (MSL)2, and
that less than231 bytes are sent between
checkpoints.

• If using PAWS, the timestamp may be be-
low the last timestamp sent by the old
sender. The best solution for avoiding this

2[2] specifies a MSL of two minutes.

is probably to tightly synchronize clock
on the old and the new connection owner,
and to make a conservative estimate of the
number of ticks of the local timestamp
clock that have passed since taking the
checkpoint. This assumes that the times-
tamp clock ticks roughly in real time.

Since new data in the segment sent after res-
urrecting the connection cannot exceed the re-
ceiver’s window, the only possible outcomes
are that the segment contains either new data,
or only old data. In either case, the receiver
will acknowledge the segment.

Upon reception of an acknowledgment, either
in response to the retransmitted segment, or
from a packet in flight at the time when the con-
nection was resurrected, the sender knows how
far the connection state has advanced since the
checkpoint was taken.

If the sequence number from the acknowl-
edgment is belowsnd_nxt , no special ac-
tion is necessary. If the sequence number is
abovesnd_nxt , the sender would exception-
ally treat this as a valid acknowledgment.3

As a possible performance improvement, the
sender may notify the application once a new
sequence number has been received, and the
application could then skip over unnecessary
data.

6.2 Inbound data

The main problem with checkpointing of in-
coming data is that TCP will acknowledge data
that has not yet been retrieved by the applica-
tion. Therefore, checkpointing would have to
delay outbound acknowledgments until the ap-
plication has actually retrieved them, and has

3Note that this exceptional condition does not neces-
sarily have to occur with the first acknowledgment re-
ceived.
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checkpointed the resulting state change.

To intercept all types of ACKs, tcp_
transmit_skb would have to be changed
to sendtp->copied_seq instead oftp->
rcv_nxt . Furthermore, a new API function
would be needed to trigger an explicit acknowl-
edgment after the data has been stored or pro-
cessed.

Putting acknowledges under application con-
trol would change their timing. This may upset
the round-trip time estimation of the peer, and
it may also cause it to falsely assume changes
in the congestion level along the path.

7 Security

tcpcp bypasses various sets of access and con-
sistency checks normally performed when set-
ting up TCP connections. This section ana-
lyzes the overall security impact of tcpcp.

7.1 Two lines of defense

When setting TCP_ICI, the kernel has no
means of verifying that the connection infor-
mation actually originates from a compatible
system. Users may therefore manipulate con-
nection state, copy connection state from arbi-
trary other systems, or even synthesize connec-
tion state according to their wishes. tcpcp pro-
vides two mechanisms to protect against inten-
tional or accidental mis-uses:

1. tcpcp only takes as little information as
possible from the user, and re-generates
as much of the state related to the TCP
connection (such as neighbour and desti-
nation data) as possible from local infor-
mation. Furthermore, it performs a num-
ber of sanity checks on the ICI, to ensure
its integrity, and compatibility with con-

straints of the local system (such as buffer
size limits and kernel capabilities).

2. Many manipulations possible through
tcpcp can be shown to be available
through other means if the application has
the CAP_NET_RAWcapability. There-
fore, establishing a new TCP connection
with tcpcp also requires this capability.
This can be relaxed on a host-wide basis.

7.2 Retrieval of sensitive kernel data

Getting TCP_ICI may retrieve information
from the kernel that one would like to hide
from unprivileged applications, e.g. details
about the state of the TCP ISN generator. Since
the equally unprivilegedTCP_INFO already
gives access to most TCP connection meta-
data, tcpcp does not create any new vulnera-
bilities.

7.3 Local denial of service

SettingTCP_ICI could be used to introduce
inconsistent data in the TCP stack, or the ker-
nel in general. Preventing this relies on the cor-
rectness and completeness of the sanity checks
mentioned before.

tcpcp can be used to accumulate stale data in
the kernel. However, this is not very different
from e.g. creating a large number of unused
sockets, or letting buffers fill up in TCP con-
nections, and therefore poses no new security
threat.

tcpcp can be used to shutdown connections be-
longing to third party applications, provided
that the usual access restrictions grant access to
copies of their socket descriptors. This is sim-
ilar to executingshutdown on such sockets,
and is therefore believed to pose no new threat.
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7.4 Restricted state transitions

tcpcp could be used to advance TCP connec-
tion state past boundaries imposed by internal
or external control mechanisms. In particular,
conspiring applications may create TCP con-
nections without ever exchanging SYN pack-
ets, bypassing SYN-filtering firewalls. Since
SYN-filtering firewalls can already be avoided
by privileged applications, sites depending on
SYN-filtering firewalls should therefore use
the default setting of tcpcp, which makes its
use also a privileged operation.

7.5 Attacks on remote hosts

The ability to setTCP_ICI makes it easy
to commit all kinds of of protocol violations.
While tcpcp may simplify implementing such
attacks, this type of abuses has always been
possible for privileged users, and therefore,
tcpcp poses no new security threat to systems
properly resistant against network attacks.

However, if a site allows systems where only
trusted users may be able to communicate with
otherwise shielded systems with known remote
TCP vulnerabilities, tcpcp could be used for at-
tacks. Such sites should use the default set-
ting, which makes settingTCP_ICI a privi-
leged operation.

7.6 Security summary

To summarize, the author believes that the de-
sign of tcpcp does not open any new exploits if
tcpcp is used in its default configuration.

Obviously, some subtleties have probably been
overlooked, and there may be bugs inadver-
tently leading to vulnerabilities. Therefore,
tcpcp should receive public scrutiny before be-
ing considered fit for regular use.

8 Future work

To allow faster connection passing among
hosts that share the same, or a very similar path
to the peer, tcpcp should try to avoid going to
slow start. To do so, it will have to pass more
congestion control information, and integrate it
properly at the destination.

Although not strictly part of tcpcp, the redirec-
tion apparatus for the network should be fur-
ther extended, in particular to allow individual
connections to be redirected at that point too,
and to include some middleware that coordi-
nates the redirecting with the changes at the
hosts passing the connection.

It would be very interesting if connection pass-
ing could also be used for checkpointing. The
analysis in Section 6 suggests that at least lim-
ited checkpointing capabilities should be feasi-
ble without interfering with regular TCP oper-
ation.

The inner workings of TCP are complex and
easily disturbed. It is therefore important to
subject tcpcp to thorough testing, in particu-
lar in transient states, such as during recovery
from lost segments. The umlsim simulator [12]
allows to generate such conditions in a deter-
ministic way, and will be used for these tests.

9 Conclusion

tcpcp is a proof of concept implementation that
successfully demonstrates that an endpoint of
a TCP connection can be passed from one host
to another without involving the host at the op-
posite end of the TCP connection. tcpcp also
shows that this can be accomplished with a rel-
atively small amount of kernel changes.

tcpcp in its present form is suitable for exper-
imental use as a building block for load bal-
ancing and process migration solutions. Future
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work will focus on improving the performance
of tcpcp, on validating its correctness, and on
exploring checkpointing capabilities.
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Abstract

In this paper I’ll describe Cooperative Linux, a
port of the Linux kernel that allows it to run as
an unprivileged lightweight virtual machine in
kernel mode, on top of another OS kernel. It al-
lows Linux to run under any operating system
that supports loading drivers, such as Windows
or Linux, after minimal porting efforts. The pa-
per includes the present and future implemen-
tation details, its applications, and its compar-
ison with other Linux virtualization methods.
Among the technical details I’ll present the
CPU-complete context switch code, hardware
interrupt forwarding, the interface between the
host OS and Linux, and the management of the
VM’s pseudo physical RAM.

1 Introduction

Cooperative Linux utilizes the rather under-
used concept of a Cooperative Virtual Machine
(CVM), in contrast to traditional VMs that
are unprivileged and being under the complete
control of the host machine.

The termCooperative is used to describe two
entities working in parallel, e.g. coroutines [2].
In that sense the most plain description of Co-
operative Linux is turning two operating sys-
tem kernels into two big coroutines. In that
mode, each kernel has its own complete CPU
context and address space, and each kernel de-
cides when to give control back to its partner.

However, only one of the two kernels has con-

trol on the physical hardware, where the other
is provided only with virtual hardware abstrac-
tion. From this point on in the paper I’ll refer
to these two kernels as the host operating sys-
tem, and the guest Linux VM respectively. The
host can be every OS kernel that exports basic
primitives that provide the Cooperative Linux
portable driver to run in CPL0 mode (ring 0)
and allocate memory.

The special CPL0 approach in Cooperative
Linux makes it significantly different than
traditional virtualization solutions such as
VMware, plex86, Virtual PC, and other meth-
ods such as Xen. All of these approaches work
by running the guest OS in a less privileged
mode than of the host kernel. This approach
allowed for the extensive simplification of Co-
operative Linux’s design and its short early-
beta development cycle which lasted only one
month, starting from scratch by modifying the
vanilla Linux 2.4.23-pre9 release until reach-
ing to the point where KDE could run.

The only downsides to the CPL0 approach is
stability and security. If it’s unstable, it has the
potential to crash the system. However, mea-
sures can be taken, such as cleanly shutting it
down on the first internal Oops or panic. An-
other disadvantage is security. Acquiring root
user access on a Cooperative Linux machine
can potentially lead to root on the host ma-
chine if the attacker loads specially crafted ker-
nel module or uses some very elaborated ex-
ploit in case which the Cooperative Linux ker-
nel was compiled without module support.
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Most of the changes in the Cooperative Linux
patch are on the i386 tree—the only supported
architecture for Cooperative at the time of this
writing. The other changes are mostly addi-
tions of virtual drivers: cobd (block device),
conet (network), and cocon (console). Most of
the changes in the i386 tree involve the initial-
ization and setup code. It is a goal of the Coop-
erative Linux kernel design to remain as close
as possible to the standalone i386 kernel, so all
changes are localized and minimized as much
as possible.

2 Uses

Cooperative Linux in its current early state
can already provide some of the uses that
User Mode Linux[1] provides, such as vir-
tual hosting, kernel development environment,
research, and testing of new distributions or
buggy software. It also enabled new uses:

• Relatively effortless migration path
from Windows. In the process of switch-
ing to another OS, there is the choice be-
tween installing another computer, dual-
booting, or using a virtualization soft-
ware. The first option costs money, the
second is tiresome in terms of operation,
but the third can be the most quick and
easy method—especially if it’s free. This
is where Cooperative Linux comes in. It
is already used in workplaces to convert
Windows users to Linux.

• Adding Windows machines to Linux
clusters. The Cooperative Linux patch
is minimal and can be easily combined
with others such as the MOSIX or Open-
MOSIX patches that add clustering ca-
pabilities to the kernel. This work in
progress allows to add Windows machines
to super-computer clusters, where one
illustration could tell about a secretary

workstation computer that runs Cooper-
ative Linux as a screen saver—when the
secretary goes home at the end of the day
and leaves the computer unattended, the
office’s cluster gets more CPU cycles for
free.

• Running an otherwise-dual-booted
Linux system from the other OS. The
Windows port of Cooperative Linux
allows it to mount real disk partitions
as block devices. Numerous people are
using this in order to access, rescue, or
just run their Linux system from their
ext3 or reiserfs file systems.

• Using Linux as a Windows firewall on
the same machine. As a likely competi-
tor to other out-of-the-box Windows fire-
walls, iptables along with a stripped-down
Cooperative Linux system can potentially
serve as a network firewall.

• Linux kernel development / debugging
/ research and study on another operat-
ing systems.

Digging inside a running Cooperative
Linux kernel, you can hardly tell the
difference between it and a standalone
Linux. All virtual addresses are the
same—Oops reports look familiar and the
architecture dependent code works in the
same manner, excepts some transparent
conversions, which are described in the
next section in this paper.

• Development environment for porting
to and from Linux.

3 Design Overview

In this section I’ll describe the basic meth-
ods behind Cooperative Linux, which include
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complete context switches, handling of hard-
ware interrupts by forwarding, physical ad-
dress translation and the pseudo physical mem-
ory RAM.

3.1 Minimum Changes

To illustrate the minimal effect of the Cooper-
ative Linux patch on the source tree, here is a
diffstat listing of the patch on Linux 2.4.26 as
of May 10, 2004:

CREDITS | 6
Documentation/devices.txt | 7
Makefile | 8
arch/i386/config.in | 30
arch/i386/kernel/Makefile | 2
arch/i386/kernel/cooperative.c | 181 +++++
arch/i386/kernel/head.S | 4
arch/i386/kernel/i387.c | 8
arch/i386/kernel/i8259.c | 153 ++++
arch/i386/kernel/ioport.c | 10
arch/i386/kernel/process.c | 28
arch/i386/kernel/setup.c | 61 +
arch/i386/kernel/time.c | 104 +++
arch/i386/kernel/traps.c | 9
arch/i386/mm/fault.c | 4
arch/i386/mm/init.c | 37 +
arch/i386/vmlinux.lds | 82 +-
drivers/block/Config.in | 4
drivers/block/Makefile | 1
drivers/block/cobd.c | 334 ++++++++++
drivers/block/ll_rw_blk.c | 2
drivers/char/Makefile | 4
drivers/char/colx_keyb.c | 1221 +++++++++++++*
drivers/char/mem.c | 8
drivers/char/vt.c | 8
drivers/net/Config.in | 4
drivers/net/Makefile | 1
drivers/net/conet.c | 205 ++++++
drivers/video/Makefile | 4
drivers/video/cocon.c | 484 +++++++++++++++
include/asm-i386/cooperative.h | 175 +++++
include/asm-i386/dma.h | 4
include/asm-i386/io.h | 27
include/asm-i386/irq.h | 6
include/asm-i386/mc146818rtc.h | 7
include/asm-i386/page.h | 30
include/asm-i386/pgalloc.h | 7
include/asm-i386/pgtable-2level.h | 8
include/asm-i386/pgtable.h | 7
include/asm-i386/processor.h | 12
include/asm-i386/system.h | 8
include/linux/console.h | 1
include/linux/cooperative.h | 317 +++++++++
include/linux/major.h | 1
init/do_mounts.c | 3
init/main.c | 9
kernel/Makefile | 2
kernel/cooperative.c | 254 +++++++
kernel/panic.c | 4
kernel/printk.c | 6
50 files changed, 3828 insertions(+), 74 deletions(-)

3.2 Device Driver

The device driver port of Cooperative Linux
is used for accessing kernel mode and using
the kernel primitives that are exported by the

host OS kernel. Most of the driver is OS-
independent code that interfaces with the OS
dependent primitives that include page alloca-
tions, debug printing, and interfacing with user
space.

When a Cooperative Linux VM is created, the
driver loads a kernel image from a vmlinux
file that was compiled from the patched kernel
with CONFIG_COOPERATIVE. The vmlinux
file doesn’t need any cross platform tools in or-
der to be generated, and the same vmlinux file
can be used to run a Cooperative Linux VM on
several OSes of the same architecture.

The VM is associated with a per-process
resource—a file descriptor in Linux, or a de-
vice handle in Windows. The purpose of this
association makes sense: if the process run-
ning the VM ends abnormally in any way, all
resources are cleaned up automatically from a
callback when the system frees the per-process
resource.

3.3 Pseudo Physical RAM

In Cooperative Linux, we had to work around
the Linux MM design assumption that the en-
tire physical RAM is bestowed upon the ker-
nel on startup, and instead, only give Cooper-
ative Linux a fixed set of physical pages, and
then only do the translations needed for it to
work transparently in that set. All the memory
which Cooperative Linux considers as physi-
cal is in that allocated set, which we call the
Pseudo Physical RAM.

The memory is allocated in the host OS
using the appropriate kernel function—
alloc_pages() in Linux and
MmAllocatePagesForMdl() in
Windows—so it is not mapped in any ad-
dress space on the host for not wasting PTEs.
The allocated pages are always resident and
not freed until the VM is downed. Page tables
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--- linux/include/asm-i386/pgtable-2level.h 2004-04-20 08:04:01.000000000 +0300
+++ linux/include/asm-i386/pgtable-2level.h 2004-05-09 16:54:09.000000000 +0300
@@ -58,8 +58,14 @@

}
#define ptep_get_and_clear(xp) __pte(xchg(&(xp)->pte_low, 0))
#define pte_same(a, b) ((a).pte_low == (b).pte_low)

-#define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >> PAGE_SHIFT))))
#define pte_none(x) (!(x).pte_low)

+
+#ifndef CONFIG_COOPERATIVE
+#define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >> PAGE_SHIFT))))

#define __mk_pte(page_nr,pgprot) __pte(((page_nr) << PAGE_SHIFT) | pgprot_val(pgprot))
+#else
+#define pte_page(x) CO_VA_PAGE((x).pte_low)
+#define __mk_pte(page_nr,pgprot) __pte((CO_PA(page_nr) & PAGE_MASK) | pgprot_val(pgprot))
+#endif

#endif /* _I386_PGTABLE_2LEVEL_H */

Table 1: Example of MM architecture dependent changes

are created for mapping the allocated pages
in the VM’s kernel virtual address space. The
VM’s address space resembles the address
space of a regular kernel—the normal RAM
zone is mapped contiguously at 0xc0000000.

The VM address space also has its own
special fixmaps—the page tables themselves
are mapped at 0xfef00000 in order to pro-
vide an O(1) ability for translating PPRAM
(Psuedo-Physical RAM) addresses to physical
addresses when creating PTEs for user space
and vmalloc() space. On the other way
around, a special physical-to-PPRAM map is
allocated and mapped at 0xff000000, to speed
up handling of events such as pages faults
which require translation of physical addresses
to PPRAM address. This bi-directional mem-
ory address mapping allows for a negligible
overhead in page faults and user space map-
ping operations.

Very few changes in the i386 MMU macros
were needed to facilitate the PPRAM. An ex-
ample is shown in Table 1. Around an #ifdef
of CONFIG_COOPERATIVEthe__mk_pte()
low level MM macro translates a PPRAM
struct page to a PTE that maps the real phys-
ical page. Respectively,pte_page() takes
a PTE that was generated by__mk_pte()

and returns the corresponding struct page for
it. Other macros such aspmd_page() and
load_cr3() were also changed.

3.4 Context Switching

The Cooperative Linux VM uses only one host
OS process in order to provide a context for it-
self and its processes. That one process, named
colinux-daemon, can be called a Super Process
since it frequently calls the kernel driver to per-
form a context switch from the host kernel to
the guest Linux kernel and back. With the fre-
quent (HZ times a second) host kernel entries,
it is able able to completely control the CPU
and MMU without affecting anything else in
the host OS kernel.

On the Intel 386 architecture, a complete con-
text switch requires that the top page direc-
tory table pointer register—CR3—is changed.
However, it is not possible to easily change
both the instruction pointer (EIP) and CR3 in
one instruction, so it implies that the code that
changes CR3 must be mapped in both contexts
for the change to be possible. It’s problematic
to map that code at the same virtual address
in both contexts due to design limitations—the
two contexts can divide the kernel and user ad-
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dress space differently, such that one virtual ad-
dress can contain a kernel mapped page in one
OS and a user mapped page in another.

In Cooperative Linux the problem was solved
by using an intermediate address space during
the switch (referred to as the ‘passage page,’
see Figure 1). The intermediate address space
is defined by a specially created page tables in
both the guest and host contexts and maps the
same code that is used for the switch (passage
code) at both of the virtual addresses that are
involved. When a switch occurs, first CR3 is
changed to point to the intermediate address
space. Then, EIP is relocated to the other map-
ping of the passage code using a jump. Finally,
CR3 is changed to point to the top page table
directory of the other OS.

The single MMU page that contains the pas-
sage page code, also contains the saved state of
one OS while the other is executing. Upon the
beginning of a switch, interrupts are turned off,
and a current state is saved to the passage page
by the passage page code. The state includes
all the general purpose registers, the segment
registers, the interrupt descriptor table register
(IDTR), the global descriptor table (GDTR),
the local descriptor register (LTR), the task reg-
ister (TR), and the state of the FPU / MMX
/ SSE registers. In the middle of the passage
page code, it restores the state of the other OS
and interrupts are turned back on. This process
is akin to a “normal” process to process context
switch.

Since control is returned to the host OS on ev-
ery hardware interrupt (described in the follow-
ing section), it is the responsibility of the host
OS scheduler to give time slices to the Cooper-
ative Linux VM just as if it was a regular pro-
cess.

0xFFFFFFFF

Host OSIntermediateGuest Linux

0x80000000

Figure 1: Address space transition during an
OS cooperative kernel switch, using an inter-
mapped page

3.5 Interrupt Handling and Forwarding

Since a complete MMU context switch also in-
volves the IDTR, Cooperative Linux must set
an interrupt vector table in order to handle the
hardware interrupts that occur in the system
during its running state. However, Cooperative
Linux only forwards the invocations of inter-
rupts to the host OS, because the latter needs
to know about these interrupts in order to keep
functioning and support the colinux-daemon
process itself, regardless to the fact that exter-
nal hardware interrupts are meaningless to the
Cooperative Linux virtual machine.

The interrupt vectors for the internal processor
exceptions (0x0–0x1f) and the system call vec-
tor (0x80) are kept like they are so that Coop-
erative Linux handles its own page faults and
other exceptions, but the other interrupt vectors
point to special proxy ISRs (interrupt service
routines). When such an ISR is invoked during
the Cooperative Linux context by an external
hardware interrupt, a context switch is made to
the host OS using the passage code. On the
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other side, the address of the relevant ISR of
the host OS is determined by looking at its IDT.
An interrupt call stack is forged and a jump oc-
curs to that address. Between the invocation of
the ISR in the Linux side and the handling of
the interrupt in the host side, the interrupt flag
is disabled.

The operation adds a tiny latency to interrupt
handling in the host OS, but it is quite ne-
glectable. Considering that this interrupt for-
warding technique also involves the hardware
timer interrupt, the host OS cannot detect that
its CR3 was hijacked for a moment and there-
fore no exceptions in the host side would occur
as a result of the context switch.

To provide interrupts for the virtual device
drivers of the guest Linux, the changes in the
arch code include a virtual interrupt controller
which receives messages from the host OS
on the occasion of a switch and invokesdo_
IRQ() with a forged struct pt_args .
The interrupt numbers are virtual and allocated
on a per-device basis.

4 Benchmarks And Performance

4.1 Dbench results

This section shows a comparison between User
Mode Linux and Cooperative Linux. The ma-
chine which the following results were gener-
ated on is a 2.8GHz Pentium 4 with HT en-
abled, 512GB RAM, and a 120GB SATA Max-
tor hard-drive that hosts ext3 partitions. The
comparison was performed using the dbench
1.3-2 package of Debian on all setups.

The host machine runs the Linux 2.6.6 kernel
patched with SKAS support. The UML kernel
is Linux 2.6.4 that runs with 32MB of RAM,
and is configured to use SKAS mode. The Co-
operative Linux kernel is a Linux 2.4.26 kernel
and it is configured to run with 32MB of RAM,

same as the UML system. The root file-system
of both UML and Cooperative Linux machines
is the same host Linux file that contains an ext3
image of a 0.5GB minimized Debian system.

The commands ‘dbench 1’, ‘dbench 3’, and
‘dbench 10’ were run in 3 consecutive runs for
each command, on the host Linux, on UML,
and on Cooperative Linux setups. The results
are shown in Table 2, Table 3, and Table 4.

System Throughput Netbench
43.813 54.766

Host 50.117 62.647
44.128 55.160
10.418 13.022

UML 9.408 11.760
9.309 11.636

10.418 13.023
coLinux 12.574 15.718

12.075 15.094

Table 2: output of dbench 10 (units are in
MB/sec)

System Throughput Netbench
43.287 54.109

Host 41.383 51.729
59.965 74.956
11.857 14.821

UML 15.143 18.929
14.602 18.252
24.095 30.119

coLinux 32.527 40.659
36.423 45.528

Table 3: output of dbench 3 (units are in
MB/sec)

4.2 Understanding the results

From the results in these runs, ‘dbench 10’,
‘dbench 3’, and ‘dbench 1’ show 20%, 123%,
and 303% increase respectively, compared to
UML. These numbers relate to the number
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System Throughput Netbench
158.205 197.756

Host 182.191 227.739
179.047 223.809
15.351 19.189

UML 16.691 20.864
16.180 20.226
45.592 56.990

coLinux 72.452 90.565
106.952 133.691

Table 4: output of dbench 1 (units are in
MB/sec)

of dbench threads, which is a result of the
synchronous implementation of cobd1. Yet,
neglecting the versions of the kernels com-
pared, Cooperative Linux achieves much better
probably because of low overhead with regard
to context switching and page faulting in the
guest Linux VM.

The current implementation of the cobd driver
is synchronous file reading and writing directly
from the kernel of the host Linux—No user
space of the host Linux is involved, therefore
less context switching and copying. About
copying, the specific implementation of cobd
in the host Linux side benefits from the fact
that filp->f_op->read() is called di-
rectly on the cobd driver’s request buffer after
mapping it usingkmap() . Reimplementing
this driver as asynchronous on both the host
and guest—can improve performance.

Unlike UML, Cooperative Linux can bene-
fit in the terms of performance from the im-
plementation of kernel-to-kernel driver bridges
such as cobd. For example, currently virtual
Ethernet in Cooperative Linux is done simi-
lar to UML—i.e., using user space daemons
with tuntap on the host. If instead we cre-
ate a kernel-to-kernel implementation with no
user space daemons in between, Cooperative

1ubd UML equivalent

Linux has the potential to achieve much better
in benchmarking.

5 Planned Features

Since Cooperative Linux is a new project
(2004–), most of its features are still waiting
to be implemented.

5.1 Suspension

Software-suspending Linux is a challenge on
standalone Linux systems, considering the en-
tire state of the hardware needs to be saved and
restored, along with the space that needs to be
found for storing the suspended image. On
User Mode Linux suspending [3] is easier—
only the state of a few processes needs saving,
and no hardware is involved.

However, in Cooperative Linux, it will be even
easier to implement suspension, because it will
involve its internal state almost entirely. The
procedure will involve serializing the pseudo
physical RAM by enumerating all the page ta-
ble entries that are used in Cooperative Linux,
either by itself (for user space and vmalloc
page tables) or for itself (the page tables of
the pseudo physical RAM), and change them
to contain the pseudo value instead of the real
value.

The purpose of this suspension procedure is to
allow no notion of the real physical memory
to be contained in any of the pages allocated
for the Cooperative Linux VM, since Coopera-
tive Linux will be given a different set of pages
when it will resume at a later time. At the sus-
pended state, the pages can be saved to a file
and the VM could be resumed later. Resum-
ing will involve loading that file, allocating the
memory, and fix-enumerate all the page tables
again so that the values in the page table entries
point to the newly allocated memory.
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Another implementation strategy will be to just
dump everything on suspension as it is, but
on resume—enumerate all the page table en-
tries and adjust between the values of the old
RPPFNs2 and new RPPFNs.

Note that a suspended image could be created
under one host OS and be resumed in another
host OS of the same architecture. One could
carry a suspended Linux on a USB memory de-
vice and resume/suspend it on almost any com-
puter.

5.2 User Mode Linux[1] inside Cooperative
Linux

The possibility of running UML inside Coop-
erative Linux is not far from being immediately
possible. It will allow to bring UML with all its
glory to operating systems that cannot support
it otherwise because of their user space APIs.
Combining UML and Cooperative Linux can-
cels the security downside that running Coop-
erative Linux could incur.

5.3 Live Cooperative Distributions

Live-CD distributions like KNOPPIX can be
used to boot on top of another operating system
and not only as standalone, reaching a larger
sector of computer users considering the host
operating system to be Windows NT/2000/XP.

5.4 Integration with ReactOS

ReactOS, the free Windows NT clone, will be
incorporating Cooperative Linux as a POSIX
subsystem.

5.5 Miscellaneous

• Virtual frame buffer support.

2real physical page frame numbers

• Incorporating features from User Mode
Linux, e.g. humfs3.

• Support for more host operating systems
such as FreeBSD.

6 Conclusions

We have discussed how Cooperative Linux
works and its benefits—apart from being a
BSKH4, Cooperative Linux has the potential
to become an alternative to User Mode Linux
that enhances on portability and performance,
rather than on security.

Moreover, the implications that Cooperative
Linux has on what is the media defines as
‘Linux on the Desktop’—are massive, as the
world’s most dominant albeit proprietary desk-
top OS supports running Linux distributions
for free, as another software, with the aimed-
for possibility that the Linux newbie would
switch to the standalone Linux. As user-
friendliness of the Windows port will improve,
the exposure that Linux gets by the average
computer user can increase tremendously.
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Abstract

This presentation will cover the software, tools,
libraries, and configuration files needed to
construct an embedded Linux wireless access
point. Some of the software available for con-
structing embedded Linux systems will be dis-
cussed, and selection criteria for which tools to
use for differing embedded applications will be
presented. During the presentation, an embed-
ded Linux wireless access point will be con-
structed using the Linux kernel, the uClibc C
library, BusyBox, the syslinux bootloader, ipt-
ables, etc. Emphasis will be placed on the
more generic aspects of building an embed-
ded Linux system using BusyBox and uClibc.
At the conclusion of the presentation, the pre-
senter will (with luck) boot up the newly con-
structed wireless access point and demonstrate
that it is working perfectly. Source code, build
system, cross compilers, and detailed instruc-
tions will be made available.

1 Introduction

When I began working on embedded Linux,
the question of whether or not Linux was small
enough to fit inside a particular device was a
difficult problem. Linux distributions1 have

1The term “distribution” is used by the Linux com-
munity to refer to a collection of software, including
the Linux kernel, application programs, and needed li-
brary code, which makes up a complete running system.
Sometimes, the term “Linux” or “GNU/Linux” is also
used to refer to this collection of software.

historically been designed for server and desk-
top systems. As such, they deliver a full-
featured, comprehensive set of tools for just
about every purpose imaginable. Most Linux
distributions, such as Red Hat, Debian, or
SuSE, provide hundreds of separate software
packages adding up to several gigabytes of
software. The goal of server or desktop Linux
distributions has been to provide as much value
as possible to the user; therefore, the large
size is quite understandable. However, this
has caused the Linux operating system to be
much larger then is desirable for building an
embedded Linux system such as a wireless ac-
cess point. Since embedded devices repre-
sent a fundamentally different target for Linux,
it became apparent to me that embedded de-
vices would need different software than what
is commonly used on desktop systems. I knew
that Linux has a number of strengths which
make it extremely attractive for the next gen-
eration of embedded devices, yet I could see
that developers would need new tools to take
advantage of Linux within small, embedded
spaces.

I began working on embedded Linux in the
middle of 1999. At the time, building an ‘em-
bedded Linux’ system basically involved copy-
ing binaries from an existing Linux distribution
to a target device. If the needed software did
not fit into the required amount of flash mem-
ory, there was really nothing to be done about
it except to add more flash or give up on the
project. Very little effort had been made to
develop smaller application programs and li-
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braries designed for use in embedded Linux.

As I began to analyze how I could save space,
I decided that there were three main areas that
could be attacked to shrink the footprint of an
embedded Linux system: the kernel, the set of
common application programs included in the
system, and the shared libraries. Many people
doing Linux kernel development were at least
talking about shrinking the footprint of the ker-
nel. For the past five years, I have focused on
the latter two areas: shrinking the footprint of
the application programs and libraries required
to produce a working embedded Linux system.
This paper will describe some of the software
tools I’ve worked on and maintained, which are
now available for building very small embed-
ded Linux systems.

2 The C Library

Let’s take a look at an embedded Linux system,
the Linux Router Project, which was available
in 1999. http://www.linuxrouter.org/

The Linux Router Project, begun by Dave
Cinege, was and continues to be a very com-
monly used embedded Linux system. Its self-
described tagline reads “A networking-centric
micro-distribution of Linux” which is “small
enough to fit on a single 1.44MB floppy disk,
and makes building and maintaining routers,
access servers, thin servers, thin clients,
network appliances, and typically embedded
systems next to trivial.” First, let’s download
a copy of one of the Linux Router Project’s
“idiot images.” I grabbed my copy from
the mirror site atftp://sunsite.unc.edu/

pub/Linux/distributions/linux-router/

dists/current/idiot-image_1440KB_FAT_

2.9.8_Linux_2.2.gz .

Opening up the idiot-image there are several
very interesting things to be seen.

# gunzip \

idiot-image_1440KB_FAT_2.9.8_Linux_2.2.gz
# mount \

idiot-image_1440KB_FAT_2.9.8_Linux_2.2 \
/mnt -o loop

# du -ch /mnt/*
34K /mnt/etc.lrp
6.0K /mnt/ldlinux.sys
512K /mnt/linux
512 /mnt/local.lrp
1.0K /mnt/log.lrp
17K /mnt/modules.lrp
809K /mnt/root.lrp
512 /mnt/syslinux.cfg
1.0K /mnt/syslinux.dpy
1.4M total

# mkdir test
# cd test
# tar -xzf /mnt/root.lrp

# du -hs
2.2M .
2.2M total

# du -ch bin root sbin usr var
460K bin
8.0K root
264K sbin
12K usr/bin
304K usr/sbin
36K usr/lib/ipmasqadm
40K usr/lib
360K usr
56K var/lib/lrpkg
60K var/lib
4.0K var/spool/cron/crontabs
8.0K var/spool/cron
12K var/spool
76K var
1.2M total

# du -ch lib
24K lib/POSIXness
1.1M lib
1.1M total

# du -h lib/libc-2.0.7.so
644K lib/libc-2.0.7.so

Taking a look at the software contained in
this embedded Linux system, we quickly no-
tice that in a software image totaling 2.2
Megabytes, the libraries take up over half the
space. If we look even closer at the set of
libraries, we quickly find that the largest sin-
gle component in the entire system is the GNU
C library, in this case occupying nearly 650k.
What is more, this is a very old version of
the C library; newer versions of GNU glibc,
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such as version 2.3.2, are over 1.2 Megabytes
all by themselves! There are tools available
from Linux vendors and in the Open Source
community which can reduce the footprint of
the GNU C library considerably by stripping
unwanted symbols; however, using such tools
precludes adding additional software at a later
date. Even when these tools are appropriate,
there are limits to the amount of size which can
be reclaimed from the GNU C library in this
way.

The prospect of shrinking a single library that
takes up so much space certainly looked like
low hanging fruit. In practice, however, re-
placing the GNU C library for embedded Linux
systems was not easy task.

3 The origins of uClibc

As I despaired over the large size of the GNU
C library, I decided that the best thing to do
would be to find another C library for Linux
that would be better suited for embedded sys-
tems. I spent quite a bit of time looking around,
and after carefully evaluating the various Open
Source C libraries that I knew of2, I sadly
found that none of them were suitable replace-
ments for glibc. Of all the Open Source C li-
braries, the library closest to what I imagined
an embedded C library should be was called
uC-libc and was being used for uClinux sys-
tems. However, it also had many problems at
the time—not the least of which was that uC-
libc had no central maintainer. The only mech-
anism being used to support multiple architec-

2The Open Source C libraries I evaluated at
the time included Al’s Free C RunTime library
(no longer on the Internet); dietlibc available from
http://www.fefe.de/dietlibc/ ; the minix C
library available from http://www.cs.vu.nl/
cgi-bin/raw/pub/minix/ ; the newlib library
available from http://sources.redhat.com/
newlib/ ; and the eCos C library available fromftp:
//ecos.sourceware.org/pub/ecos/ .

tures was a complete source tree fork, and there
had already been a few such forks with plenty
of divergant code. In short, uC-libc was a mess
of twisty versions, all different. After spending
some time with the code, I decided to fix it, and
in the process changed the name touClibc
(no hyphen).

With the help of D. Jeff Dionne, one of the cre-
ators of uClinux3, I ported uClibc to run on
Intel compatible x86 CPUs. I then grafted in
the header files from glibc 2.1.3 to simplify
software ports, and I cleaned up the resulting
breakage. The header files were later updated
again to generally match glibc 2.3.2. This ef-
fort has made porting software from glibc to
uClibc extremely easy. There were, however,
many functions in uClibc that were either bro-
ken or missing and which had to be re-written
or created from scratch. When appropriate, I
sometimes grafted in bits of code from the cur-
rent GNU C library and libc5. Once the core
of the library was reasonably solid, I began
adding a platform abstraction layer to allow
uClibc to compile and run on different types of
CPUs. Once I had both the ARM and x86 plat-
forms basically running, I made a few small
announcements to the Linux community. At
that point, several people began to make reg-
ular contributions. Most notably was Manuel
Novoa III, who began contributing at that time.
He has continued working on uClibc and is
responsible for significant portions of uClibc
such as the stdio and internationalization code.

After a great deal of effort, we were able to
build the first shared library version of uClibc
in January 2001. And earlier this year we were
able to compile a Debian Woody system using
uClibc4, demonstrating the library is now able

3uClinux is a port of Linux designed to run on micro-
controllers which lack Memory Management Units
(MMUs) such as the Motorolla DragonBall or the
ARM7TDMI. The uClinux web site is found athttp:
//www.uclinux.org/ .

4http://www.uclibc.org/dists/
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to support a complete Linux distribution. Peo-
ple now use uClibc to build versions of Gentoo,
Slackware, Linux from Scratch, rescue disks,
and even live Linux CDs5. A number of com-
mercial products have also been released using
uClibc, such as wireless routers, network at-
tached storage devices, DVD players, etc.

4 Compiling uClibc

Before we can compile uClibc, we must first
grab a copy of the source code and unpack it
so it is ready to use. For this paper, we will just
grab a copy of the daily uClibc snapshot.

# SITE=http://www.uclibc.org/downloads
# wget -q $SITE/uClibc-snapshot.tar.bz2

# tar -xjf uClibc-snapshot.tar.bz2
# cd uClibc

uClibc requires a configuration file,.config ,
that can be edited to change the way the li-
brary is compiled, such as to enable or dis-
able features (i.e. whether debugging support
is enabled or not), to select a cross-compiler,
etc. The preferred method when starting from
scratch is to runmake defconfig followed
by make menuconfig . Since we are going
to be targeting a standard Intel compatible x86
system, no changes to the default configuration
file are necessary.

5 The Origins of BusyBox

As I mentioned earlier, the two components
of an embedded Linux that I chose to work
towards reducing in size were the shared li-
braries and the set common application pro-
grams. A typical Linux system contains a vari-
ety of command-line utilities from numerous

5Puppy Linux available from http://www.
goosee.com/puppy/ is a live linux CD system built
with uClibc that includes such favorites as XFree86 and
Mozilla.

different organizations and independent pro-
grammers. Among the most prominent of these
utilities were GNU shellutils, fileutils, textutils
(now combined to form GNU coreutils), and
similar programs that can be run within a shell
(commands such assed , grep , ls , etc.).
The GNU utilities are generally very high-
quality programs, and are almost without ex-
ception very, very feature-rich. The large fea-
ture set comes at the cost of being quite large—
prohibitively large for an embedded Linux sys-
tem. After some investigation, I determined
that it would be more efficient to replace them
rather than try to strip them down, so I began
looking at alternatives.

Just as with alternative C libraries, there were
several choices for small shell utilities: BSD
has a number of utilities which could be used.
The Minix operating system, which had re-
cently released under a free software license,
also had many useful utilities. Sash, the stand
alone shell, was also a possibility. After quite
a lot of research, the one that seemed to be
the best fit was BusyBox. It also appealed to
me because I was already familiar with Busy-
Box from its use on the Debian boot flop-
pies, and because I was acquainted with Bruce
Perens, who was the maintainer. Starting ap-
proximately in October 1999, I began enhanc-
ing BusyBox and fixing the most obvious prob-
lems. Since Bruce was otherwise occupied and
was no longer actively maintaining BusyBox,
Bruce eventually consented to let me take over
maintainership.

Since that time, BusyBox has gained a large
following and attracted development talent
from literally the whole world. It has been
used in commercial products such as the IBM
Linux wristwatch, the Sharp Zaurus PDA, and
Linksys wireless routers such as the WRT54G,
with many more products being released all the
time. So many new features and applets have
been added to BusyBox, that the biggest chal-



Linux Symposium 2004 • 39

lenge I now face is simply keeping up with all
of the patches that get submitted!

6 So, How Does It Work?

BusyBox is a multi-call binary that combines
many common Unix utilities into a single exe-
cutable. When it is run, BusyBox checks if it
was invoked via a symbolic link (asymlink ),
and if the name of the symlink matches the
name of an applet that was compiled into Busy-
Box, it runs that applet. If BusyBox is invoked
as busybox , then it will read the command
line and try to execute the applet name passed
as the first argument. For example:

# ./busybox date
Wed Jun 2 15:01:03 MDT 2004

# ./busybox echo "hello there"
hello there

# ln -s ./busybox uname
# ./uname
Linux

BusyBox is designed such that the developer
compiling it for an embedded system can select
exactly which applets to include in the final bi-
nary. Thus, it is possible to strip out support for
unneeded and unwanted functionality, result-
ing in a smaller binary with a carefully selected
set of commands. The customization granu-
larity for BusyBox even goes one step further:
each applet may contain multiple features that
can be turned on or off. Thus, for example, if
you do not wish to include large file support,
or you do not need to mount NFS filesystems,
you can simply turn these features off, further
reducing the size of the final BusyBox binary.

7 Compiling Busybox

Let’s walk through a normal compile of Busy-
Box. First, we must grab a copy of the Busy-
Box source code and unpack it so it is ready to
use. For this paper, we will just grab a copy of
the daily BusyBox snapshot.

# SITE=http://www.busybox.net/downloads
# wget -q $SITE/busybox-snapshot.tar.bz2
# tar -xjf busybox-snapshot.tar.bz2
# cd busybox

Now that we are in the BusyBox source di-
rectory we can configure BusyBox so that it
meets the needs of our embedded Linux sys-
tem. This is done by editing the file.config
to change the set of applets that are compiled
into BusyBox, to enable or disable features
(i.e. whether debugging support is enabled or
not), and to select a cross-compiler. The pre-
ferred method when starting from scratch is
to runmake defconfig followed bymake
menuconfig . Once BusyBox has been con-
figured to taste, you just need to runmake to
compile it.

8 Installing Busybox to a Target

If you then want to install BusyBox onto a
target device, this is most easily done by typ-
ing: make install . The installation script
automatically creates all the required directo-
ries (such as/bin , /sbin , and the like) and
creates appropriate symlinks in those directo-
ries for each applet that was compiled into the
BusyBox binary.

If we wanted to install BusyBox to the direc-
tory /mnt, we would simply run:

# make PREFIX=/mnt install

[--installation text omitted--]
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9 Let’s build something that
works!

Now that I have certainly bored you to death,
we finally get to the fun part, building our own
embedded Linux system. For hardware, I will
be using a Soekris 4521 system6 with an 133
Mhz AMD Elan CPU, 64 MB main memory,
and a generic Intersil Prism based 802.11b card
that can be driven using thehostap 7 driver.
The root filesystem will be installed on a com-
pact flash card.

To begin with, we need to create toolchain with
which to compile the software for our wire-
less access point. This requires we first com-
pile GNU binutils8, then compile the GNU
compiler collection—gcc9, and then compile
uClibc using the newly created gcc compiler.
With all those steps completed, we must fi-
nally recompile gcc using using the newly
built uClibc library so thatlibgcc_s and
libstdc++ can be linked with uClibc.

Fortunately, the process of creating a uClibc
toolchain can be automated. First we will go
to the uClibc website and obtain a copy of the
uClibcbuildroot by going here:

http://www.uclibc.org/cgi-bin/

cvsweb/buildroot/

and clicking on the “Download tarball” link10.
This is a simple GNU make based build system
which first builds a uClibc toolchain, and then
builds a root filesystem using the newly built
uClibc toolchain.

For the root filesystem of our wireless access

6http://www.soekris.com/net4521.htm
7http://hostap.epitest.fi/
8http://sources.redhat.com/

binutils/
9http://gcc.gnu.org/

10http://www.uclibc.org/cgi-bin/
cvsweb/buildroot.tar.gz?view=tar

point, we will need a Linux kernel, uClibc,
BusyBox, pcmcia-cs, iptables, hostap, wtools,
bridgeutils, and the dropbear ssh server. To
compile these programs, we will first edit the
buildroot Makefile to enable each of these
items. Figure 1 shows the changes I made to
the buildroot Makefile:

Runningmake at this point will download the
needed software packages, build a toolchain,
and create a minimal root filesystem with the
specified software installed.

On my system, with all the software packages
previously downloaded and cached locally, a
complete build took 17 minutes, 19 seconds.
Depending on the speed of your network con-
nection and the speed of your build system,
now might be an excellent time to take a lunch
break, take a walk, or watch a movie.

10 Checking out the new Root
Filesystem

We now have our root filesystem finished and
ready to go. But we still need to do a little
more work before we can boot up our newly
built embedded Linux system. First, we need
to compress our root filesystem so it can be
loaded as an initrd.

# gzip -9 root_fs_i386
# ls -sh root_fs_i386.gz
1.1M root_fs_i386.gz

Now that our root filesystem has been com-
pressed, it is ready to install on the boot media.
To make things simple, I will install the Com-
pact Flash boot media into a USB card reader
device, and copy files using the card reader.

# ms-sys -s /dev/sda
Public domain master boot record
successfully written to /dev/sda
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--- Makefile
+++ Makefile
@@ -140,6 +140,6 @@

# Unless you want to build a kernel, I recommend just using
# that...

-TARGETS+=kernel-headers
-#TARGETS+=linux
+#TARGETS+=kernel-headers
+TARGETS+=linux

#TARGETS+=system-linux

@@ -150,5 +150,5 @@
#TARGETS+=zlib openssl openssh
# Dropbear sshd is much smaller than openssl + openssh

-#TARGETS+=dropbear_sshd
+TARGETS+=dropbear_sshd

# Everything needed to build a full uClibc development system!
@@ -175,5 +175,5 @@

# Some stuff for access points and firewalls
-#TARGETS+=iptables hostap wtools dhcp_relay bridge
+TARGETS+=iptables hostap wtools dhcp_relay bridge

#TARGETS+=iproute2 netsnmp

Figure 1: Changes to the buildroot Makefile

# mkdosfs /dev/sda1
mkdosfs 2.10 (22 Sep 2003)

# syslinux /dev/sda1

# cp root_fs_i386.gz /mnt/root_fs.gz

# cp build_i386/buildroot-kernel /mnt/linux

So we now have a copy of our root filesystem
and Linux kernel on the compact flash disk. Fi-
nally, we need to configure the bootloader. In
case you missed it a few steps ago, we are us-
ing the syslinux bootloader for this example.
I happen to have a ready to use syslinux con-
figuration file, so I will now install that to the
compact flash disk as well:

# cat syslinux.cfg
TIMEOUT 0
PROMPT 0
DEFAULT linux
LABEL linux

KERNEL linux

APPEND initrd=root_fs.gz \
console=ttyS0,57600 \
root=/dev/ram0 boot=/dev/hda1,msdos rw

# cp syslinux.cfg /mnt

And now, finally, we are done. Our embedded
Linux system is complete and ready to boot.
And you know what? It is very, very small.
Take a look at Table 1.

With a carefully optimized Linux kernel
(which this kernel unfortunately isn’t) we
could expect to have even more free space.
And remember, every bit of space we save is
money that embedded Linux developers don’t
have to spend on expensive flash memory. So
now comes the final test; it is now time to boot
from our compact flash disk. Here is what you
should see.

[----kernel boot messages snipped--]
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# ll /mnt
total 1.9M
drwxr-r- 2 root root 16K Jun 2 16:39 ./
drwxr-xr-x 22 root root 4.0K Feb 6 07:40 ../
-r-xr-r- 1 root root 7.7K Jun 2 16:36 ldlinux.sys*
-rwxr-r- 1 root root 795K Jun 2 16:36 linux*
-rwxr-r- 1 root root 1.1M Jun 2 16:36 root_fs.gz*
-rwxr-r- 1 root root 170 Jun 2 16:39 syslinux.cfg*

Table 1: Output ofls -lh /mnt .

Freeing unused kernel memory: 64k freed

Welcome to the Erik’s wireless access point.

uclibc login: root

BusyBox v1.00-pre10 (2004.06.02-21:54+0000)
Built-in shell (ash)
Enter ’help’ for a list of built-in commands.

# du -h / | tail -n 1
2.6M

#

And there you have it—your very own wire-
less access point. Some additional configura-
tion will be necessary to start up the wireless
interface, which will be demonstrated during
my presentation.

11 Conclusion

The two largest components of a standard
Linux system are the utilities and the libraries.
By replacing these with smaller equivalents a
much more compact system can be built. Us-
ing BusyBox and uClibc allows you to cus-
tomize your embedded distribution by strip-
ping out unneeded applets and features, thus
further reducing the final image size. This
space savings translates directly into decreased
cost per unit as less flash memory will be re-
quired. Combine this with the cost savings of
using Linux, rather than a more expensive pro-
prietary OS, and the reasons for using Linux
become very compelling. The example Wire-
less Access point we created is a simple but

useful example. There are thousands of other
potential applications that are only waiting for
you to create them.
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Abstract

The dynamic application test tool is capable
of checking API usage at run-time. The LSB
defines only a subset of all possible parame-
ter values to be valid. This tool is capable of
checking these value while the application is
running.

This paper will explain how this tool works,
and highlight some of the more interesting im-
plementation details such as how we managed
to generate most of the code automatically,
based on the interface descriptions contained
in the LSB database.

Results to date will be presented, along with
future plans and possible uses for this tool.

1 Introduction

The Linux Standard Base (LSB) Project be-
gan in 1998, when the Linux community came
together and decided to take action to pre-
vent GNU/Linux based operating systems from
fragmenting in the same way UNIX operating
systems did in the 1980s and 1990s. The LSB
defines the Application Binary Interface (ABI)
for the core part of a GNU/Linux system. As
an ABI, the LSB defines the interface between
the operating system and the applications. A
complete set of tests for an ABI must be capa-
ble of measuring the interface from both sides.

Almost from the beginning, testing has been

a cornerstone of the project. The LSB was
originally organized around 3 components: the
written specification, a sample implementa-
tion, and the test suites. The written specifica-
tion is the ultimate definition of the LSB. Both
the sample implementation, and the test suites
yield to the authority of the written specifica-
tion.

The sample implementation (SI) is a minimal
subset of a GNU/Linux system that provides a
runtime that implements the LSB, and as little
else as possible. The SI is neither intended to
be a minimal distribution, nor the basis for a
distribution. Instead, it is used as both a proof
of concept and a testing tool. Applications
which are seeking certification are required to
prove they execute correctly using the SI and
two other distributions. The SI is also used to
validate the runtime test suites.

The third component is testing. One of the
things that strengthens the LSB is its ability to
measure, and thus prove, conformance to the
standard. Testing is achieved with an array of
different test suites, each of which measures a
different aspect of the specification.

LSB Runtime

• cmdchk

This test suite is a simple existence test
that ensures the required LSB commands
and utilities are found on an LSB con-
forming system.



44 • Linux Symposium

• libchk

This test suite checks the libraries re-
quired by the LSB to ensure they con-
tain the interfaces and symbol versions as
specified by the LSB.

• runtimetests

This test suite measures the behavior of
the interfaces provided by the GNU/Linux
system. This is the largest of the test
suites, and is actually broken down into
several components, which are referred to
collectively as the runtime tests. These
tests are derived from the test suites used
by the Open Group for UNIX branding.

LSB Packaging

• pkgchk

This test examines an RPM format pack-
age to ensure it conforms to the LSB.

• pkginstchk

This test suite is used to ensure that the
package management tool provided by a
GNU/Linux system will correctly install
LSB conforming packages. This suite is
still in early stages of development.

LSB Application

• appchk

This test performs a static analysis of an
application to ensure that it only uses
libraries and interfaces specified by the
LSB.

• dynchk

This test is used to measure an applica-
tions use of the LSB interfaces during its
execution, and is the subject of this paper.

2 The database

The LSB Specification contains over 6600 in-
terfaces, each of which is associated with a li-
brary and a header file, and may have parame-
ters. Because of the size and complexity of the
data describing these interfaces, a database is
used to maintain this information.

It is impractical to try and keep the specifica-
tion, test suites and development libraries and
headers synchronized for this much data. In-
stead, portions of the specification and tests,
and all of the development headers and li-
braries are generated from the database. This
ensures that as changes are made to the
database, the changes are propagated to the
other parts of the project as well.

Some of the relevant data components in this
DB are Libraries, Headers, Interfaces, and
Types. There are also secondary components
and relations between all of the components. A
short description of some of these is needed be-
fore moving on to how the dynchk test is con-
structed.

2.1 Library

The LSB specifies 17 shared libraries, which
contains the 6600 interfaces. The interfaces
in each library are grouped into logical units
called a LibGroup. The LibGroups help to or-
ganize the interfaces, which is very useful in
the written specification, but isn’t used much
elsewhere.

2.2 Interface

An Interface represents a globally visible sym-
bol, such as a function, or piece of data. Inter-
faces have a Type, which is either the type of
the global data or the return type of the func-
tion. If the Interface is a function, then it will
have zero or more Parameters, which form a
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LibGroup LibGroup

Library

InterfaceInterfaceInterface

LibGroup 

Figure 1: Relationship between Library, Lib-
Group and Interface

Interface

Type Parameter Parameter Parameter

Type Type Type

Figure 2: Relationship between Interface, Type
and Parameter

set of Types ordered by their position in the pa-
rameter list.

2.3 Type

As mentioned above, the database contains
enough information to be able to generate
header files which are a part of the LSB de-
velopment tools. This means that the database
must be able to represent Clanguage types. The
Type and TypeMember tables provide these.
These tables are used recursively. If a Type is
defined in terms of another type, then it will
have a base type that points to that other type.

For structs and unions, the TypeMemeber table

Tid Ttype Tname Tbasetype
1 Intrinsic int 0
2 Pointer int * 1

Table 1: Example of recursion in Type table for
int *

struct foo {
int a;
int *b;

}

Figure 3: Sample struct

is used to hold the ordered list of members. En-
tries in the TypeMember table point back to the
Type table to describe the type of each member.
For enums, the TypeMember table is also used
to hold the ordered list of values.

Tid Ttype Tname Tbasetype
1 Intrinsic int 0
2 Pointer int * 1
3 Struct foo 0

Table 2: Contents of Type table

The structure shown in Figure 3 is represented
by the entries in the Type table in Table 2 and
the TypeMember table in Table 3.

2.4 Header

Headers, like Libraries, have their contents ar-
ranged into logical groupings known a Header-
Groups. Unlike Libraries, these HeaderGroups
are ordered so that the proper sequence of
definitions within a header file can be main-
tained. HeaderGroups contain Constant defi-
nitions (i.e. #define statements) and Type def-
initions. If you examine a few well designed
header files, you will notice a pattern of a com-
ment followed by related constant definitions
and type definitions. The entire header file can
be viewed as a repeating sequence of this pat-
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Tmid TMname TMtypeid TMposition TMmemberof
10 a 1 0 3
11 b 2 1 3

Table 3: Contents of TypeMember

Function
Declarations

HeaderGroup 1
Constants

Types

HeaderGroup 2
Constants

Types

HeaderGroup 3
Constants

Types

Figure 4: Organization of Headers

tern. This pattern is the basis for the Header-
Group concept.

2.5 TypeType

One last construct in our database should be
mentioned. While we are able to repre-
sent a syntactic description of interfaces and
types in the database, this is not enough to
automatically generate meaningful test cases.
We need to add some semantic information
that better describes how the types in struc-
tures and parameters are used. As an exam-
ple,struct sockaddr contains a member,
sa_family , of type unsigned short. The

compiler will of course ensure that only val-
ues between 0 and216 − 1 will be used, but
only a few of those values have any meaning
in this context. By adding the semantic infor-
mation that this member holds a socket fam-
ily value, the test generator can cause the value
found insa_family to be tested against the
legal socket families values (AF_INET , AF_
INET6 , etc), instead of just ensuring the value
falls between 0 and216−1, which is really just
a noop test.

Example TypeType entries

• RWaddress

An address from the process space that
must be both readable and writable.

• Rdaddress

An address from the process space that
must be at least readable.

• filedescriptor

A small integer value greater than or equal
to 0, and less than the maximum file de-
scriptor for the process.

• pathname

The name of a file or directory that should
be compared against the Filesystem Hier-
archy Standard.

2.6 Using this data

As mentioned above, the data in the database is
used to generate different portions of the LSB
project. This strategy was adopted to ensure
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these different parts would always be in sync,
without having to depend on human interven-
tion.

The written specification contains tables of in-
terfaces, and data definitions (constants and
types). These are all generated from the
database.

The LSB development environment1 consists
of stub libraries and header files that contain
only the interfaces defined by the LSB. This
development environment helps catch the use
of non-LSB interfaces during the development
or porting of an application instead of being
surprised by later test results. Both the stub
libraries and headers are produced by scripts
pulling data from the database.

Some of the test suites described previously
have components which are generated from the
database.Cmdchk and libchk have lists of
commands and interfaces respectively which
are extracted from the database. The static ap-
plication test tool,appchk , also has a list of
interfaces that comes from the database. The
dynamic application test tool,dynchk , has the
majority of its code generated from informa-
tion in the database.

3 The Dynamic Checker

The static application checker simply examines
an executable file to determine if it is using
interfaces beyond those allowed by the LSB.
This is very useful to determine if an appli-
cation has been built correctly. However, is
unable to determine if the interfaces are used
correctly when the application is executed. A
different kind of test is required to be able to
perform this level of checking. This new test
must interact with the application while it is

1See the May Issue ofLinux Journalfor more infor-
mation on the LSB Development Environment.

running, without interfering with the execution
of the application.

This new test has two major components: a
mechanism for hooking itself into an applica-
tion, and a collection of functions to perform
the tests for all of the interfaces. These compo-
nents can mostly be developed independently
of each other.

3.1 The Mechanism

The mechanism for interacting with the appli-
cation must be transparent and noninterfering
to the application. We considered the approach
used by 3 different tools: abc, ltrace, and fake-
root.

• abc —This tool was the inspiration for
our new dynamic checker.abc was de-
veloped as part of the SVR4 ABI test
tools. abc works by modifying the tar-
get application. The application’s exe-
cutable is modified to load a different ver-
sion of the shared libraries and to call a
different version of each interface. This
is accomplished by changing the strings
in the symbol table andDT_NEEDED
records. For example,libc.so.1 is
changed toLiBc.So.1 , andfread()
is changed toFrEaD() . The test set
is then located in/usr/lib/LiBc.
So.1 , which in turns loads the original
/usr/lib/libc.so.1 . This mecha-
nism works, but the requirement to mod-
ify the executable file is undesirable.

• ltrace —This tool is similar to
strace , except that it traces calls
into shared libraries instead of calls into
the kernel. ltrace uses the ptrace
interface to control the application’s
process. With this approach, the test sets
are located in a separate program and are
invoked by stopping the application upon
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entry to the interface being tested. This
approach has two drawbacks: first, the
code required to decode the process stack
and extract the parameters is unique to
each architecture, and second, the tests
themselves are more complicated to write
since the parameters have to be fetched
from the application’s process.

• fakeroot —This tool is used to cre-
ate an environment where an unprivileged
process appears to have root privileges.
fakeroot usesLD_PRELOADto load
an additional shared library before any of
the shared libraries specified by theDT_
NEEDEDrecords in the executable. This
extra library contains a replacement func-
tion for each file manipulation function.
The functions in this library will be se-
lected by the dynamic linker instead of the
normal functions found in the regular li-
braries. The test sets themselves will per-
form tests of the parameters, and then call
the original version of the functions.

We chose to use theLD_PRELOADmecha-
nism because we felt it was the simplest to use.
Based on this mechanism, a sample test case
looks like Figure 5.

One problem that must be avoided when us-
ing this mechanism is recursion. If the above
function just calledread() at the end, it
would end up calling itself again. Instead, the
RTLD_NEXTflag passed todlsym() tells the
dynamic linker to look up the symbol on one
of the libraries loaded after the current library.
This will get the original version of the func-
tion.

3.2 Test set organization

The test set functions are organized into 3 lay-
ers. The top layer contains the functions that
are test stubs for the LSB interfaces. These

functions are implemented by calling the func-
tions in layers 2 and 3. An example of a func-
tion in the first layer was given in Figure 5.

The second layer contains the functions that
test data structures and types which are passed
in as parameters. These functions are also im-
plemented by calling the functions in layer 3
and other functions in layer 2. A function in
the second layer looks like Figure 6.

The third layer contains functions that test the
types which have been annotated with addi-
tional semantic information. These functions
often have to perform nontrivial operations to
test the assertion required for these supplemen-
tal types. Figure 7 is an example of a layer 3
function.

Presently, there are 3056 functions in layer 1
(tests forlibstdc++ are not yet being gen-
erated), 106 functions in layer 2, and just a few
in layer 3. We estimate that the total number of
functions in layer 3 upon completion of the test
tool will be on the order of several dozen. The
functions in the first two layers are automati-
cally generated based on the information in the
database. Functions in layer 3 are hand coded.

3.3 Automatic generation of the tests

In Table 4, is a summary of the size of the test
tool so far. As work progresses, these num-
bers will only get larger. Most of the code in
the test is very repetitive, and prone to errors
when edited manually. The ability to automate
the process of creating this code is highly de-
sirable.

Let’s take another look at the sample function
from layer 1. This time, however, lets replace
some of the code with a description of the in-
formation it represents. See Figure 8 for this
parameterized version.

All of the occurrences of the stringread are
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ssize_t read (int arg0, void *arg1, size_t arg2) {
if (!funcptr)

funcptr = dlsym(RTLD_NEXT, "read");
validate_filedescriptor(arg0, "read");
validate_RWaddress(arg1, "read");
validate_size_t(arg2, "read");
return funcptr(arg0, arg1, arg2);

}

Figure 5: Test case for read() function

void validate_struct_sockaddr_in(struct sockaddr_in *input,
char *name) {

validate_socketfamily(input->sin_family,name);
validate_socketport(input->sin_port,name);
validate_IPv4Address((input->sin_addr), name);

}

Figure 6: Test case for validatingstruct sockaddr_in

Module Files Lines of Code
libc 752 19305
libdl 5 125
libgcc_s 13 262
libGL 450 11046
libICE 49 1135
libm 281 6568
libncurses 266 6609
libpam 13 335
libpthread 82 2060
libSM 37 865
libX11 668 16112
libXext 113 2673
libXt 288 7213
libz 39 973
structs 106 1581

Table 4: Summary of generated code

actually just the function name, and could have
been replaced also.

The same thing can be done for the sample
function from layer 2 as is seen in Figure 9.

These two examples, now represent templates
that can be used to create the functions for lay-
ers 1 and 2. From the previous description of
the database, you can see that there is enough
information available to be able to instantiate
these templates for each interfaces, and struc-
ture used by the LSB.

The automation is implemented by 2 perl
scripts:gen_lib.pl andgen_tests.pl .
These scripts generate the code for layers 1 and
2 respectively.

Overall, these scripts work well, but we have
run into a few interesting situations along the
way.

3.4 Handling the exceptions

So far, we have come up with an overall archi-
tecture for the test tool, selected a mechanism
that allows us to hook the tests into the running
application, discovered the pattern in the test
functions so that we could create a template for
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void validate_filedescriptor(const int fd, const char *name) {
if (fd >= lsb_sysconf(_SC_OPEN_MAX))

ERROR("fd too big");
else if (fd < 0)

ERROR("fd negative");
}

Figure 7: Test case for validating a filedescriptor

return-type read (list of parameters) {
if (!funcptr)

funcptr = dlsym(RTLD_NEXT, "read");
validate_parameter1 type(arg0, "read");
validate_parameter2 type(arg1, "read");
validate_parameter3 type(arg2, "read");
return funcptr(arg0, arg1, arg2);

}

Figure 8: Parameterized test case for a function

automatically generating the code, and imple-
mented the scripts to generate all of the tests
cases. The only problem is that now we run
into the real world, where things don’t always
follow the rules.

Here are a few of the interesting situations we
have encountered

• Variadic Functions

Of the 725 functions in libc, 25 of them
take a variable number of parameters.
This causes problems in the generation of
the code for the test case, but most impor-
tantly it affects our ability to know how
to process the arguments. These func-
tion have to be written by hand to han-
dle the special needs of these functions.
For the functions in theexec , printf
andscanf families, the test cases can be
implemented by calling the varargs form
of the function (execl() can be imple-
mented usingexecv() ).

• open()

In addition to the problems of being a
variadic function, the third parameter to
open() and open64() is only valid
if the O_CREATflag is set in the sec-
ond parameter to these functions. This
simple exception requires a small amount
of manual intervention, so these function
have to be maintained by hand.

• memory allocation

One of the recursion problems we ran into
is that memory will be allocated within
the dlsym() function call, so the im-
plementation of one test case ends up in-
voking the test case for one of the mem-
ory allocation routines, which by default
would calldlsym() , creating the recur-
sion. This cycle had to be broken by hav-
ing the test cases for these routines call
libc private interfaces to memory alloca-
tion.

• changing memory map
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void validate_struct_structure name(struct structure name
*input, char *name) {

validate_type of member 1(input->name of member 1, name);
validate_type of member 2(input->name of member 2, name);
validate_type of member 3((input->name of member 3), name);

}

Figure 9: Parameterized test case for a struct

Pointers are validated by making sure they
contain an address that is valid for the pro-
cess./proc/self/maps is read to ob-
tain the memory map of the current pro-
cess. These results are cached, for perfor-
mance reasons, but usually, the memory
map of the process will change over time.
Both the stack and the heap will grow,
resulting in valid pointers being checked
against a cached copy of the memory map.
In the event a pointer is found to be in-
valid, the memory map is re-read, and the
pointer checked again. Themmap() and
munmap() test cases are also maintained
by hand so that they can also cause the
memory map to be re-read.

• hidden ioctl()s

By design, the LSB specifies interfaces
at the highest possible level. One exam-
ple of this, is the use of the termio func-
tions, instead of specifying the underly-
ing ioctl() interface. It turns out that
this tool catches the underlyingioctl()
calls anyway, and flags it as an error. The
solution is for the termio functions the set
a flag indicating that theioctl() test
case should skip its tests.

• Optionally NULL parameters

Many interfaces have parameters which
may be NULL. This triggerred lots of
warnings for many programs. The solu-
tion was to add a flag that indicated that
the Parameter may be NULL, and to not

try to validate the pointer, or the data be-
ing pointed to.

No doubt, there will be more interesting situ-
ations to have to deal with before this tool is
completed.

4 Results

As of the deadline for this paper, results are
preliminary, but encouraging. The tool is ini-
tially being tested against simple commands
such as ls and vi, and some X Windows clients
such as xclock and xterm. The tool is correctly
inserting itself into the application under test,
and we are getting some interesting results that
will be examined more closely.

One example is vi passes a NULL to
__strtol_internal several times during
startup.

The tool was designed to work across all archi-
tectures. At present, it has been built and tested
on only the IA32 and IA64 architectures. No
significant problems are anticipate on other ar-
chitectures.

Additional results and experience will be pre-
sented at the conference.
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5 Future Work

There is still much work to be done. Some of
the outstanding tasks are highlighted here.

• AdditionalTypeTypes

Semantic information needs to be added
for additional parameters and structures.
The additional layer 3 tests that corre-
spond to this information must also be im-
plemented.

• Architecture-specific interfaces

As we found in the LSB, there are some
interfaces, and types that are unique to one
or more architectures. These need to be
handled properly so they are not part of
the tests when built on an architecture for
which they don’t apply.

• Unions

Although Unions are represented in the
database in the same way as structures,
the database does not contain enough in-
formation to describe how to interpret or
test the contents of a union. Test cases that
involve unions may have to be written by
hand.

• Additional libraries

The information in the database for the
graphics libraries and forlibstdc++ is
incomplete, therefore, it is not possible to
generate all of the test cases for those li-
braries. Once the data is complete, the test
cases will also be complete.
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Abstract

One of the primary focus points of 2.5 was fix-
ing up the bit rotting block layer, and as a result
2.6 now sports a brand new implementation of
basically anything that has to do with passing
IO around in the kernel, from producer to disk
driver. The talk will feature an in-depth look
at the IO core system in 2.6 comparing to 2.4,
looking at performance, flexibility, and added
functionality. The rewrite of the IO scheduler
API and the new IO schedulers will get a fair
treatment as well.

No 2.6 talk would be complete without 2.7
speculations, so I shall try to predict what
changes the future holds for the world of Linux
block I/O.

1 2.4 Problems

One of the most widely criticized pieces of
code in the 2.4 kernels is, without a doubt, the
block layer. It’s bit rotted heavily and lacks
various features or facilities that modern hard-
ware craves. This has led to many evils, rang-
ing from code duplication in drivers to mas-
sive patching of block layer internals in ven-
dor kernels. As a result, vendor trees can eas-
ily be considered forks of the 2.4 kernel with
respect to the block layer code, with all of
the problems that this fact brings with it: 2.4
block layer code base may as well be consid-
ered dead, no one develops against it. Hard-
ware vendor drivers include many nasty hacks

and #ifdef’s to work in all of the various
2.4 kernels that are out there, which doesn’t ex-
actly enhance code coverage or peer review.

The block layer fork didn’t just happen for the
fun of it of course, it was a direct result of
the various problem observed. Some of these
are added features, others are deeper rewrites
attempting to solve scalability problems with
the block layer core or IO scheduler. In the
next sections I will attempt to highlight specific
problems in these areas.

1.1 IO Scheduler

The main 2.4 IO scheduler is called
elevator_linus , named after the benev-
olent kernel dictator to credit him for some
of the ideas used. elevator_linus is a
one-way scan elevator that always scans in
the direction of increasing LBA. It manages
latency problems by assigning sequence
numbers to new requests, denoting how many
new requests (either merges or inserts) may
pass this one. The latency value is dependent
on data direction, smaller for reads than for
writes. Internally, elevator_linus uses
a double linked list structure (the kernels
struct list_head ) to manage the request
structures. When queuing a new IO unit with
the IO scheduler, the list is walked to find a
suitable insertion (or merge) point yielding an
O(N) runtime. That in itself is suboptimal in
presence of large amounts of IO and to make
matters even worse, we repeat this scan if the
request free list was empty when we entered
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the IO scheduler. The latter is not an error
condition, it will happen all the time for even
moderate amounts of write back against a
queue.

1.2 struct buffer_head

The main IO unit in the 2.4 kernel is the
struct buffer_head . It’s a fairly unwieldy
structure, used at various kernel layers for dif-
ferent things: caching entity, file system block,
and IO unit. As a result, it’s suboptimal for ei-
ther of them.

From the block layer point of view, the two
biggest problems is the size of the structure
and the limitation in how big a data region it
can describe. Being limited by the file system
one blocksemantics, it can at most describe a
PAGE_CACHE_SIZEamount of data. In Linux
on x86 hardware that means 4KiB of data. Of-
ten it can be even worse: raw io typically uses
the soft sector size of a queue (default 1KiB)
for submitting io, which means that queuing
eg 32KiB of IO will enter the io scheduler 32
times. To work around this limitation and get
at least to a page at the time, a 2.4 hack was
introduced. This is calledvary_io . A driver
advertising this capability acknowledges that it
can managebuffer_head’s of varying sizes
at the same time. File system read-ahead, an-
other frequent user of submitting larger sized
io, has no option but to submit the read-ahead
window in units of the page size.

1.3 Scalability

With the limit on buffer_head IO size and
elevator_linus runtime, it doesn’t take a
lot of thinking to discover obvious scalability
problems in the Linux 2.4 IO path. To add in-
sult to injury, the entire IO path is guarded by a
single, global lock:io_request_lock . This
lock is held during the entire IO queuing op-
eration, and typically also from the other end

when a driver subtracts requests for IO sub-
mission. A single global lock is a big enough
problem on its own (bigger SMP systems will
suffer immensely because of cache line bounc-
ing), but add to that long runtimes and you have
a really huge IO scalability problem.

Linux vendors have long shipped lock scalabil-
ity patches for quite some time to get around
this problem. The adopted solution is typically
to make the queue lock a pointer to a driver lo-
cal lock, so the driver has full control of the
granularity and scope of the lock. This solu-
tion was adopted from the 2.5 kernel, as we’ll
see later. But this is another case where driver
writers often need to differentiate between ven-
dor and vanilla kernels.

1.4 API problems

Looking at the block layer as a whole (includ-
ing both ends of the spectrum, the producers
and consumers of the IO units going through
the block layer), it is a typical example of code
that has been hacked into existence without
much thought to design. When things broke
or new features were needed, they had been
grafted into the existing mess. No well de-
fined interface exists between file system and
block layer, except a few scattered functions.
Controlling IO unit flow from IO scheduler
to driver was impossible: 2.4 exposes the IO
scheduler data structures (the->queue_head

linked list used for queuing) directly to the
driver. This fact alone makes it virtually im-
possible to implement more clever IO schedul-
ing in 2.4. Even the recently (in the 2.4.20’s)
added lower latency work was horrible to work
with because of this lack of boundaries. Veri-
fying correctness of the code is extremely dif-
ficult; peer review of the code likewise, since a
reviewer must be intimate with the block layer
structures to follow the code.

Another example on lack of clear direction is
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the partition remapping. In 2.4, it’s the driver’s
responsibility to resolve partition mappings.
A given request contains a device and sector
offset (i.e. /dev/hda4 , sector 128) and the
driver must map this to an absolute device off-
set before sending it to the hardware. Not only
does this cause duplicate code in the drivers,
it also means the IO scheduler has no knowl-
edge of the real device mapping of a particular
request. This adversely impacts IO scheduling
whenever partitions aren’t laid out in strict as-
cending disk order, since it causes the io sched-
uler to make the wrong decisions when order-
ing io.

2 2.6 Block layer

The above observations were the initial kick off
for the 2.5 block layer patches. To solve some
of these issues the block layer needed to be
turned inside out, breaking basically anything-
io along the way.

2.1 bio

Given that struct buffer_head was one
of the problems, it made sense to start from
scratch with an IO unit that would be agree-
able to the upper layers as well as the drivers.
The main criteria for such an IO unit would be
something along the lines of:

1. Must be able to contain an arbitrary
amount of data, as much as the hardware
allows. Or as much that makessenseat
least, with the option of easily pushing
this boundary later.

2. Must work equally well for pages that
have a virtual mapping as well as ones that
do not.

3. When entering the IO scheduler and
driver, IO unit must point to an absolute
location on disk.

4. Must be able to stack easily for IO stacks
such as raid and device mappers. This in-
cludes full redirect stacking like in 2.4, as
well as partial redirections.

Once the primary goals for the IO struc-
ture were laid out, thestruct bio was
born. It was decided to base the layout
on a scatter-gather type setup, with thebio

containing a map of pages. If the map
count was made flexible, items 1 and 2 on
the above list were already solved. The
actual implementation involved splitting the
data container from thebio itself into a
struct bio_vec structure. This was mainly
done to ease allocation of the structures so
that sizeof(struct bio) was always con-
stant. Thebio_vec structure is simply a tu-
ple of {page, length, offset} , and the
bio can be allocated with room for anything
from 1 to BIO_MAX_PAGES. Currently Linux
defines that as 256 pages, meaning we can sup-
port up to 1MiB of data in a singlebio for
a system with 4KiB page size. At the time
of implementation, 1MiB was a good deal be-
yond the point where increasing the IO size fur-
ther didn’t yield better performance or lower
CPU usage. It also has the added bonus of
making thebio_vec fit inside a single page,
so we avoid higher order memory allocations
(sizeof(struct bio_vec) == 12 on 32-
bit, 16 on 64-bit) in the IO path. This is an
important point, as it eases the pressure on the
memory allocator. For swapping or other low
memory situations, we ideally want to stress
the allocator as little as possible.

Different hardware can support different sizes
of io. Traditional parallel ATA can do a max-
imum of 128KiB per request, qlogicfc SCSI
doesn’t like more than 32KiB, and lots of high
end controllers don’t impose a significant limit
on max IO size but may restrict the maximum
number of segments that one IO may be com-
posed of. Additionally, software raid or de-
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vice mapper stacks may like special alignment
of IO or the guarantee that IO won’t cross
stripe boundaries. All of this knowledge is ei-
ther impractical or impossible to statically ad-
vertise to submitters of io, so an easy inter-
face for populating abio with pages was es-
sential if supporting large IO was to become
practical. The current solution isint bio_

add_page() which attempts to add a single
page (full or partial) to abio . It returns the
amount of bytes successfully added. Typical
users of this function continue adding pages
to abio until it fails—then it is submitted for
IO throughsubmit_bio() , a newbio is al-
located and populated until all data has gone
out. int bio_add_page() uses statically
defined parameters inside the request queue to
determine how many pages can be added, and
attempts to query a registeredmerge_bvec_

fn for dynamic limits that the block layer can-
not know about.

Drivers hooking into the block layer before the
IO scheduler1 deal withstruct bio directly,
as opposed to thestruct request that are
output after the IO scheduler. Even though the
page addition API guarantees that they never
need to be able to deal with abio that is too
big, they still have to manage local splits at
sub-page granularity. The API was defined that
way to make it easier for IO submitters to man-
age, so they don’t have to deal with sub-page
splits. 2.6 block layer defines two ways to
deal with this situation—the first is the general
clone interface.bio_clone() returns a clone
of abio . A clone is defined as a private copy of
thebio itself, but with a sharedbio_vec page
map list. Drivers can modify the clonedbio

and submit it to a different device without du-
plicating the data. The second interface is tai-
lored specifically to single page splits and was
written by kernel raid maintainer Neil Brown.
The main function isbio_split() which re-

1Also known as atmake_request time.

turns astruct bio_pair describing the two
parts of the originalbio . The twobio ’s can
then be submitted separately by the driver.

2.2 Partition remapping

Partition remapping is handled inside the IO
stack before going to the driver, so that both
drivers and IO schedulers have immediate full
knowledge of precisely where data should end
up. The device unfolding is done automati-
cally by the same piece of code that resolves
full bio redirects. The worker function is
blk_partition_remap() .

2.3 Barriers

Another feature that found its way to some ven-
dor kernels is IO barriers. A barrier is defined
as a piece of IO that is guaranteed to:

• Be on platter (or safe storage at least)
when completion is signaled.

• Not proceed any previously submitted io.

• Not be proceeded by later submitted io.

The feature is handy for journalled file sys-
tems, fsync, and any sort of cache bypassing
IO2 where you want to provide guarantees on
data order and correctness. The 2.6 code isn’t
even complete yet or in the Linus kernels, but it
has made its way to Andrew Morton’s -mm tree
which is generally considered a staging area for
features. This section describes the code so far.

The first type of barrier supported is a soft
barrier. It isn’t of much use for data in-
tegrity applications, since it merely implies
ordering inside the IO scheduler. It is sig-
naled with theREQ_SOFTBARRIERflag inside
struct request . A stronger barrier is the

2Such types of IO includeO_DIRECTor raw.
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hard barrier. From the block layer and IO
scheduler point of view, it is identical to the
soft variant. Drivers need to know about it
though, so they can take appropriate measures
to correctly honor the barrier. So far the ide
driver is the only one supporting a full, hard
barrier. The issue was deemed most impor-
tant for journalled desktop systems, where the
lack of barriers and risk of crashes / power loss
coupled with ide drives generally always de-
faulting to write back caching caused signifi-
cant problems. Since the ATA command set
isn’t very intelligent in this regard, the ide solu-
tion adopted was to issue pre- and post flushes
when encountering a barrier.

The hard and soft barrier share the feature that
they are both tied to a piece of data (abio ,
really) and cannot exist outside of data con-
text. Certain applications of barriers would re-
ally like to issue a disk flush, where finding out
which piece of data to attach it to is hard or
impossible. To solve this problem, the 2.6 bar-
rier code added theblkdev_issue_flush()

function. The block layer part of the code is ba-
sically tied to a queue hook, so the driver issues
the flush on its own. A helper function is pro-
vided for SCSI type devices, using the generic
SCSI command transport that the block layer
provides in 2.6 (more on this later). Unlike
the queued data barriers, a barrier issued with
blkdev_issue_flush() works on all inter-
esting drivers in 2.6 (IDE, SCSI, SATA). The
only missing bits are drivers that don’t belong
to one of these classes—things likeCISS and
DAC960.

2.4 IO Schedulers

As mentioned in section 1.1, there are a num-
ber of known problems with the default 2.4 IO
scheduler and IO scheduler interface (or lack
thereof). The idea to base latency on a unit of
data (sectors) rather than a time based unit is
hard to tune, or requires auto-tuning at runtime

and this never really worked out. Fixing the
runtime problems withelevator_linus is
next to impossible due to the data structure ex-
posing problem. So before being able to tackle
any problems in that area, a neat API to the IO
scheduler had to be defined.

2.4.1 Defined API

In the spirit of avoiding over-design3, the API
was based on initial adaption ofelevator_

linus , but has since grown quite a bit as newer
IO schedulers required more entry points to ex-
ploit their features.

The core function of an IO scheduler is, natu-
rally, insertion of new io units and extraction of
ditto from drivers. So the first 2 API functions
are defined,next_req_fn andadd_req_fn .
If you recall from section 1.1, a new IO
unit is first attempted merged into an exist-
ing request in the IO scheduler queue. And
if this fails and the newly allocated request
has raced with someone else adding an adja-
cent IO unit to the queue in the mean time,
we also attempt to mergestruct request s.
So 2 more functions were added to cater to
these needs,merge_fn andmerge_req_fn .
Cleaning up after a successful merge is done
throughmerge_cleanup_fn . Finally, a de-
fined IO scheduler can provide init and exit
functions, should it need to perform any duties
during queue init or shutdown.

The above described the IO scheduler API
as of 2.5.1, later on more functions were
added to further abstract the IO scheduler
away from the block layer core. More details
may be found in thestruct elevator_s in
<linux/elevator.h> kernel include file.

3Some might, rightfully, claim that this is worse than
no design
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2.4.2 deadline

In kernel 2.5.39,elevator_linus was fi-
nally replaced by something more appropriate,
the deadlineIO scheduler. The principles be-
hind it are pretty straight forward — new re-
quests are assigned an expiry time in millisec-
onds, based on data direction. Internally, re-
quests are managed on two different data struc-
tures. The sort list, used for inserts and front
merge lookups, is based on a red-black tree.
This providesO(log n) runtime for both inser-
tion and lookups, clearly superior to the dou-
bly linked list. Two FIFO lists exist for track-
ing request expiry times, using a double linked
list. Since strict FIFO behavior is maintained
on these two lists, they run inO(1) time. For
back merges it is important to maintain good
performance as well, as they dominate the to-
tal merge count due to the layout of files on
disk. So deadline added a merge hash for
back merges, ideally providingO(1) runtime
for merges. Additionally,deadlineadds a one-
hit merge cache that is checked even before go-
ing to the hash. This gets surprisingly good hit
rates, serving as much as 90% of the merges
even for heavily threaded io.

Implementation details aside,deadlinecontin-
ues to build on the fact that the fastest way to
access a single drive, is by scanning in the di-
rection of ascending sector. With its superior
runtime performance,deadline is able to sup-
port very large queue depths without suffering
a performance loss or spending large amounts
of time in the kernel. It also doesn’t suffer from
latency problems due to increased queue sizes.
When a request expires in the FIFO,dead-
line jumps to that disk location and starts serv-
ing IO from there. To prevent accidental seek
storms (which would further cause us to miss
deadlines),deadline attempts to serve a num-
ber of requests from that location before jump-
ing to the next expired request. This means that
the assigned request deadlines are soft, not a

specific hard target that must be met.

2.4.3 Anticipatory IO scheduler

While deadline works very well for most
workloads, it fails to observe the natural depen-
dencies that often exist between synchronous
reads. Say you want to list the contents of
a directory—that operation isn’t merely a sin-
gle sync read, it consists of a number of reads
where only the completion of the final request
will give you the directory listing. Withdead-
line, you could get decent performance from
such a workload in presence of other IO activi-
ties by assigning very tight read deadlines. But
that isn’t very optimal, since the disk will be
serving other requests in between the depen-
dent reads causing a potentially disk wide seek
every time. On top of that, the tight deadlines
will decrease performance on other io streams
in the system.

Nick Piggin implemented an anticipatory IO
scheduler [Iyer] during 2.5 to explore some in-
teresting research in this area. The main idea
behind the anticipatory IO scheduler is a con-
cept calleddeceptive idleness. When a process
issues a request and it completes, it might be
ready to issue a new request (possibly close
by) immediately. Take the directory listing ex-
ample from above—it might require 3–4 IO
operations to complete. When each of them
completes, the process4 is ready to issue the
next one almost instantly. But the traditional
io scheduler doesn’t pay any attention to this
fact, the new request must go through the IO
scheduler and wait its turn. Withdeadline, you
would have to typically wait 500 milliseconds
for each read, if the queue is held busy by other
processes. The result is poor interactive per-
formance for each process, even though overall
throughput might be acceptable or even good.

4Or the kernel, on behalf of the process.
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Instead of moving on to the next request from
an unrelated process immediately, the anticipa-
tory IO scheduler (hence forth known asAS)
opens a small window of opportunity for that
process to submit a new IO request. If that hap-
pens,ASgives it a new chance and so on. Inter-
nally it keeps a decaying histogram of IOthink
timesto help the anticipation be as accurate as
possible.

Internally,AS is quite likedeadline. It uses the
same data structures and algorithms for sort-
ing, lookups, and FIFO. If the think time is set
to 0, it is very close todeadline in behavior.
The only differences are various optimizations
that have been applied to either scheduler al-
lowing them to diverge a little. IfAS is able to
reliably predict when waiting for a new request
is worthwhile, it gets phenomenal performance
with excellent interactiveness. Often the sys-
tem throughput is sacrificed a little bit, so de-
pending on the workloadAS might not be the
best choice always. The IO storage hardware
used, also plays a role in this—a non-queuing
ATA hard drive is a much better fit than a SCSI
drive with a large queuing depth. The SCSI
firmware reorders requests internally, thus of-
ten destroying any accounting thatAS is trying
to do.

2.4.4 CFQ

The third new IO scheduler in 2.6 is called
CFQ. It’s loosely based on the ideas on
stochastic fair queuing (SFQ [McKenney]).
SFQ is fair as long as its hashing doesn’t col-
lide, and to avoid that, it uses a continually
changing hashing function. Collisions can’t be
completely avoided though, frequency will de-
pend entirely on workload and timing.CFQ
is an acronym for completely fair queuing, at-
tempting to get around the collision problem
that SFQ suffers from. To do so,CFQ does
away with the fixed number of buckets that

processes can be placed in. And using reg-
ular hashing technique to find the appropriate
bucket in case of collisions, fatal collisions are
avoided.

CFQ deviates radically from the concepts that
deadline and AS is based on. It doesn’t as-
sign deadlines to incoming requests to main-
tain fairness, instead it attempts to divide
bandwidth equally among classes of processes
based on some correlation between them. The
default is to hash on thread group id, tgid.
This means that bandwidth is attempted dis-
tributed equally among the processes in the
system. Each class has its own request sort
and hash list, using red-black trees again for
sorting and regular hashing for back merges.
When dealing with writes, there is a little catch.
A process will almost never be performing its
own writes—data is marked dirty in context of
the process, but write back usually takes place
from the pdflushkernel threads. SoCFQ is
actually dividing read bandwidth among pro-
cesses, while treating each pdflush thread as a
separate process. Usually this has very minor
impact on write back performance. Latency is
much less of an issue with writes, and good
throughput is very easy to achieve due to their
inherent asynchronous nature.

2.5 Request allocation

Each block driver in the system has at least
one request_queue_t request queue struc-
ture associated with it. The recommended
setup is to assign a queue to each logical
spindle. In turn, each request queue has
a struct request_list embedded which
holds freestruct request structures used
for queuing io. 2.4 improved on this situation
from 2.2, where a single global free list was
available to add one per queue instead. This
free list was split into two sections of equal
size, for reads and writes, to prevent either
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direction from starving the other5. 2.4 stati-
cally allocated a big chunk of requests for each
queue, all residing in the precious low memory
of a machine. The combination ofO(N) run-
time and statically allocated request structures
firmly prevented any real world experimenta-
tion with large queue depths on 2.4 kernels.

2.6 improves on this situation by dynamically
allocating request structures on the fly instead.
Each queue still maintains its request free list
like in 2.4. However it’s also backed by a mem-
ory pool6 to provide deadlock free allocations
even during swapping. The more advanced
io schedulers in 2.6 usually back each request
by its own private request structure, further
increasing the memory pressure of each re-
quest. Dynamic request allocation lifts some of
this pressure as well by pushing that allocation
inside two hooks in the IO scheduler API—
set_req_fn and put_req_fn . The latter
handles the later freeing of that data structure.

2.6 Plugging

For the longest time, the Linux block layer has
used a technique dubbedplugging to increase
IO throughput. In its simplicity, plugging
works sort of like the plug in your tub drain—
when IO is queued on an initially empty queue,
the queue is plugged. Only when someone asks
for the completion of some of the queued IO is
the plug yanked out, and io is allowed to drain
from the queue. So instead of submitting the
first immediately to the driver, the block layer
allows a small buildup of requests. There’s
nothing wrong with the principle of plugging,
and it has been shown to work well for a num-
ber of workloads. However, the block layer
maintains a global list of plugged queues in-
side thetq_disk task queue. There are three
main problems with this approach:

5In reality, to prevent writes for consuming all re-
quests.

6mempool_t interface from Ingo Molnar.

1. It’s impossible to go backwards from the
file system and find the specific queue to
unplug.

2. Unplugging one queue throughtq_disk

unplugs all plugged queues.

3. The act of plugging and unplugging
touches a global lock.

All of these adversely impact performance.
These problems weren’t really solved until late
in 2.6, when Intel reported a huge scalability
problem related to unplugging [Chen] on a 32
processor system. 93% of system time was
spent due to contention onblk_plug_lock ,
which is the 2.6 direct equivalent of the 2.4
tq_disk embedded lock. The proposed so-
lution was to move the plug lists to a per-
CMU structure. While this would solve the
contention problems, it still leaves the other 2
items on the above list unsolved.

So work was started to find a solution that
would fix all problems at once, and just gen-
erally Feel Right. 2.6 contains a link be-
tween the block layer and write out paths
which is embedded inside the queue, a
struct backing_dev_info . This structure
holds information on read-ahead and queue
congestion state. It’s also possible to go from
a struct page to the backing device, which
may or may not be a block device. So it
would seem an obvious idea to move to a back-
ing device unplugging scheme instead, getting
rid of the globalblk_run_queues() unplug-
ging. That solution would fix all three issues at
once—there would be no global way to unplug
all devices, only target specific unplugs, and
the backing device gives us a mapping from
page to queue. The code was rewritten to do
just that, and provide unplug functionality go-
ing from a specificstruct block_device ,
page, or backing device. Code and interface
was much superior to the existing code base,
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and results were truly amazing. Jeremy Hig-
don tested on an 8-way IA64 box [Higdon] and
got 75–80 thousand IOPS on the stock kernel
at 100% CPU utilization, 110 thousand IOPS
with the per-CPU Intel patch also at full CPU
utilization, and finally 200 thousand IOPS at
merely 65% CPU utilization with the backing
device unplugging. So not only did the new
code provide a huge speed increase on this
machine, it also went from being CPU to IO
bound.

2.6 also contains some additional logic to
unplug a given queue once it reaches the
point where waiting longer doesn’t make much
sense. So where 2.4 will always wait for an ex-
plicit unplug, 2.6 can trigger an unplug when
one of two conditions are met:

1. The number of queued requests reach a
certain limit,q->unplug_thresh . This
is device tweak able and defaults to 4.

2. When the queue has been idle forq->

unplug_delay . Also device tweak able,
and defaults to 3 milliseconds.

The idea is that once a certain number of
requests have accumulated in the queue, it
doesn’t make much sense to continue waiting
for more—there is already an adequate number
available to keep the disk happy. The time limit
is really a last resort, and should rarely trig-
ger in real life. Observations on various work
loads have verified this. More than a handful or
two timer unplugs per minute usually indicates
a kernel bug.

2.7 SCSI command transport

An annoying aspect of CD writing applications
in 2.4 has been the need to use ide-scsi, neces-
sitating the inclusion of the entire SCSI stack
for only that application. With the clear major-
ity of the market being ATAPI hardware, this

becomes even more silly. ide-scsi isn’t without
its own class of problems either—it lacks the
ability to use DMA on certain writing types.
CDDA audio ripping is another application that
thrives with ide-scsi, since the native uniform
cdrom layer interface is less than optimal (put
mildly). It doesn’t have DMA capabilities at
all.

2.7.1 Enhancing struct request

The problem with 2.4 was the lack of abil-
ity to generically send SCSI “like” commands
to devices that understand them. Historically,
only file system read/write requests could be
submitted to a driver. Some drivers made up
faked requests for other purposes themselves
and put then on the queue for their own con-
sumption, but no defined way of doing this ex-
isted. 2.6 adds a new request type, marked by
theREQ_BLOCK_PCbit. Such a request can be
either backed by abio like a file system re-
quest, or simply has a data and length field set.
For both types, a SCSI command data block is
filled inside the request. With this infrastruc-
ture in place and appropriate update to drivers
to understand these requests, it’s a cinch to sup-
port a much better direct-to-device interface for
burning.

Most applications use the SCSI sg API for talk-
ing to devices. Some of them talk directly to
the /dev/sg* special files, while (most) oth-
ers use theSG_IO ioctl interface. The for-
mer requires a yet unfinished driver to trans-
form them into block layer requests, but the lat-
ter can be readily intercepted in the kernel and
routed directly to the device instead of through
the SCSI layer. Helper functions were added
to make burning and ripping even faster, pro-
viding DMA for all applications and without
copying data between kernel and user space at
all. So the zero-copy DMA burning was pos-
sible, and this even without changing most ap-



62 • Linux Symposium

plications.

3 Linux-2.7

The 2.5 development cycle saw the most mas-
sively changed block layer in the history of
Linux. Before 2.5 was opened, Linus had
clearly expressed that one of the most impor-
tant things that needed doing, was the block
layer update. And indeed, the very first thing
merged was the complete bio patch into 2.5.1-
pre2. At that time, no more than a handful
drivers compiled (let alone worked). The 2.7
changes will be nowhere as severe or drastic.
A few of the possible directions will follow in
the next few sections.

3.1 IO Priorities

Prioritized IO is a very interesting area that
is sure to generate lots of discussion and de-
velopment. It’s one of the missing pieces of
the complete resource management puzzle that
several groups of people would very much like
to solve. People running systems with many
users, or machines hosting virtual hosts (or
completed virtualized environments) are dy-
ing to be able to provide some QOS guaran-
tees. Some work was already done in this
area, so far nothing complete has materialized.
The CKRM [CKRM] project spear headed by
IBM is an attempt to define global resource
management, including io. They applied a lit-
tle work to theCFQ IO scheduler to provide
equal bandwidth between resource manage-
ment classes, but at no specific priorities. Cur-
rently I have aCFQ patch that is 99% complete
that provides full priority support, using the IO
contexts introduced byAS to manage fair shar-
ing over the full time span that a process ex-
ists7. This works well enough, but only works

7CFQ currently tears down class structures as soon
as it is empty, it doesn’t persist over process life time.

for that specific IO scheduler. A nicer solution
would be to create a scheme that works inde-
pendently of the io scheduler used. That would
require a rethinking of the IO scheduler API.

3.2 IO Scheduler switching

Currently Linux provides no less than 4 IO
schedulers—the 3 mentioned, plus a forth
dubbednoop. The latter is a simple IO sched-
uler that does no request reordering, no latency
management, and always merges whenever it
can. Its area of application is mainly highly
intelligent hardware with huge queue depths,
where regular request reordering doesn’t make
sense. Selecting a specific IO scheduler can
either be done by modifying the source of a
driver and putting the appropriate calls in there
at queue init time, or globally for any queue by
passing theelevator=xxx boot parameter.
This makes it impossible, or at least very im-
practical, to benchmark different IO schedulers
without many reboots or recompiles. Some
way to switch IO schedulers per queue and on
the fly is desperately needed. Freezing a queue
and letting IO drain from it until it’s empty
(pinning new IO along the way), and then shut-
ting down the old io scheduler and moving to
the new scheduler would not be so hard to do.
The queues expose various sysfs variables al-
ready, so the logical approach would simply be
to:

# echo deadline > \
/sys/block/hda/queue/io_scheduler

A simple but effective interface. At least two
patches doing something like this were already
proposed, but nothing was merged at that time.

4 Final comments

The block layer code in 2.6 has come a long
way from the rotted 2.4 code. New features



Linux Symposium 2004 • 63

bring it more up-to-date with modern hard-
ware, and completely rewritten from scratch
core provides much better scalability, perfor-
mance, and memory usage benefiting any ma-
chine from small to really huge. Going back
a few years, I heard constant complaints about
the block layer and how much it sucked and
how outdated it was. These days I rarely
hear anything about the current state of affairs,
which usually means that it’s doing pretty well
indeed. 2.7 work will mainly focus on fea-
ture additions and driver layer abstractions (our
concept of IDE layer, SCSI layer etc will be
severely shook up). Nothing that will wreak
havoc and turn everything inside out like 2.5
did. Most of the 2.7 work mentioned above
is pretty light, and could easily be back ported
to 2.6 once it has been completed and tested.
Which is also a good sign that nothing really
radical or risky is missing. So things are set-
tling down, a sign of stability.
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1 Abstract

In this paper we address some of the issues
identified during the development and stabi-
lization of Asynchronous I/O (AIO) on Linux
2.6.

We start by describing improvements made to
optimize the throughput of streaming buffered
filesystem AIO for microbenchmark runs.
Next, we discuss certain tricky issues in en-
suring data integrity between AIO Direct I/O
(DIO) and buffered I/O, and take a deeper look
at synchronized I/O guarantees, concurrent
I/O, write-ordering issues and the improve-
ments resulting from radix-tree based write-
back changes in the Linux VFS.

We then investigate the results of using Linux
2.6 filesystem AIO on the performance met-
rics for certain enterprise database workloads
which are expected to benefit from AIO, and
mention a few tips on optimizing AIO for such
workloads. Finally, we briefly discuss the is-
sues around workloads that need to combine
asynchronous disk I/O and network I/O.

2 Introduction

AIO enables a single application thread to
overlap processing with I/O operations for bet-
ter utilization of CPU and devices. AIO can

improve the performance of certain kinds of
I/O intensive applications like databases, web-
servers and streaming-content servers. The
use of AIO also tends to help such applica-
tions adapt and scale more smoothly to varying
loads.

2.1 Overview of kernel AIO in Linux 2.6

The Linux 2.6 kernel implements in-kernel
support for AIO. A low-level native AIO sys-
tem call interface is provided that can be in-
voked directly by applications or used by li-
brary implementations to build POSIX/SUS
semantics. All discussion hereafter in this pa-
per pertains to the native kernel AIO interfaces.

Applications can submit one or more
I/O requests asynchronously using the
io_submit() system call, and ob-
tain completion notification using the
io_getevents() system call. Each
I/O request specifies the operation (typically
read/write), the file descriptor and the pa-
rameters for the operation (e.g., file offset,
buffer). I/O requests are associated with the
completion queue (ioctx) they were submitted
against. The results of I/O are reported as
completion events on this queue, and reaped
usingio_getevents() .

The design of AIO for the Linux 2.6 kernel has
been discussed in [1], including the motivation
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behind certain architectural choices, for exam-
ple:

• Sharing a common code path for AIO and
regular I/O

• A retry-based model for AIO continua-
tions across blocking points in the case of
buffered filesystem AIO (currently imple-
mented as a set of patches to the Linux 2.6
kernel) where worker threads take on the
caller’s address space for executing retries
involving access to user-space buffers.

2.2 Background on retry-based AIO

The retry-based model allows an AIO request
to be executed as a series of non-blocking it-
erations. Each iteration retries the remain-
ing part of the request from where the last it-
eration left off, re-issuing the corresponding
AIO filesystem operation with modified argu-
ments representing the remaining I/O. The re-
tries are “kicked” via a special AIO waitqueue
callback routine,aio_wake_function() ,
which replaces the default waitqueue entry
used for blocking waits.

The high-level retry infrastructure is respon-
sible for running the iterations in the address
space context of the caller, and ensures that
only one retry instance is active at a given time.
This relieves the fops themselves from having
to deal with potential races of that sort.

2.3 Overview of the rest of the paper

In subsequent sections of this paper, we de-
scribe our experiences in addressing several is-
sues identified during the optimization and sta-
bilization efforts related to the kernel AIO im-
plementation for Linux 2.6, mainly in the area
of disk- or filesystem-based AIO.

We observe, for example, how I/O patterns
generated by the common VFS code paths

used by regular and retry-based AIO could
be non-optimal for streaming AIO requests,
and we describe the modifications that ad-
dress this finding. A different set of prob-
lems that has seen some development ac-
tivity are the races, exposures and poten-
tial data-integrity concerns between direct and
buffered I/O, which become especially tricky
in the presence of AIO. Some of these issues
motivated Andrew Morton’s modified page-
writeback design for the VFS using tagged
radix-tree lookups, and we discuss the implica-
tions for the AIOO_SYNCwrite implementa-
tion. In general, disk-based filesystem AIO re-
quirements for database workloads have been a
guiding consideration in resolving some of the
trade-offs encountered, and we present some
initial performance results for such workloads.
Lastly, we touch upon potential approaches to
allow processing of disk-based AIO and com-
munications I/O within a single event loop.

3 Streaming AIO reads

3.1 Basic retry pattern for single AIO read

The retry-based design for buffered filesystem
AIO read works by converting each blocking
wait for read completion on a page into aretry
exit. The design queues an asynchronous no-
tification callback and returns the number of
bytes for which the read has completed so far
without blocking. Then, when the page be-
comes up-to-date, the callback kicks off a retry
continuation in task context. This retry contin-
uation invokes the same filesystem read opera-
tion again using the caller’s address space, but
this time with arguments modified to reflect the
remaining part of the read request.

For example, given a 16KB read request start-
ing at offset 0, where the first 4KB is already
in cache, one might see the following sequence
of retries (in the absence of readahead):
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first time:
fop->aio_read(fd, 0, 16384) = 4096

and when read completes for the second page:
fop->aio_read(fd, 4096, 12288) = 4096

and when read completes for the third page:
fop->aio_read(fd, 8192, 8192) = 4096

and when read completes for the fourth page:
fop->aio_read(fd, 12288, 4096) = 4096

3.2 Impact of readahead on single AIO read

Usually, however, the readahead logic attempts
to batch read requests in advance. Hence, more
I/O would be seen to have completed at each
retry. The logic attempts to predict the optimal
readahead window based on state it maintains
about the sequentiality of past read requests on
the same file descriptor. Thus, given a maxi-
mum readahead window size of 128KB, the se-
quence of retries would appear to be more like
the following example, which results in signif-
icantly improved throughput:

first time:
fop->aio_read(fd, 0, 16384) = 4096,

after issuing readahead
for 128KB/2 = 64KB

and when read completes for the above I/O:
fop->aio_read(fd, 4096, 12288) = 12288

Notice that care is taken to ensure that reada-
heads are not repeated during retries.

3.3 Impact of readahead on streaming AIO
reads

In the case of streaming AIO reads, a sequence
of AIO read requests is issued on the same
file descriptor, where subsequent reads are sub-
mitted without waiting for previous requests to
complete (contrast this with a sequence of syn-
chronous reads).

Interestingly, we encountered a significant
throughput degradation as a result of the in-
terplay of readahead and streaming AIO reads.
To see why, consider the retry sequence for
streaming random AIO read requests of 16KB,

whereo1, o2, o3, ... refer to the ran-
dom offsets where these reads are issued:

first time:
fop->aio_read(fd, o1, 16384) = -EIOCBRETRY,

after issuing readahead for 64KB
as the readahead logic sees the first page
of the read

fop->aio_read(fd, o2, 16384) = -EIOCBRETRY,
after issuing readahead for 8KB (notice
the shrinkage of the readahead window
because of non-sequentiality seen by the
readahead logic)

fop->aio_read(fd, o3, 16384) = -EIOCBRETRY,
after maximally shrinking the readahead
window, turning off readahead and issuing
4KB read in the slow path

fop->aio_read(fd, o4, 16384) = -EIOCBRETRY,
after issuing 4KB read in the slow path

.

.
and when read completes for o1

fop->aio_read(fd, o1, 16384) = 16384
and when read completes for o2

fop->aio_read(fd, o2, 16384) = 8192
and when read completes for o3

fop->aio_read(fd, o3, 16384) = 4096
and when read completes for o4

fop->aio_read(fd, o3, 16384) = 4096
.
.

In steady state, this amounts to a maximally-
shrunk readahead window with 4KB reads at
random offsets being issued serially one at a
time on a slow path, causing seek storms and
driving throughputs down severely.

3.4 Upfront readahead for improved stream-
ing AIO read throughputs

To address this issue, we made the readahead
logic aware of the sequentiality of all pages in a
single read request upfront—before submitting
the next read request. This resulted in a more
desirable outcome as follows:

fop->aio_read(fd, o1, 16384) = -EIOCBRETRY,
after issuing readahead for 64KB
as the readahead logic sees all the 4
pages for the read

fop->aio_read(fd, o2, 16384) = -EIOCBRETRY,
after issuing readahead for 20KB, as the
readahead logic sees all 4 pages of the
read (the readahead window shrinks to
4+1=5 pages)
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fop->aio_read(fd, o3, 16384) = -EIOCBRETRY,
after issuing readahead for 20KB, as the
readahead logic sees all 4 pages of the
read (the readahead window is maintained
at 4+1=5 pages)

.

.
and when read completes for o1

fop->aio_read(fd, o1, 16384) = 16384
and when read completes for o2

fop->aio_read(fd, o2, 16384) = 16384
and when read completes for o3

fop->aio_read(fd, o3, 16384) = 16384
.
.

3.5 Upfront readahead and sendfile regres-
sions

At first sight it appears that upfront readahead
is a reasonable change for all situations, since
it immediately passes to the readahead logic
the entire size of the request. However, it has
the unintended, potential side-effect of losing
pipelining benefits for really large reads, or op-
erations like sendfile which involve post pro-
cessing I/O on the contents just read. One way
to address this is to clip the maximum size
of upfront readahead to the maximum reada-
head setting for the device. To see why even
that may not suffice for certain situations, let
us take a look at the following sequence for
a webserver that uses non-blocking sendfile to
serve a large (2GB) file.

sendfile(fd, 0, 2GB, fd2) = 8192,
tells readahead about up to 128KB
of the read

sendfile(fd, 8192, 2GB - 8192, fd2) = 8192,
tells readahead about 8KB - 132KB
of the read

sendfile(fd, 16384, 2GB - 16384, fd2) = 8192,
tells readahead about 16KB-140KB
of the read

...

This confuses the readahead logic about the
I/O pattern which appears to be 0–128K, 8K–
132K, 16K–140K instead of clear sequentiality
from 0–2GB that is really appropriate.

To avoid such unanticipated issues, upfront
readahead required a special case for AIO

alone, limited to the maximum readahead set-
ting for the device.

3.6 Streaming AIO read microbenchmark
comparisons

We explored streaming AIO throughput im-
provements with the retry-based AIO imple-
mentation and optimizations discussed above,
using a custom microbenchmark called aio-
stress [2]. aio-stress issues a stream of AIO
requests to one or more files, where one can
vary several parameters including I/O unit size,
total I/O size, depth of iocbs submitted at a
time, number of concurrent threads, and type
and pattern of I/O operations, and reports the
overall throughput attained.

The hardware included a 4-way 700MHz
Pentium® III machine with 512MB of RAM
and a 1MB L2 cache. The disk subsystem
used for the I/O tests consisted of an Adaptec
AIC7896/97 Ultra2 SCSI controller connected
to a disk enclosure with six 9GB disks, one
of which was configured as an ext3 filesystem
with a block size of 4KB for testing.

The runs compared aio-stress throughputs for
streaming random buffered I/O reads (i.e.,
without O_DIRECT), with and without the
previously described changes. All the runs
were for the case where the file was not al-
ready cached in memory. The above graph
summarizes how the results varied across in-
dividual request sizes of 4KB to 64KB, where
I/O was targeted to a single file of size 1GB,
the depth of iocbs outstanding at a time being
64KB. A third run was performed to find out
how the results compared with equivalent runs
using AIO-DIO.

With the changes applied, the results showed
an approximate 2x improvement across all
block sizes, bringing throughputs to levels that
match the corresponding results using AIO-
DIO.
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Figure 1: Comparisons of streaming random
AIO read throughputs

4 AIO DIO vs cached I/O integrity
issues

4.1 DIO vs buffered races

Stephen Tweedie discovered several races be-
tween DIO and buffered I/O to the same file
[3]. These races could lead to potential stale-
data exposures and even data-integrity issues.
Most instances were related to situations when
in-core meta-data updates were visible before
actual instantiation or resetting of correspond-
ing data blocks on disk. Problems could also
arise when meta-data updates were not visible
to other code paths that could simultaneously
update meta-data as well. The races mainly af-
fected sparse files due to the lack of atomicity
between the file flush in the DIO paths and ac-
tual data block accesses.

The solution that Stephen Tweedie came
up with, and which Badari Pulavarty re-
ported to Linux 2.6, involved protecting block
lookups and meta-data updates with the inode
semaphore (i_sem ) in DIO paths for both read
and write, atomically with the file flush. Over-
writing of sparse blocks in the DIO write path
was modified to fall back to buffered writes.
Finally, an additional semaphore (i_alloc_
sem) was introduced to lock out deallocation

of blocks by a truncate while DIO was in
progress. The semaphore was implemented
held in shared mode by DIO and in exclusive
mode by truncate.

Note that handling the new locking rules (i.e.,
lock ordering of i_sem first and theni_
alloc_sem ) while allowing for filesystem-
specific implementations of the DIO and file-
write interfaces had to be handled with some
care.

4.2 AIO-DIO specific races

The inclusion of AIO in Linux 2.6 added some
tricky scenarios to the above-described prob-
lems because of the potential races inherent in
returning without waiting for I/O completion.
The interplay of AIO-DIO writes and truncate
was a particular worry as it could lead to cor-
ruption of file data; for example, blocks could
get deallocated and reallocated to a new file
while an AIO-DIO write to the file was still in
progress. To avoid this, AIO-DIO had to return
with i_alloc_sem held, and only release it
as part of I/O completion post-processing. No-
tice that this also had implications for AIO can-
cellation.

File size updates for AIO-DIO file extends
could expose unwritten blocks if they hap-
pened before I/O completed asynchronously.
The case involving fallback to buffered I/O
was particularly non-trivial if a single request
spanned allocated and sparse regions of a
file. Specifically, part of the I/O could have
been initiated via DIO then continued asyn-
chronously, while the fallback to buffered I/O
occurred and signaled I/O completion to the
application. The application may thus have
reused its I/O buffer, overwriting it with other
data and potentially causing file data corrup-
tion if writeout to disk had still been pending.

It might appear that some of these problems
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could be avoided if I/O schedulers guaranteed
the ordering of I/O requests issued to the same
disk block. However, this isn’t a simple propo-
sition in the current architecture, especially in
generalizing the design to all possible cases,
including network block devices. The use of
I/O barriers would be necessary and the costs
may not be justified for these special-case situ-
ations.

Instead, a pragmatic approach was taken in or-
der to address this based on the assumptions
that true asynchronous behaviour was really
meaningful in practice, mainly when perform-
ing I/O to already-allocated file blocks. For
example, databases typically preallocate files
at the time of creation, so that AIO writes
during normal operation and in performance-
critical paths do not extend the file or encounter
sparse regions. Thus, for the sake of correct-
ness, synchronous behaviour may be tolerable
for AIO writes involving sparse regions or file
extends. This compromise simplified the han-
dling of the scenarios described earlier. AIO-
DIO file extends now wait for I/O to complete
and update the file size. AIO-DIO writes span-
ning allocated and sparse regions now wait for
previously- issued DIO for that request to com-
plete before falling back to buffered I/O.

5 Concurrent I/O with synchro-
nized write guarantees

An application opts for synchronized writes
(by using theO_SYNCoption on file open)
when the I/O must be committed to disk be-
fore the write request completes. In the case
of DIO, writes directly go to disk anyway. For
buffered I/O, data is first copied into the page
cache and later written out to disk; if synchro-
nized I/O is specified then the request returns
only after the writeout is complete.

An application might also choose to synchro-

nize previously-issued writes to disk by invok-
ing fsync(), which writes back data from the
page cache to disk and waits for writeout to
complete before returning.

5.1 Concurrent DIO writes

DIO writes formerly held the inode semaphore
in exclusive mode until write completion. This
helped ensure atomicity of DIO writes and
protected against potential file data corruption
races with truncate. However, it also meant that
multiple threads or processes submitting par-
allel DIOs to different parts of the same file
effectively became serialized synchronously.
If the same behaviour were extended to AIO
(i.e., having thei_sem held through I/O com-
pletion for AIO-DIO writes), it would signif-
icantly degrade throughput of streaming AIO
writes as subsequent write submissions would
block until completion of the previous request.

With the fixes described in the previous sec-
tion, such synchronous serialization is avoid-
able without loss of correctness, as the inode
semaphore needs to be held only when looking
up the blocks to write, and not while actual I/O
is in progress on the data blocks. This could al-
low concurrent DIO writes on different parts of
a file to proceed simultaneously, and efficient
throughputs for streaming AIO-DIO writes.

5.2 Concurrent O_SYNCbuffered writes

In the original writeback design in the Linux
VFS, per-address space lists were maintained
for dirty pages and pages under writeback for
a given file. Synchronized write was imple-
mented by traversing these lists to issue write-
outs for the dirty pages and waiting for write-
back to complete on the pages on the writeback
list. The inode semaphore had to be held all
through to avoid possibilities of livelocking on
these lists as further writes streamed into the
same file. While this helped maintain atomicity
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of writes, it meant that parallelO_SYNCwrites
to different parts of the file were effectively
serialized synchronously. Further, dependence
on i_sem -protected state in the address space
lists across I/O waits made it difficult to retry-
enable this code path for AIO support.

In order to allow concurrentO_SYNCwrites to
be active on a file, the range of pages to be
written back and waited on could instead be
obtained directly through a radix-tree lookup
for the range of offsets in the file that was be-
ing written out by the request [4]. This would
avoid traversal of the page lists and hence the
need to holdi_sem across the I/O waits. Such
an approach would also make it possible to
completeO_SYNCwrites as a sequence of non-
blocking retry iterations across the range of
bytes in a given request.

5.3 Data-integrity guarantees

Background writeout threads cannot block on
the inode semaphore like O_SYNC/fsync writ-
ers. Hence, with the per-address space lists
writeback model, some juggling involving
movement across multiple lists was required
to avoid livelocks. The implementation had
to make sure that pages which by chance got
picked up for processing by background write-
outs didn’t slip from consideration when wait-
ing for writeback to complete for a synchro-
nized write request. The latter would be partic-
ularly relevant for ensuring synchronized-write
guarantees that impacted data integrity for ap-
plications. However, as Daniel McNeil’s anal-
ysis would indicate [5], getting this right re-
quired the writeback code to write and wait
upon I/O and dirty pages which were initiated
by other processes, and that turned out to be
fairly tricky.

One solution that was explored was per-
address space serialization of writeback to en-
sure exclusivity to synchronous writers and

shared mode for background writers. It in-
volved navigating issues with busy-waits in
background writers and the code was begin-
ning to get complicated and potentially fragile.

This was one of the problems that finally
prompted Andrew Morton to change the entire
VFS writeback code to use radix-tree walks in-
stead of the per-address space pagelists. The
main advantage was that avoiding the need
for movement across lists during state changes
(e.g., when re-dirtying a page if its buffers were
locked for I/O by another process) reduced the
chances of pages getting missed from consid-
eration without the added serialization of entire
writebacks.

6 Tagged radix-tree based write-
back

For the radix-tree walk writeback design to per-
form as well as the address space lists-based
approach, an efficient way to get to the pages
of interest in the radix trees is required. This
is especially so when there are many pages in
the pagecache but only a few are dirty or under
writeback. Andrew Morton solved this prob-
lem by implementing tagged radix-tree lookup
support to enable lookup of dirty or writeback
pages in O(log64(n)) time [6].

This was achieved by adding tag bits for each
slot to each radix-tree node. If a node is
tagged, then the corresponding slots on all the
nodes above it in the tree are tagged. Thus,
to search for a particular tag, one would keep
going down sub-trees under slots which have
the tag bit set until the tagged leaf nodes are
accessed. A tagged gang lookup function is
used for in-order searches for dirty or write-
back pages within a specified range. These
lookups are used to replace the per-address-
space page lists altogether.
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To synchronize writes to disk, a tagged radix-
tree gang lookup of dirty pages in the byte-
range corresponding to the write request is per-
formed and the resulting pages are written out.
Next, pages under writeback in the byte-range
are obtained through a tagged radix-tree gang
lookup of writeback pages, and we wait for
writeback to complete on these pages (without
having to hold the inode semaphore across the
waits). Observe how this logic lends itself to be
broken up into a series of non-blocking retry it-
erations proceeding in-order through the range.

The same logic can also be used for a whole
file sync, by specifying a byte-range that spans
the entire file.

Background writers also use tagged radix-tree
gang lookups of dirty pages. Instead of always
scanning a file from its first dirty page, the in-
dex where the last batch of writeout terminated
is tracked so the next batch of writeouts can be
started after that point.

7 Streaming AIO writes

The tagged radix-tree walk writeback approach
greatly simplifies the design of AIO support for
synchronized writes, as mentioned in the previ-
ous section,

7.1 Basic retry pattern for synchronized AIO
writes

The retry-based design for buffered AIOO_
SYNCwrites works by converting each block-
ing wait for writeback completion of a page
into a retry exit. The conversion point queues
an asynchronous notification callback and re-
turns to the caller of the filesystem’s AIO
write operation the number of bytes for which
writeback has completed so far without block-
ing. Then, when writeback completes for that
page, the callback kicks off a retry continuation
in task context which invokes the same AIO

write operation again using the caller’s address
space, but this time with arguments modified to
reflect the remaining part of the write request.

As writeouts for the range would have already
been issued the first time before the loop to
wait for writeback completion, the implemen-
tation takes care not to re-dirty pages or re-
issue writeouts during subsequent retries of
AIO write. Instead, when the code detects that
it is being called in a retry context, it simply
falls through directly to the step involving wait-
on-writeback for the remaining range as speci-
fied by the modified arguments.

7.2 Filtered waitqueues to avoid retry storms
with hashed wait queues

Code that is in a retry-exit path (i.e., the return
path following a blocking point where a retry is
queued) should in general take care not to call
routines that could wakeup the newly-queued
retry.

One thing that we had to watch for was calls
to unlock_page() in the retry-exit path.
This could cause a redundant wakeup if an
async wait-on-page writeback was just queued
for that page. The redundant wakeup would
arise if the kernel used the same waitqueue
on unlock as well as writeback completion for
a page, with the expectation that the waiter
would check for the condition it was waiting
for and go back to sleep if it hadn’t occurred. In
the AIO case, however, a wakeup of the newly-
queued callback in the same code path could
potentially trigger a retry storm, as retries kept
triggering themselves over and over again for
the wrong condition.

The interplay of unlock_page() and
wait_on_page_writeback() with
hashed waitqueues can get quite tricky for
retries. For example, consider what happens
when the following sequence in retryable code
is executed at the same time for 2 pages,px
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and py, which happen to hash to the same
waitqueue (Table 1).

lock_page(p)
check condition and process
unlock_page(p)
if (wait_on_page_writeback_wq(p)

== -EIOCBQUEUED)
return bytes_done

The above code could keep cycling between
spurious retries onpx andpy until I/O is done,
wasting precious CPU time!

If we can ensure specificity of the wakeup with
hashed waitqueues then this problem can be
avoided. William Lee Irwin’s implementation
of filtered wakeup support in the recent Linux
2.6 kernels [7] achieves just that. The wakeup
routine specifies a key to match before invok-
ing the wakeup function for an entry in the
waitqueue, thereby limiting wakeups to those
entries which have a matching key. For page
waitqueues, the key is computed as a function
of the page and the condition (unlock or write-
back completion) for the wakeup.

7.3 Streaming AIO write microbenchmark
comparisons

The following graph compares aio-stress
throughputs for streaming random buffered
I/O O_SYNCwrites, with and without the
previously-described changes. The compari-
son was performed on the same setup used for
the streaming AIO read results discussed ear-
lier. The graph summarizes how the results var-
ied across individual request sizes of 4KB to
64KB, where I/O was targeted to a single file
of size 1GB and the depth of iocbs outstand-
ing at a time was 64KB. A third run was per-
formed to determine how the results compared
with equivalent runs using AIO-DIO.

With the changes applied, the results showed
an approximate 2x improvement across all
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Figure 2: Comparisons of streaming random
AIO write throughputs.

block sizes, bringing throughputs to levels that
match the corresponding results using AIO-
DIO.

8 AIO performance analysis for
database workloads

Large database systems leveraging AIO can
show marked performance improvements com-
pared to those systems that use synchronous
I/O alone. We use IBM® DB2® Universal
Database™ V8 running an online transaction
processing (OLTP) workload to illustrate the
performance improvement of AIO on raw de-
vices and on filesystems.

8.1 DB2 page cleaners

A DB2 page cleaner is a process responsible
for flushing dirty buffer pool pages to disk.
It simulates AIO by executing asynchronously
with respect to the agent processes. The num-
ber of page cleaners and their behavior can be
tuned according to the demands of the system.
The agents, freed from cleaning pages them-
selves, can dedicate their resources (e.g., pro-
cessor cycles) towards processing transactions,
thereby improving throughput.
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CPU1 CPU2
lock_page(px)
...
unlock_page(px)

lock_page(py)
wait_on_page_writeback_wq(px) ...

unlock_page(py) -> wakes up p1
triggering

<----------------------------------- a retry
lock_page(px) wait_on_page_writeback_wq(py)
...
unlock_page(py) ---- wakes up py --- causes retry ---->

Table 1: Retry storm livelock with redundant wakeups on hashed wait queues

8.2 AIO performance analysis for raw devices

Two experiments were conducted to measure
the performance benefits of AIO on raw de-
vices for an update-intensive OLTP database
workload. The workload used was derived
from a TPC[8] benchmark, but is in no way
comparable to any TPC results. For the first ex-
periment, the database was configured with one
page cleaner using the native Linux AIO inter-
face. For the second experiment, the database
was configured with 55 page cleaners all using
the synchronous I/O interface. These experi-
ments showed that a database, properly con-
figured in terms of the number of page clean-
ers with AIO, can out-perform a properly con-
figured database using synchronous I/O page
cleaning.

For both experiments, the system configuration
consisted of DB2 V8 running on a 2-way AMD
Opteron system with Linux 2.6.1 installed. The
disk subsystem consisted of two FAStT 700
storage servers, each with eight disk enclo-
sures. The disks were configured as RAID-0
arrays with a stripe size of 256KB.

Table 2 shows the relative database perfor-
mance with and without AIO. Higher numbers
are better. The results show that the database
performed 9% better when configured with one

page cleaner using AIO, than when it was
configured with 55 page cleaners using syn-
chronous I/O.

Configuration Relative
Throughput

1 page cleaner with AIO 133
55 page cleaners without AIO 122

Table 2: Database performance with and with-
out AIO.

Analyzing the I/O write patterns (see Table 3),
we see that one page cleaner using AIO was
sufficient to keep the buffer pools clean un-
der a very heavy load, but that 55 page clean-
ers using synchronous I/O were not, as in-
dicated by the 30% agent writes. This data
suggests that more page cleaners should have
been configured to improve the performance of
the case with synchronous I/O. However, ad-
ditional page cleaners consumed more mem-
ory, requiring a reduction in bufferpool size
and thereby decreasing throughput. For the
test configuration, 55 cleaners was the optimal
number before memory constraints arose.

8.3 AIO performance analysis for filesystems

This section examines the performance im-
provements of AIO when used in conjunction
with filesystems. This experiment was per-
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Configuration Page cleaner Agent
writes (%) writes (%)

1 page cleaner with
AIO

100 0

55 page cleaners with-
out AIO

70 30

Table 3: DB2 write patterns for raw device
configurations.

formed using the same OLTP benchmark as in
the previous section.

The test system consisted of two 1GHz AMD
Opteron processors, 4GB of RAM and two
QLogic 2310 FC controllers. Attached to the
server was a single FAStT900 storage server
and two disk enclosures with a total of 28 15K
RPM 18GB drives. The Linux kernel used
for the examination was 2.6.0+mm1, which in-
cludes the AIO filesystem support patches [9]
discussed in this paper.

The database tables were spread across multi-
ple ext2 filesystem partitions. Database logs
were stored on a single raw partition.

Three separate tests were performed, utilizing
different I/O methods for the database page
cleaners.

Test 1. Synchronous (Buffered) I/O.

Test 2. Asynchronous (Buffered) I/O.

Test 3. Direct I/O.

The results are shown in Table 4 as rela-
tive commercial processing scores using syn-
chronous I/O as the baseline (i.e., higher is bet-
ter).

Looking at the efficiency of the page clean-
ers (see Table 5), we see that the use of AIO
is more successful in keeping the buffer pools
clean. In the synchronous I/O and DIO cases,
the agents needed to spend more time cleaning

Configuration Commercial Processing
Scores

Synchronous I/O 100
AIO (Buffered) 113.7
DIO 111.9

Table 4: Database performance on filesystems
with and without AIO.

buffer pool pages, resulting in less time pro-
cessing transactions.

Configuration Page cleaner Agent
writes (%) writes (%)

Synchronous I/O 37 63
AIO (buffered) 100 0
DIO 49 51

Table 5: DB2 write patterns for filesystem con-
figurations.

8.4 Optimizing AIO for database workloads

Databases typically use AIO for streaming
batches of random, synchronized write re-
quests to disk (where the writes are directed
to preallocated disk blocks). This has been
found to improve the performance of OLTP
workloads, as it helps bring down the num-
ber of dedicated threads or processes needed
for flushing updated pages, and results in re-
duced memory footprint and better CPU uti-
lization and scaling.

The size of individual write requests is deter-
mined by the page size used by the database.
For example, a DB2 UDB installation might
use a database page size of 8KB.

As observed in previous sections, the use of
AIO helps reduce the number of database page
cleaner processes required to keep the buffer-
pool clean. To keep the disk queues maximally
utilized and limit contention, it may be prefer-
able to have requests to a given disk streamed
out from a single page cleaner. Typically a
set of of disks could be serviced by each page
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cleaner if and when multiple page cleaners
need to be used.

Databases might also use AIO for reads, for ex-
ample, for prefetching data to service queries.
This usually helps improve the performance of
decision support workloads. The I/O pattern
generated in these cases is that of streaming
batches of large AIO reads, with sizes typically
determined by the file allocation extent size
used by the database (e.g., a DB2 installation
might use a database extent size of 256KB).
For installations using buffered AIO reads, tun-
ing the readahead setting for the corresponding
devices to be more than the extent size would
help improve performance of streaming AIO
reads (recall the discussion in Section 3.5).

9 Addressing AIO workloads in-
volving both disk and communi-
cations I/O

Certain applications need to handle both disk-
based AIO and communications I/O. For com-
munications I/O, the epoll interface—which
provides support for efficient scalable event
polling in Linux 2.6—could be used as ap-
propriate, possibly in conjunction withO_
NONBLOCKsocket I/O. Disk-based AIO on
the other hand, uses the native AIO APIio_
getevents for completion notification. This
makes it difficult to combine both types of I/O
processing within a single event loop, even
when such a model is a natural way to program
the application, as in implementations of the
application on other operating systems.

How do we address this issue? One option is to
extend epoll to enable it to poll for notification
of AIO completion events, so that AIO comple-
tion status can then be reaped in a non-blocking
manner. This involves mixing both epoll and
AIO API programming models, which is not
ideal.

9.1 AIO poll interface

Another alternative is to add support for
polling an event on a given file descriptor
through the AIO interfaces. This function, re-
ferred to as AIO poll, can be issued through
io_submit() just like other AIO opera-
tions, and specifies the file descriptor and
the eventset to wait for. When the event
occurs, notification is reported throughio_
getevents() .

The retry-based design of AIO poll works by
converting the blocking wait for the event into
a retry exit.

The generic synchronous polling code fits
nicely into the AIO retry design, so most of the
original polling code can be used unchanged.
The private data area of the iocb can be used
to hold polling-specific data structures, and a
few special cases can be added to the generic
polling entry points. This allows the AIO poll
case to proceed without additional memory al-
locations.

9.2 AIO operations for communications I/O

A third option is to add support for AIO op-
erations for communications I/O. For exam-
ple, AIO support for pipes has been imple-
mented by converting the blocking wait for
I/O on pipes to aretry exit. The generic pipe
code was also structured such that conversion
to AIO retries was quite simple, the only signif-
icant change was using the currentio_wait
context instead of a locally defined waitqueue,
and returning early if no data was available.

However, AIO pipe testing did show signifi-
cantly more context switches then the 2.4 AIO
pipe implementation, and this was coupled
with much lower performance. The AIO core
functions were relying on workqueues to do
most of the retries, and this resulted in constant
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switching between the workqueue threads and
user processes.

The solution was to change the AIO core
to do retries inio_submit() and in io_
getevents() . This allowed the process to
do some of its own work while it is scheduled
in. Also, retries were switched to a delayed
workqueue, so that bursts of retries would trig-
ger fewer context switches.

While delayed wakeups helped with pipe
workloads, it also caused I/O stalls in filesys-
tem AIO workloads. This was because a de-
layed wakeup was being used even when a user
process was waiting inio_getevents() .
When user processes are actively waiting for
events, it proved best to trigger the worker
thread immediately.

General AIO support for network operations
has been considered but not implemented so far
because of lack of supporting study that pre-
dicts a significant benefit over what epoll and
non-blocking I/O can provide, except for the
scope for enabling potential zero-copy imple-
mentations. This is a potential area for future
research.

10 Conclusions

Our experience over the last year with AIO de-
velopment, stabilization and performance im-
provements brought us to design and imple-
mentation issues that went far beyond the ini-
tial concern of converting key I/O blocking
points to be asynchronous.

AIO uncovered scenarios and I/O patterns that
were unlikely or less significant with syn-
chronous I/O alone. For example, the issues we
discussed around streaming AIO performance
with readahead and concurrent synchronized
writes, as well as DIO vs buffered I/O com-
plexities in the presence of AIO. In retrospect,

this was the hardest part of supporting AIO—
modifiying code that was originally designed
only for synchronous I/O.

Interestingly, this also meant that AIO ap-
peared to magnify some problems early. For
example, issues with hashed waitqueues that
led to the filtered wakeup patches, and reada-
head window collapses with large random
reads which precipitated improvements to the
readahead code from Ramachandra Pai. Ul-
timately, many of the core improvements that
helped AIO have had positive benefits in al-
lowing improved concurrency for some of the
synchronous I/O paths.

In terms of benchmarking and optimizing
Linux AIO performance, there is room for
more exhaustive work. Requirements for AIO
fsync support are currently under considera-
tion. There is also a need for more widely used
AIO applications, especially those that take ad-
vantaged of AIO support for buffered I/O or
bring out additional requirements like network
I/O beyond epoll or AIO poll. Finally, investi-
gations into API changes to help enable more
efficient POSIX AIO implementations based
on kernel AIO support may be a worthwhile
endeavor.
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Abstract

This paper presents several techniques for re-
ducing the bootup time of the Linux kernel, in-
cluding Execute-In-Place (XIP), avoidance of
calibrate_delay() , and reduced prob-
ing by certain drivers and subsystems. Using
a variety of techniques, the Linux kernel can
be booted on embedded hardware in under 500
milliseconds. Current efforts and future direc-
tions of work to improve bootup time are de-
scribed.

1 Introduction

Users of consumer electronics products expect
their devices to be available for use very soon
after being turned on. Configurations of Linux
for desktop and server markets exhibit boot
times in the range of 20 seconds to a few min-
utes, which is unacceptable for many consumer
products.

No single item is responsible for overall poor
boot time performance. Therefore a number
of techniques must be employed to reduce the
boot up time of a Linux system. This paper
presents several techniques which have been
found to be useful for embedded configurations
of Linux.

2 Overview of Boot Process

The entire boot process of Linux can be
roughly divided into 3 main areas: firmware,
kernel, and user space. The following is a list
of events during a typical boot sequence:

1. power on

2. firmware (bootloader) starts

3. kernel decompression starts

4. kernel start

5. user space start

6. RC script start

7. application start

8. first available use

This paper focuses on techniques for reducing
the bootup time up until the start of user space.
That is, techniques are described which reduce
the firmware time, and the kernel start time.
This includes activities through the completion
of event 4 in the list above.

The actual kernel execution begins with
the routinestart_kernel() , in the file
init/main.c .

An overview of major steps in the initialization
sequence of the kernel is as follows:
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• start_kernel()

– init architecture

– init interrupts

– init memory

– start idle thread

– call rest_init()

* start ‘init’ kernel thread

The init kernel thread performs a few
other tasks, then callsdo_basic_setup() ,
which calls do_initcalls() , to run
through the array of initialization routines for
drivers statically linked in the kernel. Finally,
this thread switches to user space byexecve -
ing to the first user space program, usually
/sbin/init .

• init (kernel thread)

– call do_basic_setup()

* call do_initcalls()

· init buses and drivers

– prepare and mount root filesystem

– call run_init_process()

* call execve() to start user
space process

3 Typical Desktop Boot Time

The boot times for a typical desktop system
were measured and the results are presented
below, to give an indication of the major areas
in the kernel where time is spent. While the
numbers in these tests differ somewhat from
those for a typical embedded system, it is use-
ful to see these to get an idea of where some of
the trouble spots are for kernel booting.

3.1 System

An HP XW4100 Linux workstation system
was used for these tests, with the following
characteristics:

• Pentium 4 HT processor, running at 3GHz

• 512 MB RAM

• Western Digital 40G hard drive on hda

• Generic CDROM drive on hdc

3.2 Measurement method

The kernel used was 2.6.6, with the KFI patch
applied. KFI stands for “Kernel Function In-
strumentation”. This is an in-kernel system
to measure the duration of each function ex-
ecuted during a particular profiling run. It
uses the-finstrument-functions op-
tion of gcc to instrument kernel functions
with callouts on each function entry and exit.
This code was authored by developers at Mon-
taVista Software, and a patch for 2.6.6 is avail-
able, although the code is not ready (as of the
time of this writing) for general publication.
Information about KFI and the patch are avail-
able at:

http://tree.celinuxforum.org/pubwiki

/moin.cgi

/KernelFunctionInstrumentation

3.3 Key delays

The average time for kernel startup of the test
system was about 7 seconds. This was the
amount of time for just the kernel and NOT the
firmware or user space. It corresponds to the
period of time between events 4 and 5 in the
boot sequence listed in Section 2.
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Some key delays were found in the kernel
startup on the test system. Table 1 shows
some of the key routines where time was spent
during bootup. These are the low-level rou-
tines where significant time was spent inside
the functions themselves, rather than in sub-
routines called by the functions.

Kernel Function No. of Avg. call Total
calls time time

delay_tsc 5153 1 5537
default_idle 312 1 325
get_cmos_time 1 500 500
psmouse_sendbyte 44 2.4 109
pci_bios_find_device 25 1.7 44
atkbd_sendbyte 7 3.7 26
calibrate_delay 1 24 24

Note: Times are in milliseconds.

Table 1: Functions consuming lots of time dur-
ing a typical desktop Linux kernel startup.

Note that over 80% of the total time of the
bootup (almost 6 seconds out of 7) was spent
busywaiting indelay_tsc() or spinning in
the routinedefault_idle() . It appears
that great reductions in total bootup time could
be achieved if these delays could be reduced,
or if it were possible to run some initialization
tasks concurrently.

Another interesting point is that the routine
get_cmos_time() was extremely variable
in the length of time it took. Measurements
of its duration ranged from under 100 millisec-
onds to almost one second. This routine, and
methods to avoid this delay and variability, are
discussed in section 9.

3.4 High-level delay areas

Since delay_tsc() is used (via various
delay mechanisms) for busywaiting by a
number of different subsystems, it is helpful to
identify the higher-level routines which end up
invoking this function.

Table 2 shows some high-level routines called
during kernel initialization, and the amount of
time they took to complete on the test ma-
chine. Duration times marked with a tilde de-
note functions which were highly variable in
duration.

Kernel Function Duration time

ide_init 3327
time_init ~500
isapnp_init 383
i8042_init 139
prepare_namespace ~50
calibrate_delay 24

Note: Times are in milliseconds.

Table 2: High-level delays during a typical
startup.

For a few of these, it is interesting to examine
the call sequences underneath the high-level
routines. This shows the connection between
the high-level routines that are taking a long
time to complete and the functions where the
time is actually being spent.

Figures 1 and 2 show some call sequences for
high-level calls which take a long time to com-
plete.

In each call tree, the number in parentheses is
the number of times that the routine was called
by the parent in this chain. Indentation shows
the call nesting level.

For example, in Figure 1,do_probe() is
called a total of 31 times byprobe_hwif() ,
and it callside_delay_50ms() 78 times,
andtry_to_identify() 8 times.

The timing data for the test system showed
that IDE initialization was a significant con-
tributor to overall bootup time. The call se-
quence underneathide_init() shows that
a large number of calls are made to the routine
ide_delay_50ms() , which in turn calls
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ide_init->
probe_for_hwifs(1)->

ide_scan_pcibus(1)->
ide_scan_pci_dev(2)->

piix_init_one(2)->
init_setup_piix(2)->

ide_setup_pci_device(2)->
probe_hwif_init(2)->

probe_hwif(4)->
do_probe(31)->

ide_delay_50ms(78)->
__const_udelay(3900)->

__delay(3900)->
delay_tsc(3900)

try_to_identify(8)->
actual_try_to_identify(8)->

ide_delay_50ms(24)->
__const_udelay(1200)->

__delay(1200)->
delay_tsc(1200)

Figure 1: IDE init call tree

isapnp_init->
isapnp_isolate(1)->

isapnp_isolate_rdp_select(1)->
__const_udelay(25)->

__delay(25)->
delay_tsc(25)

isapnp_key(18)->
__const_udelay(18)->

__delay(18)->
delay_tsc(18)

Figure 2: ISAPnP init call tree

__const_udelay() very many times. The
busywaits inide_delay_50ms() alone ac-
counted for over 5 seconds, or about 70% of
the total boot up time.

Another significant area of delay was the ini-
tialization of the ISAPnP system. This took
about 380 milliseconds on the test machine.

Both the mouse and the keyboard drivers used
crude busywaits to wait for acknowledgements
from their respective hardware.

Finally, the routinecalibrate_delay()
took about 25 milliseconds to run, to compute
the value ofloops_per_jiffy and print
(the related)BogoMips for the machine.

The remaining sections of this paper discuss
various specific methods for reducing bootup
time for embedded and desktop systems. Some
of these methods are directly related to some of
the delay areas identified in this test configura-
tion.

4 Kernel Execute-In-Place

A typical sequence of events during bootup is
for the bootloader to load a compressed kernel
image from either disk or Flash, placing it into
RAM. The kernel is decompressed, either dur-
ing or just after the copy operation. Then the
kernel is executed by jumping to the function
start_kernel() .

Kernel Execute-In-Place (XIP) is a mechanism
where the kernel instructions are executed di-
rectly from ROM or Flash.

In a kernel XIP configuration, the step of copy-
ing the kernel code segment into RAM is omit-
ted, as well as any decompression step. In-
stead, the kernel image is stored uncompressed
in ROM or Flash. The kernel data segments
still need to be initialized in RAM, but by elim-
inating the text segment copy and decompres-
sion, the overall effect is a reduction in the time
required for the firmware phase of the bootup.

Table 3 shows the differences in time duration
for various parts of the boot stage for a sys-
tem booted with and without use of kernel XIP.
The times in the table are shown in millisec-
onds. The table shows that using XIP in this
configuration significantly reduced the time to
copy the kernel to RAM (because only the data
segments were copied), and completely elim-
inated the time to decompress the kernel (453
milliseconds). However, the kernel initializa-
tion time increased slightly in the XIP configu-
ration, for a net savings of 463 milliseconds.

In order to support an Execute-In-Place con-
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Boot Stage Non-XIP time XIP time

Copy kernel to RAM 85 12
Decompress kernel 453 0
Kernel initialization 819 882
Total kernel boot time 1357 894

Note: Times are in milliseconds. Results are for
PowerPC 405 LP at 266 MHz

Table 3: Comparison of Non-XIP vs. XIP
bootup times

figuration, the kernel must be compiled and
linked so that the code is ready to be exe-
cuted from a fixed memory location. There
are examples of XIP configurations for ARM,
MIPS and SH platforms in the CELinux
source tree, available at:http://tree.
celinuxforum.org/

4.1 XIP Design Tradeoffs

There are tradeoffs involved in the use of XIP.
First, it is common for access times to flash
memory to be greater than access times to
RAM. Thus, a kernel executing from Flash
usually runs a bit slower than a kernel execut-
ing from RAM. Table 4 shows some of the re-
sults from running thelmbench benchmark
on system, with the kernel executing in a stan-
dard non-XIP configuration versus an XIP con-
figuration.

Operation Non-XIP XIP

stat() syscall 22.4 25.6
fork a process 4718 7106
context switching for 16
processes and 64k data size

932 1109

pipe communication 248 548

Note: Times are in microseconds. Results are for
lmbench benchmark run on OMAP 1510 (ARM9 at
168 MHz) processor

Table 4: Comparison of Non-XIP and XIP per-
formance

Some of the operations in the benchmark took
significantly longer with the kernel run in the
XIP configuration. Most individual operations
took about 20% to 30% longer. This perfor-
mance penalty is suffered permanently while
the kernel is running, and thus is a serious
drawback to the use of XIP for reducing bootup
time.

A second tradeoff with kernel XIP is between
the sizes of various types of memory in the
system. In the XIP configuration the kernel
must be stored uncompressed, so the amount
of Flash required for the kernel increases, and
is usually about doubled, versus a compressed
kernel image used with a non-XIP configura-
tion. However, the amount of RAM required
for the kernel is decreased, since the kernel
code segment is never copied to RAM. There-
fore, kernel XIP is also of interest for reducing
the runtime RAM footprint for Linux in em-
bedded systems.

There is additional research under way to in-
vestigate ways of reducing the performance
impact of using XIP. One promising technique
appears to be the use of “partial-XIP,” where a
highly active subset of the kernel is loaded into
RAM, but the majority of the kernel is executed
in place from Flash.

5 Delay Calibration Avoidance

One time-consuming operation inside the ker-
nel is the process of calibrating the value used
for delay loops. One of the first routines in
the kernel,calibrate_delay() , executes
a series of delays in order to determine the cor-
rect value for a variable calledloops_per_
jiffy , which is then subsequently used to ex-
ecute short delays in the kernel.

The cost of performing this calibration is, in-
terestingly, independent of processor speed.
Rather, it is dependent on the number of iter-
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ations required to perform the calibration, and
the length of each iteration. Each iteration re-
quires 1 jiffy, which is the length of time de-
fined by the HZ variable.

In 2.4 versions of the Linux kernel, most plat-
forms defined HZ as 100, which makes the
length of a jiffy 10 milliseconds. A typical
number of iterations for the calibration opera-
tion is 20 to 25, making the total time required
for this operation about 250 milliseconds.

In 2.6 versions of the Linux kernel, a few plat-
forms (notably i386) have changed HZ to 1000,
making the length of a jiffy 1 millisecond. On
those platforms, the typical cost of this calibra-
tion operation has decreased to about 25 mil-
liseconds. Thus, the benefit of eliminating this
operation on most standard desktop systems
has been reduced. However, for many embed-
ded systems, HZ is still defined as 100, which
makes bypassing the calibration useful.

It is easy to eliminate the calibration operation.
You can directly edit the code ininit/main.

c:calibrate_delay() to hardcode a value
for loops_per_jiffy , and avoid the cali-
bration entirely. Alternatively, there is a patch
available athttp://tree.celinuxforum.

org/pubwiki/moin.cgi/PresetLPJ

This patch allows you to use a kernel config-
uration option to specify a value forloops_
per_jiffy at kernel compile time. Alterna-
tively, the patch also allows you to use a ker-
nel command line argument to specify a preset
value forloops_per_jiffy at kernel boot
time.

6 Avoiding Probing During Bootup

Another technique for reducing bootup time is
to avoid probing during bootup. As a general
technique, this can consist of identifying hard-
ware which is known not to be present on one’s

machine, and making sure the kernel is com-
piled without the drivers for that hardware.

In the specific case of IDE, the kernel sup-
ports options at the command line to allow the
user to avoid performing probing for specific
interfaces and devices. To do this, you can
use the IDE and harddrivenoprobe options
at the kernel command line. Please see the
file Documentation/ide.txt in the ker-
nel source tree for details on the syntax of using
these options.

On the test machine, IDEnoprobe options
were used to reduce the amount of probing dur-
ing startup. The test machine had only a hard
drive on hda (ide0 interface, first device) and
a CD-ROM drive on hdc (ide1 interface, first
device).

In one test,noprobe options were specified
to suppress probing of non-used interfaces and
devices. Specifically, the following arguments
were added to the kernel command line:

hdb=none hdd=none ide2=noprobe

The kernel was booted and the result was
that the functionide_delay_50ms() was
called only 68 times, anddelay_tsc() was
called only 3453 times. During a regular
kernel boot without these options specified,
the functionide_delay_50ms() is called
102 times, anddelay_tsc() is called 5153
times. Each call todelay_tsc() takes
about 1 millisecond, so the total time savings
from using these options was 1700 millisec-
onds.

These IDEnoprobe options have been avail-
able at least since the 2.4 kernel series, and are
an easy way to reduce bootup time, without
even having to recompile the kernel.
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7 Reducing Probing Delays

As was noted on the test machine, IDE ini-
tialization takes a significant percentage of
the total bootup time. Almost all of this
time is spent busywaiting in the routineide_
delay_50ms() .

It is trivial to modify the value of the time-
out used in this routine. As an experiment,
this code (located in the filedrivers/ide/
ide.c ) was modified to only delay 5 millisec-
onds instead of 50 milliseconds.

The results of this change were interesting.
When a kernel with this change was run on
the test machine, the total time for theide_
init() routine dropped from 3327 millisec-
onds to 339 milliseconds. The total time spent
in all invocations of ide_delay_50ms()
was reduced from 5471 milliseconds to 552
milliseconds. The overall bootup time was re-
duced accordingly, by about 5 seconds.

The ide devices were successfully detected,
and the devices operated without problem on
the test machine. However, this configuration
was not tested exhaustively.

Reducing the duration of the delay in theide_
delay_50ms() routine provides a substan-
tial reduction in the overall bootup time for the
kernel on a typical desktop system. It also has
potential use in embedded systems where PCI-
based IDE drives are used.

However, there are several issues with this
modification that need to be resolved. This
change may not support legacy hardware
which requires long delays for proper probing
and initializing. The kernel code needs to be
analyzed to determine if any callers of this rou-
tine really need the 50 milliseconds of delay
that they are requesting. Also, it should be de-
termined whether this call is used only in ini-
tialization context or if it is used during regular

runtime use of IDE devices also.

Also, it may be that 5 milliseconds does not
represent the lowest possible value for this de-
lay. It is possible that this value will need to
be tuned to match the hardware for a particular
machine. This type of tuning may be accept-
able in the embedded space, where the hard-
ware configuration of a product may be fixed.
But it may be too risky to use in desktop con-
figurations of Linux, where the hardware is not
known ahead of time.

More experimentation, testing and validation
are required before this technique should be
used.

IMPORTANT NOTE: You should probably not
experiment with this modification on produc-
tion hardware unless you have evaluated the
risks.

8 Using the “quiet” Option

One non-obvious method to reduce overhead
during booting is to use thequiet option on
the kernel command line. This option changes
the loglevel to 4, which suppresses the output
of regular (non-emergency) printk messages.
Even though the messages are not printed to
the system console, they are still placed in the
kernel printk buffer, and can be retrieved after
bootup using thedmesg command.

When embedded systems boot with a serial
console, the speed of printing the characters
to the console is constrained by the speed of
the serial output. Also, depending on the
driver, some VGA console operations (such as
scrolling the screen) may be performed in soft-
ware. For slow processors, this may take a sig-
nificant amount of time. In either case, the cost
of performing output of printk messages during
bootup may be high. But it is easily eliminated
using thequiet command line option.
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Table 5 shows the difference in bootup time of
using thequiet option and not, for two dif-
ferent systems (one with a serial console and
one with a VGA console).

9 RTC Read Synchronization

One routine that potentially takes a long time
during kernel startup isget_cmos_time() .
This routine is used to read the value of the ex-
ternal real-time clock (RTC) when the kernel
boots. Currently, this routine delays until the
edge of the next second rollover, in order to en-
sure that the time value in the kernel is accurate
with respect to the RTC.

However, this operation can take up to one full
second to complete, and thus introduces up to
1 second of variability in the total bootup time.
For systems where the target bootup time is un-
der 1 second, this variability is unacceptable.

The synchronization in this routine is easy
to remove. It can be eliminated by re-
moving the first two loops in the function
get_cmos_time() , which is located in
include/asm-i386/mach-default/

mach_time.h for the i386 architecture. Sim-
ilar routines are present in the kernel source
tree for other architectures.

When the synchronization is removed, the rou-
tine completes very quickly.

One tradeoff in making this modification is that
the time stored by the Linux kernel is no longer
completely synchronized (to the boundary of a
second) with the time in the machine’s realtime
clock hardware. Some systems save the system
time back out to the hardware clock on system
shutdown. After numerous bootups and shut-
downs, this lack of synchronization will cause
the realtime clock value to drift from the cor-
rect time value.

Since the amount of un-synchronization is up
to a second per boot cycle, this drift can be
significant. However, for some embedded ap-
plications, this drift is unimportant. Also, in
some situations the system time may be syn-
chronized with an external source anyway, so
the drift, if any, is corrected under normal cir-
cumstances soon after booting.

10 User space Work

There are a number of techniques currently
available or under development for user space
bootup time reductions. These techniques are
(mostly) outside the scope of kernel develop-
ment, but may provide additional benefits for
reducing overall bootup time for Linux sys-
tems.

Some of these techniques are mentioned briefly
in this section.

10.1 Application XIP

One technique for improving application
startup speed is application XIP, which is sim-
ilar to the kernel XIP discussed in this paper.
To support application XIP the kernel must be
compiled with a file system where files can be
stored linearly (where the blocks for a file are
stored contiguously) and uncompressed. One
file system which supports this is CRAMFS,
with the LINEAR option turned on. This is a
read-only file system.

With application XIP, when a program is ex-
ecuted, the kernel program loader maps the
text segments for applications directly from the
flash memory of the file system. This saves the
time required to load these segments into sys-
tem RAM.
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Platform Speed console w/o quiet with quiet difference
type option option

SH-4 SH7751R 240 MHz VGA 637 461 176
OMAP 1510 (ARM 9) 168 MHz serial 551 280 271

Note: Times are in milliseconds

Table 5: Bootup time with and without thequiet option

10.2 RC Script improvements

Also, there are a number of projects which
strive to decrease total bootup time of a system
by parallelizing the execution of the system
run-command scripts (“RC scripts”). There is
a list of resources for some of these projects at
the following web site:

http://tree.celinuxforum.org/
pubwiki/moin.cgi/

BootupTimeWorkingGroup

Also, there has been some research conducted
in reducing the overhead of running RC scripts.
This consists of modifying the multi-function
programbusybox to reduce the number and
cost of forks during RC script processing, and
to optimize the usage of functions builtin to the
busybox program. Initial testing has shown a
reduction from about 8 seconds to 5 seconds
for a particular set of Debian RC scripts on an
OMAP 1510 (ARM 9) processor, running at
168 MHz.

11 Results

By use of the some of the techniques men-
tioned in this paper, as well as additional tech-
niques, Sony was able to boot a 2.4.20-based
Linux system, from power on to user space dis-
play of a greeting image and sound playback,
in 1.2 seconds. The time from power on to the
end of kernel initialization (first user space in-
struction) in this configuration was about 110

milliseconds. The processor was a TI OMAP
1510 processor, with an ARM9-based core,
running at 168 MHz.

Some of the techniques used for reducing the
bootup time of embedded systems can also be
used for desktop or server systems. Often, it
is possible, with rather simple and small mod-
ifications, to decrease the bootup time of the
Linux kernel to only a few seconds. In the
desktop configuration of Linux presented here,
techniques from this paper were used to re-
duced the total bootup time from around 7 sec-
onds to around 1 second. This was with no
loss of functionality that the author could de-
tect (with limited testing).

12 Further Research

As stated in the beginning of the paper, numer-
ous techniques can be employed to reduce the
overall bootup time of Linux systems. Further
work continues or is needed in a number of ar-
eas.

12.1 Concurrent Driver Init

One area of additional research that seems
promising is to structure driver initializations
in the kernel so that they can proceed in par-
allel. For some items, like IDE initialization,
there are large delays as buses and devices are
probed and initialized. The time spent in such
busywaits could potentially be used to perform
other startup tasks, concurrently with the ini-
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tializations waiting for hardware events to oc-
cur or time out.

The big problem to be addressed with con-
current initialization is to identify what ker-
nel startup activities can be allowed to occur
in parallel. The kernel init sequence is already
a carefully ordered sequence of events to make
sure that critical startup dependencies are ob-
served. Any system of concurrent driver ini-
tialization will have to provide a mechanism
to guarantee sequencing of initialization tasks
which have order dependencies.

12.2 Partial XIP

Another possible area of further investiga-
tion, which has already been mentioned, is
“partial XIP,” whereby the kernel is executed
mostlyin-place. Prototype code already exists
which demonstrates the mechanisms necessary
to move a subset of an XIP-configured kernel
into RAM, for faster code execution. The key
to making partial kernel XIP useful will be to
ensure correct identification (either statically or
dynamically) of the sections of kernel code that
need to be moved to RAM. Also, experimenta-
tion and testing need to be performed to deter-
mine the appropriate tradeoff between the size
of the RAM-based portion of the kernel, and
the effect on bootup time and system runtime
performance.

12.3 Pre-linking and Lazy Linking

Finally, research is needed into reducing the
time required to fixup links between programs
and their shared libraries.

Two systems that have been proposed and ex-
perimented with are pre-linking and lazy link-
ing. Pre-linking involves fixing the location in
virtual memory of the shared libraries for a sys-
tem, and performing fixups on the programs of
the system ahead of time. Lazy linking consists

of only performing fixups on demand as library
routines are called by a running program.

Additional research is needed with both of
these techniques to determine if they can pro-
vide benefit for current Linux systems.
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Abstract

NUMA is becoming more widespread in the
marketplace, used on many systems, small or
large, particularly with the advent of AMD
Opteron systems. This paper will cover a sum-
mary of the current state of NUMA, and future
developments, encompassing the VM subsys-
tem, scheduler, topology (CPU, memory, I/O
layouts including complex non-uniform lay-
outs), userspace interface APIs, and network
and disk I/O locality. It will take a broad-based
approach, focusing on the challenges of creat-
ing subsystems that work for all machines (in-
cluding AMD64, PPC64, IA-32, IA-64, etc.),
rather than just one architecture.

1 What is a NUMA machine?

NUMA stands for non-uniform memory archi-
tecture. Typically this means that not all mem-
ory is the same “distance” from each CPU in
the system, but also applies to other features
such as I/O buses. The word “distance” in this
context is generally used to refer to both la-
tency and bandwidth. Typically, NUMA ma-
chines can access any resource in the system,
just at different speeds.

NUMA systems are sometimes measured with
a simple “NUMA factor” ratio of N:1—
meaning that the latency for a cache miss mem-
ory read from remote memory isN times the la-
tency for that from local memory (for NUMA
machines,N > 1). Whilst such a simple de-
scriptor is attractive, it can also be highly mis-
leading, as it describes latency only, not band-
width, on an uncontended bus (which is not
particularly relevant or interesting), and takes
no account of inter-node caches.

The termnodeis normally used to describe a
grouping of resources—e.g., CPUs, memory,
and I/O. On some systems, a node may con-
tain only some types of resources (e.g., only
memory, or only CPUs, or only I/O); on oth-
ers it may contain all of them. The intercon-
nect between nodes may take many different
forms, but can be expected to be higher latency
than the connection within a node, and typi-
cally lower bandwidth.

Programming for NUMA machines generally
implies focusing onlocality—the use of re-
sources close to the device in question, and
trying to reduce traffic between nodes; this
type of programming generally results in bet-
ter application throughput. On some machines
with high-speed cross-node interconnects, bet-



92 • Linux Symposium

ter performance may be derived under certain
workloads by “striping” accesses across mul-
tiple nodes, rather than just using local re-
sources, in order to increase bandwidth. Whilst
it is easy to demonstrate a benchmark that
shows improvement via this method, it is dif-
ficult to be sure that the concept is generally
benefical (i.e., with the machine under full
load).

2 Why use a NUMA architecture to
build a machine?

The intuitive approach to building a large ma-
chine, with many processors and banks of
memory, would be simply to scale up the typ-
ical 2–4 processor machine with all resources
attached to a shared system bus. However, re-
strictions of electronics and physics dictate that
accesses slow as the length of the bus grows,
and the bus is shared amongst more devices.

Rather than accept this global slowdown for a
larger machine, designers have chosen to in-
stead give fast access to a limited set of local
resources, and reserve the slower access times
for remote resources.

Historically, NUMA architectures have only
been used for larger machines (more than 4
CPUs), but the advantages of NUMA have
been brought into the commodity marketplace
with the advent of AMD’s x86-64, which has
one CPU per node, and local memory for each
processor. Linux supports NUMA machines
of every size from 2 CPUs upwards (e.g., SGI
have machines with 512 processors).

It might help to envision the machine as a
group of standard SMP machines, connected
by a very fast interconnect somewhat like a net-
work connection, except that the transfers over
that bus are transparent to the operating sys-
tem. Indeed, some earlier systems were built

exactly like that; the older Sequent NUMA-
Q hardware uses a standard 450NX 4 proces-
sor chipset, with an SCI interconnect plugged
into the system bus of each node to unify them,
and pass traffic between them. The complex
part of the implementation is to ensure cache-
coherency across the interconnect, and such
machines are often referred to asCC-NUMA
(cache coherent NUMA). As accesses over the
interconnect are transparent, it is possible to
program such machines as if they were stan-
dard SMP machines (though the performance
will be poor). Indeed, this is exactly how the
NUMA-Q machines were first bootstrapped.

Often, we are asked why people do not use
clusters of smaller machines, instead of a large
NUMA machine, as clusters are cheaper, sim-
pler, and have a better price:performance ra-
tio. Unfortunately, it makes the programming
of applications much harder; all of the inter-
communication and load balancing now has to
be more explicit. Some large applications (e.g.,
database servers) do not split up across mul-
tiple cluster nodes easily—in those situations,
people often use NUMA machines. In addi-
tion, the interconnect for NUMA boxes is nor-
mally very low latency, and very high band-
width, yielding excellent performance. The
management of a single NUMA machine is
also simpler than that of a whole cluster with
multiple copies of the OS.

We could either have the operating system
make decisions about how to deal with the ar-
chitecture of the machine on behalf of the user
processes, or give the userspace application an
API to specify how such decisions are to be
made. It might seem, at first, that the userspace
application is in a better position to make such
decisions, but this has two major disadvan-
tages:

1. Every application must be changed to sup-
port NUMA machines, and may need to



Linux Symposium 2004 • 93

be revised when a new hardware platform
is released.

2. Applications are not in a good position
to make global holistic decisions about
machine resources, coordinate themselves
with other applications, and balance deci-
sions between them.

Thus decisions on process, memory and I/O
placement are normally best left to the oper-
ating system, perhaps with some hints from
userspace about which applications group to-
gether, or will use particular resources heavily.
Details of hardware layout are put in one place,
in the operating system, and tuning and modi-
fication of the necessary algorithms are done
once in that central location, instead of in ev-
ery application. In some circumstances, the
application or system administrator will want
to override these decisions with explicit APIs,
but this should be the exception, rather than the
norm.

3 Linux NUMA Memory Support

In order to manage memory, Linux requires
a page descriptor structure (struct page )
for each physical page of memory present in
the system. This consumes approximately 1%
of the memory managed (assuming 4K page
size), and the structures are grouped into an ar-
ray calledmem_map. For NUMA machines,
there is a separate array for each node, called
lmem_map. The mem_mapand lmem_map
arrays are simple contiguous data structures ac-
cessed in a linear fashion by their offset from
the beginning of the node. This means that the
memory controlled by them is assumed to be
physically contiguous.

NUMA memory support is enabled by
CONFIG_DISCONTIGMEMand CONFIG_
NUMA. A node descriptor called astruct

pgdata_t is created for each node. Cur-
rently we do not support discontiguous mem-
ory within a node (though large gaps in the
physical address space are acceptable between
nodes). Thus we must still create page descrip-
tor structures for “holes” in memory within a
node (and then mark them invalid), which will
waste memory (potentially a problem for large
holes).

Dave McCracken has picked up Daniel
Phillips’ earlier work on a better data struc-
ture for holding the page descriptors, called
CONFIG_NONLINEAR. This will allow the
mapping of discontigous memory ranges in-
side each node, and greatly simplify the ex-
isting code for discontiguous memory on non-
NUMA machines.

CONFIG_NONLINEARsolves the problem by
creating an artificial layer of linear addresses.
It does this by dividing the physical address
space into fixed size sections (akin to very
large pages), then allocating an array to allow
translations from linear physical address to true
physical address. This added level of indirec-
tion allows memory with widely differing true
physical addresses to appear adjacent to the
page allocator and to be in the same zone, with
a single struct page array to describe them. It
also provides support for memory hotplug by
allowing new physical memory to be added to
an existing zone and struct page array.

Linux normally allocates memory for a process
on the local node, i.e., the node that the pro-
cess is currently running on.alloc_pages
will call alloc_pages_node for the cur-
rent processor’s node, which will pass the rele-
vant zonelist (pgdat->node_zonelists )
to the core allocator (__alloc_pages ). The
zonelists are built bybuild_zonelists ,
and are set up to allocate memory in a round-
robin fashion, starting from the local node (this
creates a roughly even distribution of memory
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pressure).

In the interest of reducing cross-node traffic,
and reducing memory access latency for fre-
quently accessed data and text, it is desirable
to replicate any such memory that is read-only
to each node, and use the local copy on any ac-
cesses, rather than a remote copy. The obvious
candidates for such replication are the kernel
text itself, and the text of shared libraries such
as libc. Of course, this faster access comes
at the price of increased memory usage, but
this is rarely a problem on large NUMA ma-
chines. Whilst it might be technically possible
to replicate read/write mappings, this is com-
plex, of dubious utility, and is unlikely to be
implemented.

Kernel text is assumed by the kernel itself to
appear at a fixed virtual address, and to change
this would be problematic. Hence the easiest
way to replicate it is to change the virtual to
physical mappings for each node to point at a
different address. On IA-64, this is easy, since
the CPU provides hardware assistance in the
form of a pinned TLB entry.

On other architectures this proves more diffi-
cult, and would depend on the structure of the
pagetables. On IA-32 with PAE enabled, as
long as the user-kernel split is aligned on a
PMD boundary, we can have a separate ker-
nel PMD for each node, and point the vmalloc
area (which uses small page mappings) back to
a globally shared set of PTE pages. The PMD
entries for theZONE_NORMALareas normally
never change, so this is not an issue, though
there is an issue withioremap_nocache
that can change them (GART trips over this)
and speculative execution means that we will
have to deal with that (this can be a slow-path
that updates all copies of the PMDs though).

Dave Hansen has created a patch to replicate
read only pagecache data, by adding a per-node
data structure to each node of the pagecache

radix tree. As soon as any mapping is opened
for write, the replication is collapsed, making
it safe. The patch gives a 5%–40% increase in
performance, depending on the workload.

In the 2.6 Linux kernel, we have a per-node
LRU for page management and a per-node
LRU lock, in place of the global structures
and locks of 2.4. Not only does this reduce
contention through finer grained locking, it
also means we do not have to search other
nodes’ page lists to free up pages on one node
which is under memory pressure. Moreover,
we get much better locality, as only the lo-
cal kswapd process is accessing that node’s
pages. Before splitting the LRU into per-node
lists, we were spending 50% of the system time
during a kernel compile just spinning wait-
ing for pagemap_lru_lock (which was the
biggest global VM lock at the time). Con-
tention for thepagemap_lru_lock is now
so small it is not measurable.

4 Sched Domains—a Topology-
aware Scheduler

The previous Linux scheduler, the O(1) sched-
uler, provided some needed improvements to
the 2.4 scheduler, but shows its age as more
complex system topologies become more and
more common. With technologies such as
NUMA, Symmetric Multi-Threading (SMT),
and variations and combinations of these, the
need for a more flexible mechanism to model
system topology is evident.

4.1 Overview

In answer to this concern, the mainline 2.6
tree (linux-2.6.7-rc1 at the time of this writing)
contains an updated scheduler with support for
generic CPU topologies with a data structure,
struct sched_domain , that models the
architecture and defines scheduling policies.
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Simply speaking, sched domains group CPUs
together in a hierarchy that mimics that of the
physical hardware. Since CPUs at the bot-
tom of the hierarchy are most closely related
(in terms of memory access), the new sched-
uler performs load balancing most often at the
lower domains, with decreasing frequency at
each higher level.

Consider the case of a machine with two SMT
CPUs. Each CPU contains a pair of virtual
CPU siblings which share a cache and the core
processor. The machine itself has two physi-
cal CPUs which share main memory. In such
a situation, treating each of the four effective
CPUs the same would not result in the best
possible performance. With only two tasks,
for example, the scheduler should place one
on CPU0 and one on CPU2, and not on the
two virtual CPUs of the same physical CPU.
When running several tasks it seems natural to
try to place newly ready tasks on the CPU they
last ran on (hoping to take advantage of cache
warmth). However, virtual CPU siblings share
a cache; a task that was running on CPU0,
then blocked, and became ready when CPU0
was running another task and CPU1 was idle,
would ideally be placed on CPU1. Sched do-
mains provide the structures needed to realize
these sorts of policies. With sched domains,
each physical CPU represents a domain con-
taining the pair of virtual siblings, each repre-
sented in asched_group structure. These
two domains both point to a parent domain
which contains all four effective processors in
two sched_group structures, each contain-
ing a pair of virtual siblings. Figure 1 illus-
trates this hierarchy.

Next consider a two-node NUMA machine
with two processors per node. In this example
there are no virtual sibling CPUs, and there-
fore no shared caches. When a task becomes
ready and the processor it last ran on is busy,
the scheduler needs to consider waiting un-

Figure 1: SMT Domains

til that CPU is available to take advantage of
cache warmth. If the only available CPU is
on another node, the scheduler must carefully
weigh the costs of migrating that task to an-
other node, where access to its memory will
be slower. The lowest level sched domains in
a machine like this will contain the two pro-
cessors of each node. These two CPU level
domains each point to a parent domain which
contains the two nodes. Figure 2 illustrates this
hierarchy.

Figure 2: NUMA Domains

The next logical step is to consider an SMT
NUMA machine. By combining the previous
two examples, the resulting sched domain hier-
archy has three levels, sibling domains, physi-
cal CPU domains, and the node domain. Fig-
ure 3 illustrates this hierarchy.

The unique AMD Opteron architecture war-
rants mentioning here as it creates a NUMA
system on a single physical board. In this case,
however, each NUMA node contains only one
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Figure 3: SMT NUMA Domains

physical CPU. Without careful consideration
of this property, a typical NUMA sched do-
mains hierarchy would perform badly, trying
to load balance single CPU nodes often (an ob-
vious waste of cycles) and between node do-
mains only rarely (also bad since these actually
represent the physical CPUs).

4.2 Sched Domains Implementation

4.2.1 Structure

The sched_domain structure stores pol-
icy parameters and flags and, along with
the sched_group structure, is the primary
building block in the domain hierarchy. Fig-
ure 4 describes these structures. Thesched_
domain structure is constructed into an up-
wardly traversable tree via the parent pointer,
the top level domain setting parent to NULL.
The groups list is a circular list of ofsched_
group structures which essentially define the
CPUs in each child domain and the relative
power of that group of CPUs (two physical
CPUs are more powerful than one SMT CPU).
The span member is simply a bit vector with a
1 for every CPU encompassed by that domain
and is always the union of the bit vector stored

in each element of the groups list. The remain-
ing fields define the scheduling policy to be fol-
lowed while dealing with that domain, see Sec-
tion 4.2.2.

While the hierarchy may seem simple, the de-
tails of its construction and resulting tree struc-
tures are not. For performance reasons, the
domain hierarchy is built on a per-CPU basis,
meaning each CPU has a unique instance of
each domain in the path from the base domain
to the highest level domain. These duplicate
structures do share thesched_group struc-
tures however. The resulting tree is difficult to
diagram, but resembles Figure 5 for the ma-
chine with two SMT CPUs discussed earlier.

In accordance with common practice, each
architecture may specify the construction of
the sched domains hierarchy and the pa-
rameters and flags defining the various poli-
cies. At the time of this writing, only i386
and ppc64 defined custom construction rou-
tines. Both architectures provide for SMT
processors and NUMA configurations. With-
out an architecture-specific routine, the kernel
uses the default implementations insched.c ,
which do take NUMA into account.
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struct sched_domain {
/* These fields must be setup */
struct sched_domain *parent; /* top domain must be null terminated */
struct sched_group *groups; /* the balancing groups of the domain */
cpumask_t span; /* span of all CPUs in this domain */
unsigned long min_interval; /* Minimum balance interval ms */
unsigned long max_interval; /* Maximum balance interval ms */
unsigned int busy_factor; /* less balancing by factor if busy */
unsigned int imbalance_pct; /* No balance until over watermark */
unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
int flags; /* See SD_* */

/* Runtime fields. */
unsigned long last_balance; /* init to jiffies. units in jiffies */
unsigned int balance_interval; /* initialise to 1. units in ms. */
unsigned int nr_balance_failed; /* initialise to 0 */

};

struct sched_group {
struct sched_group *next; /* Must be a circular list */
cpumask_t cpumask;
unsigned long cpu_power;

};

Figure 4: Sched Domains Structures

4.2.2 Policy

The new scheduler attempts to keep the sys-
tem load as balanced as possible by running re-
balance code when tasks change state or make
specific system calls, we will call thisevent
balancing, and at specified intervals measured
in jiffies, calledactive balancing. Tasks must
do something for event balancing to take place,
while active balancing occurs independent of
any task.

Event balance policy is defined in each
sched_domain structure by setting a com-
bination of the #defines of figure 6 in the flags
member.

To define the policy outlined for the dual SMT
processor machine in Section 4.1, the low-
est level domains would setSD_BALANCE_
NEWIDLEand SD_WAKE_IDLE(as there is
no cache penalty for running on a differ-
ent sibling within the same physical CPU),
SD_SHARE_CPUPOWERto indicate to the
scheduler that this is an SMT processor (the

scheduler will give full physical CPU ac-
cess to a high priority task by idling the
virtual sibling CPU), and a few common
flags SD_BALANCE_EXEC, SD_BALANCE_
CLONE, and SD_WAKE_AFFINE. The next
level domain represents the physical CPUs
and will not setSD_WAKE_IDLEsince cache
warmth is a concern when balancing across
physical CPUs, norSD_SHARE_CPUPOWER.
This domain adds theSD_WAKE_BALANCE
flag to compensate for the removal ofSD_
WAKE_IDLE. As discussed earlier, an SMT
NUMA system will have these two domains
and another node-level domain. This do-
main removes theSD_BALANCE_NEWIDLE
and SD_WAKE_AFFINEflags, resulting in
far fewer balancing across nodes than within
nodes. When one of these events occurs, the
scheduler search up the domain hierarchy and
performs the load balancing at the highest level
domain with the corresponding flag set.

Active balancing is fairly straightforward and
aids in preventing CPU-hungry tasks from hog-
ging a processor, since these tasks may only
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#define SD_BALANCE_NEWIDLE 1 /* Balance when about to become idle */
#define SD_BALANCE_EXEC 2 /* Balance on exec */
#define SD_BALANCE_CLONE 4 /* Balance on clone */
#define SD_WAKE_IDLE 8 /* Wake to idle CPU on task wakeup */
#define SD_WAKE_AFFINE 16 /* Wake task to waking CPU */
#define SD_WAKE_BALANCE 32 /* Perform balancing at task wakeup */
#define SD_SHARE_CPUPOWER 64 /* Domain members share cpu power */

Figure 6: Sched Domains Policies

Figure 5: Per CPU Domains

rarely trigger event balancing. At each re-
balance tick, the scheduler starts at the low-
est level domain and works its way up, check-
ing the balance_interval and last_
balance fields to determine if that domain
should be balanced. If the domain is already
busy, thebalance_interval is adjusted
using thebusy_factor field. Other fields
define how out of balance a node must be be-
fore rebalancing can occur, as well as some
sane limits on cache hot time and min and max
balancing intervals. As with the flags for event
balancing, the active balancing parameters are
defined to perform less balancing at higher do-
mains in the hierarchy.

4.3 Conclusions and Future Work

Figure 7: Kernbench Results

To compare the O(1) scheduler of mainline
with the sched domains implementation in the
mm tree, we ran kernbench (with the-j option
to make set to 8, 16, and 32) on a 16 CPU SMT
machine (32 virtual CPUs) on linux-2.6.6 and
linux-2.6.6-mm3 (the latest tree with sched do-
mains at the time of the benchmark) with and
without CONFIG_SCHED_SMTenabled. The
results are displayed in Figure 7. The O(1)
scheduler evenly distributed compile tasks ac-
cross virtual CPUs, forcing tasks to share cache
and computational units between virtual sib-
ling CPUs. The sched domains implementa-
tion with CONFIG_SCHED_SMTenabled bal-
anced the load accross physical CPUs, making
far better use of CPU resources when running
fewer tasks than CPUs (as in the j8 case) since
each compile task would have exclusive access
to the physical CPU. Surprisingly, sched do-
mains (which would seem to have more over-
head than the mainline scheduler) even showed
improvement for the j32 case, where it doesn’t
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benefit from balancing across physical CPUs
before virtual CPUs as there are more tasks
than virtual CPUs. Considering the sched do-
mains implementation has not been heavily
tested or tweaked for performance, some fine
tuning is sure to further improve performance.

The sched domains structures replace the ex-
panding set of#ifdefs of the O(1) sched-
uler, which should improve readability and
maintainability. Unfortunately, the per CPU
nature of the domain construction results in a
non-intuitive structure that is difficult to work
with. For example, it is natural to discuss the
policy defined at “the” top level domain; un-
fortunately there areNR_CPUStop level do-
mains and, since they are self-adjusting, each
one could conceivably have a different set of
flags and parameters. Depending on which
CPU the scheduler was running on, it could be-
have radically differently. As an extension of
this research, an effort to analyze the impact of
a unified sched domains hierarchy is needed,
one which only creates one instance of each
domain.

Sched domains provides a needed structural
change to the way the Linux scheduler views
modern architectures, and provides the pa-
rameters needed to create complex scheduling
policies that cater to the strengths and weak-
nesses of these systems. Currently only i386
and ppc64 machines benefit from arch specific
construction routines; others must now step
forward and fill in the construction and param-
eter setting routines for their architecture of
choice. There is still plenty of fine tuning and
performance tweaking to be done.

5 NUMA API

5.1 Introduction

One of the biggest impediments to the ac-
ceptance of a NUMA API for Linux was a
lack of understanding of what its potential uses
and users would be. There are two schools
of thought when it comes to writing NUMA
code. One says that the OS should take care
of all the NUMA details, hide the NUMA-
ness of the underlying hardware in the ker-
nel and allow userspace applications to pre-
tend that it’s a regular SMP machine. Linux
does this by having a process scheduler and
a VMM that make intelligent decisions based
on the hardware topology presented by arch-
specific code. The other way to handle NUMA
programming is to provide as much detail as
possible about the system to userspace and
allow applications to exploit the hardware to
the fullest by giving scheduling hints, mem-
ory placement directives, etc., and the NUMA
API for Linux handles this. Many applications,
particularly larger applications with many con-
current threads of execution, cannot fully uti-
lize a NUMA machine with the default sched-
uler and VM behavior. Take, for example, a
database application that uses a large region of
shared memory and many threads. This appli-
cation may have a startup thread that initializes
the environment, sets up the shared memory
region, and forks off the worker threads. The
default behavior of Linux’s VM for NUMA is
to bring pages into memory on the node that
faulted them in. This behavior for our hy-
pothetical app would mean that many pages
would get faulted in by the startup thread on
the node it is executing on, not necessarily on
the node containing the processes that will ac-
tually use these pages. Also, the forked worker
threads would get spread around by the sched-
uler to be balanced across all the nodes and
their CPUs, but with no guarantees as to which
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threads would be associated with which nodes.
The NUMA API and scheduler affinity syscalls
allow this application to specify that its threads
be pinned to particular CPUs and that its mem-
ory be placed on particular nodes. The appli-
cation knows which threads will be working
with which regions of memory, and is better
equipped than the kernel to make those deci-
sions.

The Linux NUMA API allows applications
to give regions of their own virtual memory
space specific allocation behaviors, called poli-
cies. Currently there are four supported poli-
cies: PREFERRED, BIND, INTERLEAVE,
and DEFAULT. The DEFAULT policy is the
simplest, and tells the VMM to do what it
would normally do (ie: pre-NUMA API) for
pages in the policied region, and fault them
in from the local node. This policy applies
to all regions, but is overridden if an appli-
cation requests a different policy. The PRE-
FERRED policy allows an application to spec-
ify one node that all pages in the policied re-
gion should come from. However, if the spec-
ified node has no available pages, the PRE-
FERRED policy allows allocation to fall back
to any other node in the system. The BIND
policy allows applications to pass in a node-
mask, a bitmap of nodes, that the VM is re-
quired to use when faulting in pages from a re-
gion. The fourth policy type, INTERLEAVE,
again requires applications to pass in a node-
mask, but with the INTERLEAVE policy, the
nodemask is used to ensure pages are faulted
in in a round-robin fashion from the nodes
in the nodemask. As with the PREFERRED
policy, the INTERLEAVE policy allows page
allocation to fall back to other nodes if nec-
essary. In addition to allowing a process to
policy a specific region of its VM space, the
NUMA API also allows a process to policy
its entire VM space with a process-wide pol-
icy, which is set with a different syscall:set_
mempolicy() . Note that process-wide poli-

cies are not persistent over swapping, however
per-VMA policies are. Please also note that
none of the policies will migrate existing (al-
ready allocated) pages to match the binding.

The actual implementation of the in-kernel
policies uses astruct mempolicy that is
hung off the struct vm_area_struct .
This choice involves some tradeoffs. The first
is that, previous to the NUMA API, the per-
VMA structure was exactly 32 bytes on 32-
bit architectures, meaning that multiplevm_
area_struct s would fit conveniently in a
single cacheline. The structure is now a lit-
tle larger, but this allowed us to achieve a per-
VMA granularity to policied regions. This is
important in that it is flexible enough to bind
a single page, a whole library, or a whole pro-
cess’ memory. This choice did lead to a sec-
ond obstacle, however, which was for shared
memory regions. For shared memory regions,
we really want the policy to be shared amongst
all processes sharing the memory, but VMAs
are not shared across separate tasks. The solu-
tion that was implemented to work around this
was to create a red-black tree of “shared pol-
icy nodes” for shared memory regions. Due
to this, calls were added to thevm_ops struc-
ture which allow the kernel to check if a shared
region has any policies and to easily retrieve
these shared policies.

5.2 Syscall Entry Points

1. sys_mbind(unsigned long start, unsigned
long len, unsigned long mode, unsigned
long *nmask, unsigned long maxnode,
unsigned flags);

Bind the region of memory[start,
start+len) according tomode and
flags on the nodes enumerated in
nmask and having a maximum possible
node number ofmaxnode .

2. sys_set_mempolicy(int mode, unsigned
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long *nmask, unsigned long maxnode);

Bind the entire address space of the cur-
rent process according tomode on the
nodes enumerated innmask and hav-
ing a maximum possible node number of
maxnode .

3. sys_get_mempolicy(int *policy, unsigned
long *nmask, unsigned long maxnode,
unsigned long addr, unsigned long flags);

Return the current binding’s mode in
policy and node enumeration in
nmask based on themaxnode , addr ,
andflags passed in.

In addition to the raw syscalls discussed above,
there is a user-level library called “libnuma”
that attempts to present a more cohesive inter-
face to the NUMA API, topology, and sched-
uler affinity functionality. This, however, is
documented elsewhere.

5.3 At mbind() Time

After argument validation, the passed-in list of
nodes is checked to make sure they are all on-
line. If the node list is ok, a new memory policy
structure is allocated and populated with the
binding details. Next, the given address range
is checked to make sure the vma’s for the re-
gion are present and correct. If the region is ok,
we proceed to actually install the new policy
into all the vma’s in that range. For most types
of virtual memory regions, this involves simply
pointing thevma->vm_policy to the newly
allocated memory policy structure. For shared
memory, hugetlbfs, and tmpfs, however, it’s
not quite this simple. In the case of a memory
policy for a shared segment, a red-black tree
root node is created, if it doesn’t already exist,
to represent the shared memory segment and
is populated with “shared policy nodes.” This
allows a user to bind a single shared memory
segment with multiple different bindings.

5.4 At Page Fault Time

There are now several new and differ-
ent flavors ofalloc_pages() style func-
tions. Previous to the NUMA API, there
existedalloc_page() , alloc_pages()
and alloc_pages_node() . Without go-
ing into too much detail,alloc_page()
and alloc_pages() both calledalloc_
pages_node() with the current node id as
an argument.alloc_pages_node() allo-
cated2order pages from a specific node, and
was the only caller to thereal page allocator,
__alloc_pages() .

alloc_page() alloc_pages()

__alloc_pages()

alloc_pages_node()

Figure 8: oldalloc_pages

With the introduction of the NUMA API, non-
NUMA kernels still retain the oldalloc_
page*() routines, but the NUMA alloca-
tors have changed.alloc_pages_node()
and __alloc_pages() , the core routines
remain untouched, but all calls toalloc_
page() /alloc_pages() now end up call-
ing alloc_pages_current() , a new
function.
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There has also been the addition
of two new page allocation func-
tions: alloc_page_vma() and
alloc_page_interleave() .
alloc_pages_current() checks that the
system is not currentlyin_interrupt() ,
and if it isn’t, uses the current pro-
cess’s process policy for allocation. If
the system is currently in interrupt con-
text, alloc_pages_current() falls
back to the old default allocation scheme.
alloc_page_interleave() allocates
pages from regions that are bound with an
interleave policy, and is broken out separately
because there are some statistics kept for
interleaved regions. alloc_page_vma()
is a new allocator that allocates only sin-
gle pages based on a per-vma policy. The
alloc_page_vma() function is the only
one of the new allocator functions that must be
called explicity, so you will notice that some
calls toalloc_pages() have been replaced
by calls toalloc_page_vma() throughout
the kernel, as necessary.

5.5 Problems/Future Work

There is no checking that the nodes re-
quested are online at page fault time, so in-
teractions with hotpluggable CPUs/memory
will be tricky. There is an asymmetry be-
tween how you bind a memory region and
a whole process’s memory: One call takes
a flags argument, and one doesn’t. Also
the maxnode argument is a bit strange,
the get/set_affinity calls take a number of
bytes to be read/written instead of a max-
imum CPU number. Thealloc_page_
interleave() function could be dropped if
we were willing to forgo the statistics that are
kept for interleaved regions. Again, a lack of
symmetry exists because other types of poli-
cies aren’t tracked in any way.

6 Legal statement

This work represents the view of the authors, and
does not necessarily represent the view of IBM.

IBM, NUMA-Q and Sequent are registerd trade-
marks of International Business Machines Corpo-
ration in the United States, other contries, or both.
Other company, product, or service names may be
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Abstract

The current DMA API is written on the found-
ing assumption that the coherency is being
done between the device and kernel virtual ad-
dresses. We have a different API for coherency
between the kernel and userspace. The upshot
is that every Process I/O must be flushed twice:
Once to make the user coherent with the kernel
and once to make the kernel coherent with the
device. Additionally, having to map all pages
for I/O places considerable resource pressure
on x86 (where any highmem page must be sep-
arately mapped).

We present a different paradigm: Assume that
by and large, read/write data is only required
by a single entity (the major consumers of large
multiply shared mappings are libraries, which
are read only) and optimise the I/O path for this
case. This means that any other shared con-
sumers of the data (including the kernel) must
separately map it themselves. The DMA API
would be changed to perform coherence to the
preferred address space (which could be the
kernel). This is a slight paradigm shift, because
now devices that need to peek at the data may
have to map it first. Further, to free up more
space for this mapping, we would break the as-
sumption that any page in ZONE_NORMAL
is automatically mapped into kernel space.

The benefits are that I/O goes straight from
the device into the user space (for processors

that have virtually indexed caches) and the ker-
nel has quite a large unmapped area for use in
kmapping highmem pages (for x86).

1 Introduction

In the Linux kernel1 there are two addressing
spaces: memory physical which is the location
in the actual memory subsystem and CPU vir-
tual, which is an address the CPU’s Memory
Management Unit (MMU) translates to a mem-
ory physical address internally. The Linux ker-
nel operates completely in CPU virtual space,
keeping separate virtual spaces for the kernel
and each of the current user processes. How-
ever, the kernel also has to manage the map-
pings between physical and virtual spaces, and
to do that it keeps track of where the physical
pages of memory currently are.

In the Linux kernel, memory is split into zones
in memory physical space:

• ZONE_DMA: A historical region where
ISA DMAable memory is allocated from.
On x86 this is all memory under 16MB.

• ZONE_NORMAL: This is where normally
allocated kernel memory goes. Where

1This is not quite true, there are kernels for proces-
sors without memory management units, but these are
very specialised and won’t be considered further
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this zone ends depends on the architec-
ture. However, all memory in this zone
is mapped in kernel space (visible to the
kernel).

• ZONE_HIGHMEM: This is where the rest
of the memory goes. Its characteristic is
that it is not mapped in kernel space (thus
the kernel cannot access it without first
mapping it).

1.1 The x86 and Highmem

The main reason for the existence ofZONE_
HIGHMEMis a peculiar quirk on the x86 pro-
cessor which makes it rather expensive to have
different page table mappings between the ker-
nel and user space. The root of the problem
is that the x86 can only keep one set of physi-
cal to virtual mappings on-hand at once. Since
the kernel and the processes occupy different
virtual mappings, the TLB context would have
to be switched not only when the processor
changes current user tasks, but also when the
current user task calls on the kernel to per-
form an operation on its behalf. The time taken
to change mappings, called the TLB flushing
penalty, contributes to a degradation in process
performance and has been measured at around
30%[1]. To avoid this penalty, the Kernel and
user spaces share a partitioned virtual address
space so that the kernel is actually mapped into
user space (although protected from user ac-
cess) and vice versa.

The upshot of this is that the x86 userspace
is divided 3GB/1GB with the virtual ad-
dress range 0x00000000-0xbfffffff
being available for the user process and
0xc0000000-0xffffffff being reserved
for the kernel.

The problem, for the kernel, is that it now only
has 1GB of virtual address to play withinclud-
ing all memory mapped I/O regions. The re-
sult being thatZONE_NORMALactually ends

at around 850kb on most x86 boxes. Since
the kernel must also manage the mappings for
every user process (and these mappings must
be memory resident), the larger the physical
memory of the kernel becomes, the less of
ZONE_NORMALbecomes available to the ker-
nel. On a 64GB x86 box, the usable mem-
ory becomes minuscule and has lead to the
proposal[2] to use a 4G/4G split and just ac-
cept the TLB flushing penalty.

1.2 Non-x86 and Virtual Indexing

Most other architectures are rather better im-
plemented and are able to cope easily with sep-
arate virtual spaces for the user and the ker-
nel without imposing a performance penalty
transitioning from one virtual address space to
another. However, there are other problems
the kernel’s penchant for keeping all memory
mapped causes, notably with Virtual Indexing.

Virtual Indexing[3] (VI) means that the CPU
cache keeps its data indexed by virtual address
(rather than by physical address like the x86
does). The problem this causes is that if multi-
ple virtual address spaces have the same physi-
cal address mapped, but at different virtual ad-
dresses then the cache may contain duplicate
entries, called aliases. Managing these aliases
becomes impossible if there are multiple ones
that become dirty.

Most VI architectures find a solution to the
multiple cache line problem by having a “con-
gruence modulus” meaning that if two virtual
addresses are equal modulo this congruence
(usually a value around 4MB) then the cache
will detect the aliasing and keep only a single
copy of the data that will be seen by all the vir-
tual addresses.

The problems arise because, although archi-
tectures go to great lengths to make sure all
user mappings are congruent, because the ker-
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nel memory is always mapped, it is highly un-
likely that any given kernel page would be con-
gruent to a user page.

1.3 The solution: UnmappingZONE_NORMAL

It has already been pointed out[4] that x86
could recover some of its preciousZONE_
NORMALspace simply by moving page table
entries into unmapped highmem space. How-
ever, the penalty of having to map and unmap
the page table entries to modify them turned
out to be unacceptable.

The solution, though, remains valid. There
are many pages of data currently inZONE_
NORMALthat the kernel doesn’t ordinarily use.
If these could be unmapped and their vir-
tual address space given up then the x86 ker-
nel wouldn’t be facing quite such a memory
crunch.

For VI architectures, the problems stem from
having unallocated kernel memory already
mapped. If we could keep the majority of ker-
nel memory unmapped, and map it only when
we really need to use it, then we would stand
a very good chance of being able to map the
memory congruently even in kernel space.

The solution this paper will explore is that of
keeping the majority of kernel memory un-
mapped, mapping it only when it is used.

2 A closer look at Virtual Indexing

As well as the aliasing problem, VI architec-
tures also have issues with I/O coherency on
DMA. The essence of the problem stems from
the fact that in order to make a device ac-
cess to physical memory coherent, any cache
lines that the processor is holding need to be
flushed/invalidates as part of the DMA trans-
action. In order to do DMA, a device simply
presents a physical address to the system with

a request to read or write. However, if the pro-
cessor indexes the caches virtually, it will have
no idea whether it is caching this physical ad-
dress or not. Therefore, in order to give the
processor an idea of where in the cache the data
might be, the DMA engines on VI architectures
also present a virtual index (called the “coher-
ence index”) along with the physical address.

2.1 Coherence Indices and DMA

The Coherence Index is computed by the pro-
cessor on a per page basis, and is used to iden-
tify the line in the cache belonging to the phys-
ical address the DMA is using.

One will notice that this means the coherence
index must be computed oneveryDMA trans-
action for aparticular address space (although,
if all the addresses are congruent, one may sim-
ply pick any one). Since, at the time the dma
mapping is done, the only virtual address the
kernel knows about is the kernel virtual ad-
dress, it means that DMA is always done co-
herently with the kernel.

In turn, since the kernel address is pretty much
not congruent with any user address, before the
DMA is signalled as being completed to the
user process, the kernel mapping and the user
mappings must likewise be made coherent (us-
ing theflush_dcache_page() function).
However, since the majority of DMA transac-
tions occur onuserdata in which the kernel has
no interest, the extra flush is simply an unnec-
essary performance penalty.

This performance penalty would be eliminated
if either we knew that the designated kernel ad-
dress was congruent to all the user addresses
or we didn’t bother to map the DMA region
into kernel space and simply computed the co-
herence index from a given user process. The
latter would be preferable from a performance
point of view since it eliminates an unneces-
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sary map and unmap.

2.2 Other Issues with Non-Congruence

On the parisc architecture, there is an architec-
tural requirement that we don’t simultaneously
enable multiple read and write translations of
a non-congruent address. We can either enable
a single write translation or multiple read (but
no write) translations. With the current manner
of kernel operation, this is almost impossible
to satisfy without going to enormous lengths in
our page translation and fault routines to work
around the issues.

Previously, we were able to get away with
ignoring this restriction because the machine
would only detect it if we allowed multiple
aliases to become dirty (something Linux never
does). However, in the next generation sys-
tems, this condition will be detected when it
occurs. Thus, addressing it has become criti-
cal to providing a bootable kernel on these new
machines.

Thus, as well as being a simple performance
enhancement, removing non-congruence be-
comes vital to keeping the kernel booting on
next generation machines.

2.3 VIPT vs VIVT

This topic is covered comprehensively in [3].
However, there is a problem in VIPT caches,
namely that if we are reusing the virtual ad-
dress in kernel space, we must flush the pro-
cessor’s cache for that page on this re-use oth-
erwise it may fall victim to stale cache refer-
ences that were left over from a prior use.

Flushing a VIPT cache is easier said than done,
since in order to flush, a valid translation must
exist for the virtual address in order for the
flush to be effective. This causes particular
problems for pages that were mapped to a user

space process, since the address translations
are destroyedbeforethe page is finally freed.

3 Kernel Virtual Space

Although the kernel is nominally mapped in
the same way the user process is (and can the-
oretically be fragmented in physical space), in
fact it is usually offset mapped. This means
there is a simple mathematical relation be-
tween the physical and virtual addresses:

virtual = physical + __PAGE_OFFSET

where __PAGE_OFFSETis an architecture
defined quantity. This type of mapping makes
it very easy to calculate virtual addresses from
physical ones and vice versa without having to
go to all the bother (and CPU time) of having
to look them up in the kernel page tables.

3.1 Moving away from Offset Mapping

There’s another wrinkle on some architectures
in that if an interruption occurs, the CPU
turns off virtual addressing to begin process-
ing it. This means that the kernel needs to
save the various registers and turn virtual ad-
dressing back on, all in physical space. If
it’s no longer a simple matter of subtracting
__PAGE_OFFSETto get the kernel stack for
the process, then extra time will be consumed
in the critical path doing potentially cache cold
page table lookups.

3.2 Keeping track of Mapped pages

In general, when mapping a page we will ei-
ther require that it goes in the first available
slot (for x86), or that it goes at the first avail-
able slot congruent with a given address (for VI
architectures). All we really require is a sim-
ple mechanism for finding the first free page
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virtual address given some specific constraints.
However, since the constraints are architecture
specific, the specifics of this tracking are also
implemented in architectures (see section 5.2
for details on parisc).

3.3 Determining Physical address from Virtual
and Vice-Versa

In the Linux kernel, the simple macros
__pa() and__va() are used to do physical
to virtual translation. Since we are now filling
the mappings in randomly, this is no longer a
simple offset calculation.

The kernel does have help for finding the vir-
tual address of a given page. There is an
optional virtual entry which is turned on
and populated with the page’s current virtual
address when the architecture definesWANT_

PAGE_VIRTUAL. The__va() macro can be
programmed simply to do this lookup.

To find the physical address, the best method is
probably to look the page up in the kernel page
table mappings. This is obviously less efficient
than a simple subtraction.

4 Implementing the unmapping of
ZONE_NORMAL

It is not surprising, given that the entire kernel
is designed to operate withZONE_NORMAL
mapped it is surprising that unmapping it turns
out to be fairly easy. The primary reason for
this is the existence of highmem. Since pages
in ZONE_HIGHMEMare always unmapped and
since they are usually assigned to user pro-
cesses, the kernel must proceed on the assump-
tion that it potentially has to map into its ad-
dress space any page from a user process that
it wishes to touch.

4.1 Booting

The kernel has an entire bootmem API whose
sole job is to cope with memory allocations
while the system is booting and before paging
has been initialised to the point where normal
memory allocations may proceed. On parisc,
we simply get the available page ranges from
the firmware, map them all and turn them over
lock stock and barrel to bootmem.

Then, when we’re ready to begin paging, we
simply release all the unallocated bootmem
pages for the kernel to use from itsmem_map2

array of pages.

We can implement the unmapping idea simply
by covering all our page ranges with an offset
map for bootmem, but then unmapping all the
unreserved pages that bootmem releases to the
mem_maparray.

This leaves us with the kernel text and data sec-
tions contiguously offset mapped, and all other
boot time

4.2 Pages Coming From User Space

The standard mechanisms for mapping poten-
tial highmem pages from user space for the
kernel to see arekmap, kunmap, kmap_
atomic , and kmap_atomic_to_page .
Simply hijacking them and divorcing their im-
plementation fromCONFIG_HIGHMEMis suf-
ficient to solve all user to kernel problems
that arise because of the unmapping ofZONE_
NORMAL.

4.3 In Kernel Problems: Memory Allocation

Since now every free page in the system will
be unmapped, they will have to be mapped

2This global array would be a set of per-zone arrays
on NUMA
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before thekernel can use them (pages allo-
cated for use in user space have no need to
be mapped additionally in kernel space at al-
location time). The engine for doing this is a
single point in__alloc_pages() which is
the central routine for allocating every page in
the system. In the single successful page re-
turn, the page is mapped for the kernel to use it
if __GFP_HIGHis not set—this simple test is
sufficient to ensure that kernel pages only are
mapped here.

The unmapping is done in two separate rou-
tines: __free_pages_ok() for freeing bulk
pages (accumulations of contiguous pages) and
free_hot_cold_page() for freeing single
pages. Here, since we don’t know the gfp mask
the page was allocated with, we simply check
to see if the page is currently mapped, and un-
map it if it is before freeing it. There is another
side benefit to this: the routine that transfers all
the unreserved bootmem to themem_mapar-
ray does this via__free_pages() . Thus,
we additionally achieve the unmapping of all
the free pages in the system after booting with
virtually no additional effort.

4.4 Other Benefits: Variable size pages

Although it wasn’t the design of this structure
to provide variable size pages, one of the ben-
efits of this approach is now that the pages that
are mapped as they are allocated. Since pages
in the kernel are allocated with a specified or-
der (the power of two of the number of con-
tiguous pages), it becomes possible to cover
them with a TLB entry that is larger than the
usual page size (as long as the architecture sup-
ports this). Thus, we can take theorder ar-
gument to__alloc_pages() and work out
the smallest number of TLB entries that we
need to allocate to cover it.

Implementation of variable size pages is actu-
ally transparent to the system; as far as Linux

is concerned, the page table entries it deal with
describe 4k pages. However, we add additional
flags to the pte to tell the software TLB routine
that actually we’d like to use a larger size TLB
to access this region.

As a further optimisation, in the architecture
specific routines that free the boot mem, we can
remap the kernel text and data sections with the
smallest number of TLB entries that will en-
tirely cover each of them.

5 Achieving The VI architecture
Goal: Fully Congruent Aliasing

The system possesses every attribute it now
needs to implement this. We no-longer map
any user pages into kernel space unless the ker-
nel actually needs to touch them. Thus, the
pages will have congruent user addresses allo-
cated to them in user spacebeforewe try to
map them in kernel space. Thus, all we have
to do is track up the free address list in incre-
ments of the congruence modulus until we find
an empty place to map the page congruently.

5.1 Wrinkles in the I/O Subsystem

The I/O subsystem is designed to operate with-
out mapping pages into the kernelat all. This
becomes problematic for VI architectures be-
cause we have to know the user virtual address
to compute the coherence index for the I/O.
If the page is unmapped in kernel space, we
can no longer make it coherent with the kernel
mapping and, unfortunately, the information in
the BIO is insufficient to tell us the user virtual
address.

The proposal for solving this is to add an ar-
chitecture defined set of elements tostruct
bio_vec and an architecture specific func-
tion for populating this (possibly empty) set of
elements as the biovec is created. In parisc,
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we need to add an extra unsigned long for
the coherence index, which we compute from
a pointer to the mm and the user virtual ad-
dress. The architecture defined components are
pulled into struct scatterlist by yet
another callout when the request is mapped for
DMA.

5.2 Tracking the Mappings in ZONE_DMA

Since the tracking requirements vary depend-
ing on architectures: x86 will merely wish to
find the first free pte to place a page into; how-
ever VI architectures will need to find the first
free pte satisfying the congruence requirements
(which vary by architecture), the actual mech-
anism for finding a free pte for the mapping
needs to be architecture specific.

On parisc, all of this can be done inkmap_
kernel() which merely uses rmap[5] to de-
termine if the page is mapped in user space
and find the congruent address if it is. We
use a simple hash table based bitmap with one
bucket representing the set of available congru-
ent pages. Thus, finding a page congruent to
any given virtual address is the simple compu-
tation of finding the first set bit in the congru-
ence bucket. To find an arbitrary page, we keep
a global bucket counter, allocating a page from
that bucket and then incrementing the counter3.

6 Implementation Details on PA-
RISC

Since the whole thrust of this project was to im-
prove the kernel on PA-RISC (and bring it back
into architectural compliance), it is appropriate
to investigate some of the other problems that
turned up during the implementation.

3This can all be done locklessly with atomic incre-
ments, since it doesn’t really matter if we get two allo-
cations from the same bucket because of race conditions

6.1 Equivalent Mapping

The PA architecture has a software TLB mean-
ing that in Virtual mode, if the CPU accesses
an address that isn’t in the CPU’s TLB cache,
it will take a TLB fault so the software routine
can locate the TLB entry (by walking the page
tables) and insert it into the CPU’s TLB. Ob-
viously, this type of interruption must be han-
dled purely by referencing physical addresses.
In fact, the PA CPU is designed to have fast and
slow paths for faults and interruptions. The fast
paths (since they cannot take another interrup-
tion, i.e. not a TLB miss fault) must all operate
on physical addresses. To assist with this, the
PA CPU even turns off virtual addressing when
it takes an interruption.

When the CPU turns off virtual address trans-
lation, it is said to be operating in absolute
mode. All address accesses in this mode are
physical. However, all accesses in this mode
also go through the CPU cache (which means
that for this particular mode the cache is ac-
tually Physically Indexed). Unfortunately, this
can also set up unwanted aliasing between the
physical address and its virtual translation. The
fix for this is to obey the architectural definition
for “equivalent mapping.” Equivalent mapping
is defined as virtual and physical addresses be-
ing equal; however, we benefit from the obvi-
ous loophole in that the physical and virtual ad-
dresses don’t have to be exactly equal, merely
equal modulo the congruent modulus.

All of this means that when a page is allocated
for use by the kernel, we must determine if it
will ever be used in absolute mode, and make it
equivalently mapped if it will be. At the time of
writing, this was simply implemented by mak-
ing all kernel allocated pages equivalent. How-
ever, really all that needs to be equivalently
mapped is

1. the page tables (pgd, pmd and pte),
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2. the task structure and

3. the kernel stacks.

6.2 Physical to Virtual address Translation

In the interruption slow path, where we save
all the registers and transition to virtual mode,
there is a point where execution must be
switched (and hence pointers moved from
physical to virtual). Currently, with offset
mapping, this is simply done by and addition
of __PAGE_OFFSET. However, in the new
scheme we cannot do this, nor can we call
the address translation functions when in ab-
solute mode. Therefore, we had to reorgan-
ise the interruption paths in the PA code so
that both the physical and virtual address was
available. Currently parisc uses a control reg-
ister (%cr30 ) to store the virtual address of
thestruct thread_info . We altered all
paths to change%cr30 to contain the physi-
cal address ofstruct thread_info and
also added a physical address pointer to the
struct task_struct to the thread info.
This is sufficient to perform all the necessary
register saves in absolute addressing mode.

6.3 Flushing on Page Freeing

as was documented in section 2.3, we need to
find a way of flushing a user virtual addressaf-
ter its translation is gone. Actually, this turns
out to be quite easy on PARISC. We already
have an area of memory (called the tmpalias
space) that we use to copy to priming the user
cache (it is simply a 4MB memory area we dy-
namically program to map to the page). There-
fore, as long as we know the user virtual ad-
dress, we can simply flush the page through
the tmpalias space. In order to confound any
attempted kernel use of this page, we reserve
a separate 4MB virtual area that produces a
page fault if referenced, and point the page’s

virtual address into this when it isremoved
from process mappings (so that any kernel at-
tempt to use the page produces an immediate
fault). Then, when the page is freed, if its
virtual pointer is within this range, we con-
vert it to a tmpalias address and flush it using
the tmpalias mechanism.

7 Results and Conclusion

The best result is that on a parisc machine, the
total amount of memory the operational kernel
keeps mapped is around 10MB (although this
alters depending on conditions).

The current implementation makes all pages
congruent or equivalent, but the allocation rou-
tine containsBUG_ON()asserts to detect if we
run out of equivalent addresses. So far, under
fairly heavy stress, none of these has tripped.

Although the primary reason for the unmap-
ping was to move parisc back within its archi-
tectural requirements, it also produces a knock
on effect of speeding up I/O by eliminating the
cache flushing from kernel to user space. At
the time of writing, the effects of this were still
unmeasured, but expected to be around 6% or
so.

As a final side effect, the flush on free necessity
releases the parisc from a very stringent “flush
the entire cache on process death or exec” re-
quirement that was producing horrible laten-
cies in the parisc fork/exec. With this code in
place, we see a vast (50%) improvement in the
fork/exec figures.
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Abstract

In 2004 IBM® is releasing new systems based
on the POWER5™ processor. There is new
support in both the hardware and firmware for
virtualization of multiple operating systems on
a single platform. This includes the ability to
have multiple operating systems share a pro-
cessor. Additionally, a hypervisor firmware
layer supports virtualization of I/O devices
such as SCSI, LAN, and console, allowing
limited physical resources in a system to be
shared.

At its extreme, these new systems allow 10
Linux images per physical processor to run
concurrently, contending for and sharing the
system’s physical resources. All changes to
support these new functions are in the 2.4 and
2.6 Linux kernels.

This paper discusses the virtualization capabil-
ities of the processor and firmware, as well as
the changes made to the PPC64 kernel to take
advantage of them.

1 Introduction

IBM’s new POWER5∗∗ processor is being used
in both IBM iSeries® and pSeries® systems
capable of running any combination of Linux,
AIX®, and OS/400® in logical partitions. The
hardware and firmware, including ahypervisor
[AAN00], in these systems provide the ability
to create “virtual” system images with virtual

hardware. The virtualization technique used on
POWER™ hardware is known as paravirtual-
ization, where the operating system is modified
in select areas to make calls into the hypervi-
sor. PPC64 Linux has been enhanced to make
use of these virtualization interfaces. Note that
the same PPC64 Linux kernel binary works
on both virtualized systems and previous “bare
metal” pSeries systems that did not offer a hy-
pervisor.

All changes related to virtualization have been
made in the kernel, and almost exclusively in
the PPC64 portion of the code. One chal-
lenge has been keeping as much code common
as possible between POWER5 portions of the
code and other portions, such as those support-
ing the Apple G5.

Like previous generations of POWER proces-
sors such as the RS64 and POWER4™ fami-
lies, POWER5 includes hardware enablement
for logical partitioning. This includes features
such as a hypervisor state which is more priv-
ileged than supervisor state. This higher priv-
ilege state is used to restrict access to system
resources, such as the hardware page table, to
hypervisor only access. All current systems
based on POWER5 run in a hypervised envi-
ronment, even if only one partition is active on
the system.
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Figure 1: POWER5 Partitioned System

2 Processor Virtualization

2.1 Virtual Processors

When running in a partition, the operating
system is allocated virtual processors (VP’s),
where each VP can be configured in either
shared or dedicated mode of operation. In
shared mode, as little as 10%, or 10process-
ing units, of a physical processor can be al-
located to a partition and the hypervisor layer
timeslices between the partitions. In dedicated
mode, 100% of the processor is given to the
partition such that its capacity is never multi-
plexed with another partition.

It is possible to create more virtual processors
in the partition than there are physical proces-
sors on the system. For example, a partition al-
located 100 processing units (the equivalent of
1 processor) of capacity could be configured to
have 10 virtual processors, where each VP has
10% of a physical processor’s time. While not
generally valuable, this extreme configuration
can be used to help test SMP configurations on
small systems.

On POWER5 systems with multiple logical
partitions, an important requirement is to be
able to move processors (either shared or ded-

icated) from one logical partition to another.
In the case of dedicated processors, this truly
means moving a CPU from one logical parti-
tion to another. In the case of shared proces-
sors, it means adjusting the number of proces-
sors used by Linux on the fly.

This “hotplug CPU” capability is far more in-
teresting in this environment than in the case
that the covers are going to be removed from a
real system and a CPU physically added. The
goal of virtualization on these systems is to dy-
namically create and adjust operating system
images as required. Much work has been done,
particularly by Rusty Russell, to get the archi-
tecture independent changes into the mainline
kernel to support hotplug CPU.

Hypervisor interfaces exist that help the operat-
ing system optimize its use of the physical pro-
cessor resources. The following sections de-
scribe some of these mechanisms.

2.2 Virtual Processor Area

Each virtual processor in the partition can cre-
ate avirtual processor area(VPA), which is a
small (one page) data structure shared between
the hypervisor and the operating system. Its
primary use is to communicate information be-
tween the two software layers. Examples of
the information that can be communicated in
the VPA include whether the OS is in the idle
loop, if floating point and performance counter
register state must be saved by the hypervi-
sor between operating system dispatches, and
whether the VP is running in the partition’s op-
erating system.

2.3 Spinlocks

The hypervisor provides an interface that helps
minimize wasted cycles in the operating sys-
tem when a lock is held. Rather than simply
spin on the held lock in the OS, a new hypervi-
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sor call,h_confer , has been provided. This
interface is used to confer any remaining vir-
tual processor cycles from the lock requester
to the lock holder.

The PPC64 spinlocks were changed to iden-
tify the logical processor number of the lock
holder, examine that processor’s VPAyield
countfield to determine if it is not running in
the OS (even values indicate the VP is running
in the OS), and to make theh_confer call
to the hypervisor to give any cycles remaining
in the virtual processor’s timeslice to the lock
holder. Obviously, this more expensive leg of
spinlock processing is only taken if the spin-
lock cannot be immediately acquired. In cases
where the lock is available, no additional path-
length is incurred.

2.4 Idle

When the operating system no longer has ac-
tive tasks to run and enters its idle loop, the
h_cede interface is used to indicate to the hy-
pervisor that the processor is available for other
work. The operating system simply sets the
VPA idle bit and callsh_cede . Under this
call, the hypervisor is free to allocate the pro-
cessor resources to another partition, or even to
another virtual processor within the same par-
tition. The processor is returned to the operat-
ing system if an external, decrementer (timer),
or interprocessor interrupt occurs. As an alter-
native to sending an IPI, the ceded processor
can be awoken by another processor calling the
h_prodinterface, which has slightly less over-
head in this environment.

Making use of the cede interface is especially
important on systems where partitions config-
ured to rununcappedexist. In uncapped mode,
any physical processor cycles not used by other
partitions can be allocated by the hypervisor to
a non-idle partition, even if that partition has
already consumed its defined quantity of pro-

cessor units. For example, a partition that is
defined as uncapped, 2 virtual processors, and
20 processing units could consume 2 full pro-
cessors (200 processing units), if all other par-
titions are idle.

2.5 SMT

The POWER5 processor provides symmetric
multithreading (SMT) capabilities that allow
two threads of execution to simultaneously ex-
ecute on one physical processor. This re-
sults in twice as many processor contexts be-
ing presented to the operating system as there
are physical processors. Like other processor
threading mechanisms found in POWER RS64
and Intel® processors, the goal of SMT is to
enable higher processor utilization.

At Linux boot, each processor thread is dis-
covered in the open firmware device tree
and a logical processor is created for Linux.
A command line option,smt-enabled =

[on, off, dynamic] , has been added to al-
low the Linux partition to config SMT in one
of three states. Theon and off modes indi-
cate that the processor always runs with SMT
either on or off. The dynamic mode allows
the operating system and firmware to dynam-
ically configure the processor to switch be-
tween threaded (SMT) and a single threaded
(ST) mode where one of the processor threads
is dormant. The hardware implementation is
such that running in ST mode can provide ad-
ditional performance when only a single task is
executing.

Linux can cause the processor to switch be-
tween SMT and ST modes via theh_cede hy-
pervisor call interface. When entering its idle
loop, Linux sets the VPAidle state bit, and af-
ter a selectable delay, callsh_cede . Under
this interface, the hypervisor layer determines
if only one thread is idle, and if so, switches
the processor into ST mode. If both threads are



118 • Linux Symposium

idle (as indicated by the VPAidle bit), then the
hypervisor keeps the processor in SMT mode
and returns to the operating system.

The processor switches back to SMT mode
if an external or decrementer interrupt is pre-
sented, or if another processor calls theh_
prod interface against the dormant thread.

3 Memory Virtualization

Memory is virtualized only to the extent that all
partitions on the system are presented a con-
tiguous range of logical addresses that start
at zero. Linux sees these logical addresses
as its real storage. The actual real memory
is allocated by the hypervisor from any avail-
able space throughout the system, managing
the storage inlogical memory blocks(LMB’s).
Each LMB is presented to the partition via
a memory node in the open firmware device
tree. When Linux creates a mapping in the
hardware page table for effective addresses, it
makes a call to the hypervisor (h_enter ) in-
dicating the effective and partition logical ad-
dress. The hypervisor translates the logical ad-
dress to the corresponding real address and in-
serts the mapping into the hardware page table.

One additional layer of memory virtualization
managed by the hypervisor is areal mode off-
set(RMO) region. This is a 128 or 256 MB re-
gion of memory covering the first portion of the
logical address space within a partition. It can
be accessed by Linux when address relocation
is off, for example after an exception occurs.
When a partition is running relocation off and
accesses addresses within the RMO region, a
simple offset is added by the hardware to gen-
erate the actual storage access. In this manner,
each partition has what it considers logical ad-
dress zero.

4 I/O Virtualization

Once CPU and memory have been virtualized,
a key requirement is to provide virtualized I/O.
The goal of the POWER5 systems is to have,
for example, 10 Linux images running on a
small system with a single CPU, 1GB of mem-
ory, and a single SCSI adapter and Ethernet
adapter.

The approach taken to virtualize I/O is a co-
operative implementation between the hypervi-
sor and the operating system images. One op-
erating system image always “owns” physical
adapters and manages all I/O to those adapters
(DMA, interrupts, etc.)

The hypervisor and Open Firmware then pro-
vide “virtual” adapters to any operating sys-
tems that require them. Creation of virtual
adapters is done by the system administrator
as part of logically partitioning the system. A
key concept is that these virtual adapters do not
interact in any way with the physical adapters.
The virtual adapters interact with other operat-
ing systems in other logical partitions, which
may choose to make use of physical adapters.

Virtual adapters are presented to the operating
system in the Open Firmware device tree just
as physical adapters are. They have very sim-
ilar attributes as physical adapters, including
DMA windows and interrupts.

The adapters currently supported by the hyper-
visor are virtual SCSI adapters, virtual Ether-
net adapters, and virtual TTY adapters.

4.1 Virtual Bus

Virtual adapters, of course, exist on a virtual
bus. The bus has slots into which virtual
adapters are configured. The number of slots
available on the virtual bus is configured by
the system administrator. The goal is to make
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the behavior of virtual adapters consistent with
physical adapters. The virtual bus isnot pre-
sented as a PCI bus, but rather as its own bus
type.

4.2 Virtual LAN

Virtual LAN adapters are conceptually the sim-
plest kind of virtual adapter. The hypervisor
implements a switch, which supports 802.1Q
semantics for having multiple VLANs share
a physical switch. Adapters can be marked
as 802.1Q aware, in which case the hypervi-
sor expects the operating system to handle the
802.1Q VLAN headers, or 802.1Q unaware, in
which case the hypervisor connects the adapter
to a single VLAN. Multiple virtual Ethernet
adapters can be created for a given partition.

Virtual Ethernet adapters have an additional at-
tribute called “Trunk Adapter.” An adapter
marked as a Trunk Adapter will be delivered
all frames that don’t match any MAC address
on the virtual Ethernet. This is similar, but
not identical, to promiscuous mode on a real
adapter.

For a logical partition to have network connec-
tivity to the outside world, the partition own-
ing a “real” network adapter generally has both
the real Ethernet adapter and a virtual Ether-
net adapter marked as a Trunk adapter. That
partition then performs either routing or bridg-
ing between the real adapter and the virtual
adapter. The Linux bridge-utils package works
well to bridge the two kinds of networks.

Note that there is no architected link between
the real and virtual adapters, it is the responsi-
bility of some operating system to route traffic
between them.

The implementation of the virtual Ethernet
adapters involves a number of hypervisor inter-
faces. Some of the more significant interfaces
are h_register_logical_lan to establish

the initial link between a device driver and
a virtual Ethernet device,h_send_logical_

lan to send a frame, andh_add_logical_

lan_buffer to tell the hypervisor about a
data buffer into which a received frame is to be
placed. The hypervisor interfaces then support
either polled or interrupt driven notification of
new frames arriving.

For additional information on the virtual Ether-
net implementation, the code is the documen-
tation (drivers/net/ibmveth.c ).

4.3 Virtual SCSI

Unlike virtual Ethernet adapters, virtual SCSI
adapters come in two flavors. A “client” vir-
tual SCSI adapter behaves just as a regular
SCSI host bus adapter and is implemented
within the SCSI framework of the Linux ker-
nel. The SCSI mid-layer issues standard SCSI
commands such as Inquiry to determine de-
vices connected to the adapter, and issues reg-
ular SCSI operations to those devices.

A “server” virtual SCSI adapter, generally in a
different partition than the client, receives all
the SCSI commands from the client and is re-
sponsible for handling them. The hypervisor
is not involved in what the server does with
the commands. There is no requirement for
the server to link a virtual SCSI adapter to any
kind of real adapter. The server can process
and return SCSI responses in any fashion it
likes. If it happens to issue I/O operations to a
real adapter as part of satisfying those requests,
that is an implementation detail of the operat-
ing system containing the server adapter.

The hypervisor provides two very primitive
interpartition communication mechanisms on
which the virtual SCSI implementation is built.
There is a queue of 16 byte messages referred
to as a “Command/Response Queue” (CRQ).
Each partition provides the hypervisor with a
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page of memory where its receive queue re-
sides, and a partition wishing to send a message
to its partner’s queue issues anh_send_crq
hypervisor call. When a message is received
on the queue, an interrupt is (optionally) gen-
erated in the receiving partition.

The second hypervisor mechanism is a facil-
ity for issuing DMA operations between par-
titions. Theh_copy_rdma call is used to
DMA a block of memory from the memory
space of one logical partition to the memory
space of another.

The virtual SCSI interpartition protocol is
implemented using the ANSI “SCSI RDMA
Protocol” (SRP) (available athttp://www.
t10.org ). When the client wishes to issue a
SCSI operation, it builds an SRP frame, and
sends the address of the frame in a 16 byte
CRQ message. The server DMA’s the SRP
frame from the client, and processes it. The
SRP frame may itself contain DMA addresses
required for data transfer (read or write buffers,
for example) which may require additional in-
terpartition DMA operations. When the oper-
ation is complete, the server DMA’s the SRP
response back to the same location as the SRP
command came from and sends a 16 byte CRQ
message back indicating that the SCSI com-
mand has completed.

The current Linux virtual SCSI server de-
codes incoming SCSI commands and issues
block layer commands (generic_make_
request ). This allows the SCSI server to
share any block device (e.g.,/dev/sdb6 or
/dev/loop0 ) with client partitions as a vir-
tual SCSI device.

Note that consideration was given to using pro-
tocols such as iSCSI for device sharing be-
tween partitions. The virtual SCSI SRP de-
sign above, however, is a much simpler design
that does not rely on riding above an existing
IP stack. Additionally, the ability to use DMA

operations between partitions fits much better
into the SRP model than an iSCSI model.

The Linux virtual SCSI client (drivers/

scsi/ibmvscsi/ibmvscsi.c ) is close, at
the time of writing, to being accepted into the
Linux mainline. The Linux virtual SCSI server
is sufficiently unlike existing SCSI drivers that
it will require much more mailing list “discus-
sion.”

4.4 Virtual TTY

In addition to virtual Ethernet and SCSI
adapters, the hypervisor supports virtual serial
(TTY) adapters. As with SCSI adapter, these
can be configured as “client” adapters, and
“server” adapters and connected between par-
titions. The first virtual TTY adapter is used as
the system console, and is treated specially by
the hypervisor. It is automatically connected to
the partition console on the Hardware Manage-
ment Console.

To date, multiple concurrent “consoles” have
not been implemented, but they could be. Sim-
ilarly, this interface could be used for kernel
debugging as with any serial port, but such an
implementation has not been done.

5 Dynamic Resource Movement

As mentioned for processors, the logical par-
tition environment lends itself to moving re-
sources (processors, memory, I/O) between
partitions. In a perfect world, such movement
should be done dynamically while the operat-
ing system is running. Dynamic movement of
processors is currently being implemented, and
dynamic movement of I/O devices (including
dynamically adding and removing virtual I/O
devices) is included in the kernel mainline.

The one area for future work in Linux is the dy-
namic movement of memory into and out of an
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active partition. This function is already sup-
ported on other POWER5 operating systems,
so there is an opportunity for Linux to catch
up.

6 Multiple Operating Systems

A key feature of the POWER5 systems is the
ability to run different operating systems in
different logical partitions on the same phys-
ical system. The operating systems currently
supported on the POWER5 hardware are AIX,
OS/400, and Linux.

While running multiple operating systems, all
of the functions for interpartion interaction de-
scribed above must work between operating
systems. For example, idle cycles from an AIX
partition can be given to Linux. A proces-
sor can be moved from OS/400 to Linux while
both operating systems are active.

For I/O, multiple operating systems must be
able to communicate over the virtual Ethernet,
and SCSI devices must be sharable from (say)
an AIX virtual SCSI server to a Linux virtual
SCSI client.

These requirements, along with the archi-
tected hypervisor interfaces, limit the ability to
change implementations just to fit a Linux ker-
nel internal behavior.

7 Conclusions

While many of the basic virtualization tech-
nologies described in this paper existed in the
Linux implementation provided on POWER
RS64 and POWER4 iSeries systems [Bou01],
they have been significantly enhanced for
POWER5 to better use the firmware provided
interfaces.

The introduction of POWER5-based systems

converged all of the virtualization interfaces
provided by firmware on legacy iSeries and
pSeries systems to a model in line with the
legacy pSeries partitioned system architecture.
As a result much of the PPC64 Linux virtual-
ization code was updated to use these new vir-
tualization interface definitions.
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Abstract

ACPI puts Linux in control of configuration
and power management. It abstracts the plat-
form BIOS and hardware so Linux and the
platform can interoperate while evolving inde-
pendently.

This paper starts with some background on the
ACPI specification, followed by the state of
ACPI deployment on Linux.

It describes the implementation architecture of
ACPI on Linux, followed by details on the con-
figuration and power management features.

It closes with a summary of ACPI bugzilla ac-
tivity, and a list of what is next for ACPI in
Linux.

1 ACPI Specification Background

“ACPI (Advanced Configuration and
Power Interface) is an open in-
dustry specification co-developed by
Hewlett-Packard, Intel, Microsoft,
Phoenix, and Toshiba.

ACPI establishes industry-standard
interfaces for OS-directed configura-
tion and power management on lap-
tops, desktops, and servers.

ACPI evolves the existing collec-
tion of power management BIOS
code, Advanced Power Manage-
ment (APM) application program-

ming interfaces (APIs, PNPBIOS
APIs, Multiprocessor Specification
(MPS) tables and so on into a well-
defined power management and con-
figuration interface specification.”1

ACPI 1.0 was published in 1996. 2.0 added
64-bit support in 2000. ACPI 3.0 is expected
in summer 2004.

2 Linux ACPI Deployment

Linux supports ACPI on three architectures:
ia64 , i386 , andx86_64 .

2.1 ia64 Linux/ACPI support

Most ia64 platforms require ACPI support,
as they do not have the legacy configuration
methods seen oni386 . All the Linux distribu-
tions that supportia64 include ACPI support,
whether they’re based on Linux-2.4 or Linux-
2.6.

2.2 i386 Linux/ACPI support

Not all Linux-2.4 distributions enabled ACPI
by default on i386 . Often they used
just enough table parsing to enable Hyper-
Threading (HT), alaacpi=ht below, and re-
lied on MPS and PIRQ routers to configure the

1http://www.acpi.info
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setup_arch()
dmi_scan_machine()

Scan DMI blacklist
BIOS Date vs Jan 1, 2001

acpi_boot_init()
acpi_table_init()

locate and checksum all ACPI tables
print table headers to console

acpi_blacklisted()
ACPI table headers vs. blacklist

parse(BOOT) /* Simple Boot Flags */
parse(FADT) /* PM timer address */
parse(MADT) /* LAPIC, IOAPIC */
parse(HPET) /* HiPrecision Timer */
parse(MCFG) /* PCI Express base */

Figure 1: Early ACPI init oni386

machine. Some included ACPI support by de-
fault, but required the user to addacpi=on to
the cmdline to enable it.

So far, the major Linux 2.6 distributions all
support ACPI enabled by default oni386 .

Several methods are used to make it more prac-
tical to deploy ACPI ontoi386 installed base.
Figure 1 shows the early ACPI startup on the
i386 and where these methods hook in.

1. Most modern system BIOS support DMI,
which exports the date of the BIOS. Linux
DMI scan ini386 disables ACPI on plat-
forms with a BIOS older than January 1,
2001. There is nothing magic about this
date, except it allowed developers to focus
on recent platforms without getting dis-
tracted debugging issues on very old plat-
forms that:

(a) had been running Linux w/o ACPI
support for years.

(b) had virtually no chance of a BIOS
update from the OEM.

Boot parameteracpi=force is avail-
able to enable ACPI on platforms older
than the cutoff date.

2. DMI also exports the hardware man-
ufacturer, baseboard name, BIOS ver-

sion, etc. that you can observe with
dmidecode .2 dmi_scan.c has a gen-
eral purpose blacklist that keys off this in-
formation, and invokes various platform-
specific workarounds.acpi=off is the
most severe—disabling all ACPI support,
even the simple table parsing needed to
enable Hyper-Threading (HT).acpi=ht
does the same, excepts parses enough ta-
bles to enable HT.pci=noacpi disables
ACPI for PCI enumeration and interrupt
configuration. Andacpi=noirq dis-
ables ACPI just for interrupt configura-
tion.

3. The ACPI tables also contain header in-
formation, which you see near the top
of the kernel messages. ACPI maintains
a blacklist based on the table headers.
But this blacklist is somewhat primitive.
When an entry matches the system, it ei-
ther prints warnings or invokesacpi=
off .

All three of these methods share the problem
that if they are successful, they tend to hide
root-cause issues in Linux that should be fixed.
For this reason, adding to the blacklists is dis-
couraged in the upstream kernel. Their main
value is to allow Linux distributors to quickly
react to deployment issues when they need to
support deviant platforms.

2.3 x86_64 Linux/ACPI support

All x86_64 platforms I’ve seen include ACPI
support. The majorx86_64 Linux distribu-
tions, whether Linux-2.4 or Linux-2.6 based,
all support ACPI.

2http://www.nongnu.org/dmidecode
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3 Implementation Overview

The ACPI specification describes platform reg-
isters, ACPI tables, and operation of the ACPI
BIOS. Figure 2 shows these ACPI components
logically as a layer above the platform specific
hardware and firmware.

The ACPI kernel support centers around the
ACPICA (ACPI Component Architecture3)
core. ACPICA includes the AML4 interpreter
that implements ACPI’s hardware abstraction.
ACPICA also implements other OS-agnostic
parts of the ACPI specification. The ACPICA
code does not implement any policy, that is the
realm of the Linux-specific code. A single file,
osl.c , glues ACPICA to the Linux-specific
functions it requires.

The box in Figure 2 labeled “Linux/ACPI” rep-
resents the Linux-specific ACPI code, includ-
ing boot-time configuration.

Optional “ACPI drivers,” such as Button, Bat-
tery, Processor, etc. are (optionally loadable)
modules that implement policy related to those
specific features and devices.

3.1 Events

ACPI registers for a “System Control Inter-
rupt” (SCI) and all ACPI events come through
that interrupt.

The kernel interrupt handler de-multiplexes the
possible events using ACPI constructs. In
some cases, it then delivers events to a user-
space application such asacpid via /proc/
acpi/events .

3http://www.intel.com/technology/
iapc/acpi

4AML, ACPI Machine Language.

�����
���	
�

�	������������
�������


�	������
�������


�����
�
����
��

�����
����

����������


����� ����

�!"��

 "��! �!"�

#�
�

$
��
	

���

������

���!
����

����
�%

��

�&
���	 ���

������"
!��!�����

�	������'
��
�

Figure 2: Implementation Architecture

4 ACPI Configuration

Interrupt configuration oni386 dominated the
ACPI bug fixing activity over the last year.

The algorithm to configure interrupts on an
i386 system with an IOAPIC is shown in Fig-
ure 3. ACPI mandates that all PIC mode IRQs
be identity mapped to IOAPIC pins. Excep-
tions are specified in MADT5 interrupt source
override entries.

Over-rides are often used, for example, to spec-
ify that the 8254 timer on IRQ0 in PIC mode
does not use pin0 on the IOAPIC, but uses
pin2. Over-rides also often move the ACPI SCI
to a different pin in IOAPIC mode than it had
in PIC mode, or change its polarity or trigger
from the default.

5MADT, Multiple APIC Description Table.
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setup_arch()
acpi_boot_init()

parse(MADT);
parse(LAPIC); /* processors */
parse(IOAPIC)

parse(INT_SRC_OVERRIDE);
add_identity_legacy_mappings();
/* mp_irqs[] initialized */

init()
smp_boot_cpus()

setup_IO_APIC()
enable_IO_APIC();
setup_IO_APIC_irqs(); /* mp_irqs[] */

do_initcalls()
acpi_init()

"ACPI: Subsystem revision 20040326"
acpi_initialize_subsystem();
/* AML interpreter */
acpi_load_tables(); /* DSDT */
acpi_enable_subsystem();
/* HW into ACPI mode */

"ACPI: Interpreter enabled"
acpi_bus_init_irq();

AML(_PIC, PIC | IOAPIC | IOSAPIC);

acpi_pci_link_init()
for(every PCI Link in DSDT)

acpi_pci_link_add(Link)
AML(_PRS, Link);
AML(_CRS, Link);

"... Link [LNKA] (IRQs 9 10 *11)"

pci_acpi_init()
"PCI: Using ACPI for IRQ routing"

acpi_irq_penalty_init();
for (PCI devices)

acpi_pci_irq_enable(device)
acpi_pci_irq_lookup()

find _PRT entry
if (Link) {

acpi_pci_link_get_irq()
acpi_pci_link_allocate()

examine possible & current IRQs
AML(_SRS, Link)

} else {
use hard-coded IRQ in _PRT entry

}
acpi_register_gsi()

mp_register_gsi()
io_apic_set_pci_routing()

"PCI: PCI interrupt 00:06.0[A] ->
GSI 26 (level, low) -> IRQ 26"

Figure 3: Interrupt Initialization

So after identifying that the system will be in
IOAPIC mode, the 1st step is to record all the
Interrupt Source Overrides inmp_irqs[] .
The second step is to add the legacy identity
mappings where pins and IRQs have not been
consumed by the over-rides.

Step three is to digestmp_irqs[] in
setup_IO_APIC_irqs() , just like it
would be if the system were running in legacy
MPS mode.

But that is just the start of interrupt configu-
ration in ACPI mode. The system still needs
to enable the mappings for PCI devices, which
are stored in the DSDT6 _PRT7 entries. Fur-
ther, the _PRT can contain both static entries,
analogous to MPS table entries, or it can con-
tain dynamic _PRT entries that use PCI Inter-
rupt Link Devices.

So Linux enables the AML interpreter and in-
forms the ACPI BIOS that it plans to run the
system in IOAPIC mode.

Next the PCI Interrupt Link Devices are
parsed. These “links” are abstract versions of
what used to be called PIRQ-routers, though
they are more general.acpi_pci_link_
init() searches the DSDT for Link Devices
and queries each about the IRQs it can be set
to (_PRS)8 and the IRQ that it is already set to
(_CRS)9

A penalty table is used to help decide how
to program the PCI Interrupt Link Devices.
Weights are statically compiled into the ta-
ble to avoid programming the links to well
known legacy IRQs.acpi_irq_penalty_
init() updates the table to add penalties to
the IRQs where the Links have possible set-

6DSDT, Differentiated Services Description Table,
written in AML

7_PRT, PCI Routing Table
8PRS, Possible Resource Settings.
9CRS, Current Resource Settings.
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tings. The idea is to minimize IRQ shar-
ing, while not conflicting with legacy IRQ use.
While it works reasonably well in practice, this
heuristic is inherently flawed because it as-
sumes the legacy IRQs rather than asking the
DSDT what legacy IRQs are actually in use.10

The PCI sub-system callsacpi_pci_irq_
enable() for every device. ACPI looks up
the device in the _PRT by device-id and if it
a simple static entry, programs the IOAPIC.
If it is a dynamic entry,acpi_pci_link_
allocate() chooses an IRQ for the link and
programs the link via AML (_SRS).11 Then the
associated IOAPIC entry is programmed.

Later, the drivers initialize and callrequest_
irq(IRQ) with the IRQ the PCI sub-system
told it to request.

One issue we have with this scheme is that it
can’t automatically recover when the heuris-
tic balancing act fails. For example when the
parallel port grabs IRQ7 and a PCI Interrupt
Links gets programmed to the same IRQ, then
request_irq(IRQ) correctly fails to put
ISA and PCI interrupts on the same pin. But
the system doesn’t realize that one of the con-
tenders could actually be re-programmed to a
different IRQ.

The fix for this issue will be to delete the
heuristic weights from the IRQ penalty table.
Instead the kernel should scan the DSDT to
enumerate exactly what legacy devices reserve
exactly what IRQs.12

10In PIC mode, the default is to keep the BIOS pro-
vided current IRQ setting, unless cmdlineacpi_irq_
balance is used. Balancing is always enabled in
IOAPIC mode.

11SRS, Set Resource Setting
12bugzilla 2733

4.1 Issues With PCI Interrupt Link Devices

Most of the issues have been with PCI Interrupt
Link Devices, an ACPI mechanism primarily
used to replace the chip-set-specific Legacy
PIRQ code.

• The status (_STA) returned by a PCI Inter-
rupt Link Device does not matter. Some
systems mark the ones we should use as
enabled, some do not.

• The status set by Linux on a link is im-
portant on some chip sets. If we do
not explicitly disable some unused links,
they result in tying together IRQs and can
cause spurious interrupts.

• The current setting returned by a link
(_CRS) can not always be trusted. Some
systems return invalid settings always.
Linux must assume that when it sets a
link, the setting was successful.

• Some systems return a current setting that
is outside the list of possible settings. Per
above, this must be ignored and a new set-
ting selected from the possible-list.

4.2 Issues With ACPI SCI Configuration

Another area that was ironed out this year
was the ACPI SCI (System Control Interrupt).
Originally, the SCI was always configured as
level/low, but SCI failures didn’t stop until
we implemented the algorithm in Figure 4.
During debugging, the kernel gained the cmd-
line option that applies to either PIC or IOAPIC
mode: acpi_sci={level,edge,high,
low} but production systems seem to be work-
ing properly and this has seen use recently only
to work around prototype BIOS bugs.
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if (PIC mode) {
set ELCR to level trigger();

} else { /* IOAPIC mode */
if (Interrupt Source Override) {

Use IRQ specified in override
if(trigger edge or level)

use edge or level
else (compatible trigger)

use level

if (polarity high or low)
use high or low

else
use low

} else { /* no Override */
use level-trigger
use low-polarity

}
}

Figure 4: SCI configuration algorithm

4.3 Unresolved: Local APIC Timer Issue

The most troublesome configuration issue to-
day is that many systems with no IO-APIC will
hang during boot unless their LOCAL-APIC
has been disabled, eg. by bootingnolapic .
While this issue has gone away on several sys-
tems with BIOS upgrades, entire product lines
from high-volume OEMS appear to be subject
to this failure. The current workaround to dis-
able the LAPIC timer for the duration of the
SMI-CMD update that enables ACPI mode.13

4.4 Wanted: Generic Linux Driver Manager

The ACPI DSDT enumerates motherboard de-
vices via PNP identifiers. This method is used
to load the ACPI specific devices today, eg.
battery, button, fan, thermal etc. as well as
8550_acpi . PCI devices are enumerated via
PCI-ids from PCI config space. Legacy devices
probe out using hard-coded address values.

But a device driver should not have to know or
13http://bugzilla.kernel.org 1269
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Figure 5: ACPI Global, CPU, and Sleep states.

care how it is enumerated by its parent bus. An
8250 driver should worry about the 8250 and
not if it is being discovered by legacy means,
ACPI enumeration, or PCI.

One fix would be to be to abstract the PCI-ids,
PNP-ids, and perhaps even some hard-coded
values into a generic device manager directory
that maps them to device drivers.

This would simply add a veneer to the PCI
device configuration, simplifying a very small
number of drivers that can be configured by
PCI or ACPI. However, it would also fix the
real issue that the configuration information in
the ACPI DSDT for most motherboard devices
is currently not parsed and not communicated
to any Linux drivers.

The Device driver manager would also be
able to tell the power management sub-system
which methods are used to power-manage the
device. Eg. PCI or ACPI.

5 ACPI Power Management

The Global System States defined by ACPI are
illustrated in Figure 5. G0 is the working state,
G1 is sleeping, G2 is soft-off and G3 is me-
chanical off. The “Legacy” state illustrates
where the system is not in ACPI mode.



Linux Symposium 2004 • 129

5.1 P-states

In the context of G0 – Global Working State,
and C0 – CPU Executing State, P-states (Per-
formance states) are available to reduce power
of the running processor. P-states simultane-
ously modulate both the MHz and the voltage.
As power varies by voltage squared, P-states
are extremely effective at saving power.

While P-states are extremely important, the
cpufreq sub-system handles P-states on a
number of different platforms, and the topic is
best addressed in that larger context.

5.2 Throttling

In the context of the G0-Working, C0-
Executing state, Throttling states are defined to
modulate the frequency of the running proces-
sor.

Power varies (almost) directly with MHz, so
when the MHz is cut if half, so is the power.
Unfortunately, so is the performance.

Linux currently uses Throttling only in re-
sponse to thermal events where the processor
is too hot. However, in the future, Linux could
add throttling when the processor is already in
the lowest P-state to save additional power.

Note that most processors also include a
backup Thermal Monitor throttling mecha-
nism in hardware, set with higher temperature
thresholds than ACPI throttling. Most proces-
sors also have in hardware an thermal emer-
gency shutdown mechanism.

5.3 C-states

In the context of G0 Working system state, C-
state (CPU-state) C0 is used to refer to the exe-
cuting state. Higher number C-states are en-
tered to save successively more power when

the processor is idle. No instructions are ex-
ecuted when in C1, C2, or C3.

ACPI replaces the default idle loop so it can
enter C1, C2 or C3. The deeper the C-state,
the more power savings, but the higher the la-
tency to enter/exit the C-state. You can ob-
serve the C-states supported by the system and
the success at using them in/proc/acpi/
processor/CPU0/power

C1 is included in every processor and has
negligible latency. C1 is implemented with
the HALT or MONITOR/MWAIT instructions.
Any interrupt will automatically wake the pro-
cessor from C1.

C2 has higher latency (though always under
100 usec) and higher power savings than C1.
It is entered through writes to ACPI registers
and exits automatically with any interrupt.

C3 has higher latency (though always under
1000 usec) and higher power savings than C2.
It is entered through writes to ACPI registers
and exits automatically with any interrupt or
bus master activity. The processor does not
snoop its cache when in C3, which is why bus-
master (DMA) activity will wake it up. Linux
sees several implementation issues with C3 to-
day:

1. C3 is enabled even if the latency is up to
1000 usec. This compares with the Linux
2.6 clock tick rate of 1000Hz = 1ms =
1000usec. So when a clock tick causes
C3 to exit, it may take all the way to the
next clock tick to execute the next kernel
instruction. So the benefit of C3 is lost
because the system effectively pays C3 la-
tency and gets negligible C3 residency to
save power.

2. Some devices do not tolerate the DMA
latency introduced by C3. Their device
buffers underrun or overflow. This is cur-
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rently an issue with the ipw2100 WLAN
NIC.

3. Some platforms can lie about C3 latency
and transparently put the system into a
higher latency C4 when we ask for C3—
particularly when running on batteries.

4. Many processors halt their local APIC
timer (a.k.a. TSC – Timer Stamp Counter)
when in C3. You can observe this
by watching LOC fall behind IRQ0 in
/proc/interrupts.

5. USB makes it virtually impossible to en-
ter C3 because of constant bus master ac-
tivity. The workaround at the moment is
to unplug your USB devices when idle.
Longer term, it will take enhancements
to the USB sub-system to address this is-
sue. Ie. USB software needs to recognize
when devices are present but idle, and re-
duce the frequency of bus master activity.

Linux decides which C-state to enter on idle
based on a promotion/demotion algorithm.
The current algorithm measures the residency
in the current C-state. If it meets a threshold
the processor is promoted to the deeper C-state
on re-entrance into idle. If it was too short, then
the processor is demoted to a lower-numbered
C-state.

Unfortunately, the demotion rules are overly
simplistic, as Linux tracks only its previous
success at being idle, and doesn’t yet account
for the load on the system.

Support for deeper C-states via the _CST
method is currently in prototype. Hopefully
this method will also give the OS more accu-
rate data than the FADT about the latency as-
sociated with C3. If it does not, then we may
need to consider discarding the table-provided
latencies and measuring the actual latency at
boot time.

5.4 Sleep States

ACPI names sleeps states S0 – S5. S0 is the
non-sleep state, synonymous with G0. S1 is
standby, it halts the processor and turns off the
display. Of course turning off the display on an
idle system saves the same amount of power
without taking the system off line, so S1 isn’t
worth much. S2 is deprecated. S3 is suspend to
RAM. S4 is hibernate to disk. S5 is soft-power
off, AKA G2.

Sleep states are unreliable enough on Linux to-
day that they’re best considered “experimen-
tal.” Suspend/Resume suffers from (at least)
two systematic problems:

• _init() and_initdata() on items
that may be referenced after boot, say,
during resume, is a bad idea.

• PCI configuration space is not uniformly
saved and restored either for devices or
for PCI bridges. This can be observed
by using lspci before and after a sus-
pend/resume cycle. Sometimessetpci
can be used to repair this damage from
user-space.

5.5 Device States

Not shown on the diagram, ACPI defines
power saving states for devices: D0 – D3. D0
is on, D3 is off, D1 and D2 are intermediate.
Higher device states have

1. more power savings,

2. less device context saved by hardware,

3. more device driver state restoring,

4. higher restore latency.
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ACPI defines semantics for each device state in
each device class. In practice, D1 and D2 are
often optional - as many devices support only
on and off either because they are low-latency,
or because they are simple.

Linux-2.6 includes an updated device driver
model to accommodate power management.14

This model is highly compatible with PCI and
ACPI. However, this vision is not yet fully re-
alized. To do so, Linux needs a global power
policy manager.

5.6 Wanted: Generic Linux Run-time Power
Policy Manager

PCI device drivers today callpci_set_
power_state() to enter D-states. This uses
the power management capabilities in the PCI
power management specification.

The ACPI DSDT supplies methods for ACPI
enumerated devices to access ACPI D-states.
However, no driver calls into ACPI to enter D-
states today.15

Drivers shouldn’t have to care if they are power
managed by PCI or by ACPI. Drivers should be
able to up-call to a generic run-time power pol-
icy manager. That manager should know about
calling the PCI layer or the ACPI layer as ap-
propriate.

The power manager should also put those re-
quests in the context of user-specified power
policy. Eg. Does the user want maximum per-
formance, or maximum battery life? Currently
there is no method to specify the detailed pol-
icy, and the kernel wouldn’t know how to han-
dle it anyway.

In a related point, it appears that devices cur-

14Patrick Mochel, Linux Kernel Power Management,
OLS 2003.

15Actually, the ACPI hot-plug driver invokes D-states,
but that is the only exception.

rently only suspend upon system suspend. This
is probably not the path to industry leading bat-
tery life.

Device drivers should recognize when their de-
vice has gone idle. They should invoke a sus-
pend up-call to a power manager layer which
will decide if it really is a good idea to grant
that request now, and if so, how. In this case by
calling the PCI or ACPI layer as appropriate.

6 ACPI as seen by bugzilla

Over the last year the ACPI developers have
made heavy use of bugzilla16 to help prioritize
and track 460 bugs. 300 bugs are closed or re-
solved, 160 are open.17

We cc: acpi-bugzilla@lists.
sourceforge.net on these bugs, and
we encourage the community to add that alias
to ACPI-specific bugs in other bugzillas so that
the team can help out wherever the problems
are found.

We haven’t really used the bugzilla priority
field. Instead we’ve split the bugs into cate-
gories and have addressed the configuration is-
sues first. This explains why most of the in-
terrupt bugs are resolved, and most of the sus-
pend/resume bugs are unresolved.

We’ve seen an incoming bug rate of 10-
bugs/week for many months, but the new re-
ports favor the power management features
over configuration, so we’re hopeful that the
torrent of configuration issues is behind us.

16http://bugzilla.kernel.org/
17The resolved state indicates that a patch is available

for testing, but that it is not yet checked into the ker-
nel.org kernel.
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Figure 6: ACPI bug profile

7 Future Work

7.1 Linux 2.4

Going forward, I expect to back-port only crit-
ical configuration related fixes to Linux-2.4.
For the latest power management code, users
need to migrate to Linux-2.6.

7.2 Linux 2.6

Linux-2.6 is a “stable” release, so it is not
appropriate to integrate significant new fea-
tures. However, the power management side
of ACPI is widely used in 2.6 and there will be
plenty of bug-fixes necessary. The most visi-
ble will probably be anything that makes Sus-
pend/Resume work on more platforms.

7.3 Linux 2.7

These feature gaps will not be addressed in
Linux 2.6, and so are candidates for Linux 2.7:

• Device enumeration is not abstracted in
a generic device driver manager that can
shield drivers from knowing if they’re
enumerated by ACPI, PCI, or other.

• Motherboard devices enumerated by
ACPI in the DSDT are ignored, and
probed instead via legacy methods. This
can lead to resource conflicts.

• Device power states are not abstracted in
a generic device power manager that can
shield drivers from knowing whether to
call ACPI or PCI to handle D-states.

• There is no power policy manager to
translate the user-requested power policy
into kernel policy.

• No devices invoke ACPI methods to enter
D-states.

• Devices do not detect that they are idle
and request of a power manager whether
they should enter power saving device
states.

• There is no MP/SMT coordination of P-
states. Today, P-states are disabled on
SMP systems. Coordination needs to ac-
count for multiple threads and multiple
cores per package.

• Coordinate P-states and T-states. Throt-
tling should be used only after the system
is put in the lowest P-state.

• Idle states above C1 are disabled on SMP.

• Enable Suspend in PAE mode.18

18PAE, Physical Address Extended—MMU mode to
handle > 4GB RAM—optional oni386 , always used
onx86_64 .
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• Enable Suspend on SMP.

• Tick timer modulation for idle power sav-
ings.

• Video control extensions. Video is a large
power consumer. The ACPI spec Video
extensions are currently in prototype.

• Docking Station support is completely ab-
sent from Linux.

• ACPI 3.0 features. TBD after the specifi-
cation is published.

7.4 ACPI 3.0

Although ACPI 3.0 has not yet been published,
two ACPI 3.0 tidbits are already in Linux.

• PCI Express table scanning. This is the
basic PCI Express support, there will be
more coming. Those in the PCI SIG
can read all about it in the PCI Express
Firmware Specification.

• Several clarifications to the ACPI 2.0b
spec resulted directly from open source
development,19 and the text of ACPI 3.0
has been updated accordingly. For exam-
ple, some subtleties of SCI interrupt con-
figuration and device enumeration.

When the ACPI 3.0 specification is published
there will instantly be a multiple additions to
the ACPI/Linux feature to-do list.

7.5 Tougher Issues

• Battery Life on Linux is not yet compet-
itive. This single metric is the sum of all
the power savings features in the platform,
and if any of them are not working prop-
erly, it comes out on this bottom line.

19FreeBSD deserves kudos in addition to Linux

• Laptop Hot Keys are used to control
things such as video brightness, etc. ACPI
does not specify Hot Keys. But when they
work in APM mode and don’t work in
ACPI mode, ACPI gets blamed. There are
4 ways to implement hot keys:

1. SMI20 handler, the BIOS handles
interrupts from the keys, and con-
trols the device directly. This acts
like “hardware” control as the OS
doesn’t know it is happening. But
on many systems this SMI method is
disabled as soon as the system tran-
sitions into ACPI mode. Thus the
complaint “the button works in APM
mode, but doesn’t work in ACPI
mode.”
But ACPI doesn’t specify how hot
keys work, so in ACPI mode one of
the other methods listed here needs
to handle the keys.

2. Keyboard Extension driver, such as
i8k . Here the keys return scan
codes like any other keys on the key-
board, and the keyboard driver needs
to understand those scan code. This
is independent of ACPI, and gener-
ally OEM specific.

3. OEM-specific ACPI hot key driver.
Some OEMs enumerate the hot
keys as OEM-specific devices in the
ACPI tables. While the device is
described in AML, such devices are
not described in the ACPI spec so
we can’t build generic ACPI support
for them. The OEM must supply
the appropriate hot-key driver since
only they know how it is supposed
to work.

4. Platform-specific “ACPI” driver. To-
day Linux includes Toshiba and

20SMI, System Management Interrupt; invisible to the
OS, handled by the BIOS, generally considered evil.
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Asus platform specific extension
drivers to ACPI. They do not use
portable ACPI compliant methods to
recognize and talk to the hot keys,
but generally use the methods above.

The correct solution to the the Hot Key is-
sue on Linux will require direct support
from the OEMs, either by supplying doc-
umentation, or code to the community.

8 Summary

This past year has seen great strides in the con-
figuration aspects of ACPI. Multiple Linux dis-
tributors now enable ACPI on multiple archi-
tectures.

This sets the foundation for the next era of
ACPI on Linux where we can evolve the more
advanced ACPI features to meet the expecta-
tions of the community.

9 Resources

The ACPI specification is published athttp:
//www.acpi.info .

The home page for the Linux ACPI de-
velopment community is here:http://
acpi.sourceforge.net/ It contains nu-
merous useful pointers, including one to the
acpi-devel mailing list.

The latest ACPI code can be found against var-
ious recent releases in the BitKeeper repos-
itories: http://linux-acpi.bkbits.
net/

Plain patches are available onkernel.
org .21 Note that Andrew Morton currently
includes the latest ACPI test tree in the-mm

21http://ftp.kernel.org/pub/linux/
kernel/people/lenb/acpi/patches/

patch, so you can test the latest ACPI code
combined with other recent updates there.22

10 Acknowledgments

Many thanks to the following people whose di-
rect contributions have significantly improved
the quality of the ACPI code in the last
year: Jesse Barnes, John Belmonte, Dominik
Brodowski, Bruno Ducrot, Bjorn Helgaas,
Nitin, Kamble, Andi Kleen, Karol Kozimor,
Pavel Machek, Andrew Morton, Jun Naka-
jima, Venkatesh Pallipadi, Nate Lawson, David
Shaohua Li, Suresh Siddha, Jes Sorensen, An-
drew de Quincey, Arjan van de Ven, Matt
Wilcox, and Luming Yu. Thanks also to all
the bug submitters, and the enthusiasts on
acpi-devel .

Special thanks to Intel’s Mobile Platforms
Group, which created ACPICA, particularly
Bob Moore and Andy Grover.

Linux is a trademark of Linus Torvalds. Bit-
Keeper is a trademark of BitMover, Inc.

22http://ftp.kernel.org/pub/linux/
kernel/people/akpm/patches/



Scaling Linux® to the Extreme
From 64 to 512 Processors

Ray Bryant
raybry@sgi.com

Jesse Barnes
jbarnes@sgi.com

John Hawkes
hawkes@sgi.com

Jeremy Higdon
jeremy@sgi.com

Jack Steiner
steiner@sgi.com

Silicon Graphics, Inc.

Abstract

In January 2003, SGI announced the SGI® Al-
tix® 3000 family of servers. As announced,
the SGI Altix 3000 system supported up to
64 Intel® Itanium® 2 processors and 512 GB
of main memory in a single Linux® image.
Altix now supports up to 256 processors in
a single Linux system, and we have a few
early-adopter customers who are running 512
processors in a single Linux system; others
are running with as much as 4 terabytes of
memory. This paper continues the work re-
ported on in our 2003 OLS paper by describ-
ing the changes necessary to get Linux to effi-
ciently run high-performance computing work-
loads on such large systems.

Introduction

At OLS 2003 [1], we discussed changes to
Linux that allowed us to make Linux scale to
64 processors for our high-performance com-
puting (HPC) workloads. Since then, we have
continued our scalability work, and we now
support up to 256 processors in a single Linux
image, and we have a few early-adopter cus-
tomers who are running 512 processors in a
single-system image; other customers are run-
ning with as much as 4 terabytes of memory.

As can be imagined, the type of changes neces-
sary to get a single Linux system to scale on a
512 processor system or to support 4 terabytes
of memory are of a different nature than those
necessary to get Linux to scale up to a 64 pro-
cessor system, and the majority of this paper
will describe such changes.

While much of this work has been done in
the context of a Linux 2.4 kernel, Altix is
now a supported platform in the Linux 2.6 se-
ries (www.kernel.org versions of Linux
2.6 boot and run well on many small to mod-
erate sized Altix systems), and our plan is to
port many of these changes to Linux 2.6 and
propose them as enhancements to the commu-
nity kernel. While some of these changes will
be unique to the Linux kernel for Altix, many
of the changes we propose will also improve
performance on smaller SMP and NUMA sys-
tems, so should be of general interest to the
Linux scalability community.

In the rest of this paper, we will first provide
a brief review of the SGI Altix 3000 hard-
ware. Next we will describe why we believe
that very large single-system image, shared-
memory machine can be more effective tools
for HPC than similar sized non-shared mem-
ory clusters. We will then discuss changes that
we made to Linux for Altix in order to make
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that system a more effective system for HPC
on systems with as many as 512 processors.
A second large topic of discussion will be the
changes to support high-performance I/O on
Altix and some of the hardware underpinnings
for that support. We believe that the latter set
of problems are general in the sense that they
apply to any large scale NUMA system and the
solutions we have adopted should be of general
interest for this reason.

Even though this paper is focused on the
changes that we have made to Linux to ef-
fectively support very large Altix platforms, it
should be remembered that the total number of
such changes is small in relation to the over-
all size of the Linux kernel and its support-
ing software. SGI is committed to support-
ing the Linux community and continues to sup-
port Linux for Altix as a member of the Linux
family of kernels, and in general to support bi-
nary compatibility between Linux for Altix and
Linux on other Itanium Processor Family plat-
forms.

In many cases, the scaling changes described in
this paper have already been submitted to the
community for consideration for inclusion in
Linux 2.6. In other cases, the changes are un-
der evaluation to determine if they need to be
added to Linux 2.6, or whether they are fixes
for problems in Linux 2.4.21 (the current prod-
uct base for Linux for Altix) that are no longer
present in Linux 2.6.

Finally, this paper contains forward-looking
statements regarding SGI® technologies and
third-party technologies that are subject to
risks and uncertainties. The reader is cautioned
not to rely unduly on these forward-looking
statements, which are not a guarantee of future
or current performance, nor are they a guaran-
tee that features described herein will or will
not be available in future SGI products.

The SGI Altix Hardware

This section is condensed from [1]; the reader
should refer to that paper for additional details.

An Altix system consists of a configurable
number of rack-mounted units, each of which
SGI refers to as abrick. The most common
type of brick is the C-brick (or compute brick).
A fully configured C-brick consists of two sep-
arate dual-processor Intel Itanium 2 systems,
each of which is a bus-connected multiproces-
sor ornode.

In addition to the two processors on the bus,
there is also a SHUB chip on each bus. The
SHUB is a proprietary ASIC that (1) acts as
a memory controller for the local memory,
(2) provides the interface to the interconnec-
tion network, (3) manages the global cache co-
herency protocol, and (4) some other functions
as discussed in [1].

Memory accesses in an Altix system are either
local (i.e., the reference is to memory in the
same node as the processor) or remote. The
SHUB detects whether a reference is local, in
which case it directs the request to the mem-
ory on the node, or remote, in which case it
forwards the request across the interconnection
network to the SHUB chip where the memory
reference will be serviced.

Local memory references have lower latency;
the Altix system is thus a NUMA (non-uniform
memory access) system. The ratio of remote to
local memory access times on an Altix system
varies from 1.9 to 3.5, depending on the size
of the system and the relative locations of the
processor and memory module involved in the
transfer.

The cache-coherency policy in the Altix sys-
tem can be divided into two levels:local
andglobal. The local cache-coherency proto-
col is defined by the processors on the local
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bus and is used to maintain cache-coherency
between the Itanium processors on the bus.
The global cache-coherency protocol is imple-
mented by the SHUB chip. The global proto-
col is directory-based and is a refinement of the
protocol originally developed for DASH [2].

The Altix system interconnection network uses
routing bricks to provide connectivity in sys-
tem sizes larger than 16 processors. In systems
with 128 or more processors a second layer
of routing bricks is used to forward requests
among subgroups of 32 processors each. The
routing topology is a fat-tree topology with ad-
ditional “express” links being inserted to im-
prove performance.

Why Big SSI?

In this section we discuss the rationale for
building such a large single-system image
(SSI) box as an Altix system with 512 CPU’s
and (potentially) several TB of main memory:

(1) Shared memory systems are more flexible
and easier to manage than a cluster. One can
simulate message passing on shared memory,
but not the other way around. Software for
cluster management and system maintenance
exists, but can be expensive or complex to use.

(2) Shared memory style programming is gen-
erally simpler and more easily understood than
message passing. Debugging of code is often
simpler on a SSI system than on a cluster.

(3) It is generally easier to port or write
codes from scratch using the shared memory
paradigm. Additionally it is often possible to
simply ignore large sections of the code (e.g.
those devoted to data input and output) and
only parallelize the part that matters.

(4) A shared memory system supports eas-
ier load balancing within a computation. The

mapping of grid points to a node determines
the computational load on the node. Some grid
points may be located near more rapidly chang-
ing parts of computation, resulting in higher
computational load. Balancing this over time
requires moving grid points from node to node
in a cluster, where in a shared memory system
such re-balancing is typically simpler.

(5) Access to large global data sets is simpli-
fied. Often, the parallel computation depends
on a large data set describing, for example, the
precise dimensions and characteristics of the
physical object that is being modeled. This
data set can be too large to fit into the node
memories available on a clustered machine, but
it can readily be loaded into memory on a large
shared memory machine.

(6) Not everything fits into the cluster model.
While many production codes have been con-
verted to message passing, the overall compu-
tation may still contain one or more phases that
are better performed using a large shared mem-
ory system. Or, there may be a subset of users
of the system who would prefer a shared mem-
ory paradigm to a message passing one. This
can be a particularly important consideration in
large data-center environments.

Kernel Changes

In this section we describe the most significant
kernel problems we have encountered in run-
ning Linux on a 512 processor Altix system.

Cache line and TLB Conflicts

Cache line conflicts occur in every cache-
coherent multiprocessor system, to one extent
or another, and whether or not the conflict ex-
hibits itself as a performance problem is depen-
dent on the rate at which the conflict occurs and
the time required by the hardware to resolve
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the conflict. The latter time is typically propor-
tional to the number of processors involved in
the conflict. On Altix systems with 256 proces-
sors or more, we have encountered some cache
line conflicts that can effectively halt forward
progress of the machine. Typically, these con-
flicts involve global variables that are updated
at each timer tick (or faster) by every processor
in the system.

One example of this kind of problem is the de-
fault kernel profiler. When we first enabled
the default kernel profiler on a 512 CPU sys-
tem, the system would not boot. The reason
was that once per timer tick, each processor
in the system was trying to update the pro-
filer bin corresponding to the CPU idle routine.
A work around to this problem was to initial-
ize prof_cpu_mask to CPU_MASK_NONE
instead of the default. This disables profil-
ing on all processors until the user sets the
prof_cpu_mask .

Another example of this kind of problem was
when we imported some timer code from
Red Hat® AS 3.0. The timer code included
a global variable that was used to account for
differences between HZ (typically a power of
2) and the number of microseconds in a sec-
ond (nominally 1,000,000). This global vari-
able was updated by each processor on each
timer tick. The result was that on Altix sys-
tems larger than about 384 processors, forward
progress could not be made with this version
of the code. To fix this problem, we made this
global variable a per processor variable. The
result was that the adjustment for the differ-
ence between HZ and microseconds is done on
a per processor rather than on a global basis,
and now the system will boot.

Still other cache line conflicts were remedied
by identifying cases of false cache line sharing
i.e., those cache lines that inadvertently contain
a field that is frequently written by one CPU

and another field (or fields) that are frequently
read by other CPUs.

Another significant bottleneck is the ia64
do_gettimeofday() with its use of
cmpxchg . That operation is expensive on
most architectures, and concurrentcmpxchg
operations on a common memory location
scale worse than concurrent simple writes from
multiple CPUs. On Altix, four concurrent user
gettimeofday() system calls complete in
almost an order of magnitude more time than a
singlegettimeofday() ; eight are 20 times
slower than one; and the scaling deteriorates
nonlinearly to the point where 32 concurrent
system calls is 100 times slower than one. At
the present time, we are still exploring a way to
improve this scaling problem in Linux 2.6 for
Altix.

While moving data to per-processor storage is
often a solution to the kind of scaling problems
we have discussed here, it is not a panacea,
particularly as the number of processors be-
comes large. Often, the system will want to
inspect some data item in the per-processor
storage of each processor in the system. For
small numbers of processors this is not a prob-
lem. But when there are hundreds of proces-
sors involved, such loops can cause a TLB miss
each time through the loop as well as a cou-
ple of cache-line misses, with the result that
the loop may run quite slowly. (A TLB miss
is caused because the per-processor storage ar-
eas are typically isolated from one another in
the kernel’s virtual address space.)

If such loops turn out to be bottlenecks, then
what one must often do is to move the fields
that such loops inspect out of the per-processor
storage areas, and move them into a global
static array with one entry per CPU.

An example of this kind of problem in Linux
2.6 for Altix is the current allocation scheme
of the per-CPU run queue structures. Each
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per-CPU structure on an Altix system requires
a unique TLB to address it, and each struc-
ture begins at the same virtual offset in a page,
which for a virtually indexed cache means that
the same fields will collide at the same in-
dex. Thus, a CPU scheduler that wishes to
do a quick peek at every other CPU’snr_
running or cpu_load will not only suffer a
TLB miss on every access, but will also likely
suffer a cache miss because these same virtual
offsets will collide in the cache. Cache col-
oring of these addresses would be one way to
solve this problem; we are still exploring ways
to fix this problem in Linux 2.6 for Altix.

Lock Conflicts

A cousin of cache line conflicts are the lock
conflicts. Indeed, the root mechanism of the
lock bottleneck is a cache line conflict. For
a spinlock_t the conflict is thecmpxchg
operation on the word that signifies whether or
not the lock is owned. For arwlock_t the
conflict is the cmpxchg or fetch-and-add op-
eration on the count of the number of read-
ers or the bit signifying whether or not the
lock is owned exclusively by a writer. For a
seqlock_t the conflict is the increment of
the sequence number.

For some lock conflicts, such as thercu_
ctrlblk.mutex , the remedy is to make the
spinlock more fine-grained, e.g., by making it
hierarchical or per-CPU. For other lock con-
flicts, the most effective remedy is to reduce
the use of the lock.

The O(1) CPU scheduler replaced the global
runqueue_lock with per-CPU run queue
locks, and replaced the global run queue with
per-CPU run queues. While this did substan-
tially decrease the CPU scheduling bottleneck
for CPU counts in the 8 to 32 range, additional
effort has been necessary to remedy additional
bottlenecks that appear with even large config-

urations.

For example, we discovered that at 256 pro-
cessors and above, we encountered a live lock
early in system boot because hundreds of idle
CPUs are load-balancing and are racing in con-
tention on one or a few busy CPUs. The con-
tention is so severe that the busy CPU’s sched-
uler cannot itself acquire its own run queue
lock, and thus the system live locks.

A remedy we applied in our Altix 2.4-based
kernel was to introduce a progressively longer
back off between successive load-balancing at-
tempts, if the load-balancing CPU continues
to be unsuccessful in finding a task to pull-
migrate. Perhaps all the busiest CPU’s tasks
are pinned to that CPU, or perhaps all the
tasks are still cache-hot. Regardless of the
reason, a load-balancing failure results in that
CPU delaying the next load-balance attempt
by another incremental increase in time. This
algorithm effectively solved the live lock, as
well as improved other high-contention con-
flicts on a busiest CPU’s run queue lock (e.g.,
always finding pinned tasks that can never be
migrated).

This load-balance back off algorithm did not
get accepted into the early 2.6 kernels. The lat-
est 2.6.7 CPU scheduler, as developed by Nick
Piggin, incorporates a similar back off algo-
rithm. However, this algorithm (at least as it
appears in 2.6.7-rc2) continues to cause a boot-
time live lock at 512 processors on Altix so we
are continuing to investigate this matter.

Page Cache

Managing the page cache in Altix has been a
challenging problem. The reason is that while
a large Altix system may have a lot of memory,
each node in the system only has a relatively
small fraction of that memory available as lo-
cal memory. For example, on a 512 CPU sys-
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tem, if the entire system has 512 GB of mem-
ory, each node on the system has only 2 GB of
local memory; less than 0.4% of the available
memory on the system is local. When you con-
sider that it is quite common on such systems
to deal with files that are tens of GB in size, it
is easy to understand how the page cache could
consume all of the memory on several nodes in
the system just doing normal, buffered-file I/O.

Stated another way, this is the challenge of a
large NUMA system: all memory is address-
able, but only a tiny fraction of that memory
is local. Users of NUMA systems need to
place their most frequently accessed data in lo-
cal memory; this is crucial to obtain the max-
imum performance possible from the system.
Typically this is done by allocating pages on a
first-touch basis; that is, we attempt to allocate
a page on the node where it is first referenced.
If all of the local memory on a node is con-
sumed by the page cache, then these local stor-
age allocations will spill over to other (remote)
nodes, the result being a potentially significant
impact on program performance.

Similarly, it is important that the amount of
free memory be balanced across idle nodes in
the system. An imbalance could lead to some
components of a parallel computation running
slower than others because not all components
of the computation were able to allocate their
memory entirely out of local storage. Since the
overall speed of parallel computation is deter-
mined by the execution of its slowest compo-
nent, the performance of the entire application
can be impacted by a non-local storage alloca-
tion on only a few nodes.

One might think thatbdflush or kupdated
(in a Linux 2.4 system) would be responsi-
ble for cleaning up unused page-cache pages.
As the OLS reader knows, these daemons
are responsible not for deallocating page-cache
pages, but cleaning them. It is the swap dae-

mon kswapd that is responsible for causing
page-cache pages to be deallocated. However,
in many situations we have encountered, even
though multiple nodes of the system would be
completely out of local memory, there would
still be lots of free memory elsewhere in the
system. As a result,kswapd will never start.
Once the system gets into such a state, the
local memory on those nodes can remain al-
located entirely to page-cache pages for very
long stretches of time since as far as the ker-
nel is concerned there is no memory “pres-
sure”. To get around this problem, particu-
larly for benchmarking studies, users have of-
ten resorted to programs that allocate and touch
all of the memory on the system, thus causing
kswapd to wake up and free unneeded buffer
cache pages.

We have dealt with this problem in a number
of ways, but the first approach was to change
page_cache_alloc() so that instead
of allocating the page on the local node, we
spread allocations across all nodes in the
system. To do this, we added a new GFP
flag: GFP_ROUND_ROBINand a new proce-
dure: alloc_pages_round_robin() .
alloc_pages_round_robin() main-
tains a counter in per-CPU storage; the
counter is incremented on each call to
page_cache_alloc() . The value of the
counter, modulus the number of nodes in
the system, is used to select thezonelist
passed to__alloc_pages() . Like other
NUMA implementations, in Linux for Altix
there is azonelist for each node, and the
zonelist s are sorted in nearest neighbor
order with thezone for the local node as the
first entry of thezonelist . The result is that
each timepage_cache_alloc() is called,
the returned page is allocated on the next node
in sequence, or as close as possible to that
node.

The rationale for allocating page-cache pages
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in this way is that while pages are local re-
sources, the page cache is a global resource, us-
able by all processes on the system. Thus, even
if a process is bound to a particular node, in
general it does not make sense to allocate page-
cache pages just on that node, since some other
process in the system may be reading that same
file and hence sharing the pages. So instead of
flooding the current node with the page-cache
pages for files that processes on that node have
opened, we “tax” every node in the system with
a fraction of the page-cache pages. In this
way, we try to conserve a scarce resource (local
memory) by spreading page-cache allocations
over all nodes in the system.

However, even this step was not enough to keep
local storage usage balanced among nodes in
the system. After reading a 10 GB file, for
example, we found that the node where the
reading process was running would have up to
40,000 pages more storage allocated than other
nodes in the system. It turned out the reason for
this was that buffer heads for the read opera-
tion were being allocated locally. To solve this
problem in our Linux 2.4.21 kernel for Altix,
we modifiedkmem_cache_grow() so that
it would pass theGFP_ROUND_ROBINflag to
kmem_getpages() with the result that the
slab caches on our systems are now also allo-
cated out of round-robin storage. Of course,
this is not a perfect solution, since there are sit-
uations where it makes perfect sense to allocate
a slab cache entry locally; but this was an expe-
dient solution appropriate for our product. For
Linux 2.6 for Altix we would like to see the
slab allocator be made NUMA aware. (Man-
fred Spraul has created some patches to do this
and we are currently evaluating these changes.)

The previous two changes solved many of the
cases where a local storage could be exhausted
by allocation of page-cache pages. However,
they still did not solve the problem of local al-
locations spilling off node, particularly in those

cases where storage allocation was tight across
the entire system. In such situations, the sys-
tem would often start running the synchronous
swapping code even though most (if not all) of
the page-cache pages on the system were clean
and unreferenced outside of the page-cache.
With the very-large memory sizes typical of
our larger Altix customers, entering the syn-
chronous swapping code needs to be avoided
if at all possible since this tends to freeze the
system for 10s of seconds. Additionally, the
round robin allocation fixes did not solve the
problem of poor and unrepeatable performance
on benchmarks due to the existence of signif-
icant amounts of page-cache storage left over
from previous executions.

To solve these problems, we introduced a rou-
tine calledtoss_buffer_cache_pages_
node() (referred to here astoss() , for
brevity). In a related change, we made the
active and inactive lists per node rather than
global. toss() first scans the inactive list
(on a particular node) looking for idle page-
cache pages to release back to the free page
pool. If not enough such pages are found
on the inactive list, then the active list is
also scanned. Finally, iftoss() has not
called shrink_slab_caches() recently,
that routine is also invoked in order to more
aggressively free unused slab-cache entries.
toss() was patterned after the main loop
of shrink_caches() except that it would
never callswap_out() and if it encountered
a page that didn’t look to be easily free able, it
would just skip that page and go on to the next
page.

A call to toss() was added in__alloc_
pages() in such a way that if allocation on
the current node fails, then before trying to al-
locate from some other node (i. e. spilling
to another node), the system will first see if
it can free enough page-cache pages from the
current node so that the current node alloca-
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tion can succeed. In subsequent allocation
passes,toss() is also called to free page-
cache pages on nodes other than the current
one. The result of this change is that clean
page-cache pages are effectively treated as free
memory by the page allocator.

At the same time that thetoss() code
was added, we added a new user com-
mandbcfree that could be used to free all
idle page-cache pages. (On the__alloc_
pages() path, toss() would only try to
free 32 pages per node.) Thebcfree com-
mand was intended to be used only for reset-
ting the state of the page cache before running a
benchmark, and in lieu of rebooting the system
in order to get a clean system state. However,
our customers found that this command could
be used to reduce the size of the page cache
and to avoid situations where large amounts
of buffered-file I/O could force the system to
begin swapping. Sincebcfree kills the en-
tire page-cache, however, this was regarded
as a substandard solution that could also hurt
read performance of cached data and we began
looking for another way to solve this “BIGIO”
problem.

Just to be specific, the BIGIO problem we were
trying to solve was based on the behavior of our
Linux 2.4.21 kernel for Altix. A customer re-
ported that on a 256 GB Altix system, if 200
GB were allocated and 50 GB free, that if the
user program then tried to write 100 GB of data
out to disk, the system would start to swap,
and then in many cases fill up the swap space.
At that point our Out-of-memory (OOM) killer
would wake up and kill the user program! (See
the next section for discussion of our OOM
killer changes.)

Initially we were able to work around this
problem by increasing the amount of swap
space on the system. Our experiments showed
that with an amount of swap space equal to

one-quarter the main memory size, the 256 GB
example discussed above would continue to
completion without the OOM killer being in-
voked. I/O performance during this phase was
typically one-half of what the hardware could
deliver, since two I/O operations often had to
be completed: one to read the data in from
the swap device, and one to write the data to
the output file. Additionally, while the swap
scan was active, the system was very sluggish.
These problems led us to search for another so-
lution.

Eventually what we developed is an aggressive
method of trimming the page cache when it
started to grow too big. This solution involved
several steps:

(1) We first added a new page list, the
reclaim_list . This increased the size of
struct page by another 16 bytes. On our
system,struct page is allocated on cache-
aligned boundaries anyway, so this really did
not cause an increase in storage, since the cur-
rent struct page size was less than 112
bytes. Pages were added to the reclaim list
when they were inserted into the page cache.
The reclaim list is per node, with per node
locking. Pages were removed from the reclaim
list when they were no longer reclaimable; that
is, they were removed from the reclaim list
when they were marked as dirty due to buffer
file-I/O or when they were mapped into an ad-
dress space.

(2) We rewrotetoss() to scan the reclaim list
instead of the inactive and active lists. Herein
we will refer to the new version oftoss() as
toss_fast() .

(3) We introduced a variant ofpage_cache_
alloc() called page_cache_alloc_
limited() . Associated with this new
routine were two control variables settable
via sysctl() : page_cache_limit and
page_cache_limit_threshold .
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(4) We modified the generic_file_
write() path to call page_cache_
alloc_limited() instead of page_
cache_alloc() . page_cache_alloc_
limited() examines the size of the page
cache. If the total amount of free memory
in the system is less thanpage_cache_
limit_threshold and the size of the page
cache is larger thanpage_cache_limit ,
then page_cache_alloc_limited()
calls page_cache_reduce() to free
enough page-cache pages on the system to
bring the page cache size down belowpage_
cache_limit . If this succeeds, thenpage_
cache_alloc_limited() calls page_
cache_alloc to allocate the page. If not,
then we wakeupbdflush and the current
thread is put to sleep for 30ms (a tunable
parameter)

The rationale for thereclaim_list and
toss_fast() was that when we needed to
trim the page cache, practically all pages in
the system would typically be on the inactive
list. The existingtoss() routine scanned
the inactive list and thus was too slow to call
from generic_file_write . Moreover,
most of the pages on the inactive list were
not reclaimable anyway. Most of the pages
on thereclaim_list are reclaimable. As
a resulttoss_fast() runs much faster and
is more efficient at releasing idle page-cache
pages than the old routine.

The rationale for thepage_cache_limit_
threshold in addition to the page_
cache_limit is that if there is lots of free
memory then there is no reason to trim the page
cache. One might think that because we only
trim the page cache on the file write path that
this approach would still let the page cache
to grow arbitrarily due to file reads. Unfortu-
nately, this is not the case, since the Linux ker-
nel in normal multiuser operation is constantly
writing something to the disk. So, a page cache

limit enforced at file write time is also an effec-
tive limit on the size of the page cache due to
file reads.

Finally, the rationale for delaying the calling
task whenpage_cache_reduce() fails is
that we do not want the system to start swap-
ping to make space for new buffered I/O pages,
since that will reduce I/O bandwidth by as
much as one-half anyway, as well as take a lot
of CPU time to figure out which pages to swap
out. So it is better to reduce the I/O bandwidth
directly, by limiting the rate of requested I/O,
instead of allowing that I/O to proceed at rate
that causes the system to be overrun by page-
cache pages.

Thus far, we have had good experience with
this algorithm. File I/O rates are not substan-
tially reduced from what the hardware can pro-
vide, the system does not start swapping, and
the system remains responsive and usable dur-
ing the period of time when the BIGIO is run-
ning.

Of course, this entire discussion is specific to
Linux 2.4.21. For Linux 2.6, we have plans to
evaluate whether this is a problem in the sys-
tem at all. In particular, we want to see if an
appropriate setting forvm_swappiness to
zero can eliminate the “BIGIO causes swap-
ping” problem. We also are interested in eval-
uating the recent set of VM patches that Nick
Piggin [6] has assembled to see if they elimi-
nate this problem for systems of the size of a
large Altix.

VM and Memory Allocation Fixes

In addition to the page-cache changes de-
scribed in the last section, we have made a
number of smaller changes related to virtual
memory and paging performance.

One set of such changes increased the paral-
lelism of page-fault handling for anonymous
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pages in multi-threaded applications. These
applications allocate space using routines that
eventually call mmap() ; the result is that
when the application touches the data area for
the first time, it causes a minor page fault.
These faults are serviced while holding the
address space’spage_table_lock . If the
address space is large and there are a large
number of threads executing in the address
space, this spinlock can be an initialization-
time bottleneck for the application. Examina-
tion of the handle_mm_fault() path for
this case shows that thepage_table_lock
is acquired unconditionally but then released as
soon as we have determined that this is a not-
present fault for an anonymous page. So, we
reordered the code checks inhandle_mm_
fault() to determine in advance whether or
not this was the case we were in, and if so, to
skip acquiring the lock altogether.

The second place thepage_table_lock
was used on this path was in
do_anonymous_page() . Here, the
lock was re-acquired to make sure that the
process of allocating a page frame and filling
in the pte is atomic. On Itanium, stores to
page-table entries are normal stores (that is,
the set_pte macro evaluates to a simple
store). Thus, we can usecmpxchg to update
the pte and make sure that only one thread
allocates the page and fills in the pte. The
compare and exchange effectively lets us lock
on each individual pte. So, for Altix, we
have been able to completely eliminate the
page_table_lock from this particular
page-fault path.

The performance improvement from this
change is shown in Figure 1. Here we show the
time required to initially touch 96 GB of data.
As additional processors are added to the prob-
lem, the time required for both the baseline-
Linux and Linux for Altix versions decrease
until around 16 processors. At that point the

page_table_lock starts to become a sig-
nificant bottleneck. For the largest number of
processors, even the time for the Linux for Al-
tix case is starting to increase again. We be-
lieve that this is due to contention for the ad-
dress space’smmapsemaphore.
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Figure 1:Time to initially touch 96 GB of data.

This is particularly important for HPC applica-
tions since OpenMP™[5], a common parallel
programming model for FORTRAN, is imple-
mented using a single address space, multiple-
thread programming model. The optimization
described here is one of the reasons that Al-
tix has recently set new performance records
for the SPEC® SPEComp® L2001 benchmark
[7].

While the above measurements were taken us-
ing Linux 2.4.21 for Altix, a similar problem
exists in Linux 2.6. For many other architec-
tures, this same kind of change can be made;
i386 is one of the exceptions to this statement.
We are planning on porting our Linux 2.4.21
based changes to Linux 2.6 and submitting the
changes to the Linux community for inclusion
in Linux 2.6. This may require moving part
of do_anonymous_page() to architecture
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dependent code to allow for the fact that not
all architectures can use the compare and ex-
change approach to eliminate the use of the
page_table_lock in do_anonymous_
page() . However, the performance improve-
ment shown in Figure 1 is significant for Altix
so we would we would like to explore some
way of incorporating this code into the main-
line kernel.

We have encountered similar scalability lim-
itations for other kinds of page-fault behav-
ior. Figure 2 shows the number of page faults
per second of wall clock time measured for
multiple processes running simultaneously and
faulting in a 1 GB/dev/zero mapping. Un-
like the previous case described here, in this
case each process has its own private mapping.
(Here the number of processes is equal to the
number of CPUs.) The dramatic difference be-
tween the baseline 2.4 and 2.6 cases and Linux
for Altix is due to elimination of a lock in the
super block for/dev/zero .
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Figure 2: Page Faults per Second of Wall Clock
Time.

The lock in the super block protects two
counts: One count limits the maximum num-
ber of /dev/zero mappings to263; the sec-

ond count limits the number of pages assigned
to a /dev/zero mapping to263. Neither
one of these counts is particularly useful for
a /dev/zero mapping. We eliminated this
lock and obtained a dramatic performance im-
provement for this micro-benchmark (at 512
CPUs the improvement was in excess of 800x).
This optimization is important in decreasing
startup time for large message-passing appli-
cations on the Altix system.

A related change is to distribute the count of
pages in the page cache from a single global
variable to a per node variable. Because ev-
ery processor in the system needs to update
the page-cache count when adding or remov-
ing pages from the page cache, contention for
the cache line containing this global variable
becomes significant. We changed this global
count to a per-node count. When a page is in-
serted into (or removed from) the page cache,
we update the page cache-count on the same
node as the page itself. When we need the
total number of pages in the page cache (for
example if someone reads/proc/meminfo )
we run a loop that sums the per node counts.
However, since the latter operation is much less
frequent than insertions and deletions from the
page cache, this optimization is an overall per-
formance improvement.

Another change we have made in the VM
subsystem is in the out-of-memory (OOM)
killer for Altix. In Linux 2.4.21, the
OOM killer is called from the top of
memory-free and swap-out call chain.oom_
kill() is called from try_to_free_
pages_zone() when calls to shrink_
caches() at memory priority levels 6
through 0 have all failed. Insideoom_kill()
a number of checks are performed, and if any
of these checks succeed, the system is declared
to not be out-of-memory. One of those checks
is “if it has been more than 5 seconds since
oom_kill() was last called, then we are not
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OOM.” On a large-memory Altix system, it can
easily take much longer than that to complete
the necessary calls toshrink_caches() .
The result is that an Altix system never goes
OOM in spite of the fact that swap space is full
and there is no memory to be allocated.

It seemed to us that part of the problem here
is the amount of time it can take for a swap
full condition (readily detectable intry_
to_swap_out() to bubble all the way up
to the top level intry_to_free_pages_
zone() , especially on a large memory ma-
chine. To solve this problem on Altix, we
decided to drive the OOM killer directly off
of detection of swap-space-full condition pro-
vided that the system also continues to try to
swap out additional pages. A count of the
number of successful swaps and unsuccess-
ful swap attempts is maintained intry_to_
swap_out() . If, in a 10 second interval, the
number of successful swap outs is less than
one percent of the number of attempted swap
outs, and the total number of swap out attempts
exceeds a specified threshold, thentry_to_
swap_out() ) will directly wake the OOM
killer thread (also new in our implementation).
This thread will wait another 10 seconds, and
if the out-of-swap condition persists, it will in-
vokeoom_kill() to select a victim and kill
it. The OOM killer thread will repeat this sleep
and kill cycle until it appears that swap space
is no longer full or the number of attempts to
swap out new pages (since the thread went to
sleep) falls below the threshold.

In our experience, this has made invocation of
the OOM killer much more reliable than it was
before, at least on Altix. Once again, this im-
plementation was for Linux 2.4.21; we are in
the process of evaluating this problem and the
associated fix on Linux 2.6 at the present time.

Another fix we have made to the VM sys-
tem in Linux 2.4.21 for Altix is in handling

of HUGETLB pages. The existing implemen-
tation in Linux 2.4.21 allocates HUGETLB
pages to an address space atmmap() time (see
hugetlb_prefault() ); it also zeroes the
pages at this time. This processing is done by
the thread that makes themmap() call. In
particular, this means that zeroing of the al-
located HUGETLB pages is done by a sin-
gle processor. On a machine with 4 TB of
memory and with as much memory allocated
to HUGETLB pages as possible, our measure-
ments have shown that it can take as long as
5,000 seconds to allocate and zero all available
HUGETLB pages. Worse yet, the thread that
does this operation holds the address space’s
mmap_semand thepage_table_lock for
the entire 5,000 seconds. Unfortunately, many
commands that query system state (such asps
andw) also wish to acquire one of these locks.
The result is that the system appears to be hung
for the entire 5,000 seconds.

We solved this problem on Altix by changing
the implementation of HUGETLB page allo-
cation fromprefault to allocate on fault. Many
others have created similar patches; our patch
was unique in that it also allowed zeroing of
pages to occur in parallel if the HUGETLB
page faults occurred on different processors.
This was crucial to allow a large HUGETLB
page region to be faulted into an address space
in parallel, using as many processors as possi-
ble. For example, we have observed speedups
of 25x using 16 processors to touch O(100 GB)
of HUGETLB pages. (The speedup is super
linear because if you use just one processor
it has to zero many remote pages, whereas if
you use more processors, at least some of the
pages you are zeroing are local or on nearby
nodes.) Assuming we can achieve the same
kind of speedup on a 4 TB system, we would
reduce the 5,000 second time stated above to
200 seconds.

Recently, we have worked with Kenneth Chen
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to get a similar set of changes proposed for
Linux 2.6 [3]. Once this set of changes is ac-
cepted into the mainline this particular problem
will be solved for Linux 2.6. These changes are
also necessary for Andi Kleen’s NUMA place-
ment algorithms [4] to apply to HUGETLB
pages, since otherwise pages are placed at
hugetlb_prefault() time.

A final set of changes is related to large kernel
tables. As previously mentioned, on an Altix
system with 512 processors, less than 0.4% of
the available memory is local. Certain tables in
the Linux kernel are sized to be on the order of
one percent of available memory. (An exam-
ple of this is the TCP/IP hash table.) Allocat-
ing a table of this size can use all of the local
memory on a node, resulting in exactly the kind
of storage-allocation imbalance we developed
the page-cache changes to solve. To avoid this
problem, we also implement round-robin allo-
cation of these large tables. Our current tech-
nique usesvm_alloc() to do this. Unfor-
tunately, this is not portable across all archi-
tectures, since certain architectures have lim-
ited amounts of space that can be allocated by
vm_alloc() . Nonetheless, this is a change
that we need to make; we are still exploring
ways of making this change acceptable to the
Linux community.

Once we have solved the initial allocation
problem for these tables, there is still the prob-
lem of getting them appropriately sized for an
Altix system. Clearly if there are 4 TB of main
memory, it does not make much sense to allo-
cate a TCP/IP hash table of 40 GB, particularly
since the TCP/IP traffic into an Altix system
does not increase with memory size the way
one might expect it to scale with a traditional
Linux server. We have seen cases where sys-
tem performance is significantly hampered due
to lookups in these overly large tables. At the
moment, we are still exploring a solution ac-
ceptable to the community to solve this partic-

ular problem.

I/O Changes for Altix

One of the design goals for the Altix system
is that it support standard PCI devices and
their associated Linux drivers as much as pos-
sible. In this section we discuss the perfor-
mance improvements built into the Altix hard-
ware and supported through new driver inter-
faces in Linux that help us to meet this goal
with excellent performance even on very large
Altix systems.

According to the PCI specification, DMA
writes and PIO read responses are strongly or-
dered. On large NUMA systems, however,
DMA writes can take a long time to complete.
Since most PIO reads do not imply completion
of a previous DMA write, relaxing the ordering
rules of DMA writes and PIO read responses
can greatly improve system performance.

Another large system issue relates to initiating
PIO writes from multiple CPUs. PIO writes
from two different CPUs may arrive out of or-
der at a device. The usual way to ensure order-
ing is through a combination of locking and a
PIO read (see Documentation/io_ordering.txt).
On large systems, however, doing this read can
be very expensive, particularly if it must be or-
dered with respect to unrelated DMA writes.

Finally, the NUMA nature of large machines
make some optimizations obvious and desir-
able. Many devices use so-called consis-
tent system memory for retrieving commands
and storing status information; allocating that
memory close to its associated device makes
sense.

Making non–dependent PIO reads fast

In its I/O chipsets, SGI chose to relax the order-
ing between DMAs and PIOs, instead adding
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a barrier attribute to certain DMA writes (to
consistent PCI allocations on Altix) and to in-
terrupts. This works well with controllers that
use DMA writes to indicate command com-
pletions (for example a SCSI controller with a
response queue, where the response queue is
allocated usingpci_alloc_consistent ,
so that writes to the response queue have the
barrier attribute). When we ported Linux to
Altix, this behavior became a problem, be-
cause many Linux PCI drivers use PIO read re-
sponses to imply a status of a DMA write. For
example, on an IDE controller, a bit status reg-
ister read is performed to find out if a command
is complete (command complete status implies
that DMA writes of that command’s data are
completed). As a result, SGI had to implement
a rather heavyweight mechanism to guarantee
ordering of DMA writes and PIO reads. This
mechanism involves doing an explicit flush of
DMA write data after each PIO read.

For the cases in which strong ordering of PIO
read responses and DMA writes are not nec-
essary, a new API was needed so that drivers
could communicate that a given PIO read re-
sponse could used relaxed ordering with re-
spect to prior DMA writes. Theread_
relaxed API [8] was added early in the 2.6
series for this purpose, and mirrors the normal
read routines, which have variants for various
sized reads.

The results below show how expensive a nor-
mal PIO read transaction can be, especially on
a system doing a lot of I/O (and thus DMA).

Type of PIO Time (ns)
normal PIO read 3875
relaxed PIO read 1299

Table 1: Normal vs. relaxed PIO reads on an
idle system

It remains to be seen whether this API will also
apply to the newly added RO bit in the PCI-

Type of PIO Time (ns)
normal PIO read 4889
relaxed PIO read 1646

Table 2: Normal vs. relaxed PIO reads on a
busy system

X specification—the author is hopeful! Either
way, it does give hardware vendors who want
to support Linux some additional flexibility in
their design.

Ordering posted writes efficiently

On many platforms, PIO writes from different
CPUs will not necessarily arrive in order (i.e.,
they may be intermixed) even when locking is
used. Since the platform has no way of know-
ing whether a given PIO read depends on pre-
ceding writes, it has to guarantee that all writes
have completed before allowing a read trans-
action to complete. So performing a read prior
to releasing a lock protecting a region doing
writes is sufficient to guarantee that the writes
arrive in the correct order.

However, performing PIO reads can be an ex-
pensive operation, especially if the device is on
a distant node. SGI chipset designers foresaw
this problem, however, and provided a way to
ensure ordering by simply reading a register
from the chipset on the local node. When the
register indicates that all PIO writes are com-
plete, it means they have arrived at the chipset
attached to the device, and so are guaranteed
to arrive at the device in the intended order.
The SGI sn2 specific portion of the Linux ia64
port (sn2 is the architecture name for Altix in
the Linux kernel source tree) provides a small
function,sn_mmiob() (for memory–mapped
I/O barrier, analogous to themb() macro), to
do just that. It can be used in place of reads
that are intended to deal with posted writes and
provides some benefit:
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Type of flush Time (ns)
regular PIO read 5940
relaxed PIO read 2619
sn_mmiob() 1610
(local chipset read alone) 399

Table 3: Normal vs. fast flushing of 5 PIO
writes

Adding this API to Linux (i.e., making it non-
sn2-specific) was discussed some time ago [9],
and may need to be raised again, since it does
appear to be useful on Altix, and is probably
similarly useful on other platforms.

Local allocation of consistent DMA mappings

Consistent DMA mappings are used frequently
by drivers to store command and status buffers.
They are frequently read and written by the
device that owns them, so making sure they
can be accessed quickly is important. The ta-
ble below shows the difference in the num-
ber of operations per second that can be
achieved using local versus remote allocation
of consistent DMA buffers. Local alloca-
tions were guaranteed by changing thepci_
alloc_consistent function so that it calls
alloc_pages_node using the node closest
to the PCI device in question.

Type I/Os per second
Local consistent buffer 46231
Remote consistent buffer 41295

Table 4: Local vs. remote DMA buffer alloca-
tion

Although this change is platform specific, it
can be made generic if apci_to_node or
pci_to_nodemask routine is added to the
Linux topology API.

Concluding Remarks

Today, our Linux 2.4.21 kernel for Altix pro-
vides a productive platform for our high-
performance-computing users who desire to
exploit the features of the SGI Altix 3000 hard-
ware. To achieve this goal, we have made a
number of changes to our Linux for Altix ker-
nel. We are now in the process of either moving
those changes forward to Linux 2.6 for Altix,
or of evaluating the Linux 2.6 kernel on Altix
in order to determine if these changes are in-
deed needed at all. Our goal is to develop a
version of the Linux 2.6 kernel for Altix that
not only supports our HPC customers equally
well as our existing Linux 2.4.21 kernel, but
also consists as much as possible of commu-
nity supported code.
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Get More Device Drivers out of the Kernel!
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Abstract

Now that Linux has fast system calls, good
(and getting better) threading, and cheap con-
text switches, it’s possible to write device
drivers that live in user space for whole new
classes of devices. Of course, some device
drivers (Xfree, in particular) have always run
in user space, with a little bit of kernel support.
With a little bit more kernel support (a way to
set up and tear down DMA safely, and a gen-
eralised way to be informed of and control in-
terrupts) almost any PCI bus-mastering device
could have a user-mode device driver.

I shall talk about the benefits and drawbacks
of device drivers being in user space or ker-
nel space, and show that performance concerns
are not really an issue—in fact, on some plat-
forms, our user-mode IDE driver out-performs
the in-kernel one. I shall also present profiling
and benchmark results that show where time is
spent in in-kernel and user-space drivers, and
describe the infrastructure I’ve added to the
Linux kernel to allow portable, efficient user-
space drivers to be written.

∗This work was funded by HP, National ICT Aus-
tralia, the ARC, and the University of NSW through the
Gelato programme (http://www.gelato.unsw.
edu.au )

1 Introduction

Normal device drivers in Linux run in the ker-
nel’s address space with kernel privilege. This
is not the only place they can run—see Fig-
ure 1.
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Figure 1: Where a Device Driver can Live

Point A is the normal Linux device driver,
linked with the kernel, running in the kernel
address space with kernel privilege.

Device drivers can also be linked directly with
the applications that use them (Point B)—
the so-called ‘in-process’ device drivers pro-
posed by [Keedy, 1979]—or run in a separate
process, and be talked to by an IPC mech-
anism (for example, an X server, point D).
They can also run with kernel privilege, but
with a separate kernel address space (Point
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C) (as in the Nooks system described by
[Swift et al., 2002]).

2 Motivation

Traditionally, device drivers have been devel-
oped as part of the kernel source. As such, they
haveto be written in the C language, and they
have to conform to the (rapidly changing) in-
terfaces and conventions used by kernel code.
Even though drivers can be written as mod-
ules (obviating the need to reboot to try out
a new version of the driver1), in-kernel driver
code has access to all of kernel memory, and
runs with privileges that give it access to all in-
structions (not just unprivileged ones) and to
all I/O space. As such, bugs in drivers can eas-
ily cause kernel lockups or panics. And various
studies (e.g., [Chou et al., 2001]) estimate that
more than 85% of the bugs in an operating sys-
tem are driver bugs.

Device drivers that run as user code, how-
ever, can use any language, can be developed
using any IDE, and can use whatever inter-
nal threading, memory management, etc., tech-
niques are most appropriate. When the infras-
tructure for supporting user-mode drivers is ad-
equate, the processes implementing the driver
can be killed and restarted almost with im-
punity as far as the rest of the operating system
goes.

Drivers that run in the kernel have to be up-
dated regularly to match in-kernel interface
changes. Third party drivers are therefore usu-
ally shipped as source code (or with a compi-
lable stub encapsulating the interface) that has
to be compiled against the kernel the driver is
to be installed into.

This means that everyone who wants to run a

1except that many drivers currently cannot be un-
loaded

third-party driver also has to have a toolchain
and kernel source on his or her system, or ob-
tain a binary for their own kernel from a trusted
third party.

Drivers for uncommon devices (or devices that
the mainline kernel developers do not use reg-
ularly) tend to lag behind. For example, in the
2.6.6 kernel, there are 81 drivers known to be
broken because they have not been updated to
match the current APIs, and a number more
that are still using APIs that have been depre-
cated.

User/kernel interfaces tend to change much
more slowly than in-kernel ones; thus a
user-mode driver has much more chance of
not needing to be changed when the kernel
changes. Moreover, user mode drivers can be
distributed under licences other than the GPL,
which may make them more attractive to some
people2.

User-mode drivers can be either closely or
loosely coupled with the applications that use
them. Two obvious examples are the X server
(XFree86) which uses a socket to communicate
with its clients and so has isolation from ker-
nel and client address spaces and can be very
complex; and the Myrinet drivers, which are
usually linked into their clients to gain perfor-
mance by eliminating context switch overhead
on packet reception.

The Nooks work [Swift et al., 2002] showed
that by isolating drivers from the kernel ad-
dress space, the most common programming
errors could be made recoverable. In Nooks,
drivers are insulated from the rest of the kernel
by running each in a separate address space,
and replacing the driver↔ kernel interface
with a new one that uses cross-domain pro-
cedure calls to replace any procedure calls in
the ABI, and that creates shadow copies of any

2for example, the ongoing problems with the Nvidia
graphics card driver could possibly be avoided.
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shared variables in the protected address space
of the driver.

This approach provides isolation, but also has
problems: as the driver model changes, there
is quite a lot of wrapper code that has to be
changed to accommodate the changed APIs.
Also, the value of any shared variable is frozen
for the duration of a driver ABI call. The
Nooks work is uniprocessor only; locking is-
sues therefore have not yet been addressed.

Windriver [Jungo, 2003] allows development
of user mode device drivers. It loads a pro-
prietary device module/dev/windrv6 ; user
code can interact with this device to setup and
teardown DMA, catch interrupts, etc.

Even from user space, of course, it is possi-
ble to make your machine unusable. Device
drivers have to be trusted to a certain extent to
do what they are advertised to do; this means
that they can program their devices, and possi-
bly corrupt or spy on the data that they transfer
between their devices and their clients. Mov-
ing a driver to user space does not change this.
It does however make it less likely that a fault
in a driver will affect anything other than its
clients

3 Existing Support

Linux has good support for user-mode drivers
that do not need DMA or interrupt handling—
see, e.g., [Nakatani, 2002].

The ioperm() andiopl() system calls al-
low access to the first 65536 I/O ports; and,
with a patch from Albert Calahan3 one can
map the appropriate parts of/proc/bus/pci/...to
gain access to memory-mapped registers. Or
on some architectures it is safe tommap()
/dev/mem.

3http://lkml.org/lkml/2003/7/13/258

It is usually best to use MMIO if it is avail-
able, because on many 64-bit platforms there
are more than 65536 ports—the PCI specifi-
cation says that there are232 ports available—
(and on many architectures the ports are emu-
lated by mapping memory anyway).

For particular devices—USB input devices,
SCSI devices, devices that hang off the paral-
lel port, and video drivers such as XFree86—
there is explicit kernel support. By opening a
file in /dev, a user-mode driver can talk through
the USB hub, SCSI controller, AGP controller,
etc., to the device. In addition, theinput han-
dler allows input events to be queued back into
the kernel, to allow normal event handling to
proceed.

libpci allows access to the PCI configuration
space, so that a driver can determine what in-
terrupt, IO ports and memory locations are be-
ing used (and to determine whether the device
is present or not).

Other recent changes—an improved scheduler,
better and faster thread creation and synchro-
nisation, a fully preemptive kernel, and faster
system calls—mean that it is possible to write
a driver that operates in user space that is al-
most as fast as an in-kernel driver.

4 Implementing the Missing Bits

The parts that are missing are:

1. the ability to claim a device from user
space so that other drivers do not try to
handle it;

2. The ability to deliver an interrupt from a
device to user space,

3. The ability to set up and tear-down DMA
between a device and some process’s
memory, and
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4. the ability to loop a device driver’s con-
trol and data interfaces into the appropri-
ate part of the kernel (so that, for exam-
ple, an IDE driver can appear as a standard
block device), preferably without having
to copy any payload data.

The work at UNSW covers only PCI devices,
as that is the only bus available on all of the
architectures we have access to (IA64, X86,
MIPS, PPC, alpha and arm).

4.1 PCI interface

Each device should have only a single driver.
Therefore one needs a way to associate a driver
with a device, and to remove that association
automatically when the driver exits. This has
to be implemented in the kernel, as it is only
the kernel that can be relied upon to clean up
after a failed process. The simplest way to
keep the association and to clean it up in Linux
is to implement a new filesystem, using the
PCI namespace. Open files are automatically
closed when a process exits, so cleanup also
happens automatically.

A new system call,usr_pci_open(int
bus, int slot, int fn) returns a file
descriptor. Internally, it callspci_enable_
device() andpci_set_master() to set
up the PCI device after doing the standard
filesystem boilerplate to set up a vnode and a
struct file .

Attempts to open an already-opened PCI de-
vice will fail with -EBUSY.

When the file descriptor is finally closed, the
PCI device is released, and any DMA map-
pings removed. All files are closed when a pro-
cess dies, so if there is a bug in the driver that
causes it to crash, the system recovers ready for
the driver to be restarted.

4.2 DMA handling

On low-end systems, it’s common for the PCI
bus to be connected directly to the memory
bus, so setting up a DMA transfer means
merely pinning the appropriate bit of memory
(so that the VM system can neither swap it out
nor relocate it) and then converting virtual ad-
dresses to physical addresses.

There are, in general, two kinds of DMA, and
this has to be reflected in the kernel interface:

1. Bi-directional DMA, for holding scatter-
gather lists, etc., for communication with
the device. Both the CPU and the device
read and write to a shared memory area.
Typically such memory is uncached, and
on some architectures it has to be allo-
cated from particular physical areas. This
kind of mapping is calledPCI-consistent;
there is an internal kernel ABI function to
allocate and deallocate appropriate mem-
ory.

2. Streaming DMA, where, once the device
has either read or written the area, it has
no further immediate use for it.

I implemented a new system call4, usr_pci_
map() , that does one of three things:

1. Allocates an area of memory suitable for a
PCI-consistent mapping, and maps it into
the current process’s address space; or

2. Converts a region of the current process’s
virtual address space into a scatterlist in
terms of virtual addresses (one entry per
page), pins the memory, and converts the

4Although multiplexing system calls are in general
deprecated in Linux, they are extremely useful while de-
veloping, because it is not necessary to change every
architecture-dependententry.Swhen adding new func-
tionality
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scatterlist into a list of addresses suitable
for DMA (by calling pci_map_sg() ,
which sets up the IOMMU if appropriate),
or

3. Undoes the mapping in point 2.

The file descriptor returned fromusr_pci_
open() is an argument tousr_pci_
map() . Mappings are tracked as part of the
private data for that open file descriptor, so that
they can be undone if the device is closed (or
the driver dies).

Underlyingusr_pci_map() are the kernel
routinespci_map_sg() andpci_unmap_
sg() , and the kernel routinepci_alloc_
consistent() .

Different PCI cards can address different
amounts of DMA address space. In the kernel
there is an interface to request that the dma ad-
dresses supplied are within the range address-
able by the card. The current implementation
assumes 32-bit addressing, but it would be pos-
sible to provide an interface to allow the real
capabilities of the device to be communicated
to the kernel.

4.2.1 The IOMMU

Many modern architectures have an IO mem-
ory management unit (see Figure 2), to convert
from physical to I/O bus addresses—in much
the same way that the processor’s MMU con-
verts virtual to physical addresses—allowing
even thirty-two bit cards to do single-cycle
DMA to anywhere in the sixty-four bit mem-
ory address space.

On such systems, after the memory has been
pinned, the IOMMU has to be set up to trans-
late from bus to physical addresses; and then
after the DMA is complete, the translation can
be removed from the IOMMU.

Device 1

Device 2

Device 3

IOMMU
Main

Memory

PCI bus

Figure 2: The IO MMU

The processor’s MMU also protects one virtual
address space from another. Currently ship-
ping IOMMU hardware does not do this: all
mappings are visible to all PCI devices, and
moreover for some physical addresses on some
architectures the IOMMU is bypassed.

For fully secure user-space drivers, one would
want this capability to be turned off, and also
to be able to associate a range of PCI bus ad-
dresses with a particular card, and disallow ac-
cess by that card to other addresses. Only thus
could one ensure that a card could perform
DMA only into memory areas explicitly allo-
cated to it.

4.3 Interrupt Handling

There are essentially two ways that interrupts
can be passed to user level.

They can be mapped onto signals, and sent
asynchronously, or a synchronous ‘wait-for-
signal’ mechanism can be used.

A signal is a good intuitive match for what an
interruptis, but has other problems:

1. One is fairly restricted in what one can do
in a signal handler, so a driver will usually
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have to take extra context switches to re-
spond to an interrupt (into and out of the
signal handler, and then perhaps the inter-
rupt handler thread wakes up)

2. Signals can be slow to deliver on busy sys-
tems, as they require the process table to
be locked. It would be possible to short
circuit this to some extent.

3. One needs an extra mechanism for regis-
tering interest in an interrupt, and for tear-
ing down the registration when the driver
dies.

For these reasons I decided to map interrupts
onto file descriptors./proc already has a di-
rectory for each interrupt (containing a file that
can be written to to adjust interrupt routing to
processors); I added a new file to each such di-
rectory. Suitably privileged processes can open
and read these files. The files have open-once
semantics; attempts to open them while they
are open return−1 with EBUSY.

When an interrupt occurs, the in-kernel inter-
rupt handler masks just that interrupt in the in-
terrupt controller, and then does anup() op-
eration on a semaphore (well, actually, the im-
plementation now uses a wait queue, but the
effect is the same).

When a process reads from the file, then kernel
enables the interrupt, then callsdown() on a
semaphore, which will block until an interrupt
arrives.

The actual data transferred is immaterial, and
in fact none ever is transferred; theread()
operation is used merely as a synchronisation
mechanism.

poll() is also implemented, so a user pro-
cess is not forced into the ‘wait for interrupt’
model that we use.

Obviously, one cannot share interrupts be-

tween devices if there is a user process in-
volved. The in-kernel driver merely passes
the interrupt onto the user-mode process; as it
knows nothing about the underlying hardware,
it cannot tell if the interrupt isreally for this
driver or not. As such it always reports the in-
terrupt as ‘handled.’

This scheme works only for level-triggered in-
terrupts. Fortunately, all PCI interrupts are
level triggered.

If one really wants a signal when an interrupt
happens, one can arrange for aSIGIO using
fcntl() .

It may be possible, by more extensive rear-
rangement of the interrupt handling code, to
delay the end-of-interrupt to the interrupt con-
troller until the user process is ready to get an
interrupt. As masking and unmasking inter-
rupts is slow if it has to go off-chip, delay-
ing the EOI should be significantly faster than
the current code. However, interrupt delivery
to userspace turns out not to be a bottleneck,
so there’s not a lot of point in this optimisa-
tion (profiles show less than 0.5% of the time
is spent in the kernel interrupt handler and de-
livery even for heavy interrupt load—around
1000 cycles per interrupt).

5 Driver Structure

The user-mode drivers developed at UNSW are
structured as a preamble, an interrupt thread,
and a control thread (see Figure 3).

The preamble:

1. Useslibpci.a to find the device or devices
it is meant to drive,

2. Calls usr_pci_open() to claim the
device, and

3. Spawns the interrupt thread, then
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Generic
IRQ Handler

usrdrv
Driver

Architecture−dependent
DMA support

Driver

pci_map_sg()
pci_unmap_sg()

pci_map()
pci_unmap()

Client

IPC or
function calls

pci_read_config()

read()

User

Kernel

libpci

Figure 3: Architecture of a User-Mode Device
Driver

4. Goes into a loop collecting client requests.

The interrupt thread:

1. Opens/proc/irq/irq /irq

2. Loops callingread() on the resulting
file descriptor and then calling the driver
proper to handle the interrupt.

3. The driver handles the interrupt, calls out
to the control thread(s) to say that work is
completed or that there has been an error,
queues any more work to the device, and
then repeats from step 2.

For the lowest latency, the interrupt thread can
be run as a real time thread. For our bench-
marks, however, this was not done.

The control thread queues work to the driver
then sleeps on a semaphore. When the driver,
running in the interrupt thread, determines that
a request is complete, it signals the semaphore

so that the control thread can continue. (The
semaphore is implemented as a pthreads mu-
tex).

The driver relies on system calls and threading,
so the fast system call support now available
in Linux, and the NPTL are very important to
get good performance. Each physical I/O in-
volves at least three system calls, plus what-
ever is necessary for client communication: a
read() on the interrupt FD, calls to set up
and tear down DMA, and maybe afutex()
operation to wake the client.

The system call overhead could be reduced by
combining DMA setup and teardown into a
single system call.

6 Looping the Drivers

An operating system has two functions with re-
gard to devices: firstly to drive them, and sec-
ondly to abstract them, so that all devices of the
same class have the same interface. While a
standalone user-level driver is interesting in its
own right (and could be used, for example, to
test hardware, or could be linked into an appli-
cation that doesn’t like sharing the device with
anyone), it is much more useful if the driver
can be used like any other device.

For the network interface, that’s easy: use
the tun/tap interface and copy frames between
the driver and/dev/net/tun. Having to copy
slows things down; others on the team here are
planning to develop a zero-copy equivalent of
tun/tap.

For the IDE device, there’s no standard Linux
way to have a user-level block device, so I im-
plemented one. It is a filesystem that has pairs
of directories: a master and a slave. When
the filesystem is mounted, creating a file in the
master directory creates a set of block device
special files, one for each potential partition, in



158 • Linux Symposium

the slave directory. The file in the master di-
rectory can then be used to communicate via
a very simple protocol between a user level
block device and the kernel’s block layer. The
block device special files in the slave directory
can then be opened, closed, read, written or
mounted, just as any other block device.

The main reason for using a mounted filesys-
tem was to allow easy use of dynamic major
numbers.

I didn’t bother implementing ioctl; it was not
necessary for our performance tests, and when
the driver runs at user level, there are cleaner
ways to communicate out-of-band data with
the driver, anyway.

7 Results

Device drivers were coded up by
[Leslie and Heiser, 2003] for a CMD680
IDE disc controller, and by another PhD
student (Daniel Potts) for a DP83820 Gigabit
ethernet controller. Daniel also designed and
implemented the tuntap interface.

7.1 IDE driver

The disc driver was linked into a program that
read 64 Megabytes of data from a Maxtor 80G
disc into a buffer, using varying read sizes.
Measurements were also made using Linux’s
in-kernel driver, and a program that read 64M
of data from the same on-disc location using
O_DIRECTand the same read sizes.

We also measured write performance, but the
results are sufficiently similar that they are not
reproduced here.

At the same time as the tests, a low-
priority process attempted to increment a 64-
bit counter as fast as possible. The number of
increments was calibrated to processor time on

an otherwise idle system; reading the counter
before and after a test thus gives an indication
of how much processor time is available to pro-
cesses other than the test process.

The initial results were disappointing; the
user-mode drivers spent far too much time
in the kernel. This was tracked down to
kmalloc() ; so theusr_pci_map() func-
tion was changed to maintain a small cache
of free mapping structures instead of calling
kmalloc() and kfree() each time (we
could have used the slab allocator, but it’s eas-
ier to ensure that the same cache-hot descriptor
is reused by coding a small cache ourselves).
This resulted in the performance graphs in Fig-
ure 4.

The two drivers compared are the new
CMD680 driver running in user space, and
Linux’s in-kernel SIS680 driver. As can be
seen, there is very little to choose between
them.

The graphs show average of ten runs; the stan-
dard deviations were calculated, but are negli-
gible.

Each transfer request takes five system calls to
do, in the current design. The client queues
work to the driver, which then sets up DMA for
the transfer (system call one), starts the trans-
fer, then returns to the client, which then sleeps
on a semaphore (system call two). The in-
terrupt thread has been sleeping inread() ,
when the controller finishes its DMA, it cause
an interrupt, which wakes the interrupt thread
(half of system call three). The interrupt thread
then tears down the DMA (system call four),
and starts any queued and waiting activity, then
signals the semaphore (system call five) and
goes back to read the interrupt FD again (the
other half of system call three).

When the transfer is above 128k, the IDE con-
troller can no longer do a single DMA opera-



Linux Symposium 2004 • 159

 0

 20

 40

 60

 80

 100

 1  4  16  64  256  1024  4096  16384  65536
 0

 10

 20

 30

 40

 50
C

P
U

 (%
)

Th
ro

ug
hp

ut
 (M

iB
/s

)

Transfer size (k)

kernel read
user read

Figure 4: Throughput and CPU usage for the user-mode IDE driver on Itanium-2, reading from a
disk

tion, so has to generate multiple transfers The
Linux kernel splits DMA requests above 64k,
thus increasing the overhead.

The time spent in this driver is divided as
shown in Figure 5.

Signal
Client

UserMode
Handler

Work

Queue
NewScheduler

Latency

IRQ

2.2 1

DMA...

Scheduler LatencyHardware

Kernel Stub 0.4

Figure 5: Timeline (inµseconds)

7.2 Gigabit Ethernet

The Gigabit driver results are more interest-
ing. We tested these using [ipbench, 2004]
with four clients, all with pause control turned
off. We ran three tests:

1. Packet receive performance, where pack-
ets were dropped and counted at the layer
immediately above the driver

2. Packet transmit performance, where pack-
ets were generated and fed to the driver,
and

3. Ethernet-layer packet echoing, where the
protocol layer swapped source and desti-
nation MAC-addresses, and fed received
packets back into the driver.

We did not want to start comparing IP stacks,
so none of these tests actually use higher level
protocols.

We measured three different configurations: a
standalone application linked with the driver,
the driver looped back into/dev/net/tapand
the standard in-kernel driver, all with interrupt
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holdoff set to 0, 1, or 2. (By default, the normal
kernel driver sets the interrupt holdoff to 300
µseconds, which led to too many packets be-
ing dropped because of FIFO overflow) Not all
tests were run in all configurations—for exam-
ple the linux in-kernel packet generator is suf-
ficiently different from ours that no fair com-
parison could be made.

For the tests that had the driver residing in or
feeding into the kernel, we implemented a new
protocol module to count and either echo or
drop packets, depending on the benchmark.

In all cases, we used the amount of work
achieved by a low priority process to measure
time available for other work while the test was
going on.

The throughput graphs in all cases are the
same. The maximum possible speed on the
wire is given for raw ethernet by109 × p/(p +
38) bits per second (the parameter38 is the
ethernet header size (14 octets), plus a4 octet
frame check sequence, plus a7 octet pream-
ble, plus a 1 octet start frame delimiter plus
the minimum12 octet interframe gap;p is the
packet size in octets). For large packets the per-
formance in all cases was the same as the the-
oretical maximum. For small packet sizes, the
throughput is limited by the PCI bus; you’ll no-
tice that the slope of the throughput curve when
echoing packets is around half the slope when
discarding packets, because the driver has to do
twice as many DMA operations per packet.

The user-mode driver (‘Linux user’ on the
graph) outperforms the in-kernel driver
(‘Linux orig’)—not in terms of throughput,
where all the drivers perform identically, but
in usingmuchless processing time.

This result was so surprising that we repeated
the tests using an EEpro1000, purportedly a
card with a much better driver, but saw the
same effect—in fact the achieved echo perfor-

mance is worse than for the in-kernel ns83820
driver for some packet sizes.

The reason appears to be that our driver has
a fixed number of receive buffers, which are
reused when the client is finished with them—
they are allocated only once. This is to pro-
vide congestion control at the lowest possible
level—the card drops packets when the upper
layers cannot keep up.

The Linux kernel drivers have an essentially
unlimited supply of receive buffers. Overhead
involved in allocating and setting up DMA for
these buffers is excessive, and if the upper lay-
ers cannot keep up, congestion is detected and
the packets dropped in the protocol layer—
after significant work has been done in the
driver.

One sees the same problem with the user mode
driver feeding the tuntap interface, as there is
no feedback to throttle the driver. Of course,
here there is an extra copy for each packet,
which also reduces performance.

7.3 Reliability and Failure Modes

In general the user-mode drivers are very re-
liable. Bugs in the drivers that would cause
the kernel to crash (for example, a null pointer
reference inside an interrupt handler) cause the
driver to crash, but the kernel continues. The
driver can then be fixed and restarted.

8 Future Work

The main foci of our work now lie in:

1. Reducing the need for context switches
and system calls by merging system calls,
and by trying new driver structures.

2. A zero-copy implementation of tun/tap.
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3. Improving robustness and reliability of
the user-mode drivers, by experimenting
with the IOMMU on the ZX1 chipset of
our Itanium-2 machines.

4. Measuring the reliability enhancements,
by using artificial fault injection to see
what problems that cause the kernel to
crash are recoverable in user space.

5. User-mode filesystems.

In addition there are some housekeeping tasks
to do before this infrastructure is ready for in-
clusion in a 2.7 kernel:

1. Replace the ad-hoc memory cache with a
proper slab allocator.

2. Clean up the system call interface

9 Where d’ya Get It?

Patches against the 2.6 kernel are sent to the
Linux kernel mailing list, and are onhttp://
www.gelato.unsw.edu.au/patches

Sample drivers will be made available from the
same website.
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Abstract

Linux 2.4 has been around in production en-
vironments at companies for a few years now,
we have been able to gather some good data
on how well (or not) things scale up. Number
of CPU’s, amount of memory, number of pro-
cesses, IO throughput, etc.

Most of the deployments in production today,
are on relatively small systems, 4- to 8-ways,
8–16GB of memory, in a few cases 32GB.
The architecture of choice has also been IA32.
64-bit systems are picking up in popularity
rapidly, however.

Now with 2.6, a lot of the barriers are supposed
to be gone. So, have they really? How much
memory can be used now, how is cpu scaling
these days, how good is IO throughput with
multiple controllers in 2.6.

A lot of people have the assumption that 2.6
resolves all of this. We will go into detail on
what we have found out, what we have tested
and some of the conclusions on how good the
move to 2.6 will really be.

1 Introduction

The comparison between the 2.4 and 2.6 ker-
nel trees are not solely based on performance.
A large part of the testsuites are performance
benchmarks however, as you will see, they
have been used to also measure stability. There

are a number of features added which improve
stability of the kernel under heavy workloads.
The goal of comparing the two kernel releases
was more to show how well the 2.6 kernel will
be able to hold up in a real world production
environment. Many companies which have de-
ployed Linux over the last two years are look-
ing forward to rolling out 2.6 and it is impor-
tant to show the benefits of doing such a move.
It will take a few releases before the required
stability is there however it’s clear so far that
the 2.6 kernel has been remarkably solid, so
early on.

Most of the 2.4 based tests have been run on
Red Hat Enterprise Linux 3, based on Linux
2.4.21. This is the enterprise release of Red
Hat’s OS distribution; it contains a large num-
ber of patches on top of the Linux 2.4 kernel
tree. Some of the tests have been run on the
kernel.org mainstream 2.4 kernel, to show
the benefit of having extra functionality. How-
ever it is difficult to even just boot up the main-
stream kernel on the test hardware due to lack
of support for drivers, or lack of stability to
complete the testsuite. The interesting thing to
keep in mind is that with the current Linux 2.6
main stream kernel, most of the testsuites ran
through completition. A number of test runs on
Linux 2.6 have been on Novell/SuSE SLES9
beta release.
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2 Test Suites

The test suites used to compare the various ker-
nels are based on an IO simulator for Oracle,
called OraSim and a TPC-C like workload gen-
erator called OAST.

Oracle Simulator (OraSim) is a stand-alone
tool designed to emulate the platform-critical
activities of the Oracle database kernel. Oracle
designed Oracle Simulator to test and charac-
terize the input and output (I/O) software stack,
the storage system, memory management, and
cluster management of Oracle single instances
and clusters. Oracle Simulator supports both
pass-fail testing for validation, and analytical
testing for debugging and tuning. It runs mul-
tiple processes, with each process representing
the parameters of a particular type of system
load similar to the Oracle database kernel.

OraSim is a relatively straightforward IO
stresstest utility, similar to IOzone or tiobench,
however it is built to be very flexible and con-
figurable.

It has its own script language which allows one
to build very complex IO patterns. The tool is
not released under any open source license to-
day because it has some code linked in which is
part of the RDBMS itself. The jobfiles used for
the testing are available onlinehttp://oss.

oracle.com/external/ols/jobfiles/ .

The advantage of using OraSim over a real
database benchmark is mainly the simplicity.
It does not require large amounts of memory or
large installed software components. There is
one executable which is started with the jobfile
as a parameter.The jobfiles used can be easily
modified to turn on certain filesystem features,
such as asynchronous IO.

OraSim jobfiles were created to simulate a rel-
atively small database. 10 files are defined as
actual database datafiles and two files are used

to simulate database journals.

OAST on the other hand is a complete database
stress test kit, based on the TPC-C benchmark
workloads. It requires a full installation of
the database software and relies on an actual
database environment to be created. TPC-C
is an on-line transaction workload. The num-
bers represented during the testruns are not ac-
tual TPC-C benchmarks results and cannot or
should not be used as a measure of TPC-C
performance—they are TPC-C-like; however,
not the same.

The database engine which runs the OAST
benchmark allocates a large shared memory
segment which contains the database caches
for SQL and for data blocks (shared pool and
buffer cache). Every client connection can run
on the same server or the connection can be
over TCP. In case of a local connection, for
each client, 2 processes are spawned on the
system. One process is a dedicated database
process and the other is the client code which
communicates with the database server pro-
cess through IPC calls. Test run parameters in-
clude run time length in seconds and number of
client connections. As you can see in the result
pages, both remote and local connections have
been tested.

3 Hardware

A number of hardware configurations have
been used. We tried to include various CPU
architectures as well as local SCSI disk ver-
sus network storage (NAS) and fibre channel
(SAN).

Configuration 1 consists of an 8-way IA32
Xeon 2 GHz with 32GB RAM attached to an
EMC CX300 Clariion array with 30 147GB
disks using a QLA2300 fibre channel HBA.
The network cards are BCM5701 Broadcom
Gigabit Ethernet.
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Configuration 2 consists of an 8-way Itanium 2
1.3 GHz with 8GB RAM attached to a JBOD
fibre channel array with 8 36GB disks using
a QLA2300 fibre channel HBA. The network
cards are BCM5701 Broadcom Gigabit Ether-
net.

Configuration 3 consists of a 2-way AMD64 2
GHz (Opteron 246) with 6GB RAM attached
to local SCSI disk (LSI Logic 53c1030).

4 Operating System

The Linux 2.4 test cases were created using
Red Hat Enterprise Linux 3 on all architec-
tures. Linux 2.6 was done with SuSE SLES9
on all architectures; however, in a number of
tests the kernel was replaced by the 2.6 main-
stream kernel for comparison.

The test suites and benchmarks did not have
to be recompiled to run on either RHEL3 or
SLES9. Of course different executables were
used on the three CPU architectures.

5 Test Results

At the time of writing a lot of changes were
still happening on the 2.6 kernel. As such,
the actual spreadsheets with benchmark data
has been published on a website, the data is
up-to-date with the current kernel tree and can
be found here:http://oss.oracle.com/

external/ols/results/

5.1 IO

If you want to build a huge database server,
which can handle thousands of users, it is im-
portant to be able to attach a large number of
disks. A very big shortcoming in Linux 2.4
was the fact that it could only handle 128 or
256.

With some patches SuSE got to around 3700
disks in SLES8, however that meant stealing
major numbers from other components. Re-
ally large database setups which also require
very high IO throughput, usually have disks at-
tached ranging from a few hundred to a few
thousand.

With the 64-bitdev_t in 2.6, it’s now possible
to attach plenty of disk. Without modifications
it can easily handle tens of thousands of de-
vices attached. This opens the world to really
large scale datawarehouses, tens of terabytes of
storage.

Another important change is the block IO
layer, the BIO code is much more efficient
when it comes to large IOs being submitted
down from the running application. In 2.4,
every IO got broken down into small chunks,
sometimes causing bottlenecks on allocating
accounting structures. Some of the tests com-
pared 1MBread() and write() calls in
2.4 and 2.6.

5.2 Asynchronous IO and DirectIO

If there is one feature that has always been on
top of the Must Have list for large database
vendors, it must be async IO. Asynchronous IO
allows processes to submit batches of IO oper-
ations and continue on doing different tasks in
the meantime. It improves CPU utilization and
can keep devices more busy. The Enterprise
distributions based on Linux 2.4 all ship with
the async IO patch applied on top of the main-
line kernel.

Linux 2.6 has async IO out of the box. It is
implemented a little different from Linux 2.4
however combined with support for direct IO it
is very performant. Direct IO is very useful as
it eliminates copying the userspace buffers into
kernel space. On systems that are constantly
overloaded, there is a nice performance im-
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provement to be gained doing direct IO. Linux
2.4 did not have direct IO and async IO com-
bined. As you can see in the performance
graph on AIO+DIO, it provides a significant
reduction in CPU utilization.

5.3 Virtual Memory

There has been another major VM overhaul in
Linux 2.6, in fact, even after 2.6.0 was released
a large portion has been re-written. This was
due to large scale testing showing weaknesses
as it relates to number of users that could be
handled on a system. As you can see in the test
results, we were able to go from around 3000
users to over 7000 users. In particular on 32-
bit systems, the VM has been pretty much a
disaster when it comes to deploying a system
with more than 16GB of RAM. With the latest
VM changes it is now possible to push a 32GB
even up to 48GB system pretty reliably.

Support for large pages has also been a big
winner. HUGETLBFSreduces TLB misses by
a decent percentage. In some of the tests it
provides up to a 3% performance gain. In our
testsHUGETLBFSwould be used to allocate
the shared memory segment.

5.4 NUMA

Linux 2.6 is the first Linux kernel with real
NUMA support. As we see high-end cus-
tomers looking at deploying large SMP boxes
running Linux, this became a real requirement.
In fact even with the AMD64 design, NUMA
support becomes important for performance
even when looking at just a dual-CPU system.

NUMA support has two components; however,
one is the fact that the kernel VM allocates
memory for processes in a more efficient way.
On the other hand, it is possible for applica-
tions to use the NUMA API and tell the OS
where memory should be allocated and how.

Oracle has an extention for Itanium2 to support
the libnuma API from Andi Kleen. Making use
of this extention showed a significant improve-
ment, up to about 20%. It allows the database
engine to be smart about memory allocations
resulting in a significant performance gain.

6 Conclusion

It is very clear that many of the features that
were requested by the larger corporations pro-
viding enterprise applications actually help a
huge amount. The advantage of having Asyn-
chronous IO or NUMA support in the main-
stream kernel is obvious. It takes a lot of effort
for distribution vendors to maintain patches on
top of the mainline kernel and when functional-
ity makes sense it helps to have it be included
in mainline. Micro-optimizations are still be-
ing done and in particular the VM subsystem
can improve quite a bit. Most of the stability
issues are around 32-bit, where the LowMem
versus HighMem split wreaks havoc quite fre-
quently. At least with some of the features now
in the 2.6 kernel it is possible to run servers
with more than 16GB of memory and scale up.

The biggest surprise was the stability. It was
very nice to see a new stable tree be so solid
out of the box, this in contrast to earlier stable
kernel trees where it took quite a few iterations
to get to the same point.

The major benefit of 2.6 is being able to run on
really large SMP boxes: 32-way Itanium2 or
Power4 systems with large amounts of mem-
ory. This was the last stronghold of the tradi-
tional Unices and now Linux can play along-
side with them even there. Very exciting times.
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Abstract

This paper will explore a multi-processor im-
plementation of frequency management, using
an AMD Opteron™ processor 4-way server as
a test vehicle.

Topics will include:

• the benefits of doing this, and why server
customers are asking for this,

• the hardware, for case of the AMD
Opteron processor,

• the various software components that
make this work,

• the issues that arise, and

• some areas of exploration for follow on
work.

1 Introduction

Processor frequency management is common
on laptops, primarily as a mechanism for im-
proving battery life. Other benefits include a
cooler processor and reduced fan noise. Fans
also use a non-trivial amount of power.

This technology is spreading to desktop ma-
chines, driven both by a desire to reduce power
consumption and to reduce fan noise.

Servers and other multiprocessor machines can
equally benefit. The multiprocessor frequency
management scenario offers more complex-
ity (no surprise there). This paper discusses
these complexities, based upon a test imple-
mentation on an AMD Opteron processor 4-
way server. Details within this paper are AMD
processor specific, but the concepts are appli-
cable to other architectures.

The author of this paper would like to make
it clear that he is just the maintainer of the
AMD frequency driver, supporting the AMD
Athlon™ 64 and AMD Opteron processors.
This frequency driver fits into, and is totally de-
pendent, on the CPUFreq support. The author
has gratefully received much assistance and
support from the CPUFreq maintainer (Do-
minik Brodowski).

2 Abbreviations

BKDG: The BIOS and Kernel Developer’s
Guide. Document published by AMD contain-
ing information needed by system software de-
velopers. See the references section, entry 4.

MSR: Model Specific Register. Processor reg-
isters, accessable only from kernel space, used
for various control functions. These regis-
ters are expected to change across processor
families. These registers are described in the
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BKDG[4].

VRM: Voltage Regulator Module. Hardware
external to the processor that controls the volt-
age supplied to the processor. The VRM has to
be capable of supplying different voltages on
command. Note that for multiprocessor sys-
tems, it is expected that each processor will
have its own independent VRM, allowing each
processor to change voltage independently. For
systems where more than one processor shares
a VRM, the processors have to be managed as
a group. The current frequency driver does not
have this support.

fid: Frequency Identifier. The values writ-
ten to the control MSR to select a core fre-
quency. These identifiers are processor family
specific. Currently, these are six bit codes, al-
lowing the selection of frequencies from 800
MHz to 5 Ghz. See the BKDG[4] for the map-
pings from fid to frequency. Note that the fre-
quency driver does need to “understand” the
mapping of fid to frequency, as frequencies are
exposed to other software components.

vid: Voltage Identifier. The values written to
the control MSR to select a voltage. These val-
ues are then driven to the VRM by processor
logic to achieve control of the voltage. These
identifiers are processor model specific. Cur-
rently these identifiers are five bit codes, of
which there are two sets—a standard set and
a low-voltage mobile set. The frequency driver
does not need to be able to “understand” the
mapping of vid to voltage, other than perhaps
for debug prints.

VST: Voltage Stabilization Time. The length
of time before the voltage has increased and is
stable at a newly increased voltage. The driver
has to wait for this time period when stepping
the voltage up. The voltage has to be stable
at the new level before applying a further step
up in voltage, or before transitioning to a new
frequency that requires the higher voltage.

MVS: Maximum Voltage Step. The maximum
voltage step that can be taken when increasing
the voltage. The driver has to step up voltage
in multiple steps of this value when increasing
the voltage. (When decreasing voltage it is not
necessary to step, the driver can merely jump
to the correct voltage.) A typical MVS value
would be 25mV.

RVO: Ramp Voltage Offset. When transition-
ing frequencies, it is necessary to temporarily
increase the nominal voltage by this amount
during the frequency transition. A typical RVO
value would be 50mV.

IRT: Isochronous Relief Time. During fre-
quency transitions, busmasters briefly lose ac-
cess to system memory. When making mul-
tiple frequency changes, the processor driver
must delay the next transition for this time
period to allow busmasters access to system
memory. The typical value used is 80us.

PLL: Phase Locked Loop. Electronic circuit
that controls an oscillator to maintain a con-
stant phase angle relative to a reference signal.
Used to synthesize new frequencies which are
a multiple of a reference frequency.

PLL Lock Time: The length of time, in mi-
croseconds, for the PLL to lock.

pstate: Performance State. A combination of
frequency/voltage that is supported for the op-
eration of the processor. A processor will typi-
cally have several pstates available, with higher
frequencies needing higher voltages. The pro-
cessor clock can not be set to any arbitrary fre-
quency; it may only be set to one of a limited
set of frequencies. For a given frequency, there
is a minimum voltage needed to operate reli-
ably at that frequency, and this is the correct
voltage, thus forming the frequency/voltage
pair.

ACPI: Advanced Configuration and Power In-
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terface Specification. An industry specifica-
tion, initially developed by Intel, Microsoft,
Phoenix and Toshiba. See the reference sec-
tion, entry 5.

_PSS:Performance Supported States. ACPI
object that defines the performance states valid
for a processor.

_PPC: Performance Present Capabilities.
ACPI object that defines which of the _PSS
states are currently available, due to current
platform limitations.

PSBPerformance State Block. BIOS provided
data structure used to pass information, to the
driver, concerning the pstates available on the
processor. The PSB does not support multi-
processor systems (which use the ACPI _PSS
object instead) and is being deprecated. The
format of the PSB is defined in the BKDG.

3 Why Does Frequency Manage-
ment Affect Power Consump-
tion?

Higher frequency requires higher voltage.
As an example, data for part number
ADA3200AEP4AX:

2.2 GHz @ 1.50 volts, 58 amps max – 89 watts

2.0 GHz @ 1.40 volts, 48 amps max – 69 watts

1.8 GHz @ 1.30 volts, 37 amps max – 50 watts

1.0 GHz @ 1.10 volts, 18 amps max – 22 watts

These figures are worst case current/power fig-
ures, at maximum case temperature, and in-
clude I/O power of 2.2W.

Actual power usage is determined by:

• code currently executing (idle blocks in
the processor consume less power),

• activity from other processors (cache co-
herency, memory accesses, pass-through
traffic on the HyperTransport™ connec-
tions),

• processor temperature (current increases
with temperature, at constant workload
and voltage),

• processor voltage.

Increasing the voltage allows operation at
higher frequencies, at the cost of higher power
consumption and higher heat generation. Note
that relationship between frequency and power
consumption is not a linear relationship—a
10% frequency increase will cost more than
10% in power consumption (30% or more).

Total system power usage depends on other de-
vices in the system, such as whether disk drives
are spinning or stopped, and on the efficiency
of power supplies.

4 Why Should Your Server Behave
Like A Laptop?

• Save power. It is the right thing to do
for the environment. Note that power
consumed is largely converted into heat,
which then becomes a load on the air con-
ditioning in the server room.

• Save money. Power costs money. The
power savings for a single server are typi-
cally regarded as trivial in terms of a cor-
porate budget. However, many large or-
ganizations have racks of many thousands
of servers. The power bill is then far from
trivial.

• Cooler components last longer, and this
translates into improved server reliability.

• Government Regulation.
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5 Interesting Scenarios

These are real world scenarios, where the ap-
plication of the technology is appropriate.

5.1 Save power in an idle cluster

A cluster would typically be kept running at
all times, allowing remote access on demand.
During the periods when the cluster is idle, re-
ducing the CPU frequency is a good way to
reduce power consumption (and therefore also
air conditioning load), yet be able to quickly
transition back up to full speed (<0.1 second)
when a job is submitted.

User space code (custom to the management of
that cluster) can be used to offer cluster speeds
of “fast” and “idle,” using the/proc or /sys
file systems to trigger frequency transitions.

5.2 The battery powered server

Or, the server running on a UPS.

Many production servers are connected
to a battery backup mechanism (UPS—
uninterruptible power supply) in case the
mains power fails. Action taken on a mains
power failure varies:

• Orderly shutdown.

• Stay up and running for as long as there
is battery power, but orderly shutdown if
mains power is not restored.

• Stay up and running, mains power will be
provided by backup generators as soon as
the generators can be started.

In these scenarios, transitioning to lower per-
formance states will maximize battery life, or
reduce the amount of generator/battery power
capacity required.

UPS notification of mains power loss to the
server for administrator alerts is well under-
stood technology. It is not difficult to add the
support for transitioning to a lower pstate. This
can be done by either a cpufreq governor or by
adding the simple user space controls to an ex-
isting user space daemon that is monitoring the
UPS alerts.

5.3 Server At Less Than Maximum Load

As an example, a busy server may be process-
ing 100 transactions per second, but only 5
transactions per second during quiet periods.
Reducing the CPU frequency from 2.2 GHz to
1.0 GHz is not going to impact the ability of
that server to process 5 transactions per second.

5.4 Processor is not the bottleneck

The bottleneck may not be the processor speed.
Other likely bottlenecks are disk access and
network access. Having the processor waiting
faster may not improve transaction throughput.

5.5 Thermal cutback to avoid over tempera-
ture situations

The processors are the main generators of heat
in a system. This becomes very apparent when
many processors are in close proximity, such
as with blade servers. The effectiveness of the
processor cooling is impacted when the proces-
sor heat sinks are being cooled with hot air. Re-
ducing processor frequency when idle can dra-
matically reduce the heat production.

5.6 Smaller Enclosures

The drive to build servers in smaller boxes,
whether as standalone machines or slim rack-
mount machines, means that there is less space
for air to circulate. Placing many slim rack-
mounts together in a rack (of which the most
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demanding case is a blade server) aggravates
the cooling problem as the neighboring boxes
are also generating heat.

6 System Power Budget

The processors are only part of the system. We
therefore need to understand the power con-
sumption of the entire system to see how sig-
nificant processor frequency management is on
the power consumption of the whole system.

A system power budget is obviously plat-
form specific. This sample DC (direct cur-
rent) power budget is for a 4-processor AMD
Opteron processor based system. The system
has three 500W power supplies, of which one
is redundant. Analysis shows that for many
operating scenarios, the system could run on
a single power supply.

This analysis is of DC power. For the system
in question, the efficiency of the power sup-
plies are approximately linear across varying
loads, and thus the DC power figures expressed
as percentages are meaningful as predictors of
the AC (alternating current) power consump-
tion. For systems with power supplies that are
not linearly efficient across varying loads, the
calculations obviously have to be factored to
take account of power supply efficiency.

System components:

• 4 processors @ 89W = 356W in the maxi-
mum pstate, 4 @ 22W = 88W in the mini-
mum pstate. These are worst case figures,
at maximium case temperature, with the
worst case instruction mix. The figures in
Table1 are reduced from these maximums
by approximately 10% to account for a re-
duced case temperature and for a work-
load that does not keep all of the proces-
sors’ internal units busy.

• Two disk drives (Western Digital 250
GByte SATA), 16W read/write, 10W idle
(spinning), 1.3W sleep (not spinning).
Note SCSI drives typically consume more
power.

• DVD Drive, 10W read, 1W idle/sleep.

• PCI 2.2 Slots – absolute max of 25W per
slot, system will have a total power budget
that may not account for maximum power
in all slots. Estimate 2 slots occupied at a
total of 20W.

• VGA video card in a PCI slot. 5W. (AGP
would be more like 15W+).

• DDR DRAM, 10W max per DIMM, 40W
for 4 GBytes configured as 4 DIMMs.

• Network (built in) 5W.

• Motherboard and components 30W.

• 10 fans @ 6W each. 60W.

• Keyboard + Mouse 3W

See Table 1 for the sample power budget under
busy and light loads.

The light load without any frequency reduction
is baselined as 100%.

The power consumption is shown for the same
light load with frequency reduction enabled,
and again where the idle loop incorporates the
hlt instruction.

Using frequency management, the power con-
sumption drops to 43%, and adding the use of
the hlt instruction (assuming 50% time halted),
the power consumption drops further to 33%.

These are significant power savings, for sys-
tems that are under light load conditions at
times. The percentage of time that the system
is running under reduced load has to be known
to predict actual power savings.
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system load 4 2 kbd
cpus disks dvd pci vga dram net planar fans mou total

busy 320 32 10 20 5 40 5 30 60 3 525W
90%

light load 310 22 1 15 5 38 5 20 60 3 479W
87% 100%

light load, using 79 22 1 15 5 38 5 20 20 3 208W
frequency reduction 90% 43%

light load, using 32 22 1 15 5 38 5 20 15 3 156
frequency reduction 40% 33%
and using hlt 50%

of the time

Table 1: Sample System Power Budget (DC), in watts

7 Hardware—AMD Opteron

7.1 Software Interface To The Hardware

There are two MSRs, the FIDVID_STATUS
MSR and the FIDVID_CONTROL MSR, that
are used for frequency voltage transitions.
These MSRs are the same for the single pro-
cessor AMD Athlon 64 processors and for the
AMD Opteron MP capable processors. These
registers are not compatible with the previ-
ous generation of AMD Athlon processors, and
will not be compatible with the next generation
of processors.

The CPU frequency driver for AMD proces-
sors therefore has to change across processor
revisions, as do the ACPI _PSS objects that de-
scribe pstates.

The status register reports the current fid and
vid, as well as the maximum fid, the start fid,
the maximum vid and the start vid of the par-
ticular processor.

These registers are documented in the
BKDG[4].

As MSRs can only be accessed by executing
code (the read msr or write msr instructions) on

the target processor, the frequency driver has to
use the processor affinity support to force exe-
cution on the correct processor.

7.2 Multiple Memory Controllers

In PC architectures, the memory controller is
a component of the northbridge, which is tra-
ditionally a separate component from the pro-
cessor. With AMD Opteron processors, the
northbridge is built into the processor. Thus,
in a multi-processor system there are multiple
memory controllers.

See Figure 1 for a block diagram of a two pro-
cessor system.

If a processor is accessing DRAM that is phys-
ically attached to a different processor, the
DRAM access (and any cache coherency traf-
fic) crosses the coherent HyperTransport inter-
processor links. There is a small performance
penalty in this case. This penalty is of the or-
der of a DRAM page hit versus a DRAM page
miss, about 1.7 times slower than a local ac-
cess.

This penalty is minimized by the processor
caches, where data/code residing in remote
DRAM is locally cached. It is also minimized
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by Linux’s NUMA support.

Note that a single threaded application that
is memory bandwidth constrained may benefit
from multiple memory controllers, due to the
increase in memory bandwidth.

When the remote processor is transitioned to
a lower frequency, this performance penalty is
worse. An upper bound to the penalty may
be calculated as proportional to the frequency
slowdown. I.e., taking the remote processor
from 2.2 GHz to 1.0 GHz would take the 1.7
factor from above to a factor of 2.56. Note that
this is an absolute worst case, an upper bound
to the factor. Actual impact is workload depen-
dent.

A worst case scenario would be a memory
bound task, doing memory reads at addresses
that are pathologically the worst case for the
caches, with all accesses being to remote mem-
ory. A more typical scenario would see this
penalty alleviated by:

• processor caches, where 64 bytes will
be read and cached for a single access,
so applications that walk linearly through
memory will only see the penalty on 64
byte boundaries,

• memory writes do not take a penalty
(as processor execution continues without
waiting for a write to complete),

• memory may be interleaved,

• kernel NUMA optimizations for non-
interleaved memory (which allocate
memory local to the processor when
possible to avoid this penalty).

7.3 DRAM Interface Speed

The DRAM interface speed is impacted by the
core clock frequency. A full table is published

in the processor data sheet; Table 2 shows a
sample of actual DRAM frequencies for the
common specified DRAM frequencies, across
a range of core frequencies.

This table shows that certain DRAM speed /
core speed combinations are suboptimal.

Effective memory performance is influenced
by many factors:

• cache hit rates,

• effectiveness of NUMA memory alloca-
tion routines,

• load on the memory controller,

• size of penalty for remote memory ac-
cesses,

• memory speed,

• other hardware related items, such as
types of DRAM accesses.

It is therefore necessary to benchmark the ac-
tual workload to get meaningful data for that
workload.

7.4 UMA

During frequency transitions, and when Hy-
perTransport LDTSTOP is asserted, DRAM is
placed into self refresh mode. UMA graph-
ics devices therefore can not access DRAM.
UMA systems therefore need to limit the time
that DRAM is in self refresh mode. Time con-
straints are bandwidth dependent, with high
resolution displays needing higher memory
bandwidth. This is handled by the IRT delay
time during frequency transitions. When tran-
sitioning multiple steps, the driver waits an ap-
propriate length of time to allow external de-
vices to access memory.
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Figure 1: Two Processor System

Processor 100MHz 133MHz 166MHz 200MHz
Core DRAM DRAM DRAM DRAM

Frequency spec spec spec spec

800MHz 100.00 133.33 160.00 160.00
1000MHz 100.00 125.00 166.66 200.00
2000MHz 100.00 133.33 166.66 200.00
2200MHz 100.00 129.41 157.14 200.00

Table 2: DRAM Frequencies For A Range Of Processor Core Frequencies
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7.5 TSC Varying

The Time Stamp Counter (TSC) register is
a register that increments with the processor
clock. Multiple reads of the register will see
increasing values. This register increments on
each core clock cycle in the current generation
of processors. Thus, the rate of increase of the
TSC when compared with “wall clock time”
varies as the frequency varies. This causes
problems in code that calibrates the TSC incre-
ments against an external time source, and then
attempts to use the TSC to measure time.

The Linux kernel uses the TSC for such tim-
ings, for example when a driver calls udelay().
In this case it is not a disaster if the udelay()
call waits for too long as the call is defined to
allow this behavior. The case of the udelay()
call returning too quickly can be fatal, and this
has been demonstrated during experimentation
with this code.

This particular problem is resolved by the
cpufreq driver correcting the kernel TSC cal-
ibration whenever the frequency changes.

This issue may impact other code that uses
the TSC register directly. It is interesting to
note that it is hard to define a correct behavior.
Code that calibrates the TSC against an exter-
nal clock will be thrown off if the rate of in-
crement of the TSC should change. However,
other code may expect a certain code sequence
to consistently execute in approximately the
same number of cycles, as measured by the
TSC, and this code will be thrown off if the be-
havior of the TSC changes relative to the pro-
cessor speed.

7.6 Measurement Of Frequency Transition
Times

The time required to perform a transition is a
combination of the software time to execute the

required code, and the hardware time to per-
form the transition.

Examples of hardware wait time are:

• waiting for the VRM to be stable at a
newer voltage,

• waiting for the PLL to lock at the new fre-
quency,

• waiting for DRAM to be placed into and
then taken out of self refresh mode around
a frequency transition.

The time taken to transition between two states
is dependent on both the initial state and the
target state. This is due to :

• multiple steps being required in some
cases,

• certain operations are lengthier (for ex-
ample, voltage is stepped up in multiple
stages, but stepped down in a single step),

• difference in code execution time depen-
dent on processor speed (although this is
minor).

Measurements, taken by calibrating the fre-
quency driver, show that frequency transitions
for a processor are taking less than 0.015 sec-
onds.

Further experimentation with multiple proces-
sors showed a worst case transition time of less
than 0.08 seconds to transition all 4 processors
from minimum to maximum frequency, and
slightly faster to transition from maximum to
minimum frequency.

Note, there is a driver optimization under
consideration that would approximately halve
these transition times.
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7.7 Use of Hardware Enforced Throttling

The southbridge (I/O Hub, example AMD-
8111™ HyperTransport I/O Hub) is capable
of initiating throttling via the HyperTransport
stopclock message, which will ramp down the
CPU grid by the programmed amount. This
may be initiated by the southbridge for thermal
throttling or for other reasons.

This throttling is transparent to software, other
than the performance impact.

This throttling is of greatest value in the lowest
pstate, due to the reduced voltage.

The hardware enforced throttling is generally
not of relevance to the software management
of processor frequencies. However, a system
designer would need to take care to ensure
that the optimal scenarios occur—i.e., transi-
tion to a lower frequency/voltage in preference
to hardware throttling in high pstates. The
BIOS configurations are documented in the
BKDG[4].

For maximum power savings, the southbridge
would be configured to initiate throttling when
the processor executes thehlt instruction.

8 Software

The AMD frequency driver is a small part of
the software involved. The frequency driver
fits into the CPUFreq architecture, which is
part of the 2.6 kernel. It is also available as a
patch for the 2.4 kernel, and many distributions
do include it.

The CPUFreq architecture includes kernel sup-
port, the CPUFreq driver itself (drivers/
cpufreq ), an architecture specific driver to
control the hardware (powernow-k8.ko is this
case), and/sys file system code for userland
access.

The kernel support code (linux/kernel/
cpufreq.c ) handles timing changes such as
updating the kernel constantloops_per_
jiffies , as well as notifiers (system com-
ponents that need to be notified of a frequency
change).

8.1 History Of The AMD Frequency Driver

The CPU frequency driver for AMD Athlon
(the previous generation of processors) was
developed by Dave Jones. This driver sup-
ports single processor transitions only, as the
pstate transition capability was only enabled in
mobile processors. This driver used the PSB
mechanism to determine valid pstates for the
processor. This driver has subsequently been
enhanced to add ACPI support.

The initial AMD Athlon 64 and AMD Opteron
driver (developed by me, based upon Dave’s
earlier work, and with much input from Do-
minik and others), was also PSB based. This
was followed by a version of the driver that
added ACPI support.

The next release is intended to add a built-in
table of pstates that will allow the checking of
BIOS supplied data, and also allow an override
capability to provide pstate data when not sup-
plied by BIOS.

8.2 User Interface

The deprecated /proc/cpufreq (and
/proc/sys ) file system offers control over
all processors or individual processors. By
echoing values into this file, the root user
can change policies and change the limits on
available frequencies.

Examples:

Constrain all processors to frequencies be-
tween 1.0 GHz and 1.6 GHz, with the perfor-
mance policy (effectively chooses 1.6 GHz):
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echo -n "1000000:16000000:

performance" > /proc/cpufreq

Constrain processor 2 to run at only 2.0 GHz:

echo -n "2:2000000:2000000:

performance" > proc/cpufreq

The “performance” refers to a policy, with
the other policy available being “powersave.”
These policies simply forced the frequency to
be at the appropriate extreme of the available
range. With the 2.6 kernel, the choice is nor-
mally for a “userspace” governor, which allows
the (root) user or any user space code (running
with root privilege) to dynamically control the
frequency.

With the 2.6 kernel, a new interface in the
/sys filesystem is available to the root user,
deprecating the/proc/cpufreq method.

The control and status files exist under
/sys/devices/system/cpu/cpuN/
cpufreq , where N varies from 0 up-
wards, dependent on which processors are
online. Among the other files in each proces-
sor’s directory, scaling_min_freq and
scaling_max_freq control the minimum
and maximum of the ranges in which the fre-
quency may vary. Thescaling_governor
file is used to control the choice of gov-
ernor. See linux/Documentation/
cpu-freq/userguide.txt for more
information.

Examples:

Constrain processor 2 to run only in the range
1.6 GHz to 2.0 GHz:

cd /sys/devices/system/cpu

cd cpu2/cpufreq

echo 1600000 > scaling_min_freq

echo 2000000 > scaling_max_freq

8.3 Control From User Space And User Dae-
mons

The interface to the/sys filesystem allows
userland control and query functionality. Some
form of automation of the policy would nor-
mally be part of the desired complete imple-
mentation.

This automation is dependent on the reason for
using frequency management. As an example,
for the case of transitioning to a lower pstate
when running on a UPS, a daemon will be no-
tified of the failure of mains power, and that
daemon will trigger the frequency change by
writing to the control files in the/sys filesys-
tem.

The CPUFreq architecture has thus split the
implementation into multiple parts:

1. user space policy

2. kernel space driver for common function-
ality

3. kernel space driver for processor specific
implementation.

There are multiple user space automation
implementations, not all of which currently
support multiprocessor systems. One that
does, and that has been used in this
project is cpufreqd version 1.1.2 (http://

sourceforge.net/projects/cpufreqd ).

This daemon is controlled by a configuration
file. Other than making changes to the con-
figuration file, the author of this paper has not
been involved in any of the development work
on cpufreqd, and is a mere user of this tool.

The configuration file specifies profiles and
rules. A profile is a description of the system
settings in that state, and my configuration file
is setup to map the profiles to the processor
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pstates. Rules are used to dynamically choose
which profile to use, and my rules are setup
to transition profiles based on total processor
load.

My simple configuration file to change proces-
sor frequency dependent on system load is:

[General]
pidfile=/var/run/cpufreqd.pid
poll_interval=2
pm_type=acpi

# 2.2 GHz processor speed
[Profile]
name=hi_boost
minfreq=95%
maxfreq=100%
policy=performance

# 2.0 GHz processor speed
[Profile]
name=medium_boost
minfreq=90%
maxfreq=93%
policy=performance

# 1.0 GHz processor Speed
[Profile]
name=lo_boost
minfreq=40%
maxfreq=50%
policy=powersave

[Profile]
name=lo_power
minfreq=40%
maxfreq=50%
policy=powersave

[Rule]
#not busy 0%-40%
name=conservative
ac=on
battery_interval=0-100

cpu_interval=0-40
profile=lo_boost

#medium busy 30%-80%
[Rule]
name=lo_cpu_boost
ac=on
battery_interval=0-100
cpu_interval=30-80
profile=medium_boost

#really busy 70%-100%
[Rule]
name=hi_cpu_boost
ac=on
battery_interval=50-100
cpu_interval=70-100
profile=hi_boost

This approach actually works very well for
multiple small tasks, for transitioning the fre-
quencies of all the processors together based
on a collective loading statistic.

For a long running, single threaded task, this
approach does not work well as the load is only
high on a single processor, with the others be-
ing idle. The average load is thus low, and
all processors are kept at a slow speed. Such
a workload scenario would require an imple-
mentation that looked at the loading of individ-
ual processors, rather than the average. See the
section below on future work.

8.4 The Drivers Involved

powernow-k8.ko arch/i386/
kernel/cpu/cpufreq/powernow-k8.
c (the same source code is built as a 32-bit
driver in thei386 tree and as a 64-bit driver
in thex86_64 tree)

drivers/acpi

drivers/cpufreq
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The Test Driver

Note that thepowernow-k8.ko driver does
not export any read, write, or ioctl interfaces.
For test purposes, a second driver exists with
an ioctl interface for test application use. The
test driver was a big part of the test effort on
powernow-k8.ko prior to release.

8.5 Frequency Driver Entry Points

powernowk8_init()

Driver late_initcall . Initialization is
late as the acpi driver needs to be initialized
first. Verifies that all processors in the system
are capable of frequency transitions, and that
all processors are supported processors. Builds
a data structure with the addresses of the four
entry points for cpufreq use (listed below), and
callscpufreq_register_driver() .

powernowk8_exit()

Called when the driver is to be unloaded. Calls
cpufreq_unregister_driver() .

8.6 Frequency Driver Entry Points For Use By
The CPUFreq driver

powernowk8_cpu_init()

This is a per-processor initialization routine.
As we are not guaranteed to be executing on
the processor in question, and as the driver
needs access to MSRs, the driver needs to force
itself to run on the correct processor by using
set_cpus_allowed() .

This pre-processor initialization allows for pro-
cessors to be taken offline or brought online dy-
namically. I.e., this is part of the software sup-
port that would be needed for processor hot-
plug, although this is not supported in the hard-
ware.

This routine finds the ACPI pstate data for this

processor, and extracts the (proprietary) data
from the ACPI_PSSobjects. This data is ver-
ified as far as is reasonable. Per-processor data
tables for use during frequency transitions are
constructed from this information.

powernowk8_cpu_exit()

Per-processor cleanup routine.

powernowk8_verify()

When the root user (or an application running
on behalf of the root user) requests a change to
the minimum/maximum frequencies, or to the
policy or governor, the frequency driver’s ver-
ification routine is called to verify (and correct
if necessary) the input values. For example,
if the maximum speed of the processor is 2.4
GHz and the user requests that the maximum
range be set to 3.0 GHz, the verify routine will
correct the maximum value to a value that is ac-
tually possible. The user can, however, chose a
value that is less than the hardware maximum,
for example 2.0 GHz in this case.

As this routine just needs to access the per-
processor data, and not any MSRs, it does not
matter which processor executes this code.

powernowk8_target()

This is the driver entry point that actually per-
forms a transition to a new frequency/voltage.
This entry point is called for each processor
that needs to transition to a new frequency.

There is therefore an optimization possible by
enhancing the interface between the frequency
driver and the CPUFreq driver for the case
where all processors are to be transitioned to
a new, common frequency. However, it is not
clear that such an optimization is worth the
complexity, as the functionality to transition a
single processor would still be needed.

This routine is invoked with the processor
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number as a parameter, and there is no guaran-
tee as to which processor we are currently exe-
cuting on. As the mechanism for changing the
frequency involves accessing MSRs, it is nec-
essary to execute on the target processor, and
the driver forces its execution onto the target
processor by usingset_cpus_allowed() .

The CPUFreq helpers are then used to deter-
mine the correct target frequency. Once a cho-
sen targetfid andvid are identified:

• the cpufreq driver is called to warn that a
transition is about to occur,

• the actual transition code within
powernow-k8 is called, and then

• the cpufreq driver is called again to con-
firm that the transition was successful.

The actual transition is protected with a
semaphore that is used across all processors.
This is to prevent transitions on one proces-
sor from interfering with transitions on other
processors. This is due to the inter-processor
communication that occurs at a hardware level
when a frequency transition occurs.

8.7 CPUFreq Interface

The CPUFreq interface provides entry points,
that are required to make the system function.

It also provides helper functions, which need
not be used, but are there to provide common
functionality across the set of all architecture
specific drivers. Elimination of duplicate good
is a good thing! An architecture specific driver
can build a table of available frequencies, and
pass this table to the CPUFreq driver. The
helper functions then simplify the architecture
driver code by manipulating this table.

cpufreq_register_driver()

Registers the frequency driver as being the
driver capable of performing frequency transi-
tions on this platform. Only one driver may be
registered.

cpufreq_unregister_driver()

Unregisters the driver, when it is being un-
loaded.

cpufreq_notify_transition()

Used to notify the CPUFreq driver, and thus the
kernel, that a frequency transition is occurring,
and triggering recalibration of timing specific
code.

cpufreq_frequency_table_target()

Helper function to find an appropriate table en-
try for a given target frequency. Used in the
driver’s target function.

cpufreq_frequency_table_verify()

Helper function to verify that an input fre-
quency is valid. This helper is effectively a
complete implementation of the driver’s verify
function.

cpufreq_frequency_table_cpuinfo()

Supplies the frequency table data that is used
on subsequent helper function calls. Also aids
with providing information as to the capabili-
ties of the processors.

8.8 Calls To The ACPI Driver

acpi_processor_register_performance()

acpi_processor_unregister_performance()

Helper functions used at per-processor initial-
ization time to gain access to the data from the
_PSS object for that processor. This is a prefer-
able solution to the frequency driver having to
walk the ACPI namespace itself.



Linux Symposium 2004 • 183

8.9 The Single Processor Solution

Many of the kernel system calls collapse to
constants when the kernel is built without
multiprocessor support. For example,num_
online_cpus() becomes a macro with the
value 1. By the careful use of the defini-
tions in smp.h, the same driver code handles
both multiprocessor and single processor ma-
chines without the use of conditional compi-
lation. The multiprocessor support obviously
adds complexity to the code for a single proces-
sor code, but this code is negligible in the case
of transitioning frequencies. The driver ini-
tialization and termination code is made more
complex and lengthy, but this is not frequently
executed code. There is also a small penalty in
terms of code space.

The author does not feel that the penalty of the
multiple processor support code is noticeable
on a single processor system, but this is obvi-
ously debatable. The current choice is to have
a single driver that supports both single proces-
sor and multiple processor systems.

As the primary performance cost is in terms
of additional code space, it is true that a sin-
gle processor machine with highly constrained
memory may benefit from a simplified driver
without the additional multi-processor support
code. However, such a machine would see
greater benefit by eliminating other code that
would not be necessary on a chosen platform.
For example, the PSB support code could be
removed from a memory constrained single
processor machine that was using ACPI.

This approach of removing code unnecessary
for a particular platform is not a wonderful ap-
proach when it leads to multiple variants of
the driver, all of which have to be supported
and enhanced, and which makes Kconfig even
more complex.

8.10 Stages Of Development, Test And Debug
Of The Driver

The algorithm for transitioning to a new fre-
quency is complex. See the BKDG[4] for a
good description of the steps required, includ-
ing flowcharts. In order to test and debug the
frequency/voltage transition code thoroughly,
the author first wrote a simple simulation of the
processor. This simulation maintained a state
machine, verified that fid/vid MSR control ac-
tivity was legal, provided fid/vid status MSR
results, and wrote a log file of all activity. The
core driver code was then written as an appli-
cation and linked with this simulation code to
allow testing of all combinations.

The driver was then developed as a skele-
ton using printk to develop and test the
BIOS/ACPI interfaces without having the fre-
quency/voltage transition code present. This is
because attempts to actually transition to an in-
valid pstate often result in total system lock-
ups that offer no debug output—if the proces-
sor voltage is too low for the frequency, suc-
cessful code execution ceases.

When the skeleton was working correctly, the
actual transition code was dropped into place,
and tested on real hardware, both single pro-
cessor and multiple processor. (The single pro-
cessor driver was released many months before
the multi-processor capable driver as the multi-
processor capable hardware was not available
in the marketplace.) The functional driver was
tested, using printk to trace activity, and using
external hardware to track power usage, and
using a test driver to independently verify reg-
ister settings.

The functional driver was then made available
to various people in the community for their
feedback. The author is grateful for the ex-
tensive feedback received, which included the
changed code to implement suggestions. The
driver as it exists today is considerably im-
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proved from the initial release, due to this feed-
back mechanism.

9 How To Determine Valid PStates
For A Given Processor

AMD defines pstates for each processor. A
performance state is a frequency/voltage pair
that is valid for operation of that processor.
These are specified as fid/vid (frequency iden-
tifier/voltage identifier values) pairs, and are
documented in the Processor Thermal and Data
Sheets (see references). The worst case proces-
sor power consumption for each pstate is also
characterized. The BKDG[4] contains tables
for mapping fid to frequency and vid to volt-
age.

Pstates are processor specific. I.e., 2.0 GHz at
1.45V may be correct for one model/revision
of processor, but is not necessarily correct for
a different/revision model of processor.

Code can determine whether a processor sup-
ports or does not support pstate transitions by
executing the cpuid instruction. (For details,
see the BKDG[4] or the source code for the
Linux frequency driver). This needs to be done
for each processor in an MP system.

Each processor in an MP system could theoret-
ically have different pstates.

Ideally, the processor frequency driver would
not contain hardcoded pstate tables, as the
driver would then need to be revised for new
processor revisions. The chosen solution is to
have the BIOS provide the tables of pstates,
and have the driver retrieve the pstate data from
the BIOS. There are two such tables defined for
use by BIOSs for AMD systems:

1. PSB, AMD’s original proprietary mech-
anism, which does not support MP. This
mechanism is being deprecated.

2. ACPI _PSS objects. Whereas the ACPI
specification is a standard, the data within
the_PSSobjects is AMD specific (and, in
fact, processor family specific), and thus
there is still a proprietary nature of this so-
lution.

The current AMD frequency driver obtains
data from the ACPI objects. ACPI does in-
troduce some limitations, which are discussed
later. Experimentation is ongoing with a built-
in database approach to the problem in an at-
tempt to bypass these issues, and also to allow
checking of validity of the ACPI provided data.

10 ACPI And Frequency Restric-
tions

ACPI[5] provides the_PPCobject, that is used
to constrain the pstates available. This object
is dynamic, and can therefore be used in plat-
forms for purposes such as:

• forcing frequency restrictions when oper-
ating on battery power,

• forcing frequency restrictions due to ther-
mal conditions.

For battery / mains power transitions, an ACPI-
compliant GPE (General Purpose Event) input
to the chipset (I/O hub) is dedicated to assign-
ing a SCI (System Control Interrupt) when the
power source changes. The ACPI driver will
then execute the ACPI control method (see the
_PSR power source ACPI object), which is-
sues a notify to the_CPUnobject, which trig-
gers the ACPI driver to re-evaluate the_PPC
object. If the current pstate exceeds that al-
lowed by this new evaluation of the_PPCob-
ject, the CPU frequency driver will be called to
transition to a lower pstate.
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11 ACPI Issues

ACPI as a standard is not perfect. There is vari-
ation among different implementations, and
Linux ACPI support does not work on all ma-
chines.

ACPI does introduce some overhead, and some
users are not willing to enable ACPI.

ACPI requires that pstates be of equivalent
power usage and frequency across all proces-
sors. In a system with processors that are ca-
pable of different maximum frequencies (for
example, one processor capable of 2.0 GHz
and a second processor capable of 2.2 GHz),
compliance with the ACPI specification means
that the faster processor(s) will be restricted to
the maximum speed of the slowest processor.
Also, if one processor has 5 available pstates,
the presence of processor with only 4 available
pstates will restrict all processors to 4 pstates.

12 What Is There Today?

AMD is shipping pstate capable AMD Opteron
processors (revision CG). Server processors
prior to revision CG were not pstate capable.
All AMD Athlon 64 processors for mobile and
desktop are pstate capable.

BKDG[4] enhancements to describe the capa-
bility are in progress.

AMD internal BIOSs have the enhancements.
These enhancements are rolling out to the pub-
licly available BIOSs along with the BKDG
enhancements.

The multi-processor capable Linux frequency
driver has released under GPL.

The cpufreqd user-mode daemon, available
for download fromhttp://sourceforge.

net/projects/cpufreqd supports multiple

processors.

13 Other Software-directed Power
Saving Mechanisms

13.1 Use Of TheHLT Instruction

The hlt instruction is normally used when the
operating system has no code for the processor
to execute. This is the ACPI C1 state. Exe-
cution of instructions ceases, until the proces-
sor is restarted with an interrupt. The power
savings are maximized when the hlt state is en-
tered in the minimum pstate, due to the lower
voltage. The alternative to the use of the hlt
instruction is a do nothing loop.

13.2 Use of Power Managed Chipset Drivers

Devices on the planar board, such as a PCI-X
bridge or an AGP tunnel, may have the capabil-
ity to operate in lower power modes. Entering
and leaving the lower power modes is under the
control of the driver for that device.

Note that HyperTransport attached devices can
transition themselves to lower power modes
when certain messages are seen on the bus.
However, this functionality is typically config-
urable, so a chipset driver (or the system BIOS
during bootup) would need to enable this capa-
bility.

14 Items For Future Exploration

14.1 A Built-in Database

The theory is that the driver could have a built-
in database of processors and the pstates that
they support. The driver could then use this
database to obtain the pstate data without de-
pendencies on ACPI, or use it for enhanced
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checking of the ACPI provided data. The dis-
advantage of this is the need to update the
database for new processor revisions. The ad-
vantages are the ability to overcome the ACPI
imposed restrictions, and also to allow the use
of the technology on systems where the ACPI
support is not enabled.

14.2 Kernel Scheduler—CPU Power

An enhanced scheduler for the 2.6 kernel
(2.6.6-bk1) is aware of groups of processors
with different processing power. The power
tating of each CPU group should be dynami-
cally adjusted using a cpufreq transition noti-
fier as the processor frequencies are changed.

See http://lwn.net/Articles/
80601/ for a detailed acount of the scheduler
changes.

14.3 Thermal Management, ACPI Thermal
Zones

Publicly available BIOSs for AMD machines
do not implement thermal zones. Obviously
this is one way to provide the input control for
frequency management based on thermal con-
ditions.

14.4 Thermal Management, Service Processor

Servers typically have a service processor,
which may be compliant to the IPMI specifi-
cation. This service processor is able to ac-
curately monitor temperature at different lo-
cations within the chassis. The 2.6 kernel
includes an IPMI driver. User space code
may use these thermal readings to control fan
speeds and generate administrator alerts. It
may make sense to also use these accurate ther-
mal readings to trigger frequency transitions.

The interaction between thermal events from
the service processor and ACPI thermal zones

may be a problem.

Hiding Thermal Conditions

One concern with the use of CPU frequency
manipulation to avoid overheating is that hard-
ware problems may not be noticed. Over tem-
perature conditions would normally cause ad-
ministrator alerts, but if the processor is first
taken to a lower frequency to hold temperature
down, then the alert may not be generated. A
failing fan (not spinning at full speed) could
therefore be missed. Some hardware compo-
nents fail gradually, and early warning of im-
minent failures is needed to perform planned
maintenance. Losing this data would be bad-
ness.
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Abstract

DKMS is a framework which allows individual
kernel modules to be upgraded without chang-
ing your whole kernel. Its primary audience
is fourfold: system administrators who want
to update a single device driver rather than
wait for a new kernel from elsewhere with it
included; distribution maintainers, who want
to release a single targeted bugfix in between
larger scheduled updates; system manufactur-
ers who need single modules changed to sup-
port new hardware or to fix bugs, but do not
wish to test whole new kernels; and driver
developers, who must provide updated device
drivers for testing and general use on a wide
variety of kernels, as well as submit drivers to
kernel.org.

Since OLS2003, DKMS has gone from a good
idea to deployed and used. Based on end user
feedback, additional features have been added:
precompiled module tarball support to speed
factory installation; driver disks for Red Hat
distributions; 2.6 kernel support; SuSE ker-
nel support. Planned features include cross-
architecture build support and additional dis-
tribution driver disk methods.

In addition to overviewing DKMS and its fea-
tures, we explain how to create a dkms.conf file
to DKMS-ify your kernel module source.

1 History

Historically, Linux distributions bundle device
drivers into essentially one large kernel pack-
age, for several primary reasons:

• Completeness: The Linux kernel as dis-
tributed on kernel.org includes all the de-
vice drivers packaged neatly together in
the same kernel tarball. Distro kernels fol-
low kernel.org in this respect.

• Maintainer simplicity: With over 4000
files in the kerneldrivers/ directory,
each possibly separately versioned, it
would be impractical for the kernel main-
tainer(s) to provide a separate package for
each driver.

• Quality Assurance / Support organization
simplicity: It is easiest to ask a user “what
kernel version are you running,” and to
compare this against the list of approved
kernel versions released by the QA team,
rather than requiring the customer to pro-
vide a long and extensive list of package
versions, possibly one per module.

• End user install experience: End users
don’t care about which of the 4000 pos-
sible drivers they need to install, they just
want it to work.

This works well as long as you are able to make
the “top of the tree” contain the most current
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and most stable device driver, and you are able
to convince your end users to always run the
“top of the tree.” Thekernel.org develop-
ment processes tend to follow this model with
great success.

But widely used distros cannot ask their users
to always update to the top of the kernel.org
tree. Instead, they start their products from the
top of the kernel.org tree at some point in time,
essentially freezing with that, to begin their test
cycles. The duration of these test cycles can
be as short as a few weeks, and as long as a
few years, but 3-6 months is not unusual. Dur-
ing this time, the kernel.org kernels march for-
ward, and some (but not all) of these changes
are backported into the distro’s kernel. They
then apply the minimal patches necessary for
them to declare the product finished, and move
the project into the sustaining phase, where
changes are very closely scrutinized before re-
leasing them to the end users.

1.1 Backporting

It is this sustaining phase that DKMS targets.
DKMS can be used to backport newer device
driver versions from the “top of the tree” ker-
nels where most development takes place to the
now-historical kernels of released products.

The PATCH_MATCHmechanism was specif-
ically designed to allow the application of
patches to a “top of the tree” device driver to
make it work with older kernels. This allows
driver developers to continue to focus their ef-
forts on keeping kernel.org up to date, while al-
lowing that same effort to be used on existing
products with minimal changes. See Section 6
for a further explanation of this feature.

1.2 Driver developers’ packaging

Driver developers have recognized for a long
time that they needed to provide backported

versions of their drivers to match their end
users’ needs. Often these requirements are
imposed on them by system vendors such
as Dell in support of a given distro release.
However, each driver developer was free to
provide the backport mechanism in any way
they chose. Some provided architecture-
specific RPMs which contained only precom-
piled modules. Some provided source RPMs
which could be rebuilt for the running ker-
nel. Some provided driver disks with precom-
piled modules. Some provided just source code
patches, and expected the end user to rebuild
the kernel themselves to obtain the desired de-
vice driver version. All provided their own
Makefiles rather than use the kernel-provided
build system.

As a result, different problems were encoun-
tered with each developers’ solution. Some
developers had not included their drivers in
the kernel.org tree for so long that that there
were discrepancies, e.g.CONFIG_SMPvs
__SMP__, CONFIG_2G vs. CONFIG_3G,
and compiler option differences which went
unnoticed and resulted in hard-to-debug issues.

Needless to say, with so many different mech-
anisms, all done differently, and all with differ-
ent problems, it was a nightmare for end users.

A new mechanism was needed to cleanly han-
dle applying updated device drivers onto an
end user’s system. Hence DKMS was created
as the one module update mechanism to re-
place all previous methods.

2 Goals

DKMS has several design goals.

• Implement only mechanism, not policy.

• Allow system administrators to easily
know what modules, what versions, for
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what kernels, and in what state, they have
on their system.

• Keep module source as it would be found
in the “top of the tree” on kernel.org. Ap-
ply patches to backport the modules to
earlier kernels as necessary.

• Use the kernel-provided build mecha-
nism. This reduces the Makefile magic
that driver developers need to know, thus
the likelihood of getting it wrong.

• Keep additional DKMS knowledge a
driver developer must have to a minimum.
Only a small per-driver dkms.conf file is
needed.

• Allow multiple versions of any one mod-
ule to be present on the system, with only
one active at any given time.

• Allow DKMS-aware drivers to be
packaged in the Linux Standard Base-
conformant RPM format.

• Ease of use by multiple audiences: driver
developers, system administrators, Linux
distros, and system vendors.

We discuss DKMS as it applies to each of these
four audiences.

3 Distributions

All present Linux distributions distribute de-
vice drivers bundled into essentially one large
kernel package, for reasons outlined in Sec-
tion 1. It makes the most sense, most of the
time.

However, there are cases where it does not
make sense.

• Severity 1 bugs are discovered in a sin-
gle device driver between larger sched-
uled updates. Ideally you’d like your af-
fected users to be able to get the single
module update without having to release
and Q/A a whole new kernel. Only cus-
tomers who are affected by the particular
bug need to update “off-cycle.”

• Solutions vendors, for change control rea-
sons, often certify their solution on a par-
ticular distribution, scheduled update re-
lease, and sometimes specific kernel ver-
sion. The latter, combined with releasing
device driver bug fixes as whole new ker-
nels, puts the customer in the untenable
position of either updating to the new ker-
nel (and losing the certification of the so-
lution vendor), or forgoing the bug fix and
possibly putting their data at risk.

• Some device drivers are not (yet) included
in kernel.org nor a distro kernel, however
one may be required for a functional soft-
ware solution. The current support mod-
els require that the add-on driver “taint”
the kernel or in some way flag to the sup-
port organization that the user is running
an unsupported kernel module. Tainting,
while valid, only has three dimensions
to it at present: Proprietary—non-GPL
licensed; Forced—loaded viainsmod
-f ; and Unsafe SMP—for some CPUs
which are not designed to be SMP-
capable. A GPL-licensed device driver
which is not yet in kernel.org or provided
by the distribution may trigger none of
these taints, yet the support organization
needs to be aware of this module’s pres-
ence. To avoid this, we expect to see
the distros begin to cryptographically sign
kernel modules that they produce, and
taint on load of an unsigned module. This
would help reduce the support organiza-
tion’s work for calls about “unsupported”
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configurations. With DKMS in use, there
is less a need for such methods, as it’s easy
to see which modules have been changed.

Note: this is not to suggest that driver au-
thors should not submit their drivers to
kernel.org —absolutely they should.

• The distro QA team would like to test up-
dates to specific drivers without waiting
for the kernel maintenance team to rebuild
the kernel package (which can take many
hours in some cases). Likewise, individ-
ual end users may be willing (and often be
required, e.g. if the distro QA team can’t
reproduce the users’s hardware and soft-
ware environment exactly) to show that a
particular bug is fixed in a driver, prior
to releasing the fix toall of that distro’s
users.

• New hardware support via driver disks:
Hardware vendors release new hardware
asynchronously to any software vendor
schedule, no matter how hard companies
may try to synchronize releases. OS dis-
tributions provide install methods which
use driver diskettes to enable new hard-
ware for previously-released versions of
the OS. Generating driver disks has al-
ways been a difficult and error-prone pro-
cedure, different for each OS distribution,
not something that the casual end-user
would dare attempt.

DKMS was designed to address all of these
concerns.

DKMS aims to provide a clear separation be-
tween mechanism (how one updates individual
kernel modules and tracks such activity) and
policy (when should one update individual ker-
nel modules).

3.1 Mechanism

DKMS provides only the mechanism for up-
dating individual kernel modules, not policy.
As such, it can be used by distributions (per
their policy) for updating individual device
drivers for individual users affected by Severity
1 bugs, without releasing a whole new kernel.

The first mechanism critical to a system admin-
istrator or support organization is thestatus
command, which reports the name, version,
and state of each kernel module under DKMS
control. By querying DKMS for this infor-
mation, system administrators and distribution
support organizations may quickly understand
when an updated device driver is in use to
speed resolution when issues are seen.

DKMS’s ability to generate driver diskettes
gives control to both novice and seasoned sys-
tem administrators alike, as they can now per-
form work which otherwise they would have
to wait for a support organization to do for
them. They can get their new hardware sys-
tems up-and-running quickly by themselves,
leaving the support organizations with time to
do other more interesting value-added work.

3.2 Policy

Suggested policy items include:

• Updates must pass QA. This seems ob-
vious, but it reduces broken updates (de-
signed to fix other problems) from being
released.

• Updates must be submitted, and ideally be
included already, upstream. For this we
expect kernel.org and the OS distribution
to include the update in their next larger
scheduled update. This ensures that when
the next kernel.org kernel or distro update
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comes out, the short-term fix provided via
DKMS is incorporated already.

• TheAUTOINSTALLmechanism is set to
NOfor all modules which are shipped with
the target distro’s kernel. This prevents
the DKMS autoinstaller from installing
a (possibly older) kernel module onto a
newer kernel without being explicitly told
to do so by the system administrator. This
follows from the “all DKMS updates must
be in the next larger release” rule above.

• All issues for which DKMS is used are
tracked in the appropriate bug tracking
databases until they are included up-
stream, and are reviewed regularly.

• All DKMS packages are provided as
DKMS-enabled RPMs for easy installa-
tion and removal, per the Linux Standard
Base specification.

• All DKMS packages are posted to the dis-
tro’s support web site for download by
system administrators affected by the par-
tiular issue.

4 System Vendors

DKMS is useful to System Vendors such as
Dell for many of the same reasons it’s useful
to the Linux distributions. In addition, system
vendors face additional issues:

• Critical bug fixes for distro-provided
drivers: While we hope to never need
such, and we test extensively with distro-
provided drivers, occasionally we have
discovered a critical bug after the distri-
bution has cut their gold CDs. We use
DKMS to update just the affected device
drivers.

• Alternate drivers: Dell occasionally needs
to provide an alternate driver for a piece of
hardware rather than that provided by the
distribution natively. For example, Dell
provides the Intel iANS network channel
bonding and failover driver for customers
who have used iANS in the past, and wish
to continue using it rather than upgrading
to the native channel bonding driver resi-
dent in the distribution.

• Factory installation: Dell installs various
OS distribution releases onto new hard-
ware in its factories. We try not to up-
date from the gold release of a distribution
version to any of the scheduled updates,
as customers expect to receive gold. We
use DKMS to enable newer device drivers
to handle newer hardware than was sup-
ported natively in the gold release, while
keeping the gold kernel the same.

We briefly describe the policy Dell uses, in ad-
dition to the above rules suggested to OS dis-
tributions:

• Prebuilt DKMS tarballs are required for
factory installation use, for all kernels
used in the factory install process. This
prevents the need for the compiler to be
run, saving time through the factories.
Dell rarely changes the factory install im-
ages for a given OS release, so this is not
a huge burden on the DKMS packager.

• All DKMS packages are posted to sup-
port.dell.com for download by system ad-
ministrators purchasing systems without
Linux factory-installed.
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Figure 1: DKMS state diagram.

5 System Administrators

5.1 Understanding the DKMS Life Cycle

Before diving into using DKMS to manage ker-
nel modules, it is helpful to understand the life
cycle by which DKMS maintains your kernel
modules. In Figure 1, each rectangle repre-
sents a state your module can be in and each
italicized word represents a DKMS action that
can used to switch between the various DKMS
states. In the following section we will look
further into each of these DKMS actions and
then continue on to discuss auxiliary DKMS
functionality that extends and improves upon
your ability to utilize these basic commands.

5.2 RPM and DKMS

DKMS was designed to work well with Red
Hat Package Manger (RPM). Many times us-
ing DKMS to install a kernel module is as easy
as installing a DKMS-enabled module RPM.
Internally in these RPMs, DKMS is used to
add , build , and install a module. By
wrapping DKMS commands inside of an RPM,
you get the benefits of RPM (package version-
ing, security, dependency resolution, and pack-
age distribution methodologies) while DKMS
handles the work RPM does not, versioning
and building of individual kernel modules.
For reference, a sample DKMS-enabled RPM
specfile can be found in the DKMS package.

5.3 Using DKMS

5.3.1 Add

DKMS manages kernel module versions at
the source code level. The first require-
ment of using DKMS is that the module
source be located on the build system and
that it be located in the directory/usr/src/
<module>-<module-version>/ . It
also requires that a dkms.conf file exists with
the appropriately formatted directives within
this configuration file to tell DKMS such things
as where to install the module and how to build
it. Once these two requirements have been
met and DKMS has been installed on your sys-
tem, you can begin using DKMS by adding a
module/module-version to the DKMS tree. For
example:

# dkms add -m megaraid2 -v 2.10.3

This example add command would add
megaraid2/2.10.3 to the already existent
/var/dkms tree, leaving it in the Added
state.

5.3.2 Build

Once in the Added state, the module is ready
to be built. This occurs through the DKMS
build command and requires that the proper
kernel sources are located on the system from
the /lib/module/<kernel-version>
/build symlink. The make command that is
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used to compile the module is specified in the
dkms.conf configuration file. Continuing with
the megaraid2/2.10.3 example:

# dkms build -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

The build command compiles the module
but stops short of installing it. As can be seen
in the above example,build expects a kernel-
version parameter. If this kernel name is left
out, it assumes the currently running kernel.
However, it functions perfectly well to build
modules for kernels that are not currently run-
ning. This functionality is assured through use
of a kernel preparation subroutine that runs be-
fore any module build is performed in order
to ensure that the module being built is linked
against the proper kernel symbols.

Successful completion of abuild creates, for
this example, the/var/dkms/megaraid2/

2.10.3/2.4.21-4.ELsmp/ directory as
well as the log and module subdirectories
within this directory. The log directory holds
a log file of the module make and the module
directory holds copies of the resultant binaries.

5.3.3 Install

With the completion of abuild , the mod-
ule can now be installed on the kernel for
which it was built. Installation copies the com-
piled module binary to the correct location in
the /lib/modules/ tree as specified in the
dkms.conf file. If a module by that name is
already found in that location, DKMS saves it
in its tree as an original module so at a later
time it can be put back into place if the newer
module is uninstalled. An exampleinstall
command:

# dkms install -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

If a module by the same name is already
installed, DKMS saves a copy in its
tree and does so in the/var/dkms/
<module-name>/original_module/
directory. In this case, it would be saved to
/var/dkms/megaraid2/original_
module/2.4.21-4.ELsmp/ .

5.3.4 Uninstall and Remove

To complete the DKMS cycle, you can also
uninstall or remove your module from the
tree. Theuninstall command deletes from
/lib/modules the module you installed
and, if applicable, replaces it with its original
module. In scenarios where multiple versions
of a module are located within the DKMS tree,
when one version is uninstalled, DKMS does
not try to understand or assume which of these
other versions to put in its place. Instead, if
a true “original_module” was saved from the
very first DKMS installation, it will be put back
into the kernel and all of the other module ver-
sions for that module will be left in the Built
state. An exampleuninstall would be:

# dkms uninstall -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

Again, if the kernel version parameter is un-
set, the currently running kernel is assumed,
although, the same behavior does not occur
with theremove command. Theremove and
uninstall are very similar in thatremove
will do all of the same steps asuninstall .
However, whenremove is employed, if the
module-version being removed is the last in-
stance of that module-version for all kernels
on your system, after the uninstall portion of
the remove completes, it will delete all traces
of that module from the DKMS tree. To put it
another way, when anuninstall command
completes, your modules are left in the Built
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state. However, when aremove completes,
you would be left in the Not in Tree state. Here
are two sampleremove commands:

# dkms remove -m megaraid2
-v 2.10.3 -k 2.4.21-4.ELsmp

# dkms remove -m megaraid2
-v 2.10.3 --all

With the first exampleremove command,
your module would be uninstalled and if this
module/module-version were not installed on
any other kernel, all traces of it would be re-
moved from the DKMS tree all together. If,
say, megaraid2/2.10.3 was also installed on the
2.4.21-4.ELhugemem kernel, the firstremove
command would leave it alone and it would re-
main intact in the DKMS tree. In the second
example, that would not be the case. It would
uninstall all versions of the megaraid2/2.10.3
module from all kernels and then completely
expunge all references of megaraid2/2.10.3
from the DKMS tree. Thus,remove is what
cleans your DKMS tree.

5.4 Miscellaneous DKMS Commands

5.4.1 Status

DKMS also comes with a fully functional sta-
tus command that returns information about
what is currently located in your tree. If no
parameters are set, it will return all informa-
tion found. Logically, the specificity of infor-
mation returned depends on which parameters
are passed to your status command. Each sta-
tus entry returned will be of the state: “added,”
“built,” or “installed,” and if an original mod-
ule has been saved, this information will also
be displayed. Some example status commands
include:

# dkms status
# dkms status -m megaraid2
# dkms status -m megaraid2 -v 2.10.3
# dkms status -k 2.4.21-4.ELsmp
# dkms status -m megaraid2

-v 2.10.3 -k 2.4.21-4.ELsmp

5.4.2 Match

Another major feature of DKMS is the match
command. The match command takes the con-
figuration of DKMS installed modules for one
kernel and applies this same configuration to
some other kernel. When the match completes,
the same module/module-versions that were
installed for one kernel are also then installed
on the other kernel. This is helpful when you
are upgrading from one kernel to the next, but
would like to keep the same DKMS modules in
place for the new kernel. Here is an example:

# dkms match
--templatekernel 2.4.21-4.ELsmp
-k 2.4.21-5.ELsmp

As can be seen in the example, the
−−templatekernel is the “match-er”
kernel from which the configuration is based,
while the-k kernel is the “match-ee” upon
which the configuration is instated.

5.4.3 dkms_autoinstaller

Similar in nature to the match command is
the dkms_autoinstaller service. This service
gets installed as part of the DKMS RPM
in the /etc/init.d directory. Depending on
whether anAUTOINSTALL directive is set
within a module’s dkms.conf configuration
file, the dkms_autoinstaller will automatically
build and install that module as you boot your
system into new kernels which do not already
have this module installed.

5.4.4 mkdriverdisk

The last miscellaneous DKMS command is
mkdriverdisk . As can be inferred from its
name,mkdriverdisk will take the proper
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sources in your DKMS tree and create a driver
disk image for use in providing updated drivers
to Linux distribution installations. A sample
mkdriverdisk might look like:

# dkms mkdriverdisk -d redhat
-m megaraid2 -v 2.10.3
-k 2.4.21-4.ELBOOT

Currently, the only supported distribution
driver disk format is Red Hat. For more
information on the extra necessary files and
their formats for DKMS to create Red
Hat driver disks, seehttp://people.
redhat.com/dledford . These files
should be placed in your module source direc-
tory.

5.5 Systems Management with DKMS Tar-
balls

As we have seen, DKMS provides a simple
mechanism to build, install, and track device
driver updates. So far, all these actions have
related to a single machine. But what if you’ve
got many similar machines under your admin-
istrative control? What if you have a compiler
and kernel source on only one system (your
master build system), but you need to deploy
your newly built driver to all your other sys-
tems? DKMS provides a solution to this as
well—in the mktarball and ldtarball
commands.

Themktarball command rolls up copies of
each device driver module file which you’ve
built using DKMS into a compressed tar-
ball. You may then copy this tarball to each
of your target systems, and use the DKMS
ldtarball command to load those into your
DKMS tree, leaving each module in the Built
state, ready to be installed. This avoids the
need for both kernel source and compilers to
be on every target system.

For example:

You have built the megaraid2 device driver,
version 2.10.3, for two different kernel fami-
lies (here 2.4.20-9 and 2.4.21-4.EL), on your
master build system.

# dkms status
megaraid2, 2.10.3, 2.4.20-9: built
megaraid2, 2.10.3, 2.4.20-9bigmem: built
megaraid2, 2.10.3, 2.4.20-9BOOT: built
megaraid2, 2.10.3, 2.4.20-9smp: built
megaraid2, 2.10.3, 2.4.21-4.EL: built
megaraid2, 2.10.3, 2.4.21-4.ELBOOT: built
megaraid2, 2.10.3, 2.4.21-4.ELhugemem: built
megaraid2, 2.10.3, 2.4.21-4.ELsmp: built

You wish to deploy this version of the
driver to several systems, without rebuilding
from source each time. You can use the
mktarball command to generate one tarball
for each kernel family:

# dkms mktarball -m megaraid2
-v 2.10.3
-k 2.4.21-4.EL,2.4.21-4.ELsmp,
2.4.21-4.ELBOOT,2.4.21-4.ELhugemem

Marking /usr/src/megaraid2-2.10.3 for archiving...
Marking kernel 2.4.21-4.EL for archiving...
Marking kernel 2.4.21-4.ELBOOT for archiving...
Marking kernel 2.4.21-4.ELhugemem for archiving...
Marking kernel 2.4.21-4.ELsmp for archiving...
Tarball location:

/var/dkms/megaraid2/2.10.3/tarball/
megaraid2-2.10.3-manykernels.tgz
Done.

You can make one big tarball containing mod-
ules for both families by omitting the -k ar-
gument and kernel list; DKMS will include a
module for every kernel version found.

You may then copy the tarball (renaming it if
you wish) to each of your target systems using
any mechanism you wish, and load the mod-
ules in. First, see that the target DKMS tree
does not contain the modules you’re loading:

# dkms status
Nothing found within the DKMS tree for
this status command. If your modules were
not installed with DKMS, they will not show
up here.

Then, load the tarball on your target system:
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# dkms ldtarball
--archive=megaraid2-2.10.3-manykernels.tgz

Loading tarball for module:
megaraid2 / version: 2.10.3

Loading /usr/src/megaraid2-2.10.3...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.EL...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELBOOT...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELhugemem...
Loading /var/dkms/megaraid2/2.10.3/2.4.21-4.ELsmp...
Creating /var/dkms/megaraid2/2.10.3/source symlink...

Finally, verify the modules are present, and in
the Built state:

# dkms status
megaraid2, 2.10.3, 2.4.21-4.EL: built
megaraid2, 2.10.3, 2.4.21-4.ELBOOT: built
megaraid2, 2.10.3, 2.4.21-4.ELhugemem: built
megaraid2, 2.10.3, 2.4.21-4.ELsmp: built

DKMS ldtarball leaves the modules in the
Built state, not the Installed state. For each ker-
nel version you want your modules to be in-
stalled into, follow the install steps as above.

6 Driver Developers

As the maintainer of a kernel module, the only
thing you need to do to get DKMS interoper-
ability is place a small dkms.conf file in your
driver source tarball. Once this has been done,
any user of DKMS can simply do:

dkms ldtarball --archive /path/to/foo-1.0.tgz

That’s it. We could discuss at length (which
we will not rehash in this paper) the best meth-
ods to utilizing DKMS within a dkms-enabled
module RPM, but for simple DKMS usability,
the buck stops here. With the dkms.conf file
in place, you have now positioned your source
tarball to be usable by all manner and skill level
of Linux users utilizing your driver. Effec-
tively, you have widely increased your testing
base without having to wade into package man-
agement or pre-compiled binaries. DKMS will
handle this all for you. Along the same line,

by leveraging DKMS you can now easily allow
more widespread testing of your driver. Since
driver versions can now be cleanly tracked out-
side of the kernel tree, you no longer must wait
for the next kernel release in order for the com-
munity to register the necessary debugging cy-
cles against your code. Instead, DKMS can be
counted on to manage various versions of your
kernel module such that any catastrophic errors
in your code can be easily mitigated by a sin-
gular dkms uninstall command.

This leaves the composition of the dkms.conf
as the only interesting piece left to discuss
for the driver developer audience. With that
in mind, we will now explicate over two
dkms.conf examples ranging from that which
is minimally required (Figure 2) to that which
expresses maximal configuration (Figure 3).

6.1 Minimal dkms.conf for 2.4 kernels

Referring to Figure 2, the first thing that is dis-
tinguishable is the definition of the version of
the package and the make command to be used
to compile your module. This is only neces-
sary for 2.4-based kernels, and lets the devel-
oper specify their desired make incantation.

Reviewing the rest of the dkms.conf,
PACKAGE_NAMEand BUILT_MODULE_
NAME[0] appear to be duplicate in nature,
but this is only the case for a package which
contains only one kernel module within it.
Had this example been for something like
ALSA, the name of the package would be
“alsa,” but theBUILT_MODULE_NAMEarray
would instead be populated with the names of
the kernel modules within the ALSA package.

The final required piece of this minimal ex-
ample is theDEST_MODULE_LOCATIONar-
ray. This simply tells DKMS where in the
/lib/modules tree it should install your module.
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PACKAGE_NAME="megaraid2"
PACKAGE_VERSION="2.10.3"

MAKE[0]="make -C ${kernel_source_dir}
SUBDIRS=${dkms_tree}/${PACKAGE_NAME}/${PACKAGE_VERSION}/build modules"

BUILT_MODULE_NAME[0]="megaraid2"
DEST_MODULE_LOCATION[0]="/kernel/drivers/scsi/"

Figure 2: A minimal dkms.conf

6.2 Minimal dkms.conf for 2.6 kernels

In the current version of DKMS, for 2.6 kernels
the MAKE command listed in the dkms.conf
is wholly ignored, and instead DKMS will al-
ways use:

make -C /lib/modules/$kernel_version/build \
M=$dkms_tree/$module/$module_version/build

This jibes with the new external module build
infrastructure supported by Sam Ravnborg’s
kernel Makefile improvements, as DKMS will
always build your module in a build subdi-
rectory it creates for each version you have
installed. Similarly, an impending future
version of DKMS will also begin to ig-
nore thePACKAGE_VERSIONas specified in
dkms.conf in favor of the new modinfo pro-
vided information as implemented by Rusty
Russell.

With regard to removing the requirement for
DEST_MODULE_LOCATIONfor 2.6 kernels,
given that similar information should be lo-
cated in the install target of the Makefile pro-
vided with your package, it is theoretically pos-
sible that DKMS could one day glean such
information from the Makefile instead. In
fact, in a simple scenario as this example, it
is further theoretically possible that the name
of the package and of the built module could
also be determined from the package Make-
file. In effect, this would completely remove

any need for a dkms.conf whatsoever, thus en-
abling all simple module tarballs to be auto-
matically DKMS enabled.

Though, as these features have not been ex-
plored and as package maintainers would
likely want to use some of the other dkms.conf
directive features which are about to be elab-
orated upon, it is likely that requiring a
dkms.conf will continue for the foreseeable fu-
ture.

6.3 Optional dkms.conf directives

In the real-world version of the Dell’s DKMS-
enabled megaraid2 package, we also specify
the optional directives:

MODULES_CONF_ALIAS_TYPE[0]=
"scsi_hostadapter"

MODULES_CONF_OBSOLETES[0]=
"megaraid,megaraid_2002"

REMAKE_INITRD="yes"

These directives tell DKMS to remake the ker-
nel’s initial ramdisk after every DKMS install
or uninstall of this module. They further spec-
ify that before this happens, /etc/modules.conf
(or /etc/sysconfig/kernel) should be edited in-
telligently so that the initrd is properly assem-
bled. In this case, if /etc/modules.conf already
contains a reference to either “megaraid” or
“megaraid_2002,” these will be switched to
“megaraid2.” If no such references are found,
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then a new “scsi_hostadapter” entry will be
added as the last such scsi_hostadapter num-
ber.

On the other hand, if it had also included:

MODULES_CONF_OBSOLETES_ONLY="yes"

then had no obsolete references been found,
a new “scsi_hostadapter” line would not have
been added. This would be useful in scenarios
where you instead want to rely on something
like Red Hat’s kudzu program for adding ref-
erences for your kernel modules.

As well one could hypothetically also specify
within the dkms.conf:

DEST_MODULE_NAME[0]="megaraid"

This would cause the resultant megaraid2 ker-
nel module to be renamed to “megaraid” be-
fore being installed. Rather than having to
propagate various one-off naming mechanisms
which include the version as part of the mod-
ule name in /lib/modules as has been previous
common practice, DKMS could instead be re-
lied upon to manage all module versioning to
avoid such clutter. Was megaraid_2002 a ver-
sion or just a special year in the hearts of the
megaraid developers? While you and I might
know the answer to this, it certainly confused
Dell’s customers.

Continuing with hypothetical additions to the
dkms.conf in Figure 2, one could also include:

BUILD_EXCLUSIVE_KERNEL="^2\.4.*"
BUILD_EXCLUSIVE_ARCH="i.86"

In the event that you know the code you pro-
duced is not portable, this is how you can tell
DKMS to keep people from trying to build it

elsewhere. The above restrictions would only
allow the kernel module to be built on 2.4 ker-
nels on x86 architectures.

Continuting with optional dkms.conf direc-
tives, the ALSA example in Figure 3 is taken
directly from a DKMS-enabled package that
Dell released to address sound issues on the
Precision 360 workstation. It is slightly
abridged as the alsa-driver as delivered actually
installs 13 separate kernel modules, but for the
sake of this example, only 9 are shown.

In this example, we have:

AUTOINSTALL="yes"

This tells the boot-time service
dkms_autoinstaller that this package should be
built and installed as you boot into a new ker-
nel that DKMS has not already installed this
package upon. By general policy, Dell only
allows AUTOINSTALL to be set if the kernel
modules are not already natively included
with the kernel. This is to avoid the scenario
where DKMS might automatically install
over a newer version of the kernel module as
provided by some newer version of the kernel.
However, given the 2.6 modinfo changes,
DKMS can now be modified to intelligently
check the version of a native kernel module
before clobbering it with some older version.
This will likely result in a future policy change
within Dell with regard to this feature.

In this example, we also have:

PATCH[0]="adriver.h.patch"
PATCH_MATCH[0]="2.4.[2-9][2-9]"

These two directives indicate to DKMS that
if the kernel that the kernel module is being
built for is >=2.4.22 (but still of the 2.4 fam-
ily), the included adriver.h.patch should first be
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PACKAGE_NAME="alsa-driver"
PACKAGE_VERSION="0.9.0rc6"

MAKE="sh configure --with-cards=intel8x0 --with-sequencer=yes \
--with-kernel=/lib/modules/$kernelver/build \
--with-moddir=/lib/modules/$kernelver/kernel/sound > /dev/null; make"

AUTOINSTALL="yes"

PATCH[0]="adriver.h.patch"
PATCH_MATCH[0]="2.4.[2-9][2-9]"

POST_INSTALL="alsa-driver-dkms-post.sh"
MODULES_CONF[0]="alias char-major-116 snd"
MODULES_CONF[1]="alias snd-card-0 snd-intel8x0"
MODULES_CONF[2]="alias char-major-14 soundcore"
MODULES_CONF[3]="alias sound-slot-0 snd-card-0"
MODULES_CONF[4]="alias sound-service-0-0 snd-mixer-oss"
MODULES_CONF[5]="alias sound-service-0-1 snd-seq-oss"
MODULES_CONF[6]="alias sound-service-0-3 snd-pcm-oss"
MODULES_CONF[7]="alias sound-service-0-8 snd-seq-oss"
MODULES_CONF[8]="alias sound-service-0-12 snd-pcm-oss"
MODULES_CONF[9]="post-install snd-card-0 /usr/sbin/alsactl restore >/dev/null 2>&1 || :"
MODULES_CONF[10]="pre-remove snd-card-0 /usr/sbin/alsactl store >/dev/null 2>&1 || :"

BUILT_MODULE_NAME[0]="snd-pcm"
BUILT_MODULE_LOCATION[0]="acore"
DEST_MODULE_LOCATION[0]="/kernel/sound/acore"

BUILT_MODULE_NAME[1]="snd-rawmidi"
BUILT_MODULE_LOCATION[1]="acore"
DEST_MODULE_LOCATION[1]="/kernel/sound/acore"

BUILT_MODULE_NAME[2]="snd-timer"
BUILT_MODULE_LOCATION[2]="acore"
DEST_MODULE_LOCATION[2]="/kernel/sound/acore"

BUILT_MODULE_NAME[3]="snd"
BUILT_MODULE_LOCATION[3]="acore"
DEST_MODULE_LOCATION[3]="/kernel/sound/acore"

BUILT_MODULE_NAME[4]="snd-mixer-oss"
BUILT_MODULE_LOCATION[4]="acore/oss"
DEST_MODULE_LOCATION[4]="/kernel/sound/acore/oss"

BUILT_MODULE_NAME[5]="snd-pcm-oss"
BUILT_MODULE_LOCATION[5]="acore/oss"
DEST_MODULE_LOCATION[5]="/kernel/sound/acore/oss"

BUILT_MODULE_NAME[6]="snd-seq-device"
BUILT_MODULE_LOCATION[6]="acore/seq"
DEST_MODULE_LOCATION[6]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[7]="snd-seq-midi-event"
BUILT_MODULE_LOCATION[7]="acore/seq"
DEST_MODULE_LOCATION[7]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[8]="snd-seq-midi"
BUILT_MODULE_LOCATION[8]="acore/seq"
DEST_MODULE_LOCATION[8]="/kernel/sound/acore/seq"

BUILT_MODULE_NAME[9]="snd-seq"
BUILT_MODULE_LOCATION[9]="acore/seq"
DEST_MODULE_LOCATION[9]="/kernel/sound/acore/seq"

Figure 3: An elaborate dkms.conf



202 • Linux Symposium

applied to the module source before a module
build occurs. In this way, by including vari-
ous patches needed for various kernel versions,
you can distribute one source tarball and en-
sure it will always properly build regardless of
the end user target kernel. If no corresponding
PATCH_MATCH[0] entry were specified for
PATCH[0] , then the adriver.h.patch would al-
ways get applied before a module build. As
DKMS always starts off each module build
with pristine module source, you can always
ensure the right patches are being applied.

Also seen in this example is:

MODULES_CONF[0]=
"alias char-major-116 snd"

MODULES_CONF[1]=
"alias snd-card-0 snd-intel8x0"

Unlike the previous discussion of
/etc/modules.conf changes, any entries
placed into theMODULES_CONFarray are
automatically added into /etc/modules.conf
during a module install. These are later only
removed during the final module uninstall.

Lastly, we have:

POST_INSTALL="alsa-driver-dkms-post.sh"

In the event that you have other scripts that
must be run during various DKMS events,
DKMS includesPOST_ADD, POST_BUILD,
POST_INSTALL and POST_REMOVEfunc-
tionality.

7 Future

As you can tell from the above, DKMS is very
much ready for deployment now. However, as
with all software projects, there’s room for im-
provement.

7.1 Cross-Architecture Builds

DKMS today has no concept of a platform ar-
chitecture such as i386, x86_64, ia64, sparc,
and the like. It expects that it is building ker-
nel modules with a native compiler, not a cross
compiler, and that the target architecture is the
native architecture. While this works in prac-
tice, it would be convenient if DKMS were able
to be used to build kernel modules for non-
native architectures.

Today DKMS handles the cross-architecture
build process by having separate /var/dkms di-
rectory trees for each architecture, and using
thedkmstree option to specify a using a dif-
ferent tree, and theconfig option to specify
to use a different kernel configuration file.

Going forward, we plan to add an−−arch
option to DKMS, or have it glean it from the
kernel config file and act accordingly.

7.2 Additional distribution driver disks

DKMS today supports generating driver disks
in the Red Hat format only. We recognize that
other distributions accomplish the same goal
using other driver disk formats. This should
be relatively simple to add once we understand
what the additional formats are.

8 Conclusion

DKMS provides a simple and unified mech-
anism for driver authors, Linux distributions,
system vendors, and system administrators to
update the device drivers on a target system
without updating the whole kernel. It allows
driver developers to keep their work aimed at
the “top of the tree,” and to backport that work
to older kernels painlessly. It allows Linux dis-
tributions to provide updates to single device
drivers asynchronous to the release of a larger
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scheduled update, and to know what drivers
have been updated. It lets system vendors
ship newer hardware than was supported in a
distribution’s “gold” release without invalidat-
ing any test or certification work done on the
“gold” release. It lets system administrators
update individual drivers to match their envi-
ronment and their needs, regardless of whose
kernel they are running. It lets end users track
which module versions have been added to
their system.

We believe DKMS is a project whose time has
come, and encourage everyone to use it.

9 References

DKMS is licensed under the GNU General
Public License. It is available at

http://linux.dell.com/dkms/ ,

and has a mailing list dkms-devel@
lists.us.dell.com to which you may
subscribe at http://lists.us.dell.
com/ .
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e100 Weight Reduction Program
Writing for Maintainability

Scott Feldman
Intel Corporation

scott.feldman@intel.com

Abstract

Corporate-authored device drivers are
bloated/buggy with dead code, HW and
OS abstraction layers, non-standard user
controls, and support for complicated HW
features that provide little or no value. e100
in 2.6.4 has been rewritten to address these
issues and in the process lost 75% of the lines
of code, with no loss of functionality. This
paper gives guidelines to other corporate driver
authors.

Introduction

This paper gives some basic guidelines to cor-
porate device driver maintainers based on ex-
periences I had while re-writing the e100 net-
work device driver for Intel’s PRO/100+ Eth-
ernet controllers. By corporate maintainer, I
mean someone employed by a corporation to
provide Linux driver support for that corpora-
tion’s device. Of course, these guidelines may
apply to non-corporate individuals as well, but
the intended audience is the corporate driver
author.

The assumption behind these guidelines is that
the device driver is intended for inclusion in
the Linux kernel. For a driver to be accepted
into the Linux kernel, it must meet both tech-
nical and non-technical requirements. This pa-
per focuses on the non-technical requirements,

specifically maintainability.

Guideline #1: Maintainability over
Everything Else

Corporate marketing requirements documents
specify priority order to features and per-
formance and schedule (time-to-market), but
rarely specify maintainability. However, main-
tainability is themost important requirement
for Linux kernel drivers.

Why?

• You will not be the long-term driver main-
tainer.

• Your company will not be the long-term
driver maintainer.

• Your driver will out-live your interest in it.

Driver code should be written so a like-skilled
kernel maintainer can fix a problem in a rea-
sonable amount of time without you or your re-
sources. Here are a few items to keep in mind
to improve maintainability.

• Use kernel coding style over corporate
coding style

• Document how the driver/device works, at
a high level, in a “Theory of Operation”
comment section
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old driver v2 new driver v3

VLANs tagging/
stripping

use SW VLAN sup-
port in kernel

Tx/Rx checksum of
loading

use SW checksum
support in kernel

interrupt moderation use NAPI support in
kernel

Table 1: Feature migration in e100

• Document hardware workarounds

Guideline #2: Don’t Add Features
for Feature’s Sake

Consider the code complexity to support the
feature versus the user’s benefit. Is the de-
vice still usable without the feature? Is the de-
vice performing reasonably for the 80% use-
case without the feature? Is the hardware of-
fload feature working against ever increasing
CPU/memory/IO speeds? Is there a software
equivalent to the feature already provided in
the OS?

If the answer is yes to any of these questions, it
is better to not implement the feature, keeping
the complexity in the driver low and maintain-
ability high.

Table 1 shows features removed from the driver
during the re-write of e100 because the OS al-
ready provides software equivalents.

Guideline #3: Limit User-Controls—
Use What’s Built into the OS

Most users will use the default settings, so be-
fore adding a user-control, consider:

1. If the driver model for your device class
already provides a mechanism for the
user-control, enable that support in the

old driver v2 new driver v3

BundleMax not needed – NAPI
BundleSmallFr not needed – NAPI
IntDelay not needed – NAPI
ucode not needed – NAPI
RxDescriptors ethtool -G
TxDescriptors ethtool -G
XsumRX not needed – check-

sum in OS
IFS always enabled
e100_speed_duplex ethtool -s

Table 2: User-control migration in e100

driver rather than adding a custom user-
control.

2. If the driver model doesn’t provide a user-
control, but the user-control is potentially
useful to other drivers, extend the driver
model to include user-control.

3. If the user-control is to enable/disable a
workaround, enable the workaround with-
out the use of a user-control. (Solve
the problem without requiring a decision
from the user).

4. If the user-control is to tune performance,
tune the driver for the 80% use-case and
remove the user-control.

Table 2 shows user-controls (implemented as
module parameters) removed from the driver
during the re-write of e100 because the OS
already provides built-in user-controls, or the
user-control was no longer needed.

Guideline #4: Don’t Write Code
that’s Already in the Kernel

Look for library code that’s already used by
other drivers and adapt that to your driver.
Common hardware is often used between ven-
dors’ devices, so shared code will work for all
(and be debugged by all).
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For example, e100 has a highly MDI-
compliant PHY interface, so usemii.c for
standard PHY access and remove custom code
from the driver.

For another example, e100 v2 used/proc/
net/IntelPROAdapter to report driver
information. This functionality was replaced
with ethtool , sysfs , lspci , etc.

Look for opportunities to move code out of the
driver into generic code.

Guideline #5: Don’t Use OS-
abstraction Layers

A common corporate design goal is to reuse
driver code as much as possible between OSes.
This allows a driver to be brought up on one OS
and “ported” to another OS with little work.
After all, the hardware interface to the device
didn’t change from one OS to the next, so
all that is required is an OS-abstraction layer
that wraps the OS’s native driver model with a
generic driver model. The driver is then written
to the generic driver model and it’s just a mat-
ter of porting the OS-abstraction layer to each
target OS.

There are problems when doing this with
Linux:

1. The OS-abstraction wrapper code means
nothing to an outside Linux maintainer
and just obfuscates the real meaning be-
hind the code. This makes your code
harder to follow and therefore harder to
maintain.

2. The generic driver model may not map 1:1
with the native driver model leaving gaps
in compatibility that you’ll need to fix up
with OS-specific code.

3. Limits your ability to back-port contribu-
tions given under GPL to non-GPL OSes.

Guideline #6: Use kcompat Tech-
niques to Move Legacy Kernel Sup-
port out of the Driver (and Kernel)

Users may not be able to move to the lat-
est kernel.org kernel, so there is a need
to provide updated device drivers that can be
installed against legacy kernels. The need is
driven by 1) bug fixes, 2) new hardware sup-
port that wasn’t included in the driver when the
driver was included in the legacy kernel.

The best strategy is to:

1. Maintain your driver code to work against
the latest kernel.org development
kernel API. This will make it easier to
keep the driver in thekernel.org ker-
nel synchronized with your code base as
changes (patches) are almost always in
reference to the latestkernel.org ker-
nel.

2. Provide a kernel-compat-layer (kcompat)
to translate the latest API to the supported
legacy kernel API. The driver code is void
of anyifdef code for legacy kernel sup-
port. All of the ifdef logic moves to the
kcompat layer. The kcompat layer is not
included in the latestkernel.org ker-
nel (by definition).

Here is an example with e100.

In driver code, use the latest API:

s = pci_name(pdev);
...
free_netdev(netdev);
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In kcompat code, translate to legacy kernel
API:

#if ( LINUX_VERSION_CODE < \
KERNEL_VERSION(2,4,22) )

#define pci_name(x) ((x)->slot_name)
#endif

#ifndef HAVE_FREE_NETDEV
#define free_netdev(x) kfree(x)
#endif

Guideline #7: Plan to Re-write the
Driver at Least Once

You will not get it right the first time. Plan on
rewriting the driver from scratch at least once.
This will cleanse the code, removing dead code
and organizing/consolidating functionality.

For example, the last e100 re-write reduced the
driver size by 75% without loss of functional-
ity.

Conclusion

Following these guidelines will result in more
maintainable device drivers with better accep-
tance into the Linux kernel tree. The basic
idea is to remove as much as possible from the
driver without loss of functionality.

References

• The latest e100 driver code is available at
linux/driver/net/e100.c (2.6.4
kernel or higher).

• An example of kcompat is here:
http://sf.net/projects/
gkernel
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Abstract

The 2.6 Linux kernels now include support for
version 4 of NFS. In addition to built-in lock-
ing and ACL support, and features designed to
improve performance over the Internet, NFSv4
also mandates the implementation of strong
cryptographic security. This security is pro-
vided by rpcsec_gss, a standard, widely imple-
mented protocol that operates at the rpc level,
and hence can also provide security for NFS
versions 2 and 3.

1 The rpcsec_gss protocol

The rpc protocol, which all version of NFS
and related protocols are built upon, includes
generic support for authentication mecha-
nisms: each rpc call has two fields, the cre-
dential and the verifier, each consisting of a
32-bit integer, designating a “security flavor,”
followed by 400 bytes of opaque data whose
structure depends on the specified flavor. Sim-
ilarly, each reply includes a single “verifier.”

Until recently, the only widely implemented
security flavor has been the auth_unix flavor,
which uses the credential to pass uid’s and
gid’s and simply asks the server to trust them.
This may be satisfactory given physical secu-
rity over the clients and the network, but for
many situations (including use over the Inter-
net), it is inadequate.

Thus rfc 2203 defines the rpcsec_gss protocol,

which uses rpc’s opaque security fields to carry
cryptographically secure tokens. The crypto-
graphic services are provided by the GSS-API
(“Generic Security Service Application Pro-
gram Interface,” defined by rfc 2743), allowing
the use of a wide variety of security mecha-
nisms, including, for example, Kerberos.

Three levels of security are provided by rpc-
sec_gss:

1. Authentication only: The rpc header of
each request and response is signed.

2. Integrity: The header and body of each re-
quest and response is signed.

3. Privacy: The header of each request is
signed, and the body is encrypted.

The combination of a security level with a
GSS-API mechanism can be designated by a
32-bit “pseudoflavor.” The mount protocol
used with NFS versions 2 and 3 uses a list
of pseudoflavors to communicate the security
capabilities of a server. NFSv4 does not use
pseudoflavors on the wire, but they are still use-
ful in internal interfaces.

Security protocols generally require some ini-
tial negotiation, to determine the capabilities
of the systems involved and to choose session
keys. The rpcsec_gss protocol uses calls with
procedure number 0 for this purpose. Nor-
mally such a call is a simple “ping” with no
side-effects, useful for measuring round-trip
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latency or testing whether a certain service is
running. However a call with procedure num-
ber 0, if made with authentication flavor rpc-
sec_gss, may use certain fields in the credential
to indicate that it is part of a context-initiation
exchange.

2 Linux implementation of rpc-
sec_gss

The Linux implementation of rpcsec_gss con-
sists of several pieces:

1. Mechanism-specific code, currently for
two mechanisms: krb5 and spkm3.

2. A stripped-down in-kernel version of the
GSS-API interface, with an interface that
allows mechanism-specific code to regis-
ter support for various pseudoflavors.

3. Client and server code which uses the
GSS-API interface to encode and decode
rpc calls and replies.

4. A userland daemon, gssd, which performs
context initiation.

2.1 Mechanism-specific code

The NFSv4 RFC mandates the implementation
(though not the use) of three GSS-API mecha-
nisms: krb5, spkm3, and lipkey.

Our krb5 implementation supports three
pseudoflavors: krb5, krb5i, and krb5p, pro-
viding authentication only, integrity, and
privacy, respectively. The code is derived from
MIT’s Kerberos implementation, somewhat
simplified, and not currently supporting the
variety of encryption algorithms that MIT’s
does. The krb5 mechanism is also supported
by NFS implementations from Sun, Network

Appliance, and others, which it interoperates
with.

The Low Infrastructure Public Key Mechanism
(“lipkey,” specified by rfc 2847), is a public key
mechanism built on top of the Simple Public
Key Mechanism (spkm), which provides func-
tionality similar to that of TLS, allowing a se-
cure channel to be established using a server-
side certificate and a client-side password.

We have a preliminary implementation of
spkm3 (without privacy), but none yet of lip-
key. Other NFS implementors have not yet
implemented either of these mechanisms, but
there appears to be sufficient interest from the
grid community for us to continue implemen-
tation even if it is Linux-only for now.

2.2 GSS-API

The GSS-API interface as specified is very
complex. Fortunately, rpcsec_gss only requires
a subset of the GSS-API, and even less is re-
quired for per-packet processing.

Our implementation is derived by the im-
plementation in MIT Kerberos, and initially
stayed fairly close the the GSS-API specifica-
tion; but over time we have pared it down to
something quite a bit simpler.

The kernel gss interface also provides APIs
by which code implementing particular mech-
anisms can register itself to the gss-api code
and hence can be safely provided by modules
loaded at runtime.

2.3 RPC code

The RPC code has been enhanced by the addi-
tion of a new rpcsec_gss mechanism which au-
thenticates calls and replies and which wraps
and unwraps rpc bodies in the case of integrity
and privacy.
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This is relatively straightforward, though
somewhat complicated by the need to handle
discontiguous buffers containing page data.

Caches for session state are also required on
both client and server; on the client a preex-
isting rpc credentials cache is used, and on the
server we use the same caching infrastructure
used for caching of client and export informa-
tion.

2.4 Userland daemon

We had no desire to put a complete implemen-
tation of Kerberos version 5 or the other mech-
anisms into the kernel. Fortunately, the work
performed by the various GSS-API mecha-
nisms can be divided neatly into context ini-
tiation and per-packet processing. The former
is complex and is performed only once per ses-
sion, while the latter is simple by comparison
and needs to be performed on every packet.
Therefore it makes sense to put the packet pro-
cessing in the kernel, and have the context ini-
tiation performed in userspace.

Since it is the kernel that knows when context
initiation is necessary, we require a mechanism
allowing the kernel to pass the necessary pa-
rameters to a userspace daemon whenever con-
text initiation is needed, and allowing the dae-
mon to respond with the completed security
context.

This problem was solved in different ways
on the client and server, but both use spe-
cial files (the former in a dedicated filesystem,
rpc_pipefs, and the latter in the proc filesys-
tem), which our userspace daemon, gssd, can
poll for requests and then write responses back
to.

In the case of Kerberos, the sequence of events
will be something like this:

1. The user gets Kerberos credentials using

kinit, which are cached on a local filesys-
tem.

2. The user attempts to perform an operation
on an NFS filesystem mounted with krb5
security.

3. The kernel rpc client looks for the a secu-
rity context for the user in its cache; not
finding any, it does an upcall to gssd to re-
quest one.

4. Gssd, on receiving the upcall, reads the
user’s Kerberos credentials from the lo-
cal filesystem and uses them to construct
a null rpc request which it sends to the
server.

5. The server kernel makes an upcall which
passes the null request to its gssd.

6. At this point, the server gssd has all it
needs to construct a security context for
this session, consisting mainly of a ses-
sion key. It passes this context down to
the kernel rpc server, which stores it in its
context cache.

7. The server’s gssd then constructs the null
rpc reply, which it gives to the kernel to
return to the client gssd.

8. The client gssd uses this reply to construct
its own security context, and passes this
context to the kernel rpc client.

9. The kernel rpc client then uses this con-
text to send the first real rpc request to the
server.

10. The server uses the new context in its
cache to verify the rpc request, and to
compose its reply.
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3 The NFSv4 protocol

While rpcsec_gss works equally well on all ex-
isting versions of NFS, much of the work on
rpcsec_gss has been motivated by NFS version
4, which is the first version of NFS to make
rpcsec_gss mandatory to implement.

This new version of NFS is specified by rfc
3530, which says:

“Unlike earlier versions, the NFS version 4
protocol supports traditional file access while
integrating support for file locking and the
mount protocol. In addition, support for strong
security (and its negotiation), compound oper-
ations, client caching, and internationalization
have been added. Of course, attention has been
applied to making NFS version 4 operate well
in an Internet environment.”

Descriptions of some of these features follow,
with some notes about their implementation in
Linux.

3.1 Compound operations

Each rpc request includes a procedure number,
which describes the operation to be performed.
The format of the body of the rpc request (the
arguments) and of the reply depend on the pro-
gram number. Procedure 0 is reserved as a no-
op (except when it is used for rpcsec_gss con-
text initiation, as described above).

The NFSv4 protocol only supports one non-
zero procedure, procedure 1, the compound
procedure.

The body of a compound is a list of opera-
tions, each with its own arguments. For exam-
ple, a compound request performing a lookup
might consist of 3 operations: a PUTFH, with
a filehandle, which sets the “current filehandle”
to the provided filehandle; a LOOKUP, with a
name, which looks up the name in the directory

given by the current filehandle and then modi-
fies the current filehandle to be the filehandle of
the result; a GETFH, with no arguments, which
returns the new value of the current filehandle;
and a GETATTR, with a bitmask specifying a
set of attributes to return for the looked-up file.

The server processes these operations in order,
but with no guarantee of atomicity. On encoun-
tering any error, it stops and returns the results
of the operations up to and including the oper-
ation that failed.

In theory complex operations could therefore
be done by long compounds which perform
complex series of operations.

In practice, the compounds sent by the Linux
client correspond very closely to NFSv2/v3
procedures—the VFS and the POSIX filesys-
tem API make it difficult to do otherwise—and
our server, like most NFSv4 servers we know
of, rejects overly long or complex compounds.

3.2 Well-known port for NFS

RPC allows services to be run on different
ports, using the “portmap” service to map pro-
gram numbers to ports. While flexible, this
system complicates firewall management; so
NFSv4 recommends the use of port 2049.

In addition, the use of sideband protocols for
mounting, locking, etc. also complicates fire-
wall management, as multiple connections to
multiple ports are required for a single NFS
mount. NFSv4 eliminates these extra proto-
cols, allowing all traffic to pass over a single
connection using one protocol.

3.3 No more mount protocol

Earlier versions of NFS use a separate protocol
for mount. The mount protocol exists primarily
to map path names, presented to the server as
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strings, to filehandles, which may then be used
in the NFS protocol.

NFSv4 instead uses a single operation, PUT-
ROOTFH, that returns a filehandle; clients can
then use ordinary lookups to traverse to the
filesystem they wish to mount. This changes
the behavior of NFS in a few subtle ways: for
example, the special status of mounts in the old
protocol meant that mounting/usr and then
looking up local might get you a different
object than would mounting/usr/local ;
under NFSv4 this can no longer happen.

A server that exports multiple filesystems must
knit them together using a single “pseud-
ofilesystem” which links them to a common
root.

On Linux’s nfsd the pseudofilesystem is a
real filesystem, marked by the export option
“fsid=0”. An adminstrator that is content to
export a single filesystem can export it with
“fsid=0”, and clients will find it just by mount-
ing the path “/”.

The expected use for “fsid=0”, however, is to
designate a filesystem that is used just a collec-
tion of empty directories used as mountpoints
for exported filesystems, which are mounted
usingmount ---bind ; thus an administra-
tor could export/bin and/local/src by:

mkdir -p /exports/home
mkdir -p /exports/bin/
mount --bind /home /exports/home
mount --bind /bin/ /exports/bin

and then using an exports file something like:

/exports *.foo.com(fsid=0,crossmnt)
/exports/home *.foo.com
/exports/bin *.foo.com

Clients in foo.com can then mount
server.foo.com:/bin or server.

foo.com:/home . However the relationship
between the original mountpoint on the server
and the mountpoint under/exports (which
determines the path seen by the client) is
arbitrary, so the administrator could just as
well export/home as/some/other/path
if desired.

This gives maximum flexibility at the expense
of some confusion for adminstrators used to
earlier NFS versions.

3.4 No more lock protocol

Locking has also been absorbed into the
NFSv4 protocol. In addition to advantages
enumerated above, this allows servers to sup-
port mandatory locking if desired. Previously
this was impossible because it was impos-
sible to tell whether a given read or write
should be ordered before or after a lock re-
quest. NFSv4 enforces such sequencing by
providing a stateid field on each read or write
which identifies the locking state that the oper-
ation was performed under; thus for example a
write that occurred while a lock was held, but
that appeared on the server to have occurred af-
ter an unlock, can be identified as belonging to
a previous locking context, and can therefore
be correctly rejected.

The additional state required to manage lock-
ing is the source of much of the additional com-
plexity in NFSv4.

3.5 String representations of user and group
names

Previous versions of NFS use integers to rep-
resent users and groups; while simple to han-
dle, they can make NFS installations difficult to
manage, particularly across adminstrative do-
mains. Version 4, therefore, uses string names
of the formuser@domain .

This poses some challenges for the kernel im-
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plementation. In particular, while the protocol
may use string names, the kernel still needs to
deal with uid’s, so it must map between NFSv4
string names and integers.

As with rpcsec_gss context initation, we solve
this problem by making upcalls to a userspace
daemon; with the mapping in userspace, it is
easy to use mechanisms such as NIS or LDAP
to do the actual mapping without introducing
large amounts of code into the kernel. So as not
to degrade performance by requiring a context
switch every time we process a packet carrying
a name, we cache the results of this mapping in
the kernel.

3.6 Delegations

NFSv4, like previous versions of NFS, does
not attempt to provide full cache consistency.
Instead, all that is guaranteed is that if an open
follows a close of the same file, then data read
after the open will reflect any modifications
performed before the close. This makes both
open and close potentially high latency oper-
ations, since they must wait for at least one
round trip before returning–in the close case,
to flush out any pending writes, and in the
open case, to check the attributes of the file in
question to determine whether the local cache
should be invalidated.

Locks provide similar semantics—writes are
flushed on unlock, and cache consistency is
verified on lock—and hence lock operations
are also prone to high latencies.

To mitigate these concerns, and to encourage
the use of NFS’s locking features, delegations
have been added to NFSv4. Delegations are
granted or denied by the server in response to
open calls, and give the client the right to per-
form later locks and opens locally, without the
need to contact the server. A set of callbacks
is provided so that the server can notify the

client when another client requests an open that
would confict with the open originally obtained
by the client.

Thus locks and opens may be performed
quickly by the client in the common case when
files are not being shared, but callbacks ensure
that correct close-to-open (and unlock-to-lock)
semantics may be enforced when there is con-
tention.

To allow other clients to proceed when a client
holding a delegation reboots, clients are re-
quired to periodically send a “renew” opera-
tion to the server, indicating that it is still alive;
a client that fails to send a renew operation
within a given lease time (established when the
client first contacts the server) may have all of
its delegations and other locking state revoked.

Most implementations of NFSv4 delegations,
including Linux’s, are still young, and we
haven’t yet gathered good data on the perfor-
mance impact.

Nevertheless, further extensions, including
delegations over directories, are under consid-
eration for future versions of the protocol.

3.7 ACLs

ACL support is integrated into the protocol,
with ACLs that are more similar to those found
in NT than to the POSIX ACLs supported by
Linux.

Thus while it is possible to translate an arbi-
trary Linux ACL to an NFS4 ACL with nearly
identical meaning, most NFS ACLs have no
reasonable representation as Linux ACLs.

Marius Eriksen has written a draft describing
the POSIX to NFS4 ACL translation. Cur-
rently the Linux implementation uses this map-
ping, and rejects any NFS4 ACL that isn’t ex-
actly in the image of this mapping. This en-
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sures userland support from all tools that cur-
rently support POSIX ACLs, and simplifies
ACL management when an exported filesys-
tem is also used by local users, since both nfsd
and the local users can use the backend filesys-
tem’s POSIX ACL implementation. However
it makes it difficult to interoperate with NFSv4
implementations that support the full ACL pro-
tocol. For that reason we will eventually also
want to add support for NFSv4 ACLs.
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Abstract

This paper uses a high-performance, event-
driven, HTTP server (theµserver) to compare
the performance of the select, poll, and epoll
event mechanisms. We subject theµserver to
a variety of workloads that allow us to expose
the relative strengths and weaknesses of each
event mechanism.

Interestingly, initial results show that the se-
lect and poll event mechanisms perform com-
parably to the epoll event mechanism in the
absence of idle connections. Profiling data
shows a significant amount of time spent in ex-
ecuting a large number ofepoll_ctl sys-
tem calls. As a result, we examine a variety
of techniques for reducingepoll_ctl over-
head including edge-triggered notification, and
introducing a new system call (epoll_ctlv )
that aggregates severalepoll_ctl calls into
a single call. Our experiments indicate that al-
though these techniques are successful at re-
ducingepoll_ctl overhead, they only im-
prove performance slightly.

1 Introduction

The Internet is expanding in size, number of
users, and in volume of content, thus it is im-
perative to be able to support these changes
with faster and more efficient HTTP servers.

A common problem in HTTP server scala-
bility is how to ensure that the server han-
dles a large number of connections simultane-
ously without degrading the performance. An
event-driven approach is often implemented in
high-performance network servers [14] to mul-
tiplex a large number of concurrent connec-
tions over a few server processes. In event-
driven servers it is important that the server
focuses on connections that can be serviced
without blocking its main process. An event
dispatch mechanism such asselect is used
to determine the connections on which for-
ward progress can be made without invok-
ing a blocking system call. Many different
event dispatch mechanisms have been used
and studied in the context of network applica-
tions. These mechanisms range fromselect ,
poll , /dev/poll , RT signals, and epoll
[2, 3, 15, 6, 18, 10, 12, 4].

The epoll event mechanism [18, 10, 12] is de-
signed to scale to larger numbers of connec-
tions thanselect and poll . One of the
problems withselect and poll is that in
a single call they must both inform the kernel
of all of the events of interest and obtain new
events. This can result in large overheads, par-
ticularly in environments with large numbers
of connections and relatively few new events
occurring. In a fashion similar to that described
by Banga et al. [3] epoll separates mech-
anisms for obtaining events (epoll_wait )
from those used to declare and control interest
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in events (epoll_ctl ).

Further reductions in the number of generated
events can be obtained by using edge-triggered
epoll semantics. In this mode events are only
provided when there is a change in the state of
the socket descriptor of interest. For compat-
ibility with the semantics offered byselect
andpoll , epoll also provides level-triggered
event mechanisms.

To compare the performance of epoll with
select andpoll , we use theµserver [4, 7]
web server. Theµserver facilitates compara-
tive analysis of different event dispatch mech-
anisms within the same code base through
command-line parameters. Recently, a highly
tuned version of the single process event driven
µserver usingselect has shown promising
results that rival the performance of the in-
kernel TUX web server [4].

Interestingly, in this paper, we found that for
some of the workloads consideredselect
andpoll perform as well as or slightly bet-
ter than epoll. One such result is shown in
Figure 1. This motivated further investigation
with the goal of obtaining a better understand-
ing of epoll’s behaviour. In this paper, we de-
scribe our experience in trying to determine
how to best use epoll, and examine techniques
designed to improve its performance.

The rest of the paper is organized as follows:
In Section 2 we summarize some existing work
that led to the development of epoll as a scal-
able replacement forselect . In Section 3 we
describe the techniques we have tried to im-
prove epoll’s performance. In Section 4 we de-
scribe our experimental methodology, includ-
ing the workloads used in the evaluation. In
Section 5 we describe and analyze the results
of our experiments. In Section 6 we summarize
our findings and outline some ideas for future
work.

2 Background and Related Work

Event-notification mechanisms have a long
history in operating systems research and de-
velopment, and have been a central issue in
many performance studies. These studies have
sought to improve mechanisms and interfaces
for obtaining information about the state of
socket and file descriptors from the operating
system [2, 1, 3, 13, 15, 6, 18, 10, 12]. Some
of these studies have developed improvements
to select , poll andsigwaitinfo by re-
ducing the amount of data copied between the
application and kernel. Other studies have re-
duced the number of events delivered by the
kernel, for example, the signal-per-fd scheme
proposed by Chandra et al. [6]. Much of the
aforementioned work is tracked and discussed
on the web site, “The C10K Problem” [8].

Early work by Banga and Mogul [2] found
that despite performing well under laboratory
conditions, popular event-driven servers per-
formed poorly under real-world conditions.
They demonstrated that the discrepancy is due
the inability of the select system call to
scale to the large number of simultaneous con-
nections that are found in WAN environments.

Subsequent work by Banga et al. [3] sought to
improve onselect ’s performance by (among
other things) separating the declaration of in-
terest in events from the retrieval of events on
that interest set. Event mechanisms like se-
lect and poll have traditionally combined these
tasks into a single system call. However, this
amalgamation requires the server to re-declare
its interest set every time it wishes to retrieve
events, since the kernel does not remember the
interest sets from previous calls. This results in
unnecessary data copying between the applica-
tion and the kernel.

The /dev/poll mechanism was adapted
from Sun Solaris to Linux by Provos et al. [15],
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and improved on poll’s performance by intro-
ducing a new interface that separated the decla-
ration of interest in events from retrieval. Their
/dev/poll mechanism further reduced data
copying by using a shared memory region to
return events to the application.

The kqueue event mechanism [9] addressed
many of the deficiencies ofselect andpoll
for FreeBSD systems. In addition to sep-
arating the declaration of interest from re-
trieval, kqueue allows an application to re-
trieve events from a variety of sources includ-
ing file/socket descriptors, signals, AIO com-
pletions, file system changes, and changes in
process state.

The epoll event mechanism [18, 10, 12] inves-
tigated in this paper also separates the declara-
tion of interest in events from their retrieval.
The epoll_create system call instructs
the kernel to create an event data structure
that can be used to track events on a number
of descriptors. Thereafter, theepoll_ctl
call is used to modify interest sets, while the
epoll_wait call is used to retrieve events.

Another drawback ofselect and poll is
that they perform work that depends on the
size of the interest set, rather than the number
of events returned. This leads to poor perfor-
mance when the interest set is much larger than
the active set. The epoll mechanisms avoid this
pitfall and provide performance that is largely
independent of the size of the interest set.

3 Improving epoll Performance

Figure 1 in Section 5 shows the throughput
obtained when using theµserver with the se-
lect, poll, and level-triggered epoll (epoll-LT)
mechanisms. In this graph the x-axis shows
increasing request rates and the y-axis shows
the reply rate as measured by the clients that
are inducing the load. This graph shows re-

sults for the one-byte workload. These re-
sults demonstrate that theµserver with level-
triggered epoll does not perform as well as
select under conditions that stress the event
mechanisms. This led us to more closely ex-
amine these results. Usinggprof , we ob-
served thatepoll_ctl was responsible for a
large percentage of the run-time. As can been
seen in Table 1 in Section 5 over 16% of the
time is spent inepoll_ctl . The gprof out-
put also indicates (not shown in the table) that
epoll_ctl was being called a large num-
ber of times because it is called for every state
change for each socket descriptor. We exam-
ine several approaches designed to reduce the
number ofepoll_ctl calls. These are out-
lined in the following paragraphs.

The first method uses epoll in an edge-
triggered fashion, which requires theµserver
to keep track of the current state of the socket
descriptor. This is required because with the
edge-triggered semantics, events are only re-
ceived for transitions on the socket descriptor
state. For example, once the server reads data
from a socket, it needs to keep track of whether
or not that socket is still readable, or if it will
get another event fromepoll_wait indicat-
ing that the socket is readable. Similar state
information is maintained by the server regard-
ing whether or not the socket can be written.
This method is referred to in our graphs and
the rest of the paperepoll-ET .

The second method, which we refer to as
epoll2, simply callsepoll_ctl twice per
socket descriptor. The first to register with the
kernel that the server is interested in read and
write events on the socket. The second call oc-
curs when the socket is closed. It is used to
tell epoll that we are no longer interested in
events on that socket. All events are handled
in a level-triggered fashion. Although this ap-
proach will reduce the number ofepoll_ctl
calls, it does have potential disadvantages.
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One disadvantage of the epoll2 method is that
because many of the sockets will continue to be
readable or writableepoll_wait will return
sooner, possibly with events that are currently
not of interest to the server. For example, if the
server is waiting for a read event on a socket it
will not be interested in the fact that the socket
is writable until later. Another disadvantage is
that these calls return sooner, with fewer events
being returned per call, resulting in a larger
number of calls. Lastly, because many of the
events will not be of interest to the server, the
server is required to spend a bit of time to de-
termine if it is or is not interested in each event
and in discarding events that are not of interest.

The third method uses a new system call named
epoll_ctlv . This system call is designed to
reduce the overhead of multipleepoll_ctl
system calls by aggregating several calls to
epoll_ctl into one call toepoll_ctlv .
This is achieved by passing an array of epoll
events structures toepoll_ctlv , which then
callsepoll_ctl for each element of the ar-
ray. Events are generated in level-triggered
fashion. This method is referred to in the fig-
ures and the remainder of the paper as epoll-
ctlv.

We useepoll_ctlv to add socket descrip-
tors to the interest set, and for modifying
the interest sets for existing socket descrip-
tors. However, removal of socket descriptors
from the interest set is done by explicitly call-
ing epoll_ctl just before the descriptor is
closed. We do not aggregate deletion oper-
ations because by the timeepoll_ctlv is
invoked, theµserver has closed the descriptor
and theepoll_ctl invoked on that descrip-
tor will fail.

Theµserver does not attempt to batch the clos-
ing of descriptors because it can run out of
available file descriptors. Hence, the epoll-
ctlv method uses both theepoll_ctlv and

the epoll_ctl system calls. Alternatively,
we could rely on theclose system call to
remove the socket descriptor from the inter-
est set (and we did try this). However, this
increases the time spent by theµserver in
close , and does not alter performance. We
verified this empirically and decided to explic-
itly call epoll_ctl to perform the deletion
of descriptors from the epoll interest set.

4 Experimental Environment

The experimental environment consists of a
single server and eight clients. The server con-
tains dual 2.4 GHz Xeon processors, 1 GB of
RAM, a 10,000 rpm SCSI disk, and two one
Gigabit Ethernet cards. The clients are iden-
tical to the server with the exception of their
disks which are EIDE. The server and clients
are connected with a 24-port Gigabit switch.
To avoid network bottlenecks, the first four
clients communicate with the server’s first Eth-
ernet card, while the remaining four use a dif-
ferent IP address linked to the second Ethernet
card. The server machine runs a slightly mod-
ified version of the 2.6.5 Linux kernel in uni-
processor mode.

4.1 Workloads

This section describes the workloads that we
used to evaluate performance of theµserver
with the different event notification mecha-
nisms. In all experiments, we generate HTTP
loads usinghttperf [11], an open-loop work-
load generator that uses connection timeouts to
generate loads that can exceed the capacity of
the server.

Our first workload is based on the widely used
SPECweb99 benchmarking suite [17]. We use
httperf in conjunction with a SPECweb99 file
set and synthetic HTTP traces. Our traces
have been carefully generated to recreate the
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file classes, access patterns, and number of re-
quests issued per (HTTP 1.1) connection that
are used in the static portion of SPECweb99.
The file set and server caches are sized so that
the entire file set fits in the server’s cache. This
ensures that differences in cache hit rates do
not affect performance.

Our second workload is called the one-byte
workload. In this workload, the clients repeat-
edly request the same one byte file from the
server’s cache. We believe that this workload
stresses the event dispatch mechanism by min-
imizing the amount of work that needs to be
done by the server in completing a particular
request. By reducing the effect of system calls
such asread andwrite , this workload iso-
lates the differences due to the event dispatch
mechanisms.

To study the scalability of the event dispatch
mechanisms as the number of socket descrip-
tors (connections) is increased, we useidle-
conn, a program that comes as part of the
httperf suite. This program maintains a steady
number of idle connections to the server (in ad-
dition to the active connections maintained by
httperf). If any of these connections are closed
idleconn immediately re-establishes them. We
first examine the behaviour of the event dis-
patch mechanisms without any idle connec-
tions to study scenarios where all of the con-
nections present in a server are active. We then
pre-load the server with a number of idle con-
nections and then run experiments. The idle
connections are used to increase the number
of simultaneous connections in order to sim-
ulate a WAN environment. In this paper we
present experiments using 10,000 idle connec-
tions, our findings with other numbers of idle
connections were similar and they are not pre-
sented here.

4.2 Server Configuration

For all of our experiments, theµserver is run
with the same set of configuration parameters
except for the event dispatch mechanism. The
µserver is configured to usesendfile to take
advantage of zero-copy socket I/O while writ-
ing replies. We use TCP_CORK in conjunc-
tion with sendfile . The same server op-
tions are used for all experiments even though
the use of TCP_CORK andsendfile may
not provide benefits for the one-byte workload
when compared with simply usingwritev .

4.3 Experimental Methodology

We measure the throughput of theµserver us-
ing different event dispatch mechanisms. In
our graphs, each data point is the result of a
two minute experiment. Trial and error re-
vealed that two minutes is sufficient for the
server to achieve a stable state of operation. A
two minute delay is used between consecutive
experiments, which allows the TIME_WAIT
state on all sockets to be cleared before the sub-
sequent run. All non-essential services are ter-
minated prior to running any experiment.

5 Experimental Results

In this section we first compare the throughput
achieved when using level-triggered epoll with
that observed when usingselect andpoll
under both the one-byte and SPECweb99-
like workloads with no idle connections. We
then examine the effectiveness of the differ-
ent methods described for reducing the num-
ber of epoll_ctl calls under these same
workloads. This is followed by a compari-
son of the performance of the event dispatch
mechanisms when the server is pre-loaded with
10,000 idle connections. Finally, we describe
the results of experiments in which we tune the
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accept strategy used in conjunction with epoll-
LT and epoll-ctlv to further improve their per-
formance.

We initially ran the one byte and the
SPECweb99-like workloads to compare the
performance of the select, poll and level-
triggered epoll mechanisms.

As shown in Figure 1 and Figure 2, for both
of these workloads select and poll perform as
well as epoll-LT. It is important to note that be-
cause there are no idle connections for these
experiments the number of socket descriptors
tracked by each mechanism is not very high.
As expected, the gap between epoll-LT and se-
lect is more pronounced for the one byte work-
load because it places more stress on the event
dispatch mechanism.
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Figure 1: µserver performance on one byte
workload using select, poll, and epoll-LT
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Figure 2: µserver performance on
SPECweb99-like workload using select,
poll, and epoll-LT

We tried to improve the performance of the
server by exploring different techniques for us-

ing epoll as described in Section 3. The effect
of these techniques on the one-byte workload
is shown in Figure 3. The graphs in this figure
show that for this workload the techniques used
to reduce the number ofepoll_ctl calls do
not provide significant benefits when compared
with their level-triggered counterpart (epoll-
LT). Additionally, the performance of select
and poll is equal to or slightly better than each
of the epoll techniques. Note that we omit the
line for poll from Figures 3 and 4 because it is
nearly identical to the select line.
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Figure 3: µserver performance on one byte
workload with no idle connections

We further analyze the results from Figure 3
by profiling theµserver using gprof at the re-
quest rate of 22,000 requests per second. Table
1 shows the percentage of time spent in sys-
tem calls (rows) under the various event dis-
patch methods (columns). The output for sys-
tem calls andµserver functions which do not
contribute significantly to the total run-time is
left out of the table for clarity.

If we compare the select and poll columns
we see that they have a similar breakdown in-
cluding spending about 13% of their time in-
dicating to the kernel events of interest and
obtaining events. In contrast the epoll-LT,
epoll-ctlv, and epoll2 approaches spend about
21 – 23% of their time on their equivalent
functions (epoll_ctl , epoll_ctlv and
epoll_wait ). Despite these extra overheads
the throughputs obtained using the epoll tech-
niques compare favourably with those obtained
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select epoll-LT epoll-ctlv epoll2 epoll-ET poll
read 21.51 20.95 21.41 20.08 22.19 20.97
close 14.90 14.05 14.90 13.02 14.14 14.79
select 13.33 - - - - -
poll - - - - - 13.32
epoll_ctl - 16.34 5.98 10.27 11.06 -
epoll_wait - 7.15 6.01 12.56 6.52 -
epoll_ctlv - - 9.28 - - -
setsockopt 11.17 9.13 9.13 7.57 9.08 10.68
accept 10.08 9.51 9.76 9.05 9.30 10.20
write 5.98 5.06 5.10 4.13 5.31 5.70
fcntl 3.66 3.34 3.37 3.14 3.34 3.61
sendfile 3.43 2.70 2.71 3.00 3.91 3.43

Table 1: gprof profile data for theµserver under the one-byte workload at 22,000 requests/sec

usingselect andpoll . We note that when
using select and poll the application re-
quires extra manipulation, copying, and event
scanning code that is not required in the epoll
case (and does not appear in the gprof data).

The results in Table 1 also show that the
overhead due toepoll_ctl calls is re-
duced in epoll-ctlv, epoll2 and epoll-ET, when
compared with epoll-LT. However, in each
case these improvements are offset by in-
creased costs in other portions of the code.
The epoll2 technique spends twice as much
time in epoll_wait when compared with
epoll-LT. With epoll2 the number of calls
to epoll_wait is significantly higher, the
average number of descriptors returned is
lower, and only a very small proportion of
the calls (less than 1%) return events that
need to be acted upon by the server. On the
other hand, when compared with epoll-LT the
epoll2 technique spends about 6% less time
on epoll_ctl calls so the total amount of
time spent dealing with events is comparable
with that of epoll-LT. Despite the significant
epoll_wait overheads epoll2 performance
compares favourably with the other methods
on this workload.

Using the epoll-ctlv technique, gprof indicates
that epoll_ctlv and epoll_ctl com-
bine for a total of 1,949,404 calls compared
with 3,947,769epoll_ctl calls when us-
ing epoll-LT. While epoll-ctlv helps to reduce
the number of user-kernel boundary cross-
ings, the net result is no better than epoll-
LT. The amount of time taken by epoll-ctlv
in epoll_ctlv and epoll_ctl system
calls is about the same (around 16%) as
that spent by level-triggered epoll in invoking
epoll_ctl.

When comparing the percentage of time epoll-
LT and epoll-ET spend inepoll_ctl we see
that it has been reduced using epoll-ET from
16% to 11%. Although theepoll_ctl time
has been reduced it does not result in an ap-
preciable improvement in throughput. We also
note that about 2% of the run-time (which is
not shown in the table) is also spent in the
epoll-ET case checking, and tracking the state
of the request (i.e., whether the server should
be reading or writing) and the state of the
socket (i.e., whether it is readable or writable).
We expect that this can be reduced but that it
wouldn’t noticeably impact performance.

Results for the SPECweb99-like workload are
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shown in Figure 4. Here the graph shows that
all techniques produce very similar results with
a very slight performance advantage going to
epoll-ET after the saturation point is reached.
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Figure 4: µserver performance on
SPECweb99-like workload with no idle
connections

5.1 Results With Idle Connections

We now compare the performance of the event
mechanisms with 10,000 idle connections. The
idle connections are intended to simulate the
presence of larger numbers of simultaneous
connections (as might occur in a WAN envi-
ronment). Thus, the event dispatch mechanism
has to keep track of a large number of descrip-
tors even though only a very small portion of
them are active.

By comparing results in Figures 3 and 5 one
can see that the performance of select and poll
degrade by up to 79% when the 10,000 idle
connections are added. The performance of
epoll2 with idle connections suffers similarly
to select and poll. In this case, epoll2 suffers
from the overheads incurred by making a large
number ofepoll_wait calls the vast major-
ity of which return events that are not of cur-
rent interest to the server. Throughput with
level-triggered epoll is slightly reduced with
the addition of the idle connections while edge-
triggered epoll is not impacted.

The results for the SPECweb99-like workload
with 10,000 idle connections are shown in Fig-

ure 6. In this case each of the event mecha-
nisms is impacted in a manner similar to that
in which they are impacted by idle connections
in the one-byte workload case.
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Figure 5: µserver performance on one byte
workload and 10,000 idle connections
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Figure 6: µserver performance on
SPECweb99-like workload and 10,000
idle connections

5.2 Tuning Accept Strategy for epoll

The µserver’s accept strategy has been tuned
for use withselect . Theµserver includes a
parameter that controls the number of connec-
tions that are accepted consecutively. We call
this parameter the accept-limit. Parameter val-
ues range from one to infinity (Inf). A value of
one limits the server to accepting at most one
connection when notified of a pending connec-
tion request, while Inf causes the server to con-
secutively accept all currently pending connec-
tions.

To this point we have used the accept strategy
that was shown to be effective forselect by
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Brecht et al. [4] (i.e., accept-limit is Inf). In
order to verify whether the same strategy per-
forms well with the epoll-based methods we
explored their performance under different ac-
cept strategies.

Figure 7 examines the performance of level-
triggered epoll after the accept-limit has been
tuned for the one-byte workload (other val-
ues were explored but only the best values
are shown). Level-triggered epoll with an ac-
cept limit of 10 shows a marked improve-
ment over the previous accept-limit of Inf,
and now matches the performance of select
on this workload. The accept-limit of 10 also
improves peak throughput for the epoll-ctlv
model by 7%. This gap widens to 32% at
21,000 requests/sec. In fact the best accept
strategy for epoll-ctlv fares slightly better than
the best accept strategy for select.
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Figure 7: µserver performance on one byte
workload with different accept strategies and
no idle connections

Varying the accept-limit did not improve the
performance of the edge-triggered epoll tech-
nique under this workload and it is not shown
in the graph. However, we believe that the ef-
fects of the accept strategy on the various epoll
techniques warrants further study as the effi-
cacy of the strategy may be workload depen-
dent.

6 Discussion

In this paper we use a high-performance event-
driven HTTP server, theµserver, to compare
and evaluate the performance of select, poll,
and epoll event mechanisms. Interestingly,
we observe that under some of the work-
loads examined the throughput obtained using
select andpoll is as good or slightly bet-
ter than that obtained with epoll. While these
workloads may not utilize representative num-
bers of simultaneous connections they do stress
the event mechanisms being tested.

Our results also show that a main source of
overhead when using level-triggered epoll is
the large number ofepoll_ctl calls. We
explore techniques which significantly reduce
the number ofepoll_ctl calls, including
the use of edge-triggered events and a system
call, epoll_ctlv , which allows theµserver
to aggregate large numbers ofepoll_ctl
calls into a single system call. While these
techniques are successful in reducing the num-
ber of epoll_ctl calls they do not appear
to provide appreciable improvements in perfor-
mance.

As expected, the introduction of idle connec-
tions results in dramatic performance degrada-
tion when usingselect andpoll , while not
noticeably impacting the performance when
using epoll. Although it is not clear that
the use of idle connections to simulate larger
numbers of connections is representative of
real workloads, we find that the addition of
idle connections does not significantly alter
the performance of the edge-triggered and
level-triggered epoll mechanisms. The edge-
triggered epoll mechanism performs best with
the level-triggered epoll mechanism offer-
ing performance that is very close to edge-
triggered.

In the future we plan to re-evaluate some of
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the mechanisms explored in this paper un-
der more representative workloads that include
more representative wide area network condi-
tions. The problem with the technique of us-
ing idle connections is that the idle connections
simply inflate the number of connections with-
out doing any useful work. We plan to explore
tools similar to Dummynet [16] and NIST Net
[5] in order to more accurately simulate traffic
delays, packet loss, and other wide area net-
work traffic characteristics, and to re-examine
the performance of Internet servers using dif-
ferent event dispatch mechanisms and a wider
variety of workloads.
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Abstract

The X Window System, Version 11, is the stan-
dard window system on Linux and UNIX sys-
tems. X11, designed in 1987, was “state of
the art” at that time. From its inception, X has
been a network transparent window system in
which X client applications can run on any ma-
chine in a network using an X server running
on any display. While there have been some
significant extensions to X over its history (e.g.
OpenGL support), X’s design lay fallow over
much of the 1990’s. With the increasing inter-
est in open source systems, it was no longer
sufficient for modern applications and a sig-
nificant overhaul is now well underway. This
paper describes revisions to the architecture of
the window system used in a growing fraction
of desktops and embedded systems

1 Introduction

While part of this work on the X window sys-
tem [SG92] is “good citizenship” required by
open source, some of the architectural prob-
lems solved ease the ability of open source ap-
plications to print their results, and some of
the techniques developed are believed to be in
advance of the commercial computer industry.
The challenges being faced include:

• X’s fundamentally flawed font architec-

ture made it difficult to implement good
WYSIWYG systems

• Inadequate 2D graphics, which had al-
ways been intended to be augmented
and/or replaced

• Developers are loathe to adopt any new
technology that limits the distribution of
their applications

• Legal requirements for accessibility for
screen magnifiers are difficult to imple-
ment

• Users desire modern user interface eye
candy, which sport translucent graphics
and windows, drop shadows, etc.

• Full integration of applications into 3 D
environments

• Collaborative shared use of X (e.g. multi-
ple simultaneous use of projector walls or
other shared applications)

While some of this work has been published
elsewhere, there has never been any overview
paper describing this work as an integrated
whole, and the compositing manager work de-
scribed below is novel as of fall 2003. This
work represents a long term effort that started
in 1999, and will continue for several years
more.
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2 Text and Graphics

X’s obsolete 2D bit-blit based text and graph-
ics system problems were most urgent. The de-
velopment of the Gnome and KDE GUI envi-
ronments in the period 1997-2000 had shown
X11’s fundamental soundness, but confirmed
the authors’ belief that the rendering system in
X was woefully inadequate. One of us par-
ticipated in the original X11 design meetings
where the intent was to augment the rendering
design at a later date; but the “GUI Wars” of the
late 1980’s doomed effort in this area. Good
printing support has been particularly difficult
to implement in X applications, as fonts have
were opaque X server side objects not directly
accessible by applications.

Most applications now composite images in
sophisticated ways, whether it be in Flash me-
dia players, or subtly as part of anti-aliased
characters. Bit-Blit is not sufficient for these
applications, and these modern applications
were (if only by their use of modern toolk-
its) all resorting to pixel based image manip-
ulation. The screen pixels are retrieved from
the window system, composited in clients, and
then restored to the screen, rather than directly
composited in hardware, resulting in poor per-
formance. Inspired by the model first imple-
mented in the Plan 9 window system, a graph-
ics model based on Porter/Duff [PD84] image
compositing was chosen. This work resulted in
the X Render extension [Pac01a].

X11’s core graphics exposed fonts as a server
side abstraction. This font model was, at best,
marginally adequate by 1987 standards. Even
WYSIWYG systems of that era found them in-
sufficient. Much additional information em-
bedded in fonts (e.g. kerning tables) were not
available from X whatsoever. Current com-
petitive systems implement anti-aliased outline
fonts. Discovering the Unicode coverage of a
font, required by current toolkits for interna-

tionalization, was causing major performance
problems. Deploying new server side font
technology is slow, as X is a distributed sys-
tem, and many X servers are seldom (or never)
updated.

Therefore, a more fundamental change in X’s
architecture was undertaken: to no longer use
server side fonts at all, but to allow applications
direct access to font files and have the window
system cache and composite glyphs onto the
screen.

The first implementation of the new font sys-
tem [Pac01b] taught a vital lesson. Xft1
provided anti-aliased text and proper font
naming/substitution support, but reverted to
the core X11 bitmap fonts if the Render
extension was not present. Xft1 included
the first implementation what is called “sub-
pixel decimation,” which provides higher qual-
ity subpixel based rendering than Microsoft’s
ClearType [Pla00] technology in a completely
general algorithm.

Despite these advances, Xft1 received at best
a lukewarm reception. If an application devel-
oper wanted anti-aliased text universally, Xft1
did not help them, since it relied on the Render
extension which had not yet been widely de-
ployed; instead, the developer would be faced
with two implementations, and higher mainte-
nance costs. This (in retrospect obvious) ratio-
nal behavior of application developers shows
the high importance of backwards compatibil-
ity; X extensions intended for application de-
velopers’ use must be designed in a down-
ward compatible form whenever possible, and
should enable a complete conversion to a new
facility, so that multiple code paths in appli-
cations do not need testing and maintenance.
These principles have guided later develop-
ment.

The font installation, naming, substitution,
and internationalization problems were sepa-
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rated from Xft into a library named Fontcon-
fig [Pac02], (since some printer only appli-
cations need this functionality independent of
the window system.) Fontconfig provides in-
ternationalization features in advance of those
in commercial systems such as Windows or
OS X, and enables trivial font installation with
good performance even when using thousands
of fonts. Xft2 was also modified to operate
against legacy X servers lacking the Render ex-
tension.

Xft2 and Fontconfig’s solving of several ma-
jor problems and lack of deployment barriers
enabled rapid acceptance and deployment in
the open source community, seeing almost uni-
versal use and uptake in less than one calen-
dar year. They have been widely deployed on
Linux systems since the end of 2002. They also
“future proof” open source systems against
coming improvements in font systems (e.g.
OpenType), as the window system is no longer
a gating item for font technology.

Sun Microsystems implemented a server side
font extension over the last several years; for
the reasons outlined in this section, it has not
been adopted by open source developers.

While Xft2 and Fontconfig finally freed ap-
plication developers from the tyranny of
X11’s core font system, improved perfor-
mance [PG03], and at a stroke simplified their
printing problems, it has still left a substantial
burden on applications. The X11 core graph-
ics, even augmented by the Render extension,
lack convenient facilities for many applications
for even simple primitives like splines, tasteful
wide lines, stroking paths, etc, much less pro-
vide simple ways for applications to print the
results on paper.

3 Cairo

The Cairo library [WP03], developed by one of
the authors in conjunction with by Carl Worth
of ISI, is designed to solve this problem. Cairo
provides a state full user-level API with sup-
port for the PDF 1.4 imaging model. Cairo pro-
vides operations including stroking and filling
Bézier cubic splines, transforming and com-
positing translucent images, and anti-aliased
text rendering. The PostScript drawing model
has been adapted for use within applications.
Extensions needed to support much of the PDF
1.4 imaging operations have been included.
This integration of the familiar PostScript op-
erational model within the native application
language environments provides a simple and
powerful new tool for graphics application de-
velopment.

Cairo’s rendering algorithms use work done
in the 1980’s by Guibas, Ramshaw, and
Stolfi [GRS83] along with work by John
Hobby [Hob85], which has never been ex-
ploited in Postscript or in Windows. The im-
plementation is fast, precise, and numerically
stable, supports hardware acceleration, and is
in advance of commercial systems.

Of particular note is the current development of
Glitz [NR04], an OpenGL backend for Cairo,
being developed by a pair of master’s students
in Sweden. Not only is it showing that a high
speed implementation of Cairo is possible, it
implements an interface very similar to the X
Render extension’s interface. More about this
in the OpenGL section below.

Cairo is in the late stages of development and
is being widely adopted in the open source
community. It includes the ability to render
to Postscript and a PDF back end is planned,
which should greatly improve applications’
printing support. Work to incorporate Cairo in
the Gnome and KDE desktop environments is
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well underway, as are ports to Windows and
Apple’s MacIntosh, and it is being used by the
Mono project. As with Xft2, Cairo works with
all X servers, even those without the Render
extension.

4 Accessibility and Eye-Candy

Several years ago, one of us implemented a
prototype X system that used image composit-
ing as the fundamental primitive for construct-
ing the screen representation of the window hi-
erarchy contents. Child window contents were
composited to their parent windows which
were incrementally composed to their parents
until the final screen image was formed, en-
abling translucent windows. The problem with
this simplistic model was twofold—first, a
naïve implementation consumed enormous re-
sources as each window required two com-
plete off screen buffers (one for the window
contents themselves, and one for the window
contents composited with the children) and
took huge amounts of time to build the final
screen image as it recursively composited win-
dows together. Secondly, the policy govern-
ing the compositing was hardwired into the X
server. An architecture for exposing the same
semantics with less overhead seemed almost
possible, and pieces of it were implemented
(miext/layer). However, no complete system
was fielded, and every copy of the code tracked
down and destroyed to prevent its escape into
the wild.

Both Mac OS X and DirectFB [Hun04] per-
form window-level compositing by creating
off-screen buffers for each top-level window
(in OS X, the window system is not nested,
so there are only top-level windows). The
screen image is then formed by taking the re-
sulting images and blending them together on
the screen. Without handling the nested win-
dow case, both of these systems provide the

desired functionality with a simple implemen-
tation. This simple approach is inadequate
for X as some desktop environments nest the
whole system inside a single top-level win-
dow to allow panning, and X’s long history
has shown the value of separating mechanism
from policy (Gnome and KDE were developed
over 10 years after X11’s design). The fix is
pretty easy—allow applications to select which
pieces of the window hierarchy are to be stored
off-screen and which are to be drawn to their
parent storage.

With window hierarchy contents stored in off-
screen buffers, an external application can now
control how the screen contents are constructed
from the constituent sub-windows and what-
ever other graphical elements are desired. This
eliminated the complexities surrounding pre-
cisely what semantics would be offered in
window-level compositing within the X server
and the design of the underlying X extensions.
They were replaced by some concerns over the
performance implications of using an external
agent (the “Compositing Manager”) to execute
the requests needed to present the screen im-
age. Note that every visible pixel is under the
control of the compositing manager, so screen
updates are limited to how fast that application
can get the bits painted to the screen.

The architecture is split across three new ex-
tensions:

• Composite, which controls which sub-
hierarchies within the window tree are
rendered to separate buffers.

• Damage, which tracks modified areas
with windows, informing the Composting
Manager which areas of the off-screen hi-
erarchy components have changed.

• Xfixes, which includes new Region ob-
jects permitting all of the above computa-
tion to be performed indirectly within the
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X server, avoiding round trips.

Multiple applications can take advantage of the
off screen window contents, allowing thumb-
nail or screen magnifier applications to be in-
cluded in the desktop environment.

To allow applications other than the composit-
ing manager to present alpha-blended content
to the screen, a new X Visual was added to the
server. At 32 bits deep, it provides 8 bits of
red, green and blue along with 8 bits of alpha
value. Applications can create windows using
this visual and the compositing manager can
composite them onto the screen.

Nothing in this fundamental design indicates
that it is used for constructing translucent win-
dows; redirection of window contents and no-
tification of window content change seems
pretty far removed from one of the final goals.
But note the compositing manger can use what-
ever X requests it likes to paint the com-
bined image, including requests from the Ren-
der extension, which does know how to blend
translucent images together. The final image
is constructed programmatically so the possi-
ble presentation on the screen is limited only
by the fertile imagination of the numerous eye-
candy developers, and not restricted to any pol-
icy imposed by the base window system. And
vital to rapid deployment, most applications
can be completely oblivious to this background
legerdemain.

In this design, such sophisticated effects need
only be applied at frame update rates on only
modified sections of the screen rather than at
the rate applications perform graphics; this
constant behavior is highly desirable in sys-
tems.

There is very strong “pull” from both commer-
cial and non-commercial users of X for this
work and the current early version will likely
be shipped as part of the next X.org Foun-

dation X Window System release, sometime
this summer. Since there has not been suffi-
cient exposure through widespread use, further
changes will certainly be required further expe-
rience with the facilities are gained in a much
larger audience; as these can be made without
affecting existing applications, immediate de-
ployment is both possible and extremely desir-
able.

The mechanisms described above realize a fun-
damentally more interesting architecture than
either Windows or Mac OSX, where the com-
positing policy is hardwired into the window
system. We expect a fertile explosion of ex-
perimentation, experience (both good and bad),
and a winnowing of ideas as these facilities
gain wider exposure.

5 Input Transformation

In the “naïve,” eye-candy use of the new com-
positing functions, no transformation of input
events are required, as input to windows re-
mains at the same geometric position on the
screen, even though the windows are first ren-
dered off screen. More sophisticated use, for
example, screen readers or immersive environ-
ments such as Croquet [SRRK02], or Sun’s
Looking Glass [KJ04] requires transformation
of input events from where they first occur
on the visible screen to the actual position in
the windows (being rendered from off screen),
since the window’s contents may have been ar-
bitrarily transformed or even texture mapped
onto shapes on the screen.

As part of Sun Microsystem’s award winning
work on accessibility in open source for screen
readers, Sun has developed the XEvIE exten-
sion [Kre], which allows external clients to
transform input events. This looks like a good
starting point for the somewhat more general
problem that 3D systems pose, and with some
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modification can serve both the accessibility
needs and those of more sophisticated applica-
tions.

6 Synchronization

Synchronization is probably the largest re-
maining challenge posed by compositing.
While composite has eliminated much flashing
of the screen since window exposure is elimi-
nated, this does not solve the challenge of the
compositing manager happening to copy an ap-
plication’s window to the frame buffer in the
middle of an application painting a sequence
of updates. No “tearing” of single graphics op-
erations take place since the X server is single
threaded, and all graphics operations are run to
completion.

The X Synchronization extension
(XSync) [GCGW92], widely available
but to date seldom used, provides a general set
of mechanisms for applications to synchronize
with each other, with real time, and potentially
with other system provided counters. XSync’s
original design intent intended system pro-
vided counters for vertical retrace interrupts,
audio sample clocks, and similar system
facilities, enabling very tight synchronization
of graphics operations with these time bases.
Work has begun on Linux to provide these
counters at long last, when available, to flesh
out the design originally put in place and tested
in the early 1990’s.

A possible design for solving the application
synchronization problem at low overhead may
be to mark sections of requests with incre-
ments of XSync counters: if the count is odd
(or even) the window would be unstable/stable.
The compositing manager might then copy the
window only if the window is in a stable state.
Some details and possibly extensions to XSync
will need to be worked out, if this approach is

pursued.

7 Next Steps

We believe we are slightly more than half way
through the process of rearchitecting and reim-
plementing the X Window System. The ex-
isting prototype needs to become a produc-
tion system requiring significant infrastructure
work as described in this section.

7.1 OpenGL based X

Current X-based systems which support
OpenGL do so by encapsulating the OpenGL
environment within X windows. As such,
an OpenGL application cannot manipulate X
objects with OpenGL drawing commands.

Using OpenGL as the basis for the X server it-
self will place X objects such as pixmaps and
off-screen window contents inside OpenGL
objects allowing applications to use the full
OpenGL command set to manipulate them.

A “proof of concept” of implementation of the
X Render extension is being done as part of
the Glitz back-end for Cairo, which is showing
very good performance for render based appli-
cations. Whether the “core” X graphics will re-
quire any OpenGL extensions is still somewhat
an open question.

In concert with the new compositing exten-
sions, conventional X applications can then be
integrated into 3D environments such as Cro-
quet, or Sun’s Looking Glass. X application
contents can be used as textures and mapped
onto any surface desired in those environments.

This work is underway, but not demonstrable
at this date.
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7.2 Kernel support for graphics cards

In current open source systems, graphics cards
are supported in a manner totally unlike that
of any other operating system, and unlike pre-
vious device drivers for the X Window System
on commercial UNIX systems. There is no sin-
gle central kernel driver responsible for manag-
ing access to the hardware. Instead, a large set
of cooperating user and kernel mode systems
are involved in mutual support of the hardware,
including the X server (for 2D graphic), the
direct-rendering infrastructure (DRI) (for ac-
celerated 3D graphics), the kernel frame buffer
driver (for text console emulation), the Gen-
eral ATI TV and Overlay Software (GATOS)
(for video input and output) and alternate 2D
graphics systems like DirectFB.

Two of these systems, the kernel frame buffer
driver and the X server both include code to
configure the graphics card “video mode”—
the settings needed to send the correct video
signals to monitors connected to the card.
Three of these systems, DRI, the X server
and GATOS, all include code for managing
the memory space within the graphics card.
All of these systems directly manipulate hard-
ware registers without any coordination among
them.

The X server has no kernel component for
2D graphics. Long-latency operations cannot
use interrupts, instead the X server spins while
polling status registers. DMA is difficult or im-
possible to configure in this environment. Per-
haps the most egregious problem is that the
X server reconfigures the PCI bus to correct
BIOS mapping errors without informing the
operating system kernel. Kernel access to de-
vices while this remapping is going on may
find the related devices mismapped.

To rationalize this situation, various groups and
vendors are coordinating efforts to create a sin-

gle kernel-level entity responsible for basic de-
vice management, but this effort has just be-
gun.

7.3 Housecleaning and Latency Elimination
and Latency Hiding

Serious attempts were made in the early 1990’s
to multi-thread the X server itself, with the dis-
covery that the threading overhead in the X
server is a net performance loss [Smi92].

Applications, however, often need to be multi-
threaded. The primary C binding to the X pro-
tocol is called Xlib, and its current implemen-
tation by one of us dates from 1987. While it
was partially developed on a Firefly multipro-
cessor workstation of that era, something al-
most unheard of at that date, and some con-
sideration of multi-threaded applications were
taken in its implementation, its internal trans-
port facilities were never expected/intended to
be preserved when serious multi-threaded op-
erating systems became available. Unfortu-
nately, rather than a full rewrite as one of us ex-
pected, multi-threaded support was debugged
into existence using the original code base and
the resulting code is very bug-prone and hard to
maintain. Additionally, over the years, Xlib be-
came a “kitchen sink” library, including func-
tionality well beyond its primary use as a bind-
ing to the X protocol. We have both seri-
ously regretted the precedents both of us set
introducing extraneous functionality into Xlib,
causing it to be one of the largest libraries on
UNIX/Linux systems. Due to better facilities
in modern toolkits and system libraries, more
than half of Xlib’s current footprint is obsolete
code or data.

While serious work was done in X11’s design
to mitigate latency, X’s performance, particu-
larly over low speed networks, is often lim-
ited by round trip latency, and with retrospect
much more can be done [PG03]. As this
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work shows, client side fonts have made a sig-
nificant improvement in startup latency, and
work has already been completed in toolkits
to mitigate some of the other hot spots. Much
of the latency can be retrieved by some sim-
ple techniques already underway, but some re-
quire more sophisticated techniques that the
current Xlib implementation is not capable of.
Potentially 90the latency as of 2003 can be
recovered by various techniques. The XCB
library [MS01] by Bart Massey and Jamey
Sharp is both carefully engineered to be mul-
tithreaded and to expose interfaces that will al-
low for latency hiding.

Since libraries linked against different basic
X transport systems would cause havoc in the
same address space, a Xlib compatibility layer
(XCL) has been developed that provides the
“traditional” X library API, using the original
Xlib stubs, but replacing the internal transport
and locking system, which will allow for much
more useful latency hiding interfaces. The
XCB/XCL version of Xlib is now able to run
essentially all applications, and after a shake-
down period, should be able to replace the ex-
isting Xlib transport soon. Other bindings than
the traditional Xlib bindings then become pos-
sible in the same address space, and we may
see toolkits adopt those bindings at substantial
savings in space.

7.4 Mobility, Collaboration, and Other Topics

X’s original intended environment included
highly mobile students, and a hope, never gen-
erally realized for X, was the migration of ap-
plications between X servers.

The user should be able to travel between sys-
tems running X and retrieve your running ap-
plications (with suitable authentication and au-
thorization). The user should be able to log out
and “park” applications somewhere for later
retrieval, either on the same display, or else-

where. Users should be able to replicate an
application’s display on a wall projector for
presentation. Applications should be able to
easily survive the loss of the X server (most
commonly caused by the loss of the underly-
ing TCP connection, when running remotely).

Toolkit implementers typically did not under-
stand and share this poorly enunciated vision
and were primarily driven by pressing imme-
diate needs, and X’s design and implemen-
tation made migration or replication difficult
to implement as an afterthought. As a re-
sult, migration (and replication) was seldom
implemented, and early toolkits such as Xt
made it even more difficult. Emacs is the only
widespread application capable of both migra-
tion and replication, and it avoided using any
toolkit. A more detailed description of this vi-
sion is available in [Get02].

Recent work in some of the modern toolkits
(e.g. GTK+) and evolution of X itself make
much of this vision demonstrable in current ap-
plications. Some work in the X infrastructure
(Xlib) is underway to enable the prototype in
GTK+ to be finished.

Similarly, input devices need to become full-
fledged network data sources, to enable much
looser coupling of keyboards, mice, game con-
soles and projectors and displays; the challenge
here will be the authentication, authorization
and security issues this will raise. The HAL
and DBUS projects hosted at freedesktop.org
are working on at least part of the solutions for
the user interface challenges posed by hotplug
of input devices.

7.5 Color Management

The existing color management facilities in
X are over 10 years old, have never seen
widespread use, and do not meet current needs.
This area is ripe for revisiting. Marti Maria Sa-
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guer’s LittleCMS [Mar] may be of use here.
For the first time, we have the opportunity to
“get it right” from one end to the other if we
choose to make the investment.

7.6 Security and Authentication

Transport security has become an burning is-
sue; X is network transparent (applications can
run on any system in a network, using remote
displays), yet we dare no longer use X over the
network directly due to password grabbing kits
in the hands of script kiddies. SSH [BS01] pro-
vides such facilities via port forwarding and
is being used as a temporary stopgap. Ur-
gent work on something better is vital to en-
able scaling and avoid the performance and la-
tency issues introduced by transit of extra pro-
cesses, particularly on (Linux Terminal Server
Project (LTSP [McQ02]) servers, which are be-
ginning break out of their initial use in schools
and other non security sensitive environments
into very sensitive commercial environments.

Another aspect of security arises between ap-
plications sharing a display. In the early and
mid 1990’s efforts were made as a result of the
compartmented mode workstation projects to
make it much more difficult for applications to
share or steal data from each other on a X dis-
play. These facilities are very inflexible, and
have gone almost unused.

As projectors and other shared displays be-
come common over the next five years, appli-
cations from multiple users sharing a display
will become commonplace. In such environ-
ments, different people may be using the same
display at the same time and would like some
level of assurance that their application’s data
is not being grabbed by the other user’s appli-
cation.

Eamon Walsh has, as part of the SELinux
project [Wal04], been working to replace the

existing X Security extension with an exten-
sion that, as in SELinux, will allow multiple
different security policies to be developed ex-
ternal to the X server. This should allow multi-
ple different policies to be available to suit the
varied uses: normal workstations, secure work-
stations, shared displays in conference rooms,
etc.

7.7 Compression and Image Transport

Many/most modern applications and desktops,
including the most commonly used application
(a web browser) are now intensive users of syn-
thetic and natural images. The previous at-
tempt (XIE [SSF+96]) to provide compressed
image transport failed due to excessive com-
plexity and over ambition of the designers, has
never been significantly used, and is now in
fact not even shipped as part of current X dis-
tributions.

Today, many images are being read from disk
or the network in compressed form, uncom-
pressed into memory in the X client, moved
to the X server (where they often occupy an-
other copy of the uncompressed data). If we
add general data compression to X (or run X
over ssh with compression enabled) the data
would be both compressed and uncompressed
on its way to the X server. A simple replace-
ment for XIE (if the complexity slippery slope
can be avoided in a second attempt) would be
worthwhile, along with other general compres-
sion of the X protocol.

Results in our 2003 Usenix X Network Per-
formance paper show that, in real applica-
tion workloads (the startup of a Gnome desk-
top), using even simple GZIP [Gai93] style
compression can make a tremendous differ-
ence in a network environment, with a fac-
tor of 300(!) savings in bandwidth. Appar-
ently the synthetic images used in many cur-
rent UI’s are extremely good candidates for
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compression. A simple X extension that could
encapsulate one or more X requests into the
extension request would avoid multiple com-
pression/uncompression of the same data in
the system where an image transport extension
was also present. The basic X protocol frame-
work is actually very byte efficient relative to
most conventional RPC systems, with a basic
X request only occupying 4 bytes (contrast this
with HTTP or CORBA, in which a simple re-
quest is more than 100 bytes).

With the great recent interest in LTSP in com-
mercial environments, work here would be ex-
tremely well spent, saving both memory and
CPU, and network bandwidth.

We are more than happy to hear from anyone
interested in helping in this effort to bring X
into the new millennium.
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Abstract

Itanium processors have very sophisticated
performance monitoring tools integrated into
the CPU. McKinley and Madison Itanium
CPUs have over three hundred different types
of events they can filter, trigger on, and count.
The restrictions on which combinations of trig-
gers are allowed is daunting and varies across
CPU implementations. Fortunately, the tools
hide this complicated mess. While the tools
prevent us from shooting ourselves in the foot,
it’s not obvious how to use those tools for mea-
suring kernel device driver behaviors.

IO driver writers can use pfmon to measure two
key areas generally not obvious from the code:
MMIO read and write frequency and precise
addresses of instructions regularly causing L3
data cache misses. Measuring MMIO reads has
some nuances related to instruction execution
which are relevant to understanding ia64 and
likely ia32 platforms. Similarly, the ability to
pinpoint exactly which data is being accessed
by drivers enables driver writers to either mod-
ify the algorithms or add prefetching directives
where feasible. I include some examples on
how I used pfmon to measure NIC drivers and
give some guidelines on use.

q-syscollect is a “gprof without the pain” kind
of tool. While q-syscollect uses the same ker-
nel perfmon subsystem as pfmon, the former

works at a higher level. With some knowledge
about how the kernel operates, q-syscollect can
collect call-graphs, function call counts, and
percentage of time spent in particular routines.
In other words, pfmon can tell us how much
time the CPU spends stalled on d-cache misses
and q-syscollect can give us the call-graph for
the worst offenders.

Updated versions of this paper will be avail-
able from http://iou.parisc-linux.

org/ols2004/

1 Introduction

Improving the performance of IO drivers is re-
ally not that easy. It usually goes something
like:

1. Determine which workload is relevant

2. Set up the test environment

3. Collect metrics

4. Analyze the metrics

5. Change the code based on theories about
the metrics

6. Iterate on Collect metrics

This paper attempts to make the collect-
analyze-change loop more efficient for three
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obvious things: MMIO reads, MMIO writes,
and cache line misses.

MMIO reads and writes are easier to locate in
Linux code than for other OSs which support
memory-mapped IO—just search forreadl()
andwritel() calls. Butpfmon [1] can provide
statistics of actual behavior and not just where
in the code MMIO space is touched.

Cache line misses are hard to detect. None
of the regular performance tools I’ve used
can precisely tell where CPU stalls are taking
place. We can guess some of them based on
data usage—like spin locks ping-ponging be-
tween CPUs. This requires a level of under-
standing that most of us mere mortals don’t
possess. Again,pfmon can help out here.

Lastly, getting an overview of system perfor-
mance and getting run-time call graph usually
requires compiler support that gcc doesn’t pro-
vide. q-tools[4] can provide that information.
Driver writers can then manually adjust the
code knowing where the “hot spots” are.

1.1 pfmon

The author ofpfmon , Stephane Eranian [2],
describespfmon as “the performance tool
for IA64-Linux which exploits all the features
of the IA-64 Performance Monitoring Unit
(PMU).” pfmon uses a command line inter-
face and does not require any special privilege
to run. pfmon can monitor a single process, a
multi-threaded process, multi-processes work-
loads and the entire system.

pfmon is the user command line interface to
the kernel perfmon subsystem. perfmon does
the ugly work of programming the PMU. Perf-
mon is versioned separately frompfmon com-
mand. When in doubt, use the perfmon in the
latest 2.6 kernel.

There are two major types of measurements:

counting and sampling. For counting,pfmon
simply reports the number of occurrences of
the desired events during the monitoring pe-
riod. pfmon can also be configured to sample
at certain intervals information about the exe-
cution of a command or for the entire system.
It is possible to sample any events provided by
the underlying PMU.

The information recorded by the PMU depends
on what the user wants.pfmon contains a few
preset measurements but for the most part the
user is free to set up custom measurements.
On Itanium2,pfmon provides access to all the
PMU advanced features such as opcode match-
ing, range restrictions, the Event Address Reg-
isters (EAR) and the Branch Trace Buffer.

1.2 pfmon command line options

Here is a summary of command line options
used in the examples later in this paper:

–us-c use the US-style comma separator for
large numbers.

–cpu-list=0 bind pfmon to CPU 0 and only
count on CPU 0

–pin-command bind the command at the end
of the command line to the same CPU as
pfmon .

–resolve-addr look up addresses and print the
symbols

–long-smpl-periods=2000take a sample of
every 2000th event.

–smpl-periods-random=0xfff:10 randomize
the sampling period. This is necessary
to avoid bias when sampling repetitive
behaviors. The first value is the mask
of bits to randomize (e.g., 0xfff) and the
second value is initial seed (e.g., 10).

-k kernel only.
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–system-widemeasure the entire system (all
processes and kernel)

Parameters only available on a to-be-released
pfmon v3.1:

–smpl-module=dear-hist-itanium2 This par-
ticular module is to be used ONLY in
conjunction with the Data EAR (Event
Address Registers) and presents recorded
samples as histograms about the cache
misses. By default, the information is pre-
sented in the instruction view but it is pos-
sible to get the data view of the misses
also.

-e data_ear_cache_lat64pseudo event for
memory loads with latency≥ 64 cy-
cles. The real event isDATA_EAR_EVENT

(counts the number of times Data EAR
has recorded something) and the pseudo
event expresses the latency filter for the
event. Use “pfmon -ldata_ear_
cache* ” to list all valid values. Valid
values with McKinley CPU are powers of
two (4 – 4096).

1.3 q-tools

The author of q-tools, David Mosberger [5],
has described q-tools as “gprof without the
pain.”

q-tools package containsq-syscollect ,
q-view , qprof , and q-dot .
q-syscollect collects profile infor-
mation using kernel perfmon subsystem to
sample the PMU.q-view will present the
data collected in both flat-profile and call
graph form. q-dot displays the call-graph
in graphical form. Please see theqprof [6]
website for details onqprof .

q-syscollect depends on the kernel perf-
mon subsystem which is included in all 2.6

Linux kernels. Becauseq-syscollect uses
the PMU, it has the following advantages over
other tools:

• no special kernel support needed (besides
perfmon subsystem).

• provides call-graph of kernel functions

• can collect call-graphs of the kernel while
interrupts are blocked.

• measures multi-threaded applications

• data is collected per-CPU and can be
merged

• instruction level granularity (not bundles)

2 Measuring MMIO Reads

Nearly every driver uses MMIO reads to ei-
ther flush MMIO writes, flush in-flight DMA,
or (most obviously) collect status data from the
IO device directly. While use of MMIO read is
necessary in most cases, it should be avoided
where possible.

2.1 Why worry about MMIO Reads?

MMIO reads are expensive—how expensive
depends on speed of the IO bus, the number
bridges the read (and its corresponding read re-
turn) has to cross, how “busy” each bus is, and
finally how quickly the device responds to the
read request. On most architectures, one can
precisely measure the cost by measuring a loop
of MMIO reads and callingget_cycles()
before/after the loop.

I’ve measured anywhere from 1µs to 2µs per
read. In practical terms:

• ∼ 500–600 cycles on an otherwise-idle
400 MHz PA-RISC machine.
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• ∼ 1000 cycles on a 450 MHz Pentium ma-
chine which included crossing a PCI-PCI
bridge.

• ∼ 900–1000 cycles on a 800 MHz IA64
HP ZX1 machine.

And for those who still don’t believe me, try
watching a DVD movie after turning DMA off
for an IDE DVD player:

hdparm -d 0 /dev/cdrom

By switching the IDE controller to use PIO
(Programmed I/O) mode, all data will be trans-
ferred to/from host memory under CPU con-
trol, byte (or word) at a time.pfmon can mea-
sure this. Andpfmon looks broken when it
displays three and four digit “Average Cycles
Per Instruction” (CPI) output.

2.2 Eh? Memory Reads don’t stall?

They do. But the CPU and PMU don’t “real-
ize” the stall until the next memory reference.
The CPU continues execution until memory or-
der is enforced by the acquire semantics in the
MMIO read. This means theData Event Ad-
dress Registers record the next stalled mem-
ory reference due to memory ordering con-
straints, not the MMIO read . One has to look
at the instruction stream carefully to determine
which instruction actually caused the stall.

This also means the following sequence
doesn’t work exactly like we expect:

writel(CMD,addr);
readl(addr);
udelay(1);
y = buf->member;

The problem is the value returned by
read(x) is never consumed. Memory

ordering imposes no constraint on non-
load/store instructions. Henceudelay(1)
begins before the CPU stalls. The CPU will
stall on buf->member because of memory
ordering restrictions if theudelay(1) com-
pletes beforereadl(x) is retired. Drop the
udelay(1) call andpfmon will always see
the stall caused by MMIO reads on the next
memory reference.

Unfortunately, the IA32 Software Developer’s
Manual[3] Volume 3, Chapter 7.2 “MEMORY
ORDERING” is silent on the issue of how
MMIO (uncached accesses) will (or will not)
stall the instruction stream. This document
is very clear on how “IO Operations” (e.g.,
IN/OUT) will stall the instruction pipeline until
the read return arrives at the CPU. A direct re-
sponse from Intel(R) indicatedreadl() does
not stall like IN or OUT do and IA32 has the
same problem. The Intel® architect who re-
sponded did hedge the above statement claim-
ing a “udelay(10) will be as close as expected”
for an example similar to mine. Anyone who
has access to a frontside bus analyzer can ver-
ify the above statement by measuring timing
loops between uncached accesses. I’m not that
privileged and have to trust Intel® in this case.

For IA64, we considered putting an extra bur-
den onudelay to stall the instruction stream
until previous memory references were retired.
We could use dummy loads/stores before and
after the actual delay loop so memory ordering
could be used to stall the instruction pipeline.
That seemed excessive for something that we
didn’t have a bug report for.

Consensus was addingmf.a (memory fence)
instruction toreadl() should be sufficient.
The architecture only requiresmf.a serve as
an ordering token and need not cause any de-
lays of its own. In other words, the imple-
mentation is platform specific.mf.a has not
been added toreadl() yet because every-
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thing was working without so far.

2.3 pfmon -e uc_loads_retired

IO accesses are generally the only uncached
references made on IA64-linux and normally
will represent MMIO reads. The basic mea-
surement will tell us roughly how many cycles
the CPU stalls for MMIO reads. Get the num-
ber of MMIO reads per sample period and then
multiply by the actual cycle counts a MMIO
read takes for the given device. One needs to
measure MMIO read cost by using a CPU in-
ternal cycle counter and hacking the kernel to
read a harmless address from the target device
a few thousand times.

In order to make statements about per trans-
action or per interrupt, we need to know
the cumulative number of transactions or
interrupts processed for the sample period.
pktgen is straightforward in this regard since
pktgen will print transaction statistics when
a run is terminated. And one can record
/proc/interrupts contents before and
after eachpfmon run to collect interrupt
events as well.

Drawbacks to the above are one assumes a ho-
mogeneous driver environment; i.e., only one
type of driver is under load during the test. I
think that’s a fair assumption for development
in most cases. Bridges (e.g., routing traffic
across different interconnects) are probably the
one case it’s not true. One has to work a bit
harder to figure out what the counts mean in
that case.

For other benchmarks, like SpecWeb, we want
to grab/proc/interrupt and networking
stats before/afterpfmon runs.

2.4 tg3 Memory Reads

In summary, Figure 1 shows tg3 is do-
ing 2749675/(1834959 − 918505) ≈ 3
MMIO reads per interrupt and averaging about
5000000/(1834959 − 918505) ≈ 5 packets
per interrupt. This is with the BCM5701 chip
running in PCI mode at 66MHz:64-bit.

Based on code inspection, here is a break down
of where the MMIO reads occur in temporal
order:

1. tg3_interrupt() flushes MMIO
write toMAILBOX_INTERRUPT_0

2. tg3_poll() → tg3_enable_
ints() → tw32(TG3PCI_MISC_
HOST_CTRL)

3. tg3_enable_ints() flushes MMIO
write to MAILBOX_INTERRUPT_0

It’s obvious when inspectingtw32() , the
BCM5701 chip has a serious bug. Every call
to tw32() on BCM5701 requires a MMIO
read to follow the MMIO write. Only writes to
mailbox registers don’t require this and a dif-
ferent routine is used for mailbox writes.

Given the NIC was designed for zero MMIO
reads, this is pretty poor performance. Us-
ing a BCM5703 or BCM5704 would avoid the
MMIO read in tw32().

I’ve exchanged email with David Miller and
Jeff Garzik (tg3 driver maintainers). They have
valid concerns with portability. We agree tg3
could be reduced to one MMIO read after the
last MMIO write (to guarantee interrupts get
re-enabled).

One would need to use the “tag” field in the
status block when writing the mail box register
to indicate which “tag” the CPU most recently
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gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 918505 0 IO-SAPIC-level eth1
Result: OK: 7613693(c7613006+d687) usec, 5000000 (64byte) 656771pps 320Mb/sec
(336266752bps) errors: 0

57: 1834959 0 IO-SAPIC-level eth1
CPU0 2749675 UC_LOADS_RETIRED
CPU1 1175 UC_LOADS_RETIRED
}

Figure 1: tg3 v3.6 MMIO reads with pktgen/IRQ on same CPU

saw. Using Message Signaled Interrupts (MSI)
instead of Line based IRQs would guarantee
the most recent status block update (transferred
via DMA writes) would be visible to the CPU
beforetg3_interrupt() gets called.

The protocol would allow correct operation
without using MSI, too.

2.5 Benchmarking,pfmon , and CPU bindings

The purpose of bindingpktgen to CPU1 is
to verify the transmit code path is NOT doing
any MMIO reads. We split the transmit code
path and interrupt handler across CPUs to nar-
row down which code path is performing the
MMIO reads. This change is not obvious from
Figure 2 output since tg3 only performs MMIO
reads from CPU 0 (tg3_interrupt() ).

But in Figure 2, performance goes up 30%!
Offhand, I don’t know if this is due to CPU
utilization (pktgen andtg3_interrupt()
contending for CPU cycles) or if DMA is more
efficient because of cache-line flows. When I
don’t have any deadlines looming, I’d like to
determine the difference.

2.6 e1000 Memory Reads

e1000 version 5.2.52-k4 has a more efficient
implementation than tg3 driver. In a nut shell,
MMIO reads are pretty much irrelevant to the
pktgen workload with e1000 driver using de-
fault values.

Figure 3 shows e1000 performs
173315/(703829 − 622143) ≈ 2 MMIO
reads per interrupt and5000000/(703829 −
622143) ≈ 61 packets per interrupt.

Being the curious soul I am, I tracked down
the two MMIO reads anyway. One is in the in-
terrupt handler and the second when interrupts
are re-enabled. It looks like e1000 will always
need at least 2 MMIO reads per interrupt.

3 Measuring MMIO Writes

3.1 Why worry about MMIO Writes?

MMIO writes are clearly not as significant as
MMIO reads. Nonetheless, every time a driver
writes to MMIO space, some subtle things hap-
pen. There are four minor issues to think about:
memory ordering, PCI bus utilization, filling
outbound write queues, and stalling MMIO
reads longer than necessary.



Linux Symposium 2004 • 247

gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 5809687 0 IO-SAPIC-level eth1
Result: OK: 5914889(c5843865+d71024) usec, 5000000 (64byte) 845451pps 412Mb/se
c (432870912bps) errors: 0

57: 6427969 0 IO-SAPIC-level eth1
CPU0 1855253 UC_LOADS_RETIRED
CPU1 950 UC_LOADS_RETIRED

Figure 2: tg3 v3.6 MMIO reads with pktgen/IRQ on diff CPU

gsyprf3:~# pfmon -e uc_loads_retired -k --system-wide \
-- /usr/src/pktgen-testing/pktgen-single-e1000
Configuring devices
Running... ctrl^C to stop

59: 622143 0 IO-SAPIC-level eth3
Result: OK: 10228738(c9990105+d238633) usec, 5000000 (64byte) 488854pps 238Mb/
sec (250293248bps) errors: 81669

59: 703829 0 IO-SAPIC-level eth3
CPU0 173315 UC_LOADS_RETIRED
CPU1 1422 UC_LOADS_RETIRED

Figure 3: MMIO reads for e1000 v5.2.52-k4
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First, memory ordering is enforced since PCI
requires strong ordering of MMIO writes. This
means the MMIO write will push all previous
regular memory writes ahead. This is not a se-
rious issue but it can make a MMIO write take
longer.

MMIO writes are short transactions (i.e., much
less than a cache-line). The PCI bus setup time
to select the device, send the target address and
data, and disconnect measurably reduces PCI
bus utilization. It typically results in six or
more PCI bus cycles to send four (or eight)
bytes of data. On systems which strongly or-
der DMA Read Returns and MMIO Writes, the
latter will also interfere with DMA flows by in-
terrupting in-flight, outbound DMA.

If the IO bridge (e.g., PCI Bus controller) near-
est the CPU has a full write queue, the CPU
will stall. The bridge would normally queue
the MMIO write and then tell the CPU it’s
done. The chip designers normally make the
write queue deep enough so the CPU never
needs to stall. But drivers that perform many
MMIO writes (e.g., use door bells) and burst
many of MMIO writes at a time, could run into
a worst case.

The last concern, stalling MMIO reads longer
than normal, exists because of PCI ordering
rules. MMIO reads and MMIO writes are
strongly ordered. E.g., if four MMIO writes
are queued before a MMIO read, the read will
wait until all four MMIO write transactions
have completed. So instead of say 1000 CPU
cycles, the MMIO read might take more than
2000 CPU cycles on current platforms.

3.2 pfmon -e uc_stores_retired

pfmon counts MMIO Writes with no sur-
prises.

3.3 tg3 Memory Writes

Figure 4 shows tg3 does about 10M MMIO
writes to send 5M packets. However, we
can break the MMIO writes down into base
level (feed packets onto transmit queue) and
tg3_interrupt which handles TX (and
RX) completions. Knowing which code path
the MMIO writes are in helps track down us-
age in the source code.

Output in Figure 5 is after hacking the
pktgen-single-tg3 script to bind
pktgen kernel thread to CPU 1 when
eth1 is directing interrupts to CPU 0.
The distribution between TX queue setup
and interrupt handling is obvious now.
CPU 0 is handling interrupts and performs
3013580/(5803789 − 5201193) ≈ 5 MMIO
writes per interrupt. CPU 1 is handling TX
setup and performs5000376/5000000 ≈ 1
MMIO write per packet.

Again, as noted in section 2.5, binding pktgen
thread to one CPU and interrupts to another,
changes the performance dramatically.

3.4 e1000 Memory Writes

Figure 6 shows 248891/(991082 −
908366) ≈ 3 MMIO writes per inter-
rupt and5001303/5000000 ≈ 1 MMIO write
per packet. In other words, slightly better than
tg3 driver. Nonetheless, the hardware can’t
push as many packets. One difference is the
e1000 driver is pushing data to a NIC behind a
PCI-PCI Bridge.

Figure 7 shows a≈40% improvement in
throughput1 for pktgen without a PCI-PCI
Bridge in the way. Note the ratios of MMIO
writes per interrupt and MMIO writes per

1This demonstrates how the distance between the IO
device and CPU (and memory) directly translates into
latency and performance.
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gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/pktgen-test
ing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 4284466 0 IO-SAPIC-level eth1
Result: OK: 7611689(c7610900+d789) usec, 5000000 (64byte) 656943pps 320Mb/sec
(336354816bps) errors: 0

57: 5198436 0 IO-SAPIC-level eth1
CPU0 9570269 UC_STORES_RETIRED
CPU1 445 UC_STORES_RETIRED

Figure 4: tg3 v3.6 MMIO writes

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/
pktgen-testing/pktgen-single-tg3
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 5201193 0 IO-SAPIC-level eth1
Result: OK: 5880249(c5811180+d69069) usec, 5000000 (64byte) 850340pps 415Mb
/sec (435374080bps) errors: 0

57: 5803789 0 IO-SAPIC-level eth1
CPU0 3013580 UC_STORES_RETIRED
CPU1 5000376 UC_STORES_RETIRED

Figure 5: tg3 v3.6 MMIO writes with pktgen/IRQ split across CPUs

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/
pktgen-testing/pktgen-single-e1000
Running... ctrl^C to stop

59: 908366 0 IO-SAPIC-level eth3
Result: OK: 10340222(c10104719+d235503) usec, 5000000 (64byte) 483558pps 236Mb
/sec (247581696bps) errors: 82675

59: 991082 0 IO-SAPIC-level eth3
CPU0 248891 UC_STORES_RETIRED
CPU1 5001303 UC_STORES_RETIRED

Figure 6: MMIO writes for e1000 v5.2.52-k4

gsyprf3:~# pfmon -e uc_stores_retired -k --system-wide -- /usr/src/pktgen-test
ing/pktgen-single-e1000
Running... ctrl^C to stop

71: 3 0 IO-SAPIC-level eth7
Result: OK: 7491358(c7342756+d148602) usec, 5000000 (64byte) 667467pps 325Mb/s
ec (341743104bps) errors: 59870

71: 59907 0 IO-SAPIC-level eth7
CPU0 180406 UC_STORES_RETIRED
CPU1 5000939 UC_STORES_RETIRED

Figure 7: e1000 v5.2.52-k4 MMIO writes without PCI-PCI Bridge
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packet are the same. I doubt the MMIO
reads and MMIO writes are the limiting fac-
tors. More likely DMA access to memory
(and thus TX/RX descriptor rings) limits NIC
packet processing.

4 Measuring Cache-line Misses

The Event Address Registers2 (EAR) can only
record one event at a time. What is so interest-
ing about them is that they record precise infor-
mation about data cache misses. For instance
for a data cache miss, you get the:

• address of the instruction, likely a load

• address of the target data

• latency in cycles to resolve the miss

The information pinpoints the source of the
miss, not the consequence (i.e., the stall).

The Data EAR (DEAR) can also tell us about
MMIO reads via sampling. The DEAR can
only record loads that miss, not stores. Of
course, MMIO reads always miss because they
are uncached. This is interesting if we want to
track down which MMIO addresses are “hot.”
It’s usually easier to track down usage in source
code knowing which MMIO address is refer-
enced.

Collecting with DEAR sampling requires two
parameters be tweaked to statistically improve
the samples. One is the frequency at which
Data Addresses are recorded and the other is
the threshold (how many CPU cycles latency).

Because we know the latency to L3 is about
21 cycles, setting the EAR threshold to a value
higher (e.g., 64 cycles) ensures only the load

2pfmon v3.1 is the first version to support EAR
and is expected to be available in August, 2004.

misses accessing main memory will be cap-
tured. This is how to select which level of
cacheline misses one samples.

While high threshholds (e.g., 64 cycles) will
show us where the longest delays occur, it will
not show us the worst offenders. Doing a sec-
ond run with a lower threshold (e.g., 4 cycles)
shows all L1, L2, and L3 cache misses and pro-
vides a much broader picture of cache utiliza-
tion.

When sampling events with low threshholds,
we will get saturated with events and need to
reduce the number of events actually sampled
to every 5000th. The appropriate value will
depend on the workload and how patient one
is. The workload needs to be run long enough
to be statistically significant and the sampling
period needs to be high enough to not signifi-
cantly perturb the workload.

4.1 tg3 Data Cache misses > 64 cycles

For the output in Figure 8, I’ve iteratively de-
creased the smpl-periods until I noticed the to-
tal pktgen throughput starting to drop. Fig-
ure 8 output only shows the tg3 interrupt code
path sincepfmon is bound to CPU 0. Nor-
mally, it would be useful to run this again with
cpu-list=1 . We could then see what the
TX code path and pktgen are doing.

Also, the pin-command option in
this example doesn’t do anything since
pktgen-single-tg3 directs a pktgen
kernel thread bound CPU 1 to do the real
work. I’ve included the option only to make
people aware of it.

4.2 tg3 Data Cache misses > 4 cycles

Figure 9 puts thelat64 output in Figure 8
into better perspective. It shows tg3 is spending
more time for L1 and L2 misses than L3 misses
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gsyprf3:~# pfmon31 --us-c --cpu-list=0 --pin-command --resolve-addr \
--smpl-module=dear-hist-itanium2 \
-e data_ear_cache_lat64 --long-smpl-periods=500 \
--smpl-periods-random=0xfff:10 --system-wide \
-k -- /usr/src/pktgen-testing/pktgen-single-tg3

added event set 0
only kernel symbols are resolved in system-wide mode
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 7209769 0 IO-SAPIC-level eth1
Result: OK: 5915877(c5845032+d70845) usec, 5000000 (64byte) 845308pps 412Mb/sec
(432797696bps) errors: 0

57: 7827812 0 IO-SAPIC-level eth1
# total_samples 672
# instruction addr view
# sorted by count
# showing per per distinct value
# %L2 : percentage of L1 misses that hit L2
# %L3 : percentage of L1 misses that hit L3
# %RAM : percentage of L1 misses that hit memory
# L2 : 5 cycles load latency
# L3 : 12 cycles load latency
# sampling period: 500
#count %self %cum %L2 %L3 %RAM instruction addr

38 5.65% 5.65% 0.00% 0.00% 100.00% 0xa000000100009141 ia64_spinlock_contention
+0x21<kernel>

36 5.36% 11.01% 0.00% 0.00% 100.00% 0xa00000020003e580 tg3_interrupt[tg3]+0xe0<kernel>
32 4.76% 15.77% 0.00% 0.00% 100.00% 0xa000000200034770 tg3_write_indirect_reg32[tg3]

+0x90<kernel>
32 4.76% 20.54% 0.00% 0.00% 100.00% 0xa00000020003e640 tg3_interrupt[tg3]+0x1a0<kernel>
30 4.46% 25.00% 0.00% 0.00% 100.00% 0xa000000200034e91 tg3_enable_ints[tg3]+0x91<kernel>
29 4.32% 29.32% 0.00% 0.00% 100.00% 0xa00000020003e510 tg3_interrupt[tg3]+0x70<kernel>
28 4.17% 33.48% 0.00% 0.00% 100.00% 0xa00000020003d1a0 tg3_tx[tg3]+0x2e0<kernel>
27 4.02% 37.50% 0.00% 0.00% 100.00% 0xa00000020003cfa0 tg3_tx[tg3]+0xe0<kernel>
24 3.57% 41.07% 0.00% 0.00% 100.00% 0xa00000020003cfd1 tg3_tx[tg3]+0x111<kernel>
21 3.12% 44.20% 0.00% 0.00% 100.00% 0xa000000200034e60 tg3_enable_ints[tg3]+0x60<kernel>

.

.

.
# level 0 : counts=0 avg_cycles=0.0ms 0.00%
# level 1 : counts=0 avg_cycles=0.0ms 0.00%
# level 2 : counts=672 avg_cycles=0.0ms 100.00%
approx cost: 0.0s

Figure 8: tg3 v3.6 lat64 output
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gsyprf3:~# pfmon31 --us-c --cpu-list=0 --resolve-addr --smpl-module=dear-hist-itanium2 \
-e data_ear_cache_lat4 --long-smpl-periods=5000 --smpl-periods-random=0xfff:10 \
--system-wide -k -- /usr/src/pktgen-testing/pktgen-single-tg3
added event set 0
only kernel symbols are resolved in system-wide mode
Adding devices to run.
Configuring devices
Running... ctrl^C to stop

57: 8484552 0 IO-SAPIC-level eth1
Result: OK: 5938001(c5866437+d71564) usec, 5000000 (64byte) 842034pps 411Mb/sec

(431121408bps) errors: 0
57: 9093642 0 IO-SAPIC-level eth1

# total_samples 795
# instruction addr view
# sorted by count
# showing per per distinct value
# %L2 : percentage of L1 misses that hit L2
# %L3 : percentage of L1 misses that hit L3
# %RAM : percentage of L1 misses that hit memory
# L2 : 5 cycles load latency
# L3 : 12 cycles load latency
# sampling period: 5000
# #count %self %cum %L2 %L3 %RAM instruction addr

95 11.95% 11.95% 0.00% 98.95% 1.05% 0xa00000020003d150 tg3_tx[tg3]+0x290<kernel>
83 10.44% 22.39% 93.98% 4.82% 1.20% 0xa00000020003d030 tg3_tx[tg3]+0x170<kernel>
21 2.64% 25.03% 0.00% 95.24% 4.76% 0xa0000001000180f0 ia64_handle_irq+0x170<kernel>
20 2.52% 27.55% 5.00% 80.00% 15.00% 0xa00000020003d040 tg3_tx[tg3]+0x180<kernel>
18 2.26% 29.81% 50.00% 11.11% 38.89% 0xa00000020003cfa0 tg3_tx[tg3]+0xe0<kernel>
17 2.14% 31.95% 0.00% 0.00% 100.00% 0xa00000020003e671 tg3_interrupt[tg3]

+0x1d1<kernel>
17 2.14% 34.09% 0.00% 100.00% 0.00% 0xa00000020003e700 tg3_interrupt[tg3]

+0x260<kernel>
16 2.01% 36.10% 56.25% 43.75% 0.00% 0xa000000100012160 ia64_leave_kernel

+0x180<kernel>
16 2.01% 38.11% 62.50% 0.00% 37.50% 0xa00000020003cf60 tg3_tx[tg3]+0xa0<kernel>
15 1.89% 40.00% 86.67% 6.67% 6.67% 0xa00000020003cfd0 tg3_tx[tg3]+0x110<kernel>
15 1.89% 41.89% 0.00% 0.00% 100.00% 0xa000000100016041 do_IRQ+0x1a1<kernel>
15 1.89% 43.77% 0.00% 53.33% 46.67% 0xa00000020003e370 tg3_poll[tg3]+0x350<kernel>
.
.
.

# level 0 : counts=226 avg_cycles=0.0ms 28.43%
# level 1 : counts=264 avg_cycles=0.0ms 33.21%
# level 2 : counts=305 avg_cycles=0.0ms 38.36%
approx cost: 0.0s

Figure 9: tg3 v3.6 lat4 output
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and in only two locations. Adding one prefetch
to pull data from L3 into L2 would help for the
top offender. One needs to figure out which bit
of data each recorded access refers to and de-
termine how early one can prefetch that data.

We can also rule out MMIO accesses as the top
culprit. tg3_interrupt+0x1d1 could be
an MMIO read but it doesn’t show up in Fig-
ure 8 like tg3_write_indirect_reg32
does.

Note smpl-periods is 10x higher in Fig-
ure 9 than in Figure 8. Collecting 10x more
samples with lat4 definitely disturbs the
workload.

5 q-tools

q-syscollect and q-view are trivial to
use. An example and brief explanation for ker-
nel usage follow.

Please remember most applications spend most
of the time in user space and not in the kernel.
q-tools is especially good in user space.

5.1 q-syscollect

q-syscollect -c 5000 -C 5000 -t
20 -k

This will collect system wide kernel data dur-
ing the 20 second period. Twenty to thrity sec-
onds is usually long enough to get sufficient ac-
curacy3. However, if the workload generates
a very wide call graph with even distribution,
one will likely need to sample for longer peri-
ods to get accuracy in the±1% range. When
in doubt, try sampling for longer periods to see
if the call-counts change significantly.

3See Page 7 of the David Mosberger’s Gelato talk
[4] for a nice graph on accuracy whichonly applies to
his example.

The -c and -C set the call sample rate and
code sample rate respectively. The call sam-
ple rate is used to collect function call counts.
This is one of the key differences compared to
traditional profiling tools: q-syscollect obtains
call-counts in a statistical fashion, just as has
been done traditionally for the execution-time
profile. The code sample rate is used to collect
a flat profile (CPU_CYCLESby default).

The -e option allows one to change the event
used to sample for the flat profile. The default
is to sample CPU_CYCLES event. This pro-
vides traditional execution time in the flat pro-
file.

The data is stored in the current directory under
.q/ directory. The next section demonstrates
howq-view displays the data.

5.2 q-view

I was running the netperf [7] TCP_RR test in
the background to another server when I col-
lected the following data. As Figure 10 shows,
this particular TCP_RR test isn’t costing many
cycles in tg3 driver. Or, at least not ones I can
measure.

tg3_interrupt() shows up in the flat pro-
file with 0.314 seconds time associated with
it. The time measurement is only possible
becausehandle_IRQ_event() re-enables
interrupts if the IRQ handler is not regis-
tered with SA_INTERRUPT(to indicate la-
tency sensitive IRQ handler).do_IRQ() and
other functions in that same call graph do NOT
have any time measurements because inter-
rupts are disabled. As noted before, the call-
graph is sampled using a different part of the
PMU than the part which samples the flat pro-
file.

Lastly, I’ve omitted the trailing output of
q-view which explains the fields and
columns more completely. Read that first be-



254 • Linux Symposium

gsyprf3:~# q-view .q/kernel-cpu0.info | more
Flat profile of CPU_CYCLES in kernel-cpu0.hist#0:

Each histogram sample counts as 200.510u seconds
% time self cumul calls self/call tot/call name

68.88 13.41 13.41 215k 62.5u 62.5u default_idle
2.90 0.56 13.97 431k 1.31u 1.31u finish_task_switch
2.50 0.49 14.46 233k 2.09u 4.89u tg3_poll
1.77 0.35 14.80 1.38M 251n 268n ipt_do_table
1.61 0.31 15.12 240k 1.31u 1.31u tg3_interrupt
1.51 0.29 15.41 240k 1.22u 5.95u net_rx_action
.
.
.

Call-graph table:
index %time self children called name

<spontaneous>
[176] 69.4 30.5m 13.4 - cpu_idle

29.5m 0.285 231k/457k schedule [164]
10.0m 0.00 244k/244k check_pgt_cache [178]

13.4 0.00 215k/215k default_idle [177]
----------------------------------------------------

.

.

.
----------------------------------------------------

0.293 1.14 240k __do_softirq [40]
[56] 7.4 0.293 1.14 240k net_rx_action

0.487 0.649 233k/233k tg3_poll [57]
----------------------------------------------------

0.487 0.649 233k net_rx_action [56]
[57] 5.9 0.487 0.649 233k tg3_poll

- 0.00 229k/229k tg3_enable_ints [133]
97.7m 0.552 225k/225k tg3_rx [61]

- 0.00 227k/227k tg3_tx [58]
----------------------------------------------------

.

.

.
----------------------------------------------------

- 1.88 348k ia64_leave_kernel [10]
[11] 9.7 - 1.88 348k ia64_handle_irq

- 1.52 239k/240k do_softirq [39]
- 0.367 356k/356k do_IRQ [12]

----------------------------------------------------
.
.
.

Figure 10:q-view output for TCP_RR over tg3 v3.6
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fore going through the rest of the output.

6 Conclusion

6.1 More pfmon examples

CPU L2 cache misses in one kernel function
pfmon --verb -k \
--irange=sba_alloc_range \
-el2_misses --system-wide \
--session-timeout=10
Show all L2 cache misses in
sba_alloc_range . This is interesting
since sba_alloc_range() walks
a bitmap to look for “free” resources.
One can instead specify-el3_misses
since L3 cache misses are much more
expensive.

CPU 1 memory loads
pfmon --us-c \
--cpu-list=1 \
-e loads_retired \
-k --system-wide \
-- /tmp/pktgen-single Only
count memory loads on CPU 1. This is
useful for when we can bind the interrupt
to CPU 1 and the workload to a different
CPU. This lets us separate interrupt path
from base level code, i.e., when is the
load happening (before or after DMA
occurred) and which code path should
one be looking more closely at.

List EAR events supported pfmon -lear
List all EAR types supported bypfmon 4.

More info on Event pfmon -i DATA_EAR_

TLB_ALL pfmon can provide more info
on particular events it supports.

4EAR isn’t supported untilpfmon v3.1

6.2 And thanks to. . .

Special thanks to Stephane Eranian [2] for ded-
icating so much time to the perfmon kernel
driver and associated tools. People might think
the PMU does it all—but only with a lot of SW
driving it. His review of this paper caught some
good bloopers. This talk only happened be-
cause I sit across the aisle from him and could
pester him regularly.

Thanks to David Mosberger[5] for putting to-
gether q-tools and making it so trivial to use.

In addition, in no particular order:
Christophe de Dinechin, Bjorn Helgaas,
Matthew Wilcox, Andrew Patterson, Al Stone,
Asit Mallick, and James Bottomley for review-
ing this document or providing technical guid-
ance.

Thanks also to the OLS staff for making this
event happen every year.

My apologies if I omitted other contributors.
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Abstract

Traditionally, communications and data ser-
vice networks were built on proprietary plat-
forms that had to meet very specific availabil-
ity, reliability, performance, and service re-
sponse time requirements. Today, communica-
tion service providers are challenged to meet
their needs cost-effectively for new architec-
tures, new services, and increased bandwidth,
with highly available, scalable, secure, and
reliable systems that have predictable perfor-
mance and that are easy to maintain and up-
grade. This paper presents the technological
trend of migrating from proprietary to open
platforms based on software and hardware
building blocks. It also focuses on the ongo-
ing work by the Carrier Grade Linux working
group at the Open Source Development Labs,
examines the CGL architecture, the require-
ments from the latest specification release, and
presents some of the needed kernel features
that are not currently supported by Linux such
as a Linux cluster communication mechanism,
a low-level kernel mechanism for improved re-
liability and soft-realtime performance, sup-
port for multi-FIB, and support for additional
security mechanisms.

1 Open platforms

The demand for rich media and enhanced
communication services is rapidly leading to

significant changes in the communication in-
dustry, such as the convergence of data and
voice technologies. The transition to packet-
based, converged, multi-service IP networks
require a carrier grade infrastructure based on
interoperable hardware and software building
blocks, management middleware, and appli-
cations, implemented with standard interfaces.
The communication industry is witnessing a
technology trend moving away from propri-
etary systems toward open and standardized
systems that are built using modular and flex-
ible hardware and software (operating system
and middleware) common off the shelf com-
ponents. The trend is to proceed forward de-
livering next generation and multimedia com-
munication services, using open standard car-
rier grade platforms. This trend is motivated
by the expectations that open platforms are go-
ing to reduce the cost and risk of developing
and delivering rich communications services.
Also, they will enable faster time to market and
ensure portability and interoperability between
various components from different providers.
One frequently asked question is: ’How can we
meet tomorrow’s requirements using existing
infrastructures and technologies?’. Proprietary
platforms are closed systems, expensive to de-
velop, and often lack support of the current
and upcoming standards. Using such closed
platforms to meet tomorrow’s requirements for
new architectures and services is almost impos-
sible. A uniform open software environment
with the characteristics demanded by telecom
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applications, combined with commercial off-
the-shelf software and hardware components
is a necessary part of these new architectures.
The following key industry consortia are defin-
ing hardware and software high availability
specifications that are directly related to tele-
com platforms:

1. The PCI Industrial Computer Manufactur-
ers Group [1] (PICMG) defines standards
for high availability (HA) hardware.

2. The Open Source Development Labs [2]
(OSDL) Carrier Grade Linux [3] (CGL)
working group was established in Jan-
uary 2002 with the goal of enhancing the
Linux operating system, to achieve an
Open Source platform that is highly avail-
able, secure, scalable and easily main-
tained, suitable for carrier grade systems.

3. The Service Availability Forum [4] (SA
Forum) defines the interfaces of HA mid-
dleware and focusing on APIs for hard-
ware platform management and for appli-
cation failover in the application API. SA
compliant middleware will provide ser-
vices to an application that needs to be HA
in a portable way.

Figure 1: From Proprietary to Open Solutions

The operating system is a core component in
such architectures. In the remaining of this pa-
per, we will be focusing on CGL, its architec-
ture and specifications.

2 The term Carrier Grade

In this paper, we refer to the term Carrier Grade
on many occasions. Carrier grade is a term
for public network telecommunications prod-
ucts that require a reliability percentage up to 5
or 6 nines of uptime.

• 5 nines refers to 99.999% of uptime per
year (i.e., 5 minutes of downtime per
year). This level of availability is usually
associated with Carrier Grade servers.

• 6 nines refers to 99.9999% of uptime per
year (i.e., 30 seconds of downtime per
year). This level of availability is usually
associated with Carrier Grade switches.

3 Linux versus proprietary operat-
ing systems

This section describes briefly the motivating
reasons in favor of using Linux on Carrier
Grade systems, versus continuing with propri-
etary operating systems. These motivations in-
clude:

• Cost: Linux is available free of charge in
the form of a downloadable package from
the Internet.

• Source code availability: With Linux, you
gain full access to the source code allow-
ing you to tailor the kernel to your needs.

• Open development process (Figure 2):
The development process of the kernel is
open to anyone to participate and con-
tribute. The process is based on the con-
cept of "release early, release often."

• Peer review and testing resources: With
access to the source code, people using a
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wide variety of platform, operating sys-
tems, and compiler combinations; can
compile, link, and run the code on their
systems to test for portability, compatibil-
ity and bugs.

• Vendor independent: With Linux, you no
longer have to be locked into a specific
vendor. Linux is supported on multiple
platforms.

• High innovation rate: New features are
usually implemented on Linux before they
are available on commercial or propri-
etary systems.

Figure 2: Open development process of the
Linux kernel

Other contributing factors include Linux’ sup-
port for a broad range of processors and
peripherals, commercial support availability,
high performance networking, and the proven
record of being a stable, and reliable server
platform.

4 Carrier Grade Linux

The Linux kernel is missing several features
that are needed in a telecom environment. It
is not adapted to meet telecom requirements
in various areas such as reliability, security,
and scalability. To help the advancement of

Linux in the telecom space, OSDL established
the CGL working group. The group specifies
and helps implement an Open Source platform
targeted for the communication industry that
is highly available, secure, scalable and easily
maintained. The CGL working group is com-
posed of several members from network equip-
ment providers, system integrators, platform
providers, and Linux distributors. They all
contribute to the requirement definition of Car-
rier Grade Linux, help Open Source projects
to meet these requirements, and in some cases
start new Open Source projects. Many of
the CGL members companies have contributed
pieces of technologies to Open Source in order
to make the Linux Kernel a more viable option
for telecom platforms. For instance, the Open
Systems Lab [5] from Ericsson Research has
contributed three key technologies: the Trans-
parent IPC [6], the Asynchronous Event Mech-
anism [7], and the Distributed Security Infras-
tructure [8]. There are already Linux distri-
butions, MontaVista [9] for instance, that are
providing CGL distribution based on the CGL
requirement definition. Many companies are
also either deploying CGL, or at least evaluat-
ing and experimenting with it.

Consequently, CGL activities are giving much
momentum for Linux in the telecom space
allowing it to be a viable option to propri-
etary operating system. Member companies of
CGL are releasing code to Open Source and
are making some of their proprietary technolo-
gies open, which leads to going forward from
closed platforms to open platforms that use
CGL Linux.

5 Target CGL applications

The CGL Working Group has identified three
main categories of application areas into which
they expect the majority of applications imple-
mented on CGL platforms to fall. These appli-
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cation areas are gateways, signaling, and man-
agement servers.

• Gateways are bridges between two dif-
ferent technologies or administration do-
mains. For example, a media gateway per-
forms the critical function of converting
voice messages from a native telecommu-
nications time-division-multiplexed net-
work, to an Internet protocol packet-
switched network. A gateway processes a
large number of small messages received
and transmitted over a large number of
physical interfaces. Gateways perform
in a timely manner very close to hard
real-time. They are implemented on ded-
icated platforms with replicated (rather
than clustered) systems used for redun-
dancy.

• Signaling servers handle call control, ses-
sion control, and radio recourse control.
A signaling server handles the routing and
maintains the status of calls over the net-
work. It takes the request of user agents
who want to connect to other user agents
and routes it to the appropriate signaling.
Signaling servers require soft real time re-
sponse capabilities less than 80 millisec-
onds, and may manage tens of thousands
of simultaneous connections. A signaling
server application is context switch and
memory intensive due to requirements for
quick switching and a capacity to manage
large numbers of connections.

• Management servers handle traditional
network management operations, as well
as service and customer management.
These servers provide services such as: a
Home Location Register and Visitor Lo-
cation Register (for wireless networks)
or customer information (such as per-
sonal preferences including features the

customer is authorized to use). Typi-
cally, management applications are data
and communication intensive. Their re-
sponse time requirements are less strin-
gent by several orders of magnitude, com-
pared to those of signaling and gateway
applications.

6 Overview of the CGL working
group

The CGL working group has the vision that
next-generation and multimedia communica-
tion services can be delivered using Linux
based open standards platforms for carrier
grade infrastructure equipment. To achieve this
vision, the working group has setup a strat-
egy to define the requirements and architecture
for the Carrier Grade Linux platform, develop
a roadmap for the platform, and promote the
development of a stable platform upon which
commercial components and services can be
deployed.

In the course of achieving this strategy, the
OSDL CGL working group, is creating the re-
quirement definitions, and identifying existing
Open Source projects that support the roadmap
to implement the required components and in-
terfaces of the platform. When an Open Source
project does not exist to support a certain re-
quirement, OSDL CGL is launching (or sup-
port the launch of) new Open Source projects
to implement missing components and inter-
faces of the platform.

The CGL working group consists of three dis-
tinct sub-groups that work together. These sub-
groups are: specification, proof-of-concept,
and validation. Responsibilities of each sub-
group are as follows:

1. Specifications: The specifications sub-
group is responsible for defining a set of
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requirements that lead to enhancements in
the Linux kernel, that are useful for car-
rier grade implementations and applica-
tions. The group collects, categorizes, and
prioritizes the requirements from partici-
pants to allow reasonable work to proceed
on implementations. The group also in-
teracts with other standard defining bod-
ies, open source communities, develop-
ers and distributions to ensure that the re-
quirements identify useful enhancements
in such a way, that they can be adopted
into the base Linux kernel.

2. Proof-of-Concept: This sub-group gener-
ates documents covering the design, fea-
tures, and technology relevant to CGL. It
drives the implementation and integration
of core Carrier Grade enhancements to
Linux as identified and prioritized by the
requirement document. The group is also
responsible for ensuring the integrated en-
hancements pass, the CGL validation test
suite and for establishing and leading an
open source umbrella project to coordi-
nate implementation and integration ac-
tivities for CGL enhancements.

3. Validation: This sub-group defines stan-
dard test environments for developing val-
idation suites. It is responsible for co-
ordinating the development of validation
suites, to ensure that all of the CGL re-
quirements are covered. This group is
also responsible for the development of
an Open Source project CGL validation
suite.

7 CGL architecture

Figure 3 presents the scope of the CGL Work-
ing Group, which covers two areas:

• Carrier Grade Linux: Various require-
ments such as availability and scalability

Figure 3: CGL architecture and scope

are related to the CGL enhancements to
the operating system. Enhancements may
also be made to hardware interfaces, inter-
faces to the user level or application code
and interfaces to development and debug-
ging tools. In some cases, to access the
kernel services, user level library changes
will be needed.

• Software Development Tools: These tools
will include debuggers and analyzers.

On October 9, 2003, OSDL announced
the availability of the OSDL Carrier
Grade Linux Requirements Definition,
Version 2.0 (CGL 2.0). This latest re-
quirement definition for next-generation
carrier grade Linux offers major advances
in security, high availability, and cluster-
ing.

8 CGL requirements

The requirement definition document of CGL
version 2.0 introduced new and enhanced fea-
tures to support Linux as a carrier grade plat-
form. The CGL requirement definition divides
the requirements in main categories described
briefly below:
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8.1 Clustering

These requirements support the use of multi-
ple carrier server systems to provide higher lev-
els of service availability through redundant re-
sources and recovery capabilities, and to pro-
vide a horizontally scaled environment sup-
porting increased throughput.

8.2 Security

The security requirements are aimed at main-
taining a certain level of security while not en-
dangering the goals of high availability, perfor-
mance, and scalability. The requirements sup-
port the use of additional security mechanisms
to protect the systems against attacks from both
the Internet and intranets, and provide special
mechanisms at kernel level to be used by tele-
com applications.

8.3 Standards

CGL specifies standards that are required for
compliance for carrier grade server systems.
Examples of these standards include:

• Linux Standard Base

• POSIX Timer Interface

• POSIX Signal Interface

• POSIX Message Queue Interface

• POSIX Semaphore Interface

• IPv6 RFCs compliance

• IPsecv6 RFCs compliance

• MIPv6 RFCs compliance

• SNMP support

• POSIX threads

8.4 Platform

OSDL CGL specifies requirements that sup-
port interactions with the hardware platforms
making up carrier server systems. Platform ca-
pabilities are not tied to a particular vendor’s
implementation. Examples of the platform re-
quirements include:

• Hot insert: supports hot-swap insertion of
hardware components

• Hot remove: supports hot-swap removal
of hardware components

• Remote boot support: supports remote
booting functionality

• Boot cycle detection: supports detecting
reboot cycles due to recurring failures.
If the system experiences a problem that
causes it to reboot repeatedly, the system
will go offline. This is to prevent addi-
tional difficulties from occurring as a re-
sult of the repeated reboots

• Diskless systems: Provide support for
diskless systems loading their ker-
nel/application over the network

• Support remote booting across common
LAN and WAN communication media

8.5 Availability

The availability requirements support height-
ened availability of carrier server systems, such
as improving the robustness of software com-
ponents or by supporting recovery from failure
of hardware or software. Examples of these re-
quirements include:

• RAID 1: support for RAID 1 offers mir-
roring to provide duplicate sets of all data
on separate hard disks



Linux Symposium 2004 • 263

• Watchdog timer interface: support for
watchdog timers to perform certain speci-
fied operations when timeouts occur

• Support for Disk and volume manage-
ment: to allow grouping of disks into vol-
umes

• Ethernet link aggregation and link
failover: support bonding of multiple NIC
for bandwidth aggregation and provide
automatic failover of IP addresses from
one interface to another

• Support for application heartbeat moni-
tor: monitor applications availability and
functionality.

8.6 Serviceability

The serviceability requirements support servic-
ing and managing hardware and software on
carrier server systems. These are wide-ranging
set requirements, put together, help support the
availability of applications and the operating
system. Examples of these requirements in-
clude:

• Support for producing and storing kernel
dumps

• Support for dynamic debug to allow dy-
namically the insertion of software instru-
mentation into a running system in the
kernel or applications

• Support for platform signal handler en-
abling infrastructures to allow interrupts
generated by hardware errors to be logged
using the event logging mechanism

• Support for remote access to event log in-
formation

8.7 Performance

OSDL CGL specifies the requirements that
support performance levels necessary for the
environments expected to be encountered by
carrier server systems. Examples of these re-
quirements include:

• Support for application (pre) loading.

• Support for soft real time performance
through configuring the scheduler to pro-
vide soft real time support with latency of
10 ms.

• Support Kernel preemption.

• Raid 0 support: RAID Level 0 pro-
vides "disk striping" support to enhance
performance for request-rate-intensive or
transfer-rate-intensive environments

8.8 Scalability

These requirements support vertical and hori-
zontal scaling of carrier server systems such as
the addition of hardware resources to result in
acceptable increases in capacity.

8.9 Tools

The tools requirements provide capabilities to
facilitate diagnosis. Examples of these require-
ments include:

• Support the usage of a kernel debugger.

• Support for Kernel dump analysis.

• Support for debugging multi-threaded
programs
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9 CGL 3.0

The work on the next version of the OSDL
CGL requirements, version 3.0, started in Jan-
uary 2004 with focus on advanced require-
ment areas such as manageability, serviceabil-
ity, tools, security, standards, performance,
hardware, clustering and availability. With the
success of CGL’s first two requirement docu-
ments, OSDL CGL working group anticipates
that their third version will be quite beneficial
to the Carrier Grade ecosystem. Official re-
lease of the CGL requirement document Ver-
sion 3.0 is expected in October 2004.

10 CGL implementations

There are several enhancements to the Linux
Kernel that are required by the communication
industry, to help adopt Linux on their carrier
grade platforms, and support telecom applica-
tions. These enhancements (Figure 4) fall into
the following categories availability, security,
serviceability, performance, scalability, relia-
bility, standards, and clustering.

Figure 4: CGL enhancements areas

The implementations providing theses en-
hancements are Open Source projects and
planned for integration with the Linux ker-
nel when the implementations are mature, and
ready for merging with the kernel code. In

some cases, bringing some projects into matu-
rity levels takes a considerable amount of time
before being able to request its integration into
the Linux kernel. Nevertheless, some of the en-
hancements are targeted for inclusion in kernel
version 2.7. Other enhancements will follow in
later kernel releases. Meanwhile, all enhance-
ments, in the form of packages, kernel modules
and patches, are available from their respective
project web sites. The CGL 2.0 requirements
are in-line with the Linux development com-
munity. The purpose of this project is to form a
catalyst to capture common requirements from
end-users for a CGL distribution. With a com-
mon set of requirements from the major Net-
work Equipment Providers, developers can be
much more productive and efficient within de-
velopment projects. Many individuals within
the CGL initiative are also active participants
and contributors in the Open Source develop-
ment community.

11 Examples of needed features in
the Linux Kernel

In this section, we provide some examples
of missing features and mechanisms from the
Linux kernel that are necessary in a telecom
environment.

11.1 Transparent Inter-Process and Inter-
Processor Communication Protocol for
Linux Clusters

Today’s telecommunication environments are
increasingly adopting clustered servers to gain
benefits in performance, availability, and scal-
ability. The resulting benefits of a cluster
are greater or more cost-efficient than what a
single server can provide. Furthermore, the
telecommunications industry interest in clus-
tering originates from the fact that clusters
address carrier grade characteristics such as
guaranteed service availability, reliability and
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scaled performance, using cost-effective hard-
ware and software. Without being absolute
about these requirements, they can be divided
in these three categories: short failure detection
and failure recovery, guaranteed availability of
service, and short response times. The most
widely adopted clustering technique is use of
multiple interconnected loosely coupled nodes
to create a single highly available system.

One missing feature from the Linux kernel in
this area is a reliable, efficient, and transpar-
ent inter-process and inter-processor commu-
nication protocol. Transparent Inter Process
Communication (TIPC) [6] is a suitable Open
Source implementation that fills this gap and
provides an efficient cluster communication
protocol. This leverages the particular condi-
tions present within loosely coupled clusters.
It runs on Linux and is provided as a portable
source code package implementing a loadable
kernel module.

TIPC is unique because there seems to be no
other protocol providing a comparable com-
bination of versatility and performance. It
includes some original innovations such as
the functional addressing, the topology sub-
scription services, and the reactive connec-
tion concept. Other important TIPC fea-
tures include full location transparency, sup-
port for lightweight connections, reliable mul-
ticast, signaling link protocol, topology sub-
scription services and more.

TIPC should be regarded as a useful toolbox
for anyone wanting to develop or use Carrier
Grade or Highly Available Linux clusters. It
provides the necessary infrastructure for clus-
ter, network and software management func-
tionality, as well as a good support for de-
signing site-independent, scalable, distributed,
high-availability and high-performance appli-
cations.

It is also worthwhile to mention that the

ForCES (Forwarding and Control Element
WG) [11] working group within IETF has
agreed that their router internal protocol (the
ForCES protocol) must be possible to carry
over different types of transport protocols.
There is consensus on that TCP is the pro-
tocol to be used when ForCES messages are
transported over the Internet, while TIPC is
the protocol to be used in closed environments
(LANs), where special characteristics such as
high performance and multicast support is de-
sirable. Other protocols may also be added as
options.

TIPC is a contribution from Ericsson [5] to
the Open Source community. TIPC was an-
nounced on LKML on June 28, 2004; it is li-
censed under a dual GPL and BSD license.

11.2 IPv4, IPv6, MIPv6 forwarding tables fast
access and compact memory with multi-
ple FIB support

Routers are core elements of modern telecom
networks. They propagate and direct billion
of data packets from their source to their des-
tination using air transport devices or through
high-speed links. They must operate as fast as
the medium in order to deliver the best qual-
ity of service and have a negligible effect on
communications. To give some figures, it is
common for routers to manage between 10.000
to 500.000 routes. In these situations, good
performance is achievable by handling around
2000 routes/sec. The actual implementation of
the IP stack in Linux works fine for home or
small business routers. However, with the high
expectation of telecom operators and the new
capabilities of telecom hardware, it appears as
barely possible to use Linux as an efficient
forwarding and routing element of a high-end
router for large network (core/border/access
router) or a high-end server with routing capa-
bilities.
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One problem with the networking stack in
Linux is the lack of support for multiple
forward-ing information bases (multi-FIB) wit
h overlapping interface’s IP address, and the
lack of appropriate interfaces for addressing
FIB. Another problem with the curren t imple-
mentation is the limited scalability of the rout-
ing table.

The solution to these problems is to provide
support for multi-FIB with overlapping IP ad-
dress. As such, we can have on differe nt
VLAN or different physical interfaces, inde-
pendent network in the same Linux box. For
example, we can have two HTTP servers serv-
ing two different networks with potentially the
same IP address. One HTTP server will serve
the network/FIB 10, and the othe r HTTP
server will serves the network/FIB 20. The ad-
vantage gained is to have one Linux box serv-
ing two different customers usi ng the same IP
address. ISPs adopt this approach by provid-
ing services for multiple customers sharing the
same server (server pa rtitioning), instead of
using a server per customer.

The way to achieve this is to have an ID (an
identifier that identifies the customer or user of
the service) to completely separ ate the rout-
ing table in memory. Two approaches exist:
the first is to have a separate routing tables,
each routing table is looked up by their ID and
within tha t table the lookup is done one the
prefix. The second approach is to have one ta-
ble, and the lookup is done on the combined
key = prefix + ID.

A different kind of problem arises when we are
not able to predict access time, with the chain-
ing in the hash table of the routi ng cache (and
FIB). This problem is of particular inter-est in
an environment that requires predictable per-
formance.

Another aspect of the problem is that the route
cache and the routing table are not kept syn-

chronized most of the time (path MTU, just
to name one). The route cache flush is exe-
cuted regularly; therefore, any updates on the
cache are lost. For example, if you have a rout-
ing cache flush, you have to rebuild every route
that you are currently talking to, by going for
every route in the hash/try table and rebuilding
the information. First, you have to lookup in
the routing cache, and if you have a miss, then
you need to go in the hash/try table. This pro-
cess is very slow and not predictable since the
hash/try table is implemented wi th linked list
and there is high potential for collisions when a
large number of routes are present. This design
is suitable fo r a home PC with a few routes, but
it is not scalable for a large server.

To support the various routing requirements
of server nodes operating in high perfor-
mance and mission critical envrionments,
Linux should support the following:

• Implementation of multi-FIB using tree
(radix, patricia, etc.): It is very impor-
tant to have predictable performance in in-
sert/delete/lookup from 10.000 to 500.000
routes. In addition, it is favourable to have
the same data structure for both IPv4 and
IPv6.

• Socket and ioctl interfaces for addressing
multi-FIB.

• Multi-FIB support for neighbors (arp).

Providing these implementations in Linux will
affect a large part of net/core, net/ipv4 and
net/ipv6; these subsystems (mostly network
layer) will need to be re-written. Other areas
will have minimal impact at the source code
level, mostly at the transport layer (socket,
TCP, UDP, RAW, NAT, IPIP, IGMP, etc.).

As for the availability of an Open Source
project that can provide these functionalities,
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there exists a project called "Linux Virtual
Routing and Forwarding" [12]. This project
aims to implement a flexible and scalable
mechanism for providing multiple routing in-
stances within the Linux kernel. The project
has some potential in providing the needed
functionalities, however no progress has been
made since 2002 and the project seems to be
inactive.

11.3 Run-time Authenticity Verification for Bi-
naries

Linux has generally been considered immune
to the spread of viruses, backdoors and Tro-
jan programs on the Internet. However, with
the increasing popularity of Linux as a desk-
top platform, the risk of seeing viruses or Tro-
jans developed for this platform are rapidly
growing. To alleviate this problem, the sys-
tem should prevent on run time the execu-
tion of un-trusted software. One solution is
to digitally sign the trusted binaries and have
the system check the digital signature of bina-
ries before running them. Therefore, untrusted
(not signed) binaries are denied the execution.
This can improve the security of the system
by avoiding a wide range of malicious bina-
ries like viruses, worms, Trojan programs and
backdoors from running on the system.

DigSig [13] is a Linux kernel module that
checks the signature of a binary before running
it. It inserts digital signatures inside the ELF
binary and verifies this signature before load-
ing the binary. It is based on the Linux Security
Module hooks (LSM has been integrated with
the Linux kernel since 2.5.X and higher).

Typically, in this approach, vendors do not sign
binaries; the control of the system remains with
the local administrator. The responsible ad-
ministrator is to sign all binaries they trust with
their private key. Therefore, DigSig guarantees
two things: (1) if you signed a binary, nobody

else other than yourself can modify that binary
without being detected. (2) Nobody can run a
binary which is not signed or badly signed.

There has already been several initiatives in
this domain, such as Tripwire [14], BSign [15],
Cryptomark [16], but we believe the DigSig
project is the first to be both easily accessible to
all (available on SourceForge, under the GPL
license) and to operate at kernel level on run
time. The run time is very important for Car-
rier Grade Linux as this takes into account the
high availability aspects of the system.

The DigSig approach has been using exist-
ing solutions like GnuPG [17] and BSign (a
Debian package) rather than reinventing the
wheel. However, in order to reduce the over-
head in the kernel, the DigSig project only took
the minimum code necessary from GnuPG.
This helped much to reduce the amount of code
imported to the kernel in source code of the
original (only 1/10 of the original GnuPG 1.2.2
source code has been imported to the kernel
module).

DigSig is a contribution from Ericsson [5] to
the Open Source community. It was released
under the GPL license and it is available from
[8].

DigSig has been announced on LKML [18] but
it not yet integrated in the Linux Kernel.

11.4 Efficient Low-Level Asynchronous Event
Mechanism

Carrier grade systems must provide a 5-nines
availability, a maximum of five minutes per
year of downtime, which includes hardware,
operating system, software upgrade and main-
tenance. Operating systems for such systems
must ensure that they can deliver a high re-
sponse rate with minimum downtime. In ad-
dition, carrier-grade systems must take into
account such characteristics such as scalabil-
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ity, high availability and performance. In car-
rier grade systems, thousands of requests must
be handled concurrently without affecting the
overall system’s performance, even under ex-
tremely high loads. Subscribers can expect
some latency time when issuing a request, but
they are not willing to accept an unbounded
response time. Such transactions are not han-
dled instantaneously for many reasons, and it
can take some milliseconds or seconds to re-
ply. Waiting for an answer reduces applica-
tions abilities to handle other transactions.

Many different solutions have been envisaged
to improve Linux’s capabilities in this area us-
ing different types of software organization,
such as multithreaded architectures, imple-
menting efficient POSIX interfaces, or improv-
ing the scalability of existing kernel routines.

One possible solution that is adequate for car-
rier grade servers is the Asynchronous Event
Mechanism (AEM), which provides asyn-
chronous execution of processes in the Linux
kernel. AEM implements a native support
for asynchronous events in the Linux kernel
and aims to bring carrier-grade characteristics
to Linux in areas of scalability and soft real-
time responsiveness. In addition, AEM offers
event-based development framework, scalabil-
ity, flexibility, and extensibility.

Ericsson [5] released AEM to Open Source in
February 2003 under the GPL license. AEM
was announced on the Linux Kernel Mailing
List (LKML) [20], and received feedback that
resulted in some changes to the design and im-
plementation. AEM is not yet integrated with
the Linux kernel.

12 Conclusion

There are many challenges accompanying the
migration from proprietary to open platforms.
The main challenge remains to be the availabil-

ity of the various kernel features and mecha-
nisms needed for telecom platforms and inte-
grating these features in the Linux kernel.
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Abstract

Securing file resources under Linux is a team
effort. No one library, application, or kernel
feature can stand alone in providing robust se-
curity. Current Linux access control mecha-
nisms work in concert to provide a certain level
of security, but they depend upon the integrity
of the machine itself to protect that data. Once
the data leaves that machine, or if the machine
itself is physically compromised, those access
control mechanisms can no longer protect the
data in the filesystem. At that point, data pri-
vacy must be enforced via encryption.

As Linux makes inroads in the desktop market,
the need for transparent and effective data en-
cryption increases. To be practically deploy-
able, the encryption/decryption process must
be secure, unobtrusive, consistent, flexible, re-
liable, and efficient. Most encryption mecha-
nisms that run under Linux today fail in one
or more of these categories. In this paper, we
discuss solutions to many of these issues via
the integration of encryption into the Linux
filesystem. This will provide access control en-
forcement on data that is not necessarily un-
der the control of the operating environment.
We also explore how stackable filesystems, Ex-
tended Attributes, PAM, GnuPG web-of-trust,
supporting libraries, and applications (such as
GNOME/KDE) can all be orchestrated to pro-
vide robust encryption-based access control
over filesystem content.

1 Development Efforts

This paper is motivated by an effort on the part
of the IBM Linux Technology Center to en-
hance Linux filesystem security through bet-
ter integration of encryption technology. The
author of this paper is working together with
the external community and several members
of the LTC in the design and development of
a transparent cryptographic filesystem layer in
the Linux kernel. The “we” in this paper refers
to immediate members of the author’s devel-
opment team who are working together on this
project, although many others outside that de-
velopment team have thus far had a significant
part in this development effort.

2 The Filesystem Security

2.1 Threat Model

Computer users tend to be overly concerned
about protecting their credit card numbers from
being sniffed as they are transmitted over the
Internet. At the same time, many do not think
twice when sending equally sensitive informa-
tion in the clear via an email message. A
thief who steals a removable device, laptop, or
server can also read the confidential files on
those devices if they are left unprotected. Nev-
ertheless, far too many users neglect to take the
necessary steps to protect their files from such
an event. Your liability limit for unauthorized
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charges to your credit card is $50 (and most
credit card companies waive that liability for
victims of fraud); on the other hand, confiden-
tiality cannot be restored once lost.

Today, we see countless examples of neglect
to use encryption to protect the integrity and
the confidentiality of sensitive data. Those
who are trusted with sensitive information rou-
tinely send that information as unencrypted
email attachments. They also store that infor-
mation in clear text on disks, USB keychain
drives, backup tapes, and other removable me-
dia. GnuPG[7] and OpenSSL[8] provide all the
encryption tools necessary to protect this infor-
mation, but these tools are not used nearly as
often as they ought to be.

If required to go through tedious encryption or
decryption steps every time they need to work
with a file or share it, people will select inse-
cure passwords, transmit passwords in an inse-
cure manner, fail to consider or use public key
encryption options, or simply stop encrypting
their files altogether. If security is overly ob-
structive, people will remove it, work around
it, or misuse it (thus rendering it less effective).
As Linux gains adoption in the desktop market,
we need integrated file integrity and confiden-
tiality that is seamless, transparent, easy to use,
and effective.

2.2 Integration of File Encryption into the
Filesystem

Several solutions exist that solve separate
pieces of the problem. In one example high-
lighting transparency, employees within an or-
ganization that uses IBM™ Lotus Notes™ [9]
for its email will not even notice the complex
PKI or the encryption process that is integrated
into the product. Encryption and decryption
of sensitive email messages is seamless to the
end user; it involves checking an “Encrypt”
box, specifying a recipient, and sending the

message. This effectively addresses a signifi-
cant file in-transit confidentiality problem. If
the local replicated mailbox database is also
encrypted, then it also addresses confidential-
ity on the local storage device, but the protec-
tion is lost once the data leaves the domain of
Notes (for example, if an attached file is saved
to disk). The process must be seamlessly in-
tegrated intoall relevant aspects of the user’s
operating environment.

In Section 4, we discuss filesystem security
in general under Linux, with an emphasis
on confidentiality and integrity enforcement
via cryptographic technologies. In Section
6, we propose a mechanism to integrate en-
cryption of files at the filesystem level, in-
cluding integration of GnuPG[7] web-of-trust,
PAM[10], a stackable filesystem model[2], Ex-
tended Attributes[6], and libraries and applica-
tions, in order to make the entire process as
transparent as possible to the end user.

3 A Team Effort

Filesystem security encompasses more than
just the filesystem itself. It is a team effort,
involving the kernel, the shells, the login pro-
cesses, the filesystems, the applications, the ad-
ministrators, and the users. When we speak of
“filesystem security,” we refer to the security
of the files in a filesystem, no matter what ends
up providing that security.

For any filesystem security problem that ex-
ists, there are usually several different ways of
solving it. Solutions that involve modifications
in the kernel tend to introduce less overhead.
This is due to the fact that context switches and
copying of data between kernel and user mem-
ory is reduced. However, changes in the ker-
nel may reduce the efficiency of the kernel’s
VFS while making it both harder to maintain
and more bug-prone. As notable exceptions,
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Erez Zadok’s stackable filesystem framework,
FiST[3], and Loop-aes, require no change to
the current Linux kernel VFS. Solutions that
exist entirely in userspace do not complicate
the kernel, but they tend to have more overhead
and may be limited in the functionality they are
able to provide, as they are limited by the inter-
face to the kernel from userspace. Since they
are in userspace, they are also more prone to
attack.

4 Aspects of Filesystem Security

Computer security can be decomposed into
several areas:

• Identifying who you are and having the
machine recognize that identification (au-
thentication).

• Determining whether or not you should be
granted access to a resource such as a sen-
sitive file (authorization). This is often
based on the permissions associated with
the resource by its owner or an adminis-
trator (access control).

• Transforming your data into an encrypted
format in order to make it prohibitively
costly for unauthorized users to decrypt
and view (confidentiality).

• Performing checksums, keyed hashes,
and/or signing of your data to make unau-
thorized modifications of your data de-
tectable (integrity).

4.1 Filesystem Integrity

When people consider filesystem security, they
traditionally think about access control (file
permissions) and confidentiality (encryption).
File integrity, however, can be just as impor-
tant as confidentiality, if not more so. If a script

that performs an administrative task is altered
in an unauthorized fashion, the script may per-
form actions that violate the system’s security
policies. For example, many rootkits modify
system startup and shutdown scripts to facili-
tate the attacker’s attempts to record the user’s
keystrokes, sniff network traffic, or otherwise
infiltrate the system.

More often than not, the value of the data
stored in files is greater than that of the ma-
chine that hosts the files. For example, if an
attacker manages to insert false data into a fi-
nancial report, the alteration to the report may
go unnoticed until substantial damage has been
done; jobs could be at stake and in more ex-
treme cases even criminal charges against the
user could result . If trojan code sneaks into the
source repository for a major project, the pub-
lic release of that project may contain a back-
door.1

Many security professionals foresee a night-
mare scenario wherein a widely propagated In-
ternet worm quietly alters the contents of word
processing and spreadsheet documents. With-
out any sort of integrity mechanism in place
in the vast majority of the desktop machines
in the world, nobody would know if any data
that traversed vulnerable machines could be
trusted. This threat could be very effectively
addressed with a combination of a kernel-level
mandatory access control (MAC)[11] protec-
tion profile and a filesystem that provides in-
tegrity and auditing capabilities. Such a com-
bination would be resistant to damage done by
a root compromise, especially if aided by a
Trusted Platform Module (TPM)[13] using at-
testation.

1A high-profile example of an attempt to do this oc-
curred with the Linux kernel last year. Fortunately, the
source code management process used by the kernel de-
velopers allowed them to catch the attempted insertion
of the trojan code before it made it into the actual ker-
nel.
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One can approach filesystem integrity from
two angles. The first is to have strong au-
thentication and authorization mechanisms in
place that employ sufficiently flexible policy
languages. The second is to have an auditing
mechanism, to detect unauthorized attempts at
modifying the contents of a filesystem.

4.1.1 Authentication and Authorization

The filesystem must contain support for the
kernel’s security structure, which requires
stateful security attributes on each file. Most
GNU/Linux applications today use PAM[10]
(see Section 4.1.2 below) for authentication
and process credentials to represent their au-
thorization; policy language is limited to
what can be expressed using the file owner
and group, along with the owner/group/world
read/write/execute attributes of the file. The
administrator and the current owner have the
authority to set the owner of the file or the
read/write/execute policies for that file. In
many filesystems, files may also contain addi-
tional security flags, such as an immutable or
append-only flag.

Posix Access Control Lists (ACL’s)[6] provide
for more stringent delegations of access author-
ity on a per-file basis. In an ACL, individ-
ual read/write/execute permissions can be as-
signed to the owner, the owning group, indi-
vidual users, or groups. Masks can also be ap-
plied that indicate the maximum effective per-
missions for a class.

For those who require even more flexible ac-
cess control, SE Linux[15] uses a powerful
policy language that can express a wide va-
riety of access control policies for files and
filesystem operations. In fact, Linux Security
Module (LSM)[14] hooks (see Section 4.1.3
below) exist for most of the security-relevant
filesystem operations, which makes it easier to

implement custom filesystem-agnostic security
models. Authentication and authorization are
pretty well covered with a combination of ex-
isting filesystem, kernel, and user-space solu-
tions that are part of most GNU/Linux distribu-
tions. Many distributions could, however, do a
better job of aiding both the administrator and
the user in understanding and using all the tools
that they have available to them.

Policies that safeguard sensitive data should in-
clude timeouts, whereby the user must period-
ically re-authenticate in order to continue to
access the data. In the event that the autho-
rized users neglect to lock down the machine
before leaving work for the day, timeouts help
to keep the custodial staff from accessing the
data when they come in at night to clean the
office. As usual, this must be implemented in
such a way as to be unobtrusive to the user. If a
user finds a security mechanism overly impos-
ing or inconvenient, he will usually disable or
circumvent it.

4.1.2 PAM

Pluggable Authentication Modules (PAM)[10]
implement authentication-related security poli-
cies. PAM offers discretionary access control
(DAC)[12]; applications must defer to PAM in
order to authenticate a user. If the authenticat-
ing PAM function that is called returns an af-
firmative answer, then the application can use
that response to authorize the action, and vice
versa. The exact mechanism that the PAM
function uses to evaluate the authentication is
dependent on the module called.2

In the case of filesystem security and encryp-
tion, PAM can be employed to obtain and for-
ward keys to a filesystem encryption layer in
kernel space. This would allow seamless inte-

2This is parameterizable in the configuration files
found under/etc/pam.d/
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gration with any key retrieval mechanism that
can be coded as a Pluggable Authentication
Module.

4.1.3 LSM

Linux Security Modules (LSM) can provide
customized security models. One possible use
of LSM is to allow decryption of certain files
only when a physical device is connected to the
machine. This could be, for example, a USB
keychain device, a Smartcard, or an RFID de-
vice. Some devices of these classes can also be
used to house the encryption keys (retrievable
via PAM, as previously discussed).

4.1.4 Auditing

The second angle to filesystem integrity is au-
diting. Auditing should only fill in where au-
thentication and authorization mechanisms fall
short. In a utopian world, where security sys-
tems are perfect and trusted people always act
trustworthily, auditing does not have much of
a use. In reality, code that implements security
has defects and vulnerabilities. Passwords can
be compromised, and authorized people can
act in an untrustworthy manner. Auditing can
involve keeping a log of all changes made to
the attributes of the file or to the file data itself.
It can also involve taking snapshots of the at-
tributes and/or contents of the file and compar-
ing the current state of the file with what was
recorded in a prior snapshot.

Intrusion detection systems (IDS), such as
Tripwire[16], AIDE[17], or Samhain[18], per-
form auditing functions. As an example, Trip-
wire periodically scans the contents of the
filesystem, checking file attributes, such as the
size, the modification time, and the crypto-
graphic hash of each file. If any attributes for
the files being checked are found to be altered,

Tripwire will report it. This approach can work
fairly well in cases where the files are not ex-
pected to change very often, as is the case with
most system scripts, shared libraries, executa-
bles, or configuration files. However, care must
be taken to assure that the attacker cannot also
modify Tripwire’s database when he modifies
a system file; the integrity of the IDS system
itself must also be assured.

In cases where a file changes often, such as
a database file or a spreadsheet file in an ac-
tive project, we see a need for a more dy-
namic auditing solution - one which is per-
haps more closely integrated with the filesys-
tem itself. In many cases, the simple fact that
the file has changed does not imply a secu-
rity violation. We must also know who made
the change. More robust security require-
ments also demand that we know what parts
of the file were changed and when the changes
were made. One could even imagine scenarios
where the context of the change must also be
taken into consideration (i.e., who was logged
in, which processes were running, or what net-
work activity was taking place at the time the
change was made).

File integrity, particularly in the area of au-
diting, is perhaps the security aspect of Linux
filesystems that could use the most improve-
ment. Most efforts in secure filesystem devel-
opment have focused on confidentiality more
so than integrity, and integrity has been reg-
ulated to the domain of userland utilities that
must periodically scan the entire filesystem.
Sometimes, just knowing that a file has been
changed is insufficient. Administrators would
like to know exactly how the attacker made
the changes and under what circumstances they
were made.

Cryptographic hashes are often used. These
can detect unauthorized circumvention of the
filesystem itself, as long as the attacker forgets
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(or is unable) to update the hashes when mak-
ing unauthorized changes to the files. Some
auditing solutions, such as the Linux Audit-
ing System (LAuS)3 that is part of SuSE Linux
Enterprise Server, can track system calls that
affect the filesystem. Another recent addition
to the 2.6 Linux kernel is the Light-weight
Auditing Framework written by Rik Faith[28].
These are implemented independently of the
filesystem itself, and the level of detail in the
records is largely limited to the system call pa-
rameters and return codes. It is advisable that
you keep your log files on a separate machine
than the one being audited, since the attacker
could modify the audit logs themselves once
he has compromised the machine’s security.

4.1.5 Improvements on Integrity

Extended Attributes provide for a convenient
way to attach metadata relating to a file to the
file itself. On the premise that possession of
a secret equates to authentication, every time
an authenticated subject makes an authorized
write to a file, a hash over the concatenation of
that secret to the file contents (keyed hashing;
HMAC is one popular standard) can be writ-
ten as an Extended Attribute on that file. Since
this action would be performed on the filesys-
tem level, the user would not have to conscien-
tiously re-run userspace tools to perform such
an operation every time he wants to generate
an integrity verifier on the file.

This is an expensive operation to perform over
large files, and so it would be a good idea to
define extent sizes over which keyed hashes are
formed, with the Extended Attributes including
extent descriptors along with the keyed hashes.
That way, a small change in the middle of a

3Note that LAuS is being covered in more detail in
the 2004 Ottawa Linux Symposium by Doc Shankar,
Emily Ratliff, and Olaf Kirch as part of their presenta-
tion regarding CAPP/EAL3+ Certification.

large file would only require the keyed hash
to be re-generated over the extent in which the
change occurs. A keyed hash over the sequen-
tial set of the extent hashes would also keep an
attacker from swapping around extents unde-
tected.

4.2 File Confidentiality

Confidentiality means that only authorized
users can read the contents of a file. Sometimes
the names of the files themselves or a directory
structure can be sensitive. In other cases, the
sizes of the files or the modification times can
betray more information than one might want
to be known. Even the security policies pro-
tecting the files can reveal sensitive informa-
tion. For example, “Only employees of Novell
and SuSE can read this file” would imply that
Novell and SuSE are collaborating on some-
thing, and neither of them may want this fact
to be public knowledge as of yet. Many inter-
esting protocols have been developed that can
address these sorts of issues; some of them are
easier to implement than others.

When approaching the question of confiden-
tiality, we assume that the block device that
contains the file is vulnerable to physical com-
promise. For example, a laptop that contains
sensitive material might be lost, or a database
server might be stolen in a burglary. In either
event, the data on the hard drive must not be
readable by an unauthorized individual. If any
individual must be authenticated before he is
able to access to the data, then the data is pro-
tected against unauthorized access.

Surprisingly, many users surrender their own
data’s confidentiality (and more often than not
they do so unwittingly). It has been my per-
sonal observation that most people do not fully
understand the lack of confidentiality afforded
their data when they send it over the Inter-
net. To compound this problem, comprehend-
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ing and even using most encryption tools takes
considerable time and effort on the part of most
users. If sensitive files could beencrypted by
default, only to be decrypted by those autho-
rized at the time of access, then the user would
not have to expend so much effort toward pro-
tecting the data’s confidentiality.

By putting the encryption at the filesystem
layer, this model becomes possible without any
modifications to the applications or libraries.
A policy at that layer can dictate that certain
processes, such as the mail client, are to re-
ceive the encrypted version any files that are
read from disk.

4.2.1 Encryption

File confidentiality is most commonly accom-
plished through encryption. For performance
reasons, secure filesystems use symmetric key
cryptography, like AES or Triple-DES, al-
though an asymmetric public/private keypair
may be used to encrypt the symmetric key in
some key management schemes. This hybrid
approach is in common use through SSL and
PGP encryption protocols.

One of our proposals to extend Cryptfs is to
mirror the techniques used in GnuPG encryp-
tion. If the symmetric key that protects the con-
tents of a file is encrypted with the public key
of the intended recipient of the file and stored
as an Extended Attribute of the file, then that
file can be transmitted in multiple ways (e.g.,
physical device such as removable storage); as
long as the Extended Attributes of the file are
preserved across filesystem transfers, then the
recipient with the corresponding private key
has all the information that his Cryptfs layer
needs to transparently decrypt the contents of
the file.

4.2.2 Key Management

Key management will make or break a cryp-
tographic filesystem.[5] If the key can be eas-
ily compromised, then even the strongest ci-
pher will provide weak protection. If your
key is accessible in an unencrypted file or in
an unprotected region of memory, or if it is
ever transmitted over the network in the clear,
a rogue user can capture that key and use
it later. Most passwords have poor entropy,
which means that an attacker can have pretty
good success with a brute force attack against
the password. Thus the weakest link in the
chain for password-based encryption is usu-
ally the password itself. The Cryptographic
Filesystem (CFS)[22] mandates that the user
choose a password with a length of at least 16
characters.4

Ideally, the key would be kept in password-
encrypted form on a removable device (like a
USB keychain drive) that is stored separately
from the files that the key is used to encrypt.
That way, an attacker would have to both com-
promise the password and gain physical access
to the removable device before he could de-
crypt your files.

Filesystem encryption is one of the most ex-
citing applications for the Trusted Computing
Platform. Given that the attacker has physi-
cal access to a machine with a Trusted Plat-
form Module, it is significantly more difficult
to compromise the key. By using secret sharing
(otherwise known askey splitting)[4], the ac-
tual key used to decrypt a file on the filesystem
can be contained as both the user’s key and the
machine’s key (as contained in the TPM). In
order to decrypt the files, an attacker must not

4The subject of secure password selection, al-
though an important one, is beyond the scope of this
article. Recommended reading on this subject is at
http://www.alw.nih.gov/Security/Docs/
passwd.html .
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only compromise the user key, but he must also
have access to the machine on which the TPM
chip is installed. This “binds” the encrypted
files to the machine. This is especially useful
for protecting files on removable backup me-
dia.

4.2.3 Cryptanalysis

All block ciphers and most stream ciphers are,
to various degrees, vulnerable to successful
cryptanalysis. If a cipher is used improperly,
then it may become even easier to discover the
plaintext and/or the key. For example, with
certain ciphers operating in certain modes, an
attacker could discover information that aids
in cryptanalysis by getting the filesystem to
re-encrypt an already encrypted block of data.
Other times, a cryptanalyst can deduce infor-
mation about the type of data in the encrypted
file when that data has predictable segments of
data, like a common header or footer (thus al-
lowing for a known-plaintext attack).

4.2.4 Cipher Modes

A block encryption mode that is resistant to
cryptanalysis can involve dependencies among
chains of bytes or blocks of data. Cipher-
block-chaining (CBC) mode, for example, pro-
vides adequate encryption in many circum-
stances. In CBC mode, a change to one block
of data will require that all subsequent blocks
of data be re-encrypted. One can see how this
would impact performance for large files, as a
modification to data near the beginning of the
file would require that all subsequent blocks be
read, decrypted, re-encrypted, and written out
again.

This particular inefficiency can be effectively
addressed by defining chaining extents. By
limiting regions of the file that encompass

chained blocks, it is feasible to decrypt and re-
encrypt the smaller segments. For example, if
the block size for a cipher is 64 bits (8 bytes)
and the block size, which is (we assume) the
minimum unit of data that the block device
driver can transfer at a time (512 bytes) then
one could limit the number of blocks in any ex-
tent to 64 blocks. Depending on the plaintext
(and other factors), this may be too few to ef-
fectively counter cryptanalysis, and so the ex-
tent size could be set to a small multiple of the
page size without severely impacting overall
performance. The optimal extent size largely
depends on the access patterns and data pat-
terns for the file in question; we plan on bench-
marking against varying extent lengths under
varying access patterns.

4.2.5 Key Escrow

The proverbial question, “What if the sysad-
min gets hit by a bus?” is one that no organi-
zation should ever stop asking. In fact, some-
times no one person should alone have inde-
pendent access to the sensitive data; multiple
passwords may be required before the data is
decrypted. Shareholders should demand that
no single person in the company have full ac-
cess to certain valuable data, in order to miti-
gate the damage to the company that could be
done by a single corrupt administrator or exec-
utive. Methods for secret sharing can be em-
ployed to assure that multiple keys be required
for file access, and (m,n)-threshold schemes [4]
can ensure that the data is retrievable, even if a
certain number of the keys are lost. Secret shar-
ing would be easily implementable as part of
any of the existing cryptographic filesystems.

4.3 File Resilience

The loss of a file can be just as devastating
as the compromise of a file. There are many
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well-established solutions to performing back-
ups of your filesystem, but some cryptographic
filesystems preclude the ability to efficiently
and/or securely use them. Backup tapes tend
to be easier to steal than secure computer sys-
tems are, and if unencrypted versions of se-
cure files exist on the tapes, that constitutes an
often-overlooked vulnerability.

The Linux 2.6 kernel cryptoloop device5

filesystem is an all-or-nothing approach. Most
backup utilities must be given free reign on
the unencrypted directory listings in order to
perform incremental backups. Most other
encrypted filesystems keep sets of encrypted
files in directories in the underlying filesys-
tem, which makes incremental backups possi-
ble without giving the backup tools access to
the unencrypted content of the files.

The backup utilities must, however, maintain
backups of the metadata in the directories con-
taining the encrypted files in addition to the
files themselves. On the other hand, when the
filesystem takes the approach of storing the
cryptographic metadata as Extended Attributes
for each file, then backup utilities need only
worry about copying just the file in question to
the backup medium (preserving the Extended
Attributes, of course).

4.4 Advantages of FS-Level, EA-Guided En-
cryption

Most encrypted filesystem solutions either op-
erate on the entire block device or operate on
entire directories. There are several advantages
to implementing filesystem encryption at the
filesystem level and storing encryption meta-
data in the Extended Attributes of each file:

• Granularity: Keys can be mapped to in-
dividual files, rather than entire block de-

5Note that this is deprecated and is in the process of
being replaced with the Device Mapper crypto target.

vices or entire directories.

• Backup Utilities: Incremental backup
tools can correctly operate without having
to have access to the decrypted content of
the files it is backing up.

• Performance: In most cases, only cer-
tain files need to be encrypted. System
libraries and executables, in general, do
not need to be encrypted. By limiting the
actual encryption and decryption to only
those files that really need it, system re-
sources will not be taxed as much.

• Transparent Operation: Individual en-
crypted files can be easily transfered off of
the block device without any extra trans-
formation, and others with authorization
will be able to decrypt those files. The
userspace applications and libraries do not
need to be modified and recompiled to
support this transparency.

Since all the information necessary to decrypt
a file is contained in the Extended Attributes
of the file, it is possible for a user on a ma-
chine that is not running Cryptfs to use user-
land utilities to access the contents of the file.
This also applies to other security-related op-
erations, like verifying keyed hashes. This ad-
dresses compatibility issues with machines that
are not running the encrypted filesystem layer.

5 Survey of Linux Encrypted
Filesystems

5.1 Encrypted Loopback Filesystems

5.1.1 Loop-aes

The most well-known method of encrypt-
ing a filesystem is to use a loopback en-
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crypted filesystem.6 Loop-aes[20] is part
of the 2.6 Linux kernel (CONFIG_BLK_DEV_

CRYPTOLOOP). It performs encryption at the
block device level. With Loop-aes, the admin-
istrator can choose whatever cipher he wishes
to use with the filesystem. Themountpack-
age on most popular GNU/Linux distributions
contains thelosetuputility, which can be used
to set up the encrypted loopback mount (you
can choose whatever cipher that the kernel sup-
ports; we use blowfish in this example):

root# modprobe cryptoloop
root# modprobe blowfish
root# dd if=/dev/urandom of=encrypted.img \

bs=4k count=1000
root# losetup -e blowfish /dev/loop0 \

encrypted.img
root# mkfs.ext3 /dev/loop0
root# mkdir /mnt/unencrypted-view
root# mount /dev/loop0 /mnt/unencrypted-view

The loopback encrypted filesystem falls short
in the fact that it is an all-or-nothing solution.
It is impossible for most standard backup util-
ities to perform incremental backups on sets
of encrypted files without being given access
to the unencrypted files. In addition, remote
users will need to use IPSec or some other net-
work encryption layer when accessing the files,
which must be exported from the unencrypted
mount point on the server. Loop-aes is, how-
ever, the best performing encrypted filesystem
that is freely available and integrated with most
GNU/Linux distributions. It is an adequate so-
lution for many who require little more than
basic encryption of their entire filesystems.

5.1.2 BestCrypt

BestCrypt[23] is a non-free product that uses a
loopback approach, similar to Loop-aes.

6Note that Loop-aes is being deprecated, in favor of
Device Mapping (DM) Crypt, which also does encryp-
tion at the block device layer.

5.1.3 PPDD

PPDD[21] is a block device driver that en-
crypts and decrypts data as it goes to and comes
from another block device. It works very much
like Loop-aes; in fact, in the 2.4 kernel, it uses
the loopback device, as Loop-aes does. PPDD
has not been ported to the 2.6 kernel. Loop-aes
takes the same approach, and Loop-aes ships
with the 2.6 kernel itself.

5.2 CFS

The Cryptographic Filesystem (CFS)[22] by
Matt Blaze is a well established transparent en-
crypted filesystem, originally written for BSD
platforms. CFS is implemented entirely in
userspace and operates similarly to NFS. A
userspace daemon, cfsd, acts as a pseudo-NFS
server, and the kernel makes RPC calls to the
daemon. The CFS daemon performs trans-
parent encryption and decryption when writ-
ing and reading data. Just as NFS can export a
directory from any exportable filesystem, CFS
can do the same, while managing the encryp-
tion on top of that filesystem.

In the background, CFS stores the metadata
necessary to encrypt and decrypt files with
the files being encrypted or decrypted on the
filesystem. If you were to look at those di-
rectories directly, you would see a set of files
with encrypted values for filenames, and there
would be a handful of metadata files mixed in.
When accessed through CFS, those metadata
files are hidden, and the files are transparently
encrypted and decrypted for the user appli-
cations (with the proper credentials) to freely
work with the data.

While CFS is capable of acting as a remote
NFS server, this is not recommended for many
reasons, some of which include performance
and security issues with plaintext passwords
and unencrypted data being transmitted over
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the network. You would be better off, from a
security perspective (and perhaps also perfor-
mance, depending on the number of clients),
to use a regular NFS server to handle remote
mounts of the encrypted directories, with local
CFS mounts off of the NFS mounts.

Perhaps the most attractive attribute of CFS
is the fact that it does not require any mod-
ifications to the standard Linux kernel. The
source code for CFS is freely obtainable. It is
packaged in the Debian repositories and is also
available in RPM form. Using apt, CFS is per-
haps the easiest encrypted filesystem for a user
to set up and start using:

root# apt-get install cfs
user# cmkdir encrypted-data
user# cattach encrypted-data unencrypted-view

The user will be prompted for his pass-
word at the requisite stages. At this point,
anything the user writes to or reads from
/crypt/unencrypted-viewwill be transparently
encrypted to and decrypted from files in
encrypted-data. Note that any user on the sys-
tem can make a new encrypted directory and
attach it. It is not necessary to initialize and
mount an entire block device, as is the case
with Loop-aes.

5.3 TCFS

TCFS[24] is a variation on CFS that includes
secure integrated remote access and file in-
tegrity features. TCFS assumes the client’s
workstation is trusted, and the server cannot
necessarily be trusted. Everything sent to and
from the server is encrypted. Encryption and
decryption take place on the client side.

Note that this behavior can be mimicked with
a CFS mount on top of an NFS mount. How-
ever, because TCFS works within the kernel
(thus requiring a patch) and does not necessi-

tate two levels of mounting, it is faster than an
NFS+CFS combination.

TCFS is no longer an actively maintained
project. The last release was made three years
ago for the 2.0 kernel.

5.4 Cryptfs

As a proof-of-concept for the FiST stackable
filesystem framework, Erez Zadok, et. al. de-
veloped Cryptfs[1]. Under Cryptfs, symmet-
ric keys are associated with groups of files
within a single directory. The key is generated
with a password that is entered at the time that
the filesystem is mounted. The Cryptfs mount
point provides an unencrypted view of the di-
rectory that contains the encrypted files.

The authors of this paper are currently work-
ing on extending Cryptfs to provide seamless
integration into the user’s desktop environment
(see Section 6).

5.5 Userspace Encrypted Filesystems

EncFS[25] utilizes the Filesystem in Userspace
(FUSE) library and kernel module to imple-
ment an encrypted filesystem in userspace.
Like CFS, EncFS encrypts on a per-file basis.

CryptoFS[26] is similar to EncFS, except it
uses the Linux Userland Filesystem (LUFS) li-
brary instead of FUSE.

SSHFS[27], like CryptoFS, uses the LUFS ker-
nel module and userspace daemon. It limits it-
self to encrypting the files via SFTP as they are
transfered over a network; the files stored on
disk are unencrypted. From the user perspec-
tive, all file accesses take place as though they
were being performed on any regular filesys-
tem (opens, read, writes, etc.). SSHFS trans-
fers the files back and forth via SFTP with the
file server as these operations occur.
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5.6 Reiser4

ReiserFS version 4 (Reiser4)[29], while still in
the development stage, features pluggable se-
curity modules. There are currently proposed
modules for Reiser4 that will perform encryp-
tion and auditing.

5.7 Network Filesystem Security

Much research has taken place in the domain of
networking filesystem security. CIFS, NFSv4,
and other networking filesystems face special
challenges in relation to user identification, ac-
cess control, and data secrecy. The NFSv4 pro-
tocol definition in RFC 3010 contains descrip-
tions of security mechanisms in section 3[30].

6 Proposed Extensions to Cryptfs

Our proposal is to place file encryption meta-
data into the Extended Attributes (EA’s) of the
file itself. Extended Attributes are a generic
interface for attaching metadata to files. The
Cryptfs layer will be extended to extract that
information and to use the information to di-
rect the encrypting and decrypting of the con-
tents of the file. In the event that the filesys-
tem does not support Extended Attributes, an-
other filesystem layer can provide that func-
tionality. The stackable framework effectively
allows Cryptfs to operate on top ofanyfilesys-
tem.

The encryption process is very similar to that of
GnuPG and other public key cryptography pro-
grams that use a hybrid approach to encrypt-
ing data. By integrating the process into the
filesystem, we can achieve a greater degree of
transparency, without requiring any changes to
userspace applications or libraries.

Under our proposed design, when a new file is
created as an encrypted file, the Cryptfs layer

generates a new symmetric keyKs for the en-
cryption of the data that will be written. File
creation policy enacted by Cryptfs can be dic-
tated by directory attributes or globally defined
behavior. The owner of the file is automati-
cally authorized to access the file, and so the
symmetric key is encrypted with the public key
of the owner of the fileKu, which was passed
into the Cryptfs layer at the time that the user
logged in by a Pluggable Authentication Mod-
ule linked against libcryptfs. The encrypted
symmetric key is then added to the Extended
Attribute set of the file:

{Ks}Ku

Suppose that the user at this point wants to
grant Alice access to the file. Alice’s public
key, Ka, is in the user’s GnuPG keyring. He
can run a utility that selects Alice’s key, ex-
tracts it from the GnuPG keyring, and passes
it to the Cryptfs layer, with instructions to
add Alice as an authorized user for the file.
The new key list in the Extended Attribute set
for the file then contains two copies of the
symmetric key, encrypted with different public
keys:

{Ks}Ku

{Ks}Ka

Note that this is not an access control directive;
it is rather a confidentiality enforcement mech-
anism that extends beyond the local machine’s
access control. Without either the user’s or Al-
ice’s private key, no entity will be able to access
the decrypted contents of the file. The machine
that harbors such keys will enact its own ac-
cess control over the decrypted file, based on
standard UNIX file permissions and/or ACL’s.

When that file is copied to a removable media
or attached to an email, as long as the Extended
Attributes are preserved, Alice will have all
the information that she needs in order to re-
trieve the symmetric key for the file and de-
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Figure 1: Overview of proposed extended Cryptfs architecture

crypt it. If Alice is also running Cryptfs, when
she launches an application that accesses the
file, the decryption process is entirely trans-
parent to her, since her Cryptfs layer received
her private key from PAM at the time that she
logged in.

If the user requires the ability to encrypt a file
for access by a group of users, then the user
can associate sets of public keys with groups
and refer to the groups when granting access.
The userspace application that links against
libcryptfs can then pass in the public keys to
Cryptfs for each member of the group and in-
struct Cryptfs to add the associated key record
to the Extended Attributes. Thus no special
support for groups is needed within the Cryptfs
layer itself.

6.1 Kernel-level Changes

No modifications to the 2.6 kernel itself are
necessary to support the stackable Cryptfs
layer. The Cryptfs module’s logical divi-
sions include a sysfs interface, a keystore, and
the VFS operation routines that perform the
encryption and the decryption on reads and

writes.

By working with a userspace daemon, it would
be possible for Cryptfs to export public key
cryptographic operations to userspace. In or-
der to avoid the need for such a daemon while
using public key cryptography, the kernel cryp-
tographic API must be extended to support it.

6.2 PAM

At login, the user’s public and private keys
need to find their way into the kernel
Cryptfs layer. This can be accomplished by
writing a Pluggable Authentication Module,
pamcryptfs.so. This module will link against
libcryptfs and will extract keys from the user’s
GnuPG keystore. The libcryptfs library will
use the sysfs interface to pass the user’s keys
into the Cryptfs layer.

6.3 libcryptfs

The libcryptfs library works with the Cryptfs’s
sysfs interface. Userspace utilities, such as
pamcryptfs.so, GNOME/KDE, or stand-alone
utilities, will link against this library and use it
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to communicate with the kernel Cryptfs layer.

6.4 User Interface

Desktop environments such as GNOME or
KDE can link against libcryptfs to provide
users with a convenient interface through
which to work with the files. For example,
by right-clicking on an icon representing the
file and selecting “Security”, the user will be
presented with a window that can be used to
control the encryption status of the file. Such
options will include whether or not the file is
encrypted, which users should be able to en-
crypt and decrypt the file (identified by their
public keys from the user’s GnuPG keyring),
what cipher is used, what keylength is used,
an optional password that encrypts the sym-

metric key, whether or not to use keyed hash-
ing over extents of the file for integrity, the
hash algorithm to use, whether accesses to the
file when no key is available should result in
an error or in the encrypted blocks being re-
turned (perhaps associated with UID’s - good
for backup utilities), and other properties that
are controlled by the Cryptfs layer.

6.5 Example Walkthrough

When a file’s encryption attribute is set, the
first thing that the Cryptfs layer will do will be
to generate a new symmetric key, which will be
used for all encryption and decryption of the
file in question. Any data in that file is then
immediately encrypted with that key. When
using public key-enforced access control, that
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key will be encrypted with the process owner’s
private key and stored as an EA of the file.
When the process owner wishes to allow oth-
ers to access the file, he encrypts the symmet-
ric key with the their public keys. From the
user’s perspective, this can be done by right-
clicking on an icon representing the file, select-
ing “Security→Add Authorized User Key”,
and having the user specify the authorized user
while using PAM to retrieve the public key for
that user.

When using password-enforced access control,
the symmetric key is instead encrypted using a
key generated from a password. The user can
then share that password with everyone who
he authorized to access the file. In either case
(public key-enforced or password-enforced ac-
cess control), revocation of access to future
versions of the file will necessitate regenera-
tion and re-encryption of the symmetric key.

Suppose the encrypted file is then copied to a
removable device and delivered to an autho-
rized user. When that user logged into his ma-
chine, his private key was retrieved by the key
retrieval Pluggable Authentication Module and
sent to the Cryptfs keystore. When that user
launches any arbitrary application and attempts
to access the encrypted file from the removable
media, Cryptfs retrieves the encrypted sym-
metric key correlating with that user’s public
key, uses the authenticated user’s private key
to decrypt the symmetric key, associates that
symmetric key with the file, and then proceeds
to use that symmetric key for reading and writ-
ing the file. This is done in an entirely trans-
parent manner from the perspective of the user,
and the file maintains its encrypted status on
the removable media throughout the entire pro-
cess. No modification to the application or ap-
plications accessing the file are necessary to
implement such functionality.

In the case where a file’s symmetric key is en-

crypted with a password, it will be necessary
for the user to launch a daemon that listens for
password queries from the kernel cryptfs layer.
Without such a daemon, the user’s initial at-
tempt to access the file will be denied, and the
user will have to use a password set utility to
send the password to the cryptfs layer in the
kernel.

6.6 Other Considerations

Sparse files present a challenge to encrypted
filesystems. Under traditional UNIX seman-
tics, when a user seeks more than a block be-
yond the end of a file to write, then that space
is not stored on the block device at all. These
missing blocks are known as “holes.”

When holes are later read, the kernel simply
fills in zeros into the memory without actually
reading the zeros from disk (recall that they
do not exist on the disk at all; the filesystem
“fakes it”). From the point of view of what-
ever is asking for the data from the filesystem,
the section of the file being read appears to be
all zeros. This presents a problem when the
file is supposed to be encrypted. Without tak-
ing sparse files into consideration, the encryp-
tion layer will naïvely assume that the zeros be-
ing passed to it from the underlying filesystem
are actually encrypted data, and it will attempt
to decrypt the zeros. Obviously, this will re-
sult in something other that zeros being pre-
sented above the encryption layer, thus violat-
ing UNIX sparse file semantics.

One solution to this problem is to abandon the
concept of “holes” altogether at the Cryptfs
layer. Whenever we seek past the end of the
file and write, we can actually encrypt blocks
of zeros and write them out to the underlying
filesystem. While this allows Cryptfs to ad-
here to UNIX semantics, it is much less effi-
cient. One possible solution might be to store a
“hole bitmap” as an Extended Attribute of the
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file. Each bit would correspond with a block of
the file; a “1” might indicate that the block is a
“hole” and should be zero’d out rather than de-
crypted, and a “0” might indicate that the block
should be normally decrypted.

Our proposed extensions to Cryptfs in the near
future do not currently address the issues of di-
rectory structure and file size secrecy. We rec-
ognize that this type of confidentiality is im-
portant to many, and we plan to explore ways
to integrate such features into Cryptfs, possibly
by employing extra filesystem layers to aid in
the process.

Extended Attribute content can also be sensi-
tive. Technically, only enough information to
retrieve the symmetric decryption key need be
accessible by authorized individuals; all other
attributes can be encrypted with that key, just
as the contents of the file are encrypted.

Processes that are not authorized to access the
decrypted content will either be denied access
to the file or will receive the encrypted con-
tent, depending on how the Cryptfs layer is pa-
rameterized. This behavior permits incremen-
tal backup utilities to function properly, with-
out requiring access to the unencrypted content
of the files they are backing up.

At some point, we would like to include file in-
tegrity information in the Extended Attributes.
As previously mentioned, this can be accom-
plished via sets of keyed hashes over extents
within the file:

H0 = H{O0, D0, Ks}
H1 = H{O1, D1, Ks}
. . .
Hn = H{On, Dn, Ks}
Hf = H{H0, H1, . . . , Hn, n, s, Ks}

wheren is the number of extents in the file,
s is the extent size (also contained as another
EA), Oi is the offset numberi within the file,

Di is the data from offsetOi to Oi + s, Ks is
the key that one must possess in order to make
authorized changes to the file, andHf is the
hash of the hashes, the number of extents, the
extent size, and the secret key, to help detect
when an attacker swaps around extents or alters
the extent size.

Keyed hashes prove that whoever modified the
data had access to the shared secret, which is,
in this case, the symmetric key. Digital sig-
natures can also be incorporated into Cryptfs.
Executables downloaded over the Internet can
often be of questionable origin or integrity. If
you trust the person who signed the executable,
then you can have a higher degree of certainty
that the executable is safe to run if the digital
signature is verifiable. The verification of the
digital signature can be dynamically performed
at the time of execution.

As previously mentioned, in addition to the ex-
tensions to the Cryptfs stackable layer, this ef-
fort is requiring the development of a cryptfs
library, a set of PAM modules, hooks into
GNOME and KDE, and some utilities for man-
aging file encryption. Applications that copy
files with Extended Attributes must take steps
to make sure that they preserve the Extended
Attributes.7

7 Conclusion

Linux currently has a comprehensive frame-
work for managing filesystem security. Stan-
dard file security attributes, process creden-
tials, ACL, PAM, LSM, Device Mapping (DM)
Crypt, and other features together provide good
security in a contained environment. To ex-
tend access control enforcement over individ-
ual files beyond the local environment, you
must use encryption in a way that can be easily

7See http://www.suse.de/~agruen/
ea-acl-copy/
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applied to individual files. The currently em-
ployed processes of encrypting and decrypting
files, however, is inconvenient and often ob-
structive.

By integrating the encryption and the decryp-
tion of the individual files into the filesystem
itself, associating encryption metadata with the
individual files, we can extend Linux security
to provide seamless encryption-enforced ac-
cess control and integrity auditing.
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Abstract

This paper will describe the changes needed to
the Linux memory management system to cope
with adding or removing RAM from a running
system. In addition to support for physically
adding or removing DIMMs, there is an ever-
increasing number of virtualized environments
such as UML or the IBM pSeries™ Hypervi-
sor which can transition RAM between virtual
system images, based on need. This paper will
describe techniques common to all supported
platforms, as well as challenges for specific ar-
chitectures.

1 Introduction

As Free Software Operating Systems continue
to expand their scope of use, so do the de-
mands placed upon them. One area of con-
tinuing growth for Linux is the adaptation to
incessantly changing hardware configurations
at runtime. While initially confined to com-
monly removed devices such as keyboards,
digital cameras or hard disks, Linux has re-
cently begun to grow to include the capability
to hot-plug integral system components. This
paper describes the changes necessary to en-
able Linux to adapt to dynamic changes in one
of the most critical system resource—system

RAM.

2 Motivation

The underlying reason for wanting to change
the amount of RAM is very simple: availabil-
ity. The systems that support memory hot-plug
operations are designed to fulfill mission crit-
ical roles; significant enough that the cost of
a reboot cycle for the sole purpose of adding
or replacing system RAM is simply too expen-
sive. For example, some large ppc64 machines
have been reported to take well over thirty min-
utes for a simple reboot. Therefore, the down-
time necessary for an upgrade may compro-
mise the five nine uptime requirement critical
to high-end system customers [1].

However, memory hotplug is not just impor-
tant for big-iron. The availability of high
speed, commodity hardware has prompted a
resurgence of research into virtual machine
monitors—layers of software such as Xen
[2], VMWare [3], and conceptually even User
Mode Linux that allow for multiple operating
system instances to be run in isolated, virtual
domains. As computing hardware density has
increased, so has the possibility of splitting up
that computing power into more manageable
pieces. The capability for an operating sys-
tem to expand or contract the range of physical
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memory resources available presents the pos-
sibility for virtual machine implementations to
balance memory requirements and improve the
management of memory availability between
domains1. This author currently leases a small
User Mode Linux partition for small Internet
tasks such as DNS and low-traffic web serving.
Similar configurations with an approximately
100 MHz processor and 64 MB of RAM are
not uncommon. Imagine, in the case of an acci-
dental Slashdotting, how useful radically grow-
ing such a machine could be.

3 Linux’s Hotplug Shortcomings

Before being able to handle the full wrath of
Slashdot. we have to consider Linux’s cur-
rent design. Linux only has two data structures
that absolutely limit the amount of RAM that
Linux can handle: the page allocator bitmaps,
andmem_map[] (on contiguous memory sys-
tems). The page allocator bitmaps are very
simple in concept, have a bit set one way when
a page is available, and the opposite when it
has been allocated. Since there needs to be one
bit available for each page, it obviously has to
scale with the size of the system’s total RAM.
The bitmap memory consumption is approxi-
mately 1 bit of memory for each page of sys-
tem RAM.

4 Resizingmem_map[]

Themem_map[] structure is a bit more com-
plicated. Conceptually, it is an array, with one
struct page for each physical page which
the system contains. These structures contain
bookkeeping information such as flags indicat-
ing page usage and locking structures. The
complexity with thestruct page s is asso-
ciated when their size. They have a size of

1err, I could write a lot about this, so I won’t go any
further

40 bytes each on i386 (in the 2.6.5 kernel).
On a system with 4096 byte hardware pages,
this implies that about 1% of the total sys-
tem memory will be consumed bystruct
page s alone. This use of 1% of the system
memory is not a problem in and of itself. But,
it does other problems.

The Linux page allocator has a limitation on
the maximum amounts of memory that it can
allocate to a single request. On i386, this
is 4MB, while on ppc64, it is 16MB. It is
easy to calculate that anything larger than a
4GB i386 system will be unable to allocate
its mem_map[] with the normal page alloca-
tor. Normally, this problem withmem_mapis
avoided by using a boot-time allocator which
does not have the same restrictions as the allo-
cator used at runtime. However, memory hot-
plug requires the ability to grow the amount of
mem_map[] used at runtime. It is not feasible
to use the same approach as the page allocator
bitmaps because, in contrast, they are kept to
small-enough sizes to not impinge on the max-
imum size allocation limits.

4.1 mem_map[] preallocation

A very simple way around the runtime alloca-
tor limitations might be to allocate sufficient
memory formmem_map[] at boot-time to ac-
count for any amount of RAM that could pos-
sibly be added to the system. But, this ap-
proach quickly breaks down in at least one im-
portant case. Themem_map[] must be allo-
cated in low memory, an area on i386 which
is approximately 896MB in total size. This
is very important memory which is commonly
exhausted [4],[5],[6]. Consider an 8GB system
which could be expanded to 64GB in the fu-
ture. Its normalmem_map[] use would be
around 84MB, an acceptable 10% use of low
memory. However, hadmem_map[] been
preallocated to handle a total capacity of 64GB
of system memory, it would use an astound-
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ing 71% of low memory, giving any 8GB sys-
tem all of the low memory problems associated
with much larger systems.

Preallocation also has the disadvantage of im-
posing limitations possibly making the user
decide how large they expect the system to
be, either when the kernel is compiled, or
when it is booted. Perhaps the administra-
tor of the above 8GB machine knows that it
will never get any larger than 16GB. Does that
make the low memory usage more acceptable?
It would likely solve the immediate problem,
however, such limitations and user interven-
tion are becoming increasingly unacceptable
to Linux vendors, as they drastically increase
possible user configurations, and support costs
along with it.

4.2 Breakingmem_map[] up

Instead of preallocation, another solution is
to break upmem_map[] . Instead of need-
ing massive amounts of memory, smaller ones
could be used to piece togethermem_map[]
from more manageable allocations Interest-
ingly, there is already precedent in the Linux
kernel for such an approach. The discontigu-
ous memory support code tries to solve a dif-
ferent problem (large holes in the physical ad-
dress space), but a similar solution was needed.
In fact, there has been code released to use the
current discontigmem support in Linux to im-
plement memory hotplug. But, this has sev-
eral disadvantages. Most importantly, it re-
quires hijacking the NUMA code for use with
memory hotplug. This would exclude the use
of NUMA and memory hotplug on the same
system, which is likely an unacceptable com-
promise due to the vast performance benefits
demonstrated from using the Linux NUMA
code for its intended use [6].

Using the NUMA code for memory hotplug is
a very tempting proposition because in addi-

tion to splitting upmem_map[] the NUMA
support also handles discontiguous memory.
Discontiguous memory simply means that the
system does not lay out all of its physical mem-
ory in a single block, rather there are holes.
Handling these holes with memory hotplug is
very important, otherwise the only memory
that could be added or removed would be on
the end.

Although an approch similar to this “node hot-
plug” approach will be needed when adding or
removing entire NUMA nodes, using it on a
regular SMP hotplug system could be disas-
trous. Each discontiguous area is represented
by several data structures but each has at least
onestructzone . This structure is the basic
unit which Linux uses to pool memory. When
the amounts of memory reach certain low lev-
els, Linux will respond by trying to free or
swap memory. Artificially creating too many
zones causes these events to be triggered much
too early, degrading system performance and
under-utilizing available RAM.

5 CONFIG_NONLINEAR

The solution to both themem_map[] and dis-
contiguous memory problems comes in a sin-
gle package: nonlinear memory. First imple-
mented by Daniel Phillips in April of 2002 as
an alternative to discontiguous memory, non-
linear solves a similar set of problems.

Laying outmem_map[] as an array has sev-
eral advantages. One of the most important
is the ability to quickly determine the physi-
cal address of any arbitrarystruct page .
Sincemem_map[N] represents the Nth page
of physical memory, the physical address of the
memory represented by thatstruct page
can be determined by simple pointer arith-
metic:

Oncemem_map[] is broken up these simple
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physical_address = (&mem_map[N] - &mem_map[0]) * sizeof(struct page)

struct page N = mem_map[(physical_address / sizeof(struct page)]

Figure 1: Physical Address Calculations

calculations are no longer possible, thus an-
other approach is required. The nonlinear ap-
proach is to use a set of two lookup tables, each
one complementing the above operations: one
for convertingstruct page to physical ad-
dresses, the other for doing the opposite. While
it would be possible to have a table with an en-
try for every single page, that approach wastes
far too much memory. As a result, nonlinear
handles pages in uniformly sized sections, each
of which has its ownmem_map[] and an asso-
ciated physical address range. Linux has some
interesting conventions about how addresses
are represented, and this has serious implica-
tions for how the nonlinear code functions.

5.1 Physical Address Representations

There are, in fact, at least three different ways
to represent a physical address in Linux: a
physical address, astruct page , and a
page frame number (pfn). A pfn is traditionally
just the physical address divided by the size
of a physical page (theN in the above in Fig-
ure 1). Many parts of the kernel prefer to use
a pfn as opposed to astruct page pointer
to keep track of pages because pfn’s are eas-
ier to work with, being conceptually just array
indexes. The page allocator bitmaps discussed
above are just such a part of the kernel. To al-
locate or free a page, the page allocator toggles
a bit at an index in one of the bitmaps. That
index is based on a pfn, not astruct page
or a physical address.

Being so easily transposed, that decision does
not seem horribly important. But it does cause
a serious problem for memory hotplug. Con-

sider a system with 100 1GB DIMM slots
that support hotplug. When the system is first
booted, only one of these DIMM slots is pop-
ulated. Later on, the owner decides to hotplug
another DIMM, but puts it in slot 100 instead
of slot 2. Now, nonlinear has a bit of a problem:
the new DIMM happens to appear at a physical
address 100 times higher address than the first
DIMM. The mem_map[] for the new DIMM
is split up properly, but the allocator bitmap’s
length is directly tied to the pfn, and thus the
physical address of the memory.

Having already stated that the allocator bitmap
stays at manageable sizes, this still does not
seem like much of an issue. However, the
physical address of that new memorycould
have an even greater range than 100 GB; it has
the capability to have many, many terabytes of
range, based on the hardware. Keeping allo-
cator bitmaps for terabytes of memory could
conceivably consume all system memory on a
small machine, which is quite unacceptable.
Nonlinear offers a solution to this by intro-
ducing a new way to represent a physical ad-
dress: a fourth addressing scheme. With three
addressing schemes already existing, a fourth
seems almost comical, until its small scope is
considered. The new scheme is isolated to use
inside of a small set of core allocator functions
a single place in the memory hotplug code it-
self. A simple lookup table converts these new
“linear” pfns into the more familiar physical
pfns.
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5.2 Issues withCONFIG_NONLINEAR

Although it greatly simplifies several issues,
nonlinear is not without its problems. Firstly,
it does require the consultation of a small num-
ber of lookup tables during critical sections of
code. Random access of these tables is likely to
cause cache overhead. The more finely grained
the units of hotplug, the larger these tables will
grow, and the worse the cache effects.

Another concern arises with the size of the
nonlinear tables themselves. While they allow
pfns andmem_map[] to have nonlinear rela-
tionships, the nonlinear structures themselves
remain normal, everyday, linear arrays. If
hardware is encountered with sufficiently small
hotplug units, and sufficiently large ranges of
physical addresses, an alternate scheme to the
arrays may be required. However, it is the au-
thors’ desire to keep the implementation sim-
ple, until such a need is actually demonstrated.

6 Memory Removal

While memory addition is a relatively black-
and-white problem, memory removal has many
more shades of gray. There are many differ-
ent ways to use memory, and each of them has
specific challenges forunusing it. We will first
discuss the kinds of memory that Linux has
which are relevant to memory removal, along
with strategies to go about unusing them.

6.1 “Easy” User Memory

Unusing memory is a matter of either mov-
ing data or simply throwing it away. The eas-
iest, most straightforward kind of memory to
remove is that whose contents can just be dis-
carded. The two most common manifestations
of this are clean page cache pages and swapped
pages. Page cache pages are either dirty (con-
taining information which has not been writ-

ten to disk) or clean pages, which are simply a
copy of something thatis present on the disk.
Memory removal logic that encounters a clean
page cache page is free to have it discarded,
just as the low memory reclaim code does to-
day. The same is true of swapped pages; a page
of RAM which has been written to disk is safe
to discard. (Note: there is usually a brief pe-
riod between when a page is written to disk,
and when it is actually removed from memory.)
Any page thatcanbe swapped is also an easy
candidate for memory removal, because it can
easily be turned into a swapped page with ex-
isting code.

6.2 Swappable User Memory

Another type of memory which is very simi-
lar to the two types above is something which
is only used by user programs, but is for
some reason not a candidate for swapping.
This at least includes pages which have been
mlock() ’d (which is a system call to prevent
swapping). Instead of discarding these pages
out of RAM, they must instead be moved. The
algorithm to accomplish this should be very
similar to the algorithm for a complete page
swapping: freeze writes to the page, move the
page’s contents to another place in memory,
change all references to the page, and re-enable
writing. Notice that this is the same process as
a complete swap cycle except that the writes to
the disk are removed.

6.3 Kernel Memory

Now comes the hard part. Up until now, we
have discussed memory which is being used
by user programs. There is also memory that
Linux sets aside for its own use and this comes
in many more varieties than that used by user
programs. The techniques for dealing with this
memory are largely still theoretical, and do not
have existing implementations.



294 • Linux Symposium

Remember how the Linux page allocator can
only keep track of pages in powers of two? The
Linux slab cache was designed to make up for
that [6], [7]. It has the ability to take those pow-
ers of two pages, and chop them up into smaller
pieces. There are some fixed-size groups for
common allocations like 1024, 1532, or 8192
bytes, but there are also caches for certain
kinds of data structures. Some of these caches
have the ability to attempt to shrink themselves
when the system needs some memory back, but
even that is relatively worthless for memory
hotplug.

6.4 Removing Slab Cache Pages

The problem is that the slab cache’s shrinking
mechanism does not concentrate on shrinking
any particular memory, it just concentrates on
shrinking, period. Plus, there’s currently no
mechanism to tellwhichslab a particular page
belongs to. It could just as easily be a simply
discarded dcache entry as it could be a com-
pletely immovable entry like apte_chain .
Linux will need mechanisms to allow the slab
cache shrinking to be much more surgical.

However, there will always be slab cache mem-
ory which is not covered by any of the shrink-
ing code, like for generickmalloc() alloca-
tions. The slab cache could also make efforts
to keep these “mystery” allocations away from
those for which it knows how to handle.

While the record-keeping for some slab-cache
pages is sparse, there is memory with even
more mysterious origins. Some is allocated
early in the boot process, while other uses pull
pages directly out of the allocator never to be
seen again. If hot-removal of these areas is re-
quired, then a different approach must be em-
ployed: direct replacement. Instead of simply
reducing the usage of an area of memory until
it is unused, a one-to-one replacement of this
memory is required. With the judicious use of

page tables, the best that can be done is to pre-
serve the virtual address of these areas. While
this is acceptable for most use, it is not without
its pitfalls.

6.5 Removing DMA Memory

One unacceptable place to change the phys-
ical address of some data is for a device’s
DMA buffer. Modern disk controllers and net-
work devices can transfer their data directly
into the system’s memory without the CPU’s
direct involvement. However, since the CPU
is not involved, the devices lack access to the
CPU’s virtual memory architecture. For this
reason, all DMA-capable devices’ transfers are
based on the physical address of the memory
to which they are transferring. Every user of
DMA in Linux will either need to be guar-
anteed to not be affected by memory replace-
ment, or to be notified of such a replacement
so that it can take corrective action. It should
be noted, however, that the virtualization layer
on ppc64 can properly handle this remapping
in its IOMMU. Other architectures with IOM-
MUs should be able to employ similar tech-
niques.

6.6 Removal and the Page Allocator

The Linux page allocator works by keeping
lists of groups of pages in sizes that are pow-
ers of two times the size of a page. It keeps a
list of groups that are available for each power
of two. However, when a request for a page
is made, the only real information provided is
for thesizerequired, there is no component for
specifically specifying which particular mem-
ory is required.

The first thing to consider before removing
memory is to make sure that no other part
of the system is using that piece of memory.
Thankfully, that’s exactly what a normal al-
location does: make sure that it is alone in
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its use of the page. So, making the page al-
locator support memory removal will simply
involve walking the same lists that store the
page groups. But, instead of simply taking the
first available pages, it will be more finicky,
only “allocating” pages that are among those
about to be removed. In addition, the allocator
should have checks in thefree_pages()
path to look for pages which were selected for
removal.

1. Inform allocator to catch any pages in the
area being removed.

2. Go into allocator, and remove any pages
in that area.

3. Trigger page reclaim mechanisms to trig-
gerfree() s, and hopefully unuse all tar-
get pages.

4. If not complete, goto 3.

6.7 Page Groupings

As described above, the page allocator is the
basis for all memory allocations. However,
when it comes time to remove memory a fixed
size block of memory is what is removed.
These blocks correspond to the sections de-
fined in the the implementation of nonlinear
memory. When removing a section of mem-
ory, the code performing the remove opera-
tion will first try to essentially allocate all the
pages in the section. To remove the section,
all pages within the section must be made free
of use by some mechanism as described above.
However, it should be noted that some pages
will not be able to be made available for re-
moval. For example, pages in use for kernel
allocations, DMA or via the slab-cache. Since
the page allocator makes no attempt to group
pages based on usage, it is possible in a worst
case situation that every section contains one
in-use page that can not be removed. Ideally,

we would like to group pages based on their us-
age to allow the maximum number of sections
to be removed.

Currently, the definition of zones provides
some level of grouping on specific architec-
tures. For example, on i386, three zones are
defined: DMA, NORMAL and HIGHMEM.
With such definitions, one would expect most
non-removable pages to be allocated out of the
DMA and NORMAL zones. In addition, one
would expect most HIGHMEM allocations to
be associated with userspace pages and thus
removable. Of course, when the page allo-
cator is under memory pressure it is possible
that zone preferences will be ignored and allo-
cations may come from an alternate zone. It
should also be noted that on some architec-
tures, such as ppc64, only one zone (DMA) is
defined. Hence, zones can not provide group-
ing of pages on every architecture. It ap-
pears that zones do provide some level of page
grouping, but possibly not sufficient for mem-
ory hotplug.

Ideally, we would like to experiment with
teaching the page allocator about the use of
pages it is handing out. A simple thought
would be to introduce the concept of sections
to the allocator. Allocations of a specific type
are directed to a section that is primarily used
for allocations of that same type. For example,
when allocations for use within the kernel are
needed the allocator will attempt to allocate the
page from a section that contains other inter-
nal kernel allocations. If no such pages can be
found, then a new section is marked for internal
kernel allocations. In this way pages which can
not be easily freed are grouped together rather
than spread throughout the system. In this way
the page allocator’s use of sections would be
analogous to the slab caches use of pages.
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7 Conclusion

The prevalence of hotplug-capable Linux sys-
tems is only expanding. Support for these sys-
tems will make Linux more flexible and will
make additional capabilities available to other
parts of the system.
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Abstract

This paper will describe the current kobject and
kref kernel structures in detail. It will cover
why they were created, how to use them, and
how the internals work. It will also cover a few
directions that these structures might be taking
in the future.

1 Introduction

The Linux kernel file Documentation/
CodingStyle has the following statement
about reference counting:

Data structures that have visibil-
ity outside the single-threaded en-
vironment they are created and de-
stroyed in should always have refer-
ence counts. In the kernel, garbage
collection doesn’t exist (and outside
the kernel garbage collection is slow
and inefficient), which means that
you absolutely _have_ to reference
count all your uses.

This requirement of providing proper refer-
ence counting for kernel structures has caused

∗This work represents the view of the author and
does not necessarily represent the view of IBM.

developers to create their own logic and
functions to implement this feature. Dur-
ing the development of the Linux Kernel
Driver model[4], a simple structure,struct
kobject , was created that provided auto-
matic reference counting for any user of the
object. Unfortunately,struct kobject is
closely tied to the kernel driver model, and for
any data structure that does not want to show
up in sysfs, and participate in the global kernel
“web woven by a spider on drugs”[2], using
a struct kobject only for reference counting is
a big waste of memory resources and is much
more complex than needed. To this end, the
data structure,struct kref , was created
to provide a simple, and hopefully failproof
method of adding proper reference counting to
any kernel data structure.

2 How to use it

To use thestruct kref structure, simply
embed it within the structure that reference
counting is needed for. For example, to add ref-
erence counting to a structure calledstruct
foo then it would be defined as:

struct foo {
...
struct kref kref;
...
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};

It is not important that thestruct kref
structure be the first or last element of the
structure that it is embedded in. The only re-
quirement is that the wholestruct kref
structure be in the structure being reference
counted, not a pointer to the astruct kref
structure.

When thestruct foo structure is initial-
ized, thekref variable must also be initialized
before reference counting can be used. This is
done with a call to thekref_init function:

struct foo *foo;
foo = kmalloc(sizeof(*foo),

GFP_KERNEL);
kref_init(&foo->kref,

foo_release);

The parameterfoo_release is a pointer
The first parameter ofkref_init is a pointer
to the struct kref structure that is to be
initialized. The second parameter is a pointer
to the release function for the structure. This
release function is described in detail below.

After the kref structure has been initialized, the
internal reference count of the structure is set to
1. Now the reference count can be incremented
and decremented at will.

To increment the reference count of a kref
structure, the functionkref_get is called:

/* get a new reference to our
foo structure */

kref_get(&foo->kref);

When a user of the structure is finished with
it, thekref_put function should be called to
release the reference:

/* finished with this

foo structure */
kref_put(&foo->kref);

This function should also be called after the
original creator of the structure that the kref
variable is in, is finished with the structure. The
kfree function mustNOT be directly called
because other portions of the kernel could have
valid references to this structure.

After the kref_put function is called, the
structure can not be referred to by any future
code, as the memory for that structure could be
now gone.

When the last reference count is released, the
function that was passed to the originalkref_
init function is called to release the mem-
ory used by the structure. The prototype of this
function must accept a pointer to astruct
kref :

void foo_release(struct kref
*kref)

{
struct foo *foo;

foo = container_of(foo,
struct foo,
kref);

kfree(foo);
}

As the above example function shows, to
get back to the originalstruct foo struc-
ture location, thecontainer_of macro is
used. For a complete description of how the
container_of macro works, please see[1].

As there are not any locks within thekref
structure, there are three rules that need to be
followed when using this reference counting
logic:

• If the code accessing the variable already
has a valid reference to the structure, it is
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safe, and required to increment that ref-
erence with a call tokref_get in order
to give the variable to any other piece of
code.

• If the code accessing the variable already
has a valid reference to the structure, then
it is safe to release that reference with a
call tokref_put .

• If the code wanting to access the variable,
does not have a valid reference, then it
needs to serialize with a place within the
code where the last call tokref_put put
could happen.

This last rule can not be emphasized enough.
The only reason that thestruct kref can
work without any internal locks is because a
call to kref_get can not happen at the same
time thatkref_put is happening. In order to
ensure this, a simple lock for the driver or sub-
system that owns the specificstruct kref
reference can be used.

An example of using such a lock can be seen in
Figure 1.

So, with the three simple functions,kref_
init , kref_get , and kref_put , com-
bined with a release function that the caller
provides, complete reference counting can be
added to any kernel structure.

3 How it works

struct kref is a very tiny structure with
only two elements:

struct kref {
atomic_t refcount;
void (*release)(struct kref *kref);

};

The refcount variable is an atomic counter
that is used to hold the reference count of the

structure. Therelease variable is a pointer
to a function that will be called when the last
user of the structure is finished with the struc-
ture.

Thekref_init function is a mere three lines
long:

void kref_init(struct kref *kref,
void (*release)
(struct kref *kref))

{
WARN_ON(release == NULL);
atomic_set(&kref->refcount,1);
kref->release = release;

}

First a warning is printed out to the syslog if
a release callback is not provided, as this
is not allowed. Then therefcount vari-
able is initialized to 1 as the structure needs to
have a single initial reference count. After that
the release function pointer is stored in the
release variable in the structure.

The kref_get function is also only three
lines of code:

struct kref *kref_get(struct kref *kref)
{

WARN_ON(!atomic_read(&kref->refcount));
atomic_inc(&kref->refcount);
return kref;

}

Again, a warning is printed out to the syslog if
the refcount variable is zero. This catches
the very common error of callingkref_get
without first callingkref_init . After that,
the refcount variable is incremented, and
then a pointer to the same structure is returned.
This return type makes it easier for code to do
things pass the result ofkref_get as a func-
tion parameter:

do_foo(kref_get(my_kref));

Keeping with the tradition of tiny functions, the
kref_put function weighs in at a whopping
two lines:
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/* prevent races between open() and disconnect() */
static DECLARE_MUTEX (disconnect_sem);

static int skel_open(struct inode *inode, struct file *file)
{

struct usb_skel *dev;
struct usb_interface *interface;

/* prevent disconnects */
down (&disconnect_sem);

interface = usb_find_interface(&skel_driver, iminor(inode));
dev = usb_get_intfdata(interface);

/* increment our usage count for the device */
kref_get(&dev->kref);
up(&disconnect_sem);

...
}

static void skel_disconnect(struct usb_interface *interface)
{

struct usb_skel *dev;
int minor = interface->minor;

/* prevent skel_open() from racing skel_disconnect() */
down (&disconnect_sem);

dev = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);

/* give back our minor */
usb_deregister_dev(interface, &skel_class);

/* decrement our usage count */
kref_put(&dev->kref);

up(&disconnect_sem);
}

Figure 1: Using a lock to ensure safe access tokref_put

void kref_put(struct kref *kref)
{

if (atomic_dec_and_test
(&kref->refcount))

kref->release(kref);
}
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This function decrements the value stored in
the refcount variable, and if the result is
zero, this was the last reference to the struc-
ture, so the function stored in therelease
variable is called to clean up the memory used
by this structure.

4 kref vs. kobject

This paper has focused on on howstruct
kref works, and ignored struct
kobject . For the most part, both struc-
tures work identically, with the following
minor differences:

• struct kobject does not contain a
release function. When astruct
kobject ’s last reference count is decre-
mented, the release function of the
struct kset that is associated with
the struct kobject is called. For
more details on howstruct kobject
andstruct kset is related, please see
[3].

• A struct kobject can be ini-
tialized with two different functions,
kobject_register or kobject_
init . kobject_register calls
kobject_init and then calls
kobject_add to add the kobject
to the sysfs hierarchy. If astruct
kobject is to not be used within the
sysfs hierarchy, thenkobject_add
should never be called.

• A struct kobject can have its ref-
erence count incremented with a call to
kobject_get and decremented with
a call to kobject_put . But if the
kobject was initialized with the sysfs
core with a call to eitherkobject_
add or kobject_register , then it
needs to be removed from it with a

call to kobject_del , which will also
call kobject_put on the struct
kobject . After a struct kobject
has hadkobject_del called for it,
the kboject_get function can not be
called on the variable without having a
previous reference count already on the
variable. This is the same as the previ-
ously mentioned issue for callingkref_
put without serializing the access.

• Before using astruct kobject , the
structure must be initialized to zero by us-
ing memset beforekobject_init or
kobject_register is called. If not, a
warning will be printed out to the syslog.

5 Future

In future releases of the Linux kernel, the
struct kobject will probably loose its in-
ternal reference count and use thestruct
kref instead. If this happens,struct
kref might have to be changed in order to
support passing therelease callback as a pa-
rameter to thekref_put function, in order
to save the storage size of the function pointer
from the structure.

Other kernel uses of aatomic_t variable
will probably be converted to use thestruct
kref interface instead of providing their own
logic to handle reference counting.
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Other company, product, and service names may be
trademarks or service marks of others.
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Abstract

Trying to pin down whether changes to the 2.5
and 2.6 scheduler have helped or hurt perfor-
mance, especially on interactive programs, has
been both difficult to quantify and very subjec-
tive. One favored test has been to create your
favorite load and then move your cursor around
and observe how slow or fast it is. Another one
is to drag a window across your desktop and
see how quickly it gets redrawn. And I would
certainly be skewered if I didn’t mention what
is probably the favorite: playing your favorite
music while under load and listening intently
for skips.

Unfortunately, all these measurements are sub-
jective, and even, at times, argumentative.
With scheduler statistics installed, one can ac-
curately measure such things as the amount of
time processes are spending on the processor or
the amount of time they are waiting for the pro-
cessor. This means that on SMP and NUMA
machines, load balancing efforts can be objec-
tively evaluated, and process migration deci-
sions more effectively reviewed. And all of this
can be done with no measurable impact to the
system.

This paper will describe what information can
be captured, use that information to charac-
terize some simple loads, and describe how
that same information may be coordinated with
other system measurements both to character-

ize new loads, and to more clearly identify
scheduler shortcomings.

1 Introduction

As the 2.5 code revisions came out in mid- to
late 2003, the scheduler, like much of the 2.5
release, became more and more stable. True,
there was still work to be done in some areas,
like SMP and NUMA. Although an increas-
ing number of dual-CPU desktops and even
laptops introduced more users to the world
of SMP, it was the high end users with 16,
32, 128, or even more CPUs that really were
stretching the existing SMP and NUMA code.
The increasing load on the existing infrastruc-
ture was causing developers to realize that
code paths they previously thought “impossi-
ble” were really “rarely,” and paths deemed
“infrequent” were unfortunately morphing to
“once or twice a day.”

And an odd thing happened on the way to bet-
ter code for the high end machines. Those
pesky desktop and laptop users got in the way.
With every fix that would demonstrably im-
prove the situation for the big iron, dozens of
desktop and laptop owners would immediately
pick up the new code, try it out, and more of-
ten than not, pronounce it faulty. Why? Be-
causetheir 2-proc SMP machines were used
very differently than the file servers and web
servers that the 128-proc systems had become.
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The testing and measurements that had gone
into verifying the patch did not test the system
the same way the desktop users did. Conse-
quently, these desktop users saw very differ-
ent results, and formed very different opinions
about the correctness and usefulness of these
high-end SMP fixes.

And while their opinions mattered, of course,
addressing their concerns was difficult. They
were using human eyes and ears—notoriously
unreliable biological components known to be
fraught with frequent failure and highly subjec-
tive readouts—to detect problems with code.
These observations needed to be backed up
with numbers somehow.

2 Why is the wiggle so important?

So why weren’t the big iron folks seeing the
same problems as the desktop people if they
were both utilizing the same code? The an-
swer lay in usage patterns. People with laptops
and desktops did not run two dozen instances
of a server daemon that depended on ultra fast
cache and great amounts of parallelism. They
did not have petabytes of disk, and typically
did not have gigabytes of memory either. They
didn’t read terabytes of disk per minute, nor
expect to fully utilize their bus bandwidth on a
regular basis.

These folks browsed the web, sorted mail, and
compiled kernels while, in the background,
they listened to their favorite playlist. While
doing this, they would notice that with the new
scheduler mods, their windows took longer to
redraw. Or their cursor moved more sluggishly
under this relatively heavy load. Or their mu-
sic skipped now and then because their music
player didn’t get back on the CPU soon enough
to catch the next few notes.

That’s not to make light of their complaints;
they were uncovering real problems that exist-

ing testing was inadequate to find. In fact, there
were two main problems that needed to be
solved. One was to close the testing hole by re-
liably repeating the tests that the desktop users
were running, and repeating them on as wide a
variety of hardware as the original patches had
been run on. The other was that even the desk-
top users quibbled among themselves, some-
times, about whether wiggles, skips, and re-
draws had degraded. It was important to find
a way to measure this “wiggle effect” in some
quantifiable, objective way so you could reli-
ably tell whether a new patch worsened it or
improved it.

Server software, for its part, didn’t need mu-
sic to function, didn’t need cursors to point
with, and it sure didn’t care how fast windows
were redrawn. These highly interactive ac-
tivities had no place in server evaluations. It
was typically all aboutthroughput, and plac-
ing stress on some subsystem or another: disk,
memory, or network, typically. Stress on the
scheduler was a given. Even though dozens of
benchmarks exist for measuring the throughput
of high-end machines, producing megabytes or
even gigabytes of analysis and data, there was
no easy way to automate the type of subjective
human observation that desktop users were us-
ing. There was no way to have weekly regres-
sion tests pick it up, nor any way to precisely
duplicate the environment in which these ob-
servations were being made. In short, there
was no way to quantify the observations being
made, so no existing tests could detect regres-
sions in this area.

Previous scheduler modifications had labeled
applications that tended to spend a lot of time
waiting for I/O as “interactive,” and attempted
to give scheduler bonuses to those tasks when
the I/O they had been waiting for completed.
This wassupposedto provide the exact behav-
ior the desktops werenotseeing. The suspicion
was that either these types of applications were
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not being correctly recognized, or they were
not being given sufficient bonuses.

3 Isolating the wiggle

The first part of the solution was recognizing
that the “wiggle effect” comes from tasks not
regaining the CPU fast enough. The second
part was recognizing that the audible stutter
from a music player, or the delay in redraw-
ing a window, were showing the same problem
as wiggling the cursor.

In the case of a cursor, coordinates from a serial
mouse are presented as a stream of input to the
windowing system. If the task that moves the
cursor is not brought to a CPU quickly enough,
there will be a lag between the time the move-
ment is initiated and the time it appears on the
screen. With all the input consumed, the task
again goes to sleep even though a split second
later more input appears as the mouse contin-
ues to move. While this is an efficient way to
handle a serial mouse, it is dependent on hit-
ting the processor quickly enough to guarantee
the input stream doesn’t back up too much. If
the consuming task does not get to run quickly
enough, the cursor will appear to move across
the screen in a staccato fashion, even though
the mouse itself is being moved smoothly.

In the case of a music player, the application
(say,xmms) will read a certain amount of input
from a file, but it will take longer to play it to
the speaker. Even though this is, in general, a
very I/O-intensive task, there are times when
xmmswill go to sleep either waiting for output
to drain to the speaker or input to come from
the file. Waking up too slowly from these self-
imposed interruptions is what causes the music
to pause or stutter.

Slow window redrawing is a case of applica-
tions taking too long after notification to wake
up and redraw. Thismightalso be attributed to

slow interprocess communication or slow sig-
nal delivery, but it should be easy to rule out
these causes if we were to measure the time a
task spent in a queue waiting for a processor.

A patch for scheduler statistics has been avail-
able since 2.5.591. However, it was with the
2.6.0-test5 release in September of 2003 that it
was updated to include code to measure task
latency. The task is given a new timestamp
when it is placed in a run queue, placed on a
processor, or removed from a processor. This
makes it trivial to determine how long the task
spent in the run queue before making it to the
processor. It has the side effect of allowing us
to also measure, on average, how long a task
remains on the processor before relinquishing
it, usually voluntarily. This allows us to easily
characterize the kind of load a benchmark may
place on a system.

Adding statistics counting to the scheduler path
was a dicey task. This is one of the most heav-
ily used paths in the system, and anything that
slows down this path can have a catastrophic
effect on the system as a whole. Consequently,
the statistics patch tries to do what it can to
gather accurate statistics without the use of a
lock.

• Per-CPU counters are used, and incre-
mented only by their respective CPU. This
makes update collisions (and loss of data)
impossible.

• Even so, when possible, these counters are
incremented while a per-CPU runqueue
lock is already acquired.

• Counters are only incremented, so minor
variations from unflushed caches that may
be observed while reading another CPU’s
counters can be safely ignored. (The

1http://oss.software.ibm.com/developerworks/
opensource/linux/patches/?patch_id=730
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counters are declared unsigned long, so
user-level utilities on 32-bit architectures
must take note that the counters could
wrap. While theoretically possible on 64-
bit machines, wrapping is far less likely
than on 32-bit machines.)

Measurements were taken across several dif-
ferent releases using several different bench-
marks to see if any statistical impact could
be found on the benchmarks when scheduler
statistics were utilized. To date, none have
been found.

After the patch is applied, the counters can be
obtained by reading/proc/schedstat . A
full description of the statistics collected can be
found inDocumentation/schedstats.
txt in the kernel source. The patch itself in-
troduces a config option SCHEDSTATS that is
on by default; if it is turned off, all the addi-
tional code is compiled out. There are three
important fields:

timestampN
This line indicates a timestamp, in jiffies,
of when this output was produced. The
statistics are most effectively utilized
when collected at small regular intervals,
since this allows you to more accurately
see how the behavior of a load or bench-
mark may change over its lifetime. Any
process reading this file, however, is sub-
ject to the same scheduler delays it is try-
ing to measure. Consequently, a simple
script like

while true
do

sleep 10
cat /proc/schedstats >> \

/tmp/stat.out
done

may find it collects statistics roughly ev-
ery 10 seconds when the system is lightly
loaded, but every 15-20 seconds or more
when the system is heavily loaded. The
code to note the timestamp is just a few
lines before the data is totaled in the ker-
nel, and on a non-preemptible kernel is an
inexpensive way of identifying the time at
which the snapshot wasactuallytaken.

cpuN n n n n n n n n . . .
These are the values of the counters for
cpu N. The precise meaning of these
counters will vary depending on the ver-
sion of scheduler statistics being utilized.
A few examples of data collected are:

1. number of times some functions
were called

2. number of times certain functions
were called under certain circum-
stances (i.e., were the runqueues un-
balanced? was this processor idle?)

3. total number of milliseconds that
tasks on this processor have used,
not including the current one

4. total number of milliseconds that
tasks that ran here had to wait in
queue

versionN
identifies the version of output being pro-
duced. Since the meaning of fields (and
the number of fields) in thecpuN line,
above, can vary in different versions of
scheduler statistics, this allows tools to be
as flexible or inflexible as desired when
processing input.

A sample of the output from/proc/
schedstat is provided in Appendix A.
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4 What would I use statistics for?

Scheduler statistics can serve three basic pur-
poses. In many cases, they are doing no more
than providing some detailed code path and
profiling data. Knowing, for instance, that
a particular function was called 50,000 times
during a benchmark run may be key if it is ex-
pected to be called a dozen times—or a mil-
lion. Similarly, knowing that 22,000 of those
calls were made while the processor was idle,
or made on just one of eight CPUs, may also
be quite informative. About half the counters
provide this sort of information, and it must be
coupled with a knowledge of what to expect
given your workload in order to detect anoma-
lies.

Another purpose is to provide information be-
yond just counting. There is a counter that
sums the imbalance found when queues are
inspected. Combine this with the number of
times you called this function and you can de-
termine the average imbalance between run-
queues. In most cases you wouldn’t want this
to exceed 1. Truth is, though, that a flurry
of forking or even I/O completions might sud-
denly cause a processor to suddenly find it-
self with significantly more runnable tasks than
other processors. Seeing where these spikes
happen during the test run, and how often they
happen, may help to suggest better “default”
behavior in the scheduler or even tuning in the
benchmark itself.

The last purpose has already been mentioned—
task latency. We already need to note when a
task is queued on a processor and when it ac-
quires a processor. By noting one more thing—
when it leaves the processor—we can also de-
termine what I call therunslice.

The runslice is the amount of time a task
spendson the processor before yielding it. In
contrast, thetimeslicealloted by the scheduler

indicates how long the task may run before it is
forcedoff. Processes are usually given gener-
ous timeslices (100 ms is the default) but typi-
cally don’t use all of them at one shot. A task
may need to put itself to sleep, perhaps to wait
for input, before it has used up that full 100
ms. It will have any unused amount available
to it when the event awakens it, but how long
it spends on the processor can be an impor-
tant characteristic of the system load. If a task
spends only a few milliseconds before giving
up the processor, it may be I/O-bound. By the
same token, if it uses its full timeslice every
time before being kicked off, then it is CPU-
bound.

While many benchmarks are already character-
ized as CPU- or I/O-bound, they are rarely that
way from beginning to end. Seeing this behav-
ior graphed over a period of time can be very
informative to a person trying to tune the sys-
tem or the benchmark.

5 Diagnostic examples

The data that the scheduler statistics collect can
be utilized in several different ways.

5.1 Using the function counts to characterize
behavior

Recently a colleague remarked that he was run-
ning a benchmark that he expected to fully load
a machine; yet profiling was reporting that the
system was in the idle routine 50% of the time.
He increased the load significantly on the ma-
chine and idle time only dropped to 49%. He
couldn’t believe the machine still had spare cy-
cles, so we used the scheduler statistics to de-
termine what was happening.

From the beginning of the benchmark, we cap-
tured the counters in/proc/schedstat ev-
ery 10 seconds with a shell script. When the
benchmark exited, we killed the shell script.
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Figure 1:load_balance() andsched_balance_exec() counts

The two pieces of information that proved most
useful were the number of calls per second
(cps) for load_balance() and sched_
balance_exec() . In Figure 1, you can
see that thecpsfor load_balance() varies
markedly between plateaus of around 4000-
4500, and valleys of 100-200. When the sys-
tem is idle, it callsload_balance() as of-
ten as once a millisecond to try to find work.
When it is busy, it backs off to five times a
second. The graph here is clearly indicating
that this benchmark has at least two periods of
about 100 seconds each out of about 450 sec-
onds total where it is largely idle.

At about the same time that thecpsfor load_
balance() is high, the cps for sched_
balance_exec() is low. This function is
called when tasks issue theexec() system
call, and is used to do some opportunistic re-
balancing. We observed that just as the sys-
tem starts to get busy,sched_balance_
exec() tails off.

The data suggested that this benchmark had a
notable rampup and cooldown period. With

this information in hand, simple observation of
top(1)while running the benchmark confirmed
what the scheduler statistics suggested. The
benchmark had a fairly lengthy single-threaded
setup: creating log files, making directories for
results, and compiling short programs it would
use. It then forked many tasks and set them
all running to actually start the benchmark.
When the test was over, there was again a sin-
gle threaded task that collected the data created
before several tasks organized the data.

5.2 Using latency and runslice information

In another situation, a disk-intensive bench-
mark was doing much worse with a different
version of the scheduler. Figure 2 shows a mea-
surement of the latency from the two runs.

In the “broken” run, the latencies were nearly
twice that of the “working” run. Tasks were
taking longer to reach the CPU in the bro-
ken case. Yet the runslice information shows
comparable (and very short) times spent on the
CPUs. If tasks were running very short periods
of time, but waiting longer to run, what could
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Figure 2: Latency and runslice duration

have been the cause?

Enlightenment was finally attained by viewing
the average imbalance (Figure 3) during each
of the runs. On the average, the imbalance was
twice as great in the broken run as in the work-
ing run. Since the runslice was so small, this
suggested that tasks were becoming runnable
quickly but simply not being balanced often
enough. Some queues were getting quite long
while others (presumably) were staying short.
Additional debugging showed that tasks were
indeed awakening (probably by completed I/O)
quite frequently but most of the balancing was
happening only when one CPU fell idle and
went looking for work. These longer queues
in the broken run were persisting longer than
those in the working run, and tasks stuck in
them were waiting a fraction of a millisecond
longer than before.

6 Conclusion

There is still work to do.

Recent scheduler changes present in Andrew
Morton’s -mm tree will dramatically change
what is important to measure in the sched-
uler. Additionally, these same changes in-
troduce some self-tuning characteristics which
may benefit from statistics describing how of-

Figure 3: Average load imbalances

ten they are retuned.

There is also some evidence that NUMA ma-
chines may benefit from device, task, or mem-
ory affinitization strategies which try to keep
data from crossing NUMA node boundaries.
Scheduler statistics can be used to reliably
demonstrate whether these strategies are being
effective.

Lastly, the data provided by scheduler statis-
tics probably ought to be moved out of /proc
eventually, as there is an ongoing effort to re-
turn /proc to its original task of just listing pro-
cesses.

Scheduler statistics provide a quantifiable
means of measuring scheduler changes. Much
as disk statistics can be used to a variety
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of ends—measuring disk utilization, through-
put rates, and transfer rates, for example—
scheduler statistics can help with analysis of a
variety of situations. The latest revisions go
to lengths to avoid creating “Heisenbugs,” or
bugs which disappear when you try to examine
them closely. Perhaps best of all, developers
need not rely on mice and windowing systems
to measure their test results. Latency num-
bers, in particular, provide a key way of mea-
suring scheduler success, and runslice figures
can help characterize the load that tests create
so that the best set of tests can be chosen to test
a particular feature or system. Cursor wiggles
and audible skips can be set aside until they are
needed again.

Disclaimer

This work represents the view of the author and
does not necessarily represent the views of IBM.

IBM is registered trademark of International Busi-
ness Machines Corporation in the United States
and/or other countries worldwide.

Other company, product, and service names may be
trademarks or service marks of others.

Appendix A

Table 1 is a sample of what/proc/
schedstat might look like for a 2-proc ma-
chine. The actual format and number of coun-
ters will vary between different versions. For
purposes of this example, the last three lines
are artificially folded for readability, but in ac-
tual output, each would be one long line.

This is a brief description of each of the 23
counters for version 4 output. Applications can
check theversion field to make sure they
look for and correctly interpret the counters.
Note that all counters may wrap back to zero,

and applications using these counters should
be prepared to deal with that. Since all coun-
ters start at zero at boot time, the most useful
way to use them is to get periodic snapshots of
the counters, then subtract one set from a pre-
viously obtained one to obtain the delta. All
counters are per-processor.

1. in sched_yield() , number of times
both the active and the expired queue were
empty

2. in sched_yield() , number of times
just the active queue was empty

3. in sched_yield() , number of times
just the expired queue was empty

4. in sched_yield() , number of times
sched_yield() was called

5. inschedule() , number of times the ac-
tive queue had at least one other task on it

6. in schedule() , number of times we
switched to the expired queue and reused
it

7. number of timesschedule() was
called

8. number of times load_balance()
was called at an idle tick

9. number of times load_balance()
was called at a busy tick

10. number of timesload_balance()
was called fromschedule()

11. number of timesload_balance()
was called

12. sum of imbalances discovered (if any)
with each call toload_balance()

13. number of timesload_balance()
was called when we did not find a “bus-
iest” queue
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version 4
timestamp 4295814751
cpu0 8909 9103 612 11869 264585 9821 392921 1065335 406 140662 1206403 62905
1192940 0 13440 13469 0 0 0 0 82278 1497607 264615
cpu1 5138 5328 577 8126 265205 6270 402877 943453 1005 149999 1094457 77670
1074828 0 13469 13440 0 0 0 0 200998 448842 265175
totals 14047 14431 1189 19995 529790 16091 795798 2008788 1411 290661 2300860
140575 2267768 0 26909 26909 0 0 0 0

Table 1: Sample output from/proc/schedstat

14. number of timesload_balance()
was called frombalance_node()

15. number of timespull_task() moved
a task to this cpu

16. number of timespull_task() stole a
task from this cpu

17. number of timespull_task() moved
a task to this cpu from another node (re-
quiresCONFIG_NUMA)

18. number of timespull_task() stole a
task from this cpu for another node (re-
quiresCONFIG_NUMA)

19. number of timesbalance_node()
was called

20. number of timesbalance_node()
was called at an idle tick

21. sum of all time spent running by tasks (in
ms)

22. sum of all time spent waiting by tasks (in
ms)

23. number of tasks (not necessarily unique)
given to the processor

The last three make it possible to find the aver-
age latency on a particular runqueue or, if taken
from the totals fields, the overall system.
Given two points in time, A and B,(22B −
22A)/(23B − 23A) will give you the average

time tasks had to wait after being scheduled to
run but before actually running.

/proc/<pid>/stat

This version of the patch also changes the
stat output of individual tasksto include
the same latency and runslice information de-
scribed above. Three new fields, correspond-
ing to the last three fields described above, are
added to the end of the per-taskstat file, but
apply only for that task rather than a whole pro-
cessor.
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Abstract

Various Linux usage scenarios, particularly the
widely accepted server and the rapidly growing
desktop, require a lightweight, simple, asyn-
chronous mechanism for kernel to user-space
communication. Such a mechanism is cru-
cial for the transmissions of events to user-
space in a type-safe and clean manner. Further,
a system-level messaging bus, which can de-
liver messages up the system stack on both a
system-wide and per-user level, is required to
further the integration of the Linux system.

This talk will discuss the design and imple-
mentation for two specific solutions, the Kernel
Events Layer and D-BUS, to these two prob-
lems. Finally, useful solutions built on the sum
of these technologies will be discussed—such
as a fully integrated Linux desktop, from the
kernel up through the GNOME desktop.

1 Introduction

Usually considered a plus of open source de-
velopment, the Linux system is developed
piece-meal, resulting in cleanly separated lay-
ers and properly defined interfaces. This sep-
aration, however, also results in a lack of in-
tegration among the various components com-
prising the system stack. In particular, the lack
of integration is readily manifest between the
lower levels of the stack—kernel and system-

level components—and the upper levels of the
system, such as the desktop environment on
desktop machines.

A particularly important, but missing, compo-
nent of the Linux system is an ubiquitous IPC
mechanism and events system. Such a com-
ponent would facilitate the dissemination of
information up the system stack, better inte-
grating the Linux system from the kernel up
through the system layers, the desktop, and the
end user applications and daemons. With well
defined interfaces, such integration could occur
while continuing the current separation and in-
teroperability of Linux components.

What would such an IPC mechanism and event
system allow? Quite a bit. Photo applications
could start automatically in response to cam-
era insertion. The volume of your music player
could automatically lower in response to your
phone ringing. System shutdown, reboot, and
suspend messages could be trasmitted up the
stack. HA applications could receive instant
notifications from the kernel. No longer need
components in the system live separate lives
from the kernel, the layers below them, and
themselves. Now, applications can communi-
cate, listen, and evolve.

Such a system may be broken into three re-
quirements:

• Kernel support implementing a kernel-to-
user event mechanism
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• A user-space message transport and IPC
mechanism

• Applications sending and receiving such
messages

This paper will discuss two specific implemen-
tations of these requirements:

• The Kernel Events Layer

• D-BUS

2 The Kernel Events Layer

2.1 Goals and Design

Current user-space grokking of the kernel typ-
ically requires some combination of periodic
polling, parsing of unformatted text files from
/proc , and luck. The Linux kernel currently
lacks a mechanism for kernel to user-space
communication.

The requirements for such a system include:

• simple and clean

• low overhead and scalable

• asynchronous transport accessible with-
out polling

• type-safe

• generic enough for use in multiple usage
scenarios

• support for formalized sender interfaces,
allowing standardized messaging

Event systems have been proposed and even
implemented, but they generally receive min-
imal community buyin, presumably due to a
lack of one or moe of these requirements (more
than likely, the “simple” bit).

2.2 Implementation

The Kernel Events Layer implements an event
system satisfying these requirements.

Usage is simple:

send_event (int type, char
*interface, char *fmt, ...)

Thetype parameter specifies a constant value
representing the type of message being sent.
The interface value specifies the origina-
tor of the message. It is used to provide an in-
terface object for object-based component and
IPC systems such as CORBA and D-BUS. Fi-
nally, fmt and any following arguments pro-
vide the usualva_list of format and argu-
ments.

Example:

send_event (DBUS_NORMAL,
"org.kernel.arch.cpu",
"overheating")

This specifies a message from the
org.kernel.arch.cpu interface with a
value ofoverheating .

The actual implementation of the Kernel
Events Layer uses netlink. In fact, the Kernel
Event Layer is simply specific netlink socket
into user-space in which the event is formated
and then reconstructed by user-space. Netlink
is fast, simple, and already in the kernel. Thus
it was a natural choice.

The Kernel Events Layer code uses
netlink_broadcast() internally.

2.3 Real World Usage

The Kernel Events Layer is independent
of any specific user-space transport mecha-
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nism. The assumed use case is to create
a new daemon (or modify an existing dae-
mon, like the D-BUS system message bus,
dbus-system-1 ). This daemon listens on
the netlink socket, reading each event as it oc-
curs. The events are parsed and reconstructed
into the format native to the user-space trans-
port mechanism.

In the case of D-BUS, thedbus-system-1
daemon sends the kernel events out the system
message bus. Components up the system stack
may then receive the kernel events right off the
D-BUS system bus, along with other system-
wide messages.

3 D-BUS

D-BUS is a user-space IPC system.

D-BUS varies from other IPC mechanisms in
that it provides a bus system (as opposed to
point-to-point) over which messages (as op-
posed to byte streams) are transported. Mes-
sages include a header containing metadata
about the message itself and a body containing
the data. The bus system is created by form-
ing a point-to-point connection between the D-
BUS daemon and each listener. The daemon
acts as the hub and the listeners as the spokes
of a wheel.

D-BUS provides both a system-wide and a
per-user session bus. The system-wide bus is
used to dissemenate information on a machine-
global scale. A single system daemon provides
this service, allowing applications up the stack
to receive messages from components down
the stack. A security system implements ac-
cess control.

The per-user session bus exists on a per-user
basis, with one daemon created for each user
session. The per-user daemon is used for gen-
eral application IPC and is physically separate

from the system-wide bus. The per-user dae-
mon is generally used for traditional point-to-
point IPC.

D-BUS is the name given to this system. It is
composed of several architectural layers:

• The message bus daemon

• The D-BUS library, libdbus , which
connects to applications together

• Wrapper libraries and bindings that wrap
libdbus for direct use on various appli-
cation frameworks, such as Glib or QT,
and various languages, such as C# and
Python. The wrapper libraries and bind-
ings provide the API that most program-
mers should use as they both simplify the
rather low-levellibdbus API and pro-
vide an API more familiar and fit for that
particular environment.

3.1 D-BUS Concepts

D-BUS introduces various concepts that com-
prise the IPC system.

• The bus is either the system-wide global
bus or the per-user session bus.

• Objectsrepresent an instance of a specific
listener of a D-BUS message. Objects
are contained within the applications that
use D-BUS, and generally map to objects
in object-oriented languages. Because D-
BUS would not find using a pointer or ref-
erence to identify an object very friendly,
it introduces a name for each object. The
name resembles a UNIX filesystem path,
such as /org/kernel/fs/filesystem.

• Interfaces represent methods or signals
implemented on an object. Each object
supports at least one interface.
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• Messagesare sent to and from a defined
method or signal. D-BUS supports mul-
tiple message types: method invocation,
method return, error message, and signal.

3.2 Use of D-BUS

D-BUS’s simplicity, performance, and use of
the message and bus paradigm set it up for use
across the entire Linux system and make it a
perfect replacement for CORBA, DCOP, and
other IPC mechanisms.

Multiple projects are taking advantage of D-
BUS. They include:

• Project Utopia uses D-BUS as the IPC
mechanism to link the kernel, udev, HAL,
and the GNOME desktop.

• A CUPS patch uses D-BUS to transmit in-
formation about the printer spool.

• Jamboree uses D-BUS to automatically
mute the volume.

• A Gconf patch uses D-BUS as the Gconf
transport mechanism.

4 The Kernel Events Layer, D-
BUS, and Project Utopia

D-BUS is used as the backbone of Project
Utopia, an umbrella project aiming to bring
improved hardware management and system
integration to the Linux system and GNOME
desktop. Project Utopia uses D-BUS to link
the kernel, up through hotplug, udev and HAL
to the rest of the system. Libraries utilizing
D-BUS and built on top of HAL provide en-
hanced hardware support. Applications at the
desktop level can then reap the benefits.

4.1 Example: libinput

libinput is a simple library for managing
input devices that sits on top of HAL and com-
municates to HAL beneath it and the appli-
cations above it via D-BUS.libinput is
used to enumerate all input devices on the sys-
tem. libinput also provides an interface
for applications to register callbacks, and in-
tegrate these callbacks into its mainloop. The
callbacks are invoked when input devices are
added to or removed from the system.

Sample usage of enumerating all input devices
on the system:

struct input *devices;

if (input_init ())
/* error ... */

devices = input_devices_get ();
while (devices) {

/* ... */
devices = devices->next;

}
input_devices_put (devices);

Given a specificstruct input , the library
provides wrappers for opening and closing the
device viaopen (2) andclose (2). This is not
strictly required, but furthers the abstracting of
device nodes not only from the user but even
from the application.

Example:

fd = input_device_open (device, 0);

/* ... */

input_device_close (device);

Registering of the callbacks is also easy:

void my_mainloop
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(DBusConnection *dbus_connection)
{

dbus_connection_setup_with_g_main
(dbus_connection, NULL);

}

void my_added
(struct input *device)
{

printf
("%s was just "

"hotplugged!\n",
device->product);

}

void my_removed
(struct input *device)
{

printf
("%s was just "

"hotunplugged!\n",
device->product);

}

/* ... */
input_init_with_callbacks

(&my_mainloop,
&my_added,
&my_removed);

gtk_main ();

When an input device is added or re-
moved from the system,my_added andmy_
removed are invoked as appropriate.

The goals behind such a library are twofold:

• Abstract away concepts of device nodes
and low-level system-specific behavior
and allow application developers to search
for enumerate the devices on a system
through simple interfaces.

• Allow asynchronous poll-free hack-free
callbacks into the application to notify the
program of changes in events, such as a
new joystick on the system.

5 Conclusion

The Kernel Events Layer and D-BUS are two
crucial components in better unifying and in-
tegrating the Linux system. They provide the
infrastructure required for a future rich with in-
formation exchange. Where all levels of the
desktop can communicate—talking, listening,
evolving.
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Abstract

Linux-tiny is a project to reduce the mem-
ory and storage footprint of the 2.6 Linux ker-
nel for embedded, handheld, legacy, and other
small systems. I describe strategies for kernel
size reduction, some of the major areas already
investigated and the results achieved, as well as
some avenues for further exploration.

1 Introduction

Historically, Linux had a reputation for run-
ning on very modest systems. My first dedi-
cated Linux box, running a 0.99 kernel circa
1994, provided mail, FTP, web, dial-in, and
shell services on a 16MHz 386SX with a mere
4 megabytes of RAM. In the 10 years since
then, Linux has grown to the point where it
runs on machines with over a thousand proces-
sors and a terabyte of RAM. Not surprisingly,
a modern Linux distribution can have difficulty
getting to a shell prompt on machines with less
than 8 megabytes of RAM, let alone doing use-
ful work.

1.1 What happened?

In the time between the 0.99 and 2.6 kernels,
we’ve seen Linux become a serious commer-
cial endeavor, we’ve seen kernel hackers get
jobs (and get big machines on their desks), and
we’ve seen a massive boom in Internet use and
personal computing. Linux developers have

been targeting high end computing and ris-
ing demand for hardware has seen prices drop
tremendously.

But there are still small machines! Hand-helds
and embedded systems are perennially pressed
for space to match their desktop counterparts
and many people throughout the world still rely
on legacy machines to get their work done.
What can be done to recapture the ‘small is
beautiful’ utility of those early systems?

1.2 Where is the growth?

The process by which any large software
project grows can aptly be described asdeath
by a thousand cuts. The accumulation of bloat
occurs change by change and creeps in from
several different directions.

Perhaps the most visible is the addition of new
features, which generally requires the intro-
duction of wholly-new code. Frequently fea-
tures are considered so small or so essential
that no thought is given to making them op-
tional. As the median system size grows, this
new code tends to be more verbose and less
concerned with space issues.

The next, more subtle culprit isperformance.
Given the fundamental importance of kernel
performance to overall system performance,
trade-offs of size for speed are easy to justify.
Unfortunately the accumulation of many such
trade-offs can leave us with a system that no
longer boots. Ironically, the evolution of pro-
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cessors has brought us to a point where cache
footprint can be critical to performance so a lot
of the choices that have been made in this area
bear rethinking.

Next we havecompatibility andcorrectness.
Every time the system is extended to better
support a slightly different piece of hardware
or work around another corner case, more code
is added. Occassionally cleanups and unifica-
tions make some of this code redundant, but
this is the exception. A related phenomenon is
the evolution of the kernel APIs and the accu-
mulation of obsolete code for the sake of back-
ward compatibility.

2 Linux-Tiny for the small system
niche

There have been numerous efforts to address
the above phenomena for various components
of Linux systems, but most of the attention
has been addressed at userspace (arguably the
biggest offender). Experiments with pre-2.6.0
kernels however suggested it was time to pay
some more attention to the kernel itself. So
in December of 2003, I decided to create a
new 2.6-based tree dedicated to small systems
which I named Linux-Tiny [3] (someone had
already borrowed my initials for their tree).

2.1 Methodology

With stated targets of embedded, hand-held,
and legacy machines, the -tiny tree attempts
to tailor the kernel to the needs of small sys-
tems. The tree is maintained as a series of small
patches stacked on top of mainline kernel re-
leases, managed with the quilt tool [1] (previ-
ously with Andrew Morton’s patch scripts [4]).

Patches try to observe the following criteria:

• configurable: changes that are not clearly

wins for all systems should be config-
urable so that users can make their own
trade-offs

• non-invasive: patches should be small,
self-contained, and largely independent so
that integrators can cherrypick the patches
they’d like to use

• mergeable: while not mandatory, patches
should try to be acceptable to the mainline
kernel in both style and approach; merg-
ing to mainline is a priority

In addition to patches focusing on reducing
kernel footprint, I’ve also added a number of
patches to do debugging and auditing includ-
ing netconsole, kgdb, and kgdb-over-ethernet
support.

2.2 Setting goals

Everyone has a different set of functionality re-
quirements in mind for small systems. The fea-
tures needed on a handheld are very different
from those needed for a network appliance or
a kiosk. Thus, choosing a subset of features to
develop towards is tricky.

The approach I’ve taken is to choose a series
of targets to optimize, and the first is a min-
imal x86 kernel with filesystem, console, and
TCP/IP support. How small can we make this
kernel? This puts a focus on the most of the
common core functionality of Linux and pro-
vides a useful benchmark for progress.

3 Finding bloat

As mentioned above, there are many sources
of bloat. There are also several forms it can
take: as superfluous code, statically or dy-
namically allocated data, inline functions or
macros, compiler mis-optimizations, or cut-n-
paste coding.
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Given that the kernel is on the order of several
hundred kilobytes, tackling bloat is going to
be a matter of trimming several kilobytes here
and a couple kilobytes there. While one could
simply pick any source file and read through it
searching for cleanup opportunities, there are
some more straightforward ways of finding the
“low-hanging fruit”.

3.1 Using nm(1) and size(1)

The easiest place to begin is by using thenm
tool to find large functions and data structures.
Comparing the (hexadecimal) numbers from
nm(1) with size(1) gives us a good start
at understanding the relative sizes of some of
the major subsystems and their components
compared to the kernel as a whole. For in-
stance, we can see by comparing Table 1 and
Table 2 that the staticide_hwifs data struc-
ture alone takes 15360 bytes, over 2% of the
data portion of the default kernel.

3.2 Measuring function inlining

Function inlining and macro expansion present
a special problem for our bloat detection ef-
forts. In the early 1990s, inlining was a very
popular performance technique to avoid func-
tion call branches. A great number of key func-
tions are marked for inlining in the kernel and
their usage and size impact is obscured because
they become a seamless part of the functions
that use them. Auditing their usage becomes
a matter of convincing the compiler to tell us
when inlines are being instantiated in a build
and then estimating how large these functions
are when expanded inline.

Rather than modifying the compiler itself, the
first part of this puzzle was hacked around by
redefininginline to include the GCC exten-
sion __attribute__((deprecated)) .
This causes a very useful warning like the fol-
lowing to be generated:

arch/i386/kernel/semaphore.c:58:
warning: ‘get_current’ is
deprecated (declared at
include/asm/current.h:16)

By post-processing these voluminous warning
messages, we can determine which inline func-
tions are instantiated directly in C files as well
as which are called as parts of other inlines and
finally calculate the total number of direct or
indirect instantiations of each (see Table 3).

The second part of this puzzle was more chal-
lenging. While we know in which modules
and how often inlines are instantiated, we can-
not yet calculate their sizes. I made several
attempts to generate approximate size data by
looking at GCC’s symbolic debugging output,
but this tended to be easily confused by inlin-
ing and was too inaccurate for use.

Recently Denis Vlasenko took another stab
at this and wrote a set of scripts called in-
line_hunter [5] to generate a set of dummy
functions wrapping single calls to inlines.
While these sizes won’t directly reflect the
size of inline instantiations due to function
call overhead and lost optimization opportuni-
ties, for larger inline functions, it has proven
fairly representative. Some of the larger inlines
found with this approach are shown in Table 4.

3.3 Tracking dynamic allocations

Of course much of the kernel’s memory foot-
print is from dynamic allocations. Memory
used for page tables, tracking running pro-
cesses, indexing hashes and so forth is allo-
cated at runtime and can vary with the size of
the load. A number of these are hash tables to
increase look-up performance, which for small
systems can be less important than simply fit-
ting in memory.

There are several important allocators in the
kernel. First, the bootmem allocator which
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2.6.5\$ nm --size -r vmlinux | head -20
00008000 b __log_buf
00007000 D irq_desc
00004e78 d pci_vendor_list
00004000 b bh_wait_queue_heads
00003c00 B ide_hwifs
0000213a T vt_ioctl
00002000 D init_thread_union
00001880 D contig_page_data
0000163b T journal_commit_transaction
00001500 b irq_2_pin
000012f5 T tcp_sendmsg
00001162 t n_tty_receive_buf
00001080 d per_cpu__tvec_bases
00001000 t translation_table
00001000 b sd_index_bits
00001000 D init_tss
00001000 b doublefault_stack
00001000 B con_buf
00001000 b cache_defer_hash
00000fe0 T cdrom_ioctl

Table 1: nm output for 2.6.5 default config

handles a number of critical allocations at
startup. As there are not terribly many of
these, they can be audited very simply with
printk() techniques.

Second, the SLAB allocator is used to quickly
allocate sets of objects of the same size and
type. The kernel provides a way to track these
allocations with/proc/slabinfo .

The more generalkmalloc() allocator has
been rebuilt on top of the aforementioned
SLAB allocator, translating kmalloc requests
into requests from a set of ascending generic
SLAB sizes. Thus allkmalloc() allo-
cations are lumped together by size in the
/proc/slabinfo output. That can be help-
ful if you know what you’re looking for, but
doesn’t give many hints as to which parts of
the kernel are using that memory.

To address this deficiency, I’ve created a
small footprint tool for tracking allocations via
/proc/kmalloc (see Table 5). This works
by tracking the address of each allocation along
with the address of the allocating function in
a simple hash table. Also tracked are net and
gross allocation sizes and counts per caller.
When akfree() call is made, it is matched
up to its caller for accounting purposes and re-
moved from the hash. Thus it is possible not
only to determine how much dynamic memory
is used by each function but also to easily iden-
tify memory leaks.

4 Some notable opportunities for
code trimming

The above methods have revealed numerous
opportunities for cutting back the kernel’s
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2.6.5\$ size vmlinux */built-in.o
text data bss dec hex filename

3366220 673296 166824 4206340 402f04 vmlinux
1181276 250808 48000 1480084 169594 drivers/built-in.o

735152 32593 30628 798373 c2ea5 fs/built-in.o
18151 1120 1316 20587 506b init/built-in.o
21841 172 204 22217 56c9 ipc/built-in.o

159632 16115 42402 218149 35425 kernel/built-in.o
2870 0 0 2870 b36 lib/built-in.o

129669 9068 2884 141621 22935 mm/built-in.o
580407 33816 18856 633079 9a8f7 net/built-in.o

1869 0 0 1869 74d security/built-in.o
325923 11114 3016 340053 53055 sound/built-in.o

134 0 0 134 86 usr/built-in.o

Table 2: size output for 2.6.5 default config

memory footprint, many of which remain to be
examined. What follows are some of the more
notable areas that have been explored.

4.1 Debugging data

The kernel has numerous facilities for trapping
and reporting problem conditions and other
status information, includingprintk() ,
bug() , warn() , panic() , and friends. In
ideal circumstances, these facilities go unexer-
cised. And in the extreme, embedded boxes
may have no means of reporting this data, due
to lack of a display, writable storage, or the
like. Unfortunately, not only do these facilities
use a substantial amount of code, their users
need extra space for error message strings, file-
names, and line numbers.

Linux-tiny has a set of configuration options
to compile out most of this code and remove
the debugging strings and data from the kernel.
Disabling support forprintk() saves well
over 100K. Independent options control the in-
clusion of thebug() infrastructure and sup-
port for trapping panics and doublefaults.

4.2 Optional interfaces

For systems with well-defined application re-
quirements, many of the kernel’s APIs are
unnecessary. Cutting-edge, obsolete, or ob-
scure features are obvious candidates for con-
figurable removal.

• sysfs: The new sysfs filesystem makes
substantial memory demands (which can
be more than half a megabyte even on
the smallest systems) but its features may
well not be essential to current systems.
The -tiny tree was a testbed for options to
entirely remove sysfs or to use a lighter
“backing store” version.

• ptrace, aio, posix-timers: These fea-
tures are among those that are only used
by a small set of applications. These
and other Linux-tiny options are enabled
under the CONFIG_EMBEDDED menu,
which marks them as making the kernel
non-standard.

• uid16, vm86: Some of the many legacy
interfaces in the kernel. Modern appli-
cations and libraries use 32-bit user and
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group IDs and vm86 support is used to run
16-bit code for emulators like DOSEMU
and Wine and for some video drivers used
by X.

• ethtool, tcpdiag, igmp, rtnetlink: One of
the most complicated parts of the kernel is
the networking layer, which has grown a
variety of APIs to gain access to its many
features. But for most users, the interfaces
used by the classicifconfig(8) and
route(8) tools are sufficient.

4.3 4K stacks

During the 2.1 kernel series (circa 1998), the
x86 kernel increased the size of the per-task
kernel stacks from 4K to 8K to work around
issues with stack depth. In addition to the ob-
vious increase in overhead for every userspace
process, several new kernel daemons have been
added, all with their own stacks. Another is-
sue is that finding pairs of contiguous pages
to build an 8K stack can be very difficult on a
machine with memory pressure and especially
so on machines with a small number of total
pages.

Many of the problems that made 4K stacks
problematic have since been addressed and 4K
stacks are now practical for most applications.
Linux-tiny has served as an early testbed for
reintroducing 4K stack support to the mainline
2.6 kernel and includes a developer tool called
checkstack that will automatically disas-
semble a kernel to find the most extreme stack
space users.

4.4 The SLOB allocator

Most memory in the kernel is managed ei-
ther directly or indirectly through the SLAB
allocator. SLAB maintains separate caches
for objects of given sizes and types and can
very quickly manage allocations for them. In

some cases, it can even arrange for objects to
be pre-initialized without any additional over-
head. SLAB also has some resistance to trou-
blesome memory fragmentation issues. While
simple in principle, the SLAB code ends up be-
ing quite complex from its efforts to squeeze
the maximum possible performance out of the
allocator.

The primary downside to SLAB is that because
it maintains a collection of independent caches
which are all one or more pages, it ends up
leaving quite a bit of unused space in each
SLAB cache. In addition, askmalloc is im-
plemented on top of SLAB using a set of preset
object size SLABs, there is quite a bit of ex-
tra space allocated for the averagekmalloc
call. Measurements with the previously de-
scribed/proc/kmalloc tool report that ex-
tra overhead can amount to 25-30% of the total
memory allocated bykmalloc .

Linux-tiny provides an optional replacement
for SLAB that I’ve dubbedSLOB(simple list
of blocks). SLOB trades performance for space
efficiency by implementing a more traditional
list-based allocator that also understands re-
quests for objects with particular alignments.
The APIs used by SLAB andkmalloc() are
provided by a small emulation layer.

SLOB manages all objects at a granularity of 8
bytes so overhead for odd object sizes is min-
imized. It also does away with the numer-
ous partly-used caches of the SLOB approach.
Finally, the SLOB code is much simpler and
takes up less than one tenth of the space of the
standard SLAB allocator.

4.5 TinyVT

As you can see from Table 1, the largest single
function in the default kernel isvt_ioctl() ,
which manages many of the special features
of the Linux console. As most early Linux
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users didn’t have the memory for running a
full-fledged X desktop, the native Linux text
console is very powerful, with support for
scrollback, selection, virtual console switch-
ing, Unicode translation and character sets,
screen blanking, and so on.

These features can be very handy for some
users, but on a palmtop or kiosk running a
GUI, or for a minimal rescue disk, they’re
dead weight. Linux-tiny includes a heavily
trimmed down replacement for the standard
console code which drops many of these fea-
tures and can trim a couple percent off the size
of the kernel image.

5 Results

Recent releases of Linux-tiny contain the
above options and numerous others. My test
configuration, with support for a text console,
IDE disks, the Ext2 filesystem, TCP/IP, and a
PCI-based network card results in a 363K com-
pressed kernel image. Other users of Linux-
tiny have reported kernel configurations result-
ing in images as small as 191K.

Booting the test configuration withmem=2M,
which gives a total of of 1664K after account-
ing for BIOS memory holes, still leaves ample
room for a lightweight userspace (see Table 6).
A similarly configured mainline kernel without
the -tiny patches compiles to a kernel image
of over 500K and has difficulty booting with
mem=4M.

For comparison, the earliest Linux distribution
kernel I’ve been able to locate, a 0.99pl15 ker-
nel from Slackware 1.1.2 circa 1994, is a mere
301K. Modernhighly-modularized 2.6
kernels from Fedora Core 2 and SuSE 9.1
weigh in at 1.2M and 1.5M respectively while
the default 2.6.5 kernel config builds a 1.9M
compressed kernel.

6 Further directions

There are many further avenues to pursue and
subsystems to trim. Some of the more aggres-
sive ideas on the to-do list include:

• A lightweight replacement network stack:
Minimal TCP stacks like uIP [2] have suf-
ficient functionality for simple network
applications and have extremely small
footprints.

• Replacements for fixed-sized hash tables:
Existing kernel hash tables have difficulty
scaling with workloads and memory sizes.
Other approaches like radix trees might
be better in some areas and avoid wasted
memory when the indexes are empty.

• Support for bunzip2: Linux-tiny now has
a simplified interface to the boot-time de-
compressor and allows for replacements
to be easily dropped in. While bzip2 com-
pression won’t save any memory at run-
time, it will save valuable storage space
on embedded systems.

• Pageable kernel memory: Following an
approach similar to the__init approach
in current kernels, it should be possible
to mark specific functions and data in the
kernel core as pageable, provided they
meet some specific requirements.

• Tracking kernel growth: Using automated
tools to track the size of kernel functions
and subsystems from release to release
will help catch new bloat when it appears.

Of course, as most of the bloat in the kernel has
been introduced in small increments, most of
the improvements will be of the same variety.
Contributions are encouraged!
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1560 get_current (1294 in *.c)
calls:
callers: <other>(336) capable(122) unlock_kernel(44) lock_kernel(33)
flush_tlb_page(11) flush_tlb_mm(10) find_process_by_pid(6)
flush_tlb_range(4) current_is_kswapd(4) current_is_pdflush(3)
rwsem_down_failed_common(2) on_sig_stack(2) do_mmap2(2) __exit_mm(2)
walk_init_root(1) scm_check_creds(1) save_i387_fsave(1)
sas_ss_flags(1) restore_i387_fsave(1) read_zero_pagealigned(1)
handle_group_stop(1) get_close_on_exec(1) fork_traceflag(1)
ext2_init_acl(1) exec_permission_lite(1) dup_mmap(1) do_tty_write(1)
de_thread(1) copy_signal(1) copy_sighand(1) copy_fs(1) check_sticky(1)
cap_set_all(1) cap_emulate_setxuid(1) arch_get_unmapped_area(1)

546 current_thread_info (286 in *.c)
calls:
callers: <other>(207) copy_to_user(95) copy_from_user(86)
tcp_set_state(22) test_thread_flag(20) verify_area(13)
tcp_enter_memory_pressure(6) sock_orphan(3) icmp_xmit_lock(2)
csum_and_copy_to_user(2) tcp_v4_lookup(1) sock_graft(1)
set_thread_flag(1) neigh_update_hhs(1) ip_finish_output2(1) gfp_any(1)
fn_flush_list(1) do_getname(1) clear_thread_flag(1) alloc_buf(1)
activate_task(1)

413 atomic_dec_and_test (55 in *.c)
calls:
callers: put_page(103) kfree_skb(101) <other>(47) mntput(34)
in_dev_put(23) neigh_release(19) tcp_tw_put(18) fib_info_put(17)
sock_put(15) put_namespace(6) mmdrop(6) __put_fs_struct(4)
tcp_listen_unlock(3) ipq_put(3) finish_task_switch(2) __detach_pid(2)
task_state(1) de_thread(1)

255 tcp_sk (134 in *.c)
calls:
callers: <other>(117) tcp_reset_xmit_timer(30) tcp_set_state(22)
tcp_current_mss(13) tcp_initialize_rcv_mss(6) tcp_free_skb(6)
tcp_check_space(6) tcp_data_snd_check(5) tcp_clear_xmit_timer(5)
tcp_synq_removed(3) tcp_select_window(3) westwood_update_rttmin(2)
westwood_acked(2) tcp_synq_len(2) tcp_synq_drop(2)
tcp_ack_snd_check(2) __tcp_inherit_port(2) tcp_use_frto(1)
tcp_synq_young(1) tcp_synq_is_full(1) tcp_synq_added(1)
tcp_prequeue(1) tcp_listen_poll(1) tcp_event_ack_sent(1)
tcp_connect_init(1) tcp_acceptq_queue(1) do_pmtu_discovery(1)

Table 3: Some large inline counts and users for 2.6.5-tiny1
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Size Uses Wasted Name and definition
===== ==== ====== ================================================

56 461 16560 copy_from_user include/asm/uaccess.h
122 119 12036 skb_dequeue include/linux/skbuff.h
164 78 11088 skb_queue_purge include/linux/skbuff.h

97 141 10780 netif_wake_queue include/linux/netdevice.h
43 468 10741 copy_to_user include/asm/uaccess.h
43 461 10580 copy_from_user include/asm/uaccess.h

145 77 9500 put_page include/linux/mm.h
49 313 9048 skb_put include/linux/skbuff.h

109 101 8900 skb_queue_tail include/linux/skbuff.h
381 21 7220 sock_queue_rcv_skb include/net/sock.h

55 191 6650 init_MUTEX include/asm/semaphore.h
61 163 6642 unlock_kernel include/linux/smp_lock.h
59 165 6396 lock_kernel include/linux/smp_lock.h

127 59 6206 dev_kfree_skb_any include/linux/netdevice.h
41 289 6048 list_del include/linux/list.h
73 83 4346 dev_kfree_skb_irq include/linux/netdevice.h

131 39 4218 netif_device_attach include/linux/netdevice.h
110 44 3870 skb_queue_head include/linux/skbuff.h

84 59 3712 seq_puts include/linux/seq_file.h
57 75 2738 skb_trim include/linux/skbuff.h
45 96 2375 skb_queue_head_init include/linux/skbuff.h
41 111 2310 list_del_init include/linux/list.h

102 23 1804 __nlmsg_put include/linux/netlink.h

Table 4: Size estimates found by inline_hunter
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# cat /proc/kmalloc
total bytes allocated: 266848
slack bytes allocated: 37774
net bytes allocated: 145568
number of allocs: 732
number of frees: 282
number of callers: 71
lost callers: 0
lost allocs: 0
unknown frees: 0

total slack net alloc/free caller
256 203 256 8/0 alloc_vfsmnt+0x73

8192 3648 4096 2/1 atkbd_connect+0x1b
192 48 64 3/2 seq_open+0x10

12288 0 4096 3/2 seq_read+0x53
8192 0 0 2/2 alloc_skb+0x3b

960 0 0 10/10 load_elf_interp+0xa1
1920 288 0 10/10 load_elf_binary+0x100

320 130 0 10/10 load_elf_binary+0x1d8
192 48 96 6/3 request_irq+0x22

7200 1254 7200 75/0 proc_create+0x74
64 43 64 2/0 proc_symlink+0x40

4096 984 0 1/1 check_partition+0x1b
69632 0 45056 17/6 dup_task_struct+0x38

128 48 128 2/0 netlink_create+0x84
128 20 128 1/0 ext2_fill_super+0x2f

32 28 32 1/0 ext2_fill_super+0x385
32 31 32 1/0 ext2_fill_super+0x3b6

608 76 384 19/7 __request_region+0x18
64 32 64 2/0 rand_initialize_disk+0xd

8192 2016 8192 2/0 alloc_tty_struct+0x10
128 56 128 2/0 init_dev+0xba
128 56 128 2/0 init_dev+0xf3
128 0 128 2/0 create_workqueue+0x28

8960 1680 8960 70/0 tty_add_class_device+0x20
2048 960 2048 4/0 alloc_tty_driver+0x10
9280 2332 9280 4/0 tty_register_driver+0x2d

288 0 288 9/0 mempool_create+0x16
1280 196 1280 9/0 mempool_create+0x41
1536 384 1536 8/0 mempool_create+0x8f

64 28 64 1/0 kbd_connect+0x3e
928 348 0 29/29 kmem_cache_create+0x235

28288 1448 28288 81/0 do_tune_cpucache+0x2c
...

Table 5: Tracking usage of kmalloc/kfree in -tiny
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Uncompressing Linux... Ok, booting the kernel.
# mount /proc
# cat /proc/meminfo
MemTotal: 980 kB
MemFree: 312 kB
Buffers: 32 kB
Cached: 296 kB
SwapCached: 0 kB
Active: 400 kB
Inactive: 48 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 980 kB
LowFree: 312 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
Mapped: 380 kB
Slab: 0 kB
Committed_AS: 132 kB
PageTables: 24 kB
VmallocTotal: 1032172 kB
VmallocUsed: 0 kB
VmallocChunk: 1032172 kB
#

Table 6: Boot log for a 2.6.5-tiny1 test configuration with mem=2m
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Abstract

Virtual machine (VM) technology has been
around for 40 years and has been experiencing
a resurgence with commodity machines. VMs
have been shown to improve system and net-
work flexibility, availability, and security in a
variety of novel ways. This paper introduces
Xen, an efficient secure open source VM mon-
itor, to the Linux community.

Key features of Xen are:

1. supports different OSes (e.g. Linux 2.4,
2.6, NetBSD, FreeBSD, etc.)

2. provides secure protection between VMs

3. allows flexible partitioning of resources
between VMs (CPU, memory, network
bandwidth, disk space, and bandwidth)

4. very low overhead, even for demanding
server applications

5. support for seamless, low-latency migra-
tion of running VMs within a cluster

We discuss the interface that Xen/x86 exports
to guest operating systems, and the kernel
changes that were required to Linux to port
it to Xen. We compare Xen/Linux to User

Mode Linux as well as existing commercial
VM products.

1 Introduction

Modern computers are sufficiently powerful
to use virtualization to present the illusion of
many smaller virtual machines (VMs), each
running a separate operating system instance.
This has led to a resurgence of interest in VM
technology. In this paper we present Xen,
a high performance resource-managed virtual
machine monitor (VMM) which enables ap-
plications such as server consolidation, co-
located hosting facilities, distributed web ser-
vices, secure computing platforms, and appli-
cation mobility.

Successful partitioning of a machine to support
the concurrent execution of multiple operating
systems poses several challenges. Firstly, vir-
tual machines must be isolated from one an-
other: it is not acceptable for the execution
of one to adversely affect the performance of
another. This is particularly true when vir-
tual machines are owned by mutually untrust-
ing users. Secondly, it is necessary to support
a variety of different operating systems to ac-
commodate the heterogeneity of popular appli-
cations. Thirdly, the performance overhead in-
troduced by virtualization should be small.
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Xen hosts commodity operating systems, albeit
with some source modifications. The prototype
described and evaluated in this paper can sup-
port multiple concurrent instances of our Xen-
Linux guest operating system; each instance
exports an application binary interface identi-
cal to a non-virtualized Linux 2.6. Xen ports of
NetBSD and FreeBSD have been completed,
along with a proof of concept port of Windows
XP.1

There are a number of ways to build a sys-
tem to host multiple applications and servers
on a shared machine. Perhaps the simplest is
to deploy one or more hosts running a stan-
dard operating system such as Linux or Win-
dows, and then to allow users to install files and
start processes—protection between applica-
tions being provided by conventional OS tech-
niques. Experience shows that system adminis-
tration can quickly become a time-consuming
task due to complex configuration interactions
between supposedly disjoint applications.

More importantly, such systems do not ad-
equately support performance isolation; the
scheduling priority, memory demand, network
traffic and disk accesses of one process impact
the performance of others. This may be ac-
ceptable when there is adequate provisioning
and a closed user group (such as in the case of
computational grids, or the experimental Plan-
etLab platform [11]), but not when resources
are oversubscribed, or users uncooperative.

One way to address this problem is to retrofit
support for performance isolation to the op-
erating system, but a difficulty with such ap-
proaches is ensuring thatall resource usage is
accounted to the correct process—consider, for
example, the complex interactions between ap-
plications due to buffer cache or page replace-

1The Windows XP port required access to Microsoft
source code, and hence distribution is currently re-
stricted, even in binary form.

ment algorithms. Performing multiplexing at a
low level can mitigate this problem; uninten-
tional or undesired interactions between tasks
are minimized. Xen multiplexes physical re-
sources at the granularity of an entire operat-
ing system and is able to provide performance
isolation between them. This allows a range
of guest operating systems to gracefully coex-
ist rather than mandating a specific application
binary interface. There is a price to pay for this
flexibility—running a full OS is more heavy-
weight than running a process, both in terms of
initialization (e.g. booting or resuming an OS
instance versusfork /exec ), and in terms of
resource consumption.

For our target of 10-100 hosted OS instances,
we believe this price is worth paying: It allows
individual users to run unmodified binaries, or
collections of binaries, in a resource controlled
fashion (for instance an Apache server along
with a PostgreSQL backend). Furthermore it
provides an extremely high level of flexibility
since the user can dynamically create the pre-
cise execution environment their software re-
quires. Unfortunate configuration interactions
between various services and applications are
avoided (for example, each Windows instance
maintains its own registry).

Experience with deployed Xen systems sug-
gests that the initialization overheads and ad-
ditional resource requirements are in practice
quite low: An operating system image may be
resumed from an on-disk snapshot in typically
just over a second (depending on image mem-
ory size), and although multiple copies of the
operating system code and data are stored in
memory, the memory requirements are typi-
cally small compared to those of the applica-
tions that will run on them. As we shall show
later in the paper, the performance overhead of
the virtualization provided by Xen is low, typ-
ically just a few percent, even for the most de-
manding applications.
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2 XEN: Approach & Overview

In a traditional VMM the virtual hardware ex-
posed is functionally identical to the underly-
ing machine [14]. Althoughfull virtualization
has the obvious benefit of allowing unmodified
operating systems to be hosted, it also has a
number of drawbacks. This is particularly true
for the prevalent Intelx86architecture.

Support for full virtualization was never part
of the x86 architectural design. Certain su-
pervisor instructions must be handled by the
VMM for correct virtualization, but executing
these with insufficient privilege fails silently
rather than causing a convenient trap [13]. Effi-
ciently virtualizing the x86 MMU is also diffi-
cult. These problems can be solved, but only at
the cost of increased complexity and reduced
performance. VMware’s ESX Server [3] dy-
namically rewrites portions of the hosted ma-
chine code to insert traps wherever VMM in-
tervention might be required. This translation
is applied to the entire guest OS kernel (with
associated translation, execution, and caching
costs) since all non-trapping privileged instruc-
tions must be caught and handled. ESX Server
implements shadow versions of system struc-
tures such as page tables and maintains consis-
tency with the virtual tables by trapping every
update attempt—this approach has a high cost
for update-intensive operations such as creat-
ing a new application process.

Notwithstanding the intricacies of the x86,
there are other arguments against full virtual-
ization. In particular, there are situations in
which it is desirable for the hosted operating
systems to see real as well as virtual resources:
providing both real and virtual time allows a
guest OS to better support time-sensitive tasks,
and to correctly handle TCP timeouts and RTT
estimates, while exposing real machine ad-
dresses allows a guest OS to improve perfor-
mance by using superpages [10] or page color-

ing [7].

We avoid the drawbacks of full virtualization
by presenting a virtual machine abstraction
that is similar but not identical to the under-
lying hardware—an approach which has been
dubbedparavirtualization[17]. This promises
improved performance, although it does re-
quire modifications to the guest operating sys-
tem. It is important to note, however, that we
do not require changes to the application bi-
nary interface (ABI), and hence no modifica-
tions are required to guestapplications.

We distill the discussion so far into a set of de-
sign principles:

1. Support for unmodified application bina-
ries is essential, or users will not transi-
tion to Xen. Hence we must virtualize all
architectural features required by existing
standard ABIs.

2. Supporting full multi-application operat-
ing systems is important, as this allows
complex server configurations to be virtu-
alized within a single guest OS instance.

3. Paravirtualization is necessary to obtain
high performance and strong resource iso-
lation on uncooperative machine architec-
tures such as x86.

4. Even on cooperative machine architec-
tures, completely hiding the effects of
resource virtualization from guest OSes
risks both correctness and performance.

In the following section we describe the virtual
machine abstraction exported by Xen and dis-
cuss how a guest OS must be modified to con-
form to this. Note that in this paper we reserve
the termguest operating systemto refer to one
of the OSes that Xen can host and we use the
term domainto refer to a running virtual ma-
chine within which a guest OS executes; the
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distinction is analogous to that between apro-
gram and aprocessin a conventional system.
We call Xen itself thehypervisorsince it oper-
ates at a higher privilege level than the super-
visor code of the guest operating systems that
it hosts.

2.1 The Virtual Machine Interface

The paravirtualized x86 interface can be fac-
tored into three broad aspects of the system:
memory management, the CPU, and device
I/O. In the following we address each machine
subsystem in turn, and discuss how each is pre-
sented in our paravirtualized architecture. Note
that although certain parts of our implemen-
tation, such as memory management, are spe-
cific to the x86, many aspects (such as our vir-
tual CPU and I/O devices) can be readily ap-
plied to other machine architectures. Further-
more, x86 represents aworst casein the areas
where it differs significantly from RISC-style
processors—for example, efficiently virtualiz-
ing hardware page tables is more difficult than
virtualizing a software-managed TLB.

2.1.1 Memory management

Virtualizing memory is undoubtedly the most
difficult part of paravirtualizing an architec-
ture, both in terms of the mechanisms re-
quired in the hypervisor and modifications re-
quired to port each guest OS. The task is
easier if the architecture provides a software-
managed TLB as these can be efficiently vir-
tualized in a simple manner [5]. A tagged
TLB is another useful feature supported by
most server-class RISC architectures, includ-
ing Alpha, MIPS and SPARC. Associating an
address-space identifier tag with each TLB en-
try allows the hypervisor and each guest OS
to efficiently coexist in separate address spaces
because there is no need to flush the entire TLB

when transferring execution.

Unfortunately, x86 does not have a software-
managed TLB; instead TLB misses are ser-
viced automatically by the processor by walk-
ing the page table structure in hardware. Thus
to achieve the best possible performance, all
valid page translations for the current ad-
dress space should be present in the hardware-
accessible page table. Moreover, because the
TLB is not tagged, address space switches typ-
ically require a complete TLB flush. Given
these limitations, we made two decisions: (i)
guest OSes are responsible for allocating and
managing the hardware page tables, with mini-
mal involvement from Xen to ensure safety and
isolation; and (ii) Xen exists in a 64MB section
at the top of every address space, thus avoiding
a TLB flush when entering and leaving the hy-
pervisor.

Each time a guest OS requires a new page
table, perhaps because a new process is be-
ing created, it allocates and initializes a page
from its own memory reservation and regis-
ters it with Xen. At this point the OS must
relinquish direct write privileges to the page-
table memory: all subsequent updates must be
validated by Xen. This restricts updates in a
number of ways, including only allowing an
OS to map pages that it owns, and disallow-
ing writable mappings of page tables. Guest
OSes maybatch update requests to amortize
the overhead of entering the hypervisor. The
top 64MB region of each address space, which
is reserved for Xen, is not accessible or remap-
pable by guest OSes. This address region is
not used by any of the common x86 ABIs how-
ever, so this restriction does not break applica-
tion compatibility.

Segmentation is virtualized in a similar way,
by validating updates to hardware segment de-
scriptor tables. The only restrictions on x86
segment descriptors are: (i) they must have
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lower privilege than Xen, and (ii) they may not
allow any access to the Xen-reserved portion
of the address space.

2.1.2 CPU

Virtualizing the CPU has several implications
for guest OSes. Principally, the insertion of a
hypervisor below the operating system violates
the usual assumption that the OS is the most
privileged entity in the system. In order to pro-
tect the hypervisor from OS misbehavior (and
domains from one another) guest OSes must be
modified to run at a lower privilege level.

Efficient virtualizion of privilege levels is pos-
sible on x86 because it supports four distinct
privilege levels in hardware. The x86 privi-
lege levels are generally described asrings, and
are numbered from zero (most privileged) to
three (least privileged). OS code typically exe-
cutes in ring 0 because no other ring can ex-
ecute privileged instructions, while ring 3 is
generally used for application code. To our
knowledge, rings 1 and 2 have not been used
by any well-known x86 OS since OS/2. Any
OS which follows this common arrangement
can be ported to Xen by modifying it to exe-
cute in ring 1. This prevents the guest OS from
directly executing privileged instructions, yet it
remains safely isolated from applications run-
ning in ring 3.

Privileged instructions are paravirtualized by
requiring them to be validated and executed
within Xen—this applies to operations such
as installing a new page table, or yielding the
processor when idle (rather than attempting to
hlt it). Any guest OS attempt to directly ex-
ecute a privileged instruction is failed by the
processor, either silently or by taking a fault,
since only Xen executes at a sufficiently privi-
leged level.

Exceptions, including memory faults and soft-
ware traps, are virtualized on x86 very straight-
forwardly. A table describing the handler for
each type of exception is registered with Xen
for validation. The handlers specified in this
table are generally identical to those for real
x86 hardware; this is possible because the ex-
ception stack frames are unmodified in our par-
avirtualized architecture. The sole modifica-
tion is to the page fault handler, which would
normally read the faulting address from a priv-
ileged processor register (CR2); since this is
not possible, we write it into an extended stack
frame2. When an exception occurs while exe-
cuting outside ring 0, Xen’s handler creates a
copy of the exception stack frame on the guest
OS stack and returns control to the appropriate
registered handler.

Typically only two types of exception oc-
cur frequently enough to affect system perfor-
mance: system calls (which are usually im-
plemented via a software exception), and page
faults. We improve the performance of sys-
tem calls by allowing each guest OS to reg-
ister a ‘fast’ exception handler which is ac-
cessed directly by the processor without indi-
recting via ring 0; this handler is validated be-
fore installing it in the hardware exception ta-
ble. Unfortunately it is not possible to apply
the same technique to the page fault handler
because only code executing in ring 0 can read
the faulting address from registerCR2; page
faults must therefore always be delivered via
Xen so that this register value can be saved for
access in ring 1.

Safety is ensured by validating exception han-
dlers when they are presented to Xen. The
only required check is that the handler’s code
segment does not specify execution in ring 0.
Since no guest OS can create such a segment,

2In hindsight, writing the value into a pre-agreed
shared memory location rather than modifying the
stack frame would have simplified the XP port.



336 • Linux Symposium

it suffices to compare the specified segment se-
lector to a small number of static values which
are reserved by Xen. Apart from this, any other
handler problems are fixed up during excep-
tion propagation—for example, if the handler’s
code segment is not present or if the handler
is not paged into memory then an appropri-
ate fault will be taken when Xen executes the
iret instruction which returns to the handler.
Xen detects these “double faults” by checking
the faulting program counter value: if the ad-
dress resides within the exception-virtualizing
code then the offending guest OS is terminated.

Note that this “lazy” checking is safe even for
the direct system-call handler: access faults
will occur when the CPU attempts to directly
jump to the guest OS handler. In this case the
faulting address will be outside Xen (since Xen
will never execute a guest OS system call) and
so the fault is virtualized in the normal way. If
propagation of the fault causes a further “dou-
ble fault” then the guest OS is terminated as
described above.

2.1.3 Device I/O

Rather than emulating existing hardware de-
vices, as is typically done in fully-virtualized
environments, Xen exposes a set of clean and
simple device abstractions. This allows us to
design an interface that is both efficient and sat-
isfies our requirements for protection and iso-
lation. To this end, I/O data is transferred to
and from each domain via Xen, using shared-
memory, asynchronous buffer-descriptor rings.
These provide a high-performance communi-
cation mechanism for passing buffer informa-
tion vertically through the system, while al-
lowing Xen to efficiently perform validation
checks (for example, checking that buffers are
contained within a domain’s memory reserva-
tion).

Linux subsection # lines
Architecture-independent 78
Virtual network driver 484
Virtual block-device driver 1070
Xen-specific (non-driver) 1363
Total 2995
Portion of total x86 code base 1.36%

Table 1: The simplicity of porting commodity
OSes to Xen.

Similar to hardware interrupts, Xen supports
a lightweight event-delivery mechanism which
is used for sending asynchronous notifications
to a domain. These notifications are made by
updating a bitmap of pending event types and,
optionally, by calling an event handler speci-
fied by the guest OS. These callbacks can be
‘held off’ at the discretion of the guest OS—to
avoid extra costs incurred by frequent wake-up
notifications, for example.

2.2 The Cost of Porting an OS to Xen

Table 1 demonstrates the cost, in lines of code,
of porting commodity operating systems to
Xen’s paravirtualized x86 environment.

The architecture-specific sections are effec-
tively a port of the x86 code to our paravirtual-
ized architecture. This involved rewriting rou-
tines which used privileged instructions, and
removing a large amount of low-level system
initialization code.

2.3 Control and Management

Throughout the design and implementation of
Xen, a goal has been to separate policy from
mechanism wherever possible. Although the
hypervisor must be involved in data-path as-
pects (for example, scheduling the CPU be-
tween domains, filtering network packets be-
fore transmission, or enforcing access control
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Figure 1: The structure of a machine running
the Xen hypervisor, hosting a number of dif-
ferent guest operating systems, includingDo-
main0running control software in a XenLinux
environment.

when reading data blocks), there is no need for
it to be involved in, or even aware of, higher
level issues such as how the CPU is to be
shared, or which kinds of packet each domain
may transmit.

The resulting architecture is one in which the
hypervisor itself provides only basic control
operations. These are exported through an
interface accessible from authorized domains;
potentially complex policy decisions, such as
admission control, are best performed by man-
agement software running over a guest OS
rather than in privileged hypervisor code.

The overall system structure is illustrated in
Figure 1. Note that a domain is created at boot
time which is permitted to use thecontrol in-
terface. This initial domain, termedDomain0,
is responsible for hosting the application-level
management software. The control interface
provides the ability to create and terminate
other domains and to control their associated
scheduling parameters, physical memory allo-
cations and the access they are given to the ma-
chine’s physical disks and network devices.

In addition to processor and memory resources,
the control interface supports the creation and

deletion of virtual network interfaces (VIFs)
and block devices (VBDs). These virtual I/O
devices have associated access-control infor-
mation which determines which domains can
access them, and with what restrictions (for ex-
ample, a read-only VBD may be created, or
a VIF may filter IP packets to prevent source-
address spoofing or apply traffic shaping).

This control interface, together with profil-
ing statistics on the current state of the sys-
tem, is exported to a suite of application-
level management software running inDo-
main0. This complement of administrative
tools allows convenient management of the en-
tire server: current tools can create and destroy
domains, set network filters and routing rules,
monitor per-domain network activity at packet
and flow granularity, and create and delete vir-
tual network interfaces and virtual block de-
vices.

Snapshots of a domains’ state may be captured
and saved to disk, enabling rapid deployment
of applications by bypassing the normal boot
delay. Further, Xen supportslive migration
which enables running VMs to be moved dy-
namically between different Xen servers, with
execution interrupted only for a few millisec-
onds. We are in the process of developing
higher-level tools to further automate the ap-
plication of administrative policy, for example,
load balancing VMs among a cluster of Xen
servers.

3 Detailed Design

In this section we introduce the design of the
major subsystems that make up a Xen-based
server. In each case we present both Xen and
guest OS functionality for clarity of exposition.
In this paper, we focus on the XenLinux guest
OS; the *BSD and Windows XP ports use the
Xen interface in a similar manner.
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3.1 Control Transfer: Hypercalls and Events

Two mechanisms exist for control interactions
between Xen and an overlying domain: syn-
chronous calls from a domain to Xen may be
made using ahypercall, while notifications are
delivered to domains from Xen using an asyn-
chronous event mechanism.

The hypercall interface allows domains to per-
form a synchronous software trap into the
hypervisor to perform a privileged operation,
analogous to the use of system calls in conven-
tional operating systems. An example use of a
hypercall is to request a set of page-table up-
dates, in which Xen validates and applies a list
of updates, returning control to the calling do-
main when this is completed.

Communication from Xen to a domain is pro-
vided through an asynchronous event mech-
anism, which replaces the usual delivery
mechanisms for device interrupts and allows
lightweight notification of important events
such as domain-termination requests. Akin to
traditional Unix signals, there are only a small
number of events, each acting to flag a partic-
ular type of occurrence. For instance, events
are used to indicate that new data has been re-
ceived over the network, or that a virtual disk
request has completed.

Pending events are stored in a per-domain bit-
mask which is updated by Xen before invok-
ing an event-callback handler specified by the
guest OS. The callback handler is responsible
for resetting the set of pending events, and re-
sponding to the notifications in an appropriate
manner. A domain may explicitly defer event
handling by setting a Xen-readable software
flag: this is analogous to disabling interrupts
on a real processor.

Figure 2: The structure of asynchronous I/O
rings, which are used for data transfer between
Xen and guest OSes.

3.2 Data Transfer: I/O Rings

The presence of a hypervisor means there is
an additional protection domain between guest
OSes and I/O devices, so it is crucial that a
data transfer mechanism be provided that al-
lows data to move vertically through the sys-
tem with as little overhead as possible.

Two main factors have shaped the design of
our I/O-transfer mechanism: resource manage-
ment and event notification. For resource ac-
countability, we attempt to minimize the work
required to demultiplex data to a specific do-
main when an interrupt is received from a
device—the overhead of managing buffers is
carried out later where computation may be ac-
counted to the appropriate domain. Similarly,
memory committed to device I/O is provided
by the relevant domains wherever possible to
prevent the crosstalk inherent in shared buffer
pools; I/O buffers are protected during data
transfer by pinning the underlying page frames
within Xen.

Figure 2 shows the structure of our I/O descrip-
tor rings. A ring is a circular queue of descrip-
tors allocated by a domain but accessible from
within Xen. Descriptors do not directly con-
tain I/O data; instead, I/O data buffers are al-
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located out-of-band by the guest OS and in-
directly referenced by I/O descriptors. Ac-
cess to each ring is based around two pairs
of producer-consumer pointers: domains place
requests on a ring, advancing a request pro-
ducer pointer, and Xen removes these requests
for handling, advancing an associated request
consumer pointer. Responses are placed back
on the ring similarly, save with Xen as the pro-
ducer and the guest OS as the consumer. There
is no requirement that requests be processed in
order: the guest OS associates a unique identi-
fier with each request which is reproduced in
the associated response. This allows Xen to
unambiguously reorder I/O operations due to
scheduling or priority considerations.

This structure is sufficiently generic to support
a number of different device paradigms. For
example, a set of ‘requests’ can provide buffers
for network packet reception; subsequent ‘re-
sponses’ then signal the arrival of packets into
these buffers. Reordering is useful when deal-
ing with disk requests as it allows them to
be scheduled within Xen for efficiency, and
the use of descriptors with out-of-band buffers
makes implementing zero-copy transfer easy.

We decouple the production of requests or re-
sponses from the notification of the other party:
in the case of requests, a domain may enqueue
multiple entries before invoking a hypercall to
alert Xen; in the case of responses, a domain
can defer delivery of a notification event by
specifying a threshold number of responses.
This allows each domain to trade-off latency
and throughput requirements, similarly to the
flow-aware interrupt dispatch in the ArseNIC
Gigabit Ethernet interface [12].

3.3 Subsystem Virtualization

The control and data transfer mechanisms de-
scribed are used in our virtualization of the var-
ious subsystems. In the following, we discuss

how this virtualization is achieved for CPU,
timers, memory, network and disk.

3.3.1 CPU scheduling

Xen currently schedules domains according to
the Borrowed Virtual Time (BVT) scheduling
algorithm [4]. We chose this particular algo-
rithms since it is both work-conserving and has
a special mechanism for low-latency wake-up
(or dispatch) of a domain when it receives an
event. Fast dispatch is particularly important
to minimize the effect of virtualization on OS
subsystems that are designed to run in a timely
fashion; for example, TCP relies on the timely
delivery of acknowledgments to correctly es-
timate network round-trip times. BVT pro-
vides low-latency dispatch by using virtual-
time warping, a mechanism which temporarily
violates ‘ideal’ fair sharing to favor recently-
woken domains. However, other scheduling al-
gorithms could be trivially implemented over
our generic scheduler abstraction. Per-domain
scheduling parameters can be adjusted by man-
agement software running inDomain0.

3.3.2 Time and timers

Xen provides guest OSes with notions of real
time, virtual time and wall-clock time. Real
time is expressed in nanoseconds passed since
machine boot and is maintained to the accu-
racy of the processor’s cycle counter and can
be frequency-locked to an external time source
(for example, via NTP). A domain’s virtual
time only advances while it is executing: this
is typically used by the guest OS scheduler to
ensure correct sharing of its timeslice between
application processes. Finally, wall-clock time
is specified as an offset to be added to the cur-
rent real time. This allows the wall-clock time
to be adjusted without affecting the forward
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progress of real time.

Each guest OS can program a pair of alarm
timers, one for real time and the other for vir-
tual time. Guest OSes are expected to main-
tain internal timer queues and use the Xen-
provided alarm timers to trigger the earliest
timeout. Timeouts are delivered using Xen’s
event mechanism.

3.3.3 Virtual address translation

As with other subsystems, Xen attempts to vir-
tualize memory access with as little overhead
as possible. As discussed in Section 2.1.1,
this goal is made somewhat more difficult by
the x86 architecture’s use of hardware page ta-
bles. The approach taken by VMware is to pro-
vide each guest OS with a virtual page table,
not visible to the memory-management unit
(MMU) [3]. The hypervisor is then responsible
for trapping accesses to the virtual page table,
validating updates, and propagating changes
back and forth between it and the MMU-visible
‘shadow’ page table. This greatly increases
the cost of certain guest OS operations, such
as creating new virtual address spaces, and
requires explicit propagation of hardware up-
dates to ‘accessed’ and ‘dirty’ bits.

Although full virtualization forces the use of
shadow page tables, to give the illusion of con-
tiguous physical memory, Xen is not so con-
strained. Indeed, Xen need only be involved in
page tableupdates, to prevent guest OSes from
making unacceptable changes. Thus we avoid
the overhead and additional complexity asso-
ciated with the use of shadow page tables—the
approach in Xen is to register guest OS page ta-
bles directly with the MMU, and restrict guest
OSes to read-only access. Page table updates
are passed to Xen via a hypercall; to ensure
safety, requests arevalidatedbefore being ap-
plied.

To aid validation, we associate a type and ref-
erence count with each machine page frame.
A frame may have any one of the following
mutually-exclusive types at any point in time:
page directory (PD), page table (PT), local de-
scriptor table (LDT), global descriptor table
(GDT), or writable (RW). Note that a guest
OS may always create readable mappings to
its own page frames, regardless of their current
types. A frame may only safely be retasked
when its reference count is zero. This mecha-
nism is used to maintain the invariants required
for safety; for example, a domain cannot have
a writable mapping to any part of a page table
as this would require the frame concerned to
simultaneously be of types PT and RW.

The type system is also used to track which
frames have already been validated for use in
page tables. To this end, guest OSes indicate
when a frame is allocated for page-table use—
this requires a one-off validation of every en-
try in the frame by Xen, after which its type
is pinned to PD or PT as appropriate, until a
subsequent unpin request from the guest OS.
This is particularly useful when changing the
page table base pointer, as it obviates the need
to validate the new page table on every context
switch. Note that a frame cannot be retasked
until it is both unpinned and its reference count
has reduced to zero – this prevents guest OSes
from using unpin requests to circumvent the
reference-counting mechanism.

3.3.4 Physical memory

The initial memory allocation, orreservation,
for each domain is specified at the time of
its creation; memory is thus statically parti-
tioned between domains, providing strong iso-
lation. A maximum-allowable reservation may
also be specified: if memory pressure within
a domain increases, it may then attempt to
claim additional memory pages from Xen, up
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to this reservation limit. Conversely, if a
domain wishes to save resources, perhaps to
avoid incurring unnecessary costs, it can re-
duce its memory reservation by releasing mem-
ory pages back to Xen.

XenLinux implements aballoon driver [16],
which adjusts a domain’s memory usage by
passing memory pages back and forth be-
tween Xen and XenLinux’s page allocator.
Although we could modify Linux’s memory-
management routines directly, the balloon
driver makes adjustments by using existing
OS functions, thus simplifying the Linux port-
ing effort. However, paravirtualization can be
used to extend the capabilities of the balloon
driver; for example, the out-of-memory han-
dling mechanism in the guest OS can be mod-
ified to automatically alleviate memory pres-
sure by requesting more memory from Xen.

Most operating systems assume that memory
comprises at most a few large contiguous ex-
tents. Because Xen does not guarantee to al-
locate contiguous regions of memory, guest
OSes will typically create for themselves the
illusion of contiguousphysical memory, even
though their underlying allocation ofhardware
memoryis sparse. Mapping from physical to
hardware addresses is entirely the responsibil-
ity of the guest OS, which can simply main-
tain an array indexed by physical page frame
number. Xen supports efficient hardware-to-
physical mapping by providing a shared trans-
lation array that is directly readable by all do-
mains – updates to this array are validated by
Xen to ensure that the OS concerned owns the
relevant hardware page frames.

Note that even if a guest OS chooses to ig-
nore hardware addresses in most cases, it must
use the translation tables when accessing its
page tables (which necessarily use hardware
addresses). Hardware addresses may also be
exposed to limited parts of the OS’s memory-

management system to optimize memory ac-
cess. For example, a guest OS might allo-
cate particular hardware pages so as to opti-
mize placement within a physically indexed
cache [7], or map naturally aligned contigu-
ous portions of hardware memory using super-
pages [10].

3.3.5 Network

Xen provides the abstraction of a virtual
firewall-router (VFR), where each domain has
one or more network interfaces (VIFs) logi-
cally attached to the VFR. A VIF looks some-
what like a modern network interface card:
there are two I/O rings of buffer descriptors,
one for transmit and one for receive. Each di-
rection also has a list of associated rules of the
form (<pattern>, <action>)—if the pattern
matches then the associatedaction is applied.

Domain0 is responsible for inserting and re-
moving rules. In typical cases, rules will be
installed to prevent IP source address spoof-
ing, and to ensure correct demultiplexing based
on destination IP address and port. Rules may
also be associated with hardware interfaces on
the VFR. In particular, we may install rules to
perform traditional firewalling functions such
as preventing incoming connection attempts on
insecure ports.

To transmit a packet, the guest OS simply en-
queues a buffer descriptor onto the transmit
ring. Xen copies the descriptor and, to ensure
safety, then copies the packet header and ex-
ecutes any matching filter rules. The packet
payload is not copied since we use scatter-
gather DMA; however note that the relevant
page frames must be pinned until transmission
is complete. To ensure fairness, Xen imple-
ments a simple round-robin packet scheduler.

To efficiently implement packet reception, we
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require the guest OS to exchange an unused
page frame for each packet it receives; this
avoids the need to copy the packet between
Xen and the guest OS, although it requires
that page-aligned receive buffers be queued at
the network interface. When a packet is re-
ceived, Xen immediately checks the set of re-
ceive rules to determine the destination VIF,
and exchanges the packet buffer for a page
frame on the relevant receive ring. If no frame
is available, the packet is dropped.

3.3.6 Disk

Only Domain0 has direct unchecked access
to physical (IDE and SCSI) disks. All other
domains access persistent storage through the
abstraction of virtual block devices (VBDs),
which are created and configured by manage-
ment software running withinDomain0. Al-
lowing Domain0 to manage the VBDs keeps
the mechanisms within Xen very simple and
avoids more intricate solutions such as the
UDFs used by the Exokernel [6].

A VBD comprises a list of extents with asso-
ciated ownership and access control informa-
tion, and is accessed via the I/O ring mecha-
nism. A typical guest OS disk scheduling al-
gorithm will reorder requests prior to enqueu-
ing them on the ring in an attempt to reduce
response time, and to apply differentiated ser-
vice (for example, it may choose to aggres-
sively schedule synchronous metadata requests
at the expense of speculative readahead re-
quests). However, because Xen has more com-
plete knowledge of the actual disk layout, we
also support reordering within Xen, and so re-
sponses may be returned out of order. A VBD
thus appears to the guest OS somewhat like a
SCSI disk.

A translation table is maintained within the hy-
pervisor for each VBD; the entries within this

table are installed and managed byDomain0
via a privileged control interface. On receiving
a disk request, Xen inspects the VBD identi-
fier and offset and produces the corresponding
sector address and physical device. Permission
checks also take place at this time. Zero-copy
data transfer takes place using DMA between
the disk and pinned memory pages in the re-
questing domain.

Xen servicesbatchesof requests from com-
peting domains in a simple round-robin fash-
ion; these are then passed to a standard ele-
vator scheduler before reaching the disk hard-
ware. Domains may explicitly pass downre-
order barriersto prevent reordering when this
is necessary to maintain higher level seman-
tics (e.g. when using a write-ahead log). The
low-level scheduling gives us good through-
put, while the batching of requests provides
reasonably fair access. Future work will in-
vestigate providing more predictable isolation
and differentiated service, perhaps using exist-
ing techniques and schedulers [15].

4 Evaluation

In this section we present a subset of our eval-
uation of Xen against a number of alternative
virtualization techniques. A more complete
evaluation, as well as detailed configuration
and benchmark specs, can be found in [1] For
these measurements, we used our 2.4.21-based
XenLinux port as, at the time of this writing,
the 2.6-port was not stable enough for a full
battery of tests.

There are a number of preexisting solutions
for running multiple copies of Linux on the
same machine. VMware offers several com-
mercial products that provide virtual x86 ma-
chines on which unmodified copies of Linux
may be booted. The most commonly used ver-
sion is VMware Workstation, which consists
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of a set of privileged kernel extensions to a
‘host’ operating system. Both Windows and
Linux hosts are supported. VMware also offer
an enhanced product called ESX Server which
replaces the host OS with a dedicated kernel.
By doing so, it gains some performance bene-
fit over the workstation product. We have sub-
jected ESX Server to the benchmark suites de-
scribed below, but sadly are prevented from re-
porting quantitative results due to the terms of
the product’s End User License Agreement. In-
stead we present results from VMware Work-
station 3.2, running on top of a Linux host
OS, as it is the most recent VMware product
without that benchmark publication restriction.
ESX Server takes advantage of its native archi-
tecture to equal or outperform VMware Work-
station and its hosted architecture. While Xen
of course requires guest OSes to be ported, it
takes advantage of paravirtualization to notice-
ably outperform ESX Server.

We also present results for User-mode Linux
(UML), an increasingly popular platform for
virtual hosting. UML is a port of Linux to run
as a user-space process on a Linux host. Like
XenLinux, the changes required are restricted
to the architecture dependent code base. How-
ever, the UML code bears little similarity to
the native x86 port due to the very different na-
ture of the execution environments. Although
UML can run on an unmodified Linux host, we
present results for the ‘Single Kernel Address
Space’ (skas3) variant that exploits patches to
the host OS to improve performance.

We also investigated three other virtualiza-
tion techniques for running ported versions of
Linux on the same x86 machine. Connec-
tix’s Virtual PC and forthcoming Virtual Server
products (now acquired by Microsoft) are sim-
ilar in design to VMware’s, providing full x86
virtualization. Since all versions of Virtual PC
have benchmarking restrictions in their license
agreements we did not subject them to closer

analysis. UMLinux is similar in concept to
UML but is a different code base and has yet
to achieve the same level of performance, so
we omit the results. Work to improve the per-
formance of UMLinux through host OS modi-
fications is ongoing [8]. Although Plex86 was
originally a general purpose x86 VMM, it has
now been retargeted to support just Linux guest
OSes. The guest OS must be specially com-
piled to run on Plex86, but the source changes
from native x86 are trivial. The performance of
Plex86 is currently well below the other tech-
niques.

4.1 Relative Performance

The first cluster of bars in Figure 3 repre-
sents a relatively easy scenario for the VMMs.
The SPEC CPU suite contains a series of
long-running computationally-intensive appli-
cations intended to measure the performance
of a system’s processor, memory system, and
compiler quality. The suite performs little I/O
and has little interaction with the OS. With
almost all CPU time spent executing in user-
space code, all three VMMs exhibit low over-
head.

The next set of bars show the total elapsed time
taken to build a default configuration of the
Linux 2.4.21 kernel on a local ext3 file sys-
tem with gcc 2.96. Native Linux spends about
7% of the CPU time in the OS, mainly per-
forming file I/O, scheduling and memory man-
agement. In the case of the VMMs, this ‘sys-
tem time’ is expanded to a greater or lesser de-
gree: whereas Xen incurs a mere 3% overhead,
the other VMMs experience a more significant
slowdown.

Two experiments were performed using the
PostgreSQL 7.1.3 database, exercised by
the Open Source Database Benchmark suite
(OSDB) in its default configuration. We
present results for the multi-user Information
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Figure 3: Relative performance of native Linux (L), XenLinux (X), VMware workstation 3.2 (V)
and User-Mode Linux (U).

Retrieval (IR) and On-Line Transaction Pro-
cessing (OLTP) workloads, both measured in
tuples per second. PostgreSQL places consid-
erable load on the operating system, and this is
reflected in the substantial virtualization over-
heads experienced by VMware and UML. In
particular, the OLTP benchmark requires many
synchronous disk operations, resulting in many
protection domain transitions.

The dbench program is a file system bench-
mark derived from the industry-standard ‘Net-
Bench’. It emulates the load placed on a file
server by Windows 95 clients. Here, we ex-
amine the throughput experienced by a single
client performing around 90,000 file system
operations.

SPEC WEB99 is a complex application-level
benchmark for evaluating web servers and the
systems that host them. The benchmark is
CPU-bound, and a significant proportion of the
time is spent within the guest OS kernel, per-
forming network stack processing, file system
operations, and scheduling between the many
httpd processes that Apache needs to handle

the offered load. XenLinux fares well, achiev-
ing within 1% of native Linux performance.
VMware and UML both struggle, supporting
less than a third of the number of clients of the
native Linux system.

4.2 Operating System Benchmarks

To more precisely measure the areas of over-
head within Xen and the other VMMs, we per-
formed a number of smaller experiments tar-
geting particular subsystems. We examined
the overhead of virtualization as measured by
McVoy’s lmbenchprogram [9]. The OS per-
formance subset of the lmbench suite consist
of 37 microbenchmarks.

In 24 of the 37 microbenchmarks, XenLinux
performs similarly to native Linux, tracking the
Linux kernel performance closely. In Tables 2
to 4 we show results which exhibit interest-
ing performance variations among the test sys-
tems; particularly large penalties for Xen are
shown in bold face.

In the process microbenchmarks (Table 2), Xen
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Config null
call

null
I/O

open
close

slct
TCP

sig
inst

sig
hndl

fork
proc

exec
proc

sh
proc

Linux 0.45 0.50 1.92 5.70 0.68 2.49 110 530 4k0
Xen 0.46 0.50 1.88 5.69 0.69 1.75198 768 4k8
VMW 0.73 0.83 2.99 11.1 1.02 4.63 874 2k3 10k
UML 24.7 25.1 62.8 39.9 26.0 46.0 21k 33k 58k

Table 2:lmbench : Processes - times inµs

Config 2p
0K

2p
16K

2p
64K

8p
16K

8p
64K

16p
16K

16p
64K

Linux 0.77 0.91 1.06 1.03 24.3 3.61 37.6
Xen 1.97 2.22 2.67 3.07 28.7 7.0839.4
VMW 18.1 17.6 21.3 22.4 51.6 41.7 72.2
UML 15.5 14.6 14.4 16.3 36.8 23.6 52.0

Table 3: lmbench : Context switching times
in µs

Config 0K File 10K File Mmap Prot Page
create delete create delete lat fault fault

Linux 32.1 6.08 66.0 12.5 68.0 1.06 1.42
Xen 32.5 5.86 68.2 13.6 139 1.40 2.73
VMW 35.3 9.3 85.6 21.4 620 7.53 12.4
UML 130 65.7 250 113 1k4 21.8 26.3

Table 4: lmbench : File & VM system laten-
cies inµs

exhibits slowerfork, exec, andshperformance
than native Linux. This is expected, since these
operations require large numbers of page ta-
ble updates which must all be verified by Xen.
However, the paravirtualization approach al-
lows XenLinux to batch update requests. Cre-
ating new page tables presents an ideal case:
because there is no reason to commit pending
updates sooner, XenLinux can amortize each
hypercall across 2048 updates (the maximum
size of its batch buffer). Hence each update
hypercall constructs 8MB of address space.

Table 3 shows context switch times between
different numbers of processes with different
working set sizes. Xen incurs an extra over-
head between 1µs and 3µs, as it executes a hy-
percall to change the page table base. How-
ever, context switch results for larger work-

ing set sizes (perhaps more representative of
real applications) show that the overhead is
small compared with cache effects. Unusually,
VMware Workstation is inferior to UML on
these microbenchmarks; however, this is one
area where enhancements in ESX Server are
able to reduce the overhead.

The mmap latencyand page fault latencyre-
sults shown in Table 4 are interesting since they
require two transitions into Xen per page: one
to take the hardware fault and pass the details
to the guest OS, and a second to install the up-
dated page table entry on the guest OS’s behalf.
Despite this, the overhead is relatively modest.

One small anomaly in Table 2 is that Xen-
Linux has lower signal-handling latency than
native Linux. This benchmark does not re-
quire any calls into Xen at all, and the 0.75µs
(30%) speedup is presumably due to a fortu-
itous cache alignment in XenLinux, hence un-
derlining the dangers of taking microbench-
marks too seriously.

4.3 Additional Benchmarks

We have also conducted comprehensive exper-
iments that: evaluate the overhead of virtual-
izing the network; compare the performance
of running multiple applications in their own
guest OS against running them on the same
native operating system; demonstrate perfor-
mance isolation provided by Xen; and examine
Xen’s ability to scale to its target of 100 do-
mains. All of the experiments showed promis-
ing results and details have been separately
published [1].

5 Conclusion

We have presented the Xen hypervisor which
partitions the resources of a computer between
domains running guest operating systems. Our
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paravirtualizing design places a particular em-
phasis on protection, performance and resource
management. We have also described and eval-
uated XenLinux, a fully-featured port of the
Linux kernel that runs over Xen.

Xen and the 2.4-based XenLinux are suffi-
ciently stable to be useful to a wide audi-
ence. Indeed, some web hosting providers
are already selling Xen-based virtual servers.
Sources, documentation, and a demo ISO can
be found on our project page3.

Although the 2.4-based XenLinux was the ba-
sis of our performance evaluation, a 2.6-based
port is well underway. In this port, much care is
been given to minimizing and isolating the nec-
essary changes to the Linux kernel and mea-
suring the changes against benchmark results.
As paravirtualization techniques become more
prevalent, kernel changes would ideally be part
of the main tree. We have experimented with
various source structures including a separate
architecture,a la UML, a subarchitecture, and
a CONFIG option. We eagerly solicit input and
discussion from the kernel developers to guide
our approach. We also have considered trans-
parent paravirtualization [2] techniques to al-
low a single distro image to adapt dynamically
between a VMM-based configuration and bare
metal.

As well as further guest OS ports, Xen it-
self is being ported to other architectures. An
x86_64 port is well underway, and we are keen
to see Xen ported to RISC-style architectures
(such as PPC) where virtual memory virtual-
ization will be much easier due to the software-
managed TLB.

Much new functionality has been added since
the first public availability of Xen last Octo-
ber. Of particular note are a completely re-
vamped I/O subsystem capable of directly uti-

3http://www.cl.cam.ac.uk/netos/
xen

lizing Linux driver source, suspend/resume and
live migration features, much improved con-
sole access, etc. Though final implementation,
testing, and documentation was not complete
at the deadline for this paper, we hope to de-
scribe these in more detail at the symposium
and in future publications.

As always, there are more tasks to do than there
are resources to do them. We would like to
grow Xen into the premier open source virtual-
ization solution, with breadth and features that
rival proprietary commercial products.

We enthusiastically welcome the help and con-
tributions of the Linux community.
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Abstract

Transparent Inter Process Communication
(TIPC) is a protocol specially designed for ef-
ficient intra cluster communication, leveraging
the particular conditions present within clus-
ters of loosely coupled nodes.

TIPC provides a powerful infrastructure for de-
signing distributed, site-independent, scalable,
highly- available and high-performing applica-
tions, as well as a good support for cluster, net-
work and software management functionality.
In this paper, we will discuss the motives for
developing TIPC and describe its architecture.
Then, we will present the most important fea-
tures of TIPC, such as its functional, location
transparent, addressing scheme, lightweight
reactive connections, reliable multicast, sig-
nalling link protocol, topology subscription
services and more. We will also discuss the
various design decisions that influenced the im-
plementation of these features. We conclude
by describing the current implementation sta-
tus and our planned roadmap for TIPC.

1 Introduction

For the last six years, telecom equipment ven-
dor Ericsson has been developing and deploy-
ing a tailor-made reliable communication pro-
tocol, TIPC,for their cluster-based products.
This protocol has recently undergone a sig-
nificant redesign, and is now available as a
portable source code package of about 12,500

lines of C code. The code implements a Linux
kernel driver, a design that has made it possible
to improve performance (35% faster than TCP)
and minimize code footprint.

Figure 1:Functional View of TIPC

The current version is available under a dual
BSD/GPL license from [1]. TIPC is supported
on Linux 2.4 and 2.6; and several proprietary
portations to other OS’es (OSE, True64, Vx-
Works) also exist.

TIPC offers an interesting combination of fea-
tures, some of them quite unique, to achieve
the overall goal: to make the cluster act as one
single computer from a communication view-
point, while helping applications to keep track
of and adapt to topology changes. Figure 1 il-
lustrates a functional view of TIPC.
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2 Motivation

There are no standard protocols available today
that fully satisfy the special needs of applica-
tion programs working within highly available,
dynamic cluster environments. Clusters may
grow or shrink by orders of magnitude; mem-
ber nodes may crash and restart, routers may
fail and be replaced, services may be moved
around due to load balancing considerations,
etc. All this must be possibe to handle without
significant disturbances of the service offered
by the cluster. In order to minimize the effort
by the application programmers to deal with
such situations, and to maximize the chance
that they are handled in a correct and optimal
way, the cluster internal communication ser-
vice should provide special support, helping
the applications to adapt to changes in the clus-
ter. It should also, when possible, leverage the
special conditions present within cluster envi-
ronments to present a more efficient and fault-
tolerant communication service than more gen-
eral protocols are capable of.

2.1 Existing Protocols

TCP [2] has the advantage of being ubiquitous,
proven, and wellknown by most programmers.
Its most significant shortcomings in a real-time
cluster environment are the following:

• TCP lacks any notion of functional
addressing and addressing transparency.
Mechanisms exist (DNS, CORBA Nam-
ing Service) for transparent and dynamic
lookup of the correct IP-adress of a desti-
nation, but those are in general too static
and too inefficient to be useful in a dy-
namic, real-time environment.

• Performance is not as good as it could be,
especially for intra-node communication
and for short messages in general. For

intra-node communication, other more ef-
ficient mechanisms are available, at least
on Unix, but then the location of the des-
tination process has to be assumed, and
can not be changed. It is desirable to
have a protocol working efficiently for
both intra-node and inter-node messaging,
without forcing the user to distinguish be-
tween these cases in his code.

• The heavy connection setup/shutdown
scheme of TCP is a disadvantage in a dy-
namic environment. The minimum num-
ber of packets exchanged for even the
shortest TCP transaction is nine (SYN,
SYNACK, etc.), while with TIPC this can
be reduced to two, or even to one if con-
nectionless mode is used.

• The connection-oriented nature of TCP
makes it impossible to support true mul-
ticast.

Stream Control Transmission Protocol (SCTP)
[3] is message oriented; it provides some
level of user connection supervision, message
bundling, loss-free changeover, and a few more
features that may make it more suitable than
TCP as an intra-cluster protocol. Otherwise,
it has all the drawbacks of TCP already listed
above.

Apart from these weaknesses, neither TCP
nor SCTP provide any topology informa-
tion/subscription service, something that has
proven very useful both for applications and
for management functionality operating within
cluster environments.

Both TCP and SCTP are general purpose pro-
tocols, in the sense that they can be used safely
over the Internet as well as within a closed
cluster. This virtual advantage is also their
major weakness: they require funtionality and
header space to deal with situations that will
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never happen, or only infrequently, within clus-
ters.

2.2 Assumptions

The TIPC design is based on the following
assumptions, empirically known to be valid
within most clusters.

• Most messages cross only one direct hop.

• Transfer time for most messages is short.

• Most messages are passed over intra-
cluster connections.

• Packet loss rate is normally low; retrans-
mission is infrequent.

• Available bandwidth and memory volume
is normally high.

• For all relevant bearers packets are check-
summed by hardware.

• The number of inter-communicating
nodes is relatively static and limited at
any moment in time.

• Security is a less crucial issue in closed
clusters than on the Internet.

Because of the above one can use a simple,
traffic-driven, fixed-size sliding window proto-
col located at the signalling link level, rather
than a timer-driven transport level protocol.
This in turn gives a lot of other advantages,
such as earlier release of transmission buffers,
earlier packet loss detection and retransmis-
sion, and earlier detection of node unavailabil-
ity, only to mention some. Of course, situations
with long transfer delays, high loss rates, long
messages, security issues, etc. must be dealt
with as well, but rather from the viewpoint of
being exceptions than as the general rule.

3 Five-Layer Network Topology

From a TIPC viewpoint the network is orga-
nized in a five-layer structure (Figure 2).

Figure 2:TIPC Network Topology

The top level is theTIPC network. This is
the ensemble of all computers (nodes) inter-
connected via TIPC, i.e., the domain where
any node can reach any other node by using
a TIPC network address. A TIPC network is
distringuished from other networks by itsnet-
work identity, a 32-bit value that is known by
all nodes.

The next level in the hierarchy is an entity
called zone. This “cluster of clusters” is
the maximum scope of location transparency
within a network, i.e., the domain where any
process can reach any other process by using
a functional address rather than a network ad-
dresses.

The third level is what we call thecluster. This
is a group of nodes interconnected all-to-all via
one or two TIPC links.

The fourth level is the individualsystem node,
or justnode. There may be up to 2047 system
nodes in a cluster.

The lowest level is theslave node. Slave nodes
provide the same properties regarding location
transparency and availability as system nodes,
but they don’t need full physical connectivity
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to the rest of the cluster. One link to one system
node is sufficient, although there may be more
for redundancy reasons.

All entities within a TIPC network are accessed
using a TIPC network address, a 32-bit value
subdivided into a zone, cluster, and node field.
This address is internally mapped to the ad-
dress type for the communication media actu-
ally used, e.g., an Ethernet address or an IP-
address/port number tuplet.

4 Location-Transparent
Functional Addressing

To present a cluster as one computer, the ad-
dressing scheme used must hide the physical
location of a requested service to its users. To
achieve this, TIPC provides a functional ad-
dress type, calledport name, to be used both
for connectionless messaging and connection
setup calls. Binding a socket to a port name
corresponds to binding it to a port number in
other protocols, except that the port name is
unique and has validity for the whole cluster,
not only the local node. A caller wanting to set
up a connection needs only to specify this ad-
dress, and the TIPC internal translation service
ensures that the request ends up in the right
socket, on the right node.

A port name consists of two 32-bit fields. The
first field is called thename typeand typically
identifies a certain service type or function.
The second field is thename instanceand is
used as a key for accessing a certain instance
of the requested service. This address structure
gives excellent support for both service parti-
tioning and service load sharing.

Further support for service partitioning is pro-
vided by an address type calledport name se-
quence. This is a three-integer structure defin-
ing a range of port names, i.e., a name type plus

the lower and upper boundary of the instance
range. By allowing a socket to bind to a se-
quence, instead of just an individual port name,
it is possible to partition a service’s scope of re-
sponsibility into sub-ranges, without having to
create a vast number of sockets to do so.

Figure 3:Functional Addressing

This addressing scheme is illustrated by the
example in Figure 3. Two processes, partition
A and partition B of the servicefoo, bind their
sockets to the port name sequences[foo,0,99]
and[foo,100,199]respectively (foo represents
the name type part of the sequence). A
process wanting to send a message to instance
number 33 of that service, uses the port name
[foo,33] as destination address. The TIPC
name translation function will find that the
indicated instance is within the range bound to
by partition A, and directs the message to A’s
socket.

There are very few limitations on how
name sequences may be bound to sockets. One
may bind many different sequences, or many
instances of the same sequence, to the same
socket, to different sockets on the same node,
or to different sockets anywhere in the cluster.

4.1 Binding Scope

Although complete location transparency is de-
sirable and sufficient for most applications,
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there must be ways to control this property for
those who may need to do so. Hence, when
binding a name sequence to a socket, it’s pos-
sible to qualify it with abinding scopeparam-
eter, indicating how far the knowledge of the
binding should be distributed in the network.
The typical behavior is to spread it to the nodes
in the binder’s cluster, but it is possible to ex-
tend the scope to the whole zone, or limit it to
the local node.

4.2 Lookup Domain

Similarly, a client may indicate alookup do-
main for a message or connection setup re-
quest. This is a TIPC network address not only
indicating where the lookup, i.e., the transla-
tion from a port name to socket address, should
first be done, but implicitly even the lookup al-
gorithm to be used.

Two such algorithms are available: 1)round-
robin lookup is used when the lookup do-
main is non-zero and there is more than one
matching server. Internally TIPC selects the
server from a circular list; which root entry is
stepped between each lookup. 2)Closest-first
lookup is used when the lookup domain is zero.
Here, the translation is always performed at the
client’s node and will first look for a match-
ing socket on the local node. If none such is
found, the algorithm will successively look for
matches elsewhere in the cluster and finally in
the whole zone.

5 Reliable Functional Multicast

Functional addressing is also used to provide
a reliable multicastservice. If the sender of
a message indicates a port name sequence in-
stead of a port name as destination, a replica
of the message is sent to all sockets bound to
a name sequence fully or partially overlapping
with that sequence (Figure 4).

Figure 4:Reliable Functional Multicast

Only one replica of the message is sent to each
identified target port, even if it is bound to more
than one matching sequence. Whenever pos-
sible, this function will make use of the mul-
ticast/broadcast properties of the carrying me-
dia. In such cases, reliability is ensured by a
specialreliable cluster broadcast[4][5] proto-
col implemented internally in TIPC.

6 Name Translation Table

Translation from port name to socket addresses
is performed transparently and on-the-fly via
an internal translation table, replicated on each
node. When a socket is bound to a port name
sequence, a corresponding table entry is dis-
tributed to all nodes within the binding scope,
i.e., the local cluster in most cases.

7 Topology Services

TIPC also provides a mechanism for inquiring
or subscribing for the availability of port names
or ranges of port names.

7.1 Functional Topology Service

This functional topology serviceis built on and
uses the contents of the local instance of the
name translation table.
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To access this service, a user makes a block-
ing or nonblocking request to TIPC, asking it
to indicate when a name sequence within the
requested range is bound to or unbound. The
request is associated with a timer, giving the
duration of the subscription. A timer value of
zero causes the call to return or issue a sub-
scription event immediately, making it a pure
inquiry, while a value of -1 makes it stay for-
ever, indicating every change pertaining to the
requested name sequence.

Figure 5:Functional Topology Subscription

Figure 5 illustrates this service: If the client
process (see also example in Figure 3) wants
to syncronize itself with the servers before
starting any communication he issues asub-
scribe()call to TIPC, telling it to indicate when
a server overlapping with the subscribed range
becomes available. Since both ranges of par-
tition A and B are within the given range
[foo,0,500], the client will receive two such in-
dications, informing about the exact range of
the new bindings. If there is only a partial
overlap, e.g., if the client should subscribe for
[foo,0,150] instead, he will only be informed
about the actual overlap, i.e.,[foo,100,150]for
partition B.

7.2 Physical Topology Service

The physical network topology may be con-
sidered a special case of the functional topol-

ogy, and can be kept track of in the same
way. Hence, to subscribe for the availabil-
ity/disappearance of a specific node, a group
of nodes, or a whole cluster, the user specifies
a dedicated port name sequence, representing
this function and the range of nodes he wants
to subscribe for. A special name type (zero)
is used for this purpose, while the lower and
upper boundaries are represented by TIPC net-
work addresses—as described earlier, those are
in reality 32-bit numbers.

Figure 6:Physical Topology Subscription

In the example in Figure 6, the client process
subscribes for the node range [0,9] within zone
number 1, cluster number 1. Hence, when
node <1.1.3> (i.e., zone 1, cluster 1, node
3) establishes a link to the client’s node, the
client will immediately be informed about this.
For this particular service, TIPC will by it-
self bind/unbind the corresponding port name
as soon as it discovers or loses contact with a
node.

8 Lightweight Connections

The number of active user connections within
a big cluster may be extremely large, and each
cluster node must be able to establish and ter-
minate thousands of such connections per sec-
ond.
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8.1 Simple Setup/Shutdown

To deal with this dynamism, TIPC connections
are made very lighweight, in reality leaving the
user to decide the setup/shutdown sequence.
The protocol as such does not specify how con-
nections are established and shut down, so an
application caring about performance is free
to use its own scheme, e.g., only exchanging
payload-carrying messages.

For convenience an alternative, TCP-style con-
nection type is also provided on Linux, with
exchange of hidden protocol messages and
stream-oriented data exchange.

8.2 Reactive Connections

TIPC connections are highly reactive and give
the users almost immediate failure indication
if anything should happen at the endpoints, or
to the media between them. This is due to
a connection supervision and abortion mech-
anism, which takes advantage of the properties
of the local operating system to detect process
crashes, or the status of the concerned links to
detect node crashes or carrier failure. When
any of this happens, a specialconnection shut-
down message is spontaneously generated by
TIPC and sent to the affected endpoint or end-
points, along with an appropriate error code.
This error code delivered up to the user in the
failure indication. In some cases, when the
failure is detected due to inability to deliver
a message, the original message is returned to
the sender along with the error code, to further
enable him to analyze the situation and take
proper action. Thismessage rejectionmech-
anism is also used when connection-less mes-
sages are undeliverable.

9 Link-Level Protocol

Assuming that most clusters are relatively
static in size, some of the tasks normally per-
formed at the transport protocol level have
been moved down to the signalling link level.

9.1 Link-level Retransmission

Implementing the retransmission protocol at
this level has several advantages. First, it
gives better resource utilization since all pack-
ets, connectionless and connection oriented,
are funneled into one single packet sequence
per node pair. Each packet can hence carry
the acknowledge of many received packets, re-
gardless of their origin, and we need not keep
transmission buffers longer than strictly neces-
sary. Second, packet losses can be detected and
restransmission performed earlier than would
otherwise be the case. Third, packet delivery
and sequentiality guaranteed at the link level
eliminates any need for per packet timers at the
transport level—a background timer per link
is sufficient to ensure those properties. As a
result, we obtain a packet flow that is both
smoother and more “traffic driven” than with
corresponding transport level protocols, which
often rely on timers to keep traffic running.

9.2 Link-level Node Supervision

Internode connectivity is also ensured at the
link level. First, a background timer for each
link endpoint supervises the traffic flow on the
link and initiates a probing procedure if the
peer is silent too long. Second, if a link is
found to have failed after probing, there is a
mechanism to steer its traffic over to the re-
maining link to the same node, if there is one.
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9.3 Link-level Redundancy and Load Sharing

In fact, having two links and two carriers be-
tween each node pair is considered the nor-
mal configuration when using TIPC, as it elim-
inates any single point of failure in the commu-
nication service. The failover procedure used
on such occations is completely transparent to
the users, and complies to the same QOS as
is guaranteed by each individual link: no mes-
sage losses, no duplicates, and in-sequence de-
livery. The relationship between dual links
is configurable; while full load sharing is the
default behavior, an active-standby scheme is
also supported.

Detection time for a failed link, and conse-
quently for a crashed node, is configurable and
is by default set to 1500 ms in the current im-
plementation.

10 Automatic Neighbour Detection

Signalling links may be configured manually,
but this is a tedious task if the size of a cluster
runs up to dozens or even hundreds of nodes.
Therefore, TIPC uses a designated neighbour
detection protocol to establish links between
nodes. Within a cluster this protocol is very
simple. Each starting node uses the multicast
or broadcast capability of the carrying media
to tell about its existence, and expects a corre-
sponding unicast response from all nodes rec-
ognizing it as part of the cluster.

Between clusters, both multicast and a uni-
cast “pilot” link may be used, and results in a
link pattern where each node in one cluster has
links to a configurable (default two) number of
nodes in the other cluster.

11 Performance

The performance figures we have are from the
Linux-2.4 version of TIPC. We have not yet
been able to do code optimizations and corre-
sponding measurements on the Linux-2.6 ver-
sion.

Performance was measured by letting a set of
16 process pairs on two nodes exchange mes-
sages in a ping-pong like manner at full speed.
This ensures that the CPUs always runs at
100% load, and we can assume that almost all
execution time is spent on transferring TIPC
messages. We measured the time it took to
exchange a message of a certain size 16 X 10
000 000 times, and divided the obtained value
with number of messages. The result gives
pure CPU execution time per message, auto-
matically excluding latency times on the net-
work and in the OS’s sceduling queues, which
is anyway the same for all protocols. For com-
parison, a similar measurement sequence was
done for TCP, on the same OS and hardware.

Table 1 shows measured execution time for
transferring a message process-to-process be-
tween two 750 Mhz Pentium III based nodes.
The communication media used was two par-
allel 100 Mb Fast Ethernet switches.

Msg Size TIPC TCP
[bytes] [µs] [µs]

64 25 38
256 29 42

1024 44 52
4096 176 178

16384 704 716
65408 3200 2800

Table 1:Inter Node Execution time (send + re-
ceive) for TIPC and TCP messages

The overall result shows that TIPC is around
35% faster than TCP for inter-node messages
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smaller than Ethernet MTU, while perfor-
mance is about the same for larger messages. A
similar measurement, where all processes were
kept on the same node, showed that TIPC is
about four times faster (6µs vs 25µs) than
TCP for 64 byte intra-node messages; the dif-
ference decreasing linearly with message size.
At 64 Kbyte messages performance was even
here almost the same.

12 Implementation

12.1 Source Code

The latest implementation on Linux is avail-
able as a source code package of 12,500 lines
of C-code from [1]. It compiles into a load-
able module of 167 Kbyte for the Linux-2.6
kernel, and it requires no kernel patches to be
installed. This version, just as an earlier one
for Linux-2.4, is stable, but still has some limi-
tations. Most notably, only single-cluster com-
munication is supported for now; it is not pos-
sible to set up links between nodes in different
clusters or different zones.

12.2 Standardization

Open Source Development Lab (OSDL) has
defined TIPC as a cornerstone in their Carrier
Grade Linux (CGL) strategy, and people from
OSDL are contributing actively to the code.
TIPC meet several Priority 1 requirements and
many Priority 2 requirements in the clustering
specifications of Carrier Grade Linux version
2.0 [7]. Within IETF, the ForCES Work Group
is considering TIPC to be used as transport pro-
tocol between forwarding and control elements
in distributed routers. An IETF-draft [4] with
a complete specification was presented for the
WG at IETF-59 for this purpose.

12.3 Roadmap

The goal is to have TIPC accepted as an in-
tegrated part of the Linux kernel in future
releases (2.7/2.8). Before the end of 2004,
we also want to have it accepted as the pre-
ferred protocol for intra cluster transport of the
ForCES protocol. Also, before the end of this
year, we plan to have developed full support for
inter-cluster and inter-zone communication, as
well as a redesigned slave node communication
framework.

13 Conclusion

Within Ericsson, TIPC has proven to be a very
useful toolbox for design of high-availability
clusters. It is our hope that this experience will
be repeated by others now as the potential of
advanced clustering is becoming more widely
recognized.
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Abstract

Physical to virtual translation of user addresses
(reverse mapping) has long been sought af-
ter to improve the pageout algorithms of the
VM. An implementation was added to 2.6
that uses back pointers from each page to its
mapping (pte chains). While pte chains do
work, they add significant spaceoverhead and
significant time overhead during page map-
ping/unmapping and fork/exit.

I will describe an alternative method of reverse
mapping based on the object each page belongs
to. I will discuss the partial implementation
I did last year as well as the work done by
Hugh Dickins and Andrea Arcangelli to com-
plete it. I will describe the current implemen-
tations, their relative strengths and weaknesses,
and what plans if any there are for solutions to
the remaining issues.

1 Introduction

Up through version 2.4, the Linux® kernel
had no mechanism for translating physical ad-
dresses to user virtual addresses, commonly
called reverse mapping, or rmap. This meant it
was not possible for the memory management
subsystem to point to a physical page and re-
move all its mappings. There was a mechanism
that walked through each process’s mappings
and selected pages to unmap. Only after all a
page’s mappings were removed could it be se-
lected for pageout.

Many in the memory management community
considered this very inefficient. Page aging and
removal could be made much more efficient if
the page could be directly unmapped when it
was ready to be removed. Some form of rmap
was clearly needed for this to work.

2 PTE Chains

Rik van Riel implemented an rmap mecha-
nism that added a chain of pointers to each
page back to all its mappings, commonly called
pte_chains . It works by adding a linked list
to the control structure for each physical page
(struct page) which points to all the page ta-
ble entries that map that page. His code was
accepted into mainline early in the 2.5 devel-
opment cycle.

Once this rmap implementation was in place
the page aging and removal algorithm was
changed to use it, streamlining the code and al-
lowing better tuning.

One negative to thepte_chain implemen-
tation was a significant performance cost to
fork , exec , and exit . The cost to these
functions was related to the amount of mem-
ory mapped to the process, but was close to an
order of magnitude worse.

A second cost was space. In its original form
pte_chains cost two pointers per mapping.
An optimization eliminated the extra structure
for singly-mapped pages and another optimiza-
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tion added multiple pointers per list entry, but
the space taken by thepte_chain structures
was still significant.

3 A Brief History of Object-based
Rmap

Processes do not really map memory one page
at a time. They map a range of data from an
offset within some object (usually a file) to a
range of addresses. The virtual addresses of all
pages within that range can be calculated from
their offset in that object and the base mapping
address of the range.

The kernel has the information to do object-
based reverse mapping for files. Eachstruct
page for a file has an offset and a pointer to
a struct address_space , which is the
base anchor for all memory associated with a
file. Every time a range of data from that file
is mapped to a process, avm_area_struct
or vma is created. Thevma contains the vir-
tual address of the mapping and the base offset
within the file. It is then added to a linked list
of all vmas in theaddress_space for that
file.

The remaining problem in the kernel is anony-
mous memory. Blocks of anonymous memory
havevmas but thesevmas are not connected to
any common object that can be used for reverse
mapping.

3.1 Partial Object-based Rmap

Given this information, last year I did a sam-
ple implementation of object-based rmap for
files, but left thepte_chain implementation
in place for anonymous memory. It works by
following the pointer in thestruct page to
the struct address_space , then walk-
ing the linked list ofvmas to find all that con-
tain the page. A simple calculation then de-

termines the virtual address of that page and a
page table walk finds the page table entry.

This implementation recovers the performance
of fork , exec , andexit and eliminates the
space penalty used bypte_chain structures.
It introduces a performance penalty when it
walks the linked list ofvmas, but this is in-
curred by the page aging code instead of the
application code. It could still be significant,
however, since it rises linearly with the num-
ber of times any part of the file is mapped while
with pte_chains the cost rises linearly with
the number of times that page is mapped.

3.2 First Cut at Full Object-based Rmap

Hugh Dickins took my implemenation and
extended it to handle anonymous mappings,
eliminating pte_chains entirely. He did
this by creating ananonmm object for each
process that all anonymous pages belong to.
All anonmmstructures are linked together by
fork . A new anonmmstructure is allocated
onexec . The offset stored instruct page
is the virtual address of the page, while the ob-
ject pointer points to ananonmmthat the page
is mapped in.

Finding all mappings of a page is simple. The
pointer in struct page is followed to the
anonmmchain, which is then walked looking
for mappings of that page at the virtual address
specified in the offset.

Hugh’s initial patch ignored the problem of
shared anonymous pages that were remapped
by an mremap call. The problem with
mremap is that it allows an anonymous page
to be at different virtual addresses in different
processes, but there is only one offset for the
page.

After some initial discussion among the com-
munity, both Hugh and I moved on to other
things.
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3.3 A Second Cut at Full Object-based Rmap

In February of this year Andrea Arcangeli be-
gan to investigate what could be done about
the problems ofpte_chains . He took my
partial object-based rmap patch and imple-
mented his own solution for anonymous mem-
ory, calledanon_vma .

The basic mechanism ofanon_vma is the
addition of ananon_vma structure linked to
each vma that has anonymous pages. The
anon_vma structure has a linked list of
all vmas that map that anonymous range.
The pointer instruct page points to the
anon_vma and the index is the offset into the
current mapping.

An advantage of Andrea’sanon_vma struc-
ture is that it solves the mremap problem that
theanonmmstructure did not. Since the offset
stored in each page is relative to the base of the
vma that maps it, the region can be remapped
without changing the offset. However, since
vmas can be merged, it is not an an absolutely
painless solution.

4 Advancements All Around

In response to Andrea’s patch, Hugh resumed
work on hisanonmmpatch. Prompted by a
discussion among the community and an ap-
proach suggested by Linus, Hugh implemented
a simple scheme for handling the remap case.
For each page, if there is only one reference,
that page can simply have its offset changed.
If the page is shared, a copy is forced and the
new unshared page is mapped at the new ad-
dress. Since all anonymous pages are already
copy-on-write, it is likely that the page would
be written to eventually and the copy taken.
It is possible that some read-only pages might
be duplicated, but to date there is no evidence
that any code actually remaps shared read-only

anonymous pages.

5 Thevma List Problem

All these implementations still include the
original implementation for file pages, includ-
ing the need to walk the linked list ofvmas
attached to theaddress_space structure.
This has been identified as a possible per-
formance issue for massively mapped files,
though few if any real-life examples have been
found. A few optimizations have been tried,
including sorting the list by start address and
making a two level list based on start and end
address. Both these solutions share the prob-
lem that adding or modifying avma is fairly
expensive and holds the associated lock for a
long time.

A recent contribution by Rajesh Venkatasubra-
manian is the use of aprio_tree , which is
similar to a radix tree but supports sorting ob-
jects by both start and end addresses. It adds
some complexity to thevma list but greatly
reduces the potential performance impact of a
large number of mappings.

6 The remap_file_pages
Problem

While object-based rmap appears relatively
simple, there is one new feature that greatly
complicates the problem. This feature is
remap_file_pages .

The remap_file_pages system call was
introduced during the 2.5 development cycle.
It works on a range of shared memory mapped
from a file, and allows an application to change
the memory range to map a different offset
within that file. This is done without modifying
the vma describing the mapping. This means
the offsets specified within thevma are now
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wrong. Since theaddress_space pointer
and offset within thepage structure are intact,
the page can still be mapped back to its place in
the file, but it is no longer possible to use this
information to find its virtual mappings. The
vma is called anonlinear vma and is put
on a special list within theaddress_space .

Andrea and Hugh have provided two different
solutions to the problem of what to do when a
nonlinear page is called to be unmapped. An-
drea’s solution is the more draconian in that it
walks the list of nonlinearvmas and unmaps all
pages in them until the page in question has no
more mappings. Hugh’s solution only unmaps
a fixed number of nonlinear pages and makes
no attempt to unmap the actual page passed in.

7 Release Status

As of the date this was written, Hugh has been
submitting incremental rmap changes to An-
drew Morton for the -mm tree over the past
couple of months. The early submissions were
primarily cleanup, but later patches included
first my partial object-based rmap implementa-
tion followed by hisanonmmimplementation,
which completely removed thepte_chain
code.

Hugh has just submitted a final set of patches to
Andrew that removes hisanonmmimplemen-
tation and replaces it with Andrea’sanon_
vma implementation.

The general expectation among the VM devel-
oper community is that once this code has been
adequately tested in the -mm tree that it will
replace the existingpte_chain implementa-
tion in mainline 2.6.

Legal Statement

This paper represents the views of the author and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.

Other company, product or service names may be
the trademarks or service marks of others.
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Abstract

In this talk I will present some of the is-
sues facing OpenOffice.org, particularly re-
lated to: performance, interoperability, build-
ability, ABI / engineering and release practice.
We’ll look at how to build the beast, the UNO
component model, and iterate a quick hack be-
fore your eyes. We’ll also show some of the
flash new features including the Gnome desk-
top integration work.

1 A friendly giant

The OpenOffice.org source base is one of the
largest monolithic Free software projects in ex-
istence, even with the pre-compiled mozilla bi-
naries for several architectures stripped out:

Project
Source bz2

(MB)
Mozilla 1.4.1 31
Linux 2.6.7 33
GNOME 2.6.2 108
OO.o 1.1.2 160

OpenOffice.org (OO.o) represents one of the
largest single contributions to Free software
ever. Given this, it is somewhat incredible that
Sun immediately settled on a licensing scheme
in that is both liberal and substantially symmet-
ric.

OpenOffice.org is licensed under two licenses:

• LGPL– the familiar, and best Lesser GPL.

• SISSL – essentially X11 with trip-wires
for malicious UNO API, and XML file
format compatibility breakage.

While it is necessary to share copyright with
Sun by signing the Joint Copyright Assignment
(JCA)[2], the use of OO.o code in StarOffice
can be considered as being achieved under the
SISSL[3] provisions.

Thus there is clearly huge potential for add-
ins, integration with proprietary data-feeds,
macros, etc.

2 Sun’s dilemma

Sun’s StarOffice product substantially consists
of the OpenOffice.org core, as seen in public
CVS, with the addition of a few extra propri-
etary modules. While this means that all the
latest bug fixes are available in public CVS, it
creates a number of frustrating artificial prob-
lems:

2.1 Release Engineering

• minor release cycles – there is a
correct separation of commercial updates;
of around once per quarter; thus this tends
to be the frequency of minor OO.o re-
leases regardless of bugginess.

• release patch-size – there is a
fixed upper-bound on the size of a cus-
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tomer patch download, thus ABI alter-
ations in low-level libraries which would
have a large knock-on effect, are forbid-
den.

• ultra conservatism – since cus-
tomer updates are infrequent there is little
incentive to back-port fixes to the stable
branch; so many, trivial but high-impact
fixes don’t make it.

• major release cycles – for rea-
sons unknown StarOffice works on an 18-
month release cycle, so—at times (given
freezes, etc.), it is possible to punt a fea-
ture / fix by nearly 2 years.

Clearly many of these problems make the OO.o
development process somewhat cumbersome.

2.2 Portability Engineering

In contrast to many Free software project,
StarOffice and hence OO.o, is designed to run
on a broad spectrum of operating systems and
versions. By contrast, e.g. GNOME applica-
tions, would typically require the latest version
of GNOME to run.

This creates a number of interesting, hard-core
engineering issues, and shows up the true state
of Linux as a robust platform for ISVs.

For example, for font discovery much Linux
software will link to the pleasant fontconfig li-
brary, and use purely client-side font render-
ing. OO.o in contrast has to run on older (or
newer) platforms where there is either no font-
config install, or it has a changed ABI, or it is
badly configured. Thus the OO.o font discov-
ery method uses the following heuristics:

• fontconfig – since this may not be
available, we try todlopen it, hook out
various symbols, and extract a simple list
of font filenames.

• chkfontpath – Red Hat, and others
once shipped this tool which dumps a list
of font paths; we try topopen and parse
the output.

• hard-coded paths – various direc-
tories such as/usr/X11R6/lib/X11/

fonts/truetype are known to be a
good bet, and are scanned for fonts, in-
cluding several language specific variants.

• X server query – the X server is
queried to see what it can do, and a load
of XLFDs are parsed.

• internal fonts – whatever internal
fonts, and font-metric files we distribute
are added to the mix.

Naturally, after doing all this work, we build a
OO.o specific cache of much of the informa-
tion, to accelerate subsequent startup.

This heavily engineered approach is not con-
strained to any one API-set, or technology—
so, e.g., OO.o will attempt to use either lpr or
cups for printing in a dynamic fashion.

Even glibc problems show up in Figure 1.

In addition, the cross-platform nature of OO.o
and the unpredictability of the Linux feature-
set (particularly the C++ ABI), leads to a
large number of software packages being in-
cluded inside the OO.o build itself. Thus, a
stock OOo would include it’s own compiles
of (at least): python , freetype , zlib ,
expat , libdb , NAS, neon , curl , sane ,
myspell , Xrender .

As is probably obvious, this level of old plat-
form support, and dependency aversion is hard
to get enthusiastic about.
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typedef struct {
struct { long status; int spinlock; } sem_lock;
int sem_value;
void *sem_waiting;

} glibc_21_sem_t;
/*

* XXX this a hack of course. since sizeof(sem_t) changed
* from glibc-2.0.7 to glibc-2.1.x, we have to allocate the
* larger of both XXX
*/

#ifdef LINUX
if (sizeof(glibc_21_sem_t) > sizeof(sem_t))

Semaphore = malloc(sizeof(glibc_21_sem_t));
else

#endif
Semaphore = malloc(sizeof(sem_t));

}

Figure 1: compatibility with oldglibc versions

3 Community Issues

In addition to these unusual constraints, the
OO.o project is encumbered by acute tooling
and collaboration inadequacies.

Perhaps the most serious problem, is that it ap-
pears CVS was not designed with 200+ MB of
source / binaries in mind. Thus, even basic op-
erations, such as acvs tag can take up to a
couple of hours, and are frequently blocked by
robots slowly traversing the repository.

Secondarily, the collab.net SourceCast system
adds a level of bureaucracy, and lack of re-
sponsiveness which when combined with be-
ing totally un-fixable makes for an unneces-
sarily painful experience. It seems likely that
SourceCast is ideal for the use of existing, es-
tablished Free software projects, or even newly
formed projects—but it stumbles with OO.o.
Furthermore, using closed software for Open
Source collaboration is an intrinsically inter-
esting decision.

4 The other side of the coin

4.1 http://ooo.ximian.com/

To make up for the existing inadequate web-
tools, and documentation we provide several
‘external’ tools of interest.

• hackers guide – a Linux focused,
hackers guide on how to build, iterate, and
some basics of the OO.o code structure.

• LXR/Bonsai – basic web tools without
which navigating the OO.o source is sub-
stantially more difficult.

• bug filing – a gateway that de-
mangles the curious user-focused issue fil-
ing process, and allows bug filing directly
against given code modules.

• Planet OO.o – the obligatory RSS ag-
gregator.

4.2 ooo-build

The process of productising OO.o into a Linux
package is filled with pain; so to amortise this
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a collaboration has coalesced between various
Linux vendors: Novell ne Ximian, Debian,
Red Hat, SuSE, Ark, and PLD Linux around
ooo-build.

ooo-build provides a growing set of useful
patches many of which may arrive in OO.o in
many months time; indeed all our work is in-
tended to go up-stream into OO.o. We also pro-
vide a simple patch sub-setting system, to al-
low vendors to select a suitable set of patches.

Many of the features associated with ooo-build
are desktop integration, system integration, and
GUI cleanup pieces; e.g.:

• attractive new icons

• native-widget rendering

• GNOME-VFS integration

• ergonomic & aesthetic fixes

• system library usage

The ooo-build wrapper is also intended to
make OO.o substantially easier to compile with
a familiar ./configure; ./download;
make; make install process.

5 Performance

Performance is an area ripe for substantial
improvement in OO.o, however, poor perfor-
mance is caused by many factors, and identify-
ing the most important of these is not always
easy.

5.1 Linking

The linker has a very hard time linking OO.o,
and while this can be reduced by pre-linking,
the architecture of OO.o—whereby the major-
ity of the code is in shared libraries required

not by the main binary—but by other shared
component libraries, linked at run-time.

Ulrich’s analysis of OO.o [1] shows that
20,000 relocations are performed during
startup, which combined with lookups across
multiple libraries gives 1,700,000 string com-
parisons to startup. The sheer size of the sym-
bol tables and the lack of locality of reference
in the linking process causes much of this work
to fall outside the processors’ cache—giving
abnormally poor performance.

5.2 C++ issues

Some features of C++ exacerbate the problems
of large symbol tables, and poor startup perfor-
mance. The stripping / re-working of static ini-
tialisers has helped accelerate performance—
these being replaced with a thread-safe late
instantiation based on accessor method local
static variables.

C++ is a very symbol-hungry language—
particularly with respect to virtual functions,
which create an unnecessary burden (Figure 2).
Virtual functions, despite resolving to a sim-
ple function pointer export a symbol, which is
referred to directly to chain to parent imple-
mentations. While of course this can often be
resolved away at link time, in a cross-library
situation it would perhaps be more efficient to
dereference a parent vtable function pointer.

Similarly, since in theory at least, a single class
can be implemented across multiple shared ob-
jects, even ‘private:’ methods export symbols.

In addition to these problems, a more pro-
active approach to pruning old, and redun-
dant code has been adopted in the development
branch, to reduce code footprint, and symbol
count.
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class Foo : public Baa {
virtual void VFunc();

private:
void ExportsSymbol();

};
...
void VFunc()
{

...
Baa::VFunc();

}

Figure 2:C++ virtual functions

5.3 Binary filter code

To shrink the OO.o footprint, a large chunk
of creaking binary format code has been ex-
tracted, along with compatible chunks of the
core. This code pre-dating the XML file
formats scattered the process of serialisation
across the code, and resulted in a complex,
hard-to-maintain and increasingly irrelevant
maintenance problem. In OO.o 2.0 it will be
used only on the rare occasions it is necessary
as a binary to XML filter.

5.4 system libraries

Shrinking the large number of internal li-
braries, on Linux systems, and increasing the
number of libraries shared with the system is
an important part of performance improvement
in 2.0. It clearly makes little sense to have an
internal gtk+ library when the system version
is ABI compatible, and better maintained.

Using system libraries—e.g., neon—also re-
duces the pain of handling security updates in
the built-in libraries.

5.5 mmap performance

Possibly the most significant speedup in the 1.0
to 1.1 transition was the process of forcing as

much of the OO.o code into memory before at-
tempting to run it. This gave a very noticeable
win; this was implemented in a simple fash-
ion with mmap, and a loop reading a byte from
each page. Ideally of course, the underling op-
erating system would be able to do better here.

6 Interoperability

In a world where a tiny fraction of people are
using Free software, the ability to share docu-
ments in a loss-less fashion with other people
is crucial to the adoption of OO.o.

Much work has been done in this area for 2.0,
of particular note the row-limit in calc has been
raised to that of Excel, and much work has
been done on form controls.

There are also exciting developments in VBA
interoperability. OO.o provides a VBA-like
language: StarBasic, and by devious means it
has been possible to extract VBA text from Of-
fice files for some while. Office for perfor-
mance reasons however stores VBA in 3 forms:
an SRPstream, a compiled form, and a com-
pressed text form. Since these are authorita-
tive in that order (the text providing only a fi-
nal fallback), it was thought that effective ex-
port would entail reverse engineering at least
the the compiled form.

However in recent time, yet more devious
means have been discovered to export macros
as text to Excel and have them run transpar-
ently to the user. This it turns out is the founda-
tion of macro interoperability between Office
versions 97 through XP. Thus work is ongoing
to improve the macro support so crucial for ef-
fective Excel interoperability.
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7 Desktop integration

Much of the work of ooo-build has been
adopted in one form or another up-stream for
2.0, giving the prospect of a highly desktop in-
tegrated OO.o experience out-of-the-box.

To achieve this, the lowest levels of OO.o’s
cross-platform abstraction: the Visual Class
Library (VCL) have been virtualised, and now
the main-loop, and top-level windows on a
GNOME system are handled by the gtk+
toolkit. In order to avoid a complete re-write of
the widget system—we use a simplified them-
ing system that virtualises only the rendering
of widgets, allowing basic widgets to match the
look of the rest of the desktop.

Similarly main-loop integration makes things
such as integrating the gtk+ file-selector and
other GNOME dialogs fairly simple. The
main-loop integration was made substantially
more painful by the mis-match between the
recursive OO.o toolkit lock, and the non-
recursive gtk+ lock. In order to reconcile these
and provide a single, comprehensible locking
pattern—after considerable thought we added
hooks to gtk+ to allow a shared (recursive) lock
to be used. This makes gtk+ use in OO.o virtu-
ally seamless.

8 UNO component model

OO.o provides a rich, and well documented
component model, which is exported for the
use of language bindings. The power of this,
and its flexibility have resulted in active bind-
ings for StarBasic, Java, and Python.

The UNO model is particularly interesting,
since it consumes little overhead beyond a
stock C++ virtual function call. In addition
each class has associated, small compiled IDL
type information. This can be used, to dynam-

ically (at run time) construct bridges to other
languages, and allow dynamic method invo-
cation. While this adds a compiler version /
ABI dependency to the OO.o core, it avoids the
problem of creating stub / skeleton code which
ended up consuming many MB before the dy-
namic approach was adopted.

9 Conclusions

OO.o provides an unusualm and particularly
pathalogical case of a gigantic C++ project.
This leads us to push the boundaries of the sys-
tem, showing up several areas for potential im-
provement.

The ooo-build infrastructure provides a solid
base for contributing work to OO.o in a famil-
iar and accessible manner, and seeing the de-
ployed results of your work quickly.

OpenOffice 2.0 will give substantial perfor-
mance, code-cleanliness and interoperability
improvements, in addition to many new fea-
tures.
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Abstract

In this paper I will describe the work I am
doing on the Linux networking infrastructure,
with emphasis on cleaning the code, but with
important “side effects” like reduction of core
structures already saving over 600 bytes on
UDP sockets all over the net in 2.5/2.6 (tcp,
etc.), elimination of data dependencies, reduc-
tion of the non-mainstream network families
maintenance cost by making them use code
that now is innet/ipv4 but can be moved
to net/core , leaving only the really ipv4-
specific code and making LLC use it as a proof
of concept (work done in my net-exp tree,
pending submission).

TCP code becomes used by the poor cousins,
they appreciate that!

1 How This Started

Making IPX uptodate with regards to advances
in the core networking infrastructure, to kill
deliver_to_old_ones , i.e., special cases
in the core kernel for protocols that hasn’t been
converted to shared skbs and multithreading.

In the process I noticed several areas where
code was replicated or used a different, older
framework, due to the evolution of the core net-
working infrastructure.

Also de experience of porting the NetBEUI
and LLC code released as GPL by Procom
Inc. from the 2.0 Linux kernel networking in-
frastructure to 2.4 and then to 2.5/6, working
on a BSD sockets API forPF_LLC, initially
contributed by Jay Schullist was instrumental
in realising the existing similarities in the in-
frastructure needs required by several protocol
families.

2 TCP/IP Evolves Faster

Most of the attention is given, of course,
to TCP/IP, and in the process new infras-
tructure is created, with TCP/IP using it at
first and sometimes leaving things like the
deliver_to_old_ones function to sim-
ulate the previously existing big networking
lock and theSOCKOPS_WRAPPEDmacro, to
allow the other protocol families to continue
working, hoping that their maintainers do the
necessary work, but this sometimes doesn’t
happen for a long time.

In other cases code is added to TCP/IP that,
upon further inspection, could be moved to
net/core and be useful for the other proto-
col families.

Doing this factorization will help make these
improvements to TCP/IP be taken advantage of
by the other protocol families and will help in
realising the ultimate goal of keep the proto-
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col families code with just what is completely
specific.

3 Trimming struct sock

In 2.4,struct sock has a big fat union that
has most of the private data for each protocol
family, so when any change had to be done to a
specific protocol family the layout ofstruct
sock would change, generating unnecessary
recompilation of most of the network related
code in the kernel.

In 2.6 this has changed andstruct sock
nowadays is mostly free of details specific to
network protocol families.

In the process two ways were devised to store
the network protocol private area, one for pro-
tocols that have stringent performance require-
ments, like TCP/IP, using per-protocol slab
caches and another one, simpler, that allows
protocol families to just allocate a chunk of
memory and store its pointer in thestruct
sock member sk_protinfo . As most
stacks now use helper macros to access its pri-
vate area, the eventual switch to the slab cache
approach is easily done.

With this in place the footprint of thestruct
sock , that was of about 1280 bytes on a UP
machine in 2.4 to 308 bytes for the generic
sock slabcache in 2.6, with thetcp_sock
slabcache using 1004 bytes,udp_sock slab-
cache using 484 bytes and finally theunix_
sock (PF_UNIX sockets) using just 356
bytes.

This changes also resulted in a performance
gain in the establishment of connections, as
was verified with thelmbench tool.

Another related change was to diminish the
data dependency amongstruct sock and
struct tcp_tw_bucket , that is a “mini

socket” used to represent TCP connections
in the TIME_WAIT state. To accomplish
this, struct sock_common was intro-
duced, that is the minimal required set of mem-
bers common to these structs. With this data
layout we will certainly avoid bugs introduced
when changing only one of the structs, like has
happened at least once to my knowledge.

4 Usinglist.h in the Networking
Code

With the advent of the hashed lists (struct
hlist_node) it turned out to be useful to
make the networking code follow the general
kernel trend of using thelinux/list.h
macros, replacing the ad-hoc lists present in the
networking code.

The work consisted of introducing a set of
helper macros to handlestruct sock list
handling, namelysk_add_node and sk_
del_node_init , and bind list variants.

These functions also bump the reference count
for the socket, something that was not being
done by some protocols, that have since been
converted to use this new set of helper macros,
thus fixing some bugs in the process.

It should also be noted thathlist started
using prefetch as part of the process of con-
vincing David Miller, the Linux Networking
maintainer, to accept such changes. Perfor-
mance gains are an important technique in get-
ting code-cleaning patches accepted.

5 Socket Timers Manipulation
Helpers

Another area that received attention was the
socket timers manipulation routines, that in
some protocols aren’t always bumping the ref-
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erence count as they should and do in the Blue-
tooth and TCP/IP code.

To abstract this handling thesk_reset_
timer andsk_stop_timer functions were
introduced recently to do thetimer_list
handling and deal withstruct sock refer-
ence counting.

6 Factorization of net/ipv4 Code

In the past Alan Cox worked on having data-
gram code that could be shared among several
network families shared at thenet/core/
datagram.c file, moving chunks of code out
of the UDP implementation.

Now with this work I’m trying to do the same
with the stream code, now moving chunks of
TCP code to the core infrastructure.

Initial steps are just moving code around,
like tcp_eat_skb , that becamesk_eat_
skb ; tcp_data_wait becamesk_wait_
data ; and here we see something interest-
ing, namely the fact that this function correctly
sets theSOCK_ASYNC_WAITDATAbits in the
struct socket flags member, something
that some protocols aren’t doing now but will
as soon as they start usingsk_wait_data .

In my net-experimental tree I have in-
troduced some new members to thestruct
sock membersk_prot , allowing both TCP
and LLC to use commonstream_sendmsg
and stream_sendpage functions, that are
generalizations oftcp_sendmsg and tcp_
sendpage . Further work is needed to fully
determine the performance implications of
such changes, but no noticeable performance
drop or stability problems have been verified in
using this patched kernel in my main machine
for over a month.

7 BSD Sockets Layer

There is some duplication of work at the BSD
sockets level among the network protocol fam-
ilies implementation. Trying to reduce the
code required to implement a protocol fam-
ily is being investigated, with some proofs-of-
concept already implemented, where the func-
tions now used for TCP/IP are being shared
with LLC.

The idea here is to to reduce the protocol-
specific implementation to just that, i.e., what
is absolutely specific to each protocol.

Perhaps this will make it easier to stack pro-
tocols, allowing combinations that are possible
in other kernels but not on Linux right now.

The extra function pointers insk->sk_prot
probably won’t be a problem because they
will make it possible to eliminatesock->
proto_ops by calling directly thesk->sk_
prot functions.

8 Future Developments

With this newly common infrastructure, it may
be possible to add features like network async
I/O to all protocols. More sharing will be in-
vestigated, trying to avoid pitfalls that appeared
in similar work done in other kernel subsys-
tems.

9 Conclusion

Looking every other year at how core infras-
tructures evolve and how the implementations
of subsystems attached to those infrastructure
evolve is something that should be done, pay-
ing off in terms of code clarity, reduction of the
cost of maintaining code that has come out of
mainstream but are still used in lots of legacy
setups.
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Another eventual benefit gained is the perfor-
mance one, as making the code clear and more
general is not incompatible with having fast
code.

Reuse the code, Luke.
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Abstract

USAGI Project [8] has improved Linux
IPv6 [1] stack. IPv6 IPsec is one of the prod-
ucts of our efforts. Linux IPsec [6] stack is im-
plemented based on XFRM architecture which
is introduced in linux-2.5. We design and im-
plement Mobile IPv6 (MIPv6) [4] Stack on the
architecture. MIPv6 uses IPsec for its secure
signaling. Accordingly IPv6 IPsec and MIPv6
closely cooperate each other. In this paper we
describe the architecture and how they work.

1 Introduction

IPv6 is the next version of an Internet Protocol.
The protocol was developed against IPv4 ad-
dress exhaustion. It was developed for not only
spreading address space but improving some
features such as plug and play, aggregatable
routing architecture, IPsec native support and
smooth transition.

IPsec provides security services which are in-
tegrity, authentication, anti-replay attacks and
confidentiality. Because IPsec is mandatory in
IPv6 specification, we must implement IPsec
to conform to it.

MIPv6 provides all IPv6 nodes with mobility
service which allows nodes to remain reach-
able while moving around IPv6 networks.
To support mobility, We need some signal-
ing architecture to notify movement and de-
liver mechanisms to assure reachability. Us-
ing MIPv6, we can keep routability to mobile
node’s home link address and deliver a packet
to mobile node wherever it is on the network.
Because IPv6 is able to process these extension
headers natively, we no longer need to arrange
foreign agents to all links where mobile node
may move to as Mobile IPv4 does, so that IP
mobility is easier to be introduce in IPv6 than
IPv4.

Linux supported IPsec at version 2.5.47. How-
ever it supporting only IPv4 IPsec, we imple-
mented IPsec stack for IPv6. Linux version 2.6
supports IPsec on both IPv6 and IPv4. XFRM
architecture and stackable destination were in-
troduced into the kernel for IPsec packet pro-
cessing [7]. They can be not only for IPsec
packet processing, but also general packet pro-
cessing such as MIPv6. USAGI Project de-
cided to expand the architecture to implement
MIPv6.

To develop Linux MIPv6, we cooperate with
GO/Core Project [2] which is proven in linux-
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2.4.

2 XFRM and stackable destination

XFRM architecture is mainly consist of three
structures which are xfrm_policy, xfrm_state
and xfrm_tmpl. xfrm_policy corresponds to
IPsec policy and xfrm_state to IPsec SA.
xfrm_tmpl is intermediate structure between
xfrm_policy and xfrm_state. Each IPsec pol-
icy and SA database are realized with list of
the structures which are also contained hash
database.

The kernel provides three interface to configure
xfrm structures about IPsec. One is PF_KEY
interface which is standard interface to manip-
ulate IPsec database. another is netlink socket
interface. The last is socket option interface.

Stackable destination is architecture for effi-
cient outbound packet processing. It is a link
list of dst_entry structure which is cached in
xfrm_policy. To create stackable destination,
the kernel linearly searches xfrm_policy with
flow information for a sending packet after
routing looking up. After finding xfrm_policy
corresponding to the flow information, the
kernel searches and gathers xfrm_state from
xfrm_state database by xfrm_tmpl in the
xfrm_policy. Gathering xfrm_states, the ker-
nel builds up stackable destination and sub-
stitutes it into its own member “bundles” to
cache it. Additionally xfrm_policy itself is
cache in flow_cache. Therefore the kernel only
needs to lookup xfrm_policy after second until
xfrm_state expired.

3 IPsec

IPsec functionality is consist of packet process-
ing and key exchanging for automatic keying.
In the implementation of Linux packet process-
ing runs in the kernel and key exchange is done

by a key exchange daemon in user space.

3.1 IPsec database and packet processing

IPsec packet processing is realized with XFRM
architecture and stackable destination. Out-
bound process is explained in previous sec-
tion. With searching XFRM database and
building stackable destination, the kernel gets
list of dst_entry structure. To process each
function which are ah6_output, esp6_output
and ipcomp6_output, the kernel searches inser-
tion point on a packet because a packet is cre-
ated including IPv6 header and other extension
headers before stackable destination process
(Figure 1). The insertion point is before up-
per layer payload, fragmentable destination op-
tions header, IPsec header or fragment header.
This is not efficient because the kernel searches
the insertion point every time when processing
one dst_entry.

Inbound process is simpler than outbound pro-
cess. When packet containing AH or ESP,
the kernel finds xfrm_state corresponding to
received packet and keep pointers of used
xfrm_state in sec_path of skb structure. Af-
ter process of IP layer, the kernel checks
the packet correctly processed with comparing
sec_path and xfrm_policy which is searched
with flow information of the packet (Figure 2).

3.2 Interface for user and IKEd

Current linux kernel provides users with
PF_KEY interface, which however is speci-
fied only for IPsec SA interface and it needs
some extension to configure IPsec policy. Be-
cause this extension is not standardized, there
are some different extensions and it prevents
compatibility of IKEd. Linux adopts the ex-
tension which is compatible with KAME [5]
so that racoon is the IKEd for linux. Racoon
is originally product of KAME project and
its could not compile on Linux. Fortunately
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ported racoon which is provided by ipsec-tools
project [3] is available.

4 Mobile IPv6

4.1 Mobile IPv6

In MIPv6, nodes are classified into 3 types.
One is a Mobile Node (MN) which moves in
the IPv6 Internet bringing its home address
(HoA) assigned in a home link which is a
base of mobility and in which there is a home
agent. Home agent (HA) is another type of
node which is a router and manages MN’s ad-
dresses and supports its signaling and ensures
reachability. The other is a correspondent node
(CN) which is a node communicating with a
MN. CN may be either mobile or stationary.

When MN in a foreign link, it uses a care-of ad-
dress (CoA) which is the address of a foreign
link. MIPv6 accordingly needs to manage rela-
tionship between CoA and HoA. A MN sends
a packet including HoA in an extension header
from CoA.

MIPv6 appends two extension headers and one
option for destination options header. Mobility
Header (MH) is an extension header for sig-
naling to manage binding cache which is a ad-
dress list for optimized routing. Type2 rout-
ing header (RT2) which is different from rout-
ing header in RFC2460 effects destination ad-
dress in IPv6 header and realizes direct rout-
ing according to binding cache. Home Address
Option (HAO) is an option carried by destina-
tion options header to contain HoA which is
an address of a MN in home link and swapped
with CoA. HAO effects source address in IPv6
header.

We describe an outline of the procedure tak-
ing as an example that MN making binding
cache on HA and communicating CN after MN
moving to a foreign link (Figure 3). This pro-

cedure is divided two steps. First is making
IPv6 over IPv6 tunnel between MN and HA
(1-4). After this step, HoA of MN becomes
routable and MN is able to communicate with
all nodes by using HoA via HA through the
tunnel. Second is route optimization between
MN and CN because MN always communicat-
ing via HA (5-8), a packet goes through a su-
perfluous route and communication uses more
network resource.

1. MN sends a Binding Update (BU) to HA.

2. HA updates a binding cache and returns
Binding Acknowledgment (BA) to MN.

3. MN updates a binding update list.

4. At this time, there is a tunnel between MN
and HA.

5. MN sends HoTI to CN through the tunnel
and CoTI to CN directly from CoA.

6. CN keeps contents of HoTI and CoTI. CN
returns HoT via HA and CoT to CoA.

7. When MN receives HoT and CoT, MN
sends BU to CN and updates its own bind-
ing list.

8. Then MN and CN have binding between
HoA and CoA. They communicate di-
rectly with appending HAO and RT2 to
packets. They have an optimized route.

4.2 Implementation

We design MIPv6 in Linux consisted with two
part. One is packet processing for RT2 and
HAO in the kernel and the other is MIPv6 dae-
mon (MIPd) to handle the signaling and man-
age binding cache and binding update list. It
is similar to separation of packet process and
IKEd in IPsec.
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Figure 3: MIPv6 procedure outline

Packet processing for MIPv6 is realized with
XFRM and stackable destination architecture,
because they are general way to process a
packet which matches some selector. Using
XFRM, we can avoid to implement duplicate
functionality in the kernel. MIPv6 needs to
manage a binding cache which specifies an MN
address on the network on CN and HA. It also
needs to manage a binding update list which
is list of sending binding update request for
CN on MN. We have two choices to implement
this functionality in the kernel or userland. Be-
cause we should implement functionalities in
userland if it is possible, we consider to basi-
cally implement it in userland. Implementing
in userland brings us advantages which are eas-
ier extension its functionality than implement-
ing in the kernel and reducing the kernel size.

Our MIPd’s roles are

• processing a signaling message including
an error message

• managing xfrm_policy and xfrm_state of
MIPv6 in the kernel through the netlink

• managing binding cache and binding up-
date list

• moving detection and changing CoA
when MIPd running on MN

4.3 XFRM operation

In this section, we describe MIPd XFRM op-
eration relating each nodes state with an exam-
ple which is a phase of binding update to HA
and making tunnel for routability. It is called
home registration. At first, we initialize MN
and HA to send and receive binding message.
On MN MIPd sets a xfrm_policy which allows
an outbound packet from HoA to HA, proto
MH, and type BU with appending HAO and a
xfrm_state which appends HOA with CoA to a
packet from HoA to HA and including MH of
BU. It also set xfrm_policy to receive BA, the
policy which allows an inbound packet from
HA to HoA including MH of BA with append-
ing RT2 and the inbound xfrm_state which pro-
cesses RT2. Because MIPd on HA can not ex-
pect the source address of BU from MN, it sets
a xfrm_policy which allows an inbound packet
from Any to HA with MH of BU if it has HAO.
It also set xfrm_state which processes HAO in-
cluded in a packet from ANY to HA with MH
of BU. See Figure 6:INITIALIZE.

MIPd on MN sends BU to HA, the packet
matches with the xfrm_policy and process with
the xfrm_state which appends HAO destina-
tion option and swap a source address in IPv6
header with a CoA. HA received the BU from
MN. In the kernel the packet matching the
xfrm_state, the kernel swaps addresses. Then
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MIPd on HA receives BU and updates a bind-
ing cache. MIPd configures xfrm_policy and
xfrm_state for route optimization with high
priority. See Figure 6:Routing Optimization.

At this moment, route optimization is available
for all packets between MN and HA. It also sets
up a tunnel between MN and HA. After some
xfrm_policy and xfrm_state configuration it re-
turns BA with RT2. The kernel of MN receives
BA with RT2 and processes it with the inbound
xfrm_state and throws up BA packet to MIPd.
MIPd on MN updates a binding update list and
sets up the tunnel. Each nodes has totally 6
policies at the end of registration.

5 Cooperation of IPsec and MIPv6

MIPv6 uses IPsec for its secure signaling be-
tween MN and HA. Our design uses XFRM
and stackable destination for both IPsec and
MIPv6. MIPv6 needs two kind of IPsec SA
one is a transport mode SA which is used for
signaling. The other is a tunnel mode SA
which is used instead of IPv6 over IPv6 tunnel.
We consider two steps to implement MIPv6
with IPsec about IPesc policy and SA manage-
ment. At first, we implement MIPd to not only
manage xfrm_policy and xfrm_state of MIPv6
but also IPsec and a xfrm_policy for MIPv6
holds both MIPv6 and IPsec xfrm_tmpl. This
implementation has a couple of issues. One is
separation of management of xfrm_policy and
xfrm_state of IPsec into MIPv6 and ordinary
IPsec. Another issue is interaction between the
kernel and IKE daemon. xfrm_policy includ-
ing a xfrm_tmpls of Mobile IPv6 and IPsec
sends a signal for only MIPd. The other is
the order of xfrm_policy. When some situa-
tion such as configuration done with wrong or-
der, a packet which would be originally applied
MIPv6 and IPsec not be applied only IPsec.

For improvement, we will let the kernel hold

two xfrm databases and mediate them be-
cause it is difficult to manage xfrm_tmpl in
a xfrm_policy via userland interface by two
management daemons and the xfrm_policies
have probably different granularity (Figure 7).
In current outbound process, the kernel looks
up single xfrm_ policy database and gets a
xfrm_policy which includes xfrm_tmpl for
IPsec and xfrm_tmpl for MIPv6. How-
ever we will change the kernel to separately
look up IPsec and MIPv6 xfrm databases
and create temporary xfrm_policy which holds
xfrm_tmpl gathered from each xfrm_policy.
The list of xfrm_tmpl must be serialized as
the order of packet processing. For instance,
the kernel must put xfrm_state for AH at the
end of the list. For inbound process, it is
not so difficult, the kernel processes a packet
by using xfrm_state which is searched and
needs to check sec_path in skb against each
xfrm_policy. To make it be efficient, the kernel
should use flow_cache for inbound process.

If we could merge two policies correctly, we
have another issue. MIPv6 needs two IPsec
SA between NM and HA. One is a transport
mode SA for signaling and the other is a tunnel
mode SA for other packet. Taking outbound
SA as an example, a transport mode SA is ap-
plied by the policy whose selector is from HoA
to HA and protocol MH. On the other hand a
tunnel mode SA is applied by the policy whose
selector is from HoA to ANY and protocol
ANY. The packet should be applied the trans-
port mode SA has possibility to be applied the
tunnel mode SA. We can avoid this mismatch
by using priority in xfrm_policy.

racoon has a couple of issues as IKE daemon
for MIPv6. One is that racoon can not han-
dle multiple peers which have address ANY as
peer’s address in its configuration. When it be-
haves as responder on HA, the issue occurs be-
cause despite multiple peers being, each con-
figuration has addresses from ANY to HA thus
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MN HA

xfrm_policy
 src:      ANY
 dst:      HA
 proto:   MH
 type:    BU
 priority:normal
 direct:  in

xfrm_tmpl
 src:     ANY
 dst:     HA
 proc    HAO

xfrm_tmpl
 src:     ANY
 dst:     HA
 proc    ESP
 mode  TR

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   MH
 type:    BU
 priority:normal
 direct:  out

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    HAO

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    ESP
 mode  TR

BU

IPv6 HAO ESP MH

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   ANY
 type:    none
 priority:high
 direct:  in

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    HAO
 addr    CoA   

xfrm_policy
 src:      HA
 dst:      HoA
 proto:   ANY
 type:    none
 priority:high
 direct:  out

xfrm_tmpl
 src:     HA
 dst:     HoA
 proc    RT2
 addr   CoA
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 src:      HA
 dst:      ANY
 proto:   MH
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 priority:normal
 direct:  out

BA
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 src:     HA
 dst:     ANY
 proc    ESP
 mode   TR

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   MH
 type:    BU
 priority:normal
 direct:  in

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    RT2

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    ESP
 mode  TR

*Type 2 routing header is added by MIPd.
*TR is IPsec transport mode.
*TNL is IPsec tunnel mode.

xfrm_policy
 src:      HoA
 dst:      HA
 proto:   ANY
 type:    none
 priority:high
 direct:  out

xfrm_tmpl
 src:     HoA
 dst:     HA
 proc    HAO
 level    use
 addr   CoA

xfrm_policy
 src:      HA
 dst:      HoA
 proto:   ANY
 type:    none
 priority:high
 direct:  in

xfrm_tmpl
 src:     HA
 dst:     HoA
 proc   RT2
addr    CoA
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 proto:   MH
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Figure 6: Binding update procedure to Home Agent
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Figure 7: MIPv6 and IPsec output process
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racoon can not distinct peer and fails to search
proper key. The other issue is update ISAKMP
SA end-point address. When MN moves, IKEs
on MN and HA need to detect movement in
some way and update its ISAKMP SAs be-
cause an address of those SAs is CoA. To
solve these issues, we will make racoon handle
the multiple peers listen netlink socket for the
detection and make the kernel notify address
changing via netlink socket.

6 Summary

USAGI Project implements IPv6 IPsec and
MIPv6 by using XFRM and stackable desti-
nation architecture. In this paper we describe
our design, implementation and issues. We
also describe future design of IPv6 IPsec and
MIPv6 which improves flexibility of xfrm con-
figuration.

7 future work

Our future works about MIPv6 are

• implement our new design

• make racoon support MIPv6

• NEMO

• Multihome

• vertical hand-over

Additionally we consider that we should im-
prove or change stackable destination itself be-
cause stackable destination runs after building
a packet. Thus, IPv6 packet processing is not
efficient itself because an IPv6 packet has some
extension header and the order of headers is not
always same as the order of process so that ev-
ery process searches correct point on a packet

from the head. We should improve its packet
processing with keeping xfrm architecture and
cache mechanism.
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Abstract

The X window system is generally imple-
mented by directly inserting hardware manip-
ulation code into the X server. Mode selection
and 2D acceleration code are often executed in
user mode and directly communicate with the
hardware. The current architecture provides
for separate 2D and 3D acceleration code, with
the 2D code executed within the X server and
the 3D code directly executed by the applica-
tion, partially in user space and partially in the
kernel. Video mode selection remains within
the X server, creating an artificial dependency
for 3D graphics on the correct operation of the
window system. This paper lays out an alterna-
tive structure for X within the Linux environ-
ment where the responsibility for acceleration
lies entirely within the existing 3D user/kernel
library, the mode selection is delegated to an
external library and the X server becomes a
simple application layered on top of both of
these. Various technical issues related to this
architecture along with a discussion of input
device handling will be discussed.

1 History

The X11[SG92] server architecture was de-
signed assuming significant operating assis-
tance for supporting input and output devices.
How that has changed over the years will in-
form the discussion of the design direction pro-

posed in this paper.

1.1 Original Architecture

One of the first 2D accelerated targets for X11
was the Digital QDSS (Dragon) board. The
Dragon included a 1024x768 frame buffer with
4 or 8 bits for each pixel. The frame buffer
was not addressable by the CPU, rather every
graphics operation was performed by the co-
processor. The Dragon board had only a sin-
gle video mode supporting the monitor sup-
plied with the machine. A primitive terminal
emulator in the kernel provided the text mode
necessary to boot the machine.

Graphics commands to the processor were
queued to a shared DMA buffer. The X server
would block in the kernel waiting for space in
the buffer when full. This is similar to the ar-
chitecture used by the DRI project for acceler-
ated 3D graphics today.

Keyboard and mouse support were provided
by another shared memory queue between the
kernel and X server. Abstract event struc-
tures were constructed by the kernel from the
raw device data, timestamped and placed in
the shared queue. A file descriptor would
be signalled when new data were inserted to
awaken the X server, and the X server could
also directly examine the queue indices which
were stored in the shared segment. This low-
overhead queue polling was used by the X
server to check for new input after every X re-
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quest was executed to reduce input latency.

The hardware sprite was handled in the ker-
nel; its movement was directly connected with
the mouse driver so that it could be moved at
interrupt time, leading to a responsive pointer
even in the face of high CPU load within the
X server and other applications. The keyboard
controller managed the transition from ASCII
console mode to key-transition X mode inter-
nally; abnormal termination of the X server
would leave the underlying console session
working normally.

1.2 The Slippery Slope

Early Sun workstations had unaccelerated
frame buffers. Like the QDSS above, they used
fixed monitors and had no need to support mul-
tiple video modes. As the hardware advanced,
they did actually gain programmable timing
hardware, but that was not configurable from
the user mode applications.

The X server simply mapped the frame buffer
into its address space and manipulated the pixel
values directly. Around 1990, Sun shipped the
cgsix frame buffer which included an acceler-
ator. Unlike the QDSS, the cgsix frame buffer
could be mapped by the CPU, and the acceler-
ator documentation was not published by Sun.
X11R4 included support for this card as a sim-
ple dumb frame buffer. As CPU access to the
frame buffer was slower than with Sun’s ear-
lier unaccelerated frame buffers, the result was
a much slower display.

By disassembling the provided SunWindows
driver, the author was able to construct an ac-
celerated X driver for X11R5 entirely in user
mode. This driver could not block waiting for
the accelerator to finish, rather it would spin,
polling the accelerator until it indicated it was
idle.

Keyboard and mouse support were provided by

the kernel as files from which events could be
read. The lack of any shared memory mech-
anism to signal available input meant that the
original driver would not notice input events
until the X server polled the kernel, something
which could take significant time. As there was
no kernel support for the pointer sprite, the X
server was responsible for updating it as well,
leading to poor mouse tracking when the CPU
was busy.

To ameliorate the poor mouse tracking, the
X server was modified to receive a signal
when input was present on the file descrip-
tors and immediately process the input. When
supported, the hardware sprite would also be
moved at this time, leading to dramatically im-
proved tracking performance. Still, the fact
that the X server itself was responsible for con-
necting the mouse motion to the sprite loca-
tion meant that under high CPU load, the sprite
would noticeably lag the mouse.

Kernel support for the keyboard consisted of
a special mode setting which would transform
the keyboard from an ASCII input device to
reporting raw key transition events. Because
the kernel didn’t track what state the keyboard
was in, the X server had to carefully reset the
keyboard on exit back to ASCII mode or the
user would no longer be able to interact with
the console.

Placing the entire graphics driver in user mode
eliminated the need to write a kernel driver,
but marginalized overall system performance
by forcing the CPU to busy-wait for the graph-
ics engine. Placing responsibility for manging
the sprite led to poor tracking, while requiring
the X server to always reset the keyboard mode
frequently resulted in an unusable system when
X terminated abnormally.

Fixing the kernel to address these problems
was never even considered; the problems didn’t
prevent the system from functioning, they only
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made it less than ideal.

1.3 The Dancing Bear

With widespread availability of commodity
386-based PC hardware, numerous vendors be-
gan shipping Unix (and Unix-like) operating
systems for them. These originally did not in-
clude the X window system. A disparate group
of users ported X to these systems without any
support from the operating system vendors.

That these users managed to get X running on
the early 386 hardware was an impressive feat,
but that they had to do everything without any
kernel support only increased the difficulty.

Early PC graphics cards were simple frame
buffers as far as graphics operations went, but
configuring them to generate correct video tim-
ings was far from simple. Because monitors
varied greatly, each graphics card could be pro-
grammed to generate many different video tim-
ings. Incorrect timings could destroy the mon-
itor.

Keyboard support in these early 386-based
Unix systems was very much like the Sun op-
erating system; the keyboard was essentially a
serial device and could be placed in a mode
which translated key transitions into ASCII or
placed a mode which would report the raw
bytes emitted from the keyboard.

The X server would read these raw bytes and
convert them to X events. Again, there was
latency here as the X server would not pro-
cess them except when polling for input across
all X clients and input devices. As with the
Sun driver, if the X server terminated with-
out switching the keyboard back to translated
mode, it would not be usable by the console.
This particular problem was eventually fixed in
some kernels by adding special key sequences
to reset the keyboard to translated mode.

Mouse support really was just a kernel serial
driver—PS/2 mice didn’t exist, and so bus and
serial mice were used. The X server itself
would open the device, configure the commu-
nication parameters and parse the stream of
bytes. As there was no hardware sprite sup-
port, the X server would also have to draw the
cursor on the screen; that operation had to be
synchronized with rendering and so would be
delayed until the server was idle.

Because the X server itself was managing
video mode configuration, an abnormal X
server termination would leave the video card
misconfigured and unusable as the console.
Similarly, the keyboard driver would be left in
untranslated mode, so the user couldn’t even
operate the computer blind to reboot.

This caused the X server to assume the same
reliability requirements as the operating sys-
tem kernel itself; bugs in the X server would
render the system just as unusable as bugs in
the kernel.

1.4 The Pit of Despair

With the addition of graphics acceleration to
the x86 environment, the X server extended its
user-mode operations to include manipulation
of the accelerator. As with the Sun GX driver
described above, these drivers included no ker-
nel support and were forced to busy-wait for
the hardware.

However, unlike the GX hardware, PC graph-
ics hardware would often tie down the PCI
bus while transferring data between the CPU
and the graphics card. Incorrect manipulation
of the hardware would result in the PCI bus
locking and the system not even responding
to network or disk activity. Unlike the simple
keyboard translation problem described above,
this cannot be be fixed in the operating system.

Because the graphics devices had no kernel
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driver support, there was no operating system
management of their address space mappings.
If the BIOS included with the system incor-
rectly mapped the graphics device, it fell to
the X server to repair the PCI mapping spaces.
Manipulating the PCI address configuration
from a user-mode application would work only
on systems without any dynamic management
within the kernel.

If the machine included multiple graphics de-
vices controlled through the standard VGA ad-
dresses, the X server would need to manipulate
these PCI mappings on the fly to address the
active card.

The overall goal was not to build the best sys-
tem possible, but rather to make the code as
portable as possible, even in the face of obvi-
ously incorrect system architecture.

1.5 A Glimmer of Hope

The Mesa project started as a software-only
rasterizer for the OpenGL API. By providing a
freely available implementation of this widely
accepted API, people could run 3D applica-
tions on every machine, even those without
custom 3D acceleration hardware. Of course,
performance was a significant problem, espe-
cially as the 3D world moved from simple col-
ored polygons to textures and complex lighting
environments.

The Mesa developers started adding hardware
support for the few cards for which documenta-
tion was available. At first, these were whole-
screen drivers, but eventually the DRI project
was started to support multiple 3D applica-
tions integrated into the X window system. Be-
cause of the desire to support secure direct
rendering from multiple unprivileged applica-
tions, the DRI project had to include a kernel
driver. That driver could manage device map-
pings, DMA and interrupt logic and even clean

up the hardware when applications terminated
abnormally.

The result is a system which is stable in the
face of broken applications, and provides high
performance and low CPU overhead.

However, the DRI environment remains reliant
on the X server to manage video mode selec-
tion and basic device input.

2 Forward to the Past

Given the dramatic changes in system architec-
ture and performance characteristics since the
original user-mode X server architecture was
promulgated, it makes sense to look at how the
system should be constructed from the ground
up. Questions about where support for each
operation should live will be addressed in turn,
first starting with graphics acceleration, then
video mode selection and finally (and most
briefly) input devices.

3 Graphics Acceleration

X has always directly accessed the lowest lev-
els of the system to accelerate 2D graphics.
Even on the QDSS, it constructed the register-
level instructions within the X server itself.
With the inclusion of OpenGL[SAe99] 3D
graphics in some systems, the system requires
two separate graphics drivers, one for the X
server operating strictly in 2D mode and the
other inside the GL library for 3D operations.
Improvements to the 3D support have no effect
on 2D performance.

As a demonstration of how effectively OpenGL
can implement the existing X server graphics
operations, Peter Nilsson and David Reveman
implemented the Glitz library[NR04] which
supports the Render[Pac01] API on top of the
OpenGL API. In a few months, they managed
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to provide dramatic acceleration for the Cairo
graphics library[WP03] on any hardware with
an OpenGL implementation. In contrast, the
Render implementation within the X sample
server using custom 2D drivers has never seen
significant acceleration, even three and a half
years after the extension was originally de-
signed. Only a few drivers include even half-
hearted attempts at acceleration.

The goal here is to have the X server use the
OpenGL API for all graphics operations. Elim-
inating the custom 2D acceleration code will
reduce the development burden. Using accel-
erated OpenGL drivers will provide dramatic
performance improvements for important oper-
ations now ill-supported in existing X drivers.
Work in this area will depend on the availabil-
ity of stand-alone OpenGL drivers that work in
the absence of an underlying window system.
Fortunately, the Mesa project is busy develop-
ing the necessary infrastructure. Meanwhile,
development can progress apace using the ex-
isting window-system dependent implementa-
tions, with the result that another X server is
run just to configure the graphics hardware and
set up the GL environment.

For cards without complete OpenGL acceler-
ation, the desired goal is to provide DRI-like
kernel functionality to support DMA and in-
terrupts to enable efficient implementation of
whatever useful operations the card does sup-
port. For 2D graphics, the operations need-
ing acceleration are those limited by memory
bandwidth—large area fills and copies. In par-
ticular acceleration of image composition re-
sults in dramatic performance improvements
with minimal amounts of code. The spectacu-
lar amounts of code written in the past that pro-
vide modest acceleration for corner cases in the
X protocol should be removed and those cases
left to software to minimize driver implemen-
tation effort.

This architecture has been implemented
by Eric Anholt in his kdrive-based Xati
server[Anh04]. Using the existing DRI driver
for the Radeon graphics card, he developed
a 2D X driver with reasonable acceleration
for common operations, including significant
portions of the X render API. The driver uses
only a small fraction of the Radeon DRI driver,
a significantly smaller kernel driver would
suffice for a ground-up implementation.

In summary, graphics cards should be sup-
ported in one of two ways:

1. With an OpenGL-based X server

2. With a 2D-only X server based on a sim-
ple loadable driver API.

3.1 Implications for Applications

None of the architectural decisions about the
internal X server architecture change the na-
ture of the existing X and Render APIs as the
fundamental 2D interface for applications. Ap-
plications using the existing APIs will simply
find them more efficient when the X server
provides a better implementation for them.
This means that applications needn’t migrate
to non-X APIs to gain access to reasonable ac-
celeration.

However, applications that wish to use
OpenGL should find a wider range of sup-
ported hardware as driver writers are given
the choice of writing either an OpenGL or 2D
driver, and aren’t faced with the necessity of
starting with a 2D driver just to support X.

In any case, use of the cairo graphics library
provides insulation from this decision as it sup-
ports X and GL requiring only modest changes
in initialization to select between them.
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4 Video Mode Configuration

The area of video mode selection involves
many different projects and interests; one sig-
nificant goal of this discussion is to identify
which areas are relevant to X and how those
can be separated from the larger project.

4.1 Overview of the Problem

Back in 1984 when X was designed, graphics
devices were fundamentally fixed in their rela-
tionship with the attached monitor. The hard-
ware would be carefully designed to emit video
timings compatible with the included monitor;
there was no provision for adjusting video tim-
ings to adapt to different monitors, each video
card had a single monitor connector.

Fast forward to 2004 when common video
cards have two or more monitor connectors
along with outputs for standard NTSC, SE-
CAM, or PAL video formats. The desire to
dynamically adjust the display environment to
accommodate different use modes is well sup-
ported within the Macintosh and Microsoft en-
vironments, but the X window system has re-
mained largely stuck with its 1984 legacy.

4.2 X Attempts to Fix Things

X servers for PC operating systems adapted to
simple video mode selection by creating a ‘vir-
tual’ desktop at least as large as the largest de-
sired mode and making the current mode view
a subset of that, panning the display around to
keep the mouse on the screen. For users able to
accept this metaphor, this provided usable, if
less than ideal support. Most of the time, how-
ever, having content off of the screen which
could only be reached by moving the mouse
was confusing. To help address this, the X Re-
size and Rotate extension (RandR)[GP01] was
designed to notify applications of changes in

the pixel size of the screen and allow program-
matic selection among available video modes.

The RandR extension solved the simple single
monitor case well enough, even permitting the
set of available modes to change on the fly as
monitors were switched. However, it failed to
address the wider problem of supporting mul-
tiple different video outputs and the dynamic
manipulation of content between them.

Statically, the X server can address each video
output correctly and even select between a
large display spanning a collection of out-
puts or separate displays on each video screen.
However, there is no capability to adjust these
configurations dynamically, nor even to auto-
matically adapt to detected changes in the en-
vironment.

4.3 X is Only Part of the Universe

With 2D performance no longer a signifi-
cant marketing tool, graphics hardware ven-
dors have been focusing instead on differenti-
ating their products based on video output (and
input) capabilities. This has dramatically ex-
tended the options available to the user, and in-
creased the support necessary within the oper-
ating system.

As the suite of possible video configuration op-
tions continues to expand, it seems impossi-
ble to construct a fixed, standard X extension
capable of addressing all present and future
needs. Therefore, a fully capable mechanism
must provide some “back door” through which
display drivers and user agents can communi-
cate information about the video environment
which is not directly relevant to the window
system or applications running within it.

One other problem with the current environ-
ment is that video mode selection is not a re-
quirement unique to the X window system.
Numerous other graphical systems exist which
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are all dependent on this code. Currently, that
is implemented separately for each video card
supported by each system. The MxN combina-
tion of graphics systems and video cards means
that only a few systems have support for a wide
range of video cards. Support for systems aside
from X is pretty sparse.

4.4 Who’s in Charge Here, Anyway?

X itself places relatively modest demands on
the system. The X server needs to be aware
of what video cards are available, what video
modes are available for each card and how to
select the current mode. Within that mode
there may be a wealth of information that is
not relevant to the X server; it really only
needs to know the pixel dimensions of each
frame buffer, the physical dimension of pixels
on each monitor and the geometric relationship
among monitors. Details about which video
port are in use, or how the various ports relate
to the frame buffer are not important. Infor-
mation about video input mechanisms are even
less relevant.

As the X server need have no way of inter-
preting the complexity of the video mode en-
vironment, it should have no role in managing
it. Rather, an external system should assume
complete control and let the X server interact
in its own simple way.

This external system could be implemented
partially in the kernel and partially in user-
mode. Doing this would allow the kernel to
share the same logic for video mode selection
during boot time for systems which don’t auto-
matically configure the video card suitably on
power-on. In addition, alternate graphics sys-
tems would be able to share the same API for
their own video mode configuration.

5 Input Device Support

In days of yore, the X environment supported
exactly one kind of mouse and one (perhaps of
an internationalized family) keyboard. Sadly,
this is no longer the case. The wealth of avail-
able input devices has caused no small trouble
in X configuration and management. Add to
that the relative failure of the X Input extension
to gain widespread acceptance in applications
and the current environment is relegated to em-
ulating that available in 1984.

5.1 Uniform Device Access

The first problem to attack is that of the cur-
rent hodgepodge device support where the X
server itself is responsible for parsing the raw
bytestreams coming from the disparate input
devices. Fortunately, the kernel has already
solved that problem—the new/dev/input -
based drivers provide a uniform description of
devices and standard interface to all. Con-
verting the X server over to those interfaces is
straightforward.

However, the/dev/input/mice interface
has a significant advantage in todays world; it
unifies all mouse devices into a single stream
so that the X server doesn’t have to deal with
devices that come and go. So, to switch input
mechanisms, the X server must first learn to
deal with that.

5.2 Hotplug and HAL

Mice (and even keyboards) can be easily at-
tached and detached from the machine. With
USB, the system is even automatically notified
about the coming and going of devices. What
is missing here is a way of getting that noti-
fication delivered to the X server, having the
X server connect to the new device (when ap-
propriate), notifying X applications about the
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availability of the new device and integrating
the devices events into the core pointer or key-
board event stream.

The Hardware Abstraction Layer (HAL)[Zeu]
project is designed to act as an intermediary
between the Linux Hotplug system and appli-
cations interested in following the state of de-
vices connected to the machine. By interposing
this mechanism, the complexity of discover-
ing and selecting input devices for the X server
can be moved into a separate system, leaving
the X server with only the code necessary to
read events from the devices specified by the
HAL. One open question is whether this should
be done by a direct connection between the X
server and the HAL daemon or whether an X
client could listen to HAL and transmit device
state changes through the X protocol to the X
server.

One additional change needed is to extend the
X Input Extension to include notification of
new and departed devices. That extension al-
ready permits the list of available devices to
change over time, all that it lacks is the mech-
anism to notify applications when that occurs.
Inside the X server implementation, the exten-
sion is in for some significantly more chal-
lenging changes as the current codebase as-
sumes that the set of available devices is fixed
at server initialization time.

6 Migrating Devices

With X was developed, each display consisted
of a single keyboard and mouse along with
a fixed set of monitors. That collection was
used for a single login session, and the in-
put devices never moved. All of that has now
changed; input devices come and go, comput-
ers get plugged into video projectors, multi-
ple users login to the same display. The dy-
namic nature of the modern environment re-

quires some changes to the X protocol in the
form of new or modified extensions.

6.1 Whose Mouse Is This?

Input devices are generally located in physical
proximity to the related output device. In a sys-
tem with multiple output devices and multiple
input devices, there is no existing mechanism
to identify which device is where. Perhaps
some future hardware advance will include ge-
ographic information along with the bus topol-
ogy.

The best we can probably do for now is to
provide a mechanism to encode in the HAL
database the logical grouping of input and out-
put devices. That way the X server would re-
ceive from the HAL the set of devices to use at
startup time and then accept ongoing changes
in that as the system was reconfigured.

One problem with this simplistic approach is
that it doesn’t permit the migration of input
devices from one grouping to another; one
can easily imagine the user holding a wireless
pointing device to attempt to interact with the
“wrong” display. Some mechanism for dynam-
ically reconfiguring the association database
will need to be included.

6.2 Hotplugging Video Hardware

While most systems have no ability to add or
remove graphics cards, it’s not unheard of—
many handheld computers support CF video
adapters. On the other hand, nearly all systems
do support “hotplugging” of the actual display
device or devices. Many can even detect the
presence or absence of a monitor enabling true
auto-detection and automatic reconfiguration.

When a new monitor is connected, the X server
needs to adapt its configuration to include it. In
the case where the set of physical screens are
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gathered together as a single logical screen, the
change can be reflected by resizing that single
screen as supported by the RandR extension.
However, if each physical screen is exposed to
applications as a separate logical screen, then
the X server must somehow adapt to the pres-
ence of a new screen and report that informa-
tion to applications. This will require an exten-
sion.

In terms of the existing X server implemen-
tation, the changes are rather more dramatic.
Again, it has some deep-seated assumptions
that the set of hardware under its control will
not change after startup. Fixing these will keep
developers entertained for some time.

6.3 Virtual Terminal Switching

One capability Linux has had for a long time
is the ability to rapidly switch among multi-
ple sessions with “virtual terminals.” The X
server itself uses this to preserve a system con-
sole, running on a separate terminal ensures
that the system console can be viewed by sim-
ply switching to the appropriate virtual termi-
nal. Given this, multiple X servers can be
started on the same hardware, each one on a
different virtual terminal and rapidly switched
among.

The virtual terminal mechanism manages only
the primary graphics device and the system
keyboard. Management of other graphics and
input devices is purely by convention. The re-
sult is that multiple simultaneous X sessions
are not easily supported by the standard build
of the X server. The X server targeted at a non-
primary graphics device needs to avoid config-
uring the virtual terminal. However, this also
eliminates the ability for that device to support
multiple sessions; there cannot be virtual ter-
minal switching on a device which is not asso-
ciated with any virtual terminals.

With the HAL providing some indication of
which devices should be affiliated into a sin-
gle session configuration, the X server can at
least select them appropriately. Similarly, the
X server should be able to detect which device
is the console keyboard and manage virtual ter-
minals from there. Whether the kernel needs to
add support for virtual terminals on the other
graphics/keyboard devices is not something X
needs to answer.

The final problem is that of other input devices;
when switching virtual terminals, the X server
conventionally drops its connection to the other
input devices, presuming that whatever other
program is about to run will want to use the
same ones. While that does work, it leaves
open the possibility that an error in the X server
will leave these devices connected and deny
other applications access to them. Perhaps it
would be better if the kernel was involved in
the process and directing input among multi-
ple consumers automatically as VT affiliation
changed.

7 Conclusion

Adapting the X window system to work ef-
fectively and competently in the modern envi-
ronment will take some significant changes in
architecture, however throughout this process
existing applications will continue to operate
largely unaffected. If this were not true, the
fundamental motivation for the ongoing exis-
tence of the window system would be in doubt.

Migrating responsibility for device manage-
ment out of the X server and back where it
belongs inside the kernel will allow for im-
provements in system stability, power manage-
ment and correct operation in a dynamic envi-
ronment. Performance of the resulting system
should improve as the kernel can take better ad-
vantage of the hardware than is possible in user
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mode.

Sharing graphics acceleration between 2D and
3D applications will reduce the effort needed
to support new graphics hardware. Migrating
the video mode selection will allow all graph-
ics systems to take advantage of it. This should
permit some interesting exploration in system
architecture.

Significant work remains in defining the pre-
cise architecture of the kernel video drivers;
these drivers need to support console opera-
tions, frame buffer device access and DRI (or
other) 3D acceleration. Common memory allo-
cation mechanism seem necessary, along with
figuring out a reasonable division of labor be-
tween kernel and user mode for video mode se-
lection.

Other work remains to resolve conflicts over
sharing devices among multiple sessions and
creating a mechanism for associating specific
input and output devices together.

The resulting system regains much of the fla-
vor of the original X11 server architecture.
The overall picture of a system which provides
hardware support at the right level in the archi-
tecture appears to have wide support among the
relevant projects making the future prospects
bright.
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Abstract

Readahead design is one of the crucial aspects
of filesystem performance. In this paper, we
analyze and identify the bottlenecks in the re-
designed Linux 2.6 readahead code. Through
various benchmarks we identify that 2.6 reada-
head design handles database workloads inef-
ficiently. We discuss various improvements
made to the 2.6 readahead design and their per-
formance implications. These modifications
resulted in impressive performance improve-
ments ranging from 25%–100% with various
benchmarks. We also take a closer look at our
modified 2.6 readahead algorithm and discuss
current issues and future improvements.

1 Introduction

Consider an application that reads data sequen-
tially in some fixed-size chunks. The kernel
reads data sufficiently enough to satisfy the re-
quest from the backing storage and hands it
over to the application. In the meantime the
application ends up waiting for the data to ar-
rive from the backing store. The next request
also takes the same amount of time. This is
quite inefficient. What if the kernel anticipated
the future requests and cached more data? If it
could do so, the next read request could be sat-
isfied much faster, decreasing the overall read
latency.

Like all other operating systems, Linux uses
this technique calledreadaheadto improve
read throughput. Although readahead is a great
mechanism for improving sequential reads, it
can hurt the system performance if used blindly
for random reads.

We studied the performance of the readahead
algorithm implemented in 2.6.0 and noticed the
following behavior for large random read re-
quests.

1. reads smaller chunks of data many times,
instead of reading the required size chunk
of data once.

2. reads more data than required and hence
wasted resources.

In Section 2, we discuss the readahead algo-
rithm implemented in 2.6 and identify and fix
the inefficient behavior. We explain the perfor-
mance benefits achieved through these fixes in
Section 3. Finally, we list the limitations of our
fixes in Section 4.

2 Readahead Algorithm in 2.6

2.1 Goal

Our initial investigation showed the perfor-
mance on Linux 2.6 of the Decision Support
System (DSS) benchmark on filesystem was
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about 58% of the same benchmark run on raw
devices. Note that the DSS workload is charac-
terized by large-size random reads. In general,
other micro-benchmarks like rawio-bench and
aio-stress showed degraded performance with
random workloads. The suboptimal readahead
behavior contributed significantly toward de-
graded performance. With these inputs, we set
the following goals.

1. Exceed the performance of 2.4 large ran-
dom workloads.

2. DSS workload on filesystem performs at
least 75% as well as the same on raw de-
vices.

3. Maintain or exceed sequential read perfor-
mance.

2.2 Introduction to the 2.6 readahead algo-
rithm

Figure 1 presents the behavior of 2.6.0
readahead. Thecurrent_window holds
pages that satisfy the current requests. The
readahead_window holds pages that sat-
isfy the anticipated future request. As more
page requests are satisfied by thecurrent_
window the estimated size of the next
readahead_window expands. And if
page requests miss thecurrent_window
the estimated size of thereadahead_
window shrinks. As soon as the read
request crosscurrent_window bound-
ary and steps into the first page of the
readahead_window , the readahead_
window becomes thecurrent_window
and thereadahead_window is reset. How-
ever, if the requested page misses any page
in the current_window and also the first
page in thereadahead_window , both the
current_window and the readahead_
window are reset and a new set of pages
are read into thecurrent_window . The

number of pages read in the current win-
dow depends upon the estimated size of the
readahead_window . If the estimated size
of the readahead_window drop down to
zero, the algorithm stops reading ahead, and
enters the slow-read mode till page request pat-
tern become sufficiently contiguous. Once the
request pattern become sufficiently contiguous
the algorithm re-enters into readahead-mode.

2.3 Optimization For Random Workload

We developed a user-level simulator program
that mimicked the behavior of the above reada-
head algorithm. Using this program we studied
the read patterns generated by the algorithm in
response to the application’s read request pat-
tern.

In the next few subsections we identify the bot-
tlenecks, provide fixes and then explain the re-
sults of the fix. As a running example we use a
read sequence consisting of 100 random read-
requests each of size 16 pages.

2.3.1 First Miss

Using the above read pattern, we noticed that
the readahead algorithm generated 1600 re-
quests of size one page. The algorithm penal-
ized the application by shutting down reada-
head immediately, for not reading from the be-
ginning of the file. It is sub-optimal to as-
sume that application’s read pattern is ran-
dom, just because it did not read the file from
the beginning. The offending code is at line
16 in Figure 1. Once shut down, the slow-
read mode made readahead to not resume since
the current_window never becomes large
enough. For the ext2/ext3 filesystem, the
current_window must become 32 pages
large, for readahead to resume. Since the ap-
plication’s requests were all 16 pages large,
thecurrent_window never opened. We re-
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1 for each page in the current request
2 do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 close the current_window entirely
10 fi

11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page

else // read many pages at a time (READAHEAD MODE)
16 if this is the first read request and is for the first page

of this open file instance
17 set the estimated readahead_size to half the size of
18 maximum readahead_size
19 fi

20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum
23 readahead_size
24 else
25 decrease the estimated readahead_size by 2
26 if this estimate becomes zero, shutdown readahead
27 fi

28 if the requested page is the first page in the readahead_window
29 then
30 move the pages in the readahead_window to the
31 current_window and reset the readahead_window
32 continue
33 fi
34
35 if the requested page is not in the current_window
36 then
37 delete all the page in current_window and readahead_window
38 read the estimated number of readahead pages starting
39 from the requested page and place them into the current
40 window.
41 if all these pages already reside in the page cache
42 then
43 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
44 fi
45 else if the readahead_window is reset
46 then
47 read the estimated number of readahead pages
48 starting from the page adjacent to the last page
49 in the current window and place them in the
50 readahead_window.
51 if all these pages already reside in the page cache
52 then
53 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
54 fi
55 fi
56 fi
57 fi
58 done

Figure 1:Readahead algorithm in 2.6.0
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moved the check at line 16 to not expect read
access to start from the beginning.

For the same read pattern the simulator showed
99 32-page requests, 99 30-page requests, one
16-page request, and one 18-page request to
the block layer. This was a significant improve-
ment over 1600 1-page requests seen without
these changes.

However, the DSS workload did not show any
significant improvement.

2.3.2 First Hit

The reason why DSS workload did not show
significant improvement was that readahead
shut down because the accessed pages already
resided in the page-cache. This behavior is
partly correct by design, because there is no
advantage in reading ahead if all the required
pages are available in the cache. The corre-
sponding code is at line 43. But shutting down
readahead by just confirming that the initial
few pages are in the page-cache and assum-
ing that future pages will also be in the page
cache, leads to worse performance. We fixed
the behavior, to not close thereadahead_
window the first time, even if all the requested
pages were in the page-cache. The combina-
tion of the above two changes ensured contin-
uous large-size read activity.

The simulator showed the same results as the
First-Miss fix.

However, the DSS workload showed 6% im-
provement.

2.3.3 Extremely Slow Slow-read Mode

We also observed that the slow-read mode of
the algorithm expected 32 contiguous page ac-
cess to resume large size reads. This is not

a realistic expectation for random workload.
Hence, we changed the behavior at line 9 to
shrink thecurrent_window by one page if
it lost contiguity.

The simulator and DSS workload did not show
any better results because the combination
of First-Hit and First-Miss fixes ensured that
the algorithm did not switch to the slow-read
mode. However a request pattern comprising
of 10 single page random requests followed by
a continuous stream of 4-page random requests
can certainly see the benefits of this optimiza-
tion.

2.3.4 Upfront Readahead

Note that readahead is triggered as soon as
some page is accessed in thecurrent_
window . For random workloads, this is
not ideal because none of the pages in the
readahead_window are accessed. We
changed line 45, to ensure that the reada-
head is triggered only when the last page in
the current_window is accessed. Essen-
tially, the algorithm waits until the last page
in the current_window is accessed. This
increases the probability that the pages in the
readahead_window if brought in, will get
used.

With these changes, the simulator generated 99
30-page requests, one 32-page request, and one
16-page request.

There was a significant 16% increase in perfor-
mance with the DSS workload.

2.3.5 Largecurrent_window

Ideally, the readahead algorithm must gen-
erate around 100 16-page requests. Ob-
serve however that almost all the page re-
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quests are of size 30 pages. When the algo-
rithm observes that a page request has missed
the current_window , it scraps both the
current_window and the readahead_
window , if one exists. It ends up reading
in a newcurrent_window , whose size is
based on the estimatedreadahead_size .
Since all of the pages in a given applica-
tion’s read request are contiguous, the esti-
mated readahead size tends to reach the max-
imum readahead_size . Hence, the size of
the newcurrent_window is too large; most
of the pages in the window tend to be wasted.
We ensured that the newcurrent_window
is as large as the number of pages that were
used in the presentcurrent_window .

With this change, the simulator generated 100
16-page requests, and 100 32-page requests.
These results are awful because the last page
of the application’s request almost always co-
incides with the last page of thecurrent_
window . Hence, the readahead is triggered
when the last page of thecurrent_window
is accessed, only to be scrapped.

We further modified the design to read the new
current_window with one more page than
the number of pages accessed in the present
current_window .

With this change, the simulator for the same
read pattern generated 99 17-page requests,
one 32-page request, and one 16-page request
to the block layer, which is close to ideal!

The DSS workload showed another 4% better
performance.

The collective changes were:

1. Miss fix: Do not close readahead if the
first access to the file-instance does not
start from offset zero.

2. Hit fix: Do not close readahead if the first

access to the requested pages are already
found in the page cache.

3. Slow-read Fix: In the slow-read path,
reduce one page from thecurrent_
window if the request is not contiguous.

4. Lazy-read: Defer reading the
readahead_window until the last
page in the current_window is
accessed.

5. Largecurrent_window fix: Read one
page more than the number of pages ac-
cessed in the current window if the request
misses the current window.

These collective changes resulted in an impres-
sive 26% performance boost on DSS workload.

2.4 Sequential Workload

The previously described modifications were
not without side effects! The sequential work-
load was badly effected. Trond Myklebust
reported 10 times worse performance on se-
quential reads using the iozone benchmark on
an NFS based filesystem. The lazy read op-
timization broke the pipeline effect designed
for sequential workload. For sequential work-
load, readahead must be triggered as soon as
some page in the current window is accessed.
The application can crunch through pages in
the current_window as the new pages get
loaded in thereadahead_window .

The key observation is that upfront readahead
helps sequential workload and lazy readahead
helps random workload. We developed logic
that tracked the average size of the read re-
quests. If the average size is larger than the
maximum readahead size, we treat that work-
load as sequential and adapt the algorithm to
do upfront readahead. However, if the average
size is less than the maximumreadahead_
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1 for each page in the current request ; do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 shrink current_window by one page
10 fi
11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page

else // read many pages at a time (READAHEAD MODE)
16-17 if this is the first read request for this open file-instance ; then
18 set the estimated readahead_size to half the size of maximum readahead_size
19 fi
20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum readahead_size
23 else
24 decrease the estimated readahead_size by 2
25 if this estimate becomes zero, shutdown readahead
26 fi
27 if requested page is contiguous to the previously requested page
28 then
29 Increase the size of the present read request by one more page.
30 else
31 Update the average size of the reads with the size of the previous request.
32 fi
33 if the requested page is the first page in the readahead_window
34 then
35 move the pages in current_window to the readahead_window
36 reset readahead_window
37 continue
38 fi
39-40 if the requested page is not in the current_window ; then
41 delete all pages in current_window and readahead_window
42 if this is not the first access to this file-instance
43 then
44 set the estimated number of readahead pages to the

average size of the read requests.
45 fi
46 read the estimated number of readahead pages starting from

the requested page and place them into the current window.
47 if this not the first access to this file instance and

all these pages already reside in the page cache
48 then
49 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
50 fi
51 else if the readahead_window is reset and if the average

size of the reads is above the maximum readahead_size
52 then
53 read the readahead_window with the estimated
54 number of readahead pages starting from the
55 page adjacent to the last page in the current window.
56 if all these pages already reside in the page cache
57 then
58 shrink the estimated readahead_size by 1 and

shutdown readahead if the estimate touches zero
59 fi
60 fi
61 fi
62-63 fi ; done

Figure 2:Optimized Readahead algorithm
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size , we treat that workload as random and
adapt the algorithm to do lazy readahead.

This adaptive-readahead fixed the regression
seen with sequential workload while sustaining
the performance gains of random workload.

Also we ran a sequential read pattern through
the simulator and found that it generated large
size upfront readahead. For large random
workload it hardly read ahead.

2.4.1 Simplification

Andrew Morton rightly noted that reading an
extra page in thecurrent_window to avoid
lazy-readahead was not elegant. Why have
lazy-readahead and also try to avoid lazy-
readahead by reading one extra page? The
logic is convoluted. We simplified the logic
through the following modifications.

1. Read ahead only when the average size
of the read request exceeds the maximum
readahead_size . This helped the se-
quential workload.

2. When the requested page is not in
the current_window , replace
the current_window , with a new
current_window the size of which
is equal to the average size of the
application’s read request.

This simplification produced another percent
gain in DSS performance, by trimming down
thecurrent_window size by a page. More
significantly the sequential performance re-
turned back to initial levels. We ran the above
modified algorithm on the simulator with var-
ious kinds of workload and got close to ideal
request patterns submitted to the block layer.

To summarize, the new readahead algorithm
has the following modifications.

Figure 3: Progressive improvement in DSS
benchmark, normalized with respect to the per-
formance of DSS on raw devices.

1. Miss fix: Do not close readahead if the
first access to the file-instance does not
start from offset zero.

2. Hit fix: Do not close readahead if the first
access to the requested pages are already
found in the page cache.

3. Slow-read Fix: Decrement one page from
the current_window if the request is
not contiguous in the slow-read path.

4. Adaptive readahead: Keep a running
count of the average size of the applica-
tion’s read requests. If the average size
is above the maximumreadahead_
size , readahead up front. If the request
misses thecurrent_window , replace
it with a newcurrent_window whose
size is the average size of the application’s
read requests.

Figure 2 shows the new algorithm with all the
optimization incorporated.

Figure 3 illustrates the normalized steady in-
crease in the DSS workload performance with
each incremental optimization. The graph is
normalized with respect to the performance of
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DSS on raw devices. Column 1 is the base
performance on filesystem. Column 2 is the
performance on filesystem with the hit, miss
and slow-read optimization. Column 3 is the
performance on filesystem with first-hit, first-
miss, slow-read and lazy-read optimization.
Column 4 is the performance on filesystem
with first-hit, first-miss, slow-read, and large
current_window optimization. Column 5
is the performance on filesystem with first-hit,
first-miss, slow-read, and adaptive read simpli-
fication. Column 6 is the performance on raw
device.

3 Overall Performance Results

In this section we summarize the results col-
lected through simulator, DSS workload, and
iozone benchmark.

3.1 Results Seen Through Simulator

We generated different types of input read pat-
terns. There is no particular reason behind
these particular read pattern. However, we en-
sured that we get enough coverage. Overall
the read requests generated by our optimized
readahead algorithm outperformed the original
algorithm. The graphs refer to our optimized
algorithm as 2.6.7 because all these optimiza-
tions are merged in the 2.6.7 release candidate.

Figure 4 shows the output of readahead algo-
rithm with and without optimization for 30-
page read request followed by 2-page seek, re-
peated 984 times.

Figure 5 shows the output of readahead algo-
rithm with and without optimization for 16-
page read request followed by 117-page seek,
repeated 100 times.

Figure 6 shows the output of readahead algo-
rithm with and without optimization for 32-

2.6.0 2.6.7
Average Size 31 30
Pages Read 61010 29535

Wasted Pages 31490 15
No Of Read Requests 1970 987

Figure 4: Application generates 30-page read
request followed by 2-page seek, repeating 984
times. Totally 29520 pages requested.

2.6.0 2.6.7
Average Size 1 16
Pages Read 1600 1600

Wasted Pages 0 0
No Of Read Requests1600 100

Figure 5: Application generates 16-page read
request followed by 117-page seek, repeating
100 times. Totally 1600 pages requested.
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2.6.0 2.6.7
Average Size 1 31.95
Pages Read 32000 32009

Wasted Pages 0 9
No Of Read Requests32000 1002

Figure 6: Application generates 32-page read
request followed by 3-page seek, repeating
1000 times. Totally 32000 pages requested.

page read request followed by 3-page seek, re-
peated 1000 times.

Figure 7 shows the output of readahead algo-
rithm with and without optimization for 32-
page read request followed by 68-page seek,
repeated 1000 times.

Figure 8 shows the output of readahead algo-
rithm with and without optimization for 40-
page read request followed by 5-page seek, re-
peated 1000 times.

Figure 9 shows the output of readahead al-
gorithm with and without optimization for 4-
page read request followed by 96-page seek,
repeated 1000 times.

Figure 10 shows the output of readahead al-
gorithm with and without optimization for 16-
page read request followed by 0-page seek, re-
peated 1000 times.

2.6.0 2.6.7
Average Size 31.31 31.91
Pages Read 93970 32099

Wasted Pages 61970 99
No Of Read Requests 3001 1006

Figure 7: Application generates 32-page read
request followed by 68-page seek, repeating
1000 times. Totally 32000 pages requested.

2.6.0 2.6.7
Average Size 31.13 31.91
Pages Read 50810 51176

Wasted Pages 10801 11176
No Of Read Requests 1631 1601

Figure 8: Application generates 40-page read
request followed by 5-page seek, repeating
1000 times. Totally 40000 pages requested.
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2.6.0 2.6.7
Average Size 30.94 4.02
Pages Read 61914 4023

Wasted Pages 57914 23
No Of Read Requests 2001 1001

Figure 9: Application generates 4-page read
request followed by 96-page seek, repeating
1000 times. Totally 4000 pages requested.

2.6.0 2.6.7
Average Size 30.08 31.85
Pages Read 16031 16050

Wasted Pages 31 50
No Of Read Requests 533 504

Figure 10:Application generates 16-page read
request with no seek, repeating 1000 times. To-
tally 16000 pages requested.

3.2 DSS Workload

The configuration of our setup is as follows:

• 8-way Pentium III machine.

• 4GB RAM

• 5 fiber-channel controllers connected to
50 disks.

• 250 partitions in total each containing a
ext2 filesystem.

• 30GB Database is striped across all these
filesystems. No filesystem contains more
than one table.

• Workload is mostly read intensive, gener-
ating mostly large 256KB random reads.

With this setup we saw an impressive 26% in-
crease in performance. The DSS workload on
filesystems is roughly about 75% to DSS work-
load on raw disks. There is more work to do,
although the bottlenecks may not necessarily
be in the readahead algorithm.

3.3 Iozone Results

The iozone benchmark was run a NFS based
filesystem. The command used wasiozone

-c -t1 -s 4096m -r 128k . This com-
mand creates one thread that reads a file of
size 4194304 KB, generating reads of size 128
KB. The results in Table 1 show an impres-
sive 100% improvement on random read work-
loads. However we do see 0.5% degradation
with sequential read workload.

4 Future Work

There are a couple of concerns with the above
optimizations. Firstly, we see a small 0.5%
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Read Pattern 2.4.20 2.6.0
2.6.0 +

optimization
Sequential Read 10846.87 14464.20 13614.49

Sequential Re-read 10865.39 14591.19 13715.94
Reverse Read 10340.34 10125.13 20138.83
Stride Read 10193.87 7210.96 14461.63

Random Read 10839.57 10056.49 19968.79
Random Mix Read 10779.17 10053.37 21565.43

Pread 10863.56 11703.76 13668.21

Table 1:Iozone benchmark Throughput in KB/sec for different workloads.

degradation with the sequential workload using
the iozone benchmark. The optimized code as-
sumes the given workload to be random to be-
gin with, and then adapts to the workload de-
pending on the read patterns. This behavior can
slightly affect the sequential workload, since it
takes a few initial sequential reads before the
algorithm adapts and does upfront readahead.

The optimizations introduce a subtle change
in behavior. The modified algorithm does
not correctly handle inherently-sequential clus-
tered read patterns. It wrongly thinks that
such read patterns seek after every page-read.
The original 2.6 algorithm did accommodate
such patterns to some extent. Assume an
application with 16 threads reading 16 con-
tiguous pages in parallel, one per thread.
Based on how the threads are scheduled, the
read patterns could be some combination of
those 16 pages. An example pattern could
be 1,15,8,12,9,6,2,14,10,7,5,3,4,11,12,13. The
original 2.6.0 readahead algorithm did not care
which order the page requests came in as long
as the pages were in the current-window. With
the adaptive readahead, we expect the pages to
be read exactly in sequential order.

Issues have been raised regularly that the
readahead algorithm should consider the size
of the current read request to make intelligent
decisions. Currently, the readahead logic bases
its readahead decision on the read patterns seen
in the past, including the request for the cur-

rent page without considering the size of the
current request. This idea has merit and needs
investigation. We probably can ensure that we
at least read the requested number of pages if
readahead has been shutdown because of page-
misses.

5 Conclusion

This work has significantly improved random
workloads, but we have not yet reached our
goal. We believe we have squeezed as much as
possible performance from the readahead algo-
rithm, though there is some work to be done to
improve some special case workloads, as men-
tioned in Section 4. There may be other sub-
systems that need to be profiled to identify bot-
tlenecks. There is a lot more to do!

6 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines, Incorporated in the United States,
other countries, or both.

Other company, product, and service names may be
trademark or service marks of others.
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Abstract

Linux has seen a lot of new features and de-
velopments in the last years in order to ac-
commodate better scalability, interactivity, re-
sponse time and POSIX compliance. With
these changes, Telecom developers began to
get serious about using Linux and started port-
ing their systems to it. By doing that they
brought new usage models and needs to the
community; and among those needs was sup-
port for threads, mutual exclusion, priority in-
version protection and robust synchronization
for mission critical and fault-proof systems on
both timesharing and soft real-time environ-
ments. This paper describes our experiences
trying to meet this need, the current state and
where are we headed. We will detail how orig-
inally we tried to modify the futex code, but
later found we had to abandon that in favor of
a similar design based on a layered implemen-
tation. This implementation accommodates a

kernel and user space locking and synchroniza-
tion infrastructure that will meet the require-
ments of those applications needing to use and
port complex multithreaded real-time code.

1 A look at the requirements

The Carrier Grade Working group, or CGL,
was created under the auspices of the OSDL;
it provides a meeting point for all parties who
share an interest on Linux use for Telecom:
network equipment vendors, Linux distributors
and developers, carriers, etc.

It was in this forum where missing features
were identified. Carrier Grade Linux needed
good soft real-time1 features, specially with
multi-threaded programs. As well, it needed a
common feature provided by Solaris’ mutexes

1For short, we’ll use real-time to refer tosoft real-
time.
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that was not present in Linux:robustness.

This project was started to provide a kernel
synchronization infrastructure (fusyn) with the
indicated characteristics, as well as the proper
modifications to the NPTL user space library
(RTNPTL) for it to use the new infrastructure
and provide the new features.

The basic immediate requirements could be
summarized in:

• The infrastructure should provide the
primitives needed by NPTL to support the
following POSIX tags:

– TPS: thread priority scheduling

– TPI: priority inheritance in mutexes

– TPP: priority protection in mutexes

Or simply: anything that is needed for
soft-real time support.

• The implementation should support ro-
bust mutexes similar to those of Solaris.

• The implementation should provide
equivalent features at the kernel level for
use by drivers and subsystems.

With this in mind, we aimed to satisfy the fol-
lowing detailed requirements:

1. mutexes and conditional variables must
work according to real-time expectancies

(a) All operations (lock, unlock, prior-
ity promotion and demotion, etc.)
should be deterministic in time,
and O(1) when possible (except of
course, for waits).

(b) The order of lock acquisition by
waiters (in mutexes) and wake up (in
conditional variables) has to be de-
termined by the scheduling proper-
ties of each blocked task/thread.

(c) Minimization of priority inversion
(given the importance of this item, it
will be treated in its own section):

i. lock stealing: in SMP systems,
during on the acquisition of the
lock a lower priority thread can
steal the lock from a higher pri-
ority thread.

ii. when a high priority thread A
is waiting for a lower priority
owner B to relinquish the mu-
tex and B is preempted by a
medium priority thread C.

A. priority protection

B. priority inheritance

2. Robustness: when a mutex owner dies, the
mutex switches to adead-ownerstate and
the first waiter gets ownership with a spe-
cial error code.

3. Uncontested locks/unlocks must happen
without kernel intervention.

4. Deadlock detection

As well, in order to provide the benefits of this
infrastructure to all the levels of a Linux sys-
tem, it must be possible to use it not only by the
user space code, but also by the kernel code.

1.1 The real time expectancies

Real-time is all about beingdeterministic, so
all algorithm execution times need to be as pre-
dictable or bounded as possible. UsingO(1)
algorithms helps with this2.

2It is possible to be deterministic with aO(f(N))
operation, as long asf(N) is known; however, in most,
if not all, of the cases involving mutex operation, it
is highly impractical or plainly impossible to find out
f(N), and thus a possibly simpler implementation has
to be replaced with one potentially more complex, but
O(1).
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POSIX dictates that upon unlock of a mutex,
the scheduling policy shall determine who is
the next owner. An obvious way of doing this
would be to wake up all of the waiters and
let them compete for the lock–the scheduler
would determine that the highest priority task
would get there first.

However, this causes scheduling storms, un-
necessary context switches and general avoid-
able overhead. It is easier and more effective to
determine which is the highest priority waiter
and only wake that one up. To implement this
task in anO(1) way, we need to queue the wait-
ers in a sorted list that provides constant time
queuing and unqueuing. On unlock or wake up
time, the first waiter in the list will be the high-
est priority one.

1.2 Priority inversion

This condition happens when a lower prior-
ity thread blocks a higher priority one. The
most general case (Figure 1) is the lower prior-
ity thread that holds a resource needed by the
higher priority one–a situation that has to be
avoided–as much as possible. As indicated be-
fore, we aim to solve three different flavors.

The first islock stealing. For performance rea-
sons, to avoid the convoy phenomenon3 [1], the
unlockoperation is done by unlocking the mu-
tex and then waking up the first waiter (eg: A).
The waiter claims the mutex and then becomes
owner. On a single CPU system it can be pre-
empted only by higher priority tasks4, so lock
stealing is not a problem; however, on multi-
CPU systems, a lower priority task C running
on another CPU could claim the lock just be-

3Summarizing: if task A (high priority) unlocks by
transferring ownership to the first waiter B (lower prior-
ity), it forces a context switch to B, and if then A recon-
tends for the lock it will create a convoy of waiters that
is difficult to dissolve.

4We will use the terms tasks or threads indistinctly to
refer to any entity that can acquire a mutex.

Figure 1: A case of priority inversion: high-
priority task B misses its deadline because
lower-priority task A holds for too long a re-
source it needs, as mid-priority task C pre-
empted it. A lower priority task C blocks a
high-priority task B.

fore B had the chance to do it and it would cre-
ate a priority inversion scenario (see Figure 2).

The solution to this problem is simple: do
not unlock the mutex, just transfer the owner-
ship without unlocking it. We call thisserial-
izedunlock (versusparallel, wake and claim).
This method severely limits performance in
many cases, because it forces a context switch
(causing the already mentioned convoy phe-
nomenon). There has to be a compromise be-
tween protection and performance and by of-
fering the option to unlock a mutex in either
way, a developer can dynamically adapt ac-
cording to her needs.

The other two cases (of priority inversion) are
more complex. They solve the scenario de-
picted in Figure 1 where task B is waiting for
a mutex owned by task A and task C preempts
task A. When the priorities arep(B) > p(C) >
p(A), we have a priority inversion; task B will
miss its deadline because C is blocking A from
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Figure 2: Low priority task C running on CPU0
steals the lock from higher priority task B run-
ning on CPU1.

completing its mutex-protected critical section.

There are different ways to deal with this prob-
lem, but the most common involve bumping up
the priority of the owner of the lock to a certain
value.

In priority protection (or PP), apriority ceil-
ing is determined as part of the design cycle.
This is normally the highest of all the priori-
ties among the threads that will share a given
mutex; as soon as it is locked, the priority of
the owner is raised to match that of the pri-
ority ceiling (see Figure 3. When a thread
owns many priority-protected mutexes, its pri-
ority is that of the highest ceilings. This ap-
proach is simple and guaranteed to be trouble
free. However, it is laborious; determining the
priority ceiling might not be an easy task at all
in a moderately complex system where mod-
ules from different parties need to interact.

Enterpriority inheritance (PI): in this case we

Figure 3: Priority protection: task A locks and
its priority is promoted to the prioceiling; task
C cannot preempt it and it finishes its critical
section (and is demoted) in time for B to meet
its deadline.

have a similar situation, but there is no prior-
ity ceiling. What happens in this case is that
the priority of the owner is boosted up to that
of the highest priority waiter, the first one (see
Figure 4). Similarly to the previous case, if a
task owns many PI-mutexes, its priority will be
the highest of them all. There is no need now
to do design-time analysis; the system solves it
automatically. Of course, there are drawbacks–
it does not come for free. This operation is
more expensive, especially in the presence of
owner/wait chains5. The propagation of the
priority boost can be long (and will beO(N)
on the depth of the chain) and this can lead to
unexpected surprises if the interaction across
different threads and mutexes in the system is
not kept on a tight leash (see [2] and [3]).

5Task A waits for mutex M that is owned by task B
that is waiting for mutex N that is owned by task C that
is waiting for mutex O. . .
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Figure 4: Priority inheritance: Task A (lock
owner) is promoted to task B’s priority when
B waits for the lock; as soon as A unlocks, it
gets demoted and B gets the lock. C never has
a chance to preempt A.

Priority inheritance needs to be used with care–
it is not a straight solution for a system with
deadlock problems to make a mutex PI. What
if that mutex is being shared with some low pri-
ority timesharing task that is not aware of the
fact? In these cases, if a task does some kind
of CPU spinning, the system is dead. The con-
cept of priority inheritance and the simplicity
it gives to designs provides enough rope as to
hang oneself, as the effects can propagate way
far more than expected.

1.3 Robustness

Mutex robustness is a key feature for imple-
menting systems tolerant to certain kind of fail-
ures. A certain task A is holding a normal,
non-robustmutex M with one or more wait-
ersWn blocked in the kernel. If it receives a
fatal signal and is killed, the mutex will still
be locked and the waiters will be never wo-
ken up. There are different ways to detect and
recover from this situation, but they usually
involve painful and complicated designs with
watchdogs, timeouts, etc.

Robustness embeds all these in the mutex
mechanism. When a task owns a mutex, the
mutex knows who is its owner, and asks to be
notified if the owner dies. If and when this
happens, the mutex will be moved to an spe-
cial consistency state, dead-ownerand effec-
tively unlocked; this will give control to the
first waiter (or remain unlocked asdead-owner
until somebody else claims it).

Threads claiming a dead mutex will re-
ceive ownership with a special error code,
-EOWNERDEAD. This serves as a warning:the
data protected by this mutex might be inconsis-
tent, it should be fixed. The new locker can do
different things at this point:

• it can ignore it (scary choice!)

• it might be unqualified for the job and pass
the responsibility on to somebody else (by
unlocking).

• it can try to fix the data and succeed–then
it will heal the mutex, setting its consis-
tency state back to normal and proceed.

• or it can fail and pass it on. . .

• or it can fail and deem the state com-
pletely broken; to notify about this sit-
uation, it can mark the mutexnot-
recoverable, so all waiters and future
claimers will get a-ENOTRECOVERABLE

error code so other recovery strategies can
kick in.

The most important aspect to take into account
is that the user of the mutex has means to detect
this situation instantly without having to rely
on timeouts or other overheads.

1.4 Deadlock detection

A situation of deadlock happens when a task
A that owns a mutex M tries to lock it again.
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This is the simplest case, of course. The gen-
eral case is:

• taskT1 owns mutexM1 and tries to lock
mutexM2

• taskT2 owns mutexM2 and is waiting to
lock mutexM3

• taskT3 owns mutexM3 and is waiting to
lock mutexM4

• . . .

• taskTN owns mutexMN and is waiting to
lock mutexM1

Construct like these are calledownership-wait
chains. And it is obvious that in this particular
case, this chain would deadlock, asM1 would
never be released ifT1 is allowed to block wait-
ing for M2.

The only way to detect this situation is, upon
lock time, to walk the chain and verify if the
task that is about to lock owns any lock on the
chain.

By definition this is a linear operation that is
going to take time to execute. The best way to
avoid this expensive check is to make sure our
design uses proper locking techniques (like for
example, acquire and release multiple locks in
LIFO order).

2 The first try: rtfutex

Once the requirements were laid out, we first
tried modifying the futex code inkernel/

futex.c , adding functionality while main-
taining the original futex interface.

In a glimpse, the locking mode used with fu-
texes works like this (see [4]): there is a word
in user space that represents the mutex. The

fast lock operation is performed entirely in user
space; if the word is unlocked, then it becomes
locked and work proceeds. If it is locked, the
program sets a different value in the user space
word and then goes down to the kernel and
waits.

When the unlock operation is performed, the
unlocker will check the value of the word; if
it indicates that only a fast-lock was performed
(and thus there are no waiters in the kernel), it
will be simply unlocked in user space; other-
wise, it will ask the kernel to wake up one or
more waiters. These waiters will come back
to user space and reclaim the lock; only one
will get it, the rest will go back to the kernel to
sleep6.

With this in mind, we performed the following
modifications:

• To allow wake-the-highest-priority waiter
behavior on a bound time, the hash table
model had to be modified.

One node per waiter was replaced by one
node per futex, and each node would have
its own priority-ordered list of waiters.
Although the lookup of the futex-node in
the hash table isO(N), at least the manip-
ulation of the waiter-list (or wait list) can
be madeO(1).

This introduced the need of having to al-
locate the futex-node, as it could not live
in the stack of some waiter7.

• In order to support robustness, dead-
lock detection and priority inheritance, the

6note this means that the lock is actually unlocked
for an unspecified amount of time in an unlock to lock
transition.

7This raises extra issues; allocation can fail and is
not time-predictable; it can be slow, so it is needed
to cache the nodes (as normally they are frequently
reused); caching means a strategy is needed to purge
them (garbage collection).
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concept ofownershiphad to be added to
the futex. This would savewhich task
owns the futex on each moment. It also
required to note in the task struct which
futex was being waited for, as well as a
list of owned futexes.

• A different method had to be used for
locking in user space, the fast lock and un-
lock paths.

The user space word representing the fu-
tex would store the PID of the locker
while on the fast path and indicate with
a bit the presence of waiters in the ker-
nel. This way if a locker died after having
done a fast-lock operation in user space
(and thus the kernel not having any notion
of it), a potential waiter could check if the
lock was stale8. When a futex went into
the dead-owneror not-recoverablestate,
the kernel would modify the user space
word with special values to mark these
states.

As well, the unlock operation had to al-
ways be serialized, with the kernel as-
signing ownership and modifying the user
space word, ensuring robustness9 and that
no lock stealing happened.

This design (and its implementation) was bro-
ken: the futexes are designed to be queues, and
they cannot be stretched to become mutexes–
it is simply not the same. The result was a
bloated implementation.

As well, the code itself missed many fine (and
not so fine) details:

8This is a very simple method that cannot guarantee
conflicts when PIDs are reused; we implemented a naive
task-signature system to try to avoid this case. We didn’t
realize how broken it was until later.

9If waiters coming up from the kernel died before
locking again and there were still some others waiting,
the kernel would never know about it and the remaining
tasks would wait for ever.

• it suffered from race conditions: the mod-
ification of the different back pointers in
the task struct was being done without
protection.

• the priority inheritance engine was very
limited (to the most simple cases of in-
heritance) and it didn’t supportSCHED_

NORMALtasks.

• serialized unlocking is slow, it causes the
convoy phenomenon, and the code did not
provide flexibility to allow the user to bal-
ance performance vs. robustness or prior-
ity inversion protection depending on the
situation.

• it didn’t provide the functionality at the
kernel level, for usage by kernel code.

• it didn’t support changing the priority of a
task while it was waiting for a futex while
at the same time properly repositioning it
on the wait list according to its new prior-
ity.

While broken, it was perfect as a prototype–
it gave an indication of what was wrong, how
things should not be done and hinted which
methods were a good idea. It was time to re-
think all over again.

3 Trying again: fusyn

With rtfutexes we found that stretched designs
are not a good idea, however, experience tells
layered designs are a better idea.

The fusyn design follows the same basic prin-
ciples of the futexes, providing the same ser-
vice in kernel and user space. Enforcing a strict
modularity among the different units that com-
prise it, it is possible to accomplish much more
with less bloat and complexity.
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The four main blocks that comprise the fusyn
architecture are:

• fuqueuesare the wait queues (very similar
to the Linux kernel’s waitqueues) and are
the basic building block.

• fulocksprovide the mutex functionality by
adding the concept of ownership on top of
fuqueues and dealing with all the priority
promotion.

• vlocators serve as the link between
user space words and the kernel ob-
jects (fuqueues and fulocks) associated to
them.

• vfulock syncmaintains synchronization
between the fulocks and thevfulocks, the
user space word associated to them. It
also is responsible for identifying owners
from the cookies stored in the vfulocks.

fuqueues

We start with a simple queue struc-
ture, struct fuqueue , declared in
linux/fuqueue.h . It merely contains a
priority-sorted list where to register the waiters
for the queue, a spinlock and an operations
pointer. The operations are for managing a
reference count (used when associated to user
space), for canceling a task’s wait on a fuqueue
and notifying the fuqueue of a priority change
on a waiter (most functions are defined in
kernel/fuqueue.c ).

A fuqueue can be initialized, waited on with
fuqueue_wait() or a number of waiters for
it can be woken up withfuqueue_wake() .
All the functions for doing that are conve-
niently broken up so they can be used by other
layers.

Whenever a task waits on a fuqueue, it
registers itself by filling up a struct

Figure 5: A fuqueue with three waiters,
p(A) > p(B) > p(C), showing the different
pointers on each structure.

fuqueue_waiter ; that structure and the
fuqueue being waited for are linked to from
the task struct (struct fuqueue_waiter

*fuqueue_waiter and struct fuqueue

fuqueue_wait ), so that the signal delivery
code (throughfuqueue_waiter_cancel() )
and the scheduler priority changing functions
(through fuqueue_waiter_chprio() ) can
properly locate which fuqueue to act upon.
A spinlock protects these pointers in the task
structure.

This satisfies the real-time requirements of
wake-up order by priority. As well, the addi-
tion to the waiters list is bounded in time to the
maximum number of different priority levels
used–being this 140 for the Linux kernel, that
makes the addition operationO(140) ≡ O(1).

Note the fuqueue structure has to be protected,
similarly to waitqueues with an IRQ-safe spin-
lock, as they will be accessed for wake-up from
atomic contexts.

fulocks

Once we have a queue structure that is real-
time friendly, we can build mutexes on top of
them. Adding the concept of ownership, we
create astruct fulock in linux/fulock.

h that contains a fuqueue (for the waiters), a
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pointer to a task struct (the owner), some flags
and a node for a priority-sorted ownership list
(to register all the fulocks owned by a task).

Let’s ignore for a while the secondary effects
of priority inheritance and protection. Come
lock time, fulock_lock() : if the fulock is
unlocked, the current task is assigned owner-
ship by setting the owner pointer in the fu-
lock to point to the task, the fulock is added
to the task->fulock_olist ownership list
through itsolist_node .

If the fulock is locked (unless just try-locking)
the task waits on the fulock’s fuqueue; when
woken up, depending on the result code of the
wake up, it will own the lock (and thus pro-
ceed) or try again (serialized vs. parallelized
unlocks).

The unlock operation,fulock_unlock() is
quite simple: if the unlocker desires to per-
form a serialized wakeup, it just changes the
owner to be the first waiter, removes it from
the wait list and wakes him up with a 0 re-
sult code. If the unlock has to be parallelized,
it unlocks the fulock and unqueues and wakes
up the first waiter (or the firstN waiters) with
a -EAGAIN code–that will lead the sleeping
__fulock_lock() call to retry. The unlock
mode can be automatically determined based
on the policy of the first waiting task: serialized
for real-timers, parallelized for timesharers.

All this code is defined inkernel/fulock.c .

Robustness

Robustness comes into play with a hook in
kernel/exit.c:do_exit() . When a pro-
cess dies,exit_fulocks() goes over the
list of fulocks owned by the exiting task; for
each of them, the operation registered for task
exit is executed, and that leads to setting the
dead flag (FULOCK_FL_DEAD) and serially un-
locking the fulock to the next waiter with the

-EOWNERDEADerror code10.

This introduces the need to have a way for the
user to switch the fulock from one state to the
other. fulock_ctl() provides this capabil-
ity.

Deadlock detection

The process of checking for deadlocks is done
via a hook in the__fulock_lock() function
that calls__fulock_check_deadlock() .

This function will query the owner of the fu-
lock the current task wants to wait for and in-
quire which fulock this owner is waiting for.
If not waiting for anyone, there is no possible
deadlock, so all resources are dropped and suc-
cess is returned.

If it is waiting, the fulock is safely acquired
(the ugliest part is to get the spinlocks properly
as well as the reference counts); if the owner
is the current task, then that is a deadlock; if
not, then the operation repeats with the owner
of the new fulock.

Priority inheritance and protection

Now let’s take priority inheritance and protec-
tion into consideration. The key here is that in
the priority-sorted list (plist), every node, in-
cluding the list head, has a priority field, and
that in a consistent plist, the priority of the list
is that of the head, that in turn is that of the
highest priority node queued.

Thus, by virtue of the priority-sorted list, each
fuqueue has apriority. Fulocks inherit this
property and when doingpriority inheritance ,
they set that priority on the node for the
priority-based ownership list.Priority pro-
tectedfulocks set as priority that of the priority

10as well, a warning is issued if the fulock wasn’t de-
clared robust.
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Figure 6: A task that owns four contested fulocks (two PI, one PP and one normal) showing the
priority propagation flow. Note how fulock I, not being priority inheriting or protecting, has the
minimal priority, -1 (which effectively disables all side effects).

ceiling of the fulock.

This way, each task has a list of the fulocks it
owns sorted by priority. The ordering of the
list means that the first fulock in the list has the
minimum priority the task should have to meet
the priority protection and/or priority inheri-
tance criteria–and thus, the scheduler just has
to select as effective task priority the highest
between the task’s final dynamic priority and
that of the first fulock on its ownership list11.
See Figure 6.

The process then becomes extremely simple:
when a task queues waiting for a fulock (in__

fuqueue_waiter_queue() ), it might mod-
ify the plist priority because it sets a new
higher priority–the function returns!0 in this
case. This is propagated, with__fulock_

11This is accomplished with a simple mechanism (im-
provement required to reduce invasiveness) that adds the
concept of boost priority to the task struct (boost_
prio ), and modified through__prio_boost() .

prio_update() to the fulock’s ownership list
node,fulock->olist_node , that as we said
above, is inserted in the ownership list of the
fulock owner. The propagation could mean
that a new maximum might be set in the own-
ership list, case in which the boost priority is
updated for the scheduler to pick it up.

On top of that, the change might need to be
propagated further on if the fulock owner is
waiting for another fuqueue or fulock.__

fuqueue_waiter_chprio() will take care
of propagating that change until a task is
reached that is higher priority or is not waiting
for a priority-inheriting fulock.

Linking to user space

So far, the infrastructure presented is accessi-
ble only from kernel space. We have to al-
low user space programs to take advantage of
these features, and for that, we copy the futex’s
method: associate a virtual address (word) to
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Figure 7: Testing priority inheritance: four threads of increasing priority (TL < TP < TB < TF) in
an infinite loop counting up (progress); TF stays in CPU1 as a reference; TP sleeps from time to
time in CPU0 to give TL a change; TL progresses what TP allows it. When TB starts (at30s), it
claims a priority-inheriting fulock owned by TL and thus it gets boosted, TP doesn’t progress any
more. At almost40s, TB is down prioritized and that deboosts TL, allowing TP to progress again.

an object in memory (struct vlocator ).

The API exposed inlinux/vlocator.h pro-
vides a generic method for doing this by just
embedding a vlocator; as well, this vlocator
provides a reference-counting interface to sim-
plify the object’s life cycle management. And
when it’s use count is zero, it will be automati-
cally disposed of12.

This also improves scalability a little bit as the
only global lock in the vlocator hash table is
taken just to do the look up; once found, the
vlocator is referenced before dropping the lock.

12Here is where the caching kicks in; the hash table
is cleaned up of zero ref-counted items every certain
amount of time, allowing for reuse.

ufuqueues and vfuqueues: imitating futexes

We need to create an interface equal to that
of futexes for implementing conditional vari-
ables with real-time friendly functionality (for
the wake up ordering).

We create astruct ufuqueue where we em-
bed a vlocator and a fuqueue. A thin adap-
tation layer (sys_ufuqueue_wait() and
sys_ufuqueue_wake() ) will get the system
call from user space, do the look up using the
vlocator API, verify that the user space word
(vfuqueue ) hasn’t changed and pass it down
to the fuqueue layer.

The rest of the code inkernel/ufuqueue.c

deals with creating the operation functions for
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the vlocator structure.

Exposing the fulocks to user space

The same mechanism is used for exposing the
fulocks to user space; in a similar fashion to
fuqueues, we wrap together a vlocator and a
fulock to create astruct ufulock .

However, more aspects have to be taken into
consideration:

• If the fulock is not contested, the lock and
unlock operations must happen entirely in
user space (and thus the kernel will not
know about it; this is thefast-path)

• When a lock has been locked through the
fast path, the kernel has to be able to iden-
tify who locked it as well as its consis-
tency status; this operation is called syn-
chronization.

• When a lock becomes contested, the ker-
nel has to update the user space word to
indicate that future operations need to pro-
ceed in the kernel–as well, when it is eli-
gible to be a fast-path only fulock again,
the kernel must undo this, put the fulock
structure in the cache tagged as requir-
ing synchronization from user space and
make sure the user space word has the
consistency state of the fulock.

• The fulock structure in the kernel will
be disposed if no task goes to the kernel
querying about or operating on it for a
while; as in the previous case, the infor-
mation will be kept in user space word to
enable proper synchronization.

For this we need some more information than
the one used by the same futex mechanism for
the fast path. A locker needs to identify itself
in the user space word (that we callvfulock) by

storing a cookie that can directly map to a task
struct in the kernel space. The most obvious
choice for the cookie would be the PID13.

However, this operation must be atomic–this
means that we need an atomic compare-and-
exchange operation, and thus, the lock oper-
ation becomes the following: compare-and-
exchange the cookie against 0 (meaning un-
locked); if it succeeds, then the vfulock is
locked, if not, dive into the kernel. The ker-
nel will map the address to a fulock (pos-
sibly creating a new ufulock) get the value
of the vfulock (sys_ufulock_lock() and
ufulock_lock() ) and map it to a task (in
__vfulock_sync() . If the kernel is able to
find the task, that task is made the owner and
the caller is put to wait. As well, the vfulock
is updated to a special valueVFULOCK_WP,
meaning waiters are present in the kernel.

If the kernel cannot find it, that will mean the
task that fast-locked it in user space has died,
the fulock will be declareddead-ownerand the
caller will get ownership. In this process, the
vfulock will be set to another special value,
VFULOCK_DEADthat indicates it as dead even
across the kernel forgetting about its existence.

Unlocks are equally simple: atomically
compare-and-exchange 0 (VFULOCK_

UNLOCKED) against the cookie of the lock
owner; if it succeeds, the job is done; else,
the kernel does it. After mapping the vfulock
to a ufulock, ufulock_unlock() is used
to do the job and the vfulock is updated to
reflect the new state:VFULOCK_UNLOCKED

if unlocked, if there will be no waiters the
new owner’s cookie–enabling fast-path,
VFULOCK_WPif waiters are still in the kernel,
or VFULOCK_DEADif the fulock is dead.

If parallelized unlocks are desired, the pro-

13This would break unique identification as PIDs are
reused; a solution could be crypting the PID with the
task creation date, but it needs to be tested.
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cess is a little bit different. In the kernel,
__ufulock_unlock() will unlock the vfu-
lock and then wake up the first waiter, who then
will contend (in the kernel) for the vfulock and
possibly wait, as described above14.

Note the two key moments in switching from
fast-path enabled or not: the fulock becomes
fast-path when it has no waiters in the kernel
or when it is healed15 without waiters. It looses
the fast-path conditions as soon as a single
waiter is queued. This means that to maintain
proper semantics during the lifetime of a pro-
gram that uses many locks, once a fulock has
gone through the slow path, it needs to be de-
stroyed in the kernel using thesys_ufulock_

ctl() system call once it is not needed any-
more. If not, there could be inconsistencies if a
new lock is created in the same address where
a previous one lived before.

KCO: When the fast-[un]lock path is not an op-
tion

The fast path, as we have seen, requires an
atomic compare-and-exchange operation. Not
all architectures provide this capability, so dif-
ferent strategies need to be considered here.

If robustness, and priority inversion protec-
tion16 can be spared, the mutexes and condi-
tional variables can be implemented as with fu-
texes using fuqueues; the rest of the real-time
featurettes are there (priority-based wake-ups
and priority change semantics). If that can also
be spared, futexes are still an option.

However, when that is not the case, the only
possible choice is to use KCO mutexes, by OR-

14Not going back to user space to retry the operation
has advantages: speed and maintaining the conditions
for robustness.

15Moved fromdead-ownerconsistency state back to
normal (or healthy)

16Lock stealing avoidance, priority inheritance and
priority protection.

ing FULOCK_FL_KCOin the flags. That is an
acronym for Kernel Controlled Ownership, or
basically, the kernel takes care of everything.
It needs to be called for locking and unlocking,
there is no fast path (strictly speaking there is
still a choice for fast path on some operations,
as the vfulock is used to cache the consistency
state of the fulock and any user space operation
can check it before deciding if it should go to
the kernel).

This feature also provides the highest level
of protection for robustness. The per-thread
cookie for the vfulock, be it the PID or any
other, is not required, and the kernel deals di-
rectly with the task struct, so there is no possi-
ble collision conflict.

It has to be noted that priority-protected ufu-
locks always work in KCO mode. Even on un-
contended acquisition or release the priority of
the thread has to be changed to that of the pri-
oceiling, and that task can only be done by the
kernel.

4 Using it in the kernel

The fulock is a simple type like any other
struct. To use it, we just need to do the fol-
lowing declarations:

...
#include <linux/fulock.h>
...

struct mystruct {
struct fulock lock;
...
my shared data;

};

It needs to be properly initialized before use,
and of course, after releasing it (or more prop-
erly, telling all waiters to bail out) it shall not
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be used. Note some flag combinations are not
allowed (for example, querying for priority in-
heritance and protection at the same time is il-
legal) and will trigger aBUG() 17.

In this example we ask for a robust fulock with
priority inheritance. It must be noted that fu-
locks are always robust–but clearly telling the
kernel that we handle robust situations will
suppress a kernel warning if the owner dies and
it goes intodead-ownermode.

my_driver_probe(...)
{

struct mystruct *my;
...
my = kmalloc (...);
if (my == NULL)

goto err_alloc;
fulock_init (&my->lock,

FULOCK_FL_ROBUST
| FULOCK_FL_PI);

...
};

As we see in the following snippet, the basic
usage is the same as for every lock. However,
in this case we add some recovery code for
the case when some owner died18. Note also
that the only fulock operation that is guaran-
teed to be safe in an atomic context isfulock_

unlock() .

void my_something(
struct mystruct *my) {
...
result = fulock_lock(&my->lock,

0);
if (result == -EOWNERDEAD

&& my_try_recover (my))
goto notrecoverable;

17For user space code, they will simply fail with
-EINVAL .

18This is kind of an useless exercise, correct kernel
code doesn’t crash.

...
/* do our thing */
...
fulock_unlock (&my->lock,

FULOCK_FL_AUTO);
...
return 0;

notrecoverable:
/* Put it out of its misery,

* release waiters, clean up,
* user has to reload the
* driver. */

fulock_ctl (&my->lock,
FULOCK_CTL_NR);

my_put (my);
return -ENOTRECOVERABLE;

};

int my_try_recover (struct
*mystruct my) {

int result, mode;
... try to recover *my ...
if (successful) {

result = 0;
mode = FULOCK_CTL_HEAL;

}
else {

result = !0;
mode = FULOCK_CTL_NR);

}
fulock_ctl (&my->lock, mode);
return result;

}

Finally, when we are done, we release all re-
sources associated to the fulock to clean up. As
indicated above, this merely makes sure that
any waiter queued is woken up with an error
condition and nobody can acquire it or queue
again.

void my_cleanup (
struct mystruct *my)

{
...
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fulock_release (&my->fulock);
...

}

The benefits that a fulock gives over a
semaphore are the real-time characteristics,
priority inheritance and protection and dead-
lock detection. The decision to use one or the
other depends on the user needs, as it has to be
taken into account that fulocks are somehow
more heavyweight than semaphores.

5 Usage from user space

The main intention of the user space code is
to do as little as possible in the fast path and
delegate the rest to the slow path that will, in
most cases, end up in the kernel.

Note these code snippets have been slightly
simplified; for the authoritative reference, see
the file src/include/kernel-lock.h in
the test packagefusyn-package available
from the web site.

Locking

As mentioned, the fast lock operation needs an
atomic compare and swap operation; for exam-
ple, on i386:

unsigned acas (
volatile unsigned *value,
unsigned old_value,
unsigned new_value)

{
unsigned result;
asm __volatile__ (

"lock cmpxchg %3, %1"
: "=a"(result),"+m"((*value))
: "a"(old_value),"r"(new_value)
: "memory");

return result == old_value;
}

To simplify the code, this function returns true
if it was successful in performing the swap op-
eration. With this, we can create a generic,
fast-path, user space lock operation:

int vfulock_timedlock (
volatile unsigned *vfulock,
unsigned flags, int pid,
struct timespec *rel)

{
if (acas(vfulock,

VFULOCK_UNLOCKED,pid))
return 0;

return SYSCALL (ufulock_lock,
vfulock, flags,
rel);

}

We are using the thread’s PID as the cookie for
the vfulock, the user space memory word asso-
ciated to the lock. Note the special syntax for
timeouts understood by the kernel:

• PassingNULL means we don’t want to
wait, and this operation effectively be-
comes a trylock in the kernel.

• A (void *)-1 timeout means block
forever–no timeout.

• Any other specifies a pointer to a valid
timeout structure.

From user space we have to always pass the
same flags to the kernel for an specific vfulock,
as it will check we are consistent during the
lifetime of the fulock–when it dissapears from
the cache, it is up to us to use still the same
flags to maintain consistency in our program.

With a few additions, we can have a lock func-
tion that also works in KCO mode and that im-
itates the behavior of non-robust mutexes when
owners die (ie: block forever):
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int vfulock_timedlock (
*vfulock, flags, pid, *rel)

{
int result;
if (!(flags & FULOCK_FL_KCO) &&

acas(vfulock,
VFULOCK_UNLOCKED,pid))

return 0;
result = SYSCALL (ufulock_lock,

vfulock, flags,
rel);

if (!(flags & FULOCK_FL_RM) &&
(result == -EOWNERDEAD
|result == -ENOTRECOVERABLE))

waiting_on_dead_fulock(vfulock);
return result;

}

There are only two simple differences. First
is to avoid the fast-path if we want to use
KCO mode (and thus dive directly into the
kernel). The second one takes care of non-
robust mutexes returning indead-ownerstate;
in that case we block inwaiting_on_dead_

fulock() , a dummy function that blocks for-
ever whose only purpose is to show up in pro-
gram traces to indicate us the reason of a thread
blocking.

Unlocking

The unlock operation is somehow more hairy.
Although we could just make it simpler calling
the kernel and letting it do all of the operations
for us (as if it were in KCO mode), we want to
have the fast-unlock path available:

int __vfulock_unlock (
*vfulock, flags, unlock_type)

{
unsigned old_value = *vfulock;

if (flags & FULOCK_FL_KCO)
goto straight;

retry:

if (old_value < VFULOCK_WP) {
if (acas (vfulock, old_value,

VFULOCK_UNLOCKED))
return 0;

old_value = *vfulock;
goto retry;

}
straight:

return old_value == VFULOCK_NR?
-ENOTRECOVERABLE
: SYSCALL (ufulock_unlock,

vfulock, flags,
unlock_type);

}

As with the lock() operation, we first check if
the fulock is KCO; if so jump straight into the
kernel (except if it is markednot-recoverable,
in which case we fail).

In the case of the fast-path, we read the value
of the vfulock; if it is looks like a cookie19 then
we try the fast-unlock, returning if successful.
If it failed we retry from the beginning. When
the value of the vfulock doesn’t look like a
cookie, we dive into the kernel, as it means that
it is either dead or there are waiters (and thus
the kernel handles it).

Note this unlock operation allows any thread
to unlock the fulock, it doesn’t need to be the
owner.

Other operations

A trylock() operation is implemented in
similar terms (please refer to the sample li-
brary code in thefusyn-test package, file
src/include/kernel-lock.h ; this pack-
age is available for download from the project’s
website).

Operations for manipulating or querying the

19The three valuesVFULOCK_WP, VFULOCK_
DEADandVFULOCK_NRare purposely chosen to be
the last three values of theunsigned domain.



Linux Symposium 2004 • 421

state of the fulock are implemented by calling
theufulock_ctl() system call directly, pro-
viding the vfulock and flags.

6 Integration with NPTL

The patches for integration with NPTL (that we
call RTNPTL for short) allow any POSIX pro-
gram to use these features, via a certain set of
standard calls and ways to customize the op-
eration mode of the fulock under the mutex’s
hood with other non-POSIX extensions.

RTNPTL uses the same or very similar user
mode integration code than the one explained
above, sitting down at thelll_ layer in glibc.
This code provides all the intended functional-
ity only to the POSIX mutexes and conditional
variables. Locks used internally by the library
still need work (see thefuture directionssec-
tion).

By default, RTNPTL provides non-robust fast-
path enabled mutexes that unlock in automatic
mode20, without any priority inheritance and
protection. However, by modifying the mu-
tex attributes with thepthread_mutexattr_

set*() calls, different parameters can be set:

• Manipulating the priority inversion pro-
tections:

pthread_mutexattr_
setprotocol() takes a mutex
attribute and a protection protocol,
PTHREAD_PRIO_INHERITor
PTHREAD_PRIO_PROTECT.

pthread_mutex_setprioceiling()

can be used to query and change the
priority ceiling of a mutex.

20serialized or parallelized depending on the policy
priority of the first waiter

pthread_mutexattr_setserial_

np() and
pthread_mutex_setserial_np()

allows setting the unlock method to use
for lock-stealing avoidance out of
PTHREAD_MUTEX_SERIAL_NP,
PTHREAD_MUTEX_PARALLEL_NP, or
PTHREAD_MUTEX_AUTO_NP(this one
can be switched during the lifetime of the
mutex).

• pthread_mutexattr_setrobust_

np() enables robustness in the mutex to
be.pthread_mutex_

setconsistency_np() is used to heal
or makenot-recoverableadead-owner
mutex. The consistency state can be
queried withpthread_mutex_

getconsistency_np() .

• pthread_mutexattr_setfast_np()

is used to select the use of a KCO fulock
or not, effectively enabling/disabling
fast-path operation.

The non-standard interfaces are still subject to
some unlikely flux.

7 Current status and future direc-
tion

At the time of writing, the project has met most
of the requirements that were set as targets,
reaching stability and meeting performance
goals of sub-millisecond latencies. The added
overhead does not seem to affect too much
compared to NPTL, being generally slightly
slower.

Compatibility

We routinely test RTNPTL+fusyn by running:
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• Miscellaneous multi-threaded applica-
tions (e.g.: Mozilla)

• SUN jdk-1.42_03 with SPECjbb200021.

• MySQL 2.23.58 withsuper-smack and
sql-bench .

This has helped us to catch some bugs (with
some pending for certain combinations) and to
test the compatibility of our approach. Perfor-
mance wise, no obvious differences have been
found with plain NPTL running on futexes.

This set of macro benchmarks is incomplete
and will be expanded in the future, time and
resource availability permitting.

Latency

The current code performs fairly well latency
wise (given the extra overhead). In an un-
loaded system22, the latency of the serialized
ownership change operation23 is in the range of
60± 10µs. Adding some network load (ten si-
multaneous downloads of 40 MiB files) bumps
it up to 110 ± 10µs. Simultaneous reading of
1 GiB from /dev/hda to /dev/null raises it
up to130± 10µs.

The code exposes a strange behavior when test-
ing the ownership change latency in an un-
loaded system while increasing the number of
waiters. The average latency stays stable for
the first ten-to-fifteen waiters (threads of a sin-
gle program) at around18 ± 10µs (see Fig-
ure 8).

However, when the number of queued waiters
goes up to 2000 threads, the latency climbs up
to 50±10µs, stabilizing from there on, as seen

21SPEC Java Business Benchmark 2000.
22as measured in a 2xP3 850 MHz 2.5 GiB RAM run-

ning version 2.3 of the code
23time since a serialized unlock is done until the first

waiter gets the lock and executes.
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Figure 8: Scalability of the ownership-change
latencyvs. the number of waiters stays stable
up until ten waiting threads.

.

on Figure 9. Of course this is an extremely un-
realistic scenario, but it helps to test the scala-
bility of the code, and nevertheless, we are try-
ing to proof the root cause, being cache issues
the most likely ones.

Note: these numbers have been produced with
a home-grown swiss-knife test program (to be
published on the web site) calledownership_

change_latency . Most of our timing efforts
have concentrated in this particular case, al-
though we have some other micro benchmarks
planned.

Jitter

At this point, we haven’t done yet any formal
jitter studies.

Informally speaking, using the ownership
change latency benchmark in unloaded sys-
tems, we have seen jitter increases over NPTL
of about1µs, 0.3µs on a system fairly loaded
with IDE and network traffic. However, bear in
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Figure 9: Scalability of the ownership-change latencyvs. the number of waiters only stabilizes
after two thousand waiters.

.

mind that these numbers are completely mean-
ingless because the finest dependable clock
resolution we can get (using the High Resolu-
tion Timers patch) is well higher,10µs. We can
use them only to provide a hint.

Future direction

The project has reached an important milestone
of maturity with the 2.2 release during the
spring of 2004–nonetheless there is still much
work to do. These some of the areas where we
plan to target our future efforts:

• Some parties have asked for all these
concepts (real-time, robustness, priority-
protection) applied to read-write mutexes,
much more complex than simple mutexes.
We are still evaluation how worth is this.

• Some elusive bugs are still present.

• Accessing user space memory from the
kernel bykmapping it poses some issues
on architectures withstrangecache con-
sistency designs, such as some ARM and
PA-RISC 8000. It is still not clear how to
proceed for them and we would welcome
any help.

• The kernel hash table for location of ob-
jects is a potential bottleneck in a system
populated with many active user-space
fusyn objects. We want to implement a
proof of concept where a cookie identify-
ing the object is placed in user space along
the vfulock/vfuqueue. This cookie would
consist of a two pointers crypted with
two different keys by the kernel. In or-
der to map a vfulock/vfuqueue to it’s cor-
responding fusyn object, the kernel just
has to decrypt the pointers. Having two
crypted with different keys is used to en-
force validity against garbage being writ-
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ten by user space by mistake or to com-
promise the system.

• Providing a robust mutex infrastructure
is OK, as long as it is used. Internally,
glibc uses locks to protect many of its data
structures—in order to be able to provide
true robustness, we need to add robustness
to those internal locks, as well as recovery
strategies.

• Extend the coverage of our macro and mi-
cro benchmarks.

8 Downloading

The project maintains a website at:

http://developer.osdl.org/dev/

robustmutexes/

from where all the current and older snapshots
of the code can be obtained. As well, it offers
pointers to the mailing list, bugzilla and CVS
repositories.

We want to thank the Open Source Develop-
ment Lab for making these resources available
to us.

9 Conclusion

We have presented an infrastructure for provid-
ing real-time and robust synchronization ser-
vices in the Linux kernel. We have been able to
accomplish this with a minimum overhead im-
pact over the current futex-based infrastructure
and expect that it will be sufficient to satisfy
the needs of multi-threaded, fault-proof and/or
soft-real time designs.
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Abstract

The 2.6 release introduced the option to select
a particular I/O scheduler at boot time. The
2.4 Linus elevator was retired, incorporated are
now the anticipatory (AS), the deadline, the
noop, as well as the completely fair queuing
(CFQ) I/O schedulers. Each scheduler has its
strengths and weaknesses. The question is un-
der what workload scenarios does a particular
I/O scheduler excel, as well as what is the per-
formance gain that is possible by utilizing the
available tuning options.

This study quantifies the performance of the 4
I/O schedulers under various workload scenar-
ios (such as mail, web, and file server based
conditions). The hardware is being varied from
a single-CPU single-disk setup to machines
with many CPUs that are utilizing large RAID
arrays. In addition to characterizing the per-
formance behavior and making actual recom-
mendations on which scheduler to utilize un-
der certain workload scenarios, the study looks
into ways to actually improve the performance
through either the existing tuning options or
any potential code changes/enhancements.

Introduction

This study was initiated to quantify I/O perfor-
mance in a Linux 2.6 environment. The I/O
stack in general has become considerably more

complex over the last few years. Contempo-
rary I/O solutions include hardware, firmware,
as well as software support for features such
as request coalescing, adaptive prefetching,
automated invocation of direct I/O, or asyn-
chronous write-behind polices. From a hard-
ware perspective, incorporating large cache
subsystems on a memory, RAID controller, and
physical disk layer allows for a very aggres-
sive utilization of these I/O optimization tech-
niques. The interaction of the different opti-
mization methods that are incorporated in the
different layers of the I/O stack is neither well
understood nor been quantified to an extent
necessary to make a rational statement on I/O
performance. A rather interesting feature of
the Linux operating system is the I/O sched-
uler [6]. Unlike the CPU scheduler, an I/O
scheduler is not a necessary component of any
operating system per se, and therefore is not
an actual building block in some of the com-
mercial UNIX® systems. This study elabo-
rates how the I/O scheduler is embedded into
the Linux I/O framework, and discusses the
4 (rather distinct) implementations and perfor-
mance behaviors of the I/O schedulers that are
available in Linux 2.6. Section 1 introduces
the BIO layer, whereas Section 2 elaborates on
the anticipatory (AS), the deadline, the noop,
as well as the completely fair queuing (CFQ)
I/O schedulers. Section 2 further highlights
some of the performance issues that may sur-
face based on which I/O scheduler is being
utilized. Section 3 discusses some additional
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hardware and software components that im-
pact I/O performance. Section 4 introduces the
workload generator used in this study and out-
lines the methodology that was utilized to con-
duct the analysis. Section 5 discusses the re-
sults of the project. Section 6 provides some
additional recommendations and discusses fu-
ture work items.

1 I/O Scheduling and the BIO
Layer

The I/O scheduler in Linux forms the interface
between the generic block layer and the low-
level device drivers [2],[7]. The block layer
provides functions that are utilized by the file
systems and the virtual memory manager to
submit I/O requests to block devices. These
requests are transformed by the I/O sched-
uler and made available to the low-level device
drivers. The device drivers consume the trans-
formed requests and forward them (by using
device specific protocols) to the actual device
controllers that perform the I/O operations. As
prioritized resource management seeks to reg-
ulate the use of a disk subsystem by an applica-
tion, the I/O scheduler is considered an imper-
ative kernel component in the Linux I/O path.
It is further possible to regulate the disk usage
in the kernel layers above and below the I/O
scheduler. Adjusting the I/O pattern generated
by the file system or the virtual memory man-
ager (VMM) is considered as an option. An-
other option is to adjust the way specific de-
vice drivers or device controllers consume and
manipulate the I/O requests.

The various Linux 2.6 I/O schedulers can be
abstracted into a rather generic I/O model.
The I/O requests are generated by the block
layer on behalf of threads that are access-
ing various file systems, threads that are per-
forming raw I/O, or are generated by virtual
memory management (VMM) components of

the kernel such as the kswapd or the pdflush
threads. The producers of I/O requests ini-
tiate a call to__make_request() , which
invokes various I/O scheduler functions such
aselevator_merge_fn() . The enqueue
functions in the I/O framework intend to merge
the newly submitted block I/O unit (a bio in
2.6 or abuffer_head in the older 2.4 ker-
nel) with previously submitted requests, and
to sort (or sometimes just insert) the request
into one or more internal I/O queues. As a
unit, the internal queues form a single logi-
cal queue that is associated with each block
device. At a later stage, the low-level device
driver calls the generic kernel functionelv_
next_request() to obtain the next request
from the logical queue. Theelv_next_
request() call interacts with the I/O sched-
uler’s dequeue functionelevator_next_
req_fn() , and the latter has an opportunity
to select the appropriate request from one of
the internal queues. The device driver pro-
cesses the request by converting the I/O sub-
mission into (potential) scatter-gather lists and
protocol-specific commands that are submitted
to the device controller. From an I/O scheduler
perspective, the block layer is considered as the
producer of I/O requests and the device drivers
are labeled as the actual consumers.

From a generic perspective, every read or write
request launched by an application results in ei-
ther utilizing the respective I/O system calls or
in memory mapping (mmap) the file into a pro-
cess’s address space [14]. I/O operations nor-
mally result in allocating PAGE_SIZE units of
physical memory. These pages are being in-
dexed, as this enables the system to later on
locate the page in the buffer cache [10]. A
cache subsystem only improves performance
if the data in the cache is being reused. Fur-
ther, the read cache abstraction allows the sys-
tem to implement (file system dependent) read-
ahead functionalities, as well as to construct
large contiguous (SCSI) I/O commands that
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can be served via a single direct memory access
(DMA) operation. In circumstances where the
cache represents pure (memory bus) overhead,
I/O features such as direct I/O should be ex-
plored (especially in situations where the sys-
tem is CPU bound).

In a general write scenario, the system is not
necessarily concerned with the previous con-
tent of a file, as awrite() operation nor-
mally results in overwriting the contents in the
first place. Therefore, the write cache empha-
sizes other aspects such as asynchronous up-
dates, as well as the possibility of omitting
some write requests in the case where multiple
write() operations into the cache subsystem
result in a single I/O operation to a physical
disk. Such a scenario may occur in an envi-
ronment where updates to the same (or a sim-
ilar) inode offset are being processed within
a rather short time-span. The block layer in
Linux 2.4 is organized around thebuffer_
head data structure [7]. The culprit of that
implementation was that it is a daunting task
to create a truly effective block I/O subsys-
tem if the underlyingbuffer_head struc-
tures force each I/O request to be decomposed
into 4KB chunks. The new representation of
the block I/O layer in Linux 2.6 encourages
large I/O operations. The block I/O layer now
tracks data buffers by using struct page point-
ers. Linux 2.4 systems were prone to loose
sight of the logical form of the writeback cache
when flushing the cache subsystem. Linux 2.6
utilizes logical pages attached to inodes to flush
dirty data, which allows multiple pages that be-
long to the same inode to be coalesced into
a single bio that can be submitted to the I/O
layer [2]. This approach represents a process
that works well if the file is not fragmented on
disk.

2 The 2.6 Deadline I/O Scheduler

The deadline I/O scheduler incorporates a per-
request expiration-based approach and oper-
ates on 5 I/O queues [4]. The basic idea behind
the implementation is to aggressively reorder
requests to improve I/O performance while si-
multaneously ensuring that no I/O request is
being starved. More specifically, the scheduler
introduces the notion of a per-request deadline,
which is used to assign a higher preference to
read than write requests. The scheduler main-
tains 5 I/O queues. During the enqueue phase,
each I/O request gets associated with a dead-
line, and is being inserted in I/O queues that are
either organized by the starting logical block
number (a sorted list) or by the deadline fac-
tor (a FIFO list). The scheduler incorporates
separate sort and FIFO lists for read and write
requests, respectively. The 5th I/O queue con-
tains the requests that are to be handed off to
the device driver. During a dequeue operation,
in the case where the dispatch queue is empty,
requests are moved from one of the 4 (sort or
FIFO) I/O lists in batches. The next step con-
sists of passing the head request on the dispatch
queue to the device driver (this scenario also
holds true in the case that the dispatch-queue is
not empty). The logic behind moving the I/O
requests from either the sort or the FIFO lists
is based on the scheduler’s goal to ensure that
each read request is processed by its effective
deadline, without starving the queued-up write
requests. In this design, the goal of economiz-
ing the disk seek time is accomplished by mov-
ing a larger batch of requests from the sort list
(logical block number sorted), and balancing
it with a controlled number of requests from
the FIFO list. Hence, the ramification is that
the deadline I/O scheduler effectively empha-
sizes average read request response time over
disk utilization and total average I/O request
response time.

To reiterate, the basic idea behind the deadline
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scheduler is that all read requests are satisfied
within a specified time period. On the other
hand, write requests do not have any specific
deadlines associated with them. As the block
device driver is ready to launch another disk
I/O request, the core algorithm of the dead-
line scheduler is invoked. In a simplified form,
the fist action being taken is to identify if there
are I/O requests waiting in the dispatch queue,
and if yes, there is no additional decision to
be made what to execute next. Otherwise it is
necessary to move a new set of I/O requests to
the dispatch queue. The scheduler searches for
work in the following places, BUT will only
migrate requests from the first source that re-
sults in a hit. (1) If there are pending write I/O
requests, and the scheduler has not selected any
write requests for a certain amount of time, a
set of write requests is selected (see tunables
in Appendix A). (2) If there are expired read
requests in theread_fifo list, the system
will move a set of these requests to the dis-
patch queue. (3) If there are pending read re-
quests in the sort list, the system will migrate
some of these requests to the dispatch queue.
(4) As a last resource, if there are any pend-
ing write I/O operations, the dispatch queue is
being populated with requests from the sorted
write list. In general, the definition of a cer-
tain amount of time for write request starva-
tion is normally 2 iterations of the scheduler
algorithm (see Appendix A). After two sets of
read requests have been moved to the dispatch
queue, the scheduler will migrate some write
requests to the dispatch queue. A set or batch
of requests can be (as an example) 64 contigu-
ous requests, but a request that requires a disk
seek operation counts the same as 16 contigu-
ous requests.

2.1 The 2.6 Anticipatory I/O scheduler

The anticipatory (AS) I/O scheduler’s design
attempts to reduce the per thread read response

time. It introduces a controlled delay compo-
nent into the dispatching equation [5],[9],[11].
The delay is being invoked on any new read
request to the device driver, thereby allowing
a thread that just finished its read I/O request
to submit a new read request, basically en-
hancing the chances (based on locality) that
this scheduling behavior will result in smaller
seek operations. The tradeoff between reduced
seeks and decreased disk utilization (due to
the additional delay factor in dispatching a re-
quest) is managed by utilizing an actual cost-
benefit analysis [9].

The next few paragraphs discuss the general
design of an anticipatory I/O scheduler, outlin-
ing the different components that comprise the
I/O framework. Basically, as a read I/O request
completes, the I/O framework stalls for a brief
amount of time, awaiting additional requests
to arrive, before dispatching a new request to
the disk subsystem. The focus of this design
is on applications threads that rapidly gener-
ate another I/O request that could potentially be
serviced before the scheduler chooses another
task, and by doing so, deceptive idleness may
be avoided [9]. Deceptive idleness is defined as
a condition that forces the scheduler into mak-
ing a decision too early, basically by assuming
that the thread issuing the last request has mo-
mentarily no further disk request lined up, and
hence the scheduler selects an I/O request from
another task. The design discussed here argues
that the fact that the disk remains idle during
the short stall period is not necessarily detri-
mental to I/O performance. The question of
whether (and for how long) to wait at any given
decision point is key to the effectiveness and
performance of the implementation. In prac-
tice, the framework waits for the shortest pos-
sible period of time for which the scheduler ex-
pects (with a high probability) the benefits of
actively waiting to outweigh the costs of keep-
ing the disk subsystem in an idle state. An as-
sessment of the costs and benefits is only pos-
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sible relative to a particular scheduling policy
[11]. To elaborate, a seek reducing scheduler
may wish to wait for contiguous or proximal
requests, whereas a proportional-share sched-
uler may prefer weighted fairness as one of its
primary criteria. To allow for such a high de-
gree of flexibility, while trying to minimize the
burden on the development efforts for any par-
ticular disk scheduler, the anticipatory schedul-
ing framework consists of 3 components [9].
(1) The original disk scheduler, which imple-
ments the scheduling policy and is unaware of
any anticipatory scheduling techniques. (2) An
actual scheduler independent anticipation core.
(3) An adaptive scheduler-specific anticipation
heuristic for seek reducing (such as SPTF or C-
SCAN) as well as any potential proportional-
share (CFQ or YFQ) scheduler. The antici-
pation core implements the generic logic and
timing mechanisms for waiting, and relies on
the anticipation heuristic to decide if and for
how long to wait. The actual heuristic is im-
plemented separately for each disk scheduler,
and has access to the internal state of the sched-
uler. To apply anticipatory scheduling to a new
scheduling policy, it is merely necessary to im-
plement an appropriate anticipation heuristic.

Any traditional work-conserving I/O sched-
uler operates in two states (known as idle and
busy). Applications may issue I/O requests
at any time, and these requests are normally
being placed into the scheduler’s pool of re-
quests. If the disk subsystem is idle at this
point, or whenever another request completes,
a new request is being scheduled, the sched-
uler’s select function is called, whereupon a re-
quest is chosen from the pool and dispatched
to the disk device driver. The anticipation core
forms a wrapper around this traditional sched-
uler scheme. Whenever the disk becomes idle,
it invokes the scheduler to select a candidate re-
quest (still basically following the same philos-
ophy as always). However, instead of dequeu-
ing and dispatching a request immediately, the

framework first passes the request to the an-
ticipation heuristic for evaluation. A return
value (result) of zero indicates that the heuris-
tic has deemed it pointless to wait and the core
therefore proceeds to dispatch the candidate
request. However, a positive integer as a re-
turn value represents the waiting period in mi-
croseconds that the heuristic deems suitable.
The core initiates a timeout for that particu-
lar time period, and basically enters a new wait
state. Though the disk is inactive, this state is
considered different from idling (while having
pending requests and an active timeout). If the
timeout expires before the arrival of any new
request, the previously chosen request is dis-
patched without any further delay. However,
new requests may arrive during the wait pe-
riod and these requests are added to the pool of
I/O requests. The anticipation core then imme-
diately requests the scheduler to select a new
candidate request from the pool, and initiates
communication with the heuristic to evaluate
this new candidate. This scenario may lead to
an immediate dispatch of the new candidate re-
quest, or it may cause the core to remain in the
wait state, depending on the scheduler’s selec-
tion and the anticipation heuristic’s evaluation.
In the latter case, the original timeout remains
in effect, thus preventing unbounded waiting
situations by repeatedly re-triggering the time-
out.

As the heuristic being used is disk scheduler
dependent, the discussion here only general-
izes on the actual implementation techniques
that may be utilized. Therefore, the next few
paragraphs discuss a shortest positioning time
first (SPTF) based implementation, where the
disk scheduler determines the positioning time
for each available request based on the cur-
rent head position, and basically chooses the
request that results into the shortest seek dis-
tance. In general, the heuristic has to evalu-
ate the candidate request that was chosen by
the scheduling policy. The intuition is that if
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the candidate I/O request is located close to the
current head position, there is no need to wait
on any other requests. Assuming synchronous
I/O requests initiated by a single thread, the
task that issued the last request is likely to sub-
mit the next request soon, and if this request is
expected to be close to the current request, the
heuristic decides to wait for this request [11].
The waiting period is chosen as the expected
YZ percentile (normally around 95%) think-
time, within which there is a XZ probability
(again normally 95%) that a request will ar-
rive. This simple approach is transformed and
generalized into a succinct cost-benefit equa-
tion that is intended to cover the entire range
of values for the head positioning, as well as
the think-times. To simplify the discussion, the
adaptive component of the heuristic consists of
collecting online statistics on all the disk re-
quests to estimate the different time variables
that are being used in the decision making pro-
cess. The expected positioning time for each
process represents a weighted-average over the
time of the positing time for requests from that
process (as measured upon request comple-
tion). Expected median and percentile think-
times are estimated by maintaining a decayed
frequency table of request think-times for each
process.

The Linux 2.6 implementation of the anticipa-
tory I/O scheduler follows the basic idea that if
the disk drive just operated on a read request,
the assumption can be made that there is an-
other read request in the pipeline, and hence it
is worth while to wait [5]. As discussed, the
I/O scheduler starts a timer, and at this point
there are no more I/O requests passed down
to the device driver. If a (close) read request
arrives during the wait time, it is serviced im-
mediately and in the process, the actual dis-
tance that the kernel considers as close grows
as time passes (the adaptive part of the heuris-
tic). Eventually the close requests will dry out
and the scheduler will decide to submit some

of the write requests (see Appendix A).

2.2 The 2.6 CFQ Scheduler

The Completely Fair Queuing (CFQ) I/O
scheduler can be considered to represent an
extension to the better known Stochastic Fair
Queuing (SFQ) implementation [12]. The fo-
cus of both implementations is on the concept
of fair allocation of I/O bandwidth among all
the initiators of I/O requests. An SFQ-based
scheduler design was initially proposed (and
ultimately being implemented) for some net-
work scheduling related subsystems. The goal
to accomplish is to distribute the available I/O
bandwidth as equally as possible among the
I/O requests. The implementation utilizes n
(normally 64) internal I/O queues, as well as
a single I/O dispatch queue. During an en-
queue operation, the PID of the currently run-
ning process (the actual I/O request producer)
is utilized to select one of the internal queues
(normally hash based) and hence, the request
is basically inserted into one of the queues (in
FIFO order). During dequeue, the SFQ design
calls for a round robin based scan through the
non-empty I/O queues, and basically selects re-
quests from the head of the queues. To avoid
encountering too many seek operations, an en-
tire round of requests is collected, sorted, and
ultimately merged into the dispatch queue. In
a next step, the head request in the dispatch
queue is passed to the device driver. Concep-
tually, a CFQ implementation does not utilize
a hash function. Therefore, each I/O process
gets an internal queue assigned (which implies
that the number of I/O processes determines
the number of internal queues). In Linux 2.6.5,
the CFQ I/O scheduler utilizes a hash func-
tion (and a certain amount of request queues)
and therefore resembles an SFQ implementa-
tion. The CFQ, as well as the SFQ implemen-
tations strives to manage per-process I/O band-
width, and provide fairness at the level of pro-
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cess granularity.

2.3 The 2.6 noop I/O scheduler

The Linux 2.6 noop I/O scheduler can be
considered as a rather minimal overhead I/O
scheduler that performs and provides basic
merging and sorting functionalities. The main
usage of the noop scheduler revolves around
non disk-based block devices (such as mem-
ory devices), as well as specialized software or
hardware environments that incorporate their
own I/O scheduling and (large) caching func-
tionality, and therefore require only minimal
assistance from the kernel. Therefore, in large
I/O subsystems that incorporate RAID con-
trollers and a vast number of contemporary
physical disk drives (TCQ drives), the noop
scheduler has the potential to outperform the
other 3 I/O schedulers as the workload in-
creases.

2.4 I/O Scheduler—Performance Implications

The next few paragraphs augment on the I/O
scheduler discussion, and introduce some addi-
tional performance issues that have to be taken
into consideration while conducting an I/O per-
formance analysis. The current AS implemen-
tation consists of several different heuristics
and policies that basically determine when and
how I/O requests are dispatched to the I/O con-
troller(s). The elevator algorithm that is being
utilized in AS is similar to the one used for
the deadline scheduler. The main difference
is that the AS implementation allows limited
backward movements (in other words supports
backward seek operations) [1]. A backward
seek operation may occur while choosing be-
tween two I/O requests, where one request is
located behind the elevator’s current head po-
sition while the other request is ahead of the
elevator’s current position.

The AS scheduler utilizes the lowest logical

block information as the yardstick for sorting,
as well as determining the seek distance. In the
case that the seek distance to the request behind
the elevator is less than half the seek distance to
the request in front of the elevator, the request
behind the elevator is chosen. The backward
seek operations are limited to a maximum of
MAXBACK (1024 * 1024) blocks. This ap-
proach favors the forward movement progress
of the elevator, while still allowing short back-
ward seek operations. The expiration time for
the requests held on the FIFO lists is tune-
able via the parameter’sread_expire and
write_expire (see Appendix A). When a
read or a write operation expires, the AS I/O
scheduler will interrupt either the current ele-
vator sweep or the read anticipation process to
service the expired request(s).

2.5 Read and Write Request Batches

An actual I/O batch is described as a set of
read or write requests. The AS scheduler alter-
nates between dispatching either read or write
batches to the device driver. In a read sce-
nario, the scheduler submits read requests to
the device driver, as long as there are read
requests to be submitted, and the read batch
time limit (read_batch_expire ) has not
been exceeded. The clock onread_batch_
expire only starts in the case that there are
write requests pending. In a write scenario, the
scheduler submits write requests to the device
driver as long as there are pending write re-
quests, and the write batch time limitwrite_
batch_expire has not been exceeded. The
heuristic used insures that the length of the
write batches will gradually be shortened if
there are read batches that frequently exceed
their time limit.

When switching between read and write re-
quests, the scheduler waits until all the re-
quests from the previous batch are completed
before scheduling any new requests. The read



434 • Linux Symposium

and write FIFO expiration time is only being
checked when scheduling I/O for a batch of
the corresponding (read or write) operation.
To illustrate, the read FIFO timeout values are
only analyzed while operating on read batches.
Along the same lines, the write FIFO timeout
values are only consulted while operating on
write batches. Based on the used heuristics and
policies, it is generally not recommended to set
the read batch time to a higher value than the
write expiration time, or to set the write batch
time to a greater value than the read expiration
time. As the IO scheduler switches from a read
to a write batch, the I/O framework launches
the elevator with the head request on the write
expired FIFO list. Likewise, when switching
from a write to a read batch, the I/O sched-
uler starts the elevator with the first entry on
the read expired FIFO list.

2.6 Read Anticipation Heuristic

The process of read anticipation solely occurs
when scheduling a batch of read requests. The
AS implementation only allows one read re-
quest at a time to be dispatched to the con-
troller. This has to be compared to either
the many write request scenario or the many
read request case if read anticipation is deacti-
vated. In the case that read anticipation is en-
abled (antic_expire = 0 ), read requests
are dispatched to the (disk or RAID) controller
one at a time. At the end of each read request,
the I/O scheduler examines the next read re-
quest from the sorted read list (an actual rb-
tree) [1]. If the next read request belongs to
the same process as the request that just com-
pleted, or if the next request in the queue is
close (data block wise) to the just completed
request, the request is being dispatched im-
mediately. Otherwise, the statistics (average
think-time and seek distance) available for the
process that just completed are being exam-
ined (cost-benefit analysis). The statistics are

associated with each process, but these statis-
tics are not associated with a specific I/O de-
vice per se. To illustrate, the approach works
more efficiently if there is a one-to-one corre-
lation between a process and a disk. In the case
that a process is actively working I/O requests
on separate devices, the actual statistics reflect
a combination of the I/O behavior across all
the devices, skewing the statistics and therefore
distorting the facts. If the AS scheduler guesses
right, very expensive seek operations can be
omitted, and hence the overall I/O through-
put will benefit tremendously. In the case that
the AS scheduler guesses wrong, theantic_
expire time is wasted. In an environment
that consists of larger (HW striped) RAID sys-
tems and tag command queuing (TCQ) capable
disk drives, it is more beneficial to dispatch an
entire batch of read requests and let the con-
trollers and disk do their magic.

From a physical disk perspective, to locate
specific data, the disk drive’s logic requires
the cylinder, the head, and the sector infor-
mation [17]. The cylinder specifies the track
on which the data resides. Based on the lay-
ering technique used, the tracks underneath
each other form a cylinder. The head infor-
mation identifies the specific read/write head
(and therefore the exact platter). The search
is now narrowed down to a single track on a
single platter. Ultimately, the sector value re-
flects the sector on the track, and the search
is completed. Contemporary disk subsys-
tems do not communicate in terms of cylin-
ders, heads and sectors. Instead, modern disk
drives map a unique block number over each
cylinder/head/sector construct. Therefore, that
(unique) reference number identifies a specific
cylinder/head/sector combination. Operating
systems address the disk drives by utilizing
these block numbers (logical block address-
ing), and hence the disk drive is responsible for
translating the block number into the appropri-
ate cylinder/head/sector value. The culprit is
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that it is not guaranteed that the physical map-
ping is actually sequential. But the statement
can be made that there is a rather high probabil-
ity that a logical blockn is physically adjacent
to a logical blockn+1. The existence of the
discussed sequential layout is paramount to the
I/O scheduler performing as advertised. Based
on how the read anticipatory heuristic is imple-
mented in AS, I/O environments that consist of
RAID systems (operating in a hardware stripe
setup) may experience a rather erratic perfor-
mance behavior. This is due to the current
AS implementation that is based on the notion
that an I/O device has only one physical (seek)
head, ignoring the fact that in a RAID environ-
ment, each physical disk has its own physical
seek head construct. As this is not recognized
by the AS scheduler, the data being used for
the statistics analysis is skewed. Further, disk
drives that support TCQ perform best when
being able to operate onn (and not 1) pend-
ing I/O requests. The read anticipatory heuris-
tic basically disables TCQ. Therefore, envi-
ronments that support TCQ and/or consist of
RAID systems may benefit from either choos-
ing an alternate I/O scheduler or from setting
theantic_expire parameter to 0. The tun-
ing allows the AS scheduler to behave similarly
to the deadline I/O scheduler (the emphasis is
on behave and not performance).

3 I/O Components that Affect Per-
formance

In any computer system, between the disk
drives and the actual memory subsystem is
a hierarchy of additional controllers, host
adapters, bus converters, and data paths that all
impact I/O performance in one way or another
[17]. Linux file systems submit I/O requests by
utilizing submit_bio() . This function sub-
mits requests by utilizing the request function
as specified during queue creation. Techni-
cally, device drivers do not have to use the I/O

scheduler, however all SCSI devices in Linux
utilize the scheduler by virtue of the SCSI
mid-layer [1]. Thescsi_alloc_queue()
function callsblk_init_queue() , which
sets the request function toscsi_request_
fn() . Thescsi_request_fn() function
takes requests from the I/O scheduler (on de-
queue), and passes them down to the device
driver.

3.1 SCSI Operations

In the case of a simple SCSI disk access, the
request has to be processed by the server, the
SCSI host adapter, the embedded disk con-
troller, and ultimately by the disk mechanism
itself. As the OS receives the I/O request,
it converts the request into a SCSI command
packet. In the case of a synchronous request,
the calling thread surrenders the CPU and tran-
sitions into a sleep state until the I/O operation
is completed. In a next step, the SCSI com-
mand is transferred across the server’s I/O bus
to the SCSI host adapter. The host adapter is
responsible for interacting with the target con-
troller and the respective devices. In a first step,
the host adapter selects the target by asserting
its control line onto the SCSI-bus (as the bus
becomes available). This phase is known as
the SCSI selection period. As soon as the tar-
get responds to the selection process, the host
adapter transfers the SCSI command to the tar-
get. This section of the I/O process is labeled
as the command phase. If the target is capa-
ble of processing the command immediately, it
either returns the requested data or the status
information.

In most circumstances, the request can only be
processed immediately if the data is available
in the target controller’s cache. In the case of
a read() request, the data is normally not
available. This results into the target discon-
necting from the SCSI bus to allow other SCSI
operations to be processed. If the I/O opera-
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tion consists of awrite() request, the data
phase is followed immediately by a command
phase on the bus, as the data is transferred into
the target’s cache. At that stage, the target dis-
connects from the bus. After disconnecting
from the bus, the target resumes its own pro-
cessing while the bus can be utilized by other
SCSI requests. After the physical I/O opera-
tion is completed on the target disk, the target
controller competes again for the bus, and re-
connects as soon as the bus is available. The
reconnect phase is followed by a data phase (in
the case ofread() operation) where the data
is actually being moved. The data phase is fol-
lowed by another status phase to describe the
results of the I/O operation. As soon as the
SCSI host adapter receives the status update,
it verifies the proper completion of the request
and notifies the OS to interrupt the requesting
worker thread. Overall, the simple SCSI I/O
request causes 7 phase changes consisting of a
select, a command, a disconnect, a reconnect,
a data, a status, and a disconnect operation.
Each phase consumes time and contributes to
the overall I/O processing latency on the sys-
tem.

3.2 SCSI Disk Fence

When discussing SCSI disks, it is imperative
to understand the performance impact of a rel-
atively obscure disk control parameter that is
labeled as the fence. When a SCSI disk recog-
nizes a significant delay (such as a seek oper-
ation) in aread() request, the disk will sur-
render the bus. At the point where the disk is
ready to transfer the data, the drive will again
contend for the bus so that theread() request
can be completed. The fence parameter deter-
mines the time at which the disk will begin to
contend for the SCSI bus. If the fence is set to
0 (the minimum), the disk will contend for the
SCSI bus after the first sector has been trans-
ferred into the disk controller’s memory. In the

case where the fence is set to 255 (the maxi-
mum), the disk will wait until almost all the re-
quested data has been accumulated in the con-
troller’s memory before contending for the bus.

The performance implication of setting the
fence to a low value is a reduced response
time, but results in a data transfer that hap-
pens basically at disk speed. On the other
hand, a high fence value will delay the start
of the data transfer, but results in a data trans-
fer that occurs at near burst speed. Therefore,
in systems with multiple disks per adapter, a
high fence value potentially increases overall
throughput for I/O intensive workloads. A
study by Shriver [15] observed fairness in ser-
vicing sufficiently large I/O requests (in the
16KB to 128KB range), despite the fact that
the SCSI disks have different priorities when
contending for the bus. Although each pro-
cess attempts to progress through its requests
without any coordination with other processes,
a convoy behavior among all the processes was
observed. Namely, all disk drives received a
request and transmitted the data back to the
host adapter before any disk received another
request from the adapter (a behavior labeled
as rounds). The study revealed that the host
adapter does not arbitrate for the bus, despite
having the highest priority, as long as any disk
is arbitrating.

3.3 Zone Bit Recording (ZBR)

Contemporary disk drives utilize a technology
called Zone Bit Recording to increase capacity
[17]. Incorporating the technology, cylinders
are grouped into zones, based on their distance
from the center of the disk. Each zone is as-
signed a number of sectors per track. The outer
zones contain more sectors per track compared
to the inner zones that are located closer to the
spindle. With ZBR disks, the actual data trans-
fer rate varies depending on the physical sector
location.
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Figure 1: ZBR Throughput Performance

Given the fact that a disk drive spins at a con-
stant rate, the outer zones that contain more
sectors will transfer data at a higher rate than
the inner zones that contain fewer sectors. In
this study, evaluating I/O performance on an
18.4 GB Seagate ST318417W disk drive out-
lined the throughput degradation for sequen-
tial read() operations based on physical sec-
tor location. The ZCAV program used in this
experiment is part of the Bonnie++ bench-
mark suite. Figure 1 outlines the average zone
read() throughput performance. It has to be
pointed out that the performance degradation is
not gradual, as the benchmark results revealed
14 clear distinct performance steps along the
throughput curve. Another observation derived
from the experiment was that for this particu-
lar ZBR disk, the outer zones revealed to be
wider than the inner zones. The Seagate speci-
fications for this particular disk cite an internal
transfer rate of 28.1 to 50.7 MB/second. The
measured minimum and maximum through-
put read() values of 25.99 MB/second and
40.84 MB/second, respectively are approxi-
mately 8.1% and 19.5% (13.8% on average)
lower, and represent actual throughput rates.
Benchmarks conducted on 4 other ZBR drives

revealed a similar picture. On average, the ac-
tual system throughput rates were 13% to 15%
lower than what was cited in the vendor specifi-
cations. Based on the conducted research, this
text proposes a first-order ZBR approximation
nominal disk transfer rate model (for a partic-
ular request sizereq and a disk capacitycap)
that is defined in Equation 1 as:

ntrzbr
(req) = 0.85 trmax( )⋅

req trmax trmin−( )⋅

cap
− 1( )

trmax
= maximum disk specific internal transfer speed

trmin
= minimum disk specific internal transfer speed

The suggested throughput regulation factor of
0.85 was derived from the earlier observation
that throughput rates adjusted for factors such
as sector overhead, error correction, or track
and cylinder skewing issues resulted in a drop
of approximately 15% compared to the man-
ufacturer reported transfer rates. This study
argues that the manufacturer reported transfer
rates could be more accurately defined as in-
stantaneous bit rates at the read-write heads.
It has to be emphasized that the calculated
throughput rates derived from the presented
model will have to be adjusted onto the target
system’s ability to sustain the I/O rate.

The theories of progressive chaos imply that
anything that evolves out of a perfect order
will over time become disordered due to out-
side forces. The progressive chaos concept can
certainly be applied to I/O performance. The
dynamic allocation (as well as de-allocation)
of file system resources contributes to the pro-
gressive chaos scenario encountered in virtu-
ally any file system designs. Form a device
driver and physical disk drive perspective, the
results of disk access optimization strategies
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are first, that the number of transactions per
second is maximized and second, that the or-
der in which the requests are being received is
not necessarily the order the requests are get-
ting processed. Thus, the response time of any
particular request can not be guaranteed. A
request queue may increase spatial locality by
selecting requests in an order to minimize the
physical arm movement (a workload transfor-
mation), but may also increase the perceived
response time because of queuing delays (a be-
havior transformation). The argument made in
this study is that the interrelationship of some
the discussed I/O components has to be taken
into consideration while evaluating and quanti-
fying performance

4 I/O Schedulers and Performance

The main goal of this study was to quantify
I/O performance (focusing on the Linux 2.6
I/O schedulers) under varying workload sce-
narios and hardware configurations. Therefore,
the benchmarks were conducted on a single-
CPU single-disk system, a midrange 8-way
NUMA RAID-5 system, and a 16-way SMP
system that utilized a 28-disk RAID-0 config-
uration. The reader is referred to Appendix
B for a more detailed description of the dif-
ferent benchmark environments. As a work-
load generator, the study utilized the flexible
file system benchmark (FFSB) infrastructure
[8]. FFSB represents a benchmarking envi-
ronment that allows analyzing I/O performance
by simulating basically any I/O pattern imag-
inable. The benchmarks can be executed on
multiple individual file systems, utilizing an
adjustable number of worker threads, where
each thread may either operate out of a com-
bined or a thread-based I/O profile. Aging the
file systems, as well as collecting systems uti-
lization and throughput statistics is part of the
benchmarking framework. Next to the more
traditional sequential read and sequential write

benchmarks, the study used a filer server, a web
server, a mail server, as well as a metadata in-
tensive I/O profile (see Appendix B). The file,
as well as the mail server workloads (the actual
transaction mix) was based on Intel’s Iome-
ter benchmark [18], whereas the mail server
transaction mix was loosely derived from the
SPECmail2001 I/O profile [19]. The I/O anal-
ysis in this study was composed of two distinct
focal points. One emphasis of the study was
on aggregate I/O performance achieved across
the 4 benchmarked workload profiles, whereas
a second emphasis was on the sequential read
and write performance behavior. The emphasis
on aggregate performance across the 4 distinct
workload profiles is based on the claim made
that an I/O scheduler has to provide adequate
performance in a variety of workload scenar-
ios and hardware configurations, respectively.
All the conducted benchmarks were executed
with the default tuning values (if not specified
otherwise) in an ext3 as well as an xfs file sys-
tem environment. In this paper, the term re-
sponse time represents the total run time of the
actual FFSB benchmark, incorporating all the
I/O operations that are executed by the worker
threads.

5 Single-CPU Single-Disk Setup

The normalized results across the 4 workload
profiles revealed that the deadline, the noop, as
well as the CFQ schedulers performed within
2% and 1% percent on ext3 and xfs (see Fig-
ure 2). On ext3, the CFQ scheduler had a slight
advantage, whereas on xfs the deadline sched-
uler provided the best aggregate (normalized)
response time. On both file systems, the AS
scheduler represented the least efficient solu-
tion, trailing the other I/O schedulers by 4.6%
and 13% on ext3 and xfs, respectively. Not
surprisingly, among the 4 workloads bench-
marked in a single disk system, AS trailed the
other 3 I/O schedulers by a rather significant
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margin in the Web Server scenario (which re-
flects 100% random read operations). On se-
quential read operations, the AS scheduler out-
performed the other 3 implementations by an
average of 130% and 127% on ext3 and xfs.
The sequential read results clearly support the
discussion in this paper on where the design fo-
cus for AS was directed. In the case of sequen-
tial write operations, AS revealed the most effi-
cient solution on ext3, whereas the noop sched-
uler provided the best throughput on xfs. The
performance delta (for the sequential write sce-
narios) among the I/O schedulers was 8% on
ext3 and 2% on xfs (see Appendix C).
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Note: In
Figure 2, the x-axis depicts the I/O schedulers.
The front row reflects the ext3 setup, whereas
the back row shows xfs. The y-axis discloses

the aggregate (normalized) response time over
the 4 benchmarked profiles per I/O scheduler.

Figure 2: Aggregate Response Time (Normal-
ized)

5.1 8-Way RAID-5 Setup

In the RAID-5 environment, the normalized re-
sponse time values (across the 4 profiles) dis-
closed that the deadline scheduler provided the
most efficient solution on ext3 as well as xfs
(see Figure 3 and Figure 4). While executing in
an ext3 environment, all 4 I/O schedulers were
within 4.5%, with the AS I/O scheduler trail-
ing noop and CFQ by approximately 2.5%. On

xfs, the study clearly disclosed a profound AS
I/O inefficiency while executing the metadata
benchmark. The delta among the schedulers
on xfs was much larger than on ext3, as the
CFQ, noop, and AS implementations trailed
the deadline scheduler by 1%, 6%, and 145%,
respectively (see Appendix C). As in the single
disk setup, the AS scheduler provided the most
efficient sequential read performance. The gap
between AS and the other 3 implementations
shrunk though rather significantly compared to
the single disk scenarios. The average sequen-
tial read throughput (for the other 3 schedulers)
was approximately 20% less on both ext3 and
xfs, respectively. The sequential write perfor-
mance was dominated by the CFQ scheduler’s
response time that outperformed the other 3 so-
lutions. The delta between the most (CFQ)
and the least efficient implementation was 22%
(AS) and 15% (noop) on ext3 and xfs, respec-
tively (see Appendix C).
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Figure 3: EXT3 Aggregate Response Time
(Normalized)

In a second phase, all the I/O scheduler setups
were tuned by adjusting the (per block device)
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tunablenr_requests (I/O operations in fly)
from its default value of 128 to 2,560. The re-
sults revealed that the CFQ scheduler reacted
in a rather positive way to the adjustment, and
ergo was capable to provide on ext3 as well
as on xfs the most efficient solution. The tun-
ing resulted into decreasing the response time
for CFQ in all the conducted (workload profile
based) benchmarks on both file systems (see
Appendix C). While CFQ benefited from the
tuning, the results for the other 3 implemen-
tations were inconclusive. Based on the pro-
file, the tuning either resulted in a gain or a
loss in performance. As CFQ is designed to
operate on larger sets of I/O requests, the re-
sults basically reflect the design goals of the
scheduler [1]. This is in contrast to the AS im-
plementation, where by design, any read inten-
sive workload can not directly benefit from the
change. On the other hand, in the case sequen-
tial write operations are being executed, AS
was capable of taking advantage of the tuning

as the response time decreased by 7% and 8%
on ext3 and xfs, respectively. The conducted
benchmarks revealed another significant inef-
ficiency behavior in the I/O subsystem, as the
write performance (for all the schedulers) on
ext3 was significantly lower (by a factor of ap-
proximately 2.1) than on xfs. The culprit here
is the ext3 reservation code. Ext3 patches to
resolve the issue are available from kernel.org.

5.2 16-Way RAID-0 Setup

Utilizing the 28 disk RAID-0 configuration
as the benchmark environment revealed that
across the 4 workload profiles, the deadline
implementation was able to outperform the
other 3 schedulers (see Appendix C). It has to
be pointed out though that the CFQ, as well
as the noop scheduler, slightly outperformed
the deadline implementation in 3 out of the 4
benchmarks. Overall, the deadline scheduler
gained a substantial lead processing the Web
server profile (100% random read requests),
outperforming the other 3 implementations by
up to 62%. On ext3, the noop scheduler re-
flected the most efficient solution while op-
erating on sequential read and write requests,
whereas on xfs, CFQ and deadline dominated
the sequential read and write benchmarks. The
performance delta among the schedulers (for
the 4 profiles) was much more noticeable on
xfs (38%) than on ext3 (6%), which reflects a
similar behavior as encountered on the RAID-
5 setup. Increasing nr_requests to 2,560 on the
RAID-0 system led to inconclusive results (for
all the I/O schedulers) on ext3 as well as xfs.
The erratic behavior encountered in the tuned,
large RAID-0 environment is currently being
investigated.

5.3 AS Sequential Read Performance

To further illustrate and basically back up the
claim made in Section 2 that the AS scheduler
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design views the I/O subsystem based on a no-
tion that an I/O device has only one physical
(seek) head, this study analyzed the sequen-
tial read performance in different hardware se-
tups. The results were being compared to the
CFQ scheduler. In the single disk setup, the
AS implementation is capable of approaching
the capacity of the hardware, and therefore pro-
vides optimal throughput performance. Under
the same workload conditions, the CFQ sched-
uler substantially hampers throughput perfor-
mance, and does not allow the system to fully
utilize the capacity of the I/O subsystem. The
described behavior holds true for the ext3 as
well as the xfs file system. Hence, the state-
ment can be made that in the case of sequen-
tial read operations and CFQ, the I/O sched-
uler (and not the file system per se) reflects the
actual I/O bottleneck. This picture is being re-
versed as the capacity of the I/O subsystem is
being increased.

HW Setup AS CFQ

1 Disk 52 MB/sec 23 MB/sec
RAID-5 46 MB/sec 39 MB/sec
RAID-0 31 MB/sec 158 MB/sec

Table 1: AS vs. CFQ Sequential Read Perfor-
mance

As depicted in Table 1, the CFQ scheduler ap-
proaches first, the throughput of the AS imple-
mentation in the benchmarked RAID-5 envi-
ronment and second, is capable of approaching
the capacity of the hardware in the large RAID-
0 setup. In the RAID-0 environment, the AS
scheduler only approaches approximately 17%
of the hardware capacity (180 MB/sec). To re-
iterate, the discussed I/O behavior is reflected
in the ext3 as well as the xfs benchmark results.
From any file system perspective, performance
should not degrade if the size of the file system,
the number of files stored in the file system,
or the size of the individual files stored in the
file system increases. Further, the performance

of a file system is supposed to approach the
capacity of the hardware (workload dependent
of course). This study clearly outlines that in
the discussed workload scenario, the 2 bench-
marked file systems are capable of achieving
these goals, but only in the case the I/O sched-
ulers are exchanged depending on the physical
hardware setup. The fact that the read-ahead
code in Linux 2.6 has to operate as efficiently
as possible (in conjunction with the I/O sched-
uler and the file system) has to be considered
here as well.

5.4 AS verses deadline Performance

Based on the benchmarked profiles and hard-
ware setups, the AS scheduler provided in
most circumstances the least efficient I/O so-
lution. As the AS framework represents
an extension to the deadline implementation,
this study explored the possibility of tun-
ing AS to approach deadline behavior. The
tuning consisted of settingnr_requests
to 2,560, antic_expire to 0, read_
batch_expire to 1,000, read_expire
to 500, write_batch_expire to 250,
and write_expire to 5,000. Setting the
antic_expire value to 0 (by design) ba-
sically disables the anticipatory portion of the
scheduler. The benchmarks were executed uti-
lizing the RAID-5 environment, and the re-
sults were compared to the deadline perfor-
mance results reported this study. On ext3,
the non-tuned AS version trailed the non-tuned
deadline setup by approximately 4.5% (across
the 4 profiles). Tuning the AS scheduler re-
sulted into a substantial performance boost, as
the benchmark results revealed that the tuned
AS implementation outperformed the default
deadline setup by approximately 6.5% (see Ap-
pendix C). The performance advantage was
squandered though while comparing the tuned
AS solution against the deadline environment
with nr_requests set to 2,560. Across
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the 4 workload profiles, deadline again out-
performed the AS implementation by approxi-
mately 17%. As anticipated, settingantic_
expire to 0 resulted into lower sequential
read performance, stabilizing the response time
at deadline performance (see Appendix C). On
xfs, the results were (based on the rather er-
ratic metadata performance behavior of AS)
inconclusive. One of the conclusions is that
based on the current implementation of the AS
code that collects the statistical data, the im-
plemented heuristic is not flexible enough to
detect any prolonged random I/O behavior, a
scenario where it would be necessary to deac-
tivate the active wait behavior. Further, setting
antic_expire to 0 should force the sched-
uler into deadline behavior, a claim that is not
backed up by the empirical data collected for
this study. One explanation for the discrep-
ancy is that the short backward seek operations
supported in AS are not part of the deadline
framework. Therefore, depending on the actual
physical disk scheduling policy, the AS back-
ward seek operations may be counterproduc-
tive from a performance perspective.

5.5 CFQ Performance

The benchmarks conducted revealed that the
tuned CFQ setup provided the most efficient
solution for the RAID-5 environment (see Sec-
tion 5.1). Therefore, the study further explored
varies ways to improve the performance of the
CFQ framework. The CFQ I/O scheduler in
Linux 2.6.5 resembles a SFQ implementation,
which operates on a certain number or inter-
nal I/O queues and hashes on a per process
granularity to determine where to place an I/O
request. More specifically, the CFQ sched-
uler in 2.6.5 hashes on the thread group id
(tgid), which represents the process PID as in
POSIX.1 [1]. The approach chosen was to al-
ter the CFQ code to hash on the Linux PID.
This code change introduces fairness on a per

thread (instead of per process) granularity, and
therefore alters the distribution of the I/O re-
quests in the internal queues. In addition, the
cfq_quantum and cfq_queued parame-
ters of the CFQ framework were exported into
user space.

In a first step, the default tgid based CFQ ver-
sion with cfq_quantum set to 32 (default
equals to 8) was compared to the PID based
implementation that used the same tuning con-
figuration. Across the 4 profiles, the PID based
implementation reflected the more efficient so-
lution, processing the I/O workloads approxi-
mately 4.5% and 2% faster on ext3 and xfs, re-
spectively. To further quantify the performance
impact of the different hash methods (tgid
verses PID based), in a second step, the study
compared the default Linux 2.6.5 CFQ setup
to the PID based code that was configured
with cfq_quantum adjusted to 32 (see Ap-
pendix C). Across the 4 profiles benchmarked
on ext3, the new CFQ scheduler that hashed on
a PID granularity outperformed the status quo
by approximately 10%. With the new method,
the sequential read and write performance im-
proved by 3% and 4%, respectively. On xfs
(across the 4 profiles), the tgid based CFQ im-
plementation proved to be the more efficient
solution, outperforming the PID based setup
by approximately 9%. On the other hand, the
PID based solution was slightly more efficient
while operating on the sequential read (2%)
and write (1%) profiles. The ramification is
that based on the conducted benchmarks and
file system configurations, certain workload
scenarios can be processed more efficiently in
a tuned, PID hash based configuration setup.

To further substantiate the potential of the pro-
posed PID based hashing approach, a mixed
I/O workload (consisting of 32 concurrent
threads) was benchmarked. The environment
used reflected the RAID-5 setup. The I/O pro-
file was decomposed in 4 subsets of 8 worker
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Figure 5: Mixed Workload Behavior

threads, each subset executing either 64KB se-
quential read, 4KB random read, 4KB random
write, or 256KB sequential write operations
(see Figure 5). The benchmark results revealed
that in this mixed I/O scenario, the PID based
CFQ solution (tuned withcfq_quantum =
32) outperformed the other I/O schedulers by
at least 5% and 2% on ext3 and xfs, respec-
tively (see Figure 5 and Appendix C). The
performance delta among the schedulers was
greater on ext3 (15%) than on xfs (6%).

6 Conclusions and Future Work

The benchmarks conducted on varying hard-
ware configurations revealed a strong (setup
based) correlation among the I/O scheduler,
the workload profile, the file system, and ul-
timately I/O performance. The empirical data
disclosed that most tuning efforts resulted in
reshuffling the scheduler performance rank-
ing. The ramification is that the choice of an
I/O scheduler has to be based on the work-

load pattern, the hardware setup, as well as the
file system used. To reemphasize the impor-
tance of the discussed approach, an additional
benchmark was conducted utilizing a Linux 2.6
SMP system, the jfs file system, and a large
RAID-0 configuration, consisting of 84 RAID-
0 systems (5 disks each). The SPECsfs [20]
benchmark was used as the workload genera-
tor. The focus was on determining the high-
est throughput achievable in the RAID-0 setup
by only substituting the I/O scheduler between
SPECsfs runs. The results revealed that the
noop scheduler was able to outperform the
CFQ, as well as the AS scheduler. The result
reverses the order, and basically contradicts the
ranking established for the RAID-5 and RAID-
0 environments benchmarked in this study. On
the smaller RAID systems, the noop scheduler
was not able to outperform the CFQ imple-
mentation in any random I/O test. In the large
RAID-0 environment, the 84 rb-tree data struc-
tures that have to be maintained (from a mem-
ory as well as a CPU perspective) in CFQ rep-
resent a substantial, noticeable overhead factor.

The ramification is that there is no silver bullet
(a.k.a. I/O scheduler) that consistently provides
the best possible I/O performance. While the
AS scheduler excels on small configurations in
a sequential read scenario, the non-tuned dead-
line solution provides acceptable performance
on smaller RAID systems. The CFQ sched-
uler revealed the most potential from a tun-
ing perspective on smaller RAID-5 systems, as
increasing thenr_requests parameter pro-
vided the lowest response time. As the noop
scheduler represents a rather light-way solu-
tion, large RAID systems that consist of many
individual logical devices may benefit from the
reduced memory, as well as CPU overhead en-
countered by this solution. On large RAID sys-
tems that consist of many logical devices, the
other 3 implementations have to maintain (by
design) rather complex data structures as part
of the operating framework. Further, the study
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revealed that the proposed PID based and tun-
able CFQ implementation reflects a valuable
alternative to the standard CFQ implementa-
tion. The empirical data collected on a RAID-5
system supports that claim, as true fairness on
a per thread basis is being introduced.

Future work items include analyzing the rather
erratic performance behavior encountered by
the AS scheduler on xfs while processing a
metadata intensive workload profile. Another
focal point is an in-depth analysis of the in-
consistentnr_requests behavior observed
on large RAID-0 systems. Different hardware
setups will be used to aid this study. The an-
ticipatory heuristics of the AS code used in
Linux 2.6.5 is the target of another study, aim-
ing at enhancing the adaptiveness of the (status
quo) implementation based on certain work-
load conditions. Additional research in the area
of the proposed PID based CFQ implementa-
tion, as well as branching the I/O performance
study out into even larger I/O subsystems rep-
resent other work items that will be addressed
in the near future.

Legal Statement

This work represents the view of the authors,
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Appendix A: Scheduler Tunables

Deadline Tunables

Theread_expire parameter (which is spec-
ified in milliseconds) is part of the actual dead-
line equation. As already discussed, the goal
of the scheduler is to insure (basically guaran-
tee) a start service time for a given I/O request.
As the design focuses manly on read requests,
each actual read I/O that enters the scheduler is
assigned a deadline factor that consists of the
current time plus theread_expire value (in
milliseconds).

The fifo_batch parameter governs the
number of request that are being moved to the

dispatch queue. In this design, as a read request
expires, it becomes necessary to move some
I/O requests from the sorted I/O scheduler list
into the block device’s actual dispatch queue.
Hence thefifo_batch parameter controls
the batch size based on the cost of each I/O re-
quest. A request is qualified by the scheduler as
either a seek or a stream request. For additional
information, please see the discussion on the
seek_cost as well as thestream_unit
parameters.

Theseek_cost parameter quantifies the cost
of a seek operation compared to astream_
unit (expressed in Kbytes). Thestream_
unit parameter dictates how man Kbytes are
used to describe a single stream unit. A stream
unit has an associated cost of 1, hence if a re-
quest consists of XY Kbytes, the actual cost
can be determined ascost = (XY + stream_unit
- 1)/ stream_unit. To reemphasize, the combi-
nation of thestream_unit , seek_cost ,
and fifo_batch parameters, respectively,
determine how many requests are potentially
being moved as an I/O request expires.

The write_starved parameter (expressed
in number of dispatches) indicates how many
times the I/O scheduler assigns preference to
read over write requests. As already dis-
cussed, when the I/O scheduler has to move
requests to the dispatch queue, the preference
scheme in the design favors read over write
requests. However, the write requests can
not be staved indefinitely, hence after the read
requests were favored forwrite_starved
number of times, write requests are being dis-
patched.

The front_merges parameter controls the
request merge technique used by the scheduler.
In some circumstances, a request may enter the
scheduler that is contiguous to a request that is
already in the I/O queue. It is feasible to as-
sume that the new request may have a correla-
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tion to either the front or the back of the already
queued request. Hence, the new request is la-
beled as either a front or a back merge candi-
date. Based on the way files are laid out, back
merge operations are more common than front
merges. For some workloads, it is unnecessary
to even consider front merge operations, ergo
setting thefront_merges flag to 0 disables
that functionality. It has to be pointed out that
despite setting the flag to 0, front merges may
still happen due to the cachedmerge_last
hint component. But as this feature represents
an almost 0 cost factor, this is not considered
as an I/O performance issue.

AS Tunables

The parameterread_expire governs the
timeframe until a read request is labeled as
expired. The parameter further controls to
a certain extent the interval in-between ex-
pired requests are serviced. This approach
basically equates to determining the timeslice
a single reader request is allowed to use in
the general presence of other I/O requests.
The approximation100 * ((seek time
/ read_expire) + 1) describes the per-
centile of streaming read efficiency a physical
disk should receive in a environment that con-
sists of multiple concurrent read requests.

The parameterread_batch_expire gov-
erns the time assigned to a batch (or set)
of read requests prior to serving any (poten-
tially) pending write requests. Obviously, a
higher value increases the priority allotted to
read requests. Setting the value to less than
read_expire would reverse the scenario, as
at this point the write requests would be fa-
vored over the read requests. The literature
suggests setting the parameter to a multiple
of the read_expire value. The parame-
ters write_expire and write_batch_
expire , respectively, describe and govern the
above-discussed behavior for any (potential)

write requests.

The antic_expire parameter controls the
maximum amount of time the AS scheduler
will idle before moving on to another request.
The literature suggests initializing the parame-
ter slightly higher for large seek time devices.

Appendix B: Benchmark Environ-
ment

The benchmarking was performed in a Linux
2.6.4 environment. For this study, the CFQ I/O
scheduler was back-ported from Linux 2.6.5 to
2.6.4.

1.16-way 1.7Ghz Power4+™ IBM p690 SMP
system configured with 4GB memory. 28
15,000-RPM SCSI disk drives configured in
a single RAID-0 setup that used Emulex
LP9802-2G Fiber controllers (1 in use for the
actual testing). System was configured with the
Linux 2.6.4 operating system.

2.8-way NUMA system. IBM x440 with
Pentium™ IV Xeon 2.0GHz processors and
512KB L2 cache subsystem. Configured with
4 qla2300 fiber-cards (only one was used in
this study). The I/O subsystem consisted of 2
FAStT700 I/O controllers and utilized 15,000-
RPM SCSI 18GB disk drives. The system was
configured with 1GB of memory, setup as a
RAID-5 (5 disks) configuration, and used the
Linux 2.6.4 operating system.

3.Single CPU system. IBM x440 (8-way, only
one CPU was used in this study) with Pen-
tium™ IV Xeon 1.5GHz processor, and 512k
L2 cache subsystem. The system was config-
ured with a Adaptec aic7899 Ultra160 SCSI
adapter and a single 10,000 RPM 18GB disk.
The system used the Linux 2.6.4 operating sys-
tem and was configured with 1GB of memory.
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Workload Profiles

1. Web Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created sev-
eral hundred thousand files ranging from 4KB
to 64KB. The files were distributed across 100
directories, The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random read operations on ran-
domly chosen files. The workload distribu-
tion in this benchmark was derived from Intel’s
Iometer benchmark.

2. File Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random read or write operations
on randomly chosen files. The ratio of read to
write operations on a per thread basis was spec-
ified as 80% to 20%, respectively. The work-
load distribution in this benchmark was derived
from Intel’s Iometer benchmark.

3. Mail Server Benchmark. The benchmark
utilized 4 worker threads per available CPU.
In a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread exe-
cuted 1,000 random read, create, or delete op-
erations on randomly chosen files. The ratio
of read to create to delete operations on a per
thread basis was specified as 40% to 40% to

20%, respectively. The workload distribution
in this benchmark was (loosely) derived from
the SPECmail2001 benchmark.

4. MetaData Benchmark. The benchmark uti-
lized 4 worker threads per available CPU. In
a first phase, the benchmark created several
hundred thousand files ranging from 4KB to
64KB. The files were distributed across 100 di-
rectories. The goal of the create phase was to
exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread ex-
ecuted 1,000 random create, write (append),
or delete operations on randomly chosen files.
The ratio of create to write to delete operations
on a per thread basis was specified as 40% to
40% to 20%.

(i) Sequential Read Benchmark. The bench-
mark utilized 4 worker threads per available
CPU. In a first phase, the benchmark created
several hundred 50MB files in a single direc-
tory structure. The goal of the create phase was
to exceed the size of the memory subsystem by
creating more files than what can be cached by
the system in RAM. Each worker thread exe-
cuted 64KB sequential read operations, start-
ing at offset 0 reading the entire file up to off-
set 5GB. This process was repeated on a per
worker thread basis 20 times on randomly cho-
sen files.

(ii) Sequential Write (Create) Benchmark. The
benchmark utilized 4 worker threads per avail-
able CPU. Each worker thread executed 64KB
sequential write operations up to a target file
size of 50MB. This process was repeated on a
per worker-thread basis 20 times on newly cre-
ated files.



448 • Linux Symposium

Appendix C: Raw Data Sheets (Mean Response Time in Seconds over 3 Test
Runs)

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 610.9 574.6 567.7 579.1 613.5 572.9 571.3 569.9

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 621 634.1 623.6 597.5 883.8 781.8 773.3 771.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 531.4 502.1 498.3 486.8 559 462.7 461.6 462.9

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 508.9 485.3 522.5 505.5 709.3 633 648.5 650.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 405 953.2 939.4 945.4 385.2 872.8 881.3 872.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 261.3 276.5 269.1 282.6 225.7 222.6 220.9 222.4

Table 2: Single Disk Single CPU – Mean Response Time in Seconds

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 77.2 81.2 86.5 82.7 83.8 90.3 96.6 90.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 147.8 148.4 133 145.3 205.8 90.8 101.6 100.8

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 70.2 58.4 66.2 59.2 82.1 81.3 78.8 75.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 119.2 114.8 115.3 119.3 153.9 92.1 100.7 92.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 517.5 631.1 654.1 583.5 515.8 624.4 628.7 604.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 1033.2 843.7 969.5 840.5 426.6 422.3 462.6 400.4

Table 3: RAID-5 8-Way Setup – Mean Response Time in Seconds
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AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 78.3 72.1 87.1 70.7 94.1 75 89.2 76

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 127.1 133 137.3 124.9 189.1 101.1 104.6 99.3

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 62.4 58.8 75.3 57.5 79.4 72.83 80.6 71.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 110.2 92.9 118.8 99.6 152.5 100.2 95.1 81

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 523.8 586.2 585.3 618.7 518.5 594.8 580.7 594.4

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 968.2 782.9 1757.8 813.2 394.3 395.6 549.9 436.4

Table 4: RAID-5 8-Way Setup –nr_requests = 2,560 – Mean Response Time in Seconds

AS - ext3 DL - ext3 AS Tuned - ext3 AS - xfs DL - xfs AS Tuned - xfs
File Server 77.2 81.2 72.1 83.8 90.3 84.5

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
MetaData 147.8 148.4 133.7 205.8 90.8 187.4

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Web Server 70.2 58.4 62 82.1 81.3 75.9

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Mail Server 119.2 114.8 103.5 153.9 92.1 140.2

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Seq. Read 517.5 631.1 634.5 515.8 624.4 614.1

AS Default DL Default AS Tuned AS Default DL Default AS Tuned
Seq. Write 1033.2 843.7 923.4 426.6 422.3 389.1

Table 5: RAID-5 8-Way - Default AS, Default deadline, and Tuned AS Comparison - Mean
Response Time in Seconds

CFQ-ext3 PID-Tuned-ext3 CFQ Tuned-ext3 CFQ-xfs PID-Tuned-xfs CFQ Tuned-xfs
File Server 70.7 71.1 70.6 76 75.9 74.3

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
MetaData 124.9 122 125.1 99.3 92.9 97.4

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Web Server 57.5 55.8 58 71.7 73 72.5

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Mail Server 99.6 94.5 93.3 81 93.6 93.3

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Seq. Read 618.7 599.5 595.4 594.4 583.7 604.1

CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned
Seq. Write 813.2 781.1 758.4 436.4 432.1 414.6

Table 6: RAID-5 8-Way- Default CFQ, PID Hashed CFQ &cfq_quantum=32 , Default CFQ
& cfq_quantum=32 – Mean Response Time in Seconds
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AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
File Server 44.5 40 41.9 40.8 42.5 43 45.9 42.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
MetaData 66.7 64.6 66.2 64 101.8 71.7 72.4 66.7

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Web Server 43.4 38.2 37.9 42.9 68.3 42.8 69.3 64.5

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Mail Server 60.3 58.5 58.7 58.1 100.3 66.2 65.8 65.1

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Read 2582.1 470.4 460.2 510.9 2601.2 541 576.1 511.2

AS - ext3 DL- ext3 NO - ext3 CFQ - ext3 AS - xfs DL - xfs NO - xfs CFQ - xfs
Seq. Write 1313.8 1439.3 1171.1 1433.5 508.5 506.2 508.5 509.8

Table 7: RAID-0 16 – Default I/O Schedulers, No Tuning, Mean Response Time in Seconds

CFQ CFQ-T AS DL NO
Mixed ext3 334.1 288.1 371.2 301.2 333.5

CFQ CFQ-T AS DL NO
Mixed xfs 295 291 308.4 296 302.8

Table 8: RAID-5 8-Way Mixed Workload Behavior, Mean Response Time in Seconds
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Abstract

Typical OSS packages make assumptions
about their build environment that are not nec-
essarily true when attempting to cross compile
the software. There are two significant con-
tributors to cross compile problems: platform
specific code, and build/host confusion. Sev-
eral examples of problems existing in current
OSS packages are presented for each of these
root causes, along with explanations of how
they can be identified, how they can have been
avoided, and how they can be resolved.

1 Why Cross Compile?

Cross compiling is the process of building soft-
ware on a particular platform (architecture and
operating system), with the intent of producing
executables that will run on an entirely differ-
ent platform. Generally, the platform the soft-
ware is built on is referred to as the “build” sys-
tem, while the platform the executables are run
on is referred to as the “host” system.1

The process of cross compiling software is
somewhat related to, but distinct from, the pro-
cess of porting software to run on a differ-
ent platform. The critical distinction is in the
difference between the build and host system

1Unfortunately, not everyone chooses the same ter-
minology. For example, the Scratchbox documentation
(http://www.scratchbox.org/ ) uses the terms
“host” and “target” where this paper uses “build” and
“host” to refer to the same concepts.

characteristics. Often times, software that can
be built natively on different platforms will ex-
hibit problems when cross compiling. These
problems arise because the software fails to
distinguish between the build system and the
host system during one or more of the four dis-
tinct stages in the process of cross compiling
software: configuration, compilation, installa-
tion, and verification.

Cross compiling is an absolute necessity for a
very small number of software packages. In
the OSS world, there are several software pack-
ages that are specifically designed with cross
compiling in mind (binutils, gcc, busybox, the
Linux kernel itself, etc.) These packages are
often used to bootstrap a new system, provid-
ing a high-quality, low-cost way of obtaining a
minimal working system with a small amount
of effort. Once a minimal OS and related util-
ities are present on a system, a developer can
then build additional software for the system
as required.

As Linux becomes more prevalent in the em-
bedded market space, there is an increased de-
sire among embedded systems developers for
more cross compile friendly software pack-
ages. While modern embedded systems are of-
ten resource rich in terms of processing power,
I/O capabilities, memory, and disk space when
compared to embedded systems of only a few
years ago, compiling software natively on such
a system still poses problems for an embedded
developer. In extreme cases, compiling a mod-
erately complex software package on an em-
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bedded system natively may take hours instead
of minutes.

Embedded developers therefore prefer cross
compiling. Most significantly, it gives the
embedded developer the advantage of work-
ing in a more comfortable, resource-rich
environment—typically on a high-end work-
station or desktop system—where they can
take advantage of superior hardware to reduce
their compile/link/debug cycles. Also impor-
tantly, cross compiling makes it easier to set up
a system by which an entire system can easily
be built from scratch in a reproducible manner.

2 Terminology and Assumptions

Cross compiling is a specialized subset of the
software development world, and as such, em-
ploys its own terminology in an attempt un-
ambiguously identify certain concepts. The
following terms are definitions based on those
provided by the GNU autoconf documentation
2, and used commonly in OSS projects such as
binutils, gcc, etc.

platform - an architecture and OS combina-
tion

build system - the platform that a software
package will beconfiguredandcompiled
on

host system- the platform that a software
package willrun on

target system - the platform that the software
package willproduceoutput for

toolchain - the collection of tools (compiler,
linker, etc.) along with the headers, li-
braries, etc. needed to build software for
a platform

2Available athttp://www.gnu.org/manual/

cross compiler - a toolchain that runs on a
host system, but produces output for a
target system

Typically, the target system is really only of in-
terest to those working on compilers and re-
lated tools, where that extra degree of precision
is needed in order to specify the final binary
format those tools are intended to produce. In
the OSS world, aside from binutils, gcc, and
similar software packages, one can usually ig-
nore the additional possibilities and complica-
tions introduced by variations in the target sys-
tem.

The remainder of this paper will assume the ex-
istence of a cross compiler3 that runs on an un-
specified build system, and is capable of pro-
ducing executables that will run on a different
unspecified host system. The paper ignores the
process of porting software to run on a new
platform, in order to concentrate solely on is-
sues that arise from the process of cross com-
piling the software.

3 Configuration Issues

All but the most simple software packages gen-
erally require some means of configuration.
This is a process by which the software deter-
mines how it should be built—which libraries
it should reference, which headers it may in-
clude, any particular quirks or workarounds in
system calls it needs to deal with, etc.

Configuration is an area ripe for introducing
cross compile problems. It provides software
packages with the unique opportunity to com-
pletely confuse a build by assuming that the
build system and the host system are one and
the same. All cross compile configuration

3Those interested in building their own cross com-
piler may wish to consult the ’Resources’ section at the
end of this paper.
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problems are some reflection of this confusion
between the identity of the build and host sys-
tems.

3.1 Avoid using the wrong tools

This particular problem is caused by misiden-
tifying which tools are to be used as part of the
build process. Some software packages expect
to be able to build and execute utility programs
as part of their build process; a good example
of this is the Linux kernel configuration utility.
While the final output of the software package
will need to run on the host system, these util-
ity programs will need to be run on the build
system.

Figure 1 shows an example of this problem. In
this case,CC_FOR_BUILDis set to the same
value asCC, which would be appropriate if it
wasn’t for the fact that earlier in the configura-
tion process,CCwas explicitly set to reference
the cross compiler being used for the build.

# compilers to use to create programs
# which must be run in the build environment.

-CC_FOR_BUILD = $(CC)
-CXX_FOR_BUILD = $(CXX)
+CC_FOR_BUILD = gcc
+CXX_FOR_BUILD = g++

SUBDIRS = "this is set via configure, \
don’t edit this"

OTHERS =

Figure 1: Using the wrong tools

In this particular instance, there are several
solutions. The most correct, and most ex-
pensive, is to update the makefile templates
to use the proper variables (CC_FOR_BUILD
andCC) in their proper context. Another pos-
sible solution is to override the definition of
CC_FOR_BUILDandCCprior to invoking the
makefile. The solution presented in Figure 1
is a simple, straightforward, get-it-working ap-
proach whereCC_FOR_BUILDis simply set
to an appropriate value for the majority of build

systems.

3.2 Be cautious when executing code on the
build system

As part of the configuration process, many
software packages—particularly those built on
top of autoconf —will try to compile, link,
or even execute code on the host system.

For autoconf based projects, most of the
standard autoconf macros (AC_CHECK_
LIB , AC_CHECK_HEADER, etc.) do a good
job of dealing with cross compile issues. In
some instances, though, these standard macros
fail when trying to test for the presence of an
uncommon header file or library. Developers
typically deal with these case by writing cus-
tom autoconf macros.

If the developer is not cautious, s/he may
produce a custom macro that ends up per-
forming a more extensive check than what
is really needed. Often times, a developer
will create a custom macro that makes use of
the autoconf AC_TRY_RUN macro. This
macro attempts to compile, link, and execute
an arbitrary code fragment. The problem here
is that the conditions being tested for may not
actually require that the resulting binary be ex-
ecuted.

When cross compiling a package that uses cus-
tom macros, this leads to a situation where test
code will compile and link properly (thanks to
the cross compiler), but will then fail to run,
or will run and produce incorrect output. In
either case, it is highly unlikely that the con-
figure script will reach the proper conclusion
about whether or not the header file or library
is actually available.

A simple solution to this problem is to check
and see if the output from the test program
is ever actually used. If not, then the call to
AC_TRY_RUNin the test macro can be re-
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placed with a call toAC_TRY_COMPILEor
AC_TRY_LINK, as shown in Figure 2. These
two macros implement checks for the ability to
compile and link the provided code fragment,
respectively.

SKEY_MSG="yes"

AC_MSG_CHECKING([for s/key support])
- AC_TRY_RUN(
+ AC_TRY_LINK(

[
#include <stdio.h>
#include <skey.h>

Figure 2: Avoiding execution when linking
will suffice

3.3 Allow the user to override a ‘detected’ con-
figuration value

In some cases, use ofAC_TRY_RUNis ab-
solutely essential; the automatic configuration
process may need to be able to compile, link,
and execute code in order to determine the
characteristics of the host system. This is a def-
inite stumbling block when trying to configure
a software package for cross compiling.

A good configuration script allows the user
to explicitly identify or override what would
otherwise be an automatically detected value.
For autoconf based projects, this typically
means addingAC_ARG_ENABLEmacros to
your configure.in file that allow the user
to explicitly set the value of questionable
autoconf variables.

In the case of existing software packages, there
may not be an explicit method for setting a
questionable variable. In this case, it may be
possible to set the appropriate variable by hand
before configuring the software package, in or-
der to force the desired outcome. This may
still fail under some circumstances; for exam-
ple, some configuration scripts do not bother to
check to see if the a configuration variable has

been set before attempting to automatically de-
duce its value.

In those cases, the configuration script may
be modified4 to guard the detection code by
checking to see if the variable has already been
assigned a value. If a value has already been
assigned, the configuration script can use the
specified value, and skip executing the detec-
tion code. In other cases, it may be more ap-
propriate to fix the detection code itself so that
it sets the variable to the proper value.

4 Compilation Issues

For the majority of portable software pack-
ages, attempting to cross compile will gener-
ally not uncover any issues with the code it-
self.5 Even though individual source files may
compile when pushed through the cross com-
piler, though, the overall way in which the soft-
ware is built can still exhibit problems.

4.1 Avoid hard-coded tool names

Figure 4 shows a makefile fragment that origi-
nally made an explicit call toar . In a package
that is otherwise cross compile friendly, this is
a particularly annoying occurrence. Depending
on the specifics of the cross compiler, the call
to ar may succeed, but produce an unusable
static library.

Correcting this kind of problem is
straightforward—replace the hard-coded
tool name with a reference to a make variable

4For autoconf based software packages, keep in
mind that theconfigure script is generated by pro-
cessing configure.in . Editing theconfigure
script direclty can be helpful for testing fixes, but
changes will have to be made toconfigure.in as
well to ensure they persist if theconfigure script is
regenerated.

5Provided, of course, that the software has already
been ported to the host platform.
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that names the appropriate tool for the system
the binary is intended to run on.

4.2 Avoid decorated tool names

Occaisionally, project makefiles will avoid
hardcoded tool names by defining a variable,
but then attempt to eliminate the an "unneeded"
variable by combining a tool reference with the
default flags that should be passed along to the
tool, as shown in Figure 3.

While the intent was noble, this type of def-
inition makes it difficult for a user to sup-
ply a different definition for a tool. In-
stead of simply setting the value of of the
tool when invoking the makefile (ex,make
AR=ppc7xx-linux-ar ), a user now has
to know to define AR in a way that in-
cludes the default arguments (ex,make
AR=’ppc7xx-linux-ar cr’ ).

Again, correcting this type of problem is
straightforward—split the definition of the tool
reference into a reference to the simple tool
name and a variable that indicates the default
flags that should be passed to the tool.

-AR = @AR@ cq
+AR = @AR@
+ARFLAGS = cq

all: $(OBJS)
-rm -f libsupport.a

- $(AR) libsupport.a $(OBJS)
+ $(AR) $(ARFLAGS) libsupport.a $(OBJS)

@RANLIB@ libsupport.a

Figure 3: Avoiding execution when linking
will suffice

4.3 Avoid hard-coded paths

It is very easy for an otherwise cross compile
friendly software package to mistakenly set up
an absolute include path that looks reasonable.
In many situations, the added include path may

in fact be harmless, particularly if the build sys-
tem and host system have roughly the same OS
version, library versions, etc. However, even
slight differences in structure definitions, enu-
merated constants, etc. between build system
and host system headers can very easily re-
sult in either compilation errors, or in the cross
compiler producing an unusable binary.

Figures 5 and 6 shows a simple and straightfor-
ward solution—remove the hard-coded include
path. If the include path is required, then you
will need to alter it so that it can be specified
relative to the location of the include files ap-
propriate for the host system.

4.4 Avoid assumptions about the build system

While this is nominally a porting issue, some-
times a software package will make what
seems to be a reasonable assumption about the
build system. In particular, software pack-
ages that are intended to run only on a partic-
ular class of operating systems (Linux, POSIX
complaint systems, etc.) may assume that even
if they are cross compiled, they will at least be
cross compiled on a build system that has char-
acteristics similar to the host system.

Figure 7 illustrates this problem. This make-
file fragment assumes that the build system will
have a case-sensitive file system, and that the
file patterns ’*.os ’ and ’*.oS ’ will therefore
refer to a distinct set of files—in this case, files
for inclusion in a static library and files for in-
clusion in a shared library, respectively.

This particular assumption breaks down when
compiling on a case-insensitive file system
like VFAT, NTFS, or HPFS.6 When encoun-
tering this type of problem, there is no easy
workaround—the build logic for the software

6While these file systems are case-insensitive, they
are case preserving, which sometimes helps mask po-
tential case-sensitivity issues.
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will need to be altered in order to adjust to the
conditions of the unexpected build system.

In this case, the solution was to replace ’*.oS ’
with ’*.on ’, a file pattern that is distinct from
’*.os ’ on either a case-insensitive or a case-
sensitive file system.

5 Installation Issues

Software installation is sometimes seen as a
simple problem. After all, how hard can it be
to just copy files around and make sure they
all end up in the right place? As with con-
figuration and compilation, though, cross com-
piling software introduces additional complex-
ities when installing software.

5.1 Avoid install -s

Figure 8 shows a makefile fragment that at first
glance looks reasonable; as originally written,
it attempted to install a binary using the de-
tected version of theinstall program avail-
able on the build system.

The problem here is that the originalinstall
command specified the-s option, which in-
structsinstall to strip the binary after in-
stalling it. Because the command uses the build
system’s version ofinstall , this means that
the stripping will be accomplished using the
build system’s version ofstrip . Depending
on the version ofstrip installed on the build
system, this command may appear to succeed,
yet result in a useless binary being installed.

The solution here is to avoid the use of
install -s , and instead explicitly strip
the binary after installation using the version
of strip provided with the cross compile
toolchain that built the binary.

5.2 Avoid hard-coded installation paths

When cross compiling software, it is often con-
venient to treat a directory on the build sys-
tem as the logical root of the host system’s file
system.7 This allows a developer to “install”
the software into this logical root file system
(RFS); often times, the RFS is made available
to the host system via NFS.

Autoconf packages typically use variables to
specify the prefix for installation paths, which
makes installing them into an RFS a simple
matter. As Figure 9 shows, non-autoconf
makefiles may need to be modified to make the
same sort of adjustments to installation paths.

Even if the software package already makes
use ofprefix or a similar variable, it may
overload the meaning of that variable. This
can happen in any type of software package,
autoconf based or not. For example, a
package may use theprefix variable to both
control the installation path, and also generate
#define statements that specify paths to con-
figuration files or other important data. In this
case, it may still be necessary to modify the
makefile to introduce the idea of an installation
prefix, as shown in Figure 10.

5.3 Create the required directory structure

Often times, software packages assume that
they are being installed on an existing, full-
featured system—which implies the existence
of a certain directory structure. A cross com-
piled software package may be installed on the
build system into a location that is lacking part
or all of a normal directory structure. In this
case, the install steps of the software package
must be pessimistic, and assume that it will al-
ways be necessary to create whatever directory

7See the Scratchbox website (http://www.
scratchbox.org ) for more information on the hows
and whys of build sandboxing.
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structure it requires for the installation to suc-
ceed.

Figure 11 shows a patch for a makefile frag-
ment that originally assumed the pre-existence
of a particular directory structure. Appropriate
calls tomkdir -p are enough to ensure that
the existing directory structure is in place prior
to the install.

6 Verification Issues

There are a number of OSS packages that
very conveniently provide self-test capabilities.
Along with the usual targets in their makefiles,
they include targets that allow the user to build
and run a test suite against the software after it
is built, but before it is installed.

The main problem here is that these test tar-
gets generally run each individual test in the
suite using a “compile, execute, analyze” cy-
cle. Even if the compilation and result analy-
sis steps succeed on the build system, test ex-
ecution will most likely fail if the package has
been cross compiled, since the tests were built
with the host system in mind. If you are for-
tunate, these tests will simply fail; otherwise,
you will not be able to gauge the accuracy of
the tests, as they may be picking up informa-
tion or artifacts from the build system.

A simple solution is to rewrite test targets to
separate test compilation from test execution
and result analysis. Providing a distinct install
or packaging target for the test suite so that it
can be easily moved over to a host system for
execution is an added bonus.

Don’t assume that you can execute self-tests as
part of the normal build cycle (see Figure 12).
If you do include a test target as part of your
default target dependencies, at least make sure
that it is only enabled or run if it knows that it
can execute the tests on the build system.

7 Conclusions

By now, it should be apparent that while there
are any number of subtle ways that cross com-
piling software can fail, they are for the most
part simple problems with simple solutions.

Developers interested in supporting cross com-
piling of software packages they maintain can
use these problems as a guideline of potential
problem areas in their own projects. Detecting
potential cross compile issues is often a sim-
ple matter of examining project source code
and identifying the potential for confusing the
meaning of build and host systems.

Finally—the best possible way to examine a
software package to see if (or how well) it
supports cross compiling is to actually try and
cross compile it. While the truly adventurous
may wish to try and build their own cross com-
piler, there are any number of locations on the
web where an interested developer can obtain
a pre-built toolchain for this purpose. Those
working primarily on an x86 Linux host may
wish to consider using one of the available pre-
built cross compilers that can be found through
the rpmfind (http://www.rpmfind.net )
service. For those interested in building their
own cross compiler, or in researching other
cross compile issues, are a number of resources
(see Table 8) on the net that deal specifically
with cross compile issues. The emphasis of
these resources is generally on embedded sys-
tem development, though much of the infor-
mation available is still applicable when dis-
cussing cross compiling in general.
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8 Appendix—Code Examples

The following figures are referred to in the pa-
per, and are collected here (instead of presented
inline) for the sake of providing clarity in the
text. Each figure represents a patch (or a par-
tial patch) for a common OSS package that was
used at TimeSys to work around cross compile
problems. These selections were chosen to il-
lustrate, in a compact fashion, both the prob-
lems described in the text and some possible
solutions.

decompress.o \
bzlib.o

-all: libbz2.a bzip2 bzip2recover test
+all: libbz2.a bzip2 bzip2recover #test

bzip2: libbz2.so bzip2.c
$(CC) $(CFLAGS) -o bzip2 $\^

Figure 12: Avoid making tests part of the de-
fault build target



Linux Symposium 2004 • 459

The CrossGCC Mailing List
http://sources.redhat.com/ml/crossgcc/
A list for discussing embedded (‘cross’) programming using the GNU
tools.

The CrossGCC FAQ http://www.sthoward.com/CrossGCC/

crosstool
http://www.kegel.com/crosstool/
A set of scripts to build gcc and glibc for most architectures supported
by glibc.

Linux from Scratch
http://www.linuxfromscratch.org/
A project that provides you with the steps necessary to build your own
custom Linux system.

Scratchbox
http://www.scratchbox.org/ A cross-compile toolkit for
embedded Linux application development.

Embedded Gentoo

http://www.gentoo.org/proj/en/base/embedded/
index.xml
Gentoo project concerned with cross compiling and embedded
systems.

The GNU configure and build
system

http://www.airs.com/ian/configure/
Document describing the GNU configure and build systems. A bit out
of date (circa 1998), but still very useful.

GNU Autoconf, Automake, and
Libtool

http://sources.redhat.com/autobook/
Online version of the classic book covering GNU autotools.

Table 1: Selected internet resources on cross compiling
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libbz2.a: $(OBJS)
rm -f libbz2.a

- ar cq libbz2.a $(OBJS)
- @if ( test -f /usr/bin/ranlib -o -f /bin/ranlib -o \
- -f /usr/ccs/bin/ranlib ) ; then \
- echo ranlib libbz2.a ; \
- ranlib libbz2.a ; \
- fi
+ $(AR) cq libbz2.a $(OBJS)
+ $(RANLIB) libbz2.a
+ #@if ( test -f /usr/bin/ranlib -o -f /bin/ranlib -o \
+ # -f /usr/ccs/bin/ranlib ) ; then \
+ # echo ranlib libbz2.a ; \
+ # ranlib libbz2.a ; \
+ #fi

libbz2.so: libbz2.so.$(somajor)

Figure 4: Avoiding hard-coded tool references

export GCC_WARN = -Wall -W -Wstrict-prototypes -Wshadow $(ANAL_WARN)
-export INCDIRS = -I/usr/include/ncurses
-export CC = gcc
+#export INCDIRS = -I/usr/include/ncurses
+#export CC = gcc

export OPT = -O2
export CFLAGS = -D_GNU_SOURCE $(OPT) $(GCC_WARN) -I$(shell pwd) $(INCDIRS)

Figure 5: Avoiding hard-coded include paths

INSTALL = install -o $(BIN_OWNER) -g $(BIN_GROUP)

# Additional libs for Gnu Libc
-ifneq ($(wildcard /usr/lib/libcrypt.a),)

LCRYPT = -lcrypt
-endif

all: $(PROGS)

Figure 6: Avoiding tests for hard-coded path names

# Bounded pointer thunks are only built for *.ob
elide-bp-thunks = $(addprefix $(bppfx),$(bp-thunks))

-elide-routines.oS += $(filter-out $(static-only-routines),\
+elide-routines.on += $(filter-out $(static-only-routines),\

$(routines) $(aux) $(sysdep_routines)) \
$(elide-bp-thunks)

elide-routines.os += $(static-only-routines) $(elide-bp-thunks)

Figure 7: Avoiding assumptions about the build system
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- $(INSTALL) -m 0755 -s ssh $(DESTDIR)$(bindir)/ssh
+ $(INSTALL) -m 0755 ssh $(DESTDIR)$(bindir)/ssh
+ $(STRIP) $(DESTDIR)$(bindir)/ssh

Figure 8: Replacing install -s with an explicit call to strip

NAME = proc

# INSTALLATION OPTIONS
-TOPDIR = /usr
+TOPDIR = $(DESTDIR)/usr

HDRDIR = $(TOPDIR)/include/$(NAME)# where to put .h files
LIBDIR = $(TOPDIR)/lib# where to put library files

-SHLIBDIR = /lib# where to put shared library files
+SHLIBDIR = $(DESTDIR)/lib# where to put shared library files

HDROWN = $(OWNERGROUP) # owner of header files
LIBOWN = $(OWNERGROUP) # owner of library files
INSTALL = install

Figure 9: Avoiding hard-coded install paths

# Where is include and dir located?
prefix=/

+installdir=/

.c.o:
$(CC) $(CFLAGS) -c $<

@@ -47,28 +48,32 @@
-if [ ! -d pic ]; then mkdir pic; fi

install: lib install-dirs install-data
- -if [ -f $(prefix)/lib/$(SHARED_LIB) ]; then \
- mkdir -p $(prefix)/lib/backup; \
- mv $(prefix)/lib/$(SHARED_LIB) \
- $(prefix)/lib/backup/$(SHARED_LIB).$$$$; \
+ -if [ -f $(installdir)/$(prefix)/lib/$(SHARED_LIB) ]; then \
+ mkdir -p $(installdir)/$(prefix)/lib/backup; \
+ mv $(installdir)/$(prefix)/lib/$(SHARED_LIB) \
+ $(installdir)/$(prefix)/lib/backup/$(SHARED_LIB).$$$$; \

fi
- cp $(SHARED_LIB) $(prefix)/lib
- chown $(OWNER) $(prefix)/lib/$(SHARED_LIB)
+ cp $(SHARED_LIB) $(installdir)/$(prefix)/lib
+ chown $(OWNER) $(installdir)/$(prefix)/lib/$(SHARED_LIB)

if [ -x /sbin/ldconfig -o -x /etc/ldconfig ]; then \
ldconfig; \

Figure 10: Working around the use of an overloaded prefix variable
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install-only:
n=‘echo gdbserver | sed ’$(program_transform_name)’‘; \
if [ x$$n = x ]; then n=gdbserver; else true; fi; \

+ mkdir -p $(bindir); \
+ mkdir -p $(man1dir); \

$(INSTALL_PROGRAM) gdbserver $(bindir)/$$n; \
$(INSTALL_DATA) $(srcdir)/gdbserver.1 $(man1dir)/$$n.1

Figure 11: Creating required directories at install time
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Abstract

Today’s received network data is copied from
kernel-space to user-space once the protocol
headers have been processed. What is needed
is to provide ahardware (NIC) to user-space
zero-copy path. This paper discusses a page-
flip technique where a page isflipped from
kernel memory into user-space via page-table
manipulation. Gigabit Ethernet was used to
produce this zero-copy receive path within the
Linux stack which can then be extrapolated to
10 Gigabit Ethernet environments where the
need is more critical. Prior experience in the
industry with page-flip methodologies is cited.

The performance of the stack and the over-
all system is presented along with the testing
methodology and tools used to generate the
performance data. All data was collected us-
ing a modified TCP/IP stack in a 2.6.x kernel.
The stack modifications are described in detail.
Also discussed is what hardware and software
features are required to achieve page-flipping.

The issues involving page-flipping are de-
scribed in detail. Also discussed are problems
related to this technology concerning the Vir-
tual Memory Manager (VMM) and processor
cache. Another issue that is discussed is what

would be needed in an API or code changes to
enable user-space applications.

The consequences and possible benefits of this
technology are called out within the conclu-
sions of this study. Also described are the pos-
sible next steps needed to make this technology
viable for general use. As faster networks like
10 Gigabit Ethernet become more common-
place for servers and desktops, understanding
and developing zero-copy receive mechanisms
within the Linux kernel and networking stack
is becoming more critical.

Introduction

Data arriving at a network port undergoes two
copy operations (a) from the device memory
to kernel memory as a DMA by the device
into host memory and (b) from kernel memory
to application memory, copied by the proces-
sor. Techniques that avoid the second copy are
designated zero-copy; no additional copy op-
erations are involved once the data is copied
into host memory. Avoiding the second copy
can potentially improve throughput and reduce
CPU utilization. This has been demonstrated
in [Hurd] [Duke] and [Gallatin]. Several tech-
niques have been discussed in the literature for
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avoiding the second copy namely page flip-
ping, direct data placement (DDP) and remote
DMA (RDMA).

Significant performance benefits were demon-
strated with the zero copy implementation in
the transmit path. We investigate the effective-
ness of the page flipping on newer platforms
(faster processor(s) and faster memory). Ad-
ditional motivation for this experiment and pa-
per came from a discussion on the netdev (and
linux-kernel) mailing list where David Miller
mentioned his idea of

On receive side, clever RX buffer
flipping tricks are the way to go
and require no protocol changes
and nothing gross like TOE or
weird buffer ownership protocols
like RDMA requires.1

Approaches

Our initial approach consisted of attempting to
modify the 2.4 kernel to support direct modifi-
cation of PTE’s in user and kernel space. This
method was based on the assumption that any
PTE could represent any location in memory
which we later found out not to be true. Our
findings indicated that we needed to rely more
upon the OS abstraction layers to complete our
page-flip implementation. This had the side
benefit of making our changes less x86 spe-
cific as well. Eventually we settled upon a 2.6
based kernel and effectively implemented our
original idea but instead just install a new page
into the application space in much the same
way as the swapper does. The biggest hurdles
came from understanding how the Linux mem-
ory manager and its various kernel structures
work and relate to each other.

1http://marc.theaimsgroup.com/
?l=linux-netdev&w=2&r=1&s=TCP+
offloading+interface&q=b

For our final experiments we used 2.6.4 or
newer kernels with what eventually amounted
to small changes to the kernel to support page
flipped PAGE_SIZE data.

The kernel code consisted of these changes
(see patch at the end of this document):

1. Driver modifications to support header
and data portions of a packet in separate
buffers, where the data buffer is always
aligned to a PAGE_SIZE boundary.

2. Add a flag to the skb structure to indi-
cate to the stack that the hardware and
driver prepared a zero copy capable re-
ceive structure.

3. Modifications to the skb_copy_
datagram_iovec() function to
support calling the newflip_page_
mapping() function when zero copy
capable skbs are received.

4. A newflip_page_mapping() func-
tion that executes the installation of the
driver page into the user’s receive data
space. This routine handles fixing up per-
missions.

5. A modification was made to the skb free
routines to handle a frags[i] where the
.page member was zero after that page had
changed ownership to user space.

Experiment

Our test platform consisted of a pre-release
system with a dual 2.4 GHz Intel® Pentium® 4
processor supporting Hyper-Threading Tech-
nology, and 512 megabytes of RAM. This ma-
chine had a network card that supported split-
ting the header and data portions of a packet
into different buffers, and validating the IP,
TCP and Ethernet checksums.



Linux Symposium 2004 • 465

Assumptions

For this experiment we made some assump-
tions to simplify and to work with the hardware
that we had available.

• Our application had to allocate a re-
ceive data area in multiples of 4K bytes,
and that memory had to be PAGE_SIZE
aligned.

• We modified the freely available nttcp-
1.47 to use valloc instead of malloc, re-
sulting in PAGE_SIZE aligned memory
starting addresses.

• Our network used Maximum Transmis-
sion Units (MTU) to allow for 4KB or
8KB of data to be packaged in every
packet.

• Upon splitting of the packet into header
and data portions, this resulted in an
aligned data block

• The 2.6.4 kernel was configured for stan-
dard 4KB PAGE_SIZE and debugging op-
tions were turned off.

Methodologies

After making the required code changes and
debugging, we measured the performance of
the new “page flip” code against the “copy
once” method of receiving data.

These measurements consisted of two major
test runs, one where the application never
touched the data (notouch) being received, and
the other where the application did a compar-
ison of the data to an expected result (touch),
effectively forcing the data into the cache and
also validating that data was not corrupted in
any way through this process.

Figure 1: 1.8 GHz comparison

For every instance of the test, three runs were
done and the results were averaged for each
data point.

Oprofile was used to record the hot-spots for
each run.

CPU utilization and network utilization were
measured with sar from the sysstat package.
NOTE: Our initial results were skewed by a
version of sar that incorrectly measured CPU
and network utilization (showing more than
1Gb/s transferred in a single direction), be
aware that some versions of sar that shipped
with your distribution may need to be updated.

Results of Performance Analysis

It is apparent from the touch graphs in Fig-
ure 1 that the page flip slightly reduces CPU
on slower processors. However, the touch
throughput decreases as well, with a decrease
in efficiency (Mbits/CPU = eff) for the 4148
MTU from 6.52 (original) to 6.48 (page-flip).
The decrease in efficiency is even smaller for
8244 MTUs, where the efficiency went from
6.86 to 6.85. The difference in CPU from the
8244 to the 4148 MTU case is most likely due
to header processing as the data throughput is
very similar.

The difference between Figure 1 and Figure 2
is simply the processor’s speed being adjusted
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Figure 2: 2.4 GHz comparison

in the bios using a multiplier change. The re-
sults from Figure 2 show that the faster pro-
cessor is more efficient overall, but that even if
there is a slight increase in throughput for the
page-flip case, the efficiency is still less than
if the copy was being done. The efficiency
for the 4148 MTU touch data case went from
8.59 to 8.45. For the 8244 byte MTU the effi-
ciency goes from 9.02 to 8.93, even though the
throughput goes up.

Surprises and Unexpected Results

We expected that the copy may actually have
some beneficial side effects, and our data
shows that it does. Especially as processor
clock rate increases, the copy becomes less
costly in CPU-utilization, while the page flip
maintains a constant load which is heavier than
the copy was initially.

Oprofile analysis indicated that the locks asso-
ciated with the page-flip code cause the major-
ity of the stalls in this code path.

Oprofile also showed that the stall associated
with the TLB (translation look-aside buffer)
flush was very painful.

Conclusions

We had several surprises along the way, but
feel confident that at least with our current code
base, we can conclude that using a page-flip
methodology to receive network data is less ef-
ficient than simply doing a copy. The major
contributors to this counterintuitive result seem
to be cache issues (especially obvious in the
“touched data” tests), and a heavier cost asso-
ciated with the work necessary to prepare and
complete the page-flip.

There may be environments such as embedded
systems and slower processors where page-
flipping will help significantly in decreasing
CPU utilization or increasing performance.

Our feeling is that page flipping will not scale
in CPU utilization as well as a plain copy does.

There is much room however for optimization
of the page-flip code path, which will be fol-
lowed up with the community. Our expecta-
tion is that this optimization will be fighting an
uphill battle just to achieve parity with a copy,
and then will mostly likely not be able to keep
up with speed advances in the processor.

Also, we had to remind ourselves that the cache
warming cost must be paid somewhere along
all receive paths. Using page-flip methods only
moves the cost of the cache miss to the applica-
tion instead of taking the cost of the miss in the
kernel. If the application is waiting impatiently
for data, its likely that the cache will be seeded
with the data and the application will get all of
its data out of cache and have very fast access
at that point.

Current issues

The current patch has several outstanding is-
sues that we worked around.
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1. There isn’t much (if any) commercially
available hardware that supports header
split receives.

2. Ideally hardware (as mentioned by David
Miller) would be able to have flow identi-
fication and fillPAGE_SIZEbuckets with
data. This would eliminate the require-
ment for specific MTU sizes.

3. The current code has a bug when a net-
work data consumer causes aclone_
skb() to occur. If a page-flipped page
pointer nr_frags[].page is refer-
enced in the skb being cloned, then a zero
pointer is read and the system faults. This
is due to the ownership of the page chang-
ing from kernel space to user space before
the clone is completed. It is not immedi-
ately clear if this is an easily surmount-
able problem, but is easy to work around
for our tests.

4. The assumptions we made to enable test-
ing this new code path, like specifying
MTU, recompiling the application, etc,
create such strict requirements that the
usefulness of this code outside of an aca-
demic environment is severely limited.

Future directions possible

It is likely that on a system with lots of context
switching going on (high load) that the page-
flip would be more beneficial. Testing in these
environments would provide useful results.

If tested on other architectures besides x86,
such as x86-64, IA64 and PPC this code may
yield significantly different results.

We did create a driver patch (Appendix B) for
the currently available e1000 driver and hard-
ware that prepares packets (using a copy) for
processing through the page-flip modified net-
work stack to the user application. We saw that

the copy necessary in the driver to do this made
the differences between “driver with copy fol-
lowed by a flip in the stack” and a “driver with
a copy followed by another copy in the stack”
almost nonexistent. We believe this is because
of the cache warming done by the Appendix B
driver as it prepares the flip capable structure.
Making this code behave more like the flip ca-
pable hardware (possibly with a cache flush)
would be very useful to increase the amount
of experimentation that could be done with the
non-hardware specific kernel patches.
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Abstract

During the 2.5 development series, many peo-
ple collaborated on the infrastructure to add
(easy) and remove (hard) CPUs under Linux.
This paper will cover the approaches we used,
tracing back to the initial PowerPC hack with
Anton Blanchard in February 2001, through
the multiple rewrites to inclusion in 2.6.5.

After the brief history lesson, we will de-
scribe the approach we now use, and then the
authors of the various platform-specific code
will describe their implementations in detail:
Zwane Mwaikambo (i386) Srivatsa Vaddagiri
(i386, ppc64), Joel Schopp (ppc64), Ashok Raj
(ia64). We expect an audience of kernel pro-
grammers and people interested in dynamic
cpu configuration in other architectures.

1 The Need for CPU Hotplug

Linux is growing steadily in the mission crit-
ical data-center type installations. Such in-
stallations requires Reliability, Availability and
Serviceability (RAS) features. Modern proces-

sor architectures are providing advanced error
correction and detection techiniques. CPU hot-
plug provides a way to realize these features
in mission critical applications. CPU hotplug
feature adds the following ability to Linux to
compete in the high end applications.

• Dynamic Partitioning

Within a single system multiple Linux
partitions can be running. As workloads
change CPUs can be moved between par-
titions without rebooting and without in-
terrupting the workloads.

• Capacity Upgrade on Demand

Machines can be purchaced with extra
CPUs, without paying for those CPUs
until they are needed. Customers can
at a later date purchase activiation codes
that enable these extra CPUs to match in-
creases in demand, without interrupting
service. These activiation codes can either
be for temporary activation or permanant
activation depending on customer needs.
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• Preventive CPU Isolation

Advanced features such as CPU Guard in
PPC64 architectures, and Machine Check
Abort (MCA) features in Itanium® Prod-
uct Family (IPF) permit the hardware to
catch recoverable failures that are symp-
tomatic of a failing CPU and remove that
CPU before an unrecoverable failure oc-
curs. An unused CPU can later be brought
online to replace the failed CPU.

2 The Initial Implementation

In February 2001, Anton Blanchard and
Rusty Russell spent a weekend modifying
the ppc32 kernel to switch CPUs on and
off. Stress tests on a 4-way PPC crash box
showed it to be reasonably stable. The
resulting 60k patch to 2.4.1 was posted
to the linux-kernel on February the 4th:
http://www.uwsg.iu.edu/hypermail

/linux/kernel/0102.0/0751.html .

Now we know that the problem could be
solved, we got distracted by other things. Upon
joining IBM, Rusty had an employer who ac-
tually had a use for hotplugging CPUs, and in
2002 the development started up again.

The 2.4 kernels usedcpu_number_map()
to map from the CPU number given by
smp_processor_id() (between 0 and
NUM_CPUS) to a unique number between
0 and smp_num_cpus . This allows sim-
ple iteration between 0 andsmp_num_cpus
to cover all the CPUs, but this cannot
be maintained easily in the case where
CPU are coming and going. Given my
experience thatcpu_number_map() and
cpu_logical_map() (which are noops on
x86) are a frequent source of errors, Rusty
chose to eliminate them, and introduce a
cpu_online() function which would indi-

cate if the CPU was actually online. Much
of the original patch consisted of removing the
number remapping, and rewriting loops appro-
priately.

This change went into Linus’ tree in 2.5.24,
June 2002, which made the rest of the work
much less intrusive.

In the next month, as we were trying to get
thecpu_up() function used for booting, Li-
nus insisted that we also change the boot order
so that we boot as if we were uni-processor,
and then bring the CPUs up. Unfortunately,
this patch broke Linus’ machine, and he par-
tially reverted it, leaving us with the current
situation where a little initialization is done be-
fore secondary CPUs come online, and nor-
mal __initcall functions are done with all
CPUs enabled. This change also introduced
thecpu_possible() macro, which can be
used to detect whether a CPU could ever be on-
line in the future.

The old boot sequence for architectures was:

1. smp_boot_cpus() was called to ini-
tialize the CPUs, then

2. smp_commence() was called to bring
them online.

In addition, each arch optionally implemented
a “maxcpus” boot argument. This was made
into an arch-independent boot argument, and
the boot sequence became:

1. smp_prepare_cpus(maxcpus)
was called to probe for cpus and set up
cpu_present(cpu) 1, then

1On arch’s that dont fill incpu_present(cpu)
the function fixup_cpu_present_map just uses
whatcpu_possible_map was set during probe. See
the section in IA64 for more details.
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2. __cpu_up(cpu) was called for each
CPU wherecpu_present(cpu) was
true, then

3. smp_cpus_done(maxcpus) was
called after every CPU has been brought
up.

At this stage, the CPU notifier chain and the
cpu_up() function existed, but CPU removal
was not in the mainstream kernel. Indeed, sig-
nificant scheduler changes occurred, preemp-
tion went into the kernel, and Rusty was dis-
tracted by the module reworking. The result:
hotplug CPU development floundered outside
the main tree for over a year.

3 The Problem of CPU Removal

The initial CPU removal patch was very sim-
ple: the process scheduled on the dying CPU,
moved interrupts away, setcpu_online()
to false, and then scheduled on every other
CPU to ensure that noone was looking
at the old CPU values. The scheduler’s
can_schedule() macro was changed to re-
turn false if the CPU was offline, so the CPU
would always run the idle task during this time.
Finally, the arch-specificcpu_die() func-
tion actually killed the CPU.

Three things made this approach harder as the
2.5 kernel developed:

1. Ingo Molnar’s O(1) scheduler was in-
cluded. Rather than checking if the
CPU was offline every time we ran
schedule() , we wanted to avoid
touching the highly-optimized code paths.

2. The kernel became preemptible. This
means that scheduling on every CPU is
not sufficient to ensure that noone is us-
ing the old online CPU information.

3. Workqueue and other infrastructure was
introduced which used per-cpu threads,
which had to be cleanly added and re-
moved.

4. More per-CPU statistics were used in
the kernel, which sometimes need to be
merged when a CPU went offline (or each
sum must be for every possible CPU, not
just currently online ones)

5. Sysfs was included, meaning that the in-
terface should be there, instead of in proc,
along with structure for other CPU fea-
tures

Various approaches were discussed and tried:
some architectures (like i386) merely simu-
late CPUs going away, by looping in the idle
thread. This is useful for testing. Others
(like PPC64 and IA64) actually need to re-start
CPUs.

The following were the major design points
which were tested and debated, and the reso-
lution of each:

• How should we handle userspace tasks
bound to a single CPU?

Our original code sent a SIGPWR to tasks
which were bound such that we couldn’t
move them to another CPU. This has
the default behaviour of killing the task,
which is unfortunate if the task merely in-
herited the binding from its parent. The
ideal would be a new signal which would
also be delivered on other reconfiguration
events (like addition of CPUs, memory),
but the Linux ABI does not allow the ad-
dition of new signals.

The final result was to rely on the hotplug
scripts to handle this information, and rely
on userspace to ensure that removing a
CPU was OK before telling the kernel to
switch it off.
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• How should we handle kernel threads
bound to a single CPU?

Unlike userspace, kernel threads often
have a correctness requirement that they
run on a particular CPU. Our original
approach used a notifier between mark-
ing the CPU offline, and actually tak-
ing it down; these threads would then
shut themselves down. This two-stage ap-
proach caused other complications, and
the legendary Ingo Molnar recommended
a single-stage takedown, and that the ker-
nel threads could be cleaned up later.
While that simplified things in general,
it involved some new considerations for
such kernel threads.

• Issues Creating And Shutting Down Ker-
nel Threads

In general, the amount of code required
to stop kernel threads proved to be sig-
nificant: barriers and completions at the
very least. The other issue is that most
kernel threads assume they are started at
boot: they don’t expect to be started from
whatever random process which brought
up the CPU.

This lead Rusty to develop the “kthread”
infrastructure, which encapsulated the
logic of starting and stopping threads in
one place. In particular, it uses keventd
(which is always started at boot) to create
the new thread, ensuring that there is no
contamination by forking the userspace
process. Thedaemonize() function at-
tempts to do this, but it’s more certain to
start from a clean slate than to try to fix a
existing one.

• Issues Using keventd for CPU Hotplug

keventd is used as a general purpose
kernel thread for performing some de-
ferred work in a thread context. The

“kthread” infrastructure uses this frame-
work to start and stop threads. In addition
when various kernel code attempts to
call user-space scripts and agents use
call_usermode_helper() . This
function used the keventd thread to spawn
the user space program. This approach
caused a dead lock situation when the
call_usermode_helper() is called
as part of the_cpu_disable() , since
keventd threads are per-CPU threads.
This results in queueing work to keventd
thread via schedule_work() , then
waiting for completion. This results in
blocking the keventd thread. Unless the
work queued gets to run, this keventd
thread would never be woken again. To
avoid this scenario, Rusty introduced the
create_singlethread_workqueue
which now provides a separate thread that
is not bound to any particular CPU.

• How to Avoid Having To Lock Around
Every Access to Online Map

Naturally, we wanted to avoid
locking around every access
to cpu_online_map (via
cpu_online() for example). The
method was one Rusty invented for the
module code: the so-called “bogolock”.
To make a change, we schedule a thread
on every CPU and have them all si-
multaneously disabled interrupts, then
make the change. This code was gener-
alized from the module code, and called
stop_machine_run() . This means
that we only need to disable preemption
to accesscpu_online_map reliably.
If you need to sleep, thecpu_control
semaphore also protects the CPU hotplug
code, so there is a slow-path alternative.

• How to Avoid Doing Too Much Work
With the Machine Stopped

While all CPUs are not taking interrupts,
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we don’t want to take too long. The ini-
tial code walked the task list while the ma-
chine was frozen, moving any tasks away
from the dying CPU. Nick Piggin came
up with an improvement which only mi-
grated the tasks on the CPU’s runqueue,
and then ensured no other tasks were mi-
grated to the CPU, which reduced the hold
time by an order of magnitude. Finally
Srivatsa Vaddagiri went one better: by
simply raising the priority of the idle task
with a specialsched_idle_next()
function, we ensure that nothing else runs
on the dying CPU.

The process by which the CPU actually goes
offline is as follows:

1. Takecpu_control semaphore,

2. Check more than one CPU is online (a bug
Anton discovered in the first implementa-
tion!),

3. Check that the CPU which they are taking
down is actually online,

4. Take the target CPU out of the CPU mask
of this process. When the other steps are
finished, they will wake us up, and we
must not migrate back onto the dead CPU!

5. Usestop_machine_run() to freeze
the machine and run the following steps
on the target CPU

6. Take the CPU out ofcpu_online_map
(easier for arch code to do this first).

7. Call the arch-specific __cpu_
disable() which must ensure that
no more hardware interrupts are received
by this CPU (by reprogramming interrupt
controllers, or whatever),

8. If that call fails, we restore thecpu_
online_map . Otherwise we call
sched_idle_next() to ensure that
when we exit the CPU will be idle.

9. At this point, back in the caller, we wait
for the CPU to become idle, then call the
arch-specific__cpu_die() which ac-
tually kills the offline CPU, by setting a
flag which the idle task polls for, or using
an IPI, or some other method.

10. Finally, theCPU_DEADnotifier is called,
which the scheduler uses to migrate tasks
off the dead CPU, the workqueues use to
remove the unneeded thread, etc.

The implementation specifics of each architec-
ture can be found in the following sections.

4 Remaining Issues

The main remaining issue is the interaction
of the NUMA topology and addition of new
CPUs. An architecture can choose a static
NUMA topology which covers all the possible
CPUs, but for logical partitioning this might
not be possible (we might not know in ad-
vance).

• Per-CPU variables are allocated using
__alloc_bootmem_node() at boot,
for performance reasons. Unknown CPUs
are usually assumed to be in the boot
node, which will impact performance.

• sysfs node topology entries need to be up-
dated when a CPU comes online, if the
node association is not known at boot.

• The NUMA topology itself should be up-
dated if it is only known when a CPU
comes online. This is now possible, using
the stop_machine_run() function,
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but no architectures, other than PPC64,
currently do this.

• There are likely some tools in use today
that would require minor changes as well.
One such tool identified is the top(1) util-
ity, which has trouble dealing with the
fact that CPU’s available in the system are
not logically contiguous. For e.g in a 4-
way system, if logical cpu2 was offlined,
when cpu0, cpu1, cpu3 were still func-
tional, top would display some error in-
formation. Also the tool does not update
the CPU information and not able to dy-
namically update them when new CPU’s
are added, or removed from the system.

5 i386 Implementation

Commercial i386 hardware available today of-
fer very limited support for CPU Hotplug.
Hence the i386 implementation, as it exists,
is more of a toy for fun and experimentation.
Nevertheless, it was used intensively during
development for exercising various code paths
and, needless to say, it exposed numerous bugs.
Most of these bugs were in arch-independent
code.

Since the hardware does not support physical
hotplugging of CPUs, only logical removal of
a CPU is possible. Once removed from the sys-
tem, a dead CPU does not participate in any
OS activity. Instead, it keeps spinning, wait-
ing for a online command, in the context of
its idle thread. Once it gets the online com-
mand, it breaks out of the spin loop, puts it-
self in cpu_online_map , flushes TLB and
comes alive!

Some important i386 specific issues faced dur-
ing development are described below:

• Boot processor
There are a few interrupt controller con-

figurations, which necessitate that we not
offline the boot processor. Systems may
be running with the I/O APIC disabled
in which case all interrupts are being
serviced by the boot processor via the
i8259A, which cannot be programmed to
direct interrupts to other processors. An-
other being interrupts which may be con-
figured to go via the boot processor’s LVT
(Local Vector Table) such as various timer
interrupt setups.

• smp_call_function
smp_call_function is one tricky function
which haunted us a long time. Since it
deals with sending IPIs to online CPUs
and waiting for acknowledgement, num-
ber of races was found in this function wrt
CPUs coming and going while this func-
tion runs on some CPU. Fortunately, when
CPU offline was made atomic, most of
these race conditions went away. CPU on-
line operation, being still non-atomic, ex-
poses a race wherein an IPI can be sent
to a CPU coming online and the sender
will not wait for it to acknowledge the IPI.
The race was fixed by taking a spinlock
(call_lock ) before putting CPU in the
online_map.

• Interrupt redirection
If I/O APIC is enabled, then its redirec-
tion table entries (RTEs) need to be re-
programmed every time a CPU comes and
goes. This is so that interrupts are deliv-
ered to only online CPUs.

According to Ashok Raj, a safe time to re-
program I/O APIC RTE for any interrupt
is when that interrupt is pending, or when
the interrupt is masked in RTE.

Going by the first option, we would have
to wait for each interrupt to become pend-
ing before reprogramming its RTE. Wait-
ing like this for all interrupts to become
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pending may not be a viable solution dur-
ing CPU Hotplug. Hence the method
followed currently is to reprogram RTEs
from the dying CPU and wait for a small
period ( 20 microseconds) with interrupts
enabled to flush out any pending inter-
rupts. This, in practice, has been enough
to avoid lost interrupts.

The right alternative however would be to
mask the interrupt in RTE before repro-
gramming it, but also accounting for the
case where the interrupt might have been
lost during the interval the entry was left
masked. A detailed description of this
method is provided in IA64 implementa-
tion section.

• Disabling Local Timer Ticks
Local timer ticks are local to each CPU
and are not affected by I/O APIC repro-
gramming. Hence when a CPU is brought
down, we have to stop local timer ticks
from hitting the dying CPU. This feature
is not implemented in the current code.
As a consequence, local timer ticks keep
hitting and are discarded in software by
a cpu_is_offline check in its inter-
rupt handler. There are a few solutions un-
der consideration in order to avoid adding
a conditional in the timer interrupt path.
One method was setting up an offline pro-
cessor IDT (Interrupt Descriptor Table)
which would be loaded when the proces-
sor was in the final offline state. The of-
fline IDT would be populated with an en-
try stub which simply returns from the
interrupt. This method would mean that
any interrupts hitting the offline proces-
sor would be blindly discarded, something
which may cause problems if an ACK was
required. So what may be safer and suffi-
cient is simply masking the timer LVT for
that specific cpu and unmasking it again
on the way out of the offline loop.

6 IA64 Implementation

6.1 What is Required to Support CPU Hotplug
in IA64?

IA64 CPU hotplug code was developed once
Rusty had the base infrastructure support
ready. Some of the work that was done to bring
the code to stable state include:

• Remove section identifiers marked with
__init that are required after complet-
ing SMP boot. for e.gcpu_init() ,
do_boot_cpu() used to wakeup a
CPU from SAL_BOOT_RENDEZ mode,
fork_by_hand() used to fork idle
threads for newly added CPUs on the fly.

• Perform a safe interrupt migration from
the CPU being removed to another CPU
without loss of interrupts.

• Handing off the CPU being removed
to SAL_BOOT_RENDEZ mode back to
SAL.

• Handling platform level dependencies
that trigger physical CPU hotplug in a
platform capable of performing it.

6.2 Handling IA64 CPU removal

The arch-specific call_cpu_disable() im-
plements the necessary functionality to offline
a CPU. The different steps taken are:

1. Check if the platform has any restrictions
on this CPU being removed. Returning
an error from _cpu_disable() en-
sures that this CPU is still part of the
cpu_online_map .

2. Turn of local timer interrupt. In IA64
there is a timer interrupt per CPU and not
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an external interrupt as in i386 case. It
is required that thetimer_interrupt
does not happen any further. It is possible
there is one pending, hence check if this
interrupt is from an this is an offline CPU,
and ignore the interrupt, but just return
IRQ_HANDLED, so that the local SAPIC
can honour other interrupt vectors now.

3. Ensure that all IRQs bound to this CPU
are now targeted to a different CPU by
programming the RTEs for a new CPU
destination. On return from this step,
there must be no more interrupts sent to
this CPU being removed from any IOS-
APIC.

4. Now the idle thread gets scheduled last,
and waits until the CPU state indicates
that this CPU must be taken down. Then
it hands the CPU to SAL.

6.3 Managing IA64 Interrupts

6.3.1 When Is It Safe to Reprogram an
IOSAPIC?

IOSAPIC RTE entries should not be pro-
grammed when its actively receiving inter-
rupt signals. The recommended method is to
mask the RTE, reprogram for new destination,
and then re-enable the RTE. The/proc/irq
write handlers were calling the set affinity
handlers immediately which can cause loss
of interrupts, including IOAPIC lockups. In
i386 the introduction of IRQ_BALANCE
did this the right way, which is to per-
form the reprograming operation when an in-
terrupt is pending by storing the intend to
change interrupt destinations in a deferred ar-
raypending_irq_balance .

The same concept was extended toia64 as
well for the proc write handlers. With the CPU

hotplug patches, the write to/proc/irq en-
tries are stored in an array and performed when
the interrupt is serviced, rather than calling it
potentially when an interrupt can also be fired.
Due to the delayed nature of these updates,
with CPU hotplug, the new destination CPU
may be offlined before an interrupt fired and
the RTE can be re-programmed. Hence before
setting IRQ destination CPU for an RTE, the
code should check if the new destination pro-
cessor is in thecpu_online_map .

6.3.2 Why Turn Off Interrupt Redirection
Hint With CPU Hotplug?

Interrupt destination in any IOSAPIC RTE
must be re-programmed to a different CPU if
the CPU being removed is a possible interrupt
destination. Since we cannot wait for the in-
terrupt to fire to do the reprogramming, we
must force the interrupt destination in safe way.
IA64 interrupt architecture permits a platform
chipset to perform redirection based on lowest
priority based on a hint in the interrupt vec-
tor (bit 31) provided by the operating system.
If platform interrupt redirection is enabled, it
would imply that we need to reprogram all the
interrupt destinations, because hotplug code in
OS cannot be sure which CPU the chipset is
going to direct this interrupt to. Hence if CON-
FIG_HOTPLUG_CPU is enabled, then we dis-
able platform redirection hint at boot time.

6.3.3 Safely Migrating Interrupt Destina-
tions

The function fixup_irqs() performs all
the necessary tasks for safely migrating in-
terrupts, and reprogramming interrupt destina-
tions for which this CPU being removed was a
destination. The handling of IRQ is managed
in 3 distinct phases.
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• migrate_irqs() performs the job of
identifying all IRQs with this CPU as
the interrupt destination. This iteration
also keeps track of IRQs identified in
vectors_in_migration[] for later
processing to cover cases of missed inter-
rupts, since we mask RTEs during repro-
gramming, if the device asserted an inter-
rupt during that time, they get lost.

Clear pending
IRQ cpumask

Pending IRQ
migration not

empty?

Is IRQ on
CPU#?

Next IRQ

Migrate_IRQ
(CPU#)

To
Phase

2

Reprogram RTE

Select new target from
this map if applicable

Irqs_in_migration[irq] = 1

Select new target from
cpu_online_map

Interrupts are
targeted to new

cpu after
reprogramming RTE

Yes

Yes

Yes

No No

Figure 1: Phase1: Migrate IRQ

• ia64_process_pending_intr()
Does normal interrupt style process-
ing. During this phase, we look at the
local APIC interrupt vector register
ivr and process all pending interrupts
on this CPU. For each processed in-
terrupt, we also clear the bits set in
vectors_in_migration[] .

• Phase 3 accounts for cases where a de-
vice possibly attempted to assert an in-
terrupt, but got lost during the window
the RTE was also being re-programmed.
This phase looks at entries not accounted

Ia_64_get_ivr()

Ack Isapic eoi

do_IRQ()

Clear irqs_in_migration[irq]

Valid Vector? To Phase 3No

Yes

Figure 2: Phase2: Processing Pending intr

for in phase 2, and issues interrupt han-
dler callbacks as if an interrupt happened.
It is likely there were no interrupts as-
serted. We rely on the fact that most de-
vice drivers can tolerate calls even if there
was no work to perform due to the fact
that IRQs may be shared.

6.3.4 Managing Platform Interrupt
Sources

IA64 architecture specifies platform interrupt
sources to report corrected platform errors to
the OS. ACPI specifies these sources via the
Platform Interrupt Source Structures. These
are communicated to the OS with data such as
the following.

• Interrupt Type, indicating if the interrupt
is Platform Management Interrupt (PMI),
INIT, or CPEI.

• IOSAPIC vector the OS should program.

• The processor that should receive this in-
terrupt, by specifying the APIC id.
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For each IRQ

Irqs_in_migration[irq] set?

Clear irqs_in_migration[irq]

do_IRQ()

Return

No

Yes

Complete

Figure 3: Phase3: Account for Lost Interrupts

• The interrupt line used to signal the inter-
rupts by specifying the global system in-
terrupt.

Some platforms do not support an interrupt
model for retrieving platform errors via CPEI.
Such platforms provide support via specifying
polling tables that list all processors that can
poll for Correctable Platform Errors by using
the Correctable Platform Error Polling (CPEP)
tables.

The issue with both above schemes is that
CPEI specifies just one entry for a destina-
tion processor. This automatically restricts the
target CPU that handles CPEI not removable.
On the other hand with CPEP polling tables,
although the scheme permits specifying more
than one processor, the tables are static and
cannot be expanded dynamically as new pro-
cessors capable of handling polling to be up-
dated.

The motivation for restricting certain proces-
sors was that for some platforms that are asym-
metric, not all CPUs can retrieve the platform
error registers. Hence it is required that only
certain processors are permitted. Most plat-
forms that support interruptible model are sym-
metric in nature. Hence any CPU is capable of
accepting the interrupt for CPEI.

We are working with the ACPI specification
team to try and address this capability to sup-
port platforms supporting CPU hotplug. In the
interim before a specification change permits
either specifying any CPU as a target, or a
method to dynamically update the processors
before a CPU gets removed, the code would
fail removal of a CPU that is a target of CPEI.
In the case of polling, the last processor in the
list would be made non-removable.

6.4 Why Should the CPU be handed off to
SAL?

The Itanium® processor architecture provides
a machine check abort mechanism for report-
ing and recovering from a variety of errors that
can be detected by the processor or chipset.
In the event of global MCA, it is required
that the slave processors perform checkin with
the monarch processor, before which the mas-
ter could call the recovery to resume exe-
cution. SAL would exclude processors in
SAL_BOOT_RENDEZ mode. Hence it is im-
portant that we return the offlined processors to
SAL to avoid processing MCA events on the
offlined processor, as the OS would not have it
in the active map of CPUs.

6.5 Handling Boot CPU Removal

IA64 architecture does not have any direct de-
pendency that would preclude the boot CPU
being removable. There may be some platform
level issues such as the boot CPU is usually the
target of CPEI or some such dependency that
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would make the boot CPU from being remov-
able. In the existing IA64 code base, there is
one dependency, that the boot CPU (CPU0) is
the master time keeper. This dependency can
be easily removed by electing a new CPU as
the master timekeeper.

6.6 Recovering the Idle Thread After CPU Re-
moval

Idle threads are created on demand when a new
CPU is added to the OS image. These threads
are special, since when we return the processor
back to SAL, this is done from the context of
the idle thread. These calls don’t return, and
don’t have a natural exit path as other threads.
The simplest thing to do would be to keep these
free idle threads, and just reuse them the next
time we need to create a new idle thread for a
new CPU.

6.7 Why Was cpu_present_map Intro-
duced?

There are several pieces of kernel code that size
resources upfront. Before the advent of CPU
hotplug, the variablecpu_possible_map
also indicated the CPUs physically available in
the system and would eventually be booted via
smp_init() . It is very intrusive to make
all these callers behave dynamically to CPU
hotplug code. There are some issues around
this is use of boot_mem_allocator .
In order to simplify these issues the map
cpu_possible_map was set to all bits indi-
catingNR_CPUS. In order to start only CPUs
that are physically present in the system, the
new map cpu_present_map was added.
On platforms capable of supporting CPU hot-
plug, this map would dynamically change de-
pending on a new CPU being added or re-
moved from the system. In order to accommo-
date systems that don’t directly populatecpu_
present_map the function fixup_cpu_
present_map was introduced to just copy

the bits fromcpu_possible_map to cpu_
present_map .

6.8 ACPI and Platform Issues With CPU hot-
plug

Any platform capable of supporting hot-
pluggable CPUs must provide a mechanism
to initiate hotplug. Platforms supporting
ACPI aware OSs could use ACPI mecha-
nisms to initiate hotplug activity which I
would call Physical CPU hotplug. The CON-
FIG_HOTPLUG_CPU provides the kernel ca-
pability and could still be useful if a CPU can
be taken offline based on say, the number of
correctable error rate.

A typical sequence of operations on a plat-
form supporting a physical CPU is described
below. Each specific platform may have ad-
ditional steps, the following is only a possible
sequence and applies to the ACPI based imple-
mentations as well.

1. Insert the CPU or the module that contains
the CPU into the platform.

2. Platform BIOS does some preparation,
and notifies the OS. The kernel platform
component such as ACPI that registered
to receive the notification, processes this
event.

3. Platform dependent OS component pre-
pares necessary information required to
bring this CPU to the OS image. For ex-
ample, in IA64, the code would initialise
the following data structures before call-
ing thecpu_up() :

• ia64_cpu_to_sapicid[] , in
the case of NUMA also pop-
ulate node_to_cpu_mask and
cpu_to_node_map necessary for
NUMA kernels.
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• Populatecpu_present_map so
that kernel now knows about this
new CPU is present in the system.

4. Create the necessary entries such as
/sys/devices/system/cpu/cpu# .

5. Launch the/sbin/hotplug script that
will now invoke the CPU hotplug agent,
which in turn would use the sysfs entry
just created to bring up the new CPU.

7 PPC64 Implementation

7.1 What PPC64 Specific Tasks Occur During
a CPU Removal?

The architecure specific kernel pieces of
a CPU removal focus on three functions
mentioned previously:__cpu_disable() ,
cpu_down() , and__cpu_die() .

In __cpu_disable() all interrupts are dis-
abled and migrated, with the exception of inter-
processor interrupts (IPIs).

1. The process of disabling interrupts starts
off by writing 0 into the processor’s cur-
rent processor priority register (CPPR) to
reject any possible queued interrupts.

2. With the CPPR set to 0 it is safe to remove
ourselves from the global interrupt queue
server, which is done via a Run-Time
Abstraction Service (RTAS) set-indicator
call that is provided by the firmware. This
has the effect of refusing new interrupts
from being added to the processor.

3. After new interrupts are refused the next
step is to set the CPPR back to default
priority, which allows us to recieve IPIs
again.

4. All interrupts are iterated through, check-
ing via an RTAS “get-xive” call if any of
the interrupts are specific to the target pro-
cessor.

5. If an interrupt is specific to the target pro-
cessor it is migrated via an RTAS “set-
xive” call.

6. With the processor removed from the
global interrupt queue server and all inter-
rupts migrated it would be safe to remove
the target processor without affecting the
delivery of interrupts. Success is returned.

During __stopmachine_run() the on-
line attribute of a CPU is set to to 0. On
PPC64 we stop the CPU at this point by call-
ing cpu_die() (not to be confused with
__cpu_die() )

1. Depending on the machine model and
kernel configuration, the idle func-
tion will be default_idle() ,
dedicated_idle() , or
shared_idle() . All three idle
functions checkcpu_is_offline()
and if it is true callcpu_die() .

2. cpu_die first disables IRQs.

3. After disabling IRQs it clears the CPPR.

4. Finally rtas_stop_self() is called,
stopping the processor.

Most architectures use__cpu_die() to stop
the processor. Because on PPC64 we poll for
offline CPUs we only need to wait and confirm
the CPU has been stopped while in this func-
tion.

1. We confirm the CPU has been stopped
by using the RTAS query-cpu-
stopped-state call.
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2. Because this call can return busy, and be-
cause the CPU may not yet be stopped we
loop and schedule timeouts.

3. After confirming the CPU is stopped
we do a little extra cleanup by clear-
ing the corresponding entry in the
cpu_callin_map and xProcStart
in the PACA.

7.2 What About Adding CPUs?

The initial structure of PPC64 CPU
bringup required a lot of modification to
be able to add CPUs after the system was
already running. Most of the changes are
trivial and straightforward, but one bears
mentioning.

PPC64 used to number CPUs based on
their physical id. With CPU hotplug it
would have been necessary to reserve a
CPU entry and corresponding structures
for each possible physical CPU. It was
quite possible that the machine could have
more CPUs than the kernel was com-
piled to work with, as many CPUs would
be assigned to other partitions. Further-
more, the number of CPUs in the ma-
chine was not necessarily a static number.
Also, from a usability point of view there
were going to be far too many entries in
/sys/devices/system/cpu/ com-
pared to how many CPUs were actually
online.

The CPU numbering was logically ab-
stracted so that for kernel use there was
a logical number, and when interfacing
to the hardware there was a correspond-
ing physical number. The kernel is able
to read at boot time the maximum num-
ber of CPUs the partition is configured to
be able to grow to. Thus it reserves less
space in structures that must be allocated
at boot time, allows reuse of logical CPUs

for different physical CPUs, and presents
a cleaner directory structure.

7.3 Other Software

While outside the scope of this paper it is
worth mentioning that there is other soft-
ware running on PPC64 platforms to en-
able customers halfway around the world
from the machines they administer to use
their mouse and move CPUs. This soft-
ware is downloadable from IBM, and
should be available on the bonus CD
shipped with new machines.
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Abstract

The 2.6 Linux™ kernel has a number of fea-
tures that improve performance on high-end
SMP and NUMA systems. Finer-grain lock-
ing is used in the scheduler, the block I/O
layer, hardware and software interrupts, mem-
ory management, and the VFS layer. In ad-
dition, 2.6 brings new primitives such as RCU
and per-cpu data, lock-free algorithms for route
cache and directory entry cache as well as scal-
able user-level APIs likesys_epoll() and
futexes. With the widespread testing of these
features of the 2.6 kernel, a number of new is-
sues have come to light that needs careful anal-
ysis. Some of these issues encountered thus
far are: overhead of multilple lock acquisitions
and atomic operations in critical paths, possi-
bility of denial-of-service attack on subsystems
that use RCU-based deferred free algorithms
and degradation of realtime response due to in-
creased softirq load.

In this paper, we analyse a select set of these
issues, present the results, workaround patches
and future courses of action. We also discuss
applicability of some these issues in new fea-

tures being planned for 2.7 kernel.

1 Introduction

Support for symmetric multi-processing
(SMP) in the Linux kernel was first introduced
in 2.0 kernel. The 2.0 kernel had a single
kernel_flag lock AKA Big Kernel Lock
(BKL) which essentially single threaded
almost all of the kernel [Love04a]. The 2.2
kernel saw the introduction of finer-grain lock-
ing in several areas including signal handling,
interrupts and part of I/O subsystem. This
trend continued in 2.4 kernel.

A number of significant changes were in-
troduced in during the development of the
2.6 kernel that helped boost performance of
many workloads. Some of the key com-
ponents of the kernel were changed to have
finer-grain locking. For example, the global
runqueue_lock lock was replaced by the
locks on the new per-cpu runqueues. Gone
was io_request_lock with the introduc-
tion of the new scalablebio -based block I/O
subsystem. BKL was peeled off from ad-
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ditional commonly used paths. Use of data
locking instead of code locking became more
widespread. In addition, Read-Copy Up-
date(RCU) [McK98a, McK01a] allowed fur-
ther optimization of critical sections by avoid-
ing locking while reading data structures which
are updated less often. RCU enabled lock-
free lookup of the directory-entry cache and
route cache, which provided considerable per-
formance benefits [Linder02a, Blanchard02a,
McK02a]. While these improvements targeted
high-end SMP and NUMA systems, the vast
majority of the Linux-based systems in the
computing world are small uniprocessor or
low-end SMP systems that remain the main
focus of the Linux kernel. Therefore, scala-
bility enhancements must not cause any per-
formance regressions in these smaller sys-
tems, and appropriate regression testing is re-
quired [Sarma02a]. This effort continues and
has since thrown light on interesting issues
which we discuss here.

Also, since the release of the 2.6 kernel, its
adoption in many different types of systems
has called attention to some interesting issues.
Section 2 describes the 2.6 kernel’s use of fine-
grained locking and identifies opportunities in
this area for the 2.7 kernel development ef-
fort. Section 3 discusses one such important is-
sue that surfaced during Robert Olsson’s router
DoS testing. Section 4 discusses another is-
sue important for real-time systems or systems
that run interactive applications. Section 5
explores the impact of such issues and their
workarounds on new experiments planned dur-
ing the development of 2.7 kernel.

2 Use of Fine-Grain Locking

Since the support for SMP was introduced in
the 2.0 Linux kernel, granularity of locking
has gradually changed toward finer critical sec-
tions. In 2.4 and subsequently 2.6 kernel, many

of the global locks were broken up to improve
scalability of the kernel. Another scalability
improvement was the use of reference count-
ing in protecting kernel objects. This allowed
us to avoid long critical sections. While these
features benefit large SMP and NUMA sys-
tems, on smaller systems, benefit due to re-
duction of lock contention is minimal. There,
the cost of locking due to atomic operations in-
volved needs to be carefully evaluated. Table 1
shows cost of atomic operations on a 700MHz
Pentium™ III Xeon™ processor. The cost of
atomic increment is more than 4 times the cost
of an L2 hit. In this section, we discuss some
side effects of such finer-grain locking and pos-
sible remedies.

Operation Cost (ns)

Instruction 0.7
Clock Cycle 1.4
L2 Cache Hit 12.9
Atomic Increment 58.2
cmpxchg Atomic Increment 107.3
Atomic Incr. Cache Transfer 113.2
Main Memory 162.4
CPU-Local Lock 163.7
cmpxchg Blind Cache Transfer 170.4
cmpxchg Cache Transfer and Invalidate 360.9

Table 1: 700 MHz P-III Operation Costs

2.1 Multiple Lock Acquisitions in Hot Path

Since many layers in the kernel use their own
locks to protect their data structures, we did a
simple instrumentation (Figure 1) to see how
many locks we acquire on common paths. This
counted locks in all variations of spinlock and
rwlock. We used a running counter which we
can read using a system callget_lcount() .
This counts only locks acquired by the task in
non-interrupt context.

With this instrumented kernel, we measured
writing 4096 byte buffers to a file on ext3
filesystem. Figure 2 shows the test code



Linux Symposium 2004 • 485

+ s t a t i c i n l i n e void _ c o u n t _ l o c k ( void )
+{
+ i f ( ( p r e e m p t _ c o u n t ( ) & 0 x 0 0 f f f f 0 0 ) == 0) {
+ c u r r e n t _ t h r e a d _ i n f o () � > l c o u n t ++;
+ }
+}

. . . .

# d e f i n e s p i n _ l o c k ( l o c k ) \
do { \

+ _ c o u n t _ l o c k ( ) ; \
p r e e m p t _ d i s a b l e ( ) ; \
_ r a w _ s p i n _ l o c k ( l o c k ) ; \

} whi le ( 0 )

Figure 1: Lock Counting Code

i f ( g e t _ l c o u n t (& l c o u n t 1 ) != 0) {
p e r r o r ( " g e t _ l c o u n t 1 f a i l e d \ n " ) ;
e x i t ( � 1) ;

}
w r i t e ( fd , buf , 4 0 9 6 ) ;
i f ( g e t _ l c o u n t (& l c o u n t 2 ) != 0) {

p e r r o r ( " g e t _ l c o u n t 2 f a i l e d \ n " ) ;
e x i t ( � 1) ;

}

Figure 2: Lock Counting Test Code

that reads the lock count before and after the
write() system call.

4K Buffer Locks Acquired
0 19
1 11
2 10
3 11
4 10
5 10
6 10
7 10
8 16
9 10

Average 11.7

Table 2: Locks acquired during 4K writes

Table 2 shows the number of locks acquired
during each 4K write measured on a 2-way
Pentinum IV HT system running 2.6.0 kernel.
The first write has a lock acquisition count of
19 and an average of 11.7 lock round-trips per
4K write. This does not count locks associ-
ated with I/O completion handling which is
done from interrupt context. While this indi-
cates scalability of the code, we still need to

1 s t r u c t f i l e * f g e t ( unsigned i n t fd )
2 {
3 s t r u c t f i l e * f i l e ;
4 s t r u c t f i l e s _ s t r u c t * f i l e s =
5 c u r r e n t � > f i l e s ;
6
7 r e a d _ l o c k (& f i l e s � > f i l e _ l o c k ) ;
8 f i l e = f c h e c k ( fd ) ;
9 i f ( f i l e )
10 g e t _ f i l e ( f i l e ) ;
11 r e a d _ u n l o c k (& f i l e s � > f i l e _ l o c k ) ;
12 re turn f i l e ;
13 }

Figure 3: fget() Implementation

analyze this to see which locks are acquired in
such hot path and check if very small adjacent
critical sections can be collapsed into one. The
modular nature of some the kernel layers may
however make that impossible without affect-
ing readability of code.

2.2 Refcounting in Hot Path

As described in Section 2.1, atomic opera-
tions can be costly. In this section, we dis-
cuss such an issue that was addressed dur-
ing the development of the 2.6 kernel. An-
drew Morton [Morton03a] pointed out that in
2.5.65-mm4 kernel, CPU cost of writing a
large amount of small chunks of data to an ext2
file is quite high on uniprocessor systems and
takes nearly twice again as long on SMP. It also
showed that a large amount of overheads there
were coming fromfget() andfput() rou-
tines. A further look at Figure 3 shows how
fget() was implemented in 2.5.65 kernel.

Both read_lock() andread_unlock()
involve expensive atomic operations. So,
even if there is no contention for->file_
lock , the atomic operations hurt perfor-
mance [McKenney03a]. Since most programs
do not share their file-descriptor tables, the
reader-writer lock is usually not really neces-
sary. The lock need only be acquired when the
reference count of thefile structure indicates
sharing. We optimized this as shown in Fig-
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1 s t r u c t f i l e * f g e t _ l i g h t ( unsigned i n t fd ,
2 i n t * f p u t _ n e e d e d )
3 {
4 s t r u c t f i l e * f i l e ;
5 s t r u c t f i l e s _ s t r u c t * f i l e s = c u r r e n t � > f i l e s ;
6
7 * f p u t _ n e e d e d = 0 ;
8 i f ( l i k e l y ( ( a t o m i c _ r e a d (& f i l e s � >c o u n t )
9 == 1 ) ) ) {

10 f i l e = f c h e c k ( fd ) ;
11 } e l s e {
12 r e a d _ l o c k (& f i l e s � > f i l e _ l o c k ) ;
13 f i l e = f c h e c k ( fd ) ;
14 i f ( f i l e ) {
15 g e t _ f i l e ( f i l e ) ;
16 * f p u t _ n e e d e d = 1 ;
17 }
18 r e a d _ u n l o c k (& f i l e s � > f i l e _ l o c k ) ;
19 }
20 re turn f i l e ;
21 }

Figure 4: fget_light() Implementation

ure 4.

By optimizing the fast path to avoid atomic
operation, we reduced the system time use
by 11.2% in a UP kernel while running
Andrew Morton’s micro-benchmark with the
commanddd if=/dev/zero of=foo bs=

1 count=1M . The complete results measured
in a 4-CPU 700MHz Pentium III Xeon sys-
tem with 1MB L2 cache and 512MB RAM is
shown in Table 3

Kernel sys time Std Dev

2.5.66 UP 2.104 0.028
2.5.66-file UP 1.867 0.023
2.5.66 SMP 2.976 0.019
2.5.66-file SMP 2.719 0.026

Table 3: fget_light() results

However, the reader-writer lock must still be
acquired infget_light() fast path when
the file descriptor table is shared. This is now
being further optimized using RCU to make
the file descriptor lookup fast path completely
lock-free. Optimizing file descriptor look-up in
shared file descriptor table will improve perfor-
mance of multi-threaded applications that do
a lot of I/Os. Techniques such as this are ex-
tremely useful for improving performance in

1 s t a t i c _ _ i n l i n e _ _ void r t _ f r e e (
2 s t r u c t r t a b l e * r t )
3 {
4 c a l l _ r c u (& r t � >u . d s t . rcu_head ,
5 ( void ( * ) ( void * ) ) d s t _ f r e e ,
6 &r t � >u . d s t ) ;
7 }
8
9 s t a t i c _ _ i n l i n e _ _ void r t _ d r o p (

10 s t r u c t r t a b l e * r t )
11 {
12 i p _ r t _ p u t ( r t ) ;
13 c a l l _ r c u (& r t � >u . d s t . rcu_head ,
14 ( void ( * ) ( void * ) ) d s t _ f r e e ,
15 &r t � >u . d s t ) ;
16 }

Figure 5:dst_free() Modifications

both low-end and high-end SMP systems.

3 Denial-of-Service Attacks on De-
ferred Freeing

[McK02a] describes how RCU is used in
the IPV4 route cache to void acquiring the
per-bucket reader-writer lock during lookup
and the corresponding speed-up of route cache
lookup. This was included in the 2.5.53 ker-
nel. Later, Robert Olsson subjected a 2.5
kernel based router to DoS stress tests using
pktgen and discovered problems including
starvation of user-space execution and out-of-
memory conditions. In this section, we de-
scribe our analysis of those problems and po-
tential remedies that were experimented with.

3.1 Potential Out-of-Memory Situation

Starting with the 2.5.53 kernel, the IPv4 route
cache uses RCU to enable lock-free lookup of
the route hash table.

The code in Figure 5 shows how route cache
entries are freed. Because each route cache en-
try’s freeing is deferred bycall_rcu() , it is
not returned to its slab immediately. However
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CLONE_SKB=" c l o n e _ s k b 1 "
PKT_SIZE=" p k t _ s i z e 60 "
COUNT=" c o u n t 10000000 "
IPG=" i p g 0 "
PGDEV=/ proc / n e t / pk tgen / e t h 0
echo " C o n f i g u r i n g $PGDEV"
p g s e t "$COUNT"
p g s e t "$CLONE_SKB"
p g s e t " $PKT_SIZE "
p g s e t " $IPG "
p g s e t " f l a g IPDST_RND"
p g s e t " ds t_min 5 . 0 . 0 . 0 "
p g s e t " dst_max 5 . 2 5 5 . 2 5 5 . 2 5 5 "
p g s e t " f l o w s 32768 "
p g s e t " f l o w l e n 10 "

Figure 6: pktgen parameters

the route cache imposes a limit of total number
of in-flight entries atip_rt_max_size . If
this limit is exceeded, subsequent allocation of
route cache entries are failed. We reproduced
Robert’s experiment in a setup where we send
100,000 packets/sec to a 2.4GHz Pentium IV
Xeon 2-CPU HT system with 256MB RAM
running 2.6.0 kernel set up as a router. Fig-
ure 6 shows the parameters used inpktgen
testing. This script sends 10000000 packets to
the router with random destination addresses in
the range 5.0.0.0 to 5.255.255.255. The router
has an outgoing route set up to sink these pack-
ets. This results in a very large number of route
cache entries along with pruning of the cache
due to aging and garbage collection.

We then instrumented RCU infrastructure to
collect lengths of RCU callback batches in-
voked after grace periods and corresponding
grace period lengths. As indicated by the
graph plotted based on this instrumentation
(Figure 7), it is evident that every spike in RCU
batch length as an associated spike in RCU
grace period. This indicates that prolonged
grace periods are resulting in very large num-
bers of pending callbacks.
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Figure 7: Effect of pktgen testing on RCU

Next we used the same instrumentation to un-
derstand what causes long grace periods. We
measured total number of softirqs received
by each cpu during consecutive periods of 4
jiffies (approximately 4 milliseconds) and
plotted it along with the corresponding max-
imum RCU grace period length seen during
that period. Figure 8 shows this relationship.
It clearly shows that all peaks in RCU grace
period had corresponding peaks in number of
softirqs received during that period. This con-
clusively proves that large floods of softirqs
holds up progress in RCU. An RCU grace
period of 300 milliseconds during a 100,000
packets/sec DoS flood means that we may have
up to 30,000 route cache entries pending in
RCU subsystem waiting to be freed. This
causes us to quickly reach the route cache size
limits and overflow.

In order to avoid reaching the route cache en-
try limits, we needed to reduce the length of
RCU grace periods. We then introduced a
new mechanism namedrcu-softirq[Sarma04a]
that considers completion of a softirq handler
a quiescentstate. It introduces a new inter-
face call_rcu_bh() , which is to be used
when the RCU protected data is mostly used
from softirq handlers. The update function
will be invoked as soon as all CPUs have per-
formed a context switch or been seen in the
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Figure 8: Softirqs during pktgen testing

idle loop or in a user process or or has ex-
ited a softirq handler that it may have been
executing. The reader side of critical sec-
tion that use call_rcu_bh() for updating must
be protected byrcu_read_lock_bh() and
rcu_read_unlock_bh() . The IPv4 route
cache code was then modified to use these in-
terfaces instead. With this in place, we were
able to avoid route cache overflows at the rate
of 100,000 packets/second. At higher packet
rates, route cache overflows have been re-
ported. Further analysis is being done to de-
termine if at higher packet rates, current softirq
implementation doesn’t allow route cache up-
dates to keep up with new route entries getting
created. If this is the case, it may be neces-
sary to limit softirq execution in order to permit
user-mode execution to continue even in face
of DoS attacks.

3.2 CPU Starvation Due to softirq Load

During thepktgen testing, there was another
issue that came to light. At high softirq load,
user-space programs get starved of CPU. Fig-
ure 9 is a simple piece of code that can be used
to test this under severepktgen stress. In our
test router, it indicated user-space starvation for
periods longer that 5 seconds. Application of
the rcu-softirq patch reduced it by a few sec-
onds. In other words, introduction of quicker

g e t t i m e o f d a y (& p r e v _ t v , NULL ) ;

f o r ( ; ; ) {
g e t t i m e o f d a y (& tv , NULL ) ;
d i f f = ( t v . t v _ s e c � p r e v _ t v . t v _ s e c ) *

1000000 +
( t v . t v _ u s e c � p r e v _ t v . t v _ u s e c ) ;
i f ( d i f f > 1000000)

p r i n t f ( "%d \ n " , d i f f ) ;
p r e v _ t v = t v ;

}

Figure 9: user-space starvation test

RCU grace periods helped by reducing size of
pending RCU batches. But the overall softirq
rate remained high enough to starve user-space
programs.

4 Realtime Response

Linux has been use in realtime and embed-
ded applications for many years. These ap-
plications have either directly used Linux for
soft realtime use, or have used special envi-
ronments to provide hard realtime, while run-
ning the soft-realtime or non-realtime portions
of the application under Linux.

4.1 Hard and Soft Realtime

Realtime applications require latency guaran-
tees. For example, such an application might
require that a realtime task start running within
one millisecond of its becoming runnable. An-
drew Morton’samlat program may be used to
measure an operating system’s ability to meet
this requirement. Other applications might re-
quire that a realtime task start running within
500 microseconds of an interrupt being as-
serted.

Soft realtime applications require that these
guarantees be metalmostall the time. For ex-
ample, a building control application might re-
quire that lights be turned on within 250 mil-
liseconds of motion being detected within a
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given room. However, if this application oc-
casionally responds only within 500 millisec-
onds, no harm is likely to be done. Such an
application might require that the 250 millisec-
ond deadline be met 99.9% of the time.

In contrast, hard realtime applications require
that guaranteesalwaysbe met. Such applica-
tions may be found in avionics and other sit-
uations where lives are at stake. For example,
Stealth aircraft are aerodynamically unstable in
all three axes, and require frequent computer-
controlled attitude adjustments. If the aircraft
fails to receive such adjustments over a period
of two seconds, it will spin out of control and
crash [Rich94]. These sorts of applications
have traditionally run on “bare metal” or on a
specialized realtime OS (RTOS).

Therefore, while one can validate a soft-
realtime OS by testing it, a hard-realtime OS
must be validated by inspection and testing
of all non-preemptible code paths. Any non-
preemptible code path, no matter how obscure,
can destroy an OS’s hard-realtime capabilities.

4.2 Realtime Design Principles

This section will discuss how preemption,
locking, RCU, and system size affect realtime
response.

4.2.1 Preemption

In theory, neither hard nor soft realtime re-
quire preemption. In fact, the realtime systems
that one of the authors (McKenney) worked on
in the 1980s were all non-preemptible. How-
ever, in practice, preemption can greatly re-
duce the amount of work required to design
and validate a hard realtime system, because
while one must validateall code paths in a non-
preemptible system, one need only validate all
non-preemptiblecode paths in a preemptible

system.

4.2.2 Locking

The benefits of preemption are diluted by
locking, since preemption must be suppressed
across any code path that holds a spinlock, even
in UP kernels. Since most long-running oper-
ations are carried out under the protection of
at least one spinlock, the ability of preemption
to reduce the Linux kernel’s hard realtime re-
sponse is limited.

That said, the fact that spinlock critical sec-
tions degrade realtime response means that the
needs of the hard realtime Linux community
are aligned with those of the SMP-scalability
Linux community.

Traditionally, hard-realtime systems have run
on uniprocessor hardware. The advent of hy-
perthreading and multicore dies have provided
cheap SMP, which is likely to start finding its
way into realtime and embedded systems. It is
therefore reasonable to look at SMP locking’s
effects on realtime response.

Obviously, a system suffering from heavy lock
contention need not apply for the job of a re-
altime OS. However, if lock contention is suf-
ficiently low, SMP locking need not preclude
hard-realtime response. This is shown in Fig-
ure 10, where the maximum “train wreck” lock
spin time is limited to:

Smax = (NCPU − 1)Cmax (1)

whereNCPU is the number of CPUs on the
system andCmax is the maximum critical sec-
tion length for the lock in question. This maxi-
mum lock spin time holds as long as each CPU
spends at leastSmax time outside of the critical
section.

It is not yet clear whether Linux’s lock con-
tention can be reduced sufficiently to make this
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Figure 10: SMP Locking and Realtime Re-
sponse

level of hard realtime guarantee, however, this
is another example of a case where improved
realtime response benefits SMP scalability and
vice versa.

4.2.3 RCU

Towards the end of 2003, Robert Love and
Andrew Morton noted that the Linux 2.6 ker-
nel’s RCU implementation could degrade re-
altime response. This degradation is due to the
fact that, when under heavy load, literally thou-
sands of RCU callbacks will be invoked at the
end of a grace period, as shown in Figure 11.

The following three approaches can each elim-
inate this RCU-induced degradation:

1. If the batch of RCU callbacks is too
large, hand the excess callbacks to a pre-
emptible per-CPU kernel daemon for in-
vocation. The fact that these daemons are
preemptible eliminates the degradation.

2. On uniprocessors, in cases where pointers
to RCU-protected elements are not held
across calls to functions that remove those
elements, directly invoke the RCU call-
back from within thecall_rcu_rt()
primitive, which is identical to thecall_
rcu() primtive in SMP kernels. The
separatecall_rcu_rt() primitive is
necessary because direct invocation is not
safe in all cases.

3. Throttling RCU callback invocation so
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Figure 11: RCU and Realtime Response

that only a limited number are invoked at
a given time, with the remainder being in-
voked later, after there has been an oppor-
tunity for realtime tasks to run.

The throttling approach seems most attrac-
tive currently, but additional testing will be
needed after other realtime degradations are re-
solved. The implementation of each approach
and performance results are presented else-
where [Sarma04b].

4.2.4 System Size

The realtime response of the Linux 2.6 ker-
nel depends on the hardware and software con-
figuration. For example, the current VGA
driver degrades realtime response, with multi-
millisecond scheduling delays due to screen
blanking.

In addition, if there are any non-O(1) oper-
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ations in the kernel, then increased configu-
ration sizes will result in increased realtime
scheduling degradations. For example, in SMP
systems, the duration of the worst-case lock-
ing “train wreck” increases with the number of
CPUs. Once this train-wreck duration exceeds
the minimum time between release and later
acquisition of the lock in question, the worst-
case scheduling delay becomes unbounded.
Other examples include the number of tasks
and the duration of the tasklist walk result-
ing from ls /proc , the number of processes
mapping a given file and the time required to
truncate that file, and so on.

In the near term, it seems likely that realtime-
scheduling guarantees would only apply to a
restricted configuration of the Linux kernel,
running a restricted workload.

4.3 Linux Realtime Options

The Linux community can choose from the
following options when charting its course
through the world of realtime computing:

1. “Just say no” to realtime. It may well
be advisable for Linux to limit how much
realtime support will be provided, but
given recent measurements showing soft-
realtime scheduling latencies of a few
hundredmicroseconds, it seems clear that
Linux has a bright future in the world of
realtime computing.

2. Realtime applications run only on UP
kernels. In the past, realtime systems
have overwhelmingly been single-CPU
systems, it is much easier to provide re-
altime scheduling guarantees on UP sys-
tems. However, the advent of cheap SMP
hardware in the form of hyperthreading
and multi-CPU cores makes it quite likely
that the realtime community will choose
to support SMP sooner rather than later.

One possibility would be to provide
tighter guarantees on UP systems, and,
should Linux provide hard realtime sup-
port, to provide this support only on UP
systems. Another possibility would be to
dedicate a single CPU of an SMP system
to hard realtime.

3. Realtime applications run only on small
hardware configurations with small num-
bers of tasks, mappings, open files, and so
on. This seems to be an eminently reason-
able position, especially given that dirt-
cheap communications hardware is avail-
able, allowing a small system (perhaps on
a PCI card) to handle the realtime pro-
cessing, with a large system doing non-
realtime tasks requiring larger configura-
tions.

4. Realtime applications use only those de-
vices whose drivers are set up to provide
realtime response. This also seems to
be an eminently reasonable restriction, as
open-source drivers can be rewritten to of-
fer realtime response, if desired.

5. Realtime applications use only those ser-
vices able to provide the needed response-
time guarantees. For example, an appli-
cation that needs to respond in 500 mi-
croseconds is not going to be doing any
disk I/O, since disks cannot respond this
quickly. Any data needed by such an
application must be obtained from much
faster devices or must be preloaded into
main memory.

It is not clear that Linux will be able to address
each and every realtime requirement, nor is it
clear that this would even be desirable. How-
ever, it was not all that long ago that common
wisdom held that it was not feasible to address
both desktop and high-end server requirements
with a single kernel source base. Linux is well
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on its way to proving this common wisdom to
be quite wrong.

It will therefore be quite interesting to see what
realtime common wisdom can be overturned in
the next few years.

5 Future Plans

With the 2.6 kernel behind us, a number of new
scalability issues are currently being investi-
gated. In this section, we outline a few of them
and the implications they might have.

5.1 Parallel Directory Entry Cache Updates

In the 2.4 kernel, the directory entry cache was
protected by a single global lockdcache_
lock . In the 2.6 kernel, the look-ups
into the cache were made lock-free by us-
ing RCU [Linder02a]. We also showed in
[Linder02a] that for several benchmarks, only
25% of acquisitions ofdcache_lock is for
updating the cache. This allowed us to achieve
significant performance improve by avoiding
the lock during look-up while keeping the up-
dates serialized usingdcache_lock . How-
ever recent benchmarking on large SMP sys-
tems have shown thatdcache_lock acqui-
sitions are proving to be costly. Profile for a
mutli-user benchmark on a 16-CPU Pentium
IV Xeon with HT indicates this:

Function Profile Counts
.text.lock.dec_and_lock 34375.8333
atomic_dec_and_lock 1543.3333
.text.lock.libfs 800.7429
.text.lock.dcache 611.7809
__down 138.4956
__d_lookup 93.2842
dcache_readdir 70.0990
do_page_fault 45.0411
link_path_walk 9.4866

On further investigation, it is clear that.text.

lock.dec_and_lock cost is due to frequent

dput() which uses atomic_dec_and_

test() to acquiredcache_lock . With the
multi-user benchmark creating and destroying
large number of files in/proc filesystem, the
cost of corresponding updates to the directory
entry cache is hurting us. During the 2.7 kernel
development, we need to look at allowing par-
allel updates to the directory entry cache. We
attempted this [Linder02a], but it was far too
complex and too late in the 2.5 kernel develop-
ment effort to permit such a high-risk change.

5.2 Lock-free TCP/UDP Hash Tables

In the Linux kernel, INET family sockets
use hash tables to maintain the corresponding
struct sock s. When an incoming packet
arrives, this allows efficient lookup of these
per-bucket locks. On a large SMP system with
tens of thousands on tcp and ip header in-
formation. TCP usestcp_ehash for con-
nected sockets,tcp_listening_hash for
listening sockets andtcp_bhash for bound
sockets. On a webserver serving large num-
ber of simultaneous connections, lookups into
tcp_ehash table are very frequent. Cur-
rently we use a per-bucket reader-writer lock
to protect the hash tables andtcp_ehash
lookups are protected by acquiring the reader
side of these per-bucket locks. The hash table
makes CPU-CPU collisions on hash chains un-
likely and prevents the reader-writer lock from
providing any possible performance benefit.
Also, on a large SMP system with tens of thou-
sands of simultaneous connection, the cost of
atomic operation duringread_lock() and
read_unlock() as well as the bouncing of
cache line containing the lock becomes a fac-
tor. By using RCU to protect the hash tables,
the lookups can be done without acquiring the
per-bucket lock. This will benefit bot low-end
and high-end SMP systems. That said, issues
similar to the ones discussed in Section 3 will
need to be addressed. RCU can be stressed us-
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ing a DoS flood that opens and closes a lot of
connections. If the DoS flood prevents user-
mode execution, it can also prevent RCU grace
periods from happening frequently, in which
case, a large number ofsock structures can
be pending in RCU waiting to be free lead-
ing to potential out-of-memory situations. The
rcu-softirqpatch discussed in Section 3 will be
helpful in this case too.

5.3 Balancing Interrupt and Non-Interrupt
Loads

In Section 3.2, we discussed user programs
getting starved of CPU time under very high
network load. In 2001, Ingo Molnar attempted
limiting hardware interrupts based on num-
ber of such interrupts serviced during one
jiffy [Molnar01a]. Around the same time, Ja-
mal Hadi et al. demonstrated the usefulness
of limiting interrupts throughNAPI infrastruc-
ture [Jamal01a]. NAPI is now a part of 2.6
kernel and it is supported by a number of net-
work drivers. WhileNAPI limits hardware in-
terrupts, it continues to raise softirqs for pro-
cessing of incoming packets while polling. So,
under high network load, we see user processes
starved of CPU. This has been seen withNAPI
(Robert Olsson’s lab) as well as withoutNAPI
(in our lab). With extremely high network load
like DoS stress, softirqs completely starve user
processes. Under such situation, a system ad-
ministrator may find it difficult to take log into
a router and take necessary steps to counter
the DoS attack. Another potential problem
is that network I/O intensive benchmarks like
SPECWeb99™ can have user processes stalled
due to high softirq load. We need to look for a
new framework that allows us to balance CPU
usage between softirqs and process context too.
One potential idea being considered is to mea-
sure softirq processing time and mitigate it for
later if it exceeds its tunable quota. Variations
of this need to be evaluated during the devel-
opment of 2.7 kernel.

5.4 Miscellaneous

1. Lock-free dcache Path Walk: Given a file
name, the Linux kernel uses a path walk-
ing algorithm to look-up thedentry
corresponding to each component of the
file name and traverse down thedentry
tree to eventually arrive at thedentry
of the specified file name. In 2.6 ker-
nel, we implemented a mechanism to
look-up each path component in dcache
without holding the globaldcache_
lock [Linder02a]. However this requires
acquiring a per-dentry lock when we
have a successful look-up in dcache. The
common case of paths starting at the root
directory results in contention on the root
dentry on large SMP systems. Also,
the per-dentry lock acquisition happens
in the fast path (__d_lookup() ) and
avoiding this will likely provide nice per-
formance benefits.

2. Lock-free Tasklist Walk: The system-
wide list of tasks in the Linux ker-
nel is protected by a reader-writer lock
tasklist_lock . There are a number
of occasions when the list of tasks need
to be traversed while holding the reader
side of tasklist_lock . In systems
with very large number of tasks, the read-
ers traversing the task list can starve out
writers. One approach to solving this is
to use RCU to allow lock-free walking of
the task list under limited circumstances.
[McKenney03a] describes one such ex-
periment.

3. Cache Thrashing Measurements and Min-
imization: As we run Linux on larger
SMP and NUMA systems, the effect of
cache thrashing becomes more prominent.
It would prudent to analyze cache behav-
ior of performance critical code in the
Linux kernel using various performance
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monitoring tools. Once we identify code
showing non-optimal cache behavior, re-
designing some of it would help improve
performance.

4. Real-time Work—Fix Excessively Long
Code Paths: With Linux increasingly
becoming preferred OS for many soft-
realtime systems, we can further improve
its usefulness by identifying excessively
long code paths and fixing them.

6 Conclusions

In 2.6 kernel, we have solved a number of scal-
ability problems without significantly sacrific-
ing performance in small systems. A single
code base supporting so many different work-
loads and architectures is an important advan-
tages of the Linux kernel has over many other
operating systems. Through this analysis, we
have continued the process of evaluating scal-
ability enhancements from many possible an-
gles. This will allow us to run Linux better on
many different types of system—large SMP to
small TCP/IP routers.

We are continuing to work on some of the core
issues discussed in the paper including lock-
ing overheads, RCU DoS attack prevention and
softirq balancing. We expect to do some of this
work in the 2.7 kernel timeframe.

7 Acknowledgments

We owe thanks to Andrew Morton for draw-
ing attention to locking issues. Robert Olsson
was the first to show us the impact of denial-
of-service attacks on route cache and without
his endless testing with our patches, we would
have gone nowhere. Ravikiran Thirumalai
helped a lot with our lab setup, revived some
of the lock-free patches and did some of the

measurements. We are thankful to him for this.
We would also like to thank a number of Linux
kernel hackers, including Dave Miller, Andrea
Arcangeli, Andi Kleen and Robert Love, all of
whom advised us in many different situations.
Martin Bligh constantly egged us on and of-
ten complained with large SMP benchmarking
results, and for this, he deserves our thanks.
We are indebted to Tom Hanrahan, Vijay Suk-
thankar, Dan Frye and Jai Menon for being so
supportive of this effort.

References

[Blanchard02a] A. Blanchardsome RCU
dcache and ratcache results,
Linux-Kernel Mailing List, March 2002.
http://marc.theaimsgroup.com/

?l=linux-kernel&m=

101637107412972&w=2 ,

[Jamal01a] Jamal Hadi Salim, R. Olsson and
A. KuznetsovBeyond Softnet,
Proceedings of USENIX 5th Annual
Linux Showcase, pp. 165–172,
November 2001.

[Linder02a] H. Linder, D. Sarma, and
Maneesh Soni.Scalability of the
Directory Entry Cache, Ottawa Linux
Symposium, June 2002.

[Love04a] Robert LoveKernel Korner:
Kernel Locking Techniques, Linux
Journal, Issue 100, August 2002.
http://www.linuxjournal.com/

article.php?sid=5833 ,

[McK98a] P. E. McKenney and J. D.
Slingwine.Read-copy update: using
execution history to solve concurrency
problems, Parallel and Distributed
Computing and Systems, October 1998.
(revised version available at
http://www.rdrop.com/users/

paulmck/rclockpdcsproof.pdf ),



Linux Symposium 2004 • 495

[McK01a] P. E. McKenney and D. Sarma.
Read-Copy Update Mutual Exclusion in
Linux,
http://lse.sourceforge.net/

locking/rcu/rcupdate_doc.html ,
February 2001.

[McK01b] P. E. McKenney, J. Appavoo, A.
Kleen, O. Krieger, R. Russell, D. Sarma,
M. Soni.Read-Copy Update, Ottawa
Linux Symposium, July 2001. (revised
version available at
http://www.rdrop.com/users/

paulmck/rclock/rclock_OLS.

2001.05.01c.sc.pdf ),

[McK02a] P. E. McKenney, D. Sarma, A.
Arcangeli, A. Kleen, O. Krieger
Read-Copy Update, Ottawa Linux
Symposium, June 2002.
http://www.linux.org.uk/~ajh/

ols2002_proceedings.pdf.gz

[McKenney03a] MCKENNEY, P.E. Using
RCU in the Linux 2.5 kernel.Linux
Journal 1, 114 (October 2003), 18–26.

[Molnar01a] Ingo MolnarSubject:
[announce] [patch] limiting IRQ load,
irq-rewrite-2.4.11-B5, Linux Kernel
Mailing List, Oct 2001.http:

//www.uwsg.iu.edu/hypermail/

linux/kernel/0110.0/0169.html ,

[Morton03a] Andrew MortonSubject: smp
overhead, and rwlocks considered
harmful, Linux Kernel Mailing List,
March 2003.http:

//www.uwsg.iu.edu/hypermail/

linux/kernel/0303.2/1883.html

[Rich94] B. RichSkunk Works, Back Bay
Books, Boston, 1994.

[Sarma02a] D. SarmaSubject: Some
dcache_rcu benchmark numbers,
Linux-Kernel Mailing List, October

2002.http://marc.theaimsgroup.

com/?l=linux-kernel&m=

103462075416638&w=2 ,

[Sarma04a] D. SarmaSubject: Re: route
cache DoS testing and softirqs,
Linux-Kernel Mailing List, April 2004.
http://marc.theaimsgroup.com/

?l=linux-kernel&m=

108077057910562&w=2 ,

[Sarma04b] D. Sarma and P. McKenney
Making RCU Safe for Deep
Sub-Millisecond Response Realtime
Applications, USENIX’04 Annual
Technical Conference (UseLinux Track),
Boston, June 2004.

8 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

Linux is a trademark of Linus Torvalds.

Pentium and Xeon are trademarks of Intel Corpora-
tion.

SPEC™ and the benchmark name SPECweb99™

are registered trademarks of the Standard Perfor-
mance Evaluation Corporation.

IBM is a trademark of International Business Ma-
chines Corporation.

Other company, product, and service names may be
trademarks or service marks of others.



496 • Linux Symposium



Achieving CAPP/EAL3+ Security Certification for
Linux

Kittur (Doc) S. Shankar
IBM Linux Technology Center

dshankar@us.ibm.com

Olaf Kirch
SUSE Linux AG
okir@suse.de

Emily Ratliff
IBM Linux Technology Center

emilyr@us.ibm.com

Abstract

As far as we know, no Open Source program
has been certified for security—until now. Al-
though some people believed that it was not
possible for an Open Source program to re-
ceive a security certification, we have proven
otherwise by obtaining a Common Criteria se-
curity certification for SuSE SLES 8 SP3. With
the increasing use of Open Source in general
and Linux in particular within government and
commercial environments, security of Open
Source products is of increasing importance
and as a result the demand for the security eval-
uation of Linux is evident. It is also generally
believed that security certifications are time
consuming and can take years to accomplish.
We were able to obtain the Common Criteria
certification of Linux in a few months. The
presentation will cover our experience and the
technical challenges associated with this Linux
evaluation. In particular, we will discuss the
enhancements we made to SLES 8 SP3 includ-
ing the Linux kernel to support CAPP audit
requirements. In addition the business advan-
tages of the evaluation for Open Source soft-
ware will be covered.

1 Introduction

In promoting Linux to IBM’s enterprise and
government customers, the requirement for
Common Criteria certification emerged as a
barrier to entry. All of Linux’s commercial
competitors have the required level of certifica-
tion. As Linux continues to be adopted by the
enterprise market, many customers, especially
those from the government sector, have raised
concerns regarding Linux security and ques-
tioned whether Linux was capable of achiev-
ing certification. These customers view se-
curity certification as table stakes for proving
a minimal level of operating system security.
In order to increase Linux adoption by these
customers, certification is required. The ex-
pense of achieving certification makes certi-
fication unobtainable by community projects
without corporate or government sponsorship.
For these reasons, and after a careful analy-
sis, IBM decided to sponsor a Common Crite-
ria (CC) security certification for Linux. SUSE
agreed to partner with IBM to evaluate SUSE
LINUX Enterprise Server 8 (SLES 8).

In this paper, we will begin with a brief
overview of the Common Criteria standard.
We will then describe our approach and expe-
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rience during this certification effort. We will
describe in detail the additional functionality
that was needed in kernel and user space to ful-
fill the requirements of the certification. We
will also describe the level of documentation
and test needed to obtain the certification.

Throughout the paper, we use the pronoun
‘we.’ By ‘we,’ we mean individuals or sub-
teams from the large team of people who con-
tributed time and effort in achieving this evalu-
ation, including:

• IBM, the evaluation sponsor

• SUSE, the developer

• atsec information security GmbH, the
evaluator

• BSI, the German agency for information
security, the evaluation body

2 Common Criteria Overview

Common Criteria (CC) is documented in the
ISO standard 15408 for the security analysis of
IT products. The governments of 18 nations
have officially adopted the Common Criteria,
including the United States, Canada, Germany,
France, and the UK. The U.S. government has
required a Common Criteria evaluation for all
IT-products used for the processing of security-
critical data since July 1, 2002.1

Common Criteria splits the requirements into
two sets: functional and assurance. Func-
tional requirements describe the security at-
tributes of the product under evaluation. Assur-
ance requirements describe the activities that
must take place to increase the evaluator’s con-
fidence that the security attributes are present,
effective, and are designed and implemented

1The requirement is codified by NSTISSP No. 11.

correctly. Examples of assurance activities in-
clude documentation of the developer’s search
for vulnerabilities and testing.

2.1 Functional Requirements

The functional requirements desired by the
customer are described in the Protection Pro-
file (PP). Protection Profiles are targeted at spe-
cific types of systems. For example, there are
unique protection profiles for operating sys-
tems, firewalls, databases and other complex
or security sensitive products. Protection Pro-
files are often created by the product devel-
oper, standards bodies, or government agen-
cies, rather than by the customer. To be offi-
cially recognized, the Protection Profile must
itself be evaluated. Protection Profiles are in-
tended to be reusable and thus typically define
standard sets of security attributes that can be
used to compare different implementations of a
product type. The name of the Protection Pro-
file is therefore often used as shorthand to de-
scribe the functional level of the evaluation.

The product being evaluated is known as the
Target of Evaluation (TOE). The security pol-
icy used by the TOE is known as the TOE Se-
curity Policy (TSP) and the functionality that
enforces the TSP is known as the TOE Se-
curity Functions (TSF). The TSP may be en-
forced by software, hardware or firmware, but
no matter what the enforcement mechanism is,
the enforcement functionality is included in the
TSF. The TOE does not exist in a vacuum; ex-
ternal forces that act on the TOE are known
as the TOE (security) environment. The TOE
environment may consist of elements such as
non-privileged processes running in an operat-
ing system and the network to which a system
is attached. The main purpose of an evaluation
is to determine whether or not the TSP is cor-
rectly enforced.
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2.2 Assurance Requirements

Evaluated Assurance Levels (EALs) are de-
fined on a scale of increasingly rigorous devel-
opment methodologies. The Common Criteria
defines multiple classes of assurance compo-
nents with multiple levels of difficulty for each
component. The assurance levels are then com-
posed from these components. These compo-
nents include items such as level of documen-
tation and testing. The assurance components
used for this evaluation are described in more
detail in the EAL3 Overview Section. Each
higher assurance level requires more proof that
security was a fundamental element of the de-
velopment process; therefore, each higher level
is more difficult to achieve than the previous
level. There are seven ordered EALs2:

• EAL1 – Functionally Tested

• EAL2 – Structurally Tested

• EAL3 – Methodically tested and checked

• EAL4 – Methodically designed, tested
and reviewed

• EAL5 – Semiformally designed and
tested

• EAL6 – Semiformally verified, designed
and tested

• EAL7 – Formally verified, designed and
tested

EAL1 is the entry level assurance level. EAL4
is the highest assurance level that any product
is expected to be able to achieve without sig-
nificant expense and rework if it had not been
specifically developed with Common Criteria
evaluation in mind.

2Common Criteria Part 3 available from
http://csrc.nist.gov/cc/Documents/
CC%20v2.1%20-%20HTML/CCCOVER.HTM

2.3 Evaluation Approach

When the developer has decided on a Target
of Evaluation and a Protection Profile, the first
step towards evaluation is writing a Security
Target (ST) which describes the security ob-
jectives of the TOE and how they meet the se-
curity requirements defined in the chosen PP.
It is possible for an ST to claim conformance
to multiple PPs or no PP at all. The claims in
the security target determine the scope of the
evaluation. Every facet of the evaluation is di-
rectly impacted by what is claimed in the Secu-
rity Target. After the evaluation is completed,
the Security Target is always made available
for customer scrutiny so that the customer can
understand exactly what was evaluated.

3 Description of the Evaluated
TOE

Our target of evaluation (TOE) was the SUSE
LINUX Enterprise Server 8 operating system
with Service Pack 3 and the certification-sles-
eal3.rpm package.

The SLES evaluation covers a distributed,
but isolated, network of IBM® xSeries®,
pSeries®, iSeries®, and zSeries® servers run-
ning the evaluated version of SLES. The hard-
ware platforms selected for the evaluation
consisted of commercially available machines
from across the IBM product line.

The TOE Security Functions (TSF) consist
of Linux kernel functions plus some trusted
processes. These functions enforce the secu-
rity policy as defined in the Security Target.
The TOE includes standard networking appli-
cations, such as ftp, ssh, ssl, and xinetd. Sys-
tem administration tools include standard ad-
min commands. Yast2 and several yast2 mod-
ules were also included in the package list that
formed the TOE. The X Window System was
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not included in the evaluated configuration.

The hardware and the system firmware are not
considered to be part of the TOE but rather are
a part of the TOE environment. The TOE envi-
ronment also includes applications that are not
evaluated, but are used as unprivileged tools to
access public system services. For example, an
HTTP server using a port above 1024 (e.g., on
port 8080) can be used as a normal applica-
tion running without root privileges on top of
the TOE. The Security Guide provides guid-
ance on how to set up a http server on the TOE
without violating the evaluated configuration.

4 ST Description

The Security Target specifies that the evalua-
tion covers the Controlled Access Protection
Profile (CAPP) functionality at the EAL3 aug-
mented assurance level.3 The primary secu-
rity features and assurance documentation are
described below, along with how the require-
ments were satisfied. The key features are sup-
ported by domain separation and reference me-
diation, which ensure that the features are al-
ways invoked and cannot be bypassed. Most
of the security and assurance features are in-
cluded in the vanilla kernel (e.g., object reuse)
or are standard to most Linux distributions
(e.g., PAM, OpenSSH, OpenSSL) and were
thus already present in SLES 8. A few, most
notably audit, had to be added for the evalua-
tion.

4.1 EAL3 Overview

EAL3 provides assurance by an analysis of
the security functions, using its functional and
interface specifications, guidance documenta-
tion, and the high-level design of the TOE to
understand the security behavior. The EAL3

3The augmentation is the flaw remediation proce-
dure.

assurance requirements fall into the following
seven categories:

• Configuration Management

• Delivery and Operations

• Development

• Guidance Documents

• Life Cycle Support

• Security Testing

• Vulnerability Assessment.

Many of the documents created to sup-
port the assurance requirements can be re-
viewed athttp://oss.software.ibm.
com/linux/pubs/?topic_id=5

4.1.1 Configuration Management

The Configuration Management assurance
class specifies the means for establishing that
the integrity of the TOE is preserved during
development. The Configuration Management
process must provide a mechanism for track-
ing changes and ensuring that all the changes
are authorized.

Configuration management procedures within
SUSE are highly automated using a process
supported by the AutoBuild tool. Source code,
generated binaries, documentation, test plan,
test cases and test results are maintained under
configuration management. Because of this,
SUSE already exceeded the requirements for
this evaluation, so we just had to document ex-
isting procedures to fulfill this requirement.

This assurance requirement is the one that was
commonly expected to be the source of diffi-
culty in achieving certification of code devel-
oped via the open source methodology. The
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key to meeting this assurance requirement is
that every line of new code that comes into the
SUSE AutoBuild environment is assigned to an
owner within SUSE who becomes responsible
for its integrity.

4.1.2 Delivery and Operations

The Delivery and Operations class provides re-
quirements for the assurance that the TOE is
not corrupted between the time the developer
releases it and the customer fires it up.

SLES is delivered on CD/DVD in shrink-
wrapped package to the customer. SUSE
verifies the integrity of the production CDs
and DVDs by checking a production sample.
Service Pack 3, the certification-sles-eal3.rpm
package, as well as other packages that con-
tain fixes must be downloaded from the SUSE
maintenance Web site. Because those packages
are digitally signed, the user is both able to and
required to verify the integrity and authentic-
ity of those packages. Guidance for installation
and system configuration is provided in the Se-
curity Guide.

Again, existing SUSE processes met the re-
quirements for the EAL3 assurance level, so
documenting existing procedures was suffi-
cient for this evaluation.

4.1.3 Development

The Development class encompasses require-
ments for documenting the TSF at various lev-
els of abstraction, from the functional inter-
face to the implementation representation. For
EAL3, we needed a functional specification
and a high-level design. In addition, the corre-
spondence between the security functionality,
the functional specification, and the high level
design had to be documented.

The functional specification for SLES con-
sists of the man pages that describe the sys-
tem calls, the trusted commands, and a descrip-
tion of the security-relevant configuration files.
A spreadsheet tracks all system calls, trusted
commands, and security-relevant configuration
files with a mapping (correspondence) to their
description in the high-level design and man
page(s). The high-level design of the secu-
rity functions of SLES provides an overview
of the implementation of the security functions
within the subsystems of SLES, and points
to other existing documents for further details
where appropriate.

To fulfill this requirement, the functional
specification spreadsheet, correspondence, and
high-level design were written. Additionally,
several new man pages were created for un-
documented system calls, PAM modules and
utilities, and many man pages required minor
corrections.

4.1.4 Guidance Documents

The Guidance Documents class provides the
requirements for user and administrator guid-
ance documentation. A security guide is also
necessary to fulfill the requirements of this
class at EAL3.

SLES 8 already shipped with User and Ad-
ministrator Guides. The Security Guide and a
special README file were created that con-
tain the specifics for the secure administration
and usage of the evaluated configuration. The
Security Guide explicitly documents setting up
and maintaining the system in an evaluated
configuration.
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4.1.5 Life Cycle Support

The Life Cycle Support assurance requirement
includes requirements for processes that deal
with vulnerabilities found after release of the
product, as well as the physical security of the
developer’s lab.

The SUSE security procedures are defined and
described in documents in the SUSE intranet.
The defect handling procedure SUSE has in
place for the development of SLES requires the
description of the defect with its effects, secu-
rity implications, fixes and required verifica-
tion steps.

Again, existing (and previously planned up-
dates to) SUSE procedures met the require-
ments for this class and were merely required
to be documented to fulfill the assurance re-
quirements.

4.1.6 Security Testing

The emphasis of the Security Testing class is
on the confirmation that the TSF operates ac-
cording to its specification. This testing pro-
vides assurance that the TOE satisfies the se-
curity functionality requirements. Coverage
(completeness) and depth (level of detail) are
separated for flexibility.

A detailed test plan was produced to test the
functions of SLES on each evaluated platform.
The test plan includes an analysis of the test
coverage, an analysis of the functional inter-
faces tested, and an analysis of the testing
against the high level design. Test coverage of
internal interfaces was defined and described
in the test plan documents and the test case de-
scriptions. The tests were executed on every
platform. The test results are documented so
that the tests can be repeated and the results in-
dependently confirmed.

Although, SUSE has an excellent test infras-
tructure for regression testing already in place,
additional tests were required to test new func-
tionality, such as audit, and ensure cover-
age of security relevant events. The Linux
Test Project provided an excellent base for the
test suite needed for EAL3. It already con-
tained almost all of the necessary test cases
for every system call. In some cases, we had
to add tests of expected failure cases to en-
sure that the security was being correctly en-
forced. We added some test cases for security-
relevant programs, such as su, cron, at, and
ssh. We created tests to ensure that the sys-
tem was configured in the evaluated man-
ner. We also created many tests for correct
ACL behavior. Many of the system call and
security-relevant program test cases were cre-
ated during the course of the EAL2 evaluation
and then reused during the EAL3 evaluation.
The largest class of new test cases for EAL3
was tests of the new audit system. Testing
the audit subsystem required showing that all
security-relevant system calls are logged cor-
rectly, all trusted programs (including PAM)
correctly logged security-relevant events, the
audit userspace tools contained correct func-
tionality, and that audit exhibits Controlled Ac-
cess Protection File (CAPP)-compliant behav-
ior during threshold and failure events (for ex-
ample, low disk space). Gcov was used to show
test coverage of the kernel internal interfaces.
Writing, documenting, and running these test
cases on all of the evaluated platforms was a
significant portion of the evaluation effort.

4.1.7 Vulnerability Assessment

The Vulnerability Assessment class defines re-
quirements for evidence that the developer
looked for vulnerabilities that might arise dur-
ing development and use of the TOE.

Our search for vulnerabilities was documented
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in the Vulnerability Assessment document.
This assessment included TOE misuse analy-
sis and a password strength of function anal-
ysis. The analysis also describes the approach
used to identify vulnerabilities of SLES and the
results of the findings.

The Vulnerability Assessment was performed
and written as part of this evaluation.

4.2 CAPP Overview

The Controlled Access Protection Profile
(CAPP) is based on the C2 class of the
“Department of Defense Trusted Computer
Systems Evaluation Criteria” (DoD 5200.28
– STD) colloquially known as the “Orange
Book.” CAPP requires that the operating sys-
tem implement the Discretionary Access Con-
trol (DAC) security policy. DAC allows the in-
formation owner to control who is allowed to
access the information.

The CAPP functional requirements fall in the
following five broad categories:

• Identification and Authentication

• User Data Protection

• Security Management

• Protection of the TSF

• Security Audit.

4.2.1 Identification and Authentication

Identification and Authentication include the
functionality required to uniquely identify the
user.

SLES provides identification and authentica-
tion using pluggable authentication modules

(PAM) based upon user passwords. Other au-
thentication methods (e.g., Kerberos authen-
tication, token based authentication) that are
supported by SLES as pluggable authentication
modules are not part of the evaluated configu-
ration. PAM was configured to ensure medium
password strength, to ensure password quality
to limit the use of the su command, and to re-
strict root login to specific terminals.

Meeting the CAPP requirements for Identifica-
tion and Authentication involved changing the
default PAM configuration for SLES 8. The
new configuration is documented by the Secu-
rity Guide.

4.2.2 User Data Protection

User Data Protection specifies the functional-
ity that protects data from unauthorized access
and modification—the enforcement of the Dis-
cretionary Access Control policy. In addition,
deleted information must not be accessible and
newly created objects must not contain residual
information.

The Discretionary Access Control policy re-
stricts access to file system objects based on
Access Control Lists (ACLs) that include the
standard UNIX® permissions for user, group,
and others. Access control mechanisms also
protect IPC objects from unauthorized access.

The evaluated configuration used the ACL sup-
port in the ext3 file system. The vanilla kernel
already clears file system, memory and IPC ob-
jects before they can be reused by a process be-
longing to a different user. Thus, the User Data
Protection functionality requirements were al-
ready being met by SLES 8.
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4.2.3 Security Management

The Security Management class specifies how
security attributes, security data and security
functions are managed by the TOE. Security
Management includes management of groups
and roles, separation of capability, and man-
agement of audit data.

Management of the security critical parame-
ters of the TOE is performed by administra-
tive users. Commands that require root privi-
leges, such as useradd and groupdel, are used
for system management. Security parame-
ters are stored in specific files that are pro-
tected by the access control mechanisms of
the TOE against unauthorized access by non-
administrative users.

Other than the audit data management com-
mands (which are described in the Security
Audit section below) all security management
functionality was provided by standard func-
tionality already included in SLES 8.

4.2.4 TSF Protection

Protection of the TSF specifies the require-
ments for maintaining the integrity of the TSF
and its data, particularly the protection of con-
figuration data. The TSF will need to perform
the appropriate testing to demonstrate the secu-
rity assumptions about the underlying abstract
machine upon which the TSF relies. In addi-
tion, the TSF must be demonstrated to be com-
plete and tamperproof.

While in operation, the kernel software and
data are protected by the hardware memory
protection mechanisms. The memory and pro-
cess management components of the kernel en-
sure that user processes cannot access kernel
storage or storage belonging to other processes.

Non-kernel TSF software and data are pro-
tected by DAC and process isolation mecha-
nisms. In the evaluated configuration, the root
user owns the directories and files that define
the TSF configuration. Files and directories
containing internal TSF data (e.g., configura-
tion files, batch job queues) are also protected
by DAC permissions.

The TOE and the hardware and firmware com-
ponents are required to be physically protected
from unauthorized access. The system ker-
nel mediates all access to the hardware mech-
anisms themselves, other than program visible
CPU instruction functions.

4.2.5 Abstract Machine Test Utility
(AMTU)

To completely fulfill the TSF Protection re-
quirement, we had to produce a tool to test the
underlying abstract machine: “The TSF shall
run a suite of tests [selection: during initial
start-up, periodically during normal operation,
or at the request of an authorized administra-
tor] to demonstrate the correct operation of the
security assumptions provided by the abstract
machine that underlies the TSF.”4 This require-
ment is sometimes fulfilled by Power-On Self
Test (POST) procedures, but given the diver-
sity of platforms that were included in the cer-
tification, we decided that a userspace admin-
istrative tool, AMTU, would be the simpler ap-
proach. AMTU can be run by an administrator
at any time and ensures that the hardware en-
forced security protection is still in effect. To
this end, the tool runs a simple check for mem-
ory errors, checks for enforcement of mem-
ory separation, checks the correct operation of
network and disk I/O controllers, and verifies

4Controlled Access Protection Profile available
from http://www.radium.csc.mil/tpep/
library/protection_profiles/CAPP-1.d.
pdf
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that privileged instructions cannot be executed
when the hardware is in user mode.

The source code for AMTU is avail-
able at http://www-124.ibm.com/
developerworks/projects/amtu .

4.2.6 Security Audit

Auditing systems collect information about
events related to security-relevant activities.
Security-relevant activities are defined as those
events that are governed by the security pol-
icy. The resulting audit records can be exam-
ined to determine which security-relevant ac-
tivity took place and which user is responsible
for them. No fully CAPP-compliant audit sub-
system was available for Linux, so we imple-
mented this feature to achieve the certification.
The audit subsystem developed for the evalua-
tion is called Linux Audit System or LAuS.5

LAuS Conceptual Overview The Linux
Audit System (LAuS) consists of three primary
components: a kernel module responsible for
intercepting system calls and recording rele-
vant events, an audit daemon (auditd) that re-
trieves the records generated by the kernel and
writes them to disk, and a number of com-
mand line utilities for displaying, querying and
archiving the audit trail. See Figure 1.

The interface between kernel and user space
uses a character device named /dev/audit. The
audit daemon uses I/O Control operations
(ioctls) on this device to configure the audit
module, and it retrieves audit records from it
using the read() system call.

To improve performance, filtering of audit

5The LAuS Design Document is available at
ftp://ftp.suse.com/pub/projects/
security/laus/doc/LAuS-Design.pdf

events is performed at the kernel level. Unlike
some existing implementations, the audit dae-
mon does not perform any filtering itself. This
eliminates a serious performance bottleneck.

The set of filter primitives provided by LAuS is
fairly rich, and primitives can be combined us-
ing boolean operations. For instance, it is pos-
sible to audit open(2) calls made by a setuid
application, while ignoring all other open(2)
calls, or to restrict auditing to certain files. The
eal3-certification RPM contains the evaluated
audit configuration files.

At startup, auditd reads its configuration and
the set of filter expressions from one or more
files, loads the filters to the kernel, and starts
auditing.

Auditd then proceeds to listen for audit events
generated by the kernel. It retrieves and writes
all records directly to disk. Because of the
CAPP requirement that audit records must
never be lost, this process is more complex than
it might seem. auditd constantly monitors disk
usage and can be configured to respond in dif-
ferent ways if free disk space drops below cer-
tain thresholds. Possible reactions to low disk
space include notifying the administrator, sus-
pending all audited processes, or shutting down
the system immediately. Both the thresholds
and auditd’s reactions can be configured by the
administrator.

LAuS supports different output modes to pro-
vide a flexible way to configure data collection.
The simplest approach simply writes the audit
trail to a single file in append mode, similar to
the way syslogd works.

In “bin mode,” audit writes data to a number of
fixed sized files (bins), switches to the next file
when the current one fills up, and invokes an
external command to archive the full bin. Fi-
nally, there is a so-called “stream mode” that
lets you pipe the audit trail directly into an ex-
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Figure 1: LAuS Conceptual Overview

ternal command; this can be useful if you want
to forward the trail to a central storage server.

Auditing can be enabled globally or on a per-
process basis; in the latter case, all the child
processes are audited as well. The only pro-
cesses always exempt from auditing are init
and the audit daemon itself.

User land utilities were created to parse and
read the audit log files. aucat ’cats’ the file,
transforming all of the audit records to a hu-
man readable format. augrep ’greps’ the audit
records and allows the administrator to selec-
tively review the records. augrep allows the
administrator to select audit records based on
type, time (range), user, syscall, program (by
name or PID) that generated the event, or any
combination of these attributes.

Even though the user land utilities are far from
trivial, the kernel portion of LAuS proved far
more complex; in fact, the kernel portion of the
LAuS is a lot more complex than we had ini-

tially anticipated. The rest of this section deals
with the questions surrounding the audit kernel
module.

Additional Design Constraints In addition
to making our audit implementation compliant
with the CAPP requirements, we had to deal
with several constraints which are worth not-
ing.

One was to minimize performance overhead.
In the case where auditing was compiled into
the kernel, but not configured by the adminis-
trator, we wanted it to have zero performance
impact if possible. Our kernel developers spent
quite a lot of time on additional kernel tuning,
making sure the kernel performed and scaled
well. Breaking this was not an option.

We also wanted to have a performance over-
head as small as possible for the audited case,
even though this wasn’t as high on our agenda.
This definitely took second place to correctness
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and CAPP compliance.

A third objective was entirely non-technical,
but played a crucial role in choosing an ap-
proach to intercepting system calls. We wanted
our modifications to the core kernel as small as
possible; most of the code should be inside a
loadable module.

The rationale behind this was to minimize
the probability of introducing bugs (except, of
course, bugs in the audit code itself), and to
ease maintenance.

The latter point was a fairly important item in
the context of the SLES 8 kernel, which in-
cludes well above 1,500 additional patches ap-
plied on top of the mainline kernel. Updating
SLES 8 to a new mainline kernel version was
a bit of an adventure, so we wanted to avoid
adding audit patches to the kernel that changed
lots of files all over the place.

Where to intercept system calls There are
basically three ways to intercept system calls
on a 2.4 Linux kernel.

The first approach is to create wrappers for
those system calls you wish to track, and re-
place the original function pointers in the sys-
tem call table with those of the new wrapper
functions. This sounds simple enough, and
would also satisfy our requirements for zero
performance impact in the non-audit case, and
a minimally intrusive kernel patch. Unfortu-
nately, this approach doesn’t work on all archi-
tectures.

The next approach is to add hooks to all ker-
nel functions that must be audited. The ma-
jor drawback to this approach is that the kernel
patch would touch lots of files in the kernel,
which we wanted to avoid.

The third approach, which we chose, was to
hook into the code path that intercepts sys-

tem calls for ptrace. This intercept happens
very early in the platform-specific assembler
code, before the system-call function itself is
invoked. The assembly code retrieves a set of
flags associated with the calling process, and
checks thePT_TRACESYSbit . If that bit is set,
it jumps to a separate code branch dealing with
ptracing. The same test is performed when re-
turning from a system call.

In our audit implementation, we simply
defined an additional task flag named
PT AUDITED, and extended the bit test
in the system-call entry and exit code to test
for both bits at the same time. This gave us
system-call intercept with zero performance
overhead in the normal, non-audited code path.

See Figure 2 for a picture showing the flow of
control when auditing a system call.

Defining which system calls to audit By
far, the most important part of auditing con-
cerns system calls. As mentioned above, CAPP
requires auditing all security-relevant system
calls. We needed to determine which system
calls are security relevant and which aren’t.

The obvious ones are those that change the
state of a process, the file system, or other sys-
tem resources. These includes calls such as se-
tuid, open, close, and setting the system’s host
name or clock. An audit implementation also
needs to cover less obvious operations, such
as binding a socket to a port, attaching shared
memory segments, and performing ioctls.

Most system calls are fairly straightforward to
handle, and much of the information on sys-
tem calls and the arguments they take can be
encoded statically in tables. Some calls, such
as msgrcv, which comes in two versions on the
i386 platform for historical reasons, were diffi-
cult to handle. 64-bit platforms usually require
an additional table as they support a 32-bit sys-
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Figure 2: Auditing a System Call

tem call interface in addition to their native 64-
bit interface.

However, some of the operations we wanted to
audit proved a little more elusive; these were
the ioctl system call and network configuration
changes.

Auditing ioctls The ioctl system call is the
dirty little back alley of UNIX-like operating
systems. If a driver for a piece of hardware,
a network protocol or a file system needs to
expose some driver-specific mechanism or tun-
able parameters to user-space applications, the
most common method for doing so is to define
one or more ioctls.

The ioctl system call takes an open file descrip-
tor, which must refer to something controlled
by the driver (for example, a terminal, a device
file, or a socket), an integer number specify-
ing the request, and an opaque pointer to some
chunk of memory. Exactly what to do with this
piece of memory depends on the driver that is
being talked to, and the integer passed as the
request ID.

Unfortunately for us, the Linux kernel supports
well over a thousand ioctls, and while many
of them are rather obscure, they do change the
system’s state and are thus subject to auditing.
It is obvious that compiling and maintaining a
list of 1000 ioctls and their arguments was not
an option.
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Most ioctl numbers nowadays encode suffi-
cient information on whether the operation
passes data into the kernel, retrieves data, or
both, and the size of the argument. Therefore,
writing audit records for these is straightfor-
ward. However, there is still a fair number of
ioctls that do not follow this convention.

What is far worse is that ioctl numbers are not
unique—frequent users of strace will proba-
bly know that the TCGETS ioctl uses the same
number as some obscure sound card operation.
But this is not the only conflict.

However, the most difficult aspect of auditing
ioctls is that it isn’t sufficient to simply gener-
ate audit records for these calls; you must also
be able to display the information of each audit
record to the user.

The way we solved this problem was entirely
non-technical. Our target of evaluation clearly
stated that the super user account remains spe-
cial. The super user can do everything, from
loading unsupported modules not covered by
the certification, to disabling the audit subsys-
tem altogether.

Instead of trying to handle each and every ioctl
in the audit module, we went through all ioctls
available in our to-be-certified configuration
and categorized them. The ones we needed to
audit were those that were security relevant in
some way, but did not require administrative
privilege; the list we came up with this way was
much smaller than the original list and more
manageable.

Auditing network configuration Another
aspect that proved to be a challenge was track-
ing network configuration changes, because
only a fraction of those are done through ioctl
calls. Most network configuration changes
are performed by passing data to a netlink
socket. These changes can be audited by sim-

ply recording all sendmsg and recvmsg calls
on netlink sockets, but that is far from optimal.
On the one hand, a send or receive operation
on a netlink socket can include more than one
request. On the other hand, the outcome of a
netlink call is not returned through the system-
call return value, but in a separate netlink mes-
sage generated by the kernel and queued to that
socket. Simply logging the raw netlink data
sent and received would require quite a bit of
built-in intelligence on the part of the user land
applications that are supposed to display this
data.

So instead, we decided to tap into the netlink
layer directly, where a data blob sent to a
netlink socket is broken up into separate re-
quests, and each request is processed in return.
This allowed us to record each netlink request
separately, and place the outcome of the oper-
ation into the same audit record as the original
request.

The Login User ID An aspect of auditing
that is worth mentioning is how to deal with
the CAPP requirement that each record identi-
fies the user performing the operation.

The obvious solution (which would be to use
the real user ID associated with the calling pro-
cess) is not sufficient, as setuid applications
can change these IDs at will. Tracking all
uid changes, and thereby allowing the audit
utilities to piece together the original user ID
from this mosaic, is not practical either. It is
not uncommon for some processes on a dedi-
cated server to run for hundreds of days, so the
amount of data to look at would be prohibitive.

The only viable solution in this case is to at-
tach a “login uid” to each process. The login
uid remained constant across all other changes
of real, effective, and saved user IDs, and was
inherited by all child processes. Of course, this
required changes to PAM so that this uid would
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be set on login.

Nightmare on Audit Street There is one
major problem with the approach to system
call intercept that we chose and which in hind-
sight made it a less than optimal choice. The
problem is that our approach requires data to
be copied twice. To understand why this is a
problem, let’s look at the open(2) system call,
which takes a path name as an argument. This
path name is passed into the kernel function
as a pointer to a string (essentially a chunk of
memory) in the address space of the user pro-
cess. In order to operate on this string, the ker-
nel must copy it to a buffer in the kernel address
space, possibly paging in memory as it goes.

When entering the kernel, the audit module re-
trieves the path name from user space, and de-
cides whether to create an audit record for this
call. If it does decide to create an audit record,
it sets up an audit record containing the sys-
tem call number and a copy of all arguments,
including the path.

The system call proceeds as normal, and the
kernel functionsys_open retrieves the path
name from user space a second time, and car-
ries out the requested operation based on this
data.

The problem is that the memory in user space
may have changed in the meantime, so that the
record written by the audit module does not
correspond to what was actually performed by
the operating system.

There are several ways this can happen. Of
course, the calling process itself cannot mod-
ify this memory, as it is currently executing
the system call. However, memory can be
shared between processes in a variety of ways.
Threads can share the entire address space;
processes can attach to the same shared mem-
ory segment; memory can be mapped from a

file, which can be mapped by other processes
as well.

Such an attack on the audit module is not re-
ally practical, because proper timing is proba-
bly quite hard, and any attempt to perform this
attack would most likely leave a trail in the au-
dit file. But even the theoretical possibility of
circumventing the audit subsystem is unaccept-
able in terms of CAPP compliance.

The cases described above can be detected
and dealt with by the audit module. Deal-
ing with these problems, however, incurs ad-
ditional complexity and performance loss (es-
pecially in the case of multithreaded applica-
tions). Needless to say, the added complex-
ity engendered a considerable number of bugs.
For this reason, these additional checks can be
turned off by the administrator. These checks
are turned off in the evaluated configuration of
audit and the associated risk, considered min-
imal, is documented in the Vulnerability As-
sessment.

SUSE Linux Server 9 SUSE Linux Server
9 will include an updated version of the LAuS
kernel patches. In many respects, the updated
LAuS module will work in the same way as the
SLES 8 version did, with the major exception
being the way system calls are intercepted.

When planning audit for SUSE Linux Server 9,
we considered two options.

The first option was a solution we had already
looked at for SLES 8 and abandoned, namely
adding hooks to all system call functions rele-
vant for CAPP. This is the approach we chose
for SUSE Linux Server 9, mainly in order to
avoid having to jump through all those extra
hoops in an attempt to prevent the race con-
ditions described in the previous section. One
pleasant side effect of this approach is that it
also eliminated a lot of platform-specific code.
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The second option we considered was to add
audit support as an LSM module, or extend-
ing an existing LSM module such as SELinux.
The security framework in the 2.6 kernel goes
a long way toward intercepting all security-
relevant operations. Adding audit hooks in
this place is appealing, because it would mean
no additional performance cost (the security
hooks do come with a certain performance
penalty already) and no additional maintenance
problems (because the audit patch would not
have to touch multiple kernel files).

The main reason why we did not choose this
approach was that the security hooks provide a
more abstracted view than we had chosen for
LAuS in SLES 8. Security hooks do not cor-
respond directly to system calls, but rather rep-
resent the security check necessary to validate
whether an operation is permitted. There is a
fine distinction between “user X attempted to
perform operation Y, and the outcome was Z”
and “user X attempted an operation on object
A that caused us to perform security check B,
and the outcome of this check was C.” In par-
ticular, we are neither aware of the operation
that triggered the security check, nor of its fi-
nal outcome, because the operation can still fail
even if security clearance is given.

Moreover, a single system call may require
several security checks, such as renaming a
file, where we need permission to remove the
file from the source directory and permission
to add it to the destination directory.

Changing LAuS to use the security hooks
would have meant rewriting much more code
than we wanted to, including the filtering code
and much of the user-land applications. We
also would have had to modify considerable
parts of the documentation required for recerti-
fication.

Future Directions This is not to say that it is
not possible to write an audit implementation
leveraging some features of the LSM frame-
work. In fact, we hope to have a common audit
implementation in the mainstream kernel one
day. It would greatly help acceptance by the
kernel community if that solution did not add
another set of hooks into many performance-
critical functions.

5 Evaluation Roadmap

Performing a security evaluation should never
be a one-time accomplishment. To maintain
the security level achieved, the security cer-
tificate must be maintained. In the case of
Linux, the intent is to go a step further: to
increase, step-by-step, the assurance level and
the security functionality until Linux achieves
the highest assurance level of any commer-
cial operating system product, while offering
the richest set of security functions. The first
step was accomplished in July 2003, when
we obtained an EAL2+ evaluation for SUSE
SLES 8 as-is. This paper documented the re-
sults of the second step, where we obtained a
CAPP/EAL3+ certification for SLES 8 SP3 in
January 2004. Linux, like its commercial com-
petitors, has now been successfully evaluated
for compliance with the requirements of the US
government-defined CAPP. As a further step,
Linux is currently in evaluation for compliance
with the requirements of the EAL4 level. This
includes the development of a low-level de-
sign of the Linux kernel (the evaluation will be
based on the 2.6 version of the kernel) as well
as a more sophisticated vulnerability analysis
being performed. The experience gathered in
the EAL2 and the EAL3 evaluations have given
us the confidence that compliance with EAL4
can be achieved in fairly short order.



512 • Linux Symposium

6 Value of Certification

The value of certification can be considered
from two perspectives: business and technical.

In order for Linux to be adopted by the com-
mercial and government markets, it faces stiff
competition from entrenched incumbents. All
of the incumbent products have been evaluated
using the Common Criteria. In addition, the
U.S government instituted a national security
community policy against procuring unevalu-
ated products (NSTISSP No. 11). There is
a high probability that other governments and
commercial entities will do the same.

While there is much skepticism surrounding
the technical value of certification, certification
is very much in line with the “many eyes” phi-
losophy. For commercial products, certifica-
tion is often the only time the code is reviewed
by people outside of the development team.
The assurance requirements of Common Crite-
ria add to the number of trained eyes looking at
the design and source of a project using defined
and rigorous procedures. During the course of
the EAL3 evaluation, we found and fixed sev-
eral bugs, created lots of documentation, and
shipped an integrated CAPP-compliant audit
system. We noticed an anomaly on the iSeries
platform while testing the Abstract Machine
Testing Utility. Analysis of this anomaly by
the ppc64 development team led to the discov-
ery of a memory separation bug on the iSeries
platform.6 Many PAM module bugs were iden-
tified and fixed in SLES 8, including a double
free bug inpam_pwcheck .7 Man pages were
created for several undocumented system calls,

6Paul Mackerras fix to “Make kernel RAM user-
inaccessible on iSeries”http://www.kernel.
org/diff/diffview.cgi?file=/pub/
linux/kernel/v2.4/patch-2.4.23.bz2;z=
290

7http://www.atsec.com/01/index.php?
id=03-0002-01&news=28 Patches are available
from klaus@atsec.com

PAM modules and admin utilities, including
io_setup , readahead , set_thread_
area , pam_wheel , pam_securetty , and
others.

7 Conclusion

Achieving the EAL2 and EAL3/CAPP certifi-
cations was significant because it proved that
Linux is indeed certifiable. The certification
opened the market up to include U.S. govern-
ment agencies and commercial entities that re-
quire certification. Future evaluations of Linux
distributions can be made easier by Linux
adoption of a CAPP-compliant audit subsys-
tem.
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Abstract

One of the next challenges faced in Linux ker-
nel development is providing support for work-
load management. Workloads with diverse and
dynamically changing resource demands are
being consolidated on larger symmetric mul-
tiprocessors. At the same time, it is desir-
able to reduce the complexity and manual in-
volvement in workload management. We argue
that the goal-oriented workload managers that
can satisfy these conflicting objectives require
the Linux kernel to provide class-based dif-
ferentiated service for all the resources that it
manages. We discuss an extensible framework
for class-based kernel resource management
(CKRM) that provides policy-driven classifica-
tion and differentiated service of CPU, mem-
ory, I/O and network bandwidth. The pa-
per describes the design and implementation
of the framework in the Linux 2.6 kernel. It
shows how CKRM is useful in various scenar-
ios including the desktop. It also presents pre-
liminary performance evaluation results that
demonstrate the viability of the approach.

1 Introduction

Workload management is an increasingly im-
portant requirement of modern enterprise com-
puting systems. There are two trends driving
the development of enterprise workload man-
agement middleware. One is the consolida-
tion of multiple workloads onto large symmet-
ric multiprocessors (SMPs) and mainframes.
Their diverse and dynamic resource demands
require workload managers (WLMs) to pro-
vide efficient differentiated service at finer time
scales to maintain high utilization of expensive
hardware. The second trend is the move to-
wards specification of workload performance
in terms of the business importance of the
workload rather than in terms of low-level sys-
tem resource usage. This has led to the increas-
ing use of goal-oriented workload managers,
described shortly, which are more tightly inte-
grated into the business processes of an enter-
prise.

Traditional system administration tools have
been built with two layers. The lower, OS spe-
cific layer deals with modifying and monitor-
ing operating system parameters. The upper
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layer(s) provide an OS independent API, gen-
erally through a graphical user interface, allow-
ing a multi-tier or clustered system to be man-
aged through a unified API despite containing
heterogenous operating systems. While such
tools provide a convenient administrative inter-
face to heterogeneous operating systems they
do little to address the complexity of managing
workloads that span multiple tiers. The burden
of translating business goals into workload re-
source requirements and the latter into OS spe-
cific tuning parameters remains on the system
administrators. Increasing workload consoli-
dation only adds more complexity to an already
onerous problem.

As described in [7], the first stage in improving
workload management areentitlement-based
workload managers (WLMs) such as [9, 5,
11] which enforce entitlements or shares on
resources consumed by groups of processes,
users, etc. This allows the more important
groupings to see improved response times and
higher bandwidth due to preferential access to
the server hardware. As importantly, it allows
expensive SMP servers to have higher utiliza-
tions since system administrators can afford to
load them more without fear of penalizing the
important groupings.

However, the complexity of determining the
right entitlements (henceforth called shares)
for a grouping remains on the human system
administrator. Not only does s/he need to map
the importance of a workload to its entitle-
ments, s/he also needs to adjust these shares
dynamically when the demand and/or impor-
tance ofanyworkload changes. Such dynamic
share changes have become increasingly diffi-
cult to compute in a timely manner when man-
ual involvement is part of the adaptive feed-
back loop.

To address the complexity of share specifica-
tions, goal-oriented workload managershave

been developed [1, 10] which allow a system
to be more self-managed. Such WLMs allow
the human system administrator to specify high
level performance objectives in the form of
policies, closely aligned with the business im-
portance of the workload. The WLM middle-
ware then uses adaptive feedback control over
OS tuning parameters to realize the given ob-
jectives.

In mainstream operating systems, including
Linux, the control of key resources such as
memory, CPU time, disk I/O bandwidth and
network bandwidth is typically strongly tied
to processes, tasks and address spaces and are
highly tuned to maximize system utilization.
This introduces additional complexity to the
WLM which needs to translate the QoS re-
quirements into these low level per task re-
quirements, tough typically QoS is enforced at
work class level. Hence, in order to isolate the
autonomic goal oriented layers of the system
management from the intricacies of the operat-
ing system, we introduce the class concept into
the operating system kernel and require the OS
to provide differentiated service for all major
resources at a class granularity defined by the
WLM.

In this paper, we discuss a framework
called class-based kernel resource manage-
ment (CKRM) that implements this support
under Linux. In CKRM, a class is defined as
a dynamic grouping of OS objects of a particu-
lar type (classtype) and defined through poli-
cies provided by the WLM. Each class has
an associated share of each of its resources.
For instance, CKRM tasks classes provides re-
source management for four principal physi-
cal resources managed by the kernel namely
CPU time, physical memory pages, disk I/O
and bandwidth. Sockets classes provide in-
bound network bandwidth resource control.
The Linux resource schedulers are modified to
provide differentiated service at a class granu-
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larity based on the assigned shares. The WLM
can dynamically modify the composition of a
class and its share in order to meet higher level
business goals. We evaluate the performance
of the CKRM using simple benchmarks that
demonstrate the efficacy of its approach.

This work makes several contributions that dis-
tinguish it from previous related work such
as resource containers [2] and cluster reserves
[4]. First, it describes the design of a flexi-
ble kernel framework for class-based manage-
ment that can be used to manage both phys-
ical and virtual resources (such as number of
open files). The framework allows the vari-
ous resource schedulers and classification en-
gine to be developed and deployed indepen-
dent of each other. Second, it shows how in-
cremental modifications to existing Linux re-
source schedulers can make them provide dif-
ferentiated service effectively at a class granu-
larity. To our knowledge, this is the first open-
source resource management package that at-
tempts to provide control over all the major
physical resources—i.e., CPU, memory, I/O,
and network. Third, it provides a policy-driven
classification engine that eases the develop-
ment of new higher level WLMs and enables
better coordination between multiple WLMs
through policy exchange. Thirdly, through the
resource class filesystem the WLM goals can
be manipulated by normal users, making it use-
ful on the desktop. Finally, it develops a tag-
ging mechanism that allows server applications
to participate in their resource management in
conjunction with the WLM.

The rest of the paper is organized as follows.
Section 2 gives an overview of CKRM and
its core bits. Sections 3 briefly describes the
classification engine. Section 4 presents the
facilities provided by CKRM for monitoring.
The inbound network controller, the first ma-
jor controller ported to CKRM’s new interface,
is described in Section 5. Section 6 describes

the filesystem interface which replaces the sys-
tem call interface used in CKRM’s earlier de-
sign presented in OLS 2003 [13]. Section 7
describes how CKRM might be used, both on a
desktop system and on some server workloads.
Section 8 concludes with directions for future
work in the project.

2 Framework

A typical WLM defines a workload to be any
system work with a distinct business goal.
From a Linux operating system’s viewpoint,
a workload is a set of kernel tasks executing
over some duration. Some of these tasks are
dedicated to this workload. Other tasks, run-
ning server applications such as database or
web servers, perform work for multiple work-
loads. Such tasks can be viewed as executing in
phases with each phase dedicated to one work-
load. Server tasks can explicitly inform the
WLM of its phase by setting an application tag.
A WLM can also infer the phase by monitoring
significant system events such as forks, execs,
setuid, etc. and classifying the server task as
best as possible.

In this scenario, a WLM translates a high
level business goal of a workload (say response
time) into system goals for the set of tasks ex-
ecuting the workload. The system goals are
a set of delays seen by the workload in wait-
ing for individual resources such as CPU ticks,
memory pages, etc. The WLM monitors the
business goals, possibly using application as-
sistance, and the system usage of its resources.
If the business goal is not being met, it identi-
fies the system resource(s) which form a per-
formance bottleneck for the workload and ad-
justs the workload’s share of the resource ap-
propriately. The CKRM framework enables a
WLM to regulate workloads through a number
of components, as shown in Fig. 1:
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Core: The core defines the basic entities used
by CKRM and serves as the link between all
the other components. A class is a group of
kernel objects with an associated set of con-
traints for resource controllers operating on
those kernel objects—e.g., a class could con-
sist of a group of tasks which have a joint share
of cpu time and resident page frames. Each
class has an associated classtype which identi-
fies the kernel object being grouped. CKRM
currently defines two classtypes calledtask_
class and socket_class for grouping
tasks and sockets. For brevity, the term
taskclass and socketclass will be used to de-
note a class of classytpetask_class and
socket_class respectively. Classtypes can
be enabled selectively and independent of each
other. A user not interested in network reg-
ulation could choose to disablesocket_
class es. Classes in CKRM are hierarchical.
Children classes can be defined to subdivide
the resources allocated to the parent.

Classification engine (CE): This optional
components assists in the association of kernel
objects to classes of its associated classtype.
Each kernel object managed by CKRM is al-

ways associated with some class. If no classes
are defined by the user, all objects belong to
the default class for the classtype. At sig-
nificant kernel events such as fork, exec, se-
tuid, listen, when the attributes of a kernel
object are changed, the Core queries the CE,
if one is present, to get the class into which
the object should be placed. CE’s are free
to use any logic to return the classification.
CKRM provides a rule-based classification en-
gine (RBCE) which allows privileged users to
define rules which use attribute matching to
return the class. RBCE is expected to meet
the needs of most users though they can define
their own CE’s or choose not to have any and
rely upon manual classification of each kernel
object through CKRM’s rcfs user interface (de-
scribed later).

Resource Controllers: Each classtype has a
set of associated resource controllers, typi-
cally one for each resource associated with the
classtype—e.g., taskclasses have cpu, memory,
and I/O controllers to regulate the cpu ticks,
resident page frames and per-disk I/O band-
width consumed by it while socketclasses have
an accept queue controller to regulate the num-
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ber of TCP connections accepted by member
sockets. Resource requests by a kernel ob-
ject in a class are regulated by the correspond-
ing resource controller, if one exists and is en-
abled. The resource controllers are deployed
independent of each other so a user interested
only in controlling CPU time for taskclasses
could choose to disable the memory and I/O
controllers (as well as the socketclass classtype
and all its resource controllers).

Resource Control File System (RCFS): It
forms the main user-kernel interface for
CKRM. Once RCFS is mounted, it provides
a hierarchy of directories and files which can
be manipulated using well-known file opera-
tions such as open, close, read, write, mkdir,
rmdir and unlink. Directories of rcfs corre-
spond to classes. User-kernel communication
of commands and responses is done through
reads/writes to virtual files in the directories.
Writes to the virtual files trigger CKRM Core
functions and responses are available through
reads of the same virtual file.

The CKRM architecture outlined above
achieves three major objectives:

• Efficient, class-based differentiation of re-
source allocation and monitoring for dy-
namic workloads: Regulate and moni-
tor kernel resource allocation by classes
which are defined by the privileged user
and not only in terms of tasks. The differ-
entiation should work in the face of rela-
tively rapid changes in class membership
and over roughly the same time intervals
at which process-centric regulation cur-
rently works.

• Low overhead for non-users: Users disin-
terested in CKRM’s functionality should
see minimum overhead even if CKRM
support is compiled into the kernel. Signs
of user disinterest include omitting to

mount rcfs or not defining any classes.
Even for users, CKRM tries to keep over-
heads proportional to the features used.

• Flexibility and extensibility through min-
imization of cross-component dependen-
cies: Classification engines should be
independent of classtypes and optional,
classtypes should be independent of each
other and so should resource controllers,
even within the same classtype. This goal
is achieved through object-oriented inter-
faces between components. Minimizing
dependencies allows kernel developers to
selectively include components based on
their perception of its utility, performance
and stability. It also permits alternative
versions of the components to be used de-
pending on the target environment—e.g.,
embedded Linux distributions could have
a different set of taskclass resource con-
trollers (or even classtypes) than server-
oriented distributions.

3 Classification

The Classification Engine (CE) is an optional
component that enables CKRM to automati-
cally classify kernel objects within the con-
text of its classtype. Since the CE is optional
and since we want to main flexibility in its
implementation, functionality and deployment,
it is supplied as a dynamically loadable mod-
ule. The CE interacts with CKRM core as fol-
lows. The CKRM core defines a set of ckrm
events that constitute a point during execution
where a kernel object could potentially change
its class. A classtype can register a callback at
any of these events. As an example, the task
class hooks the fork, exec, exit, setuid, set-
gid calls where as the socket class hooks the
listen and accept calls. In these callbacks the
classtypes typically invoke the optional CE to
obtain a new class. If no CE is registered or the
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CE does not determine a class, the object re-
mains in its current class, otherwise the object
is moved to the new class and the correspond-
ing resource managers of that class’s type are
informed about the switch.

For every classtype the CE wants to provide au-
tomatic classification for, it registers a classifi-
cation callback with the classtype and the set of
events to which the callback is limited to. The
task of CE is then to provide a target class for
the kernel objects passed in the context of the
classtype. For instance, task classes pass only
the task, while socket classes pass the socket
kernel object as well as the task object. Though
the implementation of the classification en-
gine is completely independent of CKRM, the
CKRM project provides a default classifica-
tion, called RBCE, that is based on classifica-
tion rules. Rules consist of a set of rule terms
and a target class. A rule term specifies one
particular kernel object attribute, a compari-
sion operator (=,<,>,!) and a value expression.
To speed up the classification process we main-
tain state with tasks about which rules and rule
terms have been examined for a particular task
and only reexamine those terms that are indi-
cated by the event. RBCE provides rules based
on task parameters ((pid, gid, uid, executable)
and socket information (IP info). The rules in
conjunction with the defined classes constitute
a site policy for workload managment and is
dynamically changable (See user interface sec-
tion) into the RBCE. Hence, this approach en-
sures the separation of policy and enforcement.

To facilitate the interaction with WLMs to pro-
vide event monitoring and tracing, the CE can
also register a notification callback with any
classtype, that is called when a kernel object is
assigned to a new class. Similar so the classi-
fication callback, the notification callback can
be limited to a set of ckrm events. This facil-
ity is utilized in resource monitoring, described
next.

4 Monitoring

We now describe the monitoring infrastruc-
ture. Strictly speaking, the per-class monitor-
ing components are part of CKRM while the
per-process components are not. However, we
shall describe them together as they both can
be utilized by goal-based WLMs. Furthermore,
they are bundled with the classification engine
and utilize the CE’s notification callback to ob-
tain classification events. The monitoring in-
frastructure illustrated in Fig. 2 is based on the
following design principles:

1. Event-driven: Every significant event in
the kernel that affectsthe state of a task is
recorded and reported back to the state-
agent. The events of importance are aperi-
odic such as process fork, exit and reclas-
sification as well as periodic events such
as sampling. Commands sent by the state-
agent are also treated as events by the ker-
nel module.

2. Communication Channel: A single logi-
cal communication channel is maintained
between the state-agent and the kernel
module and is used for transferring all
commands and data. Most of the data flow
is from the kernel to user space in the form
of records resulting from events.

3. Minimal Kernel State: The design mini-
mizes the additional per-process state that
needs to be maintained within the kernel.
Most of the state needed for high level
control purposes is kept within the state
agent and updated through the records
sent by the kernel.

The state-agent, which can also be integrated
within a WLM, maintains state on each exist-
ing and exited task in the system and provides
it to the WLM. Since the operating system



Linux Symposium 2004 • 519

does not retain the state of exited processes, the
stateagent must maintain it for future consump-
tion by the WLM. The state-agent communi-
cates with a kernel module through a single
bidirectional communication chan-nel, receiv-
ing updates to the process state in the form of
records and occasionally sending com-mands.
Events in the kernel such as process fork, exit,
reclassify (resulting from change in any pro-
cess attribute such as gid, pid) cause records to
be generated through functions provided by the
kernel module.

Server tasks can assist the WLM by inform-
ing it about the phase in which they are oper-
ating (each phase corresponds to a workload).
Such tasks invoke CKRM to set a tag associ-
ated with theirtask_struct in the kernel.
CKRM uses this event to reclassify the task
and also records the event (to be transmitted
to the WLM through the state-agent). Other
kernel events that might cause a task to be re-
classified (such as the exec and setuid system
calls, etc.) are also noted by CKRM and passed
to the WLM through the state-agent. In ad-
dition, CKRM performs periodic sampling of
each task’s state in the kernel to determine the
resource it is waiting on (if any), its resource
consumption so far and the class to which it be-
longs. The sample information is transmitted
to the state-agent. The WLM can correlate the
information with the tag setting to statistically
determine the resource consumption and de-
lays of both server and dedicated processes ex-
ecuting a workload. Sampling is done through
a kernel module function that is invoked by a
selfrestarting kernel timer. Commands sent by
the state-agent cause appropriate functions in
the kernel module to execute and also return
data in the form of records. The kernel com-
ponents are kept simple and only minimal ad-
ditional state has to be maintained in the ker-
nel. In particular, the kernel does not have
to maintain extra state about exited processes
which introduces problems with PID reusage,

memory management to name a few. Instead,
relevant task information is replicated in user
space, is by definition received in the correct
time order (see below) and can be kept around
until the WLM has consumed the information.
Furthermore, the semantics of a reclassification
in the kernel, which identifies a new phase in a
server process, does not have to be introduced
into the kernel space.

The following small changes are required
to the linux kernel to track system delays.
The struct delay_info is added to the
task_struct . Delay_info contains 32-bit
variables to store cpu delay, cpu using, io de-
lay and memory io delay. The counters pro-
vide micro second accuracy. The current cpu
scheduler records timestamps whenever i) a
task becomes runnable and is entered into a
runqueue and ii) when a context switch occurs
from one task to another. We use these same
timestamps to get per-task cpu wait and cpu
using times recorded respectively. I/O delays
are measured by the difference of timestamps
taken when a task blocks waiting for I/O to
complete and when it returns. All I/O is nor-
mally attributed to the blocking task. Page-
fault delays, however, are treated as special
I/O delays. On entrance to and exit from the
page fault handler the task is marked or un-
marked as being in a memory path using flags
in task_struct . If during the I/O delay,
this flag is set, the I/O delay is counted as
a memory delay instead of as a pure I/O de-
lay. The per-task delay information is accessi-
ble through the file/proc/<pid>/delay .
Similarly, each class contains adelay_info
structure.

In contrast to the precise accounting of delays,
sampling examines the state of tasks at fixed
interval. In particular, we sample at fixed inter-
vals (~1sec) the entire set of tasks in the system
and increment per task counters that are inte-
grated into the task private structure attached
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by the classification engine that builds the core
of the kernel module. We increment counters
if a task is running, waiting to run, performing
I/O or handles a pagefault I/O. Task data (sam-
pled and/or precise) is requested by and sent
to the state-agent in coarser intervals. We can
send data in continuous aggregate mode or in
delta mode, i.e. only if task data has changed
do we send a new data record and then reset
the local counters. The task transition events
are sent at the time they occur. We distinguish
the fork, exit, and reclassification events as
records. At each reclassification (which could
potentially be the end of a phase) we transmit
the sample and delay data and reset them lo-
cally.

As a communication channel we utilize the
linux relayfs pseudo filesystem, a highly effi-
cient mechanism to share data between kernel
and user space. The user accesses the shared
buffers, called channels, as files, while the ker-
nel writes to them using buffer reservations and
memory read/write operations. The content
and structure of the buffer is determined by the
kernel and user client. Currently the communi-
cation channel is self pacing. The underlying

relayfs channel buffer will dynamically resize
upto a maximum size. If for any reason the re-
layfs buffer overflows, record sending will au-
tomatically stop, an indication is sent and the
state-agent will have to drain the channel and
request a full state dump from the kernel.

We have measured the data rate during a stan-
dard kernel build, which creates a significant
amount of task events (fork,exec,exits). For a
2-CPU system with 2 seconds sample collec-
tion we observed a data rate of 8KB/second and
a total of 190 records/sec, well within a limit
that can be processed without creating signifi-
cant overhead in the system.

5 Inbound Network

Various OS implementations offer well estab-
lished QoS infrastructure for outbound band-
width management, policy-based routing and
Diffserv [3]. Linux in particular, has an elab-
orate infrastructure for traffic control [8] that
consists of queuing disciplines(qdisc) and fil-
ters. A qdisc consists of one or more queues
and a packet scheduler. It makes traffic con-
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form to a certain profile by shaping or polic-
ing. A hierarchy of qdiscs can be constructed
jointly with a class hierarchy to make dif-
ferent traffic classes governed by proper traf-
fic profiles. Traffic can be attributed to dif-
ferent classes by the filters that match the
packet header fields. The filter matching can
be stopped to police traffic above a certain
rate limit. A wide range of qdiscs ranging
from a simple FIFO to classful CBQ or HTB
are provided for outbound bandwidth manage-
ment, while only one ingress qdisc is provided
for inbound traffic filtering and policing. The
traffic control mechanims can be used invari-
ous places where bandwidth is the primary re-
source to control.

Due to the above features, Linux is widely used
for routers, gateways, edge servers; in other
words, in situtations where network bandwidth
is the primary resource to differentiate among
classes. When it comes to endservers network-
ing, QoS has not received as much attention
since QoS is primarily governed by the systems
resources such as memory, CPU and I/O and
less by network bandwidth. When we consider
end-to-end service quality, we should require
networking QoS in the end servers as exempli-
fied in the fair share admission control mecha-
nism proposed in this section.

We present a simple change to the existing
TCP accept mechanism to provide differenti-
ated service across priority classes. Recent
work in this area has introduced the concept of
prioritized accept queues [6] and accept queue
schedulers using adaptive proportional shares
to self-managed web [14]. In a typical TCP
connection, the client initiates a request to con-
nect to a server. This connection request is
queued in a global accept queue belonging to
the socket associated with the server’s port.
The server process picks up the next queued
connection request and services it. In effect,
the incoming connections to a particular TCP

socket are serialized and handled in FIFO or-
der. When the incoming connection request
load is higher than the level that can be han-
dled by the server requests have to wait in the
accept queue until the next can be picked up.

We replace the existing single accept queue per
socket with multiple accept queues, one for
each priority class. Incoming traffic is mapped
into one of the priority classes and queued on
the accept queue for that priority. The accept
queue implements a weighted fair scheduler
such that the rate of acceptance from a partic-
ular accept queue is proportional to the weight
of the queue. In the first version of the priority
accept queue design initially proposed by the
CKRM project [13], starvation of certain pri-
ority classes was a possibility as the accepting
process picked up connection requests in the
order of descending priority.

The efficacy of the proportional accept queue
mechanism is demonstrated by an experiment.
We used Netfilter [12] to MARK options to
characterize traffic into two priority classes
with respective weights of 3:1. The server pro-
cess utilises a configurable number of threads
to service the requests. The results are shown
in Figure 3. When the load is low and there
are service threads available no differentiation
takes place and all requests are processed as
they arrive. Under higher load, requests are
queued in the accept queue with class 1 receiv-
ing a proportionally higher service rate than
class 2. The expriment was repeated, main-
taining a constant inbound connection request
rate. The proportions of the two classes were
then switched to see the service rate for the two
classes reverse as seen in Figure 4

6 Resource Control Filesystem

In the Linux kernel development community,
filesystems have become very popular as user
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Figure 3: Proportional Accept Queue: Results
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Figure 4: Proportional Accept Queue: Results under change

interfaces to kernel functionality, going well
beyond the traditional use for disk-based per-
sistent storage. The Linux kernel’s objecto-
riented Virtual File System (VFS) makes it
easy to implement a custom filesystem. Com-
mon file operations like open, close, read and
write map naturally to initalization, shutdown,
kernel-to-user and user-to-kernel communica-
tion. For CKRM, the tree structured names-

pace of a filesystem offers the additional bene-
fit of an intuitive representation of the class hi-
erarchy. Hence CKRM uses the Resource Con-
trol Filesystem (RCFS) as its user interface.

The first-level directories in RCFS contain the
roots of subtrees associated with classtypes
build or loaded into the kernel (socket_
class and taskclass currently) and the clas-
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sification engine (ce). Within the classtype
subtrees, directories represent classes. Users
can create new classes by creating a direc-
tory as long as they have the proper access
rights. Within the task_class directory,
each directory represents a task class./rcfs/
taskclass , the root of thetask_class
classtype, represents the default taskclass
which is always present when CKRM is en-
abled in the kernel. Eachtask_class direc-
tory contains a set of virtual files that are cre-
ated automatically when the directory is cre-
ated. Each virtual file has a specific function as
follows:

1. members: Reading it gives the names of
the tasks in the taskclass.

2. config: To get/set any configuration pa-
rameters specific to the taskclass.

3. target: Writing a task’s pid to this file
causes the task to be moved to the
taskclass, overriding any automatic clas-
sification that may have been done by a
classification engine.

4. shares: Writing to this file sets new lower
and upper bounds of the resource shares
for the taskclass for each resource con-
troller. Reading the file returns the current
shares. The controller name is specified
on a write which makes it possible to set
the values for controllers independent of
each other.

5. stats: Reading the file returns the statis-
tics maintained for the taskclass by each
resource controller in the system. Writing
to the file (specifying the controller) resets
the stats for that controller.

The socket_class directory is somewhat
similar. Directories under/rcfs/socket_
class/ represent listen classes and have the

same magic files as task_classes. Whereas
task_classes use the pid to identify the class
member, socket_classes, which group listening
sockets, use ip address + port name to iden-
tify their members. Within each listen class,
there are automatically created directories, one
for each accept queue class. The accept queue
directories, numbered 1 through 7, have their
own shares and stats virtual files similar to
those fortask_classes .

The /rcfs/ce directory is the user interface
to the optional classification engine. It contains
the following virtual files and directory:

1. reclassify: writing a pid or ipadress+port
to the file causes the corresponding task or
listen socket to be put back under the con-
trol of the classification engine. On sub-
sequent significant kernel events, the ce
will attempt to reclassify the task/socket
to a new taskclass/socketclass if the
task/sockets attributes have changed.

2. state: to set/get the state (active or inac-
tive) of the classification engine. To allow
a new policy to be loaded atomically, CE’s
can be set to inactive before loading a set
of rules and activated thereafter.

3. Rules: The directory allows privileged
users to create files with each file repre-
senting one rule. Reading the files, per-
mitted for all, gives the classiication pol-
icy which is currently active. The ordering
of rules in a policy is determined either
by creation time of the corresponding file
or by an explicitly specified order number
within the file. The rule files contain rule
terms consisting of attribute-value pairs
and a target class. E.g., the rulegid=10,
cmd = bash, target = /rcfs/taskclass/Ain-
dicates that tasks with gid 10 and running
the bash program (shell) should get reclas-
sified to task_class A.
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7 Example uses

In this section we will describe a number of
uses for CKRM, ranging from the traditional
large server workload consolidation, to a uni-
versity shell server, to the desktop—a novel use
of workload management systems, made possi-
ble through the resource class filesystem.

7.1 Workload Consolidation

The classical use of a workload management
system is workload consolidation, whether it’s
multiple departmental database servers on one
large server, or one small server balancing re-
sources between apache, ftpd, postfix and the
interactive users. In either scenario the main
objective is to make sure that none of the
workloads can, through excessive resource use,
cause the machine to become unusable for any
of the others.

The simple solution is to start each of the ser-
vices up in their own resource class and guar-
anteeing a certain amount of resources (say,
10% of the CPU and 20% of memory) for
each of the services. Simultaneously the ser-
vices can also have resource limits (say, 50%
of memory). This combination of guarantees
and limits gives the system a certain amount
of freedom to balance the actual amount of re-
sources each workload gets, while still putting
effective guarantees and limits in place.

7.2 Shell Server

A shell server at a university faces a number of
challenges. For example, the staff and postdocs
should be protected from the load the students
put on the machine and the students should
be protected from each other. Similarly, batch
jobs will usually have larger resource use lim-
its (e.g. max cpu time used, max memory al-
located), but a lower resource priority, as com-
pared to any of the interactive programs. These

problems can be solved by starting each class
of process in the right process class.

On the other hand, if a staff member sends
email to a student, the resources used by
the student’s mail filter should be accounted
against that student’s limits. This problem can-
not be solved by having programs start out in a
certain resource class, since the MTA process
needs to transition between resource classes
automatically. This can be solved by setting up
a classification engine to automatically trans-
fer a process to theemail resource class when
it execs/usr/sbin/sendmail . Similarly,
when /usr/bin/procmail is being ex-
eced with a certain UID, the classification en-
gine can move the process to the resource class
where that user’s interactive processes would
normally run.

7.3 Desktop

With the right file and directory ownerships in
the resource class filesystem, CKRM can be
used in an area where traditional resource man-
agement systems tend to be cumbersome: on
the desktop. A typical desktop configuration
would have as its main goals that the system
remains responsive to the user, no matter the
background load, and would look something
like the following.

The X server would get a good resource guar-
antee, e.g. 20% of CPU time and 20% of RAM.
This makes sure that no matter what other pro-
cesses run on the system, X can run smoothly
and react to the console user with acceptably
low latency.

At login time a PAM module would make sure
that the rest of the user’s processes get a good
resource guarantee, too. An acceptable guar-
antee would be 50% of CPU time and 50%
of RAM. This leaves enough resources free so
that other things in the system can run (e.g. dis-
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tro updates, updatedb, mail delivery), yet keeps
most of the system dedicated to the user. The
resource class created for the console user, e.g.
/rcfs/taskclass/console , is set up to
be writable for the console user. This way the
user’s processes can set resource guarantees
and limits to certain classes of applications.

The user’s GUI menu would take care of this
subdividing of the resources guaranteed to the
user. For example, the web browser could
be restricted to 40% of RAM, so as to not
put much pressure on the user’s other pro-
cesses. Multimedia processes could get part of
the user’s resource guarantees, e.g. 30% of the
CPU and 10% of RAM guaranteed for the mul-
timedia applications. This way the playback of
multimedia should remain smooth, regardless
of what the user’s web browser and office suite
are doing.

No superuser privileges are needed to config-
ure these resource classes, or to move the user’s
processes between them. Any GUI framework
or individual application will be able to de-
termine the resources allocated to it, leading
to more flexibility than possible with resource
management systems that can only be config-
ured by the super user. Note that since the
user cannot raise the resource limits or guar-
anteed allocated to his main class, there should
be no security risks involved with letting the
user processes manipulate their own resource
guarantees and limits.

8 Conclusion and Future Work

The consolidation of increasingly dynamic
workloads on large server platforms has con-
siderably increased the complexity of systems
management. To address this, goal-oriented
workload managers are being proposed which
seek to automate low-level system adminis-
tration requiring human intervention only for

defining high level policies that reflect business
goals.

In an earlier paper [13], we had argued that
goal-oriented WLMs require support from the
operating system kernel for class-based dif-
ferentiated service where a class is a dy-
namic policy-driven grouping of OS processes.
We had introduced a framework, called class-
based kernel resource management, for classi-
fying tasks and incoming network packets into
classes, monitoring their usage of physical re-
sources and controlling the allocation of these
resources by the kernel schedulers based on the
shares assigned to each class.

In this paper, we have described more details
of the evolving design. In particular, CKRM
has become more generic and supports groups
of any kernel object involved in resource man-
agement, not just tasks. It has a new filesystem-
based user API. Finally, the design introduces
hierarchies into classes which permits greater
flexibility for resource managers but also in-
troduces challenges for CKRM controllers. A
working prototype which includes an inbound
network controller has been developed and
made available through [15].

Future work in the project will involve rede-
veloping controllers for CPU, memory and I/O
that are not only class-aware but can handle hi-
erarchies of classes while keeping overheads
low. Another important direction is the interac-
tions of the resource schedulers and the impact
of these interactions on the shares specified.
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Abstract

The RDC-i700 is one of high specs digital
camera of Ricoh. Its relatively big size, large
amount of different interfaces, input methods
(buttons, or touch panel), have made it a good
candidate for prototyping the world first Linux
embedded digital camera. This paper presents
our experiences of porting the 2.4 linux ker-
nel to an existing digital camera. (the RDC-
i700 is originally build on top of VxWorks).
Eventhough embedded systems running on
Linux are getting more and more popular, the
digital camera field remains to be unexplored.
The paper introduces how digital cameras dif-
fer from any other PC-like devices (PDA, HDD
recorder. . . ) and what problems, such as tim-
ing or software design issues, have to be (have
been) solved in order to get the world first linux
digital camera running on the linux 2.4 kernel.

1 The hardware

Ricoh’s RDC-i7001 is a relatively old digital
camera (released late 2000 in japan) running
on VxWorks, a famous Real-Time OS (RTOS).
Some might be asking the reason why we de-
cided to port Linux OS to the camera. The
reason is to make it become aprogrammable
camera. Once it becomes a programmable de-
vice, many VARs or individual programmers

1http://www.ricohzone.com/product_rdci700.html

Figure 1: The RDC-i700 digital camera

may write a lot of useful software for it. Then
it will be a good platform for business imaging
use.

The RDC-i700 is one of high specs digital
camera of Ricoh. It integrates all peripher-
als traditional digital camera has, but also sev-
eral different interfaces, allowing wide range
of application to run on it. The VxWorks ver-
sion allows user to perform various tasks such
as taking picture or movie, recording voice
memo, browse the Internet, send email or up-
load picture to a remote server. Its relatively
big size, large amount of different interfaces,
input methods (buttons, or touch panel), makes
it a good candidate for prototyping the world
first Linux embedded digital camera.

The RDC-i700 is a 3.2 million pixels dig-
ital camera equipped with a Hitachi SH3
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(SH7709A) CPU. The SH7709A is a 32 bit
RISC CPU which include MMU and several
other peripherals such as serial communica-
tion interfaces (SCIs), D/A - A/D converters.
Around this CPU, traditional digital camera pe-
ripherals (CCD, LCD, buttons, Image Proces-
sor) but also 1 PCMCIA and 1 CF socket, touch
panel, audio input/output interface, USB de-
vice controller and a serial port are available.
Figure 2 shows a block diagram of the RDC-
i700.

2 Digital camera is not “PDA com-
bined with camera function”

Nowadays, embedded Linux has become a
very hot topic in the Linux community. More
and more Linux gadget are becoming available
and the share of embedded related paper pub-
lished has literally exploded in the last 3 years.
Linux seems to be everywhere, lots of devices
that were running on RTOS in the past are now
running on Linux. However, one field seems
to be still unexplored: digital camera. Some
might say that a digital camera is just a PDA
combined with a CCD (this kind of combina-
tion is actually already available, for example
the Zaurus CF Digital Camera option), but this
is not that simple.

The quality point of view: PDA combined
with a digital camera option can take pictures
or even movies and in that sense can be com-
pared to a digital camera. But digital cameras
still have some advantages that make them irre-
placeable. Indeed optical zoom, but also auto-
focus or strobe are all precious elements that
are currently not available on Linux PDA. For
example, the Zaurus camera has a focus but
this one is manual. Auto-exposure is also an-
other very important part when taking picture;
for that, Zaurus PDA has some-kind of gain
control but this cannot have same quality as
a traditional digital camera auto-exposure sys-

tem.

The technical point of view: We will see that
having digital camera specific peripherals is a
very good plus in term of quality, but it also
creates lots of problem that traditional Linux
PDA doesn’t face. Keeping the Zaurus PDA
as an example, only few parameters are con-
figurable and the CPU doesn’t actually have to
perform much work in order to get an image.
On the contrary, in case of a fully configurable
digital camera, the OS must orchestrate all de-
vices in order to get a picture.

2.1 Zoom and Focus

Several motors are used inside the camera.
Two of them are used for zoom and focus in
order to adjust the lens position. Due to high
precision requirements, those two motors are
stepping motors. As the name says, this kind of
motors are controlled step by step (at the differ-
ence with traditional motors which only have
start/stop command). The CPU has to set ports
of the motor at a quite fast frequency in order
to make the motor turn. In that case the period
between two steps is only few milli-seconds.

2.2 Strobe

In case of strobe, the problem is not doing thing
at very high speed, but making perfect synchro-
nization between the moment the strobe is go-
ing to flash and the moment the CCD sensor
will acquire the picture.(see figure 3) For that
purpose, we will need precision of only very
few milli-seconds.

2.3 Auto-Exposure / White Balance

So called Auto-Exposure is the algorithm in
charge of adjusting the exposure time (that is
to say the time period while the CCD is ex-
posed to light) in order to have a good image
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Figure 3: CCD Frame sequence
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in both dark and bright conditions. White bal-
ance algorithm needs to analyze data coming
from the CCD sensor and adjusts the Image
Processing Peripheral (IPP) settings in order to
have good color matching between the gener-
ated image and the reality. Several implemen-
tations of those two algorithms can exist (some
needs very heavy calculations while others can
be very simple), but the main issue is that those
algorithms have to be performed very often (in
the worst case, every frame of the CCD, that is
to say every 33 milli-seconds).

This second part introduced particularity of
digital cameras. The next part will discuss how
those functions have been implemented into
the Linux RDC-i700.

3 Current Support

As the name “Linux on a digital camera” sug-
gests, the RDC-i700 can now run using Linux
OS. Although some work remains in some ar-
eas, kernel support now exists for most of the
hardware and features of the camera. This part
explains current status for important features
(digital camera related) of the kernel.

3.1 SH-Linux

The RDC-i700 linux kernel is originally based
on the work of the SH-Linux [1] team. First
tested with the kernel version 2.4.2, the cam-
era is now using the version 2.4.19 of the ker-
nel. SH-Linux kernel already had support for
almost all parts of the SH3 7709, but since
the RDC-i700 is using the CPU in big endian
mode, some modifications were necessary in
that field. Source code necessary to run the ker-
nel on this new platform has also been added
into /arch/sh/kernel .

3.2 RDC-i700 device drivers

RDC-i700 drivers can be separated into two
kinds (or two layers). (See figure 4) The lower
layer contains so-calledLow level drivers, or
drivers providing control to a specific device
(such as focus sensor, IPP . . . ). All those
drivers doesn’t have any algorithm included
and only provide basic access to the device ca-
pabilities. For example in case of the driver
controlling motors (MECH driver), only func-
tions provided are to set or get the position
of the motor (motors have some predefined
positions). RDC-i700 currently has 5 device
drivers controlling imaging related devices (we
will avoid non-imaging specific drivers here):

• The CCD F/E (Front End) which per-
mits to control the CCD parameters (such
as exposure time, gain . . . )

• The IPP (Image Processing Peripheral)
which is actually the heart of the camera
(almost everything goes through the IPP)

• The Strobedriver which allows to charge
or flash the strobe

• The Focus Sensorwhich permits to eval-
uate the distance between the camera and
the target

• Mech driver which controls all mechani-
cal parts of the camera, that is to say, iris,
shutter, zoom and focus.

All those drivers are very system dependent
and might change from one camera to another.

On the top of those 5 drivers is what we could
called the “Algorithms” layer. This layer con-
tains “intelligent” drivers such as auto focus
driver, or auto exposure driver. One more
driver, simply called CCD driver, is actually
the driver which performs actions such as tak-
ing a picture or switching to monitoring mode.
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Figure 4: RDC-i700 device drivers

This driver has to access both low level drivers
and algorithms drivers. Drivers of the up-
per layer are “virtually” platform independent.
However since the current system lacks of
a well defined abstraction layer, upper layer
drivers are currently directly accessing lower
layer driver which make them unable to work
with any other lower driver without having to
slightly change the source code. (see Future
Work section). Currently device drivers com-
municate with each others by accessing EX-
PORTED functions.

All 8 drivers are registered to the kernel as
characters drivers and can be accessed from
user-level using each device file. Some of those
drivers don’t actually need to be accessed from
user space and in that case device file is only
used for debugging purpose. In user space, li-
braries provide easy access to camera function-
alities, avoiding an intensive usage of IOCTL
commands.

Forward Backward

FM2

FM1

FM2

FM1

Figure 5: Motors step sequence

3.3 Motors

As the name says, stepping motors are going
step by step; the CPU sets 2 I/O ports in order
to specify the position of the rotor. Figure 5
shows motor ports state sequence when going
forward and backward. Rotation speed is deter-
mined by the time between 2 states. Each mo-
tor has already predetermined positions, 19 for
zoom and 18 for focus; however, if positions
for the zoom are fixed, focus position varies
depending on the current zoom position. All
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those things are handled by the MECH driver
and are accessible via IOCTL command such
as “Get/Set position.” The MECH driver is
timer based, that is to say, the delay between 2
steps is performed using a timer (2.8 ms in case
of focus, and 1.4 ms in case of zoom); we will
see in part 4 the current problems when using
this implementation. The driver provides both
SYNC and NOSYNC mode; that is to say, in
the first one, the ioctl command will hold un-
til the command finish, but in NOSYNC mode,
the ioctl will immediately return, allowing to
call another ioctl command, even if the mo-
tor is still running. This is useful in the case
of user’s adjustment of the zoom. Since motor
needs time to start and stop, it would be inef-
ficient to request each time 1 position change.
Instead of this, when the user uses the zoom
lever, the first IOCTL command request the
motor to go to max position and then when the
user release the button, the ioctl STOP com-
mand will be requested. In other cases, such as
when controlling the FOCUS motor from the
auto focus driver, the SYNC mode should be
used.

3.4 Auto Exposure

In order to control exposure, the auto exposure
driver is accessing 3 different device drivers
(IPP, MECH and the CCD front end). The
IPP has the ability to divide a CCD image into
several block and inform about each block lu-
minance. By looking at those luminance val-
ues, the auto exposure algorithm decide how
parameters should be modified; it can decide
to change iris diameter (MECH driver), or use
the strobe (STROBE driver), and in most of
the case change parameters of the CCD front
end (electronic shutter speed. . . ). The digi-
tal camera can work in 2 different modes: the
monitoring mode which permits to see in real
time what the CCD sensor is targeting, and the
still image mode which is used when the user

pushes the shutter button to take a still image.
The behaviour of the auto exposure module de-
pends on the camera mode:

• monitoring mode

in that mode, we adjust CCD F/E parameters
every 2 CCD frames. The auto exposure driver
starts a kernel thread which needs to be syn-
chronized with the CCD frame (an hardware
interrupt is generated by the CCD F/E at every
start of frame). Synchronization is achieved
by using wait queues.2 The function which
needs to get synchronized creates a wait queue
(as follows):

struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);
add_wait_queue(&ccd_vd_wq,&wait);
set_current_state(TASK_INTERRUPTIBLE);
schedule();
set_current_state(TASK_RUNNING);
remove_wait_queue(&ccd_vd_wq,&wait);

and the wait queue is woken up by the interrupt
handler (as follow):

wake_up(&ccd_vd_wq);

The CCD F/E is controlled using the SCI port
of the SH3 which use is shared with some other
devices. In some case, it might be necessary to
wait for the SCI port availability and, for that
reason, the kernel thread implementation has
been preferred to some other solutions such as
bottom halves (it is not possible to schedule
from a bottom halves while kernel thread al-
lows that).

• still image mode

in that mode, exposure parameters are only ad-
justed once before taking the picture. The CCD

2This synchronization method is also heavily used by
the CCD driver
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driver requests information to the auto expo-
sure module which will calculate parameters
used to take the picture. After that, the CCD
driver will directly control lower driver to set
those parameters. Synchronization between all
devices is very important and for that reason
it is easier to perform everything sequentially
from a unique driver. No thread is used and
the CCD driver get synchronized with the CCD
frame using the same wait queue method as in
monitoring mode.

Currently only a very simple algorithm is avail-
able for both monitoring and still mode. This
algorithm doesn’t make use of neither iris nor
strobe and the exposure is only controlled us-
ing CCD FE’s parameters and the mechanical
shutter.

3.5 Auto Focus

Compared to the auto exposure, the auto focus
driver is quite an easy one. The IPP driver has
the ability to determine the “focus level” (the
more the focus is correct, the more the value
returned by the IPP will be high). In normal
mode, the auto-focus driver should get an ap-
proximation of the distance to the target by us-
ing the focus sensor, then first adjust the focus
to this approximation. This permits to perform
the “fine focus” (using the IPP capability) to
a smaller range. However, the current imple-
mentation doesn’t use the focus sensor approx-
imation which means that the “fine focus” is
performed to the full range of the focus (this
is actually the mode which is used in case of
MACRO mode). The consequence is that the
auto-focus process is much slower than in nor-
mal mode. Currently the driver performs the
following things:

• check zoom status to calculate focus posi-
tions

• retrieve focus level for all focus positions

• go back to the position with the highest
focus level

3.6 CCD - IPP

The IPP driver is some kind of library which,
except performing initialization of the device,
mainly provides a lot of functions, accessible
from other drivers and permitting to control the
hardware. The driver is quite big since the IPP
performs very various things such as

• JPEG compression/decompression

• YUV-RGB conversion

• video output (for the LCD and TV)

• image scaler

The CCD driver is considered as the main
driver since almost everything starts from it. It
is in charge of coordination between all other
drivers. The driver can be controlled using a
user land library permitting to control the mon-
itoring mode or to take still image. The driver
mainly uses other drivers functions (CCD F/E,
IPP, MECH) and performs synchronization us-
ing the waitqueue method introduced previ-
ously.

3.7 LCD

The RDC-i700 LCD has a fixed resolution of
640x480 pixels. What we could call video card
is actually a part of the IPP chip and can con-
trol 4 layers of display (1 layer for image/video
data, and 3 On Screen Display or OSDs). In
the current design the first layer is controlled
by the IPP driver and doesn’t have direct in-
terface to the user land. Even if 3 OSDs are
available, only one is currently used as a frame-
buffer device. The OSD uses a 8 bit YUV
palette (maintained by the IPP device) which
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means that_setcolreg and_getcolreg
entry points are used to perform conversion be-
tween RGB and YUV color space. This solu-
tion allows to use the camera LCD as any tradi-
tional Linux console and run any software that
usually works on the top of a Linux Frame-
buffer. One reason why only 1 OSD level is
supported is because all OSDs share the same
palette which means that it cannot be simply
designed as 3 different framebuffer devices.
However there is also currently no real need
for 3 OSDs so this is not actually a big issue.

3.8 Filesystem

The RDC-i700 has 8 MB of NAND Flash in-
ternal memory. The Linux kernel now pro-
vides support for this kind of memory by us-
ing the Memory Technology Devices (MTD)
[2] support. Only a very small layer needs to
be written in order to get the camera’s NAND
work. [3] JFFS2 [4] is usually used on the top
of a NAND device, however we will see that
in case of digital camera, it might not be the
best solution. In our case, internal flash mem-
ory is usually exclusively used for storage of
compressed data such as JPEG or MPEG. In
that case, using JFFS2, which is a compressed
filesystem, makes the CPU spend lots of time
compressing data which anyway will almost
not get compressed more than they are. In such
case, YAFFS [5] should be preferred to JFFS2
since it is not a compressed filesystem.(see ta-
ble 1 for details of tests performed on the RDC-
i700)

4 Issues

Several problems have been encountered while
developing the Linux RDC-i700. Some have
been solved but some are still under progress.

Time consumption for 1 transaction (secs)
YAFFS JFFS2

JPG (80k) 0.37 0.54
JPG (193k) 0.79 1.32
JPG (547k) 2.21 3.63

MJPG (1463k) 5.6 9.51
*1 transaction = NAND to NAND file copy

Table 1: YAFFS / JFFS2 tests on RDC-i700

Video SDRAM
16bits-16MB

0x000000

0x7FFFFF

0x3F0000
0x3F4000

SH3 memory map

0xa8000000
0xa8008000

IPP video
offset

register:
0x3F0000

Figure 6: Accessing the video SDRAM

4.1 Framebuffer with non-linear memory

The purpose of a framebuffer device is to pro-
vide a standard way to accesslinearly video
memory from the user space. This is the case
of almost (or probably all) video card running
on linux. Usually the kernel CPU can directly
access any part of the video memory, linearly.
However, in case of the RDC-i700, this is not
the case. As figure 6 shows, the video SDRAM
is not directly accessible from the CPU but is
seen through the IPP chip. The IPP provides
a 8KB window of memory directly accessible
from the SH CPU. By setting a register of the
IPP it becomes possible to define which “page”
of the SDRAM becomes visible to the CPU.
This makes problem with the framebuffer since
the video memory is supposed to be linearly
accessible, so no method is provided for such
kind of system.
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Inside a framebuffer device driver, two mem-
ory access methods exist:

linux console access modeis performed via
function call. 6 functions (read and write for
byte, word and long type) are provided. In case
of the RDC-i700, the trick is just to overwrite
those function in order to set the IPP register to
the page needed to be accessed.

mmap access modeis necessary to allow
user land application to access the framebuffer
memory. The problem in case of mmap access
is that the driver doesn’t know which part of the
memory is being accessed and so it becomes
impossible to correctly set the page selector.

To solve this problem, the framebuffer uses
a NOPAGE memory handler, combined with
the remap_page_range function. By al-
ways leaving only 1 page mapped at a time,
we ensure that the NOPAGE handler will be
called everytime the application is trying to ac-
cess a page which is not mapped. The han-
dler will then unmap the previous page and
map the page corresponding to the address to
be accessed. One problem remains, which
is, if remap_page_range allows to map
page, it seems there is no function to “un-
map” a previously mapped page. The func-
tion zap_page_range seems to do similar
thing and by implementing the nopage handler
as follows, the trick seems to work.

nopage_handler(...)
{

calculate pointed addr in SDRAM;
calculate physical addr;
if(already_mapped){

zap_page_range(...);
flush_tlb_range(...);

}
remap_page_range(...);
already_mapped=1;

}

However, some errors occurs time to time

when using mmap on the framebuffer and
those errors might come from this implemen-
tation.

4.2 Timers

We have seen in previous section that several
timers are used in various drivers. Some must
be very short and for that reason, timer is a very
hot topic in our case. Several implementations
are possible to perform delay.

busy wait: this solution should be avoided
since it would for example almost stop the
camera everytime the zoom is adjusted.

kernel timers: kernel timers should be used in
order to avoid problems introduced by the busy
wait solution. However, in order to achieve
such implementation we need first to solve one
big problem. While we need about 1ms or less
resolution timer, a vanilla 2.4.19 kernel only
permits to use timers with resolution of 10ms.
In case of stepping motors, this doesn’t re-
ally make big problem except that motors will
just run about 10 times slower than their nom-
inal speed. However, the low accuracy of ker-
nel timers makes problem when used to con-
trol other devices such as mechanical shutter,
strobe or iris since it can result in low qual-
ity image or, even worse, wrong operation per-
formed (narrow instead of large for the iris). In
order to solve this problem, several possibili-
ties exist:

• High Resolution Timer: [7] is a project
hosted on sourceforge in order to add high
resolution (nano seconds) capable timer to
the Linux kernel. However currently only
the i386 architecture is supported, which
means that some work is needed in order
to get it work on the SH architecture.

• Hardware Timer: if such short delay
cannot be achieved using software timer,
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it still remains the possibility to use hard-
ware timers of the SH3. However, this
would make drivers very architecture de-
pendent which should be avoided if pos-
sible. Moreover, even if the hardware
timer can generate very short period, we
need to ensure that the time between the
hardware interrupt is generated and the in-
terrupt handler get called is not too long
otherwise using hardware timer wouldn’t
have any meaning. In order to achieve
such requirement, it might be necessary to
use preemptive kernel.

• Vanilla kernel with HZ=1000: changing
tick period from 10ms to 1ms allows to
use 1ms timer. However, if this solution
works fine in some case, we need further
experimentation in order to check the ac-
curacy under heavy load condition.

5 Future works

5.1 Design of device driver architecture and
user access

Kernel driver layering: the goal is to create
a proper abstraction layer permitting to have
upper kernel drivers (algorithms) totally inde-
pendent from the hardware. Currently EX-
PORTED functions are used to allow function
calls between drivers, however it means that
upper drivers must understand the behavior of
hardware drivers. The abstraction layer needs
to define both function prototypes and struc-
tures used to access lower driver functionali-
ties. Such interface would permit to easily cus-
tomize any upper drivers, for example auto ex-
posure algorithm or auto white balance.

Exporting functionalities to user space:cur-
rently small libraries are available, permitting
to control camera functionalities. However, it
doesn’t seem reasonable to write new libraries
specifically for the camera. Modifying device

drivers to make them compatible with some ex-
isting standard should be the solution to take
advantage of the large amount of existing soft-
ware. In the camera field, Video For Linux
would probably be a good candidate, and espe-
cially the second release which is currently un-
der development. The idea would be to provide
access to the CCD as a standard video input in-
terface, similar to any USB camera for exam-
ple. Other functionalities, such as JPEG com-
pression, decompression could be accessed as
a CODEC.

5.2 Remaining tasks

Some features still need to be implemented on
the camera such as:

Power Management: currently no power
management is performed while running Linux
on the RDC-i700. This makes the battery life
as short as about 25 minutes when using PCM-
CIA cards. This part should be the next big
issue for the linux RDC-i700.

USB controller: the RDC-i700 includes a
PDIUSBD12 USB device (slave) controller3.
The Linux-USB Gadget API [8] allows to eas-
ily implement USB device class on the top
of controller drivers, however this device con-
troller is currently not supported yet.

6 Conclusion

The linux RDC-i700 has now enough support
in order to be used as a digital camera. Most
of the constrains due to the architecture and
specific hardware have been solved but we still
need some more performance testing in order
to ensure that everything can run well. But
remaining issues are not only technical one.
Since we are now preparing for distributing the

3http://www.semiconductors.philips.com
/pip/PDIUSBD12.html
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source codes, we still needs some more coordi-
nation in our company. We also have to think
of how to make and support a developing com-
munity.
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Abstract

With traditional, stateless firewalling (such as
ipfwadm, ipchains) there is no need for spe-
cial HA support in the firewalling subsystem.
As long as all packet filtering rules and rout-
ing table entries are configured in exactly the
same way, one can use any available tool for
IP-Address takeover to accomplish the goal of
failing over from one node to the other.

With Linux 2.4/2.6 netfilter/iptables, the Linux
firewalling code moves beyond traditional
packet filtering. Netfilter provides a modular
connection tracking susbsystem which can be
employed for stateful firewalling. The con-
nection tracking subsystem gathers informa-
tion about the state of all current network flows
(connections). Packet filtering decisions and
NAT information is associated with this state
information.

In a high availability scenario, this connection
tracking state needs to be replicated from the
currently active firewall node to all standby
slave firewall nodes. Only when all connection
tracking state is replicated, the slave node will
have all necessary state information at the time
a failover event occurs.

Due to funding by Astaro AG, the netfil-
ter/iptables project now offers act_sync ker-
nel module for replicating connection tracking
state accross multiple nodes. The presentation
will cover the architectural design and imple-
mentation of the connection tracking failover

sytem.

1 Failover of stateless firewalls

There are no special precautions when in-
stalling a highly available stateless packet fil-
ter. Since there is no state kept, all information
needed for filtering is the ruleset and the indi-
vidual, separate packets.

Building a set of highly available stateless
packet filters can thus be achieved by using any
traditional means of IP-address takeover, such
as Heartbeat or VRRPd.

The only remaining issue is to make sure the
firewalling ruleset is exactly the same on both
machines. This should be ensured by the fire-
wall administrator every time he updates the
ruleset and can be optionally managed by some
scripts utilizing scp or rsync.

If this is not applicable, because a very dy-
namic ruleset is employed, one can build a
very easy solution using iptables-supplied tools
iptables-save and iptables-restore. The out-
put of iptables-save can be piped over ssh to
iptables-restore on a different host.

Limitations

• no state tracking

• not possible in combination with iptables
stateful NAT
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• no counter consistency of per-rule
packet/byte counters

2 Failover of stateful firewalls

Modern firewalls implement state tracking
(a.k.a. connection tracking) in order to keep
some state about the currently active sessions.
The amount of per-connection state kept at the
firewall depends on the particular configuration
and networking protocols used.

As soon asany state is kept at the packet fil-
ter, this state information needs to be replicated
to the slave/backup nodes within the failover
setup.

Since Linux 2.4.x, all relevant state is kept
within the connection tracking subsystem. In
order to understand how this state could pos-
sibly be replicated, we need to understand the
architecture of this conntrack subsystem.

2.1 Architecture of the Linux Connection
Tracking Subsystem

Connection tracking within Linux is im-
plemented as a netfilter module, called
ip_conntrack.o (ip_conntrack.ko
in 2.6.x kernels).

Before describing the connection tracking sub-
system, we need to describe a couple of defini-
tions and primitives used throughout the con-
ntrack code.

A connection is represented within the
conntrack subsystem usingstruct ip_
conntrack , also calledconnection tracking
entry.

Connection tracking is utilizingconntrack tu-
ples, which are tuples consisting of

• source IP address

• source port (or icmp type/code, gre key,
...)

• destination IP address

• destination port

• layer 4 protocol number

A connection is uniquely identified by two tu-
ples: The tuple in the original direction (IP_

CT_DIR_ORIGINAL) and the tuple for the re-
ply direction (IP_CT_DIR_REPLY).

Connection tracking itself does not drop pack-
ets1 or impose any policy. It just associates
every packet with a connection tracking entry,
which in turn has a particular state. All other
kernel code can use this state information2.

2.1.1 Integration of conntrack with netfil-
ter

If the ip_conntrack.[k]o module is reg-
istered with netfilter, it attaches to theNF_

IP_PRE_ROUTING, NF_IP_POST_ROUTING,
NF_IP_LOCAL_IN , and NF_IP_LOCAL_OUT

hooks.

Because forwarded packets are the most com-
mon case on firewalls, I will only describe how
connection tracking works for forwarded pack-
ets. The two relevant hooks for forwarded
packets areNF_IP_PRE_ROUTING and NF_

IP_POST_ROUTING.

Every time a packet arrives at theNF_IP_

PRE_ROUTINGhook, connection tracking cre-
ates a conntrack tuple from the packet. It
then compares this tuple to the original and re-

1well, in some rare cases in combination with NAT it
needs to drop. But don’t tell anyone, this is secret.

2State information is referenced via thestruct
sk_buff.nfct structure member of a packet.
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ply tuples of all already-seen connections3 to
find out if this just-arrived packet belongs to
any existing connection. If there is no match,
a new conntrack table entry (struct ip_
conntrack ) is created.

Let’s assume the case where we have al-
ready existing connections but are starting
from scratch.

The first packet comes in, we derive the tu-
ple from the packet headers, look up the
conntrack hash table, don’t find any match-
ing entry. As a result, we create a new
struct ip_conntrack . This struct
ip_conntrack is filled with all necessarry
data, like the original and reply tuple of the
connection. How do we know the reply tuple?
By inverting the source and destination parts
of the original tuple.4 Please note that this new
struct ip_conntrack is not yet placed
into the conntrack hash table.

The packet is now passed on to other callback
functions which have registered with a lower
priority atNF_IP_PRE_ROUTING. It then con-
tinues traversal of the network stack as usual,
including all respective netfilter hooks.

If the packet survives (i.e., is not dropped
by the routing code, network stack, firewall
ruleset, . . . ), it re-appears atNF_IP_POST_

ROUTING. In this case, we can now safely as-
sume that this packet will be sent off on the
outgoing interface, and thus put the connec-
tion tracking entry which we created atNF_

IP_PRE_ROUTINGinto the conntrack hash ta-
ble. This process is calledconfirming the con-
ntrack.

The connection tracking code itself is not
monolithic, but consists of a couple of separate

3Of course this is not implemented as a linear search
over all existing connections.

4So why do we need two tuples, if they can be de-
rived from each other? Wait until we discuss NAT.

modules5. Besides the conntrack core, there
are two important kind of modules: Protocol
helpers and application helpers.

Protocol helpers implement the layer-4-
protocol specific parts. They currently exist
for TCP, UDP, and ICMP (an experimental
helper for GRE exists).

2.1.2 TCP connection tracking

As TCP is a connection oriented protocol, it is
not very difficult to imagine how conntection
tracking for this protocol could work. There
are well-defined state transitions possible, and
conntrack can decide which state transitions
are valid within the TCP specification. In re-
ality it’s not all that easy, since we cannot as-
sume that all packets that pass the packet filter
actually arrive at the receiving end. . .

It is noteworthy that the standard connection
tracking code doesnot do TCP sequence num-
ber and window tracking. A well-maintained
patch to add this feature has existed for almost
as long as connection tracking itself. It will
be integrated with the 2.5.x kernel. The prob-
lem with window tracking is its bad interaction
with connection pickup. The TCP conntrack
code is able to pick up already existing connec-
tions, e.g. in case your firewall was rebooted.
However, connection pickup is conflicting with
TCP window tracking: The TCP window scal-
ing option is only transferred at connection
setup time, and we don’t know about it in case
of pickup. . .

5They don’t actually have to be separate kernel mod-
ules; e.g. TCP, UDP, and ICMP tracking modules are all
part of the linux kernel moduleip_conntrack.o .
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2.1.3 ICMP tracking

ICMP is not really a connection oriented pro-
tocol. So how is it possible to do connection
tracking for ICMP?

The ICMP protocol can be split in two groups
of messages:

• ICMP error messages, which sort-
of belong to a different connection
ICMP error messages are associ-
ated RELATED to a different con-
nection. (ICMP_DEST_UNREACH,
ICMP_SOURCE_QUENCH, ICMP_TIME_

EXCEEDED, ICMP_PARAMETERPROB,
ICMP_REDIRECT).

• ICMP queries, which have a
request-reply character. So
what the conntrack code does, is let
the request have a state ofNEW, and
the reply ESTABLISHED. The reply
closes the connection immediately.
(ICMP_ECHO, ICMP_TIMESTAMP,
ICMP_INFO_REQUEST, ICMP_ADDRESS)

2.1.4 UDP connection tracking

UDP is designed as a connectionless datagram
protocol. But most common protocols using
UDP as layer 4 protocol have bi-directional
UDP communication. Imagine a DNS query,
where the client sends an UDP frame to port 53
of the nameserver, and the nameserver sends
back a DNS reply packet from its UDP port 53
to the client.

Netfilter treats this as a connection. The first
packet (the DNS request) is assigned a state of
NEW, because the packet is expected to create
a new ‘connection.’ The DNS server’s reply
packet is marked asESTABLISHED.

2.1.5 conntrack application helpers

More complex application protocols involving
multiple connections need special support by
a so-called “conntrack application helper mod-
ule.” Modules in the stock kernel come for
FTP, IRC (DCC), TFTP, and Amanda. Netfil-
ter CVS currently contains patches for PPTP,
H.323, Eggdrop botnet, mms, DirectX, RTSP,
and talk/ntalk. We’re still lacking a lot of pro-
tocols (e.g. SIP, SMB/CIFS)—but they are un-
likely to appear until somebody really needs
them and either develops them on his own or
funds development.

2.1.6 Integration of connection tracking
with iptables

As stated earlier, conntrack doesn’t impose any
policy on packets. It just determines the re-
lation of a packet to already existing connec-
tions. To base packet filtering decision on this
state information, the iptablesstatematch can
be used. Every packet is within one of the fol-
lowing categories:

• NEW: packet would create a new connec-
tion, if it survives

• ESTABLISHED : packet is part of an al-
ready established connection (either di-
rection)

• RELATED : packet is in some way related
to an already established connection, e.g.
ICMP errors or FTP data sessions

• INVALID : conntrack is unable to derive
conntrack information from this packet.
Please note that all multicast or broadcast
packets fall in this category.



Linux Symposium 2004 • 543

2.2 Poor man’s conntrack failover

When thinking about failover of stateful fire-
walls, one usually thinks about replication of
state. This presumes that the state is gathered
at one firewalling node (the currently active
node), and replicated to several other passive
standby nodes. There is, however, a very dif-
ferent approach to replication: concurrent state
tracking on all firewalling nodes.

While this scheme has not been implemented
within ct_sync , the author still thinks it is
worth an explanation in this paper.

The basic assumption of this approach is: In
a setup where all firewalling nodes receive ex-
actly the same traffic, all nodes will deduct the
same state information.

The implementability of this approach is to-
tally dependent on fulfillment of this assump-
tion.

• All packets need to be seen by all nodes.
This is not always true, but can be
achieved by using shared media like tra-
ditional ethernet (no switches!!) and
promiscuous mode on all ethernet inter-
faces.

• All nodes need to be able to process
all packets. This cannot be univer-
sally guaranteed. Even if the hardware
(CPU, RAM, Chipset, NICs) and software
(Linux kernel) are exactly the same, they
might behave different, especially under
high load. To avoid those effects, the
hardware should be able to deal with way
more traffic than seen during operation.
Also, there should be no userspace pro-
cesses (like proxies, etc.) running on the
firewalling nodes at all. WARNING: No-
body guarantees this behaviour. However,
the poor man is usually not interested in

scientific proof but in usability in his par-
ticular practical setup.

However, even if those conditions are fulfilled,
there are remaining issues:

• No resynchronization after reboot. If a
node is rebooted (because of a hardware
fault, software bug, software update, etc.)
it will lose all state information until the
event of the reboot. This means, the state
information of this node after reboot will
not contain any old state, gathered before
the reboot. The effects depend on the
traffic. Generally, it is only assured that
state information about all connections
initiated after the reboot will be present.
If there are short-lived connections (like
http), the state information on the just re-
booted node will approximate the state in-
formation of an older node. Only after
all sessions active at the time of reboot
have terminated, state information is guar-
anteed to be resynchronized.

• Only possible with shared medium. The
practical implication is that no switched
ethernet (and thus no full duplex) can be
used.

The major advantage of the poor man’s ap-
proach is implementation simplicity. No state
transfer mechanism needs to be developed.
Only very little changes to the existing con-
ntrack code would be needed in order to be able
to do tracking based on packets received from
promiscuous interfaces. The active node would
have packet forwarding turned on, the passive
nodes, off.

I’m not proposing this as a real solution to
the failover problem. It’s hackish, buggy, and
likely to break very easily. But considering it
can be implemented in very little programming
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time, it could be an option for very small instal-
lations with low reliability criteria.

2.3 Conntrack state replication

The preferred solution to the failover problem
is, without any doubt, replication of the con-
nection tracking state.

The proposed conntrack state replication
soltution consists of several parts:

• A connection tracking state replication
protocol

• An event interface generating event mes-
sages as soon as state information changes
on the active node

• An interface for explicit generation of
connection tracking table entries on the
standby slaves

• Some code (preferrably a kernel thread)
running on the active node, receiving state
updates by the event interface and gener-
ating conntrack state replication protocol
messages

• Some code (preferrably a kernel thread)
running on the slave node(s), receiving
conntrack state replication protocol mes-
sages and updating the local conntrack ta-
ble accordingly

Flow of events in chronological order:

• on active node, inside the network RX
softirq

– ip_conntrack analyzes a for-
warded packet

– ip_conntrack gathers some new
state information

– ip_conntrack updates con-
ntrack hash table

– ip_conntrack calls event API

– function registered to event API
builds and enqueues message to send
ring

• on active node, inside the conntrack-sync
sender kernel thread

– ct_sync_send aggregates multi-
ple messages into one packet

– ct_sync_send dequeues packet
from ring

– ct_sync_send sends packet via
in-kernel sockets API

• on slave node(s), inside network RX
softirq

– ip_conntrack ignores packets
coming from thect_sync inter-
face via NOTRACK mechanism

– UDP stack appends packet to socket
receive queue ofct_sync_recv
kernel thread

• on slave node(s), inside conntrack-sync
receive kernel thread

– ct_sync_recv thread receives
state replication packet

– ct_sync_recv thread parses
packet into individual messages

– ct_sync_recv thread cre-
ates/updates localip_conntrack
entry

2.3.1 Connection tracking state replication
protocol

In order to be able to replicate the state be-
tween two or more firewalls, a state replica-
tion protocol is needed. This protocol is used
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over a private network segment shared by all
nodes for state replication. It is designed to
work over IP unicast and IP multicast trans-
port. IP unicast will be used for direct point-to-
point communication between one active fire-
wall and one standby firewall. IP multicast will
be used when the state needs to be replicated to
more than one standby firewall.

The principal design criteria of this protocol
are:

• reliable against data loss, as the under-
lying UDP layer only provides checksum-
ming against data corruption, but doesn’t
employ any means against data loss

• lightweight, since generating the state up-
date messages is already a very expensive
process for the sender, eating additional
CPU, memory, and IO bandwith.

• easy to parse, to minimize overhead at
the receiver(s)

The protocol does not employ any security
mechanism like encryption, authentication, or
reliability against spoofing attacks. It is as-
sumed that the private conntrack sync network
is a secure communications channel, not acces-
sible to any malicious third party.

To achieve the reliability against data loss, an
easy sequence numbering scheme is used. All
protocol messages are prefixed by a sequence
number, determined by the sender. If the slave
detects packet loss by discontinuous sequence
numbers, it can request the retransmission of
the missing packets by stating the missing se-
quence number(s). Since there is no acknowl-
edgement for sucessfully received packets, the
sender has to keep a reasonably-sized6 backlog
of recently-sent packets in order to be able to
fulfill retransmission requests.

6reasonable sizemust be large enough for the round-
trip time between master and slowest slave.

The different state replication protocol packet
types are:

• CT_SYNC_PKT_MASTER_ANNOUNCE:
A new master announces itself. Any still
existing master will downgrade itself to
slave upon reception of this packet.

• CT_SYNC_PKT_SLAVE_INITSYNC:
A slave requests initial synchronization
from the master (after reboot or loss of
sync).

• CT_SYNC_PKT_SYNC: A packet con-
taining synchronization data from master
to slaves

• CT_SYNC_PKT_NACK: A slave indi-
cates packet loss of a particular sequence
number

The messages within aCT_SYNC_PKT_SYNC

packet always refer to a particularre-
source(currentlyCT_SYNC_RES_CONNTRACK

andCT_SYNC_RES_EXPECT, although support
for the latter has not been fully implemented
yet).

For every resource, there are several message
types. So far, onlyCT_SYNC_MSG_UPDATE

andCT_SYNC_MSG_DELETEhave been imple-
mented. This means a new connection as well
as state changes to an existing connection will
always be encapsulated in aCT_SYNC_MSG_

UDPATEmessage and therefore contain the full
conntrack entry.

To uniquely identify (and later reference) a
conntrack entry, the only unique criteria is
used:ip_conntrack_tuple .

2.3.2 ct_sync sender thread

Maximum care needs to be taken for the imple-
mentation of the ctsyncd sender.
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The normal workload of the active firewall
node is likely to be already very high, so gen-
erating and sending the conntrack state replica-
tion messages needs to be highly efficient.

It was therefore decided to use a pre-allocated
ringbuffer for outboundct_sync packets.
New messages are appended to individual
buffers in this ring, and pointers into this ring
are passed to the in-kernel sockets API to en-
sure a minimum number of copies and memory
allocations.

2.3.3 ct_sync initsync sender thread

In order to facilitate ongoing state synchroniza-
tion at the same time as responding to initial
sync requests of an individual slave, the sender
has a separate kernel thread for initial state syn-
chronization (andct_sync_initsync ).

At the moment it iterates over the state ta-
ble and transmits packets with a fixed rate of
about 1000 packets per second, resulting in
about 4000 connections per second, averaging
to about 1.5 Mbps of bandwith consumed.

The speed of this initial sync should be config-
urable by the system administrator, especially
since there is no flow control mechanism, and
the slave node(s) will have to deal with the
packets or otherwise lose sync again.

This is certainly an area of future improvement
and development—but first we want to see
practical problems with this primitive scheme.

2.3.4 ct_sync receiver thread

Implementation of the receiver is very straight-
forward.

For performance reasons, and to facilitate
code-reuse, the receiver uses the same pre-

allocated ring buffer structure as the sender. In-
coming packets are written into ring members
and then successively parsed into their individ-
ual messages.

Apart from dealing with lost packets, it
just needs to call the respective conntrack
add/modify/delete functions.

2.3.5 Necessary changes within netfilter
conntrack core

To be able to achieve the described con-
ntrack state replication mechanism, the follow-
ing changes to the conntrack core were imple-
mented:

• Ability to exclude certain packets from
being tracked. This was a long-wanted
feature on the TODO list of the netfilter
project and is implemented by having a
“raw” table in combination with a “NO-
TRACK” target.

• Ability to register callback functions to
be called every time a new conntrack en-
try is created or an existing entry modi-
fied. This is part of the nfnetlink-ctnetlink
patch, since the ctnetlink event interface
also uses this API.

• Export an API to externally add, modify,
and remove conntrack entries.

Since the number of changes is very low, their
inclusion into the mainline kernel is not a prob-
lem and can happen during the 2.6.x stable ker-
nel series.

2.3.6 Layer 2 dropping andct_sync

In most cases, netfilter/iptables-based firewalls
will not only function as packet filter but also
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run local processes such as proxies, dns relays,
smtp relays, etc.

In order to minimize failover time, it is helpful
if the full startup and configuration of all net-
work interfaces and all of those userspace pro-
cesses can happen at system bootup time rather
then in the instance of a failover.

l2drop provides a convenient way for this goal:
It hooks into layer 2 netfilter hooks (imme-
diately attached tonetif_rx() and dev_
queue_xmit ) and blocks all incoming and
outgoing network packets at this very low
layer. Even kernel-generated messages such as
ARP replies, IPv6 neighbour discovery, IGMP,
. . . are blocked this way.

Of course there has to be an exemption for the
state synchronization messages themselves. In
order to still facilitate remote administration
via SSH and other communication between the
cluster nodes, the whole network interface used
for synchronization is subject to this exemption
from l2drop.

As soon as a node is propagated to master state,
l2drop is disabled and the system becomes vis-
ible to the network.

2.3.7 Configuration

All configuration happens via module parame-
ters.

• syncdev : Name of the multicast-
capable network device used for state syn-
chronization among the nodes

• state : Initial state of the node (0=slave,
1=master)

• id : Unique Node ID (0..255)

• l2drop : Enable (1) or disable (0) the
l2drop functionality

2.3.8 Interfacing with the cluster manager

As indicated in the beginning of this paper,
ct_sync itself does not provide any mech-
anism to determine outage of the master node
within a cluster. This job is left to a cluster
manager software running in userspace.

Once an outage of the master is detected, the
cluster manager needs to elect one of the re-
maining (slave) nodes to become new mas-
ter. On this elected node, the cluster man-
ager will write the ascii character1 into the
/proc/net/ct_sync file. Reading from
this file will return the current state of the lo-
cal node.
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Abstract

It is often said that open source projects will
"win" or "lose" based purely on technical
merit. Experiences from the LSB Project’s
interface standardization efforts indicate there
are some concrete steps an open-source project
producing interface libraries for general use
can take to make the project more usable for
a wider audience, leading to greater chance
of widespread acceptance. Such projects have
a reasonable chance of becoming standards,
whether de-facto or by inclusion in formal
specifications such as the LSB.

The evidence is that projects ready for large-
scale use typically meet most of a set of criteria
that include: demand; stable, well-documented
interfaces; comprehensive interface and regres-
sion tests; an easily-deployed (portable) work-
ing implementation; and an appropriate choice
of license. With the exception of demand, most
of these criteria can be consciously worked to-
wards. The paper will present some case stud-
ies of libraries that have successfully been in-
corporated into the LSB specification. It will
also discuss some tools the LSB has developed
that may help in describing public interfaces
and developing tests, and discuss some ways
in which portability of the code base can be im-
proved.

1 Introduction

The Free Software and Open Source Software
models present some unique concepts which
seem to work best when the software is widely
used and there’s an active feedback loop to de-
bug and improve the software. In order for this
to be possible, it’s important that some core
requirements that apply to all software are at-
tended to in this space as well: consistency and
compatibility, documentation, and ease of use.
If the software is to hard to deploy or make
use of, the user base will remain small and the
synergy which is so important to these projects
will be harder to achieve.

While ease of use is a concept that is hard to
measure for the developer as it means different
things to different users, for an individual user
it’s pretty easy to tell when an application or
library is not easy enough to use—it’s painful
to install, get running, or program to, making
it hard to use it to solve the problem at hand.
Where money did not change hands to obtain
the software, the likely response will be to give
up and look for a different solution, while what
we as developers would rather have is feed-
back about the problems and suggestions for
improvement. Often lacking a “marketing de-
partment” to drive requirements (whatever one
may think of such a situation), this feedback is
crucial to the open source process.

The Linux Standard Base (LSB) project
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(http://www.linuxbase.org ) aims to
drive the creation of a consistent runtime en-
vironment for applications. Drawing from the
experiences of the LSB project, we will ex-
amine a pair of issues, one on either side of
the “runtime environment” boundary: building
better libraries, and making applications (and
libraries) easier to deploy.

2 Building Better Libraries

Libraries are an effective mechanism to pro-
vide for code reuse.

In Linux, libraries are normally provided as
shared objects, although they may also be pro-
vided as static archives. Some libraries are
foundational in that they are expected to be
used by a broad variety of applications, such
as the GNU C library, which is used by all
programs; or the GNOME glib, which is used
(directly or indirectly) by all graphical applica-
tions written to GNOME. Other libraries may
export a programming interface specific to one
application family such as libMagick for Im-
ageMagick.

If a project produces libraries which are to be
usable by others there are some particular is-
sues that apply.

2.1 Stable Interfaces

A library provides certain programming inter-
faces which are available to programs to use
(external), and probably also contains inter-
faces which are not intended to be used out-
side the library (internal). The set of external
interfaces provides the Application Program-
ming Interface (API). As programmers become
familiar with the library, they will want the API
to provide some stability so that they don’t al-
ways have to recode their programs when the
library is revised.

When a program is linked with a shared library,
it will contain references to library interfaces
which are resolved at runtime by the dynamic
linker. The runtime instantiation of the library
interface set provides the Application Binary
Interface (ABI), and programmers will want
the ABI to remain stable as well, or their pro-
grams may work incorrectly run against a dif-
ferent version of the shared library then it was
originally linked against.

The dilemma for the library developer is that
it’s hard to get it (completely) right the first
time. Bugs will be found, often the design will
be found to be limiting or even incorrect, or the
library may simply need to evolve to meet new
needs. It would be terribly limiting to never be
able to evolve the library just because users and
developers demand stability. Fortunately, there
are some techniques that can be used to make
life a little easier.

A useful step is to identify the intended API
and make sure that is all the library exports to
programmers. If the API is designed as an ab-
straction layer distinct from the internal imple-
mentation, considerable freedom will be avail-
able to modify the library “under the covers”
while still keeping the ABI stable. It’s worth
taking the time to design the API in this man-
ner. It is also very useful if programmers can-
not reach the internal routines which may need
to change—experience has shown that if an in-
terface can be found, someone will find a way
to use it. A linker script can be used to export
the desired symbols, hiding the others:

{
global:

lsbfoo;
local:

foo*;
};

A linker script is used when build-
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ing a shared library by including the
-version-script= scriptname direc-
tive in the gcc link line.

It’s quite possible, however, that some interface
in the ABI will need to change in an incompat-
ible way. To provide for this, the symbols mak-
ing up the ABI can be assigned versions, leav-
ing the possibility of changing the version. The
following example shows the use of a linker
script which exports two routines and assigns
them versionLSBLIB_1.0 :

LSBLIB_1.0 {
global:

lsbfoo;
lsbbar;

local:
foo*;

};

If the symbol version is changed, old binaries
won’t run against the new library as the sym-
bol version in those binaries will not be found;
while binaries compiled against the new library
will pick up the new symbol version. It is
also possible—and may be desirable—to pro-
vide both the old and the new version of the
interface in the newer library, this way old bi-
naries can continue to run, while new binaries
will be linked against the newer version of the
interface by default, but could also be explicitly
linked against the old version. The following
example shows creating a new symbol version
set which is inclusive of the previous one, only
the lsbfoo interface will get the version tag
LSBLIB_1.1 .

LSBLIB_1.0 {
lsbfoo;
lsbbar;

};
LSBLIB_1.1 {

lsbfoo;

} LSBLIB_1.0;

To make this work, the GNU linker is
needed, and some special directives
(__asm__(".symver realname,
alias, version"); are needed in the
code, so that the old routine can be bound to
the old version and the new code to the new
version. The GNU linker documentation has
more details on this.

If a lot of interfaces need to change incompat-
ibly, it is better to change the major version of
the library. The library version will be bound
into binaries compiled against it. With major
changes, multiple versions of the library can be
provided, giving compatibility for old and new
code.

In the LSB project, symbol versioning is used
for those libraries which are already normally
built that way, essentially the GNU libc set.
Adding symbol versioning is a nice way to
avoid breaking compatibility if a small num-
ber of interfaces have to be changed in incom-
patible ways. The LSB specification calls out
specific library versions which must be pro-
vided by a conforming runtime, and where
the symbols are versioned, the specific symbol
versions. As conforming runtimes may have
evolved the interfaces in the manner described,
a trick is used for linking LSB conforming ap-
plications: a set of stub libraries has been con-
structed which contains only the LSB inter-
faces, with the versions required by the spec,
and these are used for link-time symbol resolu-
tion.

2.2 API Documentation

A factor in how useful a library is is the qual-
ity of api documentation The documentation
must describe in detail the programming inter-
faces available, with function calling and re-
turn conventions, boundaries, and error con-
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ditions. This is the kind of information tra-
ditionally captured in the “manpage.” The
best measure of the quality of API documenta-
tion seems to be whether assertion-based tests
(see next section) can be developed completely
from the documentation, or whether the source
code must be referred to fill in the details.

It is especially useful to use a tool to au-
tomate a part of this process. There are a
number of tools that understand how to pro-
duce documentation from commented source
code, one example would bedoxygen(http:
//www.doxygen.org ) although documen-
tation generators seem to be more commonly
used with higher-level languages (e.g. Javadoc
for Java, Pydoc for Python, etc.)

The advantages of a generator approach is that
the interface descriptions in the documenta-
tion don’t depend on human transcription to
get them right in the first place, and then don’t
go out of skew if the interfaces in the code
ever change. It’s particularly galling to try to
code to an interface that does not work as doc-
umented.

The LSB specification has to date included
mostly libraries which are already standard-
ized at the API level—for example, the GNU
C library is designed to be compatible with
POSIX specification, so the LSB specification
for the C library is able to reference this ex-
isting specification for almost all of the func-
tional descriptions. As the LSB seeks to ex-
pand the base to other important libraries found
on Linux systems, the API documentation will
have to be imported by copy or by reference
into the specification, so the existence of such
documentation has become an LSB selection
criteria.

The LSB itself has a slightly different doc-
umentation problem, as it has to capture an
ABI description to describe the binary inter-
face programs will see. A single API proto-

type or structure definition has been captured
the way it will be seen on each of the (cur-
rently seven) architectures the LSB supports,
based on things like data model (sizes of inte-
gers and pointers, for example). The symbol
versions matching the interfaces must also be
captured. All of this information is represented
in a MySQL database which is browsable on
the web (http://www.linuxbase.org/
dbadmin ) but which is also used to generate
LSB header files, the stub libraries mentioned
in the previous section, and the portion of the
LSB specification that contains library listings,
interface listings, and data definitions.

The database is also used to generate test code.
Of particular note, the LSB generates two test
programs, one to test the presence of the li-
braries and interfaces on a runtime, and another
to test that an application uses only the libraries
and interfaces in the specification. The data for
these two programs is generated directly out of
the specification database.

The LSB database schema and tools to extract
data and build code (essentially a set of Perl
scripts) are freely available for use by other
projects, although they are probably mostly ap-
plicable to projects that support a large number
of libraries and want to build similar test tools.
They can be browsed from the LSB CVS tree
(cvs.gforge.freestandards.org ).

The summary is that while there’s no magic to
producing good documentation, it’s important
in producing a stable library that can be widely
used. It’s worth the time to see if some level of
automation can help with the tasks, particularly
if there are several areas that need to be kept in
sync.

2.3 Interface Tests

Another area for consideration is detailed in-
terface testing. Good tests allow checking



Linux Symposium 2004 • 553

that interfaces perform as intended. The
POSIX testing standard calls for such tests
to be assertion-based, which means a writ-
ten description of an intended behavior is
produced, this is then used to develop the
test case. The following example of an
assertion is taken from the Open POSIX
Test Suite (http://sourceforge.net/
projects/posixtest :

mmap assertion 9 When MAP_FIXED is set
in the flags argument, the implementation is in-
formed that the value of pa shall be addr, ex-
actly. If MAP_FIXED is set, mmap( ) may re-
turn MAP_FAILED and set errno to [EINVAL].
If a MAP_FIXED request is successful, the map-
ping established by mmap( ) replaces any previ-
ous mappings for the process’ pages in the range
[pa,pa+len].

Tests intended to operate at the source code
level can be built and executed as part of the
product build and are an effective way to catch
regressions introduced during regular mainte-
nance and development activity.

Binary level tests operate against an already
built library, and are a way to test that a partic-
ular library is compatible with a particular API
definition. Such tests increase the confidence
of developers in the stability of the library.

In the LSB project, interface testing is the most
important way of measuring a runtime against
the LSB specification. However, the process of
writing assertions and developing tests is not
easy. It depends on a quality interface specifi-
cation, good choice of testing methodologies,
etc. There is little doubt that the most effec-
tive place for this work to take place is within
the project itself. The source code file de-
scribing an interface can contain the interface,
documentation, test assertions, and test code.
All can be developed together without the kind
of extra overhead incurred if each of the four
items is developed separately by separate per-

sons. The author is not aware of an existing
toolkit which could automatically generate all
of the necessary pieces from a single source file
so endowed, but this would certainly make an
interesting open source project of its own!

2.4 License Choice

The choice of license under which to release
a library makes a considerable difference in
who can use the libraries and how. This paper
does not attempt a license recommendation as
only the developer can know their own targets,
needs and desires, which will guide the choice
of license.

A Free Software license along the lines of
the well-known GPL effectively restricts us-
age to programs under the same or compat-
ible licenses. Such code cannot be used in
closed source programs, even through dynamic
linking, and also cannot be used by code un-
der certain open source licenses that are not
considered compatible, perhaps because they
place some restriction on the user (one exam-
ple might be a license that restricts usage to
academic or personal use and disallows com-
mercial use). The related LGPL license al-
lows the use of the library by code of any sort
through dynamic linking, but makes no similar
provision for static linking. There are a variety
of other licenses which grant greater or lesser
freedoms in the ways the code may be used.

Some applications release code under dual li-
censes, for example a GPL-like license for
those who can use it, and a separate license
with commercial terms for those who cannot.
It is also possible to release a package consist-
ing of program code and library code with sep-
arate licenses for each.

As noted above, some licenses have compat-
ibility clauses relating to how to code may be
mingled with code under certain other licenses.



554 • Linux Symposium

Various potential users of the code may have
their own selection criteria that includes license
choice. For example, the Debian project has
a particular definition of “free” and consigns
code which does not meet these criteria to the
“nonfree” area.

Continuing with the use of LSB project expe-
riences to illustrate, the LSB is concerned with
functional interface descriptions, not with spe-
cific implementations. So the license of an
implementationis not crucial—unless it’s ef-
fectively the only implementation available, in
which case it becomes a determining factor in
practical use of the interface set.

An example may help clarify: the popular Qt
toolkit was for a while the subject of some con-
troversy in the open source community over its
license terms, and a project was started to cre-
ate an open source reimplementation of the Qt
interface specification. When Qt licensing was
changed to a dual license (one GPL-like, with
a separate license for commercial developers)
the open source reimplementation project was
dropped as the problem people had with the
previous license was resolved. However, the
LSB project favors a “no strings attached” se-
lection policy which suggestsagainst the in-
clusion of a library where the only implemen-
tation doesn’t allow a certain class of develop-
ers to just make use of the library in their code
without arranging a commercial license.

The upshot is that choice of license needs to be
considered very carefully.

3 Software Packaging and Deploy-
ment

The other major consideration this paper will
examine is improving the accessibility of the
software through producing a package that is
easy to put into use. This discussion applies to

both libraries and to complete applications.

The most common way to install software on
Linux must be to install a distribution-specific
package that has already been prepared. This
has many advantages, as it’s configured, com-
piled, and tested for that distribution, and the
package will be tagged with dependencies so
the user can determine what else needs to be
installed to make it work. It will normally have
security update patches made available should
such become necessary.

Of course, not every package can be chosen for
distribution packaging, and it’s quite possible
that an interested user for your software may
find that a package is not available at all, or
just not available for her distribution of choice.
This should pose no problem since by defini-
tion the source code is available, and the soft-
ware can simply be built from source. Unfortu-
nately, in many cases thesimplyis a misnomer
since there may be dependencies on other soft-
ware, toolchain versions, etc. that may prove
to be impediments.

3.1 How Not to Install Software

Although probably everyone reading this paper
has had some negative experiences of their own
with software installation, by way of example
here is a condensed version of a situation that
befell the author, and indirectly provided the
motivation for recording these thoughts here:

At one point, I became interested in doing
some transpositions on a piece of music, and
I thought there must be a piece of software that
would help with this. There are certainly com-
mercial PC-centric applications that do this
very well but there must be something open
source as well. Some searching turned up a
promising application namednoteedit. Sur-
prisingly, rpmfind told me that the one distri-
bution for which a current version was pack-
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aged was Mandrake, luckily my distribution
of choice. The package did indicate Cooker,
which is Mandrake’s early-access build tree,
but since it was only a couple of weeks after
that last release, I assumed the Cooker could
not have migrated too far and it would proba-
bly work.

After obtaining and installing the package, plus
an attendant library package as well as another
library (libtse) also needed, I installed and tried
to run the package. Alas, it had been linked
against a different C++ library version and so
had references to some symbols that were not
in my C++ library and thus was not runnable.

My next effort was to download the noteedit
and tse library tarballs and attempt to build
them from source. This was not a great success
either, as the configuration scripts kept report-
ing fatal problems due to missing build headers
and libraries, of course I had to correlate these
back to the packages they would be installed by
and install those. After several cycles I aban-
doned this approach and went to the third try,
going back to rpmfind and pulling down the
source, rather than binary, rpms and trying to
build from source that way. This ultimately
yielded a runnable binary although not without
some further pain which involved tweaking the
rpm specfiles. And this success still came be-
cause some Mandrake user contributed a build
to the Cooker, which although it was for the
wrong version (from my point of view) could
be adjusted at the source level to work. What
if I were running something different?

3.2 Binary Software Distribution

A project can certainly make their software
easier to check out if there’s a binary package
available. Even if packaged by some distri-
butions (and for many projects even this does
not happen, especially early on), there’s still
the question of reaching users of other distri-

butions.

The difficulty with a project building binary
packages is deciding what to build for: there
are an endless number of combinations of dis-
tributions and versions, and only a small frac-
tion could be targeted. Further, this potentially
puts the project into a “distro support” mode,
that is worrying about oddities on the particu-
lar distro/version they have chosen to build for.
A better solution seems to be to build a portable
(distro-neutral) version.

Producing a portable binary package as an ex-
ample has many advantages for a project:

• One package works on multiple kinds of
systems

• Users interested in the software can get it
running quickly

• Bugreports don’t have to worry about the
user’s build environment

• Bugreports will be against a known set of
configure and build options

There’s still plenty of use for users building
from source as well, including trying out com-
binations the developers have not tried, but the
opportunity to come up quickly should broaden
the base of potential users since not everybody
wants to go through building from source.

Of course a really good build procedure
from source—which clearly identifies depen-
dencies, is also very valuable. Configure
scripts have the unfortunate habit of quit-
ting on the first “fatal error,” which means
after you satisfy that build dependency you
try again and occasionally run into another,
and then another. In frustration, the author
once coded a configure script which issues
warnings (AC_MSG_WARN) instead of er-
rors (AC_MSG_FAIL), setting a flag which
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is used to signal a fatal error at the end of the
script. The author is not sure this hack is a “re-
ally good build procedure” however!

3.3 Using the LSB to Build Binary Packages

If a portable binary package is a target, the LSB
provides a good model. The LSB specifica-
tion describes a runtime platform, and also de-
scribes some things about how the package is
delivered.

To build a portable binary, a relatively short set
of rules needs to be followed:

• Link with the LSB runtime linker

• Use only LSB-specified libraries with the
correct version

• Use only LSB-specified interfaces and
symbol versions from those libraries

• All other interfaces must be supplied with
the application

The runtime linker has a distinct name for
LSB programs. For example, on the IA32 ar-
chitecture,ld-lsb.so.1 is used instead of
ld-linux.so.2 . This allows an implemen-
tation to do something different for LSB pro-
grams, such as resolving against libraries in
a different directory. This capability is rarely
used: most runtimes simply make the LSB
linker name a symbolic link to the regular
linker.

An application may only count on LSB li-
braries to be present on a conforming run-
time, thus the restriction to link only with
those libraries. If other libraries are needed,
they can be statically linked, or provided
in an application-supplied shared library. It
is also possible to depend onanother LSB-
conforming package which supplies a shared

library. Any such libraries must be constructed
LSB conforming, which in practice means they
need to watch their own dependencies on other
libraries.

Some libraries may have more public inter-
faces than are described in the LSB specifica-
tion. The most notable example is GNU libc.
Even though these interfaces are likely to be
present on every conforming system’s version
of those libraries, this is not required by the
specification, and thus a conforming runtime
may not count on them. For libraries which are
symbol versioned, the binary must be linked
against the symbol versions described in the
specification.

While these rules are not terribly complex, it
would be painful to modify build trees with
many makefiles to apply them, so the LSB
project supplies a compiler wrapper program
lsbcc (as well as lsbc++ for C++ pro-
grams) which applies the rules by fiddling with
the compiler line before handing it off to the
regular compiler, usuallygcc .

If we get lucky, an LSB build can be as simple
as:

CC=lsbcc ./configure
make

Of course it’s not always this easy, and usually
the problem is the use of libraries which are
not in the LSB. The wrapper will actually turn
references to non-LSB libraries into static links
(the tool can be told to warn about this behavior
as it’s often useful to know what’s happening
behind your back). Sometimes static linking is
a reasonable solution, sometimes packaging up
the missing library in LSB mode is workable,
and sometimes nothing will help but to lobby
the LSB project to add the library—which will
undoubtedly result in a polite request for help!
The LSB still has quite a bit of evolving to do
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and it’s hoped that exposing it here will help
identify the features which need to be added to
future versions.

The other helpful aspect the LSB covers has to
do with delivery of the software. Again, there
are several areas:

• Portable format for the package

• Rules for where the package may place
files

• Rules about names of packages to avoid
clashes

• Special features such an an installer for
startup scripts

The package format called out in the LSB
specification is that used by the rpm package
manager. This is a relatively portable for-
mat in that tools such asalien can convert
these packages into other formats which can
be handled by a system’s package manager.
There’s no requirement that a runtime be rpm-
based itself, and the only thing a package needs
to (or is allowed to) depend on are provides
for LSB modules (currentlylsb-core and
lsb-graphics ) or other LSB packages.

It’s also possible to deliver a package in other
formats; in this case the rule is that the installer
must be an LSB-conforming binary or an LSB-
required command. A combination of a shell
script and a tarball actually meet this require-
ment as both commands are required by the
LSB specification. The use of other than the
LSB package format is discouraged, however,
as it makes it hard for system administrators
to keep a view of what has been installed as
would be the case if all software used the same
package manager.

The File Hierarchy Standard (FHS) is im-
ported into the LSB by reference and de-
scribes where an application may place files.

To state these rules imprecisely, the pack-
age name serves as a tag, and it may in-
stall files into /opt/ tag, /etc/opt/ tag,
and /var/opt/ tag. This avoids clashes
with distribution-provided packages and lo-
cally added software.

The naming of the package is also described
by the LSB; essentially the rule is to register
either a single package name, or a provider
name, with the Linux Assigned Names and
Numbers Authority or LANANA (http://
www.lanana.org ).

Finally, there are some provisions for things
which don’t fit into the above picture. For
example, startup (“init”) scripts and cron en-
tries have to go in specific places. The LSB
describes a special installer which may be in-
voked to create the links in the/etc/rcX.d
directories.

With the specified behavior and tools, the LSB
makes possible the creation of portable binary
packages.

4 Summary

There are many considerations towards making
software projects more popular. This paper has
concentrated on only a small portion of those.

We have examined some issues towards mak-
ing shared libraries useful. The assertion is that
as a library becomes more Standard, whether
that be a self-published standard or one pro-
moted by a larger group or even a standards
organization, it becomes easier for a wider
audience to depend on it, software that uses
it can be free of compatibility fears, and the
larger community will lead to more and better
feedback to continue to improve. Some steps
that could help move a project towards such a
state include developing solid interface speci-
fications; stabilizing the interfaces as seen by
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software through versioning, which leaves the
freedom to continue to innovate while provide
backward compatibility; and through compre-
hensive interface tests. We also looked at how
choice of license plays into the usability of a
library.

Another consideration towards usable software
is lending the ability for potential users to get
“on the air” with the software quickly, so they
can evaluate it and see if it suits their needs
without going through a lot of trouble. To that
end, we looked at some benefits of projects de-
livering binary package in addition to source
packages. The components of the LSB project
which help in producing portable binary pack-
ages were also covered, to show how a project
might be able to build a single binary package
which helps the software become more acces-
sible.

5 Disclaimer

The opinions expressed in this paper are those of
the author and do not necessarily represent the po-
sition of Intel Corporation.

Linux is a registered trademark of Linus Torvalds.
Intel is a registered trademark of Intel Corporation.
All other trademarks mentioned herein are the prop-
erty of their respective owners.
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Abstract

There have been few advances in software
packaging systems since the creation of dpkg
and RPM. Conary is being developed to pro-
vide a fresh approach to Open Source Software
management and provisioning, one that applies
new ideas from distributed software version
control tools such as GNU arch and Monotone.
Rather than concentrating on package files,
Conary provides an architecture built around
distributed repositories and change sets, and
includes features designed to make branching
and tracking Linux distributions simple opera-
tions.

The rise of distributions such as Fedora and
Gentoo has moved the development of Linux
distributions from small, tightly-connected
groups to widely-dispersed groups of infor-
mal collaborators. These changes have brought
to light many shortcomings of the dominant
packaging metaphor. By providing version
trees distributed across Internet-based software
repositories, Conary allows these casual group-
ings of contributors to work together much
more effectively than they can today.

1 Packaging Limitations

Traditional package management systems
(such as RPM and dpkg) provided a major
improvement over the previous regime of

installing from source or binary tar archives.
However, they suffer from a few shortcomings,
and some of these shortcomings are felt more
acutely as the Internet and the Open Source
communities have developed and expanded.
The authors’ experience with the shortcomings
of current package management systems
strongly motivated Conary’s design.

1.1 Branching

Traditional package management systems use
simple version numbers to allow the differ-
ent package versions to be sorted into “older”
and “newer” packages, adding concepts such
asepochsto work around version numbers that
do not follow the packaging system’s ideas of
how they are ordered. While the concepts of
“newer” and “older” seem simple, they break
down when multiple streams of development
are maintained simultaneously using the pack-
age model. For example, a single version of a
set of sources can yield different binary pack-
ages for different versions of a Linux distribu-
tion. A simple linear sorting of version num-
bers cannot represent this situation, as neither
of those binary packages is newer than the
other; the packages simply apply to different
contexts.
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1.2 Package Repository Limitations

Traditional package management systems pro-
vide no facilities for coordinating work be-
tween independent repositories.

• Repositories have version clashes; the
same version-release string means differ-
ent things in different repositories. Repos-
itories can even have name clashes—the
same name in two different repositories
might not mean the same thing.

• There is no way to identify which distri-
bution, let alone which version of the dis-
tribution, a package is intended and built
for.

For example, is theaalib-1.4.0-5.
1fc2.fr package newer than theaalib-1.
4.0-0-fdr.0.8.rc5.2 package? One is
from the freshrpms repository, and the other is
from the fedora.us repository. Which package
should users apply to their systems? Does it
depend on which version of which distribution
they have? How are the two packages related?
Are they related at all?

This is not really a problem in a disconnected
world. However, when you install packages
from multiple sources, it can be hard to tell how
to update them—or even what it means to up-
date a package. You have to rely on your mem-
ory of where you fetched a package from in
order even to look in the right repository. Once
you look there, it is not necessarily obvious
which packages are intended for the particular
version of the distribution you have installed.
Automated tools for fetching packages from
multiple repositories have increased the num-
ber of independent package repositories over
the past few years, making the confusion more
and more evident.

The automated tools helped exacerbate this
problem (although they did not create it); they

have not been able to solve it because the pack-
ages do not carry enough information to allow
the automated tools to do so.

1.3 Source Disconnected from Binaries

Traditional package management does not
closely associate source code with the pack-
ages created from it. The binary package may
include a hint about a filename to search for to
find the source code that was used to build the
package, but there is no formal link contained
in the packages to the actual code used to build
the packages.

Many repositories carry only the most recent
versions of packages. Therefore, even if you
know which repository you got a package
from, you may not be able to access the source
for the binary packages you have downloaded
because it may have been removed when the
repository was upgraded to a new version.
(Some tools help ameliorate this problem by
offering to download the source code with bi-
naries from repositories that carry the source
code in a related directory, but this is only a
convention and is limited.)

1.4 Namespace Arbitrary and Unmanaged

Traditional package management does not pro-
vide a globally unique mechanism for avoid-
ing package name, version, and release num-
ber collisions; all collision-avoidance is done
by convention and is generally successful only
when the scope is sufficiently limited. Package
dependencies (as opposed to file dependencies)
suffer from this; they are generally valid only
within the closed scope of a single distribution;
they generally have no global validity.

It can also be difficult for users to find the right
packages for their systems. Both SUSE and
Fedora provide RPMs for version 1.2.8 of the
iptables utility; if a user found release 101 from
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SUSE and thought it was a good idea to apply it
to Fedora Core 2, they would quite likely break
their systems.

1.5 Build Configuration

Traditional packaging systems have a granu-
lar definition of architecture, not reflecting the
true variety of architectures available. They
try to reduce the possibilities to common cases
(i386 , i486 , i586 , i686 , x86_64 , etc.)
when, in reality, there are many more vari-
ables. But to build packages for many combi-
nations means storing a new version of the en-
tire package for every combination built, and
then requires the ability to differentiate be-
tween the packages and choose the right one.
While some conventions have been loosely es-
tablished in some user communities, most of
the time customization has required individual
users to rebuild from source code, whether they
want to or not.

In addition, most packaging systems build their
source code in an inflexible way; it is not easy
to keep local modifications to the source code
while still tracking changes made to the distri-
bution (Gentoo is the most prominent excep-
tion to this rule).

1.6 Fragile Scripts

Traditional package management systems al-
low the packager to attach arbitrary shell
scripts to packages as metadata. These scripts
are run in response to package actions such as
installation and removal. This approach creates
several problems.

• Bugs in scripts are often catastrophic
and require complicated workarounds in
newer versions of packages. This can ar-
bitrarily limit the ability to revert to old
versions of packages.

• Most of the scripts are boilerplate that is
copied from package to package. This in-
creases the potential for error, both from
faulty transcription (introducing new er-
rors while copying) and from transcrip-
tion of faults (preserving old errors while
copying).

• Triggers (scripts contained in one pack-
age but run in response to an action done
to a different package) introduce levels of
complexity that defy reasonable QA ef-
forts.

• Scripts cannot be customized to handle lo-
cal system needs.

• Scripts embedded in traditional packages
often fail when a package written for one
distribution is installed on another distri-
bution.

2 Introduction to Conary

Conary provides a fresh approach to open
source software management and provision-
ing, one that applies new ideas from distributed
configuration management tools such as GNU
arch and monotone. Rather than concentrating
on separate package files as RPM and dpkg do,
Conary uses networked repositories containing
a structured version hierarchy of all the files
and organized sets of files in a distribution.

This new approach gives us exciting new fea-
tures:

• Conary allows you to maintain and pub-
lish changes, both by allowing you to cre-
ate new branches of development, and by
helping track changes to existing branches
of development while maintaining local
changes.

• Conary intelligently preserves local
changes on installed systems. An update
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will not blindly obliterate changes that
you have made on your local system.

• Conary can duplicate local changes made
on one machine, installing those changes
systematically on other machines, thereby
easing provisioning of large sets of similar
or identical systems.

3 Distributed Version Tree

Conary keeps track of versions in a tree struc-
ture, much like a source code control sys-
tem. The difference between Conary and many
source code control systems is that Conary
does not need all the branches of a tree to be
kept in a single place. For example, if Specifix
maintains a kernel atspecifixinc.com ,
and you, working forexample.com , want
to maintain a branch from that kernel, your
branch could be stored on your machines, with
the root of that branch connected to the tree
stored on Specifix’s machines.
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example.com@local:branch

2.9.0-1-1
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  2.9.0-1-3

example.com

specifixinc.com

3.1 Repository

Conary stores everything in adistributed
repository, instead of in package files. The
repository is a network-accessible database
that contains files for multiple packages, and

multiple versions of these packages, on mul-
tiple development branches. Nothing is ever
removed from the repository once it has been
added. In simple terms, Conary is like a source
control system married to a package system.

3.2 Files

When Conary stores a file in the repository, it
tracks it by a unique file identifier rather than
by name. Among other things, this allows
Conary to track changes to file names—the file
name is merely one piece of metadata associ-
ated with the file, just like the ownership, per-
mission, timestamp, and contents. If you think
of the repository as a filesystem, the file identi-
fier is like an inode number.

3.3 Troves, Packages, and Components

When you build software with Conary, it col-
lects the files intocomponents, and then col-
lects the components into one or morepack-
ages. Components and packages are both
called troves. A trove is (generically) a col-
lection of files or other troves.

A package does not directly contain files; a
package references components, and the com-
ponents reference files. Every component’s
name is constructed from the name of its con-
tainer package, a: character, and a suffix
describing the component. Conary has sev-
eral standard component suffixes::source ,
:runtime , :devel , :docs , and so forth.
Conary automatically assigns files to compo-
nents during the build process, but you can
overrule its assignments and create arbitrary
component suffixes as appropriate.



Linux Symposium 2004 • 563

package gzip

component gzip:runtime component gzip:doc

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

file /bin/gunzip file ...info/gzip.info.gz

One component, with the suffix:source ,
holds all source files (archives, patches, and
build instructions); the other components hold
files to be installed. The:source compo-
nent is not included in any package, since
several different packages can be built from
the same source component. For example,
the mozilla:source component builds
the packagesmozilla , mozilla-mail ,
mozilla-chat , and so forth. The version
structure in Conary’s repositories always tells
exactly which source component was used to
build any other component.

3.4 Labels and Versions

Conary uses strongly descriptive strings to
compose the version and branch structure.
The amount of description makes them quite
long, so Conary hides as much of the
string as possible for normal use. Conary
version strings act somewhat like domain
names, in that for normal use you need
only a short portion. For example, the ver-
sion/conary.specifixinc.com@spx:
trunk/2.2.3-4-2 can usually be referred
to and displayed as2.2.3-4-2 . The en-
tire version string uniquely identifies both the
source of a package and its intended context.
These longer names are globally unique, pre-
venting any confusion.

Let’s dissect the version string
/conary.specifixinc.com@spx:

trunk/2.2.3-4-2 . The first part,
conary.specifixinc.com@spx:trunk ,
is a label. It holds three pieces of information:

• The repository host name:
conary.specifixinc.com

• Namespace: spx A high-level context
specifier that allows branch names to be
reused by independent groups. Speci-
fix will maintain a registry of names-
pace identifiers to prevent conflicts. Use
local for branches that will never need
to be shared with other organizations.

• Branch name: trunk This is the only
portion of the label that is essentially arbi-
trary; and will be defined by the owner of
the namespace it is part of.

The next part,2.2.3-4-2 , contains the more
traditional version information.

• Upstream version string: 2.2.3 This
is the version number or string assigned
by the upstream maintainer: Conary never
interprets this string in any way; the only
check it does is whether it is the same or
different. It is there primarily to present
useful information to the user. Conary
never tries to determine whether one up-
stream version is “newer” or “older” than
another. It makes these decisions based on
the ordering specified by the repository’s
version tree.

• Conary revision: 4-2 This pair is com-
posed from:

– Source build serial number: 4 In-
cremented each time a version of the
sources with the same upstream ver-
sion string is checked in. It is similar
to the release number used by tradi-
tional packaging systems.

– Binary build serial number: 2
How many times this particular
source package has been built. This
number is not provided for source
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packages, because it is meaningless
in that context.

Conary describes branch structure by append-
ing version strings, separated by a/ charac-
ter. The first step to make a release is to cre-
ate a branch that specifies what is in the re-
lease. Let’s create therelease-1 branch off
the trunk: /conary.specifixinc.com@
spx:trunk/2.2.3-4/release-1 (note
that because we are branching the source, there
is no binary build number).

In this branch,release-1 is a label. The
label inherits the repository and namespace of
the node it branches from; in this case, the
full label is conary.specifixinc.com@
spx:release-1

The first change that is committed to
this branch can be specified in some-
what shortened form as /conary.
specifixinc.com@spx:trunk/
2.2.3-4/release-1/5 Because the
upstream version is the same as the node
from which the branch descends, the upstream
version may be omitted, and only the Conary
version provided. Users will normally see this
version expressed as2.2.3-5 , so this string,
still long even when it has been shortened by
elision, will not degrade the user experience.

/conary.specifixinc.com@spx:trunk

2.2.2-2

release-12.2.3-4

2.2.3-3

2.2.2-1

/conary.specifixinc.com@spx:trunk/2.2.3-4/release-1/5
(normally seen as 2.2.3-5)

2.2.3-5

release-1/2.3.4-1

release-1/2.3.4-2
2.2.4-1

Labels also have an unusual property: a sin-
gle label can referencemultiple branches. To
demonstrate why this is useful, let’s look at
the glib library. Like many other libraries, glib
is designed to allow more than one version to
be installed on the system at once. Older pro-
grams require glib 1.2; newer programs require
glib 2. All new releases of glib 1.2 are compat-
ible with programs written and compiled for
older versions of glib 1.2; all new releases of
glib 2 are compatible with programs written
and compiled for older versions of glib 2. They
are not, however, compatible with each other;
a program compiled for glib 1.2 will certainly
not run with glib 2. Therefore, a complete sys-
tem requires that glib 1.2 and glib 2 both be
installed.

Packaging systems often solve this problem by
naming the packages differently, putting part of
the version number into the name of the pack-
age (i.e.glib andglib2 ). This works, but it
dilutes the revision history that the repository
model provides.

By contrast, Conary solves this problem by
allowing labels to apply to more than one
branch. To see how, we will start by “go-
ing back in time” and looking at the version
string for glib on the trunk with only glib
1.2 packaged: /conary.specifixinc.
com@spx:trunk/1.2.10-19-3

Now, we want to add glib 2 to the repository.
We want to have a branch for continuing main-
tenance of maintain glib 1.2, though, so let’s
create that first:/conary.specifixinc.
com@spx:trunk/1.2.10-19-3/
glib1.2

Now, we upgrade the trunk to glib 2:
/conary.specifixinc.com@spx:
trunk/2.2.3-1-1

Having maintained both glib 1.2 and glib 2
for a while, we decide that we want to make
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our first release. We will label every package
in the release, including two versions of glib:
/conary.specifixinc.com@spx:
trunk/2.2.3-4-2/release-1/4-2
and /conary.specifixinc.com@spx:
trunk/1.2.10-19-3/glib1.2/23-2/
release-1/23-2

The label conary.specifixinc.com@
spx:release-1 now specifiesboth ver-
sions of glib. Therefore, if you in-
stallglib conary.specifixinc.com@
spx:release-1 , you will get both versions
of glib.

Normally, the label to install will be set by
installation scripts, and Conary will automat-
ically install both versions of glib. Of course,
updates will be applied only when there is a
change; an update to glib 1.2 does not affect
glib 2. In other words, it “just works” without
you having to worry about it.

release-1
2.2.3-4-2

/conary.specifixinc.com@spx:trunk

1.2.10-19-3
glib1.2

1.2.10-23-2

release-1

3.5 Shadows

The most powerful way to manage local
changes is (of course) to build changes from
source code. Conary makes this possible in
two ways. One way is a simple branch, just

like you would do with any source code con-
trol software. Unfortunately, this is not always
the best solution.

Imagine a stock 2.6 Linux kernel packaged in
Conary, being maintained on the/linux26
branch (we have omitted the repository host
name and namespace identifier from the label
for brevity) of the kernel:source pack-
age, currently at version2.6.5-1 (note that
because it is a source package, there is no
binary build number). You have one patch
that you want to add relative to that version,
and then you wish to track that maintenance
branch, keeping your own change up to date
with the maintenance branch, and building new
versions as you go.

If you create a new branch from/linux26/
2.6.5-1 , say /linux26/2.6.5-1/
mybranch , all the work you do is relative
to that one version. Creating a new branch
does not help you, because the new branch
goes off in its own direction from one point
in development, rather than tracking changes.
Therefore, when the new version/linux26/
2.6.6-1 is committed to the repository, the
only way to represent that version in your
branch would be to manually compare the
changes and apply them all, bring your patch
up to date, and commit your changes to your
branch. This is time-consuming, and the
branch structure does not represent what is
really happening in that case.

Conary introduces a new concept: ashadow.
A shadow acts primarily as a repository for lo-
cal changes to a tree. A shadow tracks changes
relative to a particular upstream version string
and source build serial number. Therefore,
you cannot change the upstream version of
the package—though you can apply any patch
you like. (In order to change the upstream
version of the package, you would need to
create a branch rather than a shadow.) The
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name of a shadow is the name of the branch
with // shadowname appended; for exam-
ple, /branch//shadow . The whole branch
is shadowed, so if/branch/1.2.3-3 and
/branch//shadow exist, then so does
/branch//shadow/1.2.3-3 , regardless
of whether /branch/1.2.3-3 existed at
the time the shadow was created. Similarly, if
/branch/1.2.3-3/rel1/1.2.3-3 ex-
ists, then so does/branch//shadow/
1.2.3-3/rel1/1.2.3-3 .

Both /branch/1.2.3-3 and/branch//
shadow/1.2.3-3 refer to exactly the same
contents. Changes are represented with a
dotted source build serial number, so the
first change to /branch/1.2.3-3 that
you check in on the/branch//shadow
shadow will be called/branch//shadow/
1.2.3-3.1 .

So, to track changes to the/linux26 branch
of thekernel:source package, you create
the mypatch shadow of the /linux26
branch, /linux26//mypatch , and there-
fore /linux26//mypatch/2.6.5-1
now exists. Commit a patch to the shadow,
and /linux26//mypatch/2.6.5-1.1
exists. Later, when thelinux26 branch is
updated to version2.6.6-1 , you merely
need to update your shadow, modify the
patch to apply to the new kernel source
code if necessary, and commit the your
new changes to the shadow, where they
will be named /linux26//mypatch/
2.6.6-1.1 . You can use the shadow branch
name /linux26//mypatch just like you
can use the branch name/linux26 ; you can
install that branch, andconary update
will use the same rules to find the latest version
on the shadow that it uses to find the latest
version on the branch.

3.6 Flavors

Conary has a unified approach to handling mul-
tiple architectures and modified configurations.
It has a very fine-grained view of architecture
and configuration. Architectures are viewed
as an instruction set, including settings for op-
tional capabilities. Configuration is set with
system-wide flags. Each separate architec-
ture/configuration combination built is called a
flavor.

Using flavors, the same source package can
be built multiple times with different architec-
ture and configuration settings. For example,
it could be built once forx86 with i686 and
SSE2 enabled, and once forx86 with i686
enabled butSSE2 disabled. Each of those ar-
chitecture builds could be done twice, once
with PAMenabled, and once withPAMdis-
abled. All these versions, built from exactly the
same sources, are stored together in the repos-
itory.

At install time, Conary picks the most appro-
priate flavor of a component to install for the
local machine and configuration (unless you
override Conary’s choice, of course). Further-
more, if two flavors of a component do not
have overlapping files, and both are compati-
ble with the local machine and configuration,
both can be installed. For example, library
files for the i386 family are kept in/lib
and/usr/lib , but forx86_64 they are kept
in /lib64 and/usr/lib64 , so there is no
reason that they should not both be installed,
and since the AMD64 platform can run both, it
is convenient to have them both installed.

4 Changesets

Just as source code control systems use patch
files to describe the differences between two
versions of a file, Conary useschangesetsto
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describe the differences between versions of
troves and files. These changesets include in-
formation on how files have changed, as well
as how the troves that reference those files have
changed.

These changesets are often transient objects;
they are created as part of an operation and
disappear when that operation has completed.
They can also be stored in files, however,
which allows them to be distributed like the
packages produced by a classical package
management system.

Applying changesets rather than installing new
versions of packages allows Conary to update
only the parts of a package that have changed,
rather than blindly reinstalling every file in the
package.

Besides saving space and bandwidth, repre-
senting updates as changes has another advan-
tage: it allows merging. Conary intelligently
merges changes not only to file contents, but
also to file metadata such as permissions.

This capability is very useful if you wish to
maintain a branch or shadow of a package—for
example, keeping current with vendor mainte-
nance of a package, while adding a couple of
patches to meet local needs.

Conary also keeps track of local changes in
essentially the same way, preserving them.
When, for example, you add a few lines to a
configuration file on an installed system, and
then a new version of a package is released
with changes to that configuration file, Conary
can merge the two unless there is a direct con-
flict (unusual but possible). If you change a
file’s permission bits, those changes will be
preserved across upgrades.

Conary supports two types of change sets:

• The differences between two versions in a

repository

• The complete contents of a version in a
repository (logically, this is the difference
between nothing at all and that version)

In the first case, where Conary is calculating
the differences between two different versions,
the result is arelative changeset. In the sec-
ond case, where Conary is encoding the entire
content of the version, the result is anabsolute
changeset. (If you use an absolute changeset
to upgrade to the version provided in the abso-
lute changeset, Conary internally converts the
changeset to a relative changeset, thereby pre-
serving your local changes.) Absolute change-
sets are convenient ways of distributing ver-
sions of troves and files to users who have var-
ious versions of those items already installed
on their systems. In practice, they can be dis-
tributed just like package files created by tradi-
tional package management systems.

Conary can do two things with one of these
changesets. It can update a system, either di-
rectly from a changeset file, or by asking the
repository to provide a changeset and then ap-
plying that changeset. It can also store existing
changesets in a repository. This capability will
be used in the future to provide repository mir-
roring, and it can also be used to move changes
from one repository to a branch in a different
repository.

4.1 Representing Local Changes

Conary can also generate alocal changeset
that is a relative changeset showing the differ-
ence between the repository and the local sys-
tem for the version of a trove that is installed.
You can distribute a local changeset to another
machine in two ways:

• You can distribute it to other machines
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with the same version of the trove in ques-
tion installed.

• You can commit the local changeset to a
branch of a repository, and then update to
that branch on target machines.

There is an important distinction between the
two cases. In the first case, the machine that ap-
plies the changeset will act as if those changes
had been made by the system’s administrator;
since those changes are not in a repository they
are not versioned. In the second case, however,
the machine gets those changes by updating the
trove to the branch that contains those changes,
and it can continue to track changes from that
branch.

For example, assume that you have machines
with troves from branches labeledconary.
specifixinc.com@spx:rel1 installed,
and you have some local changes that you want
to distribute to a group of machines. Let’s
say that after updating to version2.9.0-1-2
of tmpwatch , you want to change the per-
missions of the /usr/sbin/tmpwatch binary
because you are paranoid:chmod 100
/usr/sbin/tmpwatch Now, you record
that change in a local changeset; that changeset
is relative to2.9.0-1-2 , and describes your
local changes.

You then commit your local changeset to
the conary.example.com@local:
paranoid branch in your local repository.
Now, on all the machines in the group, you can
update tmpwatch conary.example.
com@local:paranoid . Each machine will
now look in the conary.example.com
repository on theparanoid branch if you
simply run conary update tmpwatch .
This means that if you make further changes
to the tmpwatch package, you can commit
those changes to theparanoid branch on
the conary.example.com repository, and
each of the machines will update to the latest

version you have committed to that branch.
Every time a new version oftmpwatch is
released on theconary.specifixinc.
com@spx:rel1 branch, you will have
to apply the changeset to theconary.
example.com@local:paranoid branch
before the machines with yourparanoid
branch installed will update their copies of
tmpwatch .

 c
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If rather than maintaining a branch, you merely
want to distribute some changes that are lo-
cal to the group of machines, you do not
want to commit the local changeset to the
repository. Instead, you want to copy the
changeset file (let’s call it paranoid.ccs) to each
machine and runconary localcommit
paranoid.ccs on each machine. Now, your
change to permissions applies to each sys-
tem, butconary update tmpwatch will
still look at conary.specifixinc.com@
spx:rel1 and Conary will apply updates to
tmpwatch from conary.specifixinc.
com@spx:rel1 without additional work
required on your part, and it will pre-
serve the change to the permissions of the
/usr/sbin/tmpwatch binary on each machine.

Both ways of managing local change are use-
ful. Committing local changesets to a repos-
itory is best for systems with entirely cen-
tralized management policy, where all sys-
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tem changes must be cleared by some cen-
tral agency, whereas distributing local change-
sets is best when individual systems are ex-
pected to autonomously update themselves
asynchronously.

4.2 Merging

When Conary updates a system, it does not
blindly obliterate all changes that have been
made on the local system. Instead, it does
a three-way merge between the currently in-
stalled version of a a file as originally installed,
that file on the local system, and the version of
the file being installed. If an attribute of the
file was not changed on the local system, that
attribute’s value is set from the new version
of the package. Similarly, if the attribute did
not change between versions of the package,
the attribute from the local system is preserved.
The only time conflicts occur is if both the new
value and the local value of the attribute have
changed; in that case a warning is given and the
administrator needs to resolve the conflict.

For configuration files, Conary creates and ap-
plies context diffs. This preserves changes us-
ing the the widely-understood diff/patch pro-
cess.

4.3 Efficiency

Conary is more efficient than traditional pack-
aging systems in several ways.

• By utilizing relative changesets whenever
possible, Conary uses less bandwidth.

• By modifying only changed files on up-
dates, Conary uses less time to do updates,
particularly for large packages with small
changes.

• By using a versioned repository, Conary
saves space because unchanged files are

stored once for the whole repository, in-
stead of once in each version of each
package.

• By enabling distributed repositories,
Conary

– saves the time it takes to maintain
a modified copy of an entire repos-
itory, and

– saves the space it takes to store com-
plete copies of an entire repository.

4.4 Rollbacks

Because Conary updates systems by applying
changesets, and because it is able to follow
changes on the local system intrinsically, it eas-
ily supportsrollbacks. If requested, Conary
can store an inverse changeset that represents
eachtransaction (a set of trove updates that
maintains system consistency, including any
dependencies) that it commits to the local sys-
tem. If the update creates or causes problems,
the administrator can ask Conary to install the
changeset that represents the rollback.

Because rollbacks can affect each other, they
are strictly stacked; you can (in effect) go back-
ward through time, but you cannot browse.
You have to apply the most recent rollback be-
fore you apply the next most recent rollback,
and so forth.

This might seem like a great inconvenience,
but it is not. Because Conary maintains
local changes vigorously, including merging
changes to configuration files, and because all
the old versions you might have installed be-
fore are still in the repositories they came from,
you can “update” to older versions of troves
and get practically the same effect as rolling
back your upgrade from that older version.

Applying rollbacks can be more convenient
when you know that you want to roll back the
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previous few transactions and restore the sys-
tem to the state it was in, say, two hours ago.
However, if you want to be selective, “upgrad-
ing” to an older version is actually more conve-
nient than it would be to try to select a rollback
transaction that contains the change you have
in mind.

5 Other Concepts

5.1 Dynamic Tags

In place of the fragile script metadata provided
by traditional package management systems,
Conary introduces a concept calleddynamic
tags. Files managed by Conary can have sets of
arbitrary text tags that describe them. Some of
these tags are defined by Conary (for example,
shlib is reserved to describe shared library
files that cause Conary to update /etc/ld.so.conf
and runldconfig ), and others can be more
arbitrary. (In order to allow tag semantics to
be shared between repositories, it is likely that
Specifix will host a global tag registry in the
future.)

By convention, a tag is a noun or noun phrase
describing the file; it is not a description of
what to do to the file. That is,file is-a tag.
For example, a shared library is tagged as
shlib instead of asldconfig . Similarly,
an info file is tagged asinfo-file , not as
install-info .

Conary can be explicitly directed to apply a tag
to a file, and it can also automatically apply
tags to files based on atag description file.
A tag description file provides the name of the
tag, a set of regular expressions that determine
which files the tag applies to, the path of the
tag handler program that Conary runs to pro-
cess changes involving tagged files, and a list
of actions that the handler cares about. Conary
then calls the handler at appropriate times to

handle the changes involving the tagged files.

Actions include changes involving either the
tagged files or the tag handlers. Conary will
pass in lists of affected files whenever it makes
sense, and will coalesce actions rather than
running all possible actions once for every file
or component installed.

The current list of possible actions is:

• Tagged files have been installed or up-
dated; Conary provides a list of all in-
stalled or updated tagged files.

• Tagged files are going to be removed;
Conary provides a list of all tagged files
to be removed.

• Tagged files have been removed; Conary
provides a list of filenames that were re-
moved.

• The tag handler itself has been installed
or updated; Conary provides a list of all
tagged files already installed on the sys-
tem.

• The tag handler itself will be removed;
Conary provides a list of all the tagged
files already installed on the system to fa-
cilitate cleanup.

Because the tag description files list the ac-
tions they handle, the tag handler API can be
expanded easily while maintaining backward
compatibility with old handlers.

Avoiding duplication between packages by
writing scripts once instead of many times
avoids bugs in scripts. Practically speaking,
it avoids whole classes of common bugs that
cause package upgrades to break installed soft-
ware, and even more importantly from a provi-
sioning standpoint, bugs that would cause roll-
backs to fail. It makes it much easier to fix
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bugs when they do occur, without any need
for “trigger” scripts that are often needed to
work around script bugs in traditional package
management. It also allows components to be
installed across distributions—as long as they
agree on the semantics for the tags, the actions
taken for any particular tag will be correct for
the distribution on which the package is being
installed.

Calling tag handlers when they have been up-
dated makes recovery from bugs in older ver-
sions of tag handlers relatively benign; Conary
needs to install only a single new tag handler
with the capability to recover from the effects
of the bug. Older versions of packages with
tagged files will use the new, fixed tag han-
dler, which allows you to revert those pack-
ages to older versions as desired, without fear
of re-introducing bugs created by old versions
of scripts.

Furthermore, storing the scripts as files in the
filesystem instead of as metadata in a package
database means:

• they can be modified to suit local system
peculiarities, and those modifications will
be tracked just like other configuration file
modifications;

• they are easier for system administrators
to inspect; and

• they are more readily available for system
administrators to use for custom tasks.

5.2 Groups and Filesets

There are two other kinds of troves that we did
not discuss when we introduced the trove con-
cept: groups and filesets.

Filesetsare troves that contain only files, but
those files come from components in the repos-
itory. They allow custom re-arrangements

of any set of files in the repository. (They
have no analog at all in the classical package
model.) Each fileset’s name is prefixed with
fileset- , and that prefix is reserved for file-
sets only.

Filesets are useful primarily for creating small
embedded systems. With traditional packag-
ing systems, you are essentially limited to in-
stalling a system, then creating an archive con-
taining only the files you want; this limits
the options for upgrading the system. With
Conary, you can instead create a fileset that ref-
erences the files, and you can update that fileset
whenever the components on which it is based
are updated, and use Conary to update even
very thin embedded images.

The desire to be able to create working filesets
was a large motive for using file-specific meta-
data instead of trove-specific metadata wher-
ever possible. For example, files in filesets
maintain their tags, which means that exactly
the right actions will be taken for the fileset.
If Conary had package scripts like traditional
package managers, it would be impossible to
automatically determine which parts (if any) of
the script should be included in the fileset. (As
already discussed, scripts have other problems
that tags solve; this is just another one of the
architectural reasons that tags are preferable to
scripts.)

Groups are troves that contain any other kind
of trove, and the troves are found in the repos-
itory. (The task lists used by apt are similar
to groups, as are the components used by ana-
conda, the Red Hat installation program.) Each
group’s name is prefixed withgroup- , and
that prefix is reserved for groups only.

Groups are useful for any situation in which
you want to create a group of components
that should be versioned and managed together.
Groups are versioned like any trove, including
packages and components. Also, a group ref-
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erences only specific versions of troves. There-
fore, if you install a precise version of a group,
you know exactly which versions of the in-
cluded components are installed; if you update
a group, you know exactly which versions of
the included components have been updated.

If you have a group installed and you then
erase a component of the group without chang-
ing the group itself, the local changeset for the
group will show the removal of that component
from the group. This makes groups a power-
ful mechanism administrators can use to easily
browse the state of installed systems.

The relationship between all four kinds of
troves is illustrated as follows:

built from
Troves

source repository

co
nt

ai
n files component fileset

troves package* group

*packages contain only components

Groups and filesets are built from:source
components just like packages. The contents
of a group or fileset is specified as plain text in
a source file; then the group or fileset is built
just like a package.

This means that groups and filesets can be
branched and shadowed just like packages can.
So if you have a local branch with only one
modified package on it, and then you want
to create a branch of the whole distribution
containing your package, you can branch the
group that represents the whole distribution,
changing only one line to point to your locally
changed file. You do not have to have a full
local branch of any of the other packages or
components.

Furthermore, when the distribution from which

you have branched is updated, your modifica-
tion to the group can easily follow the updates,
so you can keep your distribution in sync with-
out having to copy all the packages and com-
ponents.

6 Further Work

An alpha release of Conary is now avail-
able from http://www.specifixinc.
com, along with a Linux distribution built with
Conary. While these releases allow users and
developers to begin making use of Conary’s
features, there is significant work remaining.

The shadow design discussed in this paper has
not yet been implemented.

Conary does not yet resolve dependencies. Al-
though some dependency information is al-
ready generated and tracked on a per-file ba-
sis, no effort is made to ensure that those de-
pendencies are resolved when components are
installed.

As Conary and Conary-based distributions be-
come more popular, there will be a need for
both repository caches and repository mirrors.
While some preliminary design work has been
done for each of these, no implementation
work has begun.

The implementation of flavors is preliminary,
especially in regards to configuration settings.
While limited testing has been done with troves
built for varying architectures and Specifix’s
build scripts implement some configuration
settings, Conary does not yet properly select
the flavor to install on a system.

Conclusion

Conary was designed to address many of
the limitations of the traditional packaging
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metaphor. The enormous growth in the Linux
developer base over the past decade has shown
that packaging systems do not scale well to
multiple repositories with conflicting content,
and can make it difficult for large numbers of
developers to coordinate package releases.

Conary provides flexible branching, which en-
ables it to find both binaries and sources any-
where on the Internet, and allows the local ad-
ministrator to preserve local changes and cre-
ate local development branches of those pack-
ages. By providing a name space separator as
part of the branch names, Conary allows many
groups to use the same tool while building a
single distributed version tree, without any for-
mal collaboration between the groups.

Innovations such as shadows and versioning
groups of packages and files (allowing those
container objects themselves to be branched
and shadowed) significantly reduce the diffi-
culty of maintaining customized Linux distri-
butions. Instead of being forced to accept com-
plete responsibility for all aspects of the dis-
tribution, developers can now concentrate on
maintaining just their changes. Those changes
are represented in a concise way that can track
upstream changes to the entire distribution.

Conary is designed to enable a loosely-
coupled, Internet-based collaborative approach
to building Linux distributions. By making
branching and shadowing inexpensive opera-
tions that can change almost any aspect of a
Linux system, we hope members of the Linux
community will be able to build the Linux dis-
tribution they want, rather than use one that is
merely close enough.
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Abstract

We introduce a distributed sensor architecture
which enables high-performance 32-bit Linux
capabilities to be embedded in a sensor which
operates at the average power overhead of a
small microcontroller. Adapting Linux to this
architecture places increased emphasis on the
performance of the Linux power-up/shutdown
and suspend/resume cycles.

Our reference hardware implementation is de-
scribed in detail. An acoustic beamforming
application demonstrates a 4X power improve-
ment over a centralized architecture.

1 Introduction

Traditional sensor platform architectures are
based on a hub-and-spoke model with periph-
erals clustered around a central processor as
shown in Figure 1(a). In this model, the lower-
bound of total system power is set by the low-
est active mode of the central processor which
must be continually active to broker peripheral
operations.

System power is typically reduced by using
less-capable processors or microcontrollers in
place of the central processor. Although sensor
activity is mostly infrequent and bursty with
low average computational requirements, peak
processing requirements can still be quite high.

Processor

RadioSensor

Input/Output

(a) Hub-and-spoke

Sensor

Radio

Processor

Input/Output

(b) Distributed

Figure 1: Alternate sensor node architectures

Within a system design, this creates tension be-
tween the desire for the high-performance pro-
cessing capability of a larger processor and the
low-power operation of a smaller one.

This tension is further complicated by the ob-
servation that while many large processors re-
quire significantly more power than small ones
when inactive, they also often provide signifi-
cantly more power-efficient computation when
active. Another tradeoff in this design space
weighs the strength of development and de-
bugging tools, such as Linux, available for
larger processors versus the constrained pro-
gramming environments available for small
ones.

Replacing the hub-and-spoke architecture with
a distributed model as shown in Figure 1(b)
can decouple processing from peripheral op-
eration and create a system that combines the
strengths of both large and small processors.
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In this model, processor and peripherals be-
come autonomous modules that are each pow-
ered independently. High-performance pro-
cessing can be made available when needed,
but without increasing the lower-bound of to-
tal system power. Low average system power
can be achieved by operating for a majority of
the time in extremely low-power modes with
only essential modules active.

This distributed architecture places Linux in an
unconventional role as a peer module rather
than as a central processor. This emphasizes
the performance of the power-up/shutdown and
suspend/resume cycles as keys for achieving
low average system power.

The remainder of this paper is organized as fol-
lows. Section 2 describes several popular re-
search and commercial sensor platforms. Sec-
tion 3 recounts the design challenges we faced
as we built a reference sensor node with au-
tonomous modules. As usual, real-world issues
forced difficult engineering decisions. Sec-
tion 4 details the modules we have built so far.

Our hardware is in a more complete state than
our software. We have identified some aspects
of the behavior of Linux that we need to inves-
tigate more fully. These issues are discussed
in Section 5. Section 6 contains power results
we have obtained with a vehicle tracking algo-
rithm. Finally, Section 7 draws conclusion and
Section 8 describes areas for future work.

2 Related Work

Applied research in wireless sensor networks
has made use of a variety of platforms with
varying processing capabilities and power re-
quirements, but almost always with a hub-and-
spoke model. Several platforms are described
below in order from more-capable, higher-
power platforms to less-capable, lower-power
platforms.

2.1 PC/104

PC/104 [3] is a well-supported specification for
PC-compatible, embedded systems consisting
of stacking modules. Cerpa et al [2] chose
PC/104 systems for their “high end” sensors
in a tiered deployment for habitat monitoring.
Their cited reasons for choosing PC/104 in-
clude the ability to run PC-compatible software
(i.e. Linux) and the wide spectrum of available
PC/104 modules.

PC/104 provides great flexibility and the power
requirements are lower than that of desktop
PCs. However, at 1-2 Watts per module[3], and
with most sensors requiring at least two mod-
ules, this platform requires too much power for
many sensor applications.

2.2 Embedded StrongARM devices/PDAs

Off-the-shelf devices based on low-power, em-
bedded processors such as the Intel SA-1110
or PXA25x offer another convenient platform
for sensor network research. Compared to x86-
class processors, these processors offer a sig-
nificant power savings along with a reduction
in maximum clock rate and the absence of a
hardware floating-point unit.

Representative devices of this class include the
HP iPAQ, the CerfCube[4], and the Crossbow
Stargate[14]. These devices are extensible via
Compact Flash, Bluetooth, etc. but have less
flexibility than PC/104. And while the power
requirements of these systems can be less than
a comparable PC/104 stack, Mainwaring et
al[9] found that at 2.5W active power, the
power usage of the CerfCube was excessive for
long-term use in a sensor network.

Several research sensors have been developed
with architectures similar to these off-the-shelf
platforms. These include theµAMPS[10] and
WINS[1] nodes. For example, the WINS node
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Figure 2: Power-aware sensor concept

has a central 133MHz StrongARM SA-1100
processor along with radio and sensor periph-
erals. As measured by Raghunathan et al[12]
the WINS node operates in the range of 360-
1080 mW and can also be placed into a 64 mW
sleep mode.

2.3 Motes

An example of a very low-power sensor ar-
chitecture is that of the Berkeley Motes[6, 7,
8]. Current Motes are based around a central
microcontroller (MCU) such as the ATmega
90LS8535, an 8-bit MCU with 128KB Flash
and 8KB SRAM. The Mote includes a radio
and has serial connections and 10-bit analog
ADC ports to various sensors on expansion
modules. Typical power consumption for this
sensor when active is in the 10-100 mW range.
Sleep power is about 60µW.

Mote-class sensors demonstrate that a wide
variety of low-bandwidth sensing applications
can be accomplished with very small proces-
sors and with very little memory. The limita-
tion of these systems is encountered when an

application doesn’t fit within the memory and
processing footprint of the MCU. High band-
width sensor processing is beyond the capabil-
ities of these small-scale sensors and there is
little room for expansion.

3 Implementation

Our primary system design goal was to con-
struct a family of interchangeable processor,
sensor, and communication modules that can
be mixed and matched according to the appli-
cation requirements. Ideally, our architecture
would be able scale from simple sensors as
shown in Figure 2(a) and Figure 2(b), to com-
plex sensors as shown in Figure 2(c) without
having to learn and port to a new platform at
every scale.

Other goals were driven by practical experi-
ences of using other platforms in the field.
Rapid prototyping is an important concern.
The ability to create testbeds using COTS pe-
ripherals is a strength of platforms such as
PC/104. Availability of Linux device drivers
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and a friendly programming environment were
strong motivators in our implementation deci-
sions. Data collection is an important step in
sensor network algorithm development. We
wanted lots of data storage and data network-
ing options in our new platform.

Primary constraints on the system design in-
clude size and power. We targeted the size
of the Berkeley Mote, while still supporting a
Linux-capable processor in the stack. In the
end, the size was dictated by the minimum
footprint of a Compact Flash socket and our
chosen stack connector. Power in our system
needs to be able to scale from 1 mW to a few
Watts. The low power target limited many of
our implementation choices.

An early design decision was how the au-
tonomous modules would communicate. Inter-
faces such as ethernet were quickly dismissed
due to power requirements. In small embedded
devices, the most power-efficient communica-
tion is available with hardware-supported inter-
faces such as Serial Peripheral Interface (SPI),
Controller Area Network (CAN), Universal
Asynchronous Receiver Transmitter (UART),
and Inter-Integrated Circuit (IIC or I2C). Each
of these interfaces has strengths and weak-
nesses. I2C supports multi-master operation,
but has a limit of 100kbps on most devices. SPI
has faster transfers, (up to a few megabits per
second), but has limited multi-master support
in most devices and little flow control. UART
is widely supported, but requires clock agree-
ment on both interfaces. CAN is multi-master,
but the bus drivers in the supporting devices are
relatively high power, (since CAN is designed
for long cables).

We decided to support the three major interface
standards (I2C, SPI, and UART). We allocated
six 8-bit channels on our connector and spec-
ified two preferred channels for each standard
interface. In order to prevent bus contention

and power leakage when modules are off, all
modules have bus isolation switches between
themselves and the connector. We also intro-
duced a separate I2C control network for mod-
ule discovery and coordination of the switches.

A small microcontroller (MCU) is standard
on most modules to control the bus isolation
switches, a power switch, and any module-
specific functions. The MCUs are intended to
be always on when the node is operating, (with
a power overhead as low as .05 mW). They
network with each other over I2C to facilitate
module discovery and coordinate access to the
channels using a common messaging protocol.

Figure 3 contains a diagram of the features
common to each module, as well as an optional
processor expansion bus so that high-speed,
high-power peripherals, (USB, Compact Flash,
LCD, and AC97 audio), can be used in the
stack or removed for low-power operation.

Figure 3: Power-aware module diagram

4 Available Modules

Our hardware modules are small boards ap-
proximately 6.5×4.5cm (2.5×1.75"), with a
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180-pin connector on either side. So far, we
have designed, built, and tested 4 modules, 3
of which are shown in Figures 4 and 5.

PXA A module including an Intel PXA255
XScale processor, 64MB of SDRAM and
32MB of Flash. This board supports dy-
namic voltage scaling, an active clock rate
range of 100-400MHz, and a 33MHz idle
mode. An SA-1111 coprocessor provides
support for USB master and two Compact
Flash cards. All interface lines are routed
to the stack connector.

ADC A four-channel, 12-bit analog-to-digital
converter module. The MCU has suffi-
cient memory for a dedicated 7kB sam-
ple buffer. Basic signal processing can
be performed by the local MCU or sam-
ples can be efficiently transmitted over an
SPI interface to the PXA module for ad-
vanced processing. An important point is
that the PXA255 processor can be off or
suspended during data sampling.

IOB The power & I/O board is the only re-
quired module in the stack. It provides the
primary power supply and contains most
of the digital I/O connectors, (USB mas-
ter and slave, SPI, I2C, and UART).

FPGA This module was developed as an em-
ulation board for a low-power DSP be-
ing developed at MIT[15], but is interest-
ing for other high-performance applica-
tions. It contains a Xilinx Virtex-II 3000
FPGA, 2MB of synchronous SRAM, and
32MB of SDRAM. This module operates
as a coprocessor on the memory bus of the
PXA255 and supports the two SPI chan-
nels on the stack.

We also have a Compact Flash (CF) board,
two of which can be placed into the stack.
This board connects to the processor expansion

Figure 4: PXA, ADC, and IOB modules at ac-
tual size

Figure 5: Stacked modules
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bus so that it acts as a daughter-board of the
PXA module rather than an independent mod-
ule. Figure 6 shows a stack consisting of IOB
and PXA modules along with a CF board pop-
ulated with a CF ethernet adapter.

Figure 6: Stack including CF board

Table 1 shows design-time estimates of the
power consumed by each module for various
operational modes. In the “off” mode every-
thing on the module is powered off except for
the power-control MCU. The PXA module has
the widest operational power range due to the
the range of processor clock rates and various
possibilities in processor and memory utiliza-
tion. Figure 7 provides more details of the
how the PXA module power can scale from
0.05 mW to 1.5 W. The innermost portion of
this diagram includes figures for the overhead
of power conversion and the 32kHz MCU on
the IOB module.

Module Mode Power
PXA off 0.05 mW
PXA suspended 2.5 - 7.5 mW
PXA active 150 - 1530 mW
IOB active 0.1 mW
ADC off 0.05 mW
ADC active 40 mW

Table 1: Power modes for various modules

5 Impact on Linux

In a conventional hub-and-spoke model, Linux
runs on a central processor and manages some
number of peripheral devices. In contrast, our
distributed architecture places Linux on an au-
tonomous module which is a peer to other
modules. Any other module might request a
power transition of the Linux module, from off
to powered, from suspended to active, etc.

The efficiency of these power transitions is
a critical component of the average system
power. The distributed platform is designed
to achieve low average system power through
aggressive duty-cycling of high-powered com-
ponents. The time and energy spent during
power-mode transitions is overhead that must
be amortized, imposing limits on practical duty
cycles that can be used.

We are currently using Linux version 2.4.21
with the standard ARM and PXA patches as
well as customizations for our PXA module.
The user-level software distribution is derived
primarily from the handhelds.org[11] Famil-
iar distribution. Our reference sensor appli-
cation (see Section 6) does not turn the PXA
module off, but does suspend/resume the pro-
cessor aggressively to achieve active operation
for a few milliseconds once per second. The
time spent during suspend/resume is divided
between time spent in driver callbacks and time
spent in the kernel proper. Table 2 shows the
times we have measured for these transitions
on our PXA module.

Transition Time
Suspend drivers 507 ms
Suspend kernel 13 ms
Resume kernel 78µs
Resume drivers 25 ms

Table 2: Linux transitions with driver callbacks
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Figure 7: PXA module power states

We expect the suspend/resume transitions of
the Linux kernel itself to behave in a symmetric
fashion. However, we measured a very respon-
sive resume time of 78µs and a much slower
suspend time of 13 ms. We do not yet have a
complete explanation for why the suspend pro-
cess is so much slower, although we have ac-
counted for a 1 ms delay that is caused by the
MCU on our PXA board, and therefore not a
feature of the standard Linux kernel.

A much more significant problem is the time
spent in the power management callbacks of
various subsystems and drivers. A suspend
time of 520ms spells disaster for an application
such as the one described in Section 6.

We quickly tracked down the source of this
long suspend time to the USB OHCI driver
(hcd). An ill-fated decision in our design was
the choice of the SA-1111 coprocessor. One
difficulty we encountered was that we had to
provide our own suspend/resume callbacks as
they do not exist for the SA-1111-based hcd in

the standard kernel. To simplify the task, we
have ported the PCI-based OHCI code which
contains a call tomdelay (500) along with
the comment, “Suspend chip and let things set-
tle down a bit.” This single 500ms delay ac-
counts for over 98% of the time required to
suspend drivers. We suspect that this constant
can be safely reduced so that much of the time
lost during suspend can be recovered. Even so,
USB-related timeouts, etc. are on the order of
milliseconds—orders of magnitude more than
the time required by the kernel.

Clearly, this poses a serious problem for ap-
plications with a high duty cycling require-
ment. We are currently working around the
long driver suspend times by simply remov-
ing drivers for non-essential devices and sub-
systems, (such as SA-1111), prior to running
an application with a restricted power budget.
This allows the convenience of things such as
using a USB 802.11 adapter during develop-
ment and debugging without the long suspend
times of the USB drivers during execution.
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6 Results

We implemented a vehicle tracking algorithm
using 4-channel acoustic beamforming. In this
application, data is continually sampled at a
rate of 1kHz, but signal processing only needs
to be performed at a maximum rate of 1Hz.

In previous work[13], this algorithm was im-
plemented on a successor to the WINS node,
(a hub-and-spoke platform with an Intel SA-
1110 processor). Although efficient signal pro-
cessing software was developed, system power
savings were modest since the processor had
to remain active (yet mostly idle) at all times
simply to drive data collection.

We have ported the algorithm to the distributed
platform described in this paper. On this plat-
form, the signal processing for one second’s
worth of data can be completed in 3 ms by
the PXA255 processor running at 100MHz.
Since this is a newer processor than the SA-
1110 of the WINS platform, direct compari-
son of power numbers between the two plat-
forms would be unfair. Instead, we estimate
the power needed for two implementations of
the algorithm on the distributed node.

The first version is intended to behave as if in a
hub-and-spoke system. The processor remains
active at all times to store samples into main
memory. The second version takes advantage
of the distributed nature of the platform. Linux
on the PXA module is suspended as much as
possible while the ADC module continues to
sample and buffer data. This approach adds
the overhead needed to suspend/resume Linux
and to transfer data from the ADC module to
the PXA module over the SPI channel. The
amount of data to be transferred is 8192 bytes,
(4 channels∗ 1024 samples/s∗ 2 bytes/sample
∗ 1 s). The SPI transfer rate is 1.8 Mbps yield-
ing a total transfer time of 36.4 ms.

We measured the power consumed by the PXA

module at two different stages in the algo-
rithm. During active computation the PXA
module consumes 528 mW. When mostly idle,
(e.g. when transferring 1kHz data from the
ADC module), it consumes 370 mW. We have
not yet measured the average power consumed
during the suspend or resume transitions, but
we use an estimate of 370 mW. This estimate
should be conservative as the actual power us-
age should ramp down to less than 10 mW dur-
ing the transition.

Combining these measurements with estimates
from Table 1 and the time measurements from
Table 2, we compute the total energy spent to
compute one result per second. From this we
can determine the average power necessary for
the complete algorithm. These results are given
for both versions of the algorithm in Tables 3
and 4.

Module/Mode Power Time Energy
IOB active 0.1 mW 1 s 0.1 mJ

ADC active 40 mW 1 s 40.0 mJ
PXA active 528 mW 3 ms 1.6 mJ
PXA idle 370 mW 997 ms 368.9 mJ

Estimated energy per second410.6 mJ
Estimated system power: 411 mW

Table 3: Hub-and-spoke power requirements
for beamforming

Module/Mode Power Time Energy
IOB active 0.1 mW 1.0 s 0.1 mJ

ADC active 40 mW 1.0 s 40.0 mJ
PXA suspended 7.5 mW 948 ms 7.1 mJ
PXA resuming 370 mW 78µs 28.9µJ
PXA transferring 370 mW 36.4 ms 13.5 mJ
PXA processing 528 mW 3 ms 1.6 mJ
PXA suspending 370 mW 13 ms 4.8 mJ

Estimated energy per second95.9 mJ
Estimated system power: 96 mW

Table 4: Distributed power requirements for
beamforming
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7 Conclusion

The 96 mW beamforming result marks a suc-
cess for the distributed sensor platform—a 4X
power reduction over the 411 mW required for
the hub-and-spoke platform. This shows that it
is possible to take advantage of 32-bit, Linux
processing without average power exceeding
the 10-100 mW range of a less-capable sensor
based on a 8-bit microcontroller, (i.e. a Mote).

8 Future Work

The field of power-aware sensing is rich, and
we have only just begun to explore the possibil-
ities, even within our own platform. Many ap-
plications require a much smaller power budget
than the 96 mW result we have demonstrated.
Our long-term goal is to design sensors capa-
ble of operating entirely from scavenged en-
ergy, (e.g. solar), which requires operation in
the range of 1 mW[5].

We are currently building a low-power “trip-
wire” module which will implement single-
channel acoustic vehicle detection. This will
allow the PXA module to be completely off
when a vehicle is not present. We antici-
pate that this will allow beamforming within
a power budget as low as 10 mW.

As mentioned in Section 5, there remains a fair
amount of engineering and research with re-
gards to the role of Linux within a distributed
sensor. This includes reducing the time re-
quired in the power management callbacks of
all relevant drivers as much as possible. An
additional task is to move from Linux version
2.4 to 2.6. The dynamic nature of the new uni-
fied device model in 2.6 should make a natural
fit with a platform consisting of autonomous
modules that can be powered on and off at any
point.

Additionally, new power-scheduling research
could better take advantage of the wide range
of power modes in this platform. For exam-
ple, Linux could monitor the frequency and
duty cycles of the power-up/shutdown and sus-
pend/resume cycles. It would then be possi-
ble to provide intelligent feedback into these
cycles based on the relative overhead of each
transition. This work would complement cur-
rent efforts that dynamically adjust voltage and
clock rate based on system load.

9 Availability

This work has been developed as part of the
Power-Aware Sensing Tracking and Analysis
(PASTA)project, but we hope that it will be
useful to researchers and hobbyists with a wide
range of applications. To that end we are
working toward making the hardware mod-
ules available at cost. Further details will be
made available at the PASTA website,http:
//pasta.east.isi.edu . All of the soft-
ware developed under PASTA is also available
there under the terms of the GNU General Pub-
lic License (GPL).
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Abstract

Virtualization provides an abstraction layer
mapping a virtual resource to a real resource.
Such an abstraction allows one machine to be
carved into many virtual machines as well as
allowing a cluster of machines to be viewed
as one. Linux provides a wealth of virtual-
ization offerings. The technologies range in
the problems they solve, the models they are
useful in, and their respective maturity. This
paper surveys some of the current virtualiza-
tion techniques available to Linux users, and
it reviews ways to leverage these technologies.
Virtualization can be used to provide things
such as quality of service resource allocation,
resource isolation for security or sandboxing,
transparent resource redirection for availability
and throughput, and simulation environments
for testing and debugging.

1 Introduction

Virtualization has many manifestations in com-
puter science. At the simplest level it can be
viewed as a layer of abstraction which helps
delegate functionality—typically handling re-
source utilization. This abstraction layer of-
ten helps map avirtual resource to aphysi-
cal or real resource. The virtual resource is
then presented directly to the resource con-
sumer obscuring the existence of the real re-
source. This can be implemented through hard-

ware1 or software [16, 21, 19], may include
any subset of a machine’s resources, and has
a wide variety of applications. Such usages
include machine emulation, hardware consol-
idation, resource isolation, quality of service
resource allocation, and transparent resource
redirection. Applications of these usage mod-
els include virtual hosting, security, high avail-
ability, high throughput, testing, and ease of
administration.

It is interesting to note that differing virtual-
ization models may have inversely correlated
proportions of virtual to physical resources.
For example, the method of carving up a sin-
gle machine into multiple machines—useful
in hardware consolidation or virtual hosting—
looks quite different from a single system im-
age (SSI) [15]—useful in clustering. This pa-
per primarily focuses on providing multiple
virtual instances of a single physical resource,
however, it does cover some examples of a sin-
gle virtual resource mapping to multiple phys-
ical resources.

Modern processors are sufficiently powerful to
provide ample resources to more than one op-
erating environment at a time. Of course, time-
sharing systems have always allowed for con-
current application execution. However, there
are many ways in which these concurrent ap-
plications may effect one another. Because the

1For example, an MMU helps with translation of vir-
tual to physical memory addresses.
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operating system provides access to shared re-
sources such as the CPU, memory, I/O devices,
file system, network, etc., one application’s use
of the system’s resources may effect another’s.
This can have negative effects on both quality
of service and security. Carving a single ma-
chine into a series of independent virtual ma-
chines can eliminate the quality of service and
security issues.

At the same time, modern computing systems,
inclusive of both hardware and software, are
subject to failures and scalability problems.
The application of virtualization can hide these
shortcomings by distributing computing loads
across a cluster of physical systems which may
present a singlevirtual interface to an applica-
tion.

The remainder of this paper is organized as
follows. Section 2 presents a variety of vir-
tualization techniques. Section 3 gives a de-
tailed comparison of some of these techniques.
Section 4 presents conclusions drawn from the
comparisons.

2 Virtualization Techniques

The term “virtual” is one of those horribly
overloaded terms in computing. For the pur-
pose of this paper, we will define virtualization
as a technique for mapping virtual resources to
real resources. These virtual resources are then
used by the resource consumer, fully decou-
pled from any real resources that may or may
not exist. As discussed in Section 1 the virtual
resource may be some or all of a system’s re-
sources.

There are many virtualization techniques avail-
able to Linux users, and these techniques can
be leveraged through a variety of applications.
The techniques reviewed in this paper fall
roughly into two categories:completevirtu-
alization, Section 2.1, which provides all or

nearly all of a system’s resources; andpar-
tial virtualization, Section 2.2, which provides
only a specialized subset of resources. Under-
standing the different techniques helps identify
which technique is the best given a specific set
of requirements.

2.1 Complete Virtualization

Complete virtualization techniques involve
creating a fully functional and isolated virtual
system which can support an OS. This instance
of the OS may have no indication that it is
not being run natively on real hardware, and
it is often referred to as theguest. Host-based
virtual systems run atop an existinghost OS.
Others run atop a thin supervisor which just
helps multiplex resources to the virtual sys-
tems. Typically the host machine is capable
of supporting many concurrent virtual systems,
each with its own guest OS instance. These
virtual systems can be created by simple soft-
ware emulation or by more complicated meth-
ods. These types of complete virtualization
techniques differ in terms of efficiency and per-
formance, portability for either the host or the
guest OS, and functional goals.

The rest of this section is organized at follows.
Section 2.1.1 is a look at pure software proces-
sor emulation techniques. Section 2.1.2 looks
at the virtual OS approach taken by User-mode
Linux. Finally, Section 2.1.3 reviews tech-
niques using virtual machines and virtual ma-
chine monitors.

2.1.1 Processor Emulation

Processor emulation is one technique used to
provide complete virtualization. In this case,
the CPU is emulated entirely in software. Ad-
ditionally, it is typical to find peripheral de-
vices such as keyboard, mouse, VGA, network,
timer chips, etc. supported by the emulator.
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The emulation is done in user-space software,
which makes it a rich environment for debug-
ging system level software running in the em-
ulator. Also, this technique has great advan-
tages for portability at the cost of runtime per-
formance. The emulator may easily run on var-
ious hardware architectures, as all emulation is
done in software. Further, because these are
hardware emulators, there is often little to no
restriction on what OS software can be exe-
cuted. However, the dynamic translation re-
quired to translate hardware instructions from
the emulated processor to the native processor
is pure overhead, and thus can be hundreds of
times slower than native instructions [22].

An exhaustive survey of processor emulators is
beyond the scope of this paper. Here we take
a brief look at a few of the prevalent emulators
often used to host virtual Linux instances:

• QEMU CPU emulator
• Bochs
• PearPC
• Valgrind.

QEMU [21] is a CPU emulator that does dy-
namic instruction translation. It maintains a
translation cache for efficiency. It can be used
as a user-mode emulator which will run Linux
binaries compiled for the CPU that QEMU
is emulating regardless of the host platform.
Also, QEMU can do full system emulation,
which allows one to boot an OS on the QEMU
emulated CPU. While the QEMU user-mode
is available for many architectures, the com-
plete system emulation mode is only available
for x86 and is in testing for PowerPC. The x86
emulator provides all the PC peripheral devices
needed to boot an OS, and can easily run an
unmodified Linux kernel. It also features de-
bugger support which can be quite useful for
debugging a Linux kernel.

Bochs [2] is an IA-322 CPU emulator. It does
dynamic compilation and is often cited as be-
ing rather slow [3]. Similar to QEMU, Bochs
provides full platform emulation sufficient for
running an OS, and it can boot an unmodified
Linux kernel. While Bochs is highly portable,
it targets only the IA-32 processor.

PearPC [17] is a PowerPC CPU emulator. The
generic PearPC CPU emulator can be ported
and is slow. PearPC also provides a Pow-
erPC CPU emulator that is specific to x86
hosts. This version uses dynamic instruc-
tion translation and caching techniques (simi-
lar to QEMU) which improve the speed sub-
stantially.

Valgrind [14] is worthy of mentioning as it is
both a very useful tool and contains an x86-
to-x86 just-in-time (JIT) compiler, thus emu-
lating the x86 CPU. However, this tool has
been historically used like Purify [10] as a
memory checker, and not typically used for
bringing up a virtual instance of Linux on the
emulated CPU3. It handles user-space emula-
tion, but not full system emulation. Valgrind
is developed as an instrumentation framework
around the JIT, so it can been expanded to be a
general purpose “meta-tool for program super-
vision.” [14]

2.1.2 Virtual OS

The virtual OS is rather specific to User-mode
Linux (UML) [6]. In this case, the physical
machine is controlled by a normal Linux ker-
nel. The host kernel provides hardware re-
sources to each UML instance. The UML ker-
nel provides virtual hardware resources to all
the processes within a UML instance. The pro-
cesses on a UML instance can run native code

2IA-32 and x86 are used interchangeably in this pa-
per.

3Efforts have been made to run UML under Valgrind.
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on the processor, avoiding pure emulation, and
UML kernel traps all privileged needs. The
UML kernel is, in fact, just an architectural
port—ARCH=um—of the normal Linux ker-
nel. The architecture specific code in UML is
actually user-space code which uses the host
Linux kernel system call interface. In other
words, it is a port of the Linux kernel to the
Linux kernel. This form of virtualization can
be used for security4, debugging, or virtual
hosting.

2.1.3 Virtual Machine

The virtual machine (VM) has been studied for
well over thirty years [8, 9]. It is a power-
ful abstraction that gives the illusion of run-
ning on dedicated real hardware without such
physical requirements. In its early incarna-
tions it provided a safe and convenient way
to share expensive hardware resources. The
well-known IBM VM/370 [5] simulated the
System/390 hardware, presenting multiple in-
dependent VM’s to the user. The VM/370
was aided by the System/370 hardware design,
a luxury which is often not available to the
modern world of low-priced, powerful com-
modity processors based on the x86 architec-
ture [23]. However, it is precisely this type
of environment which can benefit from con-
solidating multiple hardware servers to a single
amply powered machine.

The typical architecture includes a physical
platform which runs a virtual machine moni-
tor (VMM). This monitor carves up the physi-
cal resources and makes them available to each
virtual machine. In some cases, the VMM
is host-basedrequiring a host OS, host spe-
cific drivers and user-space code to launch a
VM [13, 7]. As with processor emulation in

4To be secure, UML must run inskas mode which
requires a small patch to the host kernel

Section 2.1.1, it is beyond the scope of this pa-
per to give an exhaustive survey of virtual ma-
chine technologies. Here we take a brief look
at a few of the prevalent projects which can be
used to run Linux in a virtual machine:

• Plex86
• VMware5

• Xen

Plex86 [18] is one project that provides an x86
virtual machine. This project provides a hosted
virtual machine monitor, requiring a host OS
to run the plex86 VMM. Plex86 is quite spe-
cific to Linux. The host OS may be Linux (al-
though other host kernels are supported) and
requires a kernel module to help implement the
VMM. It also makes some key assumptions re-
garding usage of the virtual x86 hardware and
patches the guest Linux kernel to conform to
these assumptions. Plex86 does very little to
virtualize hardware I/O. Instead, Plex86 uses a
Hardware Abstraction Layer (HAL) to handle
virtual I/O to the hardware devices. This elim-
inates the need to provide any kind of virtual
devices in the VM, and being host-based elim-
inates the need for the VMM to understand all
the possible hardware on the host. I/O which
is started in the guest OS is passed through the
HAL using fairly simple guest kernel drivers
which issue anint $0xff —which must not
be used for other purposes on the host OS. The
host VMM traps that software interrupt and
handles the request accordingly. As noted by
the project’s author, Plex86 is still in a proto-
type state, and not really ready for meaningful
benchmarking yet.

VMware [7] is worthy of mention, despite the
fact that it is a commercial product. VMware™
Workstation [12] provides an x86 virtual ma-
chine and is in some ways similar to Plex86. It
is a hosted virtual machine monitor, however,

5VMware is a commercial product.
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the goals of VMware Workstation include the
ability to run a complete x86 OS without mak-
ing any modifications. Therefore, it makes no
assumptions about the guest OS. By emulating
very standard hardware such as the PS/2 key-
board and mouse, the AMD PCnet™ network
interface card or the Soundblaster 16 sound
card the VM provides virtual hardware devices
that can be run by standard guest OS drivers.
Another x86 virtual machine from VMware is
the ESX Server [26]—a pure virtual machine
monitor that is not host-based. This method
eliminates some of the overhead involved with
running atop a host OS at the cost of requiring
more hardware support in the VMM itself. As
with Workstation, ESX requires no modifica-
tions to the guest OS. The lower overhead of
ESX makes it a contender for a data center vir-
tual hosting environment, where it could easily
run multiple VM’s on a single physical system.

Xen [16] is an x86 virtual machine monitor that
provides a virtual hardware interface to the vir-
tual machine. Typically, the virtual machine
provides a hardware interface which is identi-
cal to the underlying hardware. However, the
Xen VM hardware abstraction is similar but
not identical to the underlying x86 hardware.
This allows the VMM to overcome some of
the shortcomings of the x86 architecture which
make it difficult to virtualize [23]. A similar
method was used for the Denali [1] isolation
kernel. However, unlike Denali, the Xen VM
supports a notion of a virtual address space.
So the guest OS and applications may share
resources just like a normal OS environment.
In addition, guest kernels running in a Xen
VM preserve the ABI to their applications. So,
while there is a need to port the guest OS kernel
to the Xen VM virtual hardware abstraction,
the porting effort ends there. Further, given the
similarity to the x86 architecture, the effort to
port to Xen results in a very small amount of
new OS code—well below 2% of the OS code
base [16]. This method has proven to be quite

effective when considering the minimal porting
effort coupled with the impressive performance
benchmarks [16].

2.2 Partial Virtualization

Partial virtualization techniques create virtu-
alized resources that are a specialized subset
of a complete system’s resources rather than a
complete virtual machine. These methods are
typically used to present a virtual interface to
clients or applications when limited isolation
or virtualization is sufficient. Partial virtual-
ization can have very different applications de-
pending on the resource which is being virtual-
ized. These techniques vary widely in the prob-
lems they solve, and in some cases can be used
with alongside of complete virtualization. The
remainder of this Section reviews these tech-
niques.

2.2.1 Linux-Vserver

The Linux-Vserver [20] project takes some
of the basic ideas of isolation from a vir-
tual machine and implements them in a sin-
gle host OS. The Linux kernel is patched to al-
low for multiple concurrent execution contexts,
often called Virtual Private Servers6 (VPS).
This method eliminates any overhead associ-
ated with running multiple operating systems,
multiple VM’s and the supervisor VMM. Each
context can have its own file system, its own
network addresses, its own set of Linux Capa-
bilities [25], and its own set of resource limits.
With this level of software isolation, it is pos-
sible to run two concurrent contexts that are
unable to interact with each other directly. It
may still be possible to generate some indirect
QoS degradation fromcrosstalk[24], however
these effects should be largely mitigated by

6This is also the name given to Ensim’s commercial
product [4].
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proper setting of each context’s resource limits.
While this solution does require a reasonably
large kernel patch (a 337K patch against Linux
2.6.6), it is a very thin virtualization layer that
efficiently isolates execution contexts.

2.2.2 Linux Virtual Server

The Linux Virtual Server Project [11] takes
a very different view of server virtualization
from Linux-Vserver, Section 2.2.1. Rather
than creating a virtual operating environment
for each server, it behaves as a network load
balancer. The Linux Virtual Server, also re-
ferred to as IP Virtual Server (IPVS), presents a
single network address for the network service
and distributes client requests transparently to
a hardware cluster of network servers. With
IPVS, the client can be redirected to the next
available resource using a variety of algorithms
such as round robin and least connected. This
is an example of virtualization used to provide
enhanced availability throughput, or scalabil-
ity. Further, this project in contrast with Linux-
Vserver helps illustrate the difficulty in defin-
ing a “Virtual Server.”

2.2.3 File system and Disks

The UNIX file system provides the basic
namespace that applications use to interact
with significant portions of the system. The
root of a file system can be relocated in Linux
using chroot() . This may be a stretch of
the definition of virtualization, but this tech-
nique does allow a single server to give dif-
ferent views into the system global names-
pace. Tools likechroot() or the BSD
jail() system7 allow multiple applications
to have completely private file system names-

7An implementation of BSD jail has been ported to
Linux.

paces, which becomes an effective tool towards
system virtualization. In fact, Linux-Vserver,
Section 2.2.1, makes use ofchroot() as key
to its file system isolation. Linux has native
support for per process private namespaces.
This gives each process its own virtual or log-
ical view of the system’s global namespace, in
a more powerful, flexible and secure manner
thanchroot() . Linux-Vserver is consider-
ing moving to namespaces as a replacement for
chroot() isolation [20]. It would not be sur-
prising to find other virtualization systems us-
ing the same technique for file system isola-
tion.

Another layer of virtualization can be found in
the disk or block device layer of the Linux ker-
nel. The device-mapper allows administrators
to create a virtual block device which is backed
by one or more physical block devices. This
type of virtualization is typically used for ease
of administration.

3 Comparisons

Having reviewed a variety of virtualization
techniques in Section 2, it is now useful to pick
a representative subset and see how they com-
pare with one another. For the sake of com-
parison, this paper will focus on QEMU, User-
mode Linux, Xen, and Linux-Vserver. All four
of these technologies can provide a virtual exe-
cution environment comprehensive enough to
run either a complete OS, or at a minimum
user-space applications.

3.1 QEMU

Pros:

• Portable to numerous architectures.
• Can be used to cross platforms.
• Can run guest OS unmodified.
• Can run on unmodified host OS.
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• Flexible, can run a full system or just iso-
lated user-space programs.

• Very easy to debug system software.
• Security through isolation.

Cons:

• Processor emulation is much slower than
virtualization.

3.2 User-mode Linux

Pros:

• Portable to numerous architectures.
• Can run on unmodified host OS.
• Efficient enough to run multiple instances

on single host in virtual hosting environ-
ment.

• Very easy to debug system software.
• Security through isolation.

Cons:

• Still slower than a virtual machine.
• The guest OS kernel is not the same as a

native one.

3.3 Xen

Pros:

• True virtual machine monitor for best per-
formance.

• The guest OS user-space applications are
binary compatible.

• No host OS, very clean virtual machine
separation.

• Security through isolation.
• Ideal for virtual hosting environment, can

scale up to 100 virtual machines.

Cons:

• The guest OS kernel must be ported to
Xen virtual hardware architecture.

3.4 Linux-Vserver

Pros:

• Highly efficient way to isolate resources.
• Can conserve on disk and memory by

sharing basic resources like shared li-
braries.

• Security through context separation.

Cons:

• Only one kernel instance, so quality of
service may be hard to guarantee.

4 Conclusions

Virtualization is an old yet resurging technol-
ogy. Virtual machine research is alive and well,
and Linux provides a great testbed for new
virtualization technologies. With a wealth of
choices, Linux users are sure to find a virtual-
ization technique that suits their requirements.
From running as a guest OS on a virtual ma-
chine, to providing thin isolation environments
for applications, to single system image clus-
ters, Linux is thriving in this virtual reality.
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