

Lockless Programming in
Games

Bruce Dawson

Principal Software Design Engineer

Microsoft

Windows Client Performance

Agenda

» Locks and their problems

» Lockless programming – a
different set of problems!

» Portable lockless programming

» Lockless algorithms that work

» Conclusions

» Focus is on improving intuition on
the reordering aspects of lockless
programming

Cell phones

» Please turn off all cell phones,
pagers, alarm clocks, crying
babies, internal combustion
engines, leaf blowers, etc.

Mandatory Multi-core Mention

» Xbox 360: six hardware threads

» PS3: nine hardware threads

» Windows: quad-core PCs for $500

» Multi-threading is mandatory if you want
to harness the available power

» Luckily it's easy

 As long as there is no sharing of non-constant
data

» Sharing data is tricky

 Easiest and safest way is to use OS features
such as locks and semaphores

Simple Job Queue

» Assigning work:

EnterCriticalSection(&workItemsLock);

workItems.push(workItem);

LeaveCriticalSection(&workItemsLock);

» Worker threads:

EnterCriticalSection(&workItemsLock);

WorkItem workItem = workItems.front();

workItems.pop();

LeaveCriticalSection(&workItemsLock);

DoWork(workItem);

The Problem With Locks…

» Overhead – acquiring and releasing locks takes
time

 So don’t acquire locks too often

» Deadlocks – lock acquisition order must be
consistent to avoid these

 So don’t have very many locks, or only acquire one
at a time

» Contention – sometimes somebody else has the
lock

 So never hold locks for too long – contradicts point 1

 So have lots of little locks – contradicts point 2

» Priority inversions – if a thread is swapped out
while holding a lock, progress may stall

 Changing thread priorities can lead to this

 Xbox 360 system threads can briefly cause this

Sensible Reaction

» Use locks carefully

 Don't lock too frequently

 Don't lock for too long

 Don't use too many locks

 Don't have one central lock

» Or, try lockless

Lockless Programming

» Techniques for safe multi-threaded
data sharing without locks

» Pros:

 May have lower overhead

 Avoids deadlocks

 May reduce contention

 Avoids priority inversions

» Cons

 Very limited abilities

 Extremely tricky to get right

 Generally non-portable

Job Queue Again

» Assigning work:

EnterCriticalSection(&workItemsLock);

workItems.push(workItem);

LeaveCriticalSection(&workItemsLock);

» Worker threads:

EnterCriticalSection(&workItemsLock);

WorkItem workItem = workItems.front();

workItems.pop();

LeaveCriticalSection(&workItemsLock);

DoWork(workItem);

Lockless Job Queue #1

» Assigning work:

EnterCriticalSection(&workItemsLock);

InterlockedPushEntrySList(workItem);

LeaveCriticalSection(&workItemsLock);

» Worker threads:

EnterCriticalSection(&workItemsLock);

WorkItem workItem =

InterlockedPopEntrySList();

LeaveCriticalSection(&workItemsLock);

DoWork(workItem);

Lockless Job Stack #1

» Assigning work:

InterlockedPushEntrySList(workItem);

» Worker threads:

WorkItem workItem =

InterlockedPopEntrySList();

DoWork(workItem);

BROKEN on
Xbox 360!!!

Lockless Job Queue #2

» Assigning work – one writer only:

if(RoomAvail(readPt, writePt)) {

CircWorkList[writePt] = workItem;

writePt = WRAP(writePt + 1);

» Worker thread – one reader only:

if(DataAvail(writePt, readPt)) {

WorkItem workItem =

CircWorkList[readPt];

readPt = WRAP(readPt + 1);

DoWork(workItem);

Correct On
Paper

Broken As
Executed

Simple CPU/Compiler Model

Read pC

Write pA

Write pB

Read pD

Write pC

Read pC Read pD Write pA Write pB Write pC

Write pA Write pB Write pC

Alternate CPU Model

Write pA

Write pB

Write pC

Visible order:

Write pA

Write pC

Write pB

Alternate CPU – Reads Pass Reads

Read A1

Read A2

Read A1

Visible order:

Read A1

Read A1

Read A2

Read A1Read A2Read A1

Alternate CPU – Writes Pass Reads

Read A1

Write A2

Visible order:

Write A2

Read A1

Read A1Write A2

Alternate CPU – Reads Pass Writes

Read A1

Write A2

Read A2

Read A1

Visible order:

Read A1

Read A1

Write A2

Read A2

Read A1Write A2Read A1Read A2

Memory Models

» "Pass" means "visible before"

» Memory models are actually more
complex than this

 May vary for cacheable/non-cacheable, etc.

» This only affects multi-threaded lock-free
code!!!

* Only stores to different addresses can pass each other

** Loads to a previously stored address will load that value

x86/x64 PowerPC ARM IA64

store can pass store? No Yes* Yes* Yes*

load can pass load? No Yes Yes Yes

store can pass load? No Yes Yes Yes

load can pass store?** Yes Yes Yes Yes

Improbable CPU – Reads Don’t Pass Writes

Read A1

Write A2

Read A1

Read A1Write A2Read A1

Reads Must Pass Writes!

» Reads not passing writes would
mean L1 cache is frequently
disabled

 Every read that follows a write would
stall for shared storage latency

» Huge performance impact

» Therefore, on x86 and x64 (on all
modern CPUs) reads can pass
writes

Reordering Implications

» Publisher/Subscriber model

» Thread A:
g_data = data;

g_dataReady = true;

» Thread B:
if(g_dataReady)

process(g_data);

» Is it safe?

Publisher/Subscriber on PowerPC

Proc 1:

Write g_data

Write g_dataReady

Proc 2:

Read g_dataReady

Read g_data

» Writes may reach
L2 out of order

Write
g_data

Write
g_dataReady

Publisher/Subscriber on PowerPC

Proc 1:

Write g_data

MyExportBarrier();

Write g_dataReady

Proc 2:

Read g_dataReady

Read g_data

» Writes now reach
L2 in order

Write
g_data

Export
Barrier

Write
g_dataReady

Publisher/Subscriber on PowerPC

Proc 1:

Write g_data

MyExportBarrier();

Write g_dataReady

Proc 2:

Read g_dataReady

Read g_data

» Reads may leave
L2 out of order –
g_data may be
stale

Write
g_data

Export
Barrier

Write
g_dataReady

Read
g_data
Read

g_dataReady

Invalidate
g_data

Publisher/Subscriber on PowerPC

Proc 1:

Write g_data

MyExportBarrier();

Write g_dataReady

Proc 2:

Read g_dataReady

MyImportBarrier();

Read g_data

» It's all good!

Write
g_data

Export
Barrier

Write
g_dataReady

Read
g_dataReady

Invalidate
g_data

Read
g_data
Import
Barrier

x86/x64 FTW!!!

» Not so fast…

» Compilers are just as evil as
processors

» Compilers will rearrange your code
as much as legally possible

 And compilers assume your code is
single threaded

» Compiler and CPU reordering
barriers needed

MyExportBarrier

» Prevents reordering of writes by compiler or CPU

 Used when handing out access to data

» x86/x64: _ReadWriteBarrier();

 Compiler intrinsic, prevents compiler reordering

» PowerPC: __lwsync();

 Hardware barrier, prevents CPU write reordering

» ARM: __dmb(); // Full hardware barrier

» IA64: __mf(); // Full hardware barrier

» Positioning is crucial!

 Write the data, MyExportBarrier, write the control
value

» Export-barrier followed by write is known as write-
release semantics

MyImportBarrier();

» Prevents reordering of reads by compiler or CPU

 Used when gaining access to data

» x86/x64: _ReadWriteBarrier();

 Compiler intrinsic, prevents compiler reordering

» PowerPC: __lwsync(); or isync();

 Hardware barrier, prevents CPU read reordering

» ARM: __dmb(); // Full hardware barrier

» IA64: __mf(); // Full hardware barrier

» Positioning is crucial!

 Read the control value, MyImportBarrier, read the
data

» Read followed by import-barrier is known as read-
acquire semantics

Fixed Job Queue #2
» Assigning work – one writer only:

if(RoomAvail(readPt, writePt)) {

MyImportBarrier();

CircWorkList[writePt] = workItem;

MyExportBarrier();

writePt = WRAP(writePtr + 1);

» Worker thread – one reader only:

if(DataAvail(writePt, readPt)) {

MyImportBarrier();

WorkItem workItem =

CircWorkList[readPt];

MyExportBarrier();

readPt = WRAP(readPt + 1);

DoWork(workItem);

Correct!!!

Dekker’s/Peterson’s Algorithm

int T1 = 0, T2 = 0;

Proc 1:

void LockForT1() {

T1 = 1;

if(T2 != 0) {

…

Proc 2:

void LockForT2() {

T2 = 1;

if(T1 != 0) {

…

}

Dekker’s/Peterson’s Animation

Proc 1:

Write T1

Read T2

Proc 2:

Write T2

Read T1

» Epic fail! (on
x86/x64 also)

Write
T1

Read T1

Invalidate
T1

Write
T2

Read T2

Invalidate
T2

Dekker’s/Peterson’s Animation

Proc 1:

Write T1

MemoryBarrier();

Read T2

Proc 2:

Write T2

MemoryBarrier();

Read T1

» It's all good!

Write
T1

Read T1

Invalidate
T1

Write
T2

Read T2

Invalidate
T2

Memory
Barrier

Memory
Barrier

Full Memory Barrier

» MemoryBarrier();

 x86: __asm xchg Barrier, eax

 x64: __faststorefence();

 Xbox 360: __sync();

 ARM: __dmb();

 IA64: __mf();

» Needed for Dekker's algorithm,
implementing locks, etc.

» Prevents all reordering – including
preventing reads passing writes

» Most expensive barrier type

Dekker’s/Peterson’s Fixed

int T1 = 0, T2 = 0;

Proc 1:

void LockForT1() {

T1 = 1;

MemoryBarrier();

if(T2 != 0) {

…

Proc 2:

void LockForT2() {

T2 = 1;

MemoryBarrier();

if(T1 != 0) {

…

}

Dekker’s/Peterson’s Still Broken

int T1 = 0, T2 = 0;

Proc 1:

void LockForT1() {

T1 = 1;

MyExportBarrier();

if(T2 != 0) {

…

Proc 2:

void LockForT2() {

T2 = 1;

MyExportBarrier();

if(T1 != 0) {

…

}

Dekker’s/Peterson’s Still Broken

int T1 = 0, T2 = 0;

Proc 1:

void LockForT1() {

T1 = 1;

MyImportBarrier();

if(T2 != 0) {

…

Proc 2:

void LockForT2() {

T2 = 1;

MyImportBarrier();

if(T1 != 0) {

…

}

Dekker’s/Peterson’s Still Broken

int T1 = 0, T2 = 0;

Proc 1:

void LockForT1() {

T1 = 1;

MyExportBarrier(); MyImportBarrier();

if(T2 != 0) {

…

Proc 2:

void LockForT2() {

T2 = 1;

MyExportBarrier(); MyImportBarrier();

if(T1 != 0) {

…

}

What About Volatile?

» Standard volatile semantics not
designed for multi-threading

 Compiler can move normal reads/writes past
volatile reads/writes

 Also, doesn’t prevent CPU reordering

» VC++ 2005+ volatile is better…

 Acts as read-acquire/write-release on
x86/x64 and Itanium

 Doesn’t prevent hardware reordering on Xbox
360

» Watch for atomic<T> in C++0x

 Sequentially consistent by default but can
choose from four memory models

Double Checked Locking

Foo* GetFoo() {

static Foo* volatile s_pFoo;

Foo* tmp = s_pFoo;

if(!tmp) {

EnterCriticalSection(&initLock);

tmp = s_pFoo; // Reload inside lock

if(!tmp) {

tmp = new Foo();

s_pFoo = tmp;

}

LeaveCriticalSection(&initLock);

}

return tmp; }

» This is broken on many systems

Possible Compiler Rewrite

Foo* GetFoo() {

static Foo* volatile s_pFoo;

Foo* tmp = s_pFoo;

if(!tmp) {

EnterCriticalSection(&initLock);

tmp = s_pFoo; // Reload inside lock

if(!tmp) {

s_pFoo = (Foo*)new char[sizeof(Foo)];

new(s_pFoo) Foo; tmp = s_pFoo;

}

LeaveCriticalSection(&initLock);

}

return tmp; }

Double Checked Locking

Foo* GetFoo() {

static Foo* volatile s_pFoo;

Foo* tmp = s_pFoo; MyImportBarrier();

if(!tmp) {

EnterCriticalSection(&initLock);

tmp = s_pFoo; // Reload inside lock

if(!tmp) {

tmp = new Foo();

MyExportBarrier(); s_pFoo = tmp;

}

LeaveCriticalSection(&initLock);

}

return tmp; }

» Fixed

InterlockedXxx

» Necessary to extend lockless algorithms
to greater than two threads

 A whole separate talk…

» InterlockedXxx is a full barrier on
Windows for x86, x64, and Itanium

» Not a barrier at all on Xbox 360

 Oops. Still atomic, just not a barrier

» InterlockedXxx Acquire and Release are
portable across all platforms

 Same guarantees everywhere

 Safer than regular InterlockedXxx on Xbox 360

 No difference on x86/x64

 Recommended

Practical Lockless Uses

» Reference counts

» Setting a flag to tell a thread to
exit

» Publisher/Subscriber with one
reader and one writer – lockless
pipe

» SLists

» XMCore on Xbox 360

» Double checked locking

Barrier Summary

» MyExportBarrier when publishing
data, to prevent write reordering

» MyImportBarrier when acquiring
data, to prevent read reordering

» MemoryBarrier to stop all
reordering, including reads passing
writes

» Identify where you are
publishing/releasing and where
you are subscribing/acquiring

Summary

» Prefer using locks – they are full barriers

» Acquiring and releasing a lock is a memory
barrier

» Use lockless only when costs of locks are
shown to be too high

» Use pre-built lockless algorithms if
possible

» Encapsulate lockless algorithms to make
them safe to use

» Volatile is not a portable solution

» Remember that InterlockedXxx is a full
barrier on Windows, but not on Xbox
360

References

» Intel memory model documentation in Intel® 64 and IA-32
Architectures Software Developer's Manual Volume 3A:
System Programming Guide

 http://download.intel.com/design/processor/manuals/253668.pdf

» AMD "Multiprocessor Memory Access Ordering"

 http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/24593.pdf

» PPC memory model explanation

 http://www.ibm.com/developerworks/eserver/articles/powerpc.ht
ml

» Lockless Programming Considerations for Xbox 360 and
Microsoft Windows

 http://msdn.microsoft.com/en-us/library/bb310595.aspx

» Perils of Double Checked Locking
 http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf

» Java Memory Model Cookbook
 http://g.oswego.edu/dl/jmm/cookbook.html

http://download.intel.com/design/processor/manuals/253668.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.ibm.com/developerworks/eserver/articles/powerpc.html
http://msdn.microsoft.com/en-us/library/bb310595.aspx
http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf
http://g.oswego.edu/dl/jmm/cookbook.html

Questions?

» bdawson@microsoft.com

mailto:bdawson@microsoft.com

Feedback forms

» Please fill out feedback forms

