

Locks, Deadlocks, and
Synchronization

April 5, 2006

Abstract
This paper explains how to use synchronization mechanisms to protect shared
memory locations in kernel-mode drivers for the Microsoft® Windows® family of
operating systems. By following the guidelines in this paper, driver writers will be
able to determine when synchronization is required, what synchronization
mechanisms are provided by the operating system, and how each type of
synchronization mechanism is used.

This paper builds on topics that are introduced in the companion white paper
“Scheduling, Thread Context, and IRQL” at
http://www.microsoft.com/whdc/hwdev/driver/IRQL.mspx. Readers of this paper
should be familiar with the information presented there.

Contents
Introduction ... 4
Choosing a Synchronization Mechanism .. 5

Interlocked Operations .. 6
Mutexes ... 6
Shared/Exclusive Locks .. 7
Counted Semaphores.. 7

Windows Synchronization Mechanisms .. 7
InterlockedXxx Routines ... 8
Spin Locks .. 9

Ordinary Spin Locks ... 10
Queued Spin Locks .. 10
Interrupt Spin Locks ... 10

ExInterlockedXxx Routines ... 11
Fast Mutexes .. 13
Kernel Dispatcher Objects .. 14

Common Features ... 15
IRQL Restrictions .. 16
Alerts and Wait Modes .. 16

Events .. 18
Notification Events ... 18
Synchronization Events ... 19
Synchronizing with User-Mode Applications .. 19

Kernel Mutexes .. 20
Semaphores ... 21
Timers .. 22
Threads, Processes, and Files ... 23

Executive Resources .. 23
Callback Objects ... 26
Driver-Defined Locks .. 26
Using Multiple Synchronization Mechanisms Simultaneously ... 26
Preventing Deadlocks ... 27
Security Issues .. 28
Performance Issues .. 28
Best Practices for Driver Synchronization ... 29
Call to Action and Resources .. 30

http://www.microsoft.com/whdc/hwdev/driver/IRQL.mspx

Locks, Deadlocks, and Synchronization- 2

© 2004 Microsoft Corporation. All rights reserved.

Locks, Deadlocks, and Synchronization- 3

© 2004 Microsoft Corporation. All rights reserved.

Disclaimer
This is a preliminary document and may be changed substantially prior to final commercial release of the
software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the
issues discussed as of the date of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights
under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places and events depicted herein are fictitious, and no association with any
real company, organization, product, domain name, email address, logo, person, place or event is
intended or should be inferred.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Locks, Deadlocks, and Synchronization- 4

© 2004 Microsoft Corporation. All rights reserved.

1 Introduction
The Microsoft® Windows® family of operating systems provides a variety of
mechanisms that drivers can use for synchronization. Synchronization is required
for:

 Any shared data that multiple threads might access, unless all threads access it
in a read-only manner.

 A set of operations that must be performed atomically.

To understand why synchronization is important, consider a situation in which two
threads attempt to add one to the same global variable. This operation might
require three processor instructions:

1. Read MyVar into a register.

2. Add 1 to the value in the register.

3. Write the value of the register into MyVar.

If the two threads run simultaneously on a multiprocessor system with no locks or
other synchronization, the results of an update could be lost. For example, assume
that the initial value of MyVar is 0 and that the operations proceed in the order
shown below.

Threads Using No Locks on a Multiprocessor System

Thread A on Processor 1 Thread B on Processor 2

Read MyVar into register on
Processor 1.

 Read MyVar into register on
Processor 2.

 Add 1 to Processor 2 register.

 Write Processor 2 register into
MyVar.

Add 1 to Processor 1 register.

Write Processor 1 register into
MyVar.

After both threads have updated MyVar, its value should be 2. However, the
Thread B update is lost when Thread A increments the original value of MyVar and
then overwrites the variable. Problems like this are often called race conditions.

On a single-processor system, thread pre-emption can also cause race conditions.
At any time, the operating system may temporarily stop running a thread and
instead run a different, higher-priority thread. When the system pre-empts a thread,
the operating system saves the values of the processor’s registers in the thread and
restores them when the thread runs again.

Locks, Deadlocks, and Synchronization- 5

© 2004 Microsoft Corporation. All rights reserved.

The following example shows how a race condition can result from thread pre-
emption. As in the previous example, assume that the initial value of MyVar is 0.

Threads Using No Locks on a Single Processor System

Thread A Thread B

Read MyVar into register.

Pre-empt Thread A; run Thread B.

 Read MyVar into register.

 Add 1 to register.

 Write register into MyVar.

Pre-empt Thread B; run Thread A.

Add 1 to register.

Write register into MyVar.

As in the multiprocessor example, the resulting value in MyVar is 1 instead of 2.

In both examples, using a lock to synchronize access to the variable would prevent
the race condition. The lock ensures that Thread A has finished its update before
Thread B accesses the variable, as shown in the following example.

Threads Using a Lock on Any System

Thread A Thread B

Acquire lock.

Read MyVar into register.

Add 1 to register.

Write register into MyVar.

Release lock. Acquire lock.

 Read MyVar into register.

 Add 1 to register.

 Write register into MyVar.

 Release lock.

The lock ensures that one thread’s read and write operations are complete before
another thread can access the variable. With locks in place, the final value of MyVar
after these two code sequences complete is 2, which is the correct, intended result
of the operation.

2 Choosing a Synchronization Mechanism
The best way to synchronize access in any particular situation depends on the
operations that require synchronization. Synchronization methods fall into several
broad categories. Within each category, Windows provides one or more specific
mechanisms that drivers can use. Table 1 is a list of common synchronization
methods.

Table 1. Common Synchronization Methods

Synchronization
method

Description Windows mechanisms

Interlocked
operations

Provides atomic logical,
arithmetic, and list
manipulation operations that
are both thread-safe and
multiprocessor safe.

InterlockedXxx and
ExInterlockedXxx routines

Locks, Deadlocks, and Synchronization- 6

© 2004 Microsoft Corporation. All rights reserved.

Synchronization
method

Description Windows mechanisms

Mutexes Provides (mutually) exclusive
access to memory.

Spin locks, fast mutexes, kernel
mutexes, synchronization
events

Shared/exclusive lock Allows one thread to write or
many threads to read the
protected data.

Executive resources

Counted semaphore Allows a fixed number of
acquisitions.

Semaphores

The following sections provide additional details about each of these
synchronization methods.

2.1.1 Interlocked Operations

An interlocked operation completes a common task atomically. Windows provides
interlocked routines to perform arithmetic and logical operations and to manipulate
lists.

2.1.2 Mutexes

A mutex ensures mutually exclusive access; that is, while one thread has the
mutex, all other threads are excluded from using it. A thread acquires the mutex
before accessing the protected data and releases the mutex when access is
complete. If the mutex is acquired, other threads must either spin or wait until it is
released before they can acquire it.

Any lock that grants mutually exclusive access can be considered a mutex. For
example, spin locks and synchronization events are both mutexes because only
one thread can acquire a spin lock at a time and only one thread becomes eligible
for execution when a synchronization event is signaled, The type of mutex that is
appropriate for any particular situation depends on where and how the mutex will be
used. When you are selecting a mutex, consider the following:

 At what IRQLs can the mutex be acquired and released?

 Does acquiring the mutex raise the current IRQL? If so, where is the old IRQL
stored?

 Must the mutex be released on the same thread that acquired it?

 Can the mutex be acquired recursively? (That is, can a thread acquire the same
mutex more than once without releasing it?)

 What happens to a mutex if the thread that is holding it is terminated? (This
issue applies primarily to the mutexes that are used in user-mode applications.)

Locks, Deadlocks, and Synchronization- 7

© 2004 Microsoft Corporation. All rights reserved.

Table 2 is a list of the types of mutexes that are used in Windows drivers, along with
their characteristics. Detailed information about each of the Windows mechanisms
appears later in this paper.

Table 2. Windows Mutex Mechanisms

Type of mutex IRQL considerations Recursion and thread
details

Interrupt spin
lock

Acquisition raises IRQL to DIRQ and
returns previous IRQL to caller.

Not recursive.

Release on same thread as
acquire.

Spin lock Acquisition raises IRQL to
DISPATCH_LEVEL and returns
previous IRQL to caller.

Not recursive.

Release on same thread as
acquire.

Queued spin lock Acquisition raises IRQL to
DISPATCH_LEVEL and stores
previous IRQL in lock owner handle.

Not recursive.

Release on same thread as
acquire.

Fast mutex Acquisition raises IRQL to
APC_LEVEL and stores previous
IRQL in lock.

Not recursive.

Release on same thread as
acquire.

Kernel mutex (a
kernel dispatcher
object)

Enters critical region upon acquisition
and leaves critical region upon
release.

Recursive.

Release on same thread as
acquire.

Synchronization
event (a kernel
dispatcher
object)

Acquisition does not change IRQL.
Wait at IRQL <= APC_LEVEL and
signal at IRQL <=
DISPATCH_LEVEL.

Not recursive.

Release on the same thread
or on a different thread.

Unsafe fast
mutex

Acquisition does not change IRQL.
Acquire and release at IRQL <=
APC_LEVEL.

Not recursive.

Release on same thread as
acquire.

2.1.3 Shared/Exclusive Locks

Shared/exclusive locks, also called read/write locks, allow one thread to have
exclusive access to shared data or allow many threads to share access to the same
data. The thread that has exclusive access can write the data; threads that share
access can only read the data.

In Windows, executive resources provide a shared/exclusive lock.

2.1.4 Counted Semaphores

A counted semaphore is similar to a mutex, except that multiple threads can
simultaneously acquire a semaphore. Counted semaphores are useful for
protecting a set of identical data structures that are shared among several threads.

In Windows, the semaphore (a kernel dispatcher object) is a counted semaphore.

3 Windows Synchronization Mechanisms
Windows provides a variety of synchronization mechanisms, many of which are
subject to IRQL restrictions. Therefore, you must consider the effects of thread
interruption and understand the IRQLs at which your code might run.

Locks, Deadlocks, and Synchronization- 8

© 2004 Microsoft Corporation. All rights reserved.

When the operating system interrupts a thread, it forces that thread to temporarily
run code at a higher interrupt request level (IRQL). (In other words, interruption is
similar to a forced procedure call.)

Consider the case where code running at a low IRQL successfully acquires a lock,
but the thread is interrupted to run code at a higher IRQL. If the higher-IRQL code
tries to acquire the same lock, the thread may hang forever. The lower-IRQL code
cannot run until the higher-IRQL code exits, but the higher-IRQL code cannot exit
until the lower-IRQL code releases the lock. Only a single thread is involved. To
prevent this problem, code that acquires a lock usually raises its IRQL to the
highest IRQL at which any driver code that acquires the lock can run.

Table 3 is a list of the synchronization mechanisms available in Windows and the
IRQL restrictions for each. Note that kernel dispatcher objects provide several types
of synchronization that have a common structure and similar interfaces. The
sections that follow this one describe each of the Windows mechanisms in detail.

Table 3. Summary of Windows Synchronization Mechanisms

Windows
synchronization
mechanism

Description IRQL restrictions

InterlockedXxx routines Perform atomic logical and
arithmetic operations on
pageable data.

Call at any IRQL.

Spin locks Allow exclusive access to
data in nonpaged memory.

Acquire at IRQL <=
DISPATCH_LEVEL.

ExInterlockedXxx

routines
Perform atomic logical,
arithmetic, and list
manipulation operations that
are thread-safe and
multiprocessor safe.

Call SList routines at IRQL
<= DISPATCH_LEVEL; call
other routines at any IRQL.

Fast mutexes Protect data at APC_LEVEL,
preventing thread
suspension.

Acquire at IRQL <=
APC_LEVEL.

Executive resources Allow one thread to write or
many threads to read the
protected data.

Acquire at
IRQL<=APC_LEVEL.

Kernel dispatcher objects
(events, kernel mutexes,
semaphores, timers, files,
threads, processes)

Provide various types of
synchronization at
IRQL<=APC_LEVEL; can be
used for synchronizing with
user-mode applications.

Wait at IRQL <=
APC_LEVEL; signal at IRQL
<= DISPATCH_LEVEL.

Callback objects Provides kernel-mode code
synchronization at
IRQL<=DISPATCH_LEVEL;
can be used to synchronize
activity between drivers.

Notify at IRQL <=
DISPATCH_LEVEL;
callback routines are called
in the context of the notifying
thread at the same IRQL at
which notification occurred.

4 InterlockedXxx Routines
The InterlockedXxx routines perform common arithmetic and logical operations
atomically, ensuring correct results on SMP systems. Whenever possible, drivers
should use these routines. Most of them are native processor instructions and
therefore do not require a lock.

Locks, Deadlocks, and Synchronization- 9

© 2004 Microsoft Corporation. All rights reserved.

The InterlockedXxx routines can be used with pageable data. They are usually
implemented inline by the compiler and can be called at any IRQL.

5 Spin Locks
A spin lock does exactly what its name implies: while one thread owns a spin lock,
any other threads that are waiting to acquire the lock “spin” on a memory location in
a busy wait until the lock is available. The threads do not block—that is, they are not
suspended or paged out; they retain control of the CPU, thus preventing execution
of other code at the same or a lower IRQL.

Spin locks are opaque objects of type KSPIN_LOCK. They must be allocated from
nonpaged memory, such as the device extension of a driver-created device object
or nonpaged pool allocated by the caller. Windows defines several types of spin
locks, as described in Table 4.

Table 4. Windows Spin Locks

Type of spin lock Description

Ordinary spin lock Protects shared data at DISPATCH_LEVEL or higher.
Used with ExInterlockedXxx routines and elsewhere

throughout drivers. (Drivers for Windows XP or later
versions of Windows should use queued spin locks
instead of ordinary spin locks.)

Queued spin lock Protects shared data at DISPATCH_LEVEL or higher.
Used with ExInterlockedXxx routines and elsewhere

throughout drivers. Queued spin locks are supported on
Windows XP and later versions of Windows.

Interrupt spin lock Protects shared data at DIRQL. Used in
InterruptService and SynchCritSection routines.

All types of spin locks raise the IRQL to DISPATCH_LEVEL or higher. Spin locks
are the only synchronization mechanism that can be used at IRQL >=
DISPATCH_LEVEL. Code that holds a spin lock runs at IRQL >=
DISPATCH_LEVEL, which means that the system’s thread switching code (the
dispatcher) cannot run and, therefore, the current thread cannot be pre-empted.
Therefore, drivers should hold spin locks for only the minimum required amount of
time and eliminate from the locked code path any tasks that do not require locking.
Holding a spin lock for an unnecessarily long duration can hurt performance
system-wide.

All code within the spin lock must conform to the guidelines for running at IRQL >=
DISPATCH_LEVEL. Every driver writer should understand these rules. For
example, code within the spin lock must not cause a page fault because at IRQL >=
DISPATCH_LEVEL, the operating system cannot wait for the kernel dispatcher
event that is set internally when paging I/O completes. A page fault within a spin
lock causes the system to crash with the bug check value
IRQL_NOT_LESS_OR_EQUAL. Additional restrictions also apply. For complete
information about these guidelines, see the companion white paper “Thread
Context, Scheduling, and IRQL,” which is available at
http://www.microsoft.com/whdc/hwdev/driver/IRQL.mspx.

To implement spin locks on a single-processor system, the operating system has
only to raise the IRQL, which prevents pre-emption of the current thread. Because
no other threads can run concurrently, raising the IRQL is adequate to protect any
shared structures. (Note, however, that the checked build of the operating system
uses spin locks, even on single-processor systems.) On an SMP system, the

Locks, Deadlocks, and Synchronization- 10

© 2004 Microsoft Corporation. All rights reserved.

operating system raises the IRQL and then spins by testing and setting a variable
using an interlocked instruction.

5.1 Ordinary Spin Locks

Ordinary spin locks work at DISPATCH_LEVEL. To create an ordinary spin lock, a
driver allocates a KSPIN_LOCK structure in nonpaged memory and then calls
KeInitializeSpinLock to initialize it. Code that runs at IRQL < DISPATCH_LEVEL
must acquire and release the lock by calling KeAcquireSpinLock and
KeReleaseSpinLock. These routines raise the IRQL before acquiring the lock and
then lower the IRQL upon release of the lock.

Code that is already running at IRQL = DISPATCH_LEVEL should call
KeAcquireSpinLockAtDpcLevel and KeReleaseSpinLockFromDpcLevel
instead. These routines do not change the IRQL.

5.2 Queued Spin Locks

Queued spin locks are a more efficient variation of ordinary spin locks. Queued spin
locks are available in Windows XP and later releases of Windows. Whenever
multiple threads request the same queued spin lock, the waiting threads are queued
in order of their request. In addition, queued spin locks test and set a variable that is
local to the current CPU, so they generate less bus traffic and are more efficient on
non-uniform memory architectures (NUMA).

A queued spin lock requires a KLOCK_QUEUE_HANDLE structure in addition to a
KSPIN_LOCK structure. The KLOCK_QUEUE_HANDLE structure provides storage
for a handle to the queue and the associated lock. This structure can be allocated
on the stack. To initialize a queued spin lock, the driver calls KeInitializeSpinLock.

To ensure that the IRQL is properly raised and lowered, driver routines that run at
PASSIVE_LEVEL or APC_LEVEL must call KeAcquireInStackQueuedSpinLock
and KeReleaseInStackQueuedSpinLock to acquire and release these locks
Driver routines that run at DISPATCH_LEVEL should call
KeAcquireInStackQueuedSpinLockAtDpcLevel and
KeReleaseInStackQueuedSpinLockFromDpcLevel instead. These routines do
not raise and lower the IRQL.

5.3 Interrupt Spin Locks

An interrupt spin lock protects data such as device registers that a driver’s
InterruptService routine and SynchCritSection routine access at DIRQL. When a
device driver connects its interrupt object, the operating system creates an interrupt
spin lock associated with that interrupt object. The driver is not required to allocate
storage for the spin lock or to initialize it.

When an interrupt occurs, the system raises the IRQL on the processor to DIRQL
for the interrupting device, acquires the default interrupt spin lock associated with
the interrupt object, and then calls the driver’s InterruptService routine. While the
InterruptService routine is running, the processor IRQL remains at DIRQL and the
operating system holds the corresponding interrupt spin lock. When the
InterruptService routine exits, the operating system releases the lock and lowers the
IRQL (unless another interrupt is pending at that level).

The system also acquires the default interrupt spin lock when a driver calls
KeSynchronizeExecution to run a SynchCritSection routine. The operating system
raises the IRQL to DIRQL for the device, acquires the lock, and invokes the
SynchCritSection routine. When the routine exits, the operating system releases the
lock and lowers the IRQL. Other driver routines that share data with the

Locks, Deadlocks, and Synchronization- 11

© 2004 Microsoft Corporation. All rights reserved.

InterruptService routine or SynchCritSection routine must call
KeAcquireInterruptSpinLock to acquire this lock before they can access the
shared data. KeAcquireInterruptSpinLock is available on Windows XP and later
releases of Windows.

Some types of devices can generate multiple interrupts at different levels. Examples
include devices that support PCI 3.0 MSI-X, which generate message-signaled
interrupts (MSI), and a few older devices that interrupt at more than one IRQL.
Drivers that support such devices must serialize access to data among two or more
InterruptService routines.

In this case, the driver must create a spin lock to protect shared data at the highest
DIRQL at which any interrupt may arrive. When the driver connects its interrupt
objects, it passes a pointer to the driver-allocated KSPIN_LOCK structure, along
with the highest DIRQL at which the device interrupts. The operating system
associates the driver-created spin lock and the DIRQL with the interrupt object.

When the operating system calls the InterruptService routines, it raises the IRQL to
the DIRQL specified with the interrupt object and acquires the driver-created spin
lock. The system also uses this lock when it runs a SynchCritSection routine. Other
driver routines that share data with the InterruptService or SynchCritSection routine
must call KeAcquireInterruptSpinLock to acquire this lock before they can access
the shared data.

Note

The next version of Windows, Microsoft Vista™ includes significant changes to the
interrupt architecture to support message-signaled interrupts. Specifically, the
IoConnectInterrupt routine is deprecated. You should use its replacement,
IoConnectInterruptEx in new drivers, and older versions of drivers should be
updated to use this new routine if possible. The Windows DDL provides this routine
for use in Windows 2000 and later releases of Windows. For more information
about these upcoming changes, see the white paper “Interrupt Architecture
Enhancements in Microsoft Windows Vista,” which is available at
http://www.microsoft.com/whdc/hwdev/bus/pci/MSI.mspx.

6 ExInterlockedXxx Routines
The ExInterlockedXxx routines perform arithmetic and list manipulation operations.
All of these routines (except for ExInterlockedAddLargeStatistic) use a driver-
allocated spin lock.

The ExInterlockedXxx routines are coded in assembly language and usually
disable interrupts at the processor; in effect, they run at IRQL = HIGH_LEVEL. To
protect data on SMP systems, the operating system raises the IRQL and acquires
the spin lock before performing the operation. When the routine completes, the
operating system releases the lock and returns the IRQL to its original value. Like
other routines that run at IRQL>= DISPATCH_LEVEL, ExInterlockedXxx routines
can operate only on data in nonpaged memory. Therefore, any parameter passed
to one of these routines must be allocated on the kernel stack, from nonpaged pool,
or in the device extension of the device object.

Use the ExInterlockedXxx routines to perform arithmetic operations on a shared
variable that a driver also accesses elsewhere, perhaps as part of a larger structure
or in a longer sequence of tasks. For example, assume that a driver maintains a
structure that contains status information about its device. The driver’s DpcForIsr
routine accesses this structure, as do several routines that run at IRQL =
PASSIVE_LEVEL. Therefore, the driver must protect the structure with a spin lock.

Locks, Deadlocks, and Synchronization- 12

© 2004 Microsoft Corporation. All rights reserved.

To update several fields of the structure in a tight code path, the driver acquires the
spin lock and assigns new values to the fields. To update the value of a single field,
the driver uses an ExInterlockedXxx routine, passing the spin lock that protects
the structure.

In addition to routines for arithmetic operations, Windows includes
ExInterlockedXxx routines for managing three types of lists:

 Singly linked lists

 Doubly linked lists

 S-lists (sequenced, singly linked lists)

Drivers often maintain internal lists of IRPs, buffers, or other objects. If two or more
threads have access to a list, the driver must protect the list while items are inserted
and removed. For singly linked and doubly linked lists, the system provides both
interlocked and non-interlocked versions of the manipulation routines, as shown in
Table 5.

Table 5. List Manipulation Routines

Purpose Noninterlocked routine Interlocked routine

Insert entry at front of
singly linked list.

PushEntryList ExInterlockedPushEntryList

Remove entry from front
of singly linked list.

PopEntryList ExInterlockedPopEntryList

Insert entry at front of
doubly linked list.

InsertHeadList ExInterlockedInsertHeadList

Remove entry from front
of doubly linked list.

RemoveHeadList ExInterlockedRemoveHeadList

Insert entry at end of
doubly linked list.

InsertTailList ExInterlockedInsertTailList

Remove entry from end
of doubly linked list.

RemoveTailList None.

Initialize doubly linked
list.

InitializeListHead None.

Check whether list has
entries.

IsListEmpty None.

Remove entry from
doubly linked list.

RemoveListEntry None.

Initialize S-list. None. ExInitializeSListHead

Insert entry at front of
S-list.

None. ExInterlockedPushEntrySList

Remove entry from end
of S-list.

None. ExInterlockedPopEntrySList

Remove all entries from
an S-list.

None. ExInterlockedFlushSList

The ExInterlockedXxxList routines use a driver-allocated spin lock. These routines
can be called at any IRQL, provided that the driver always accesses a given list by
using the ExInterlockedXxxList routines.

Locks, Deadlocks, and Synchronization- 13

© 2004 Microsoft Corporation. All rights reserved.

The ExInterlockedXxxSList routines manipulate S-lists. An S-list is a sequenced,
interlocked, singly linked list that is both thread-safe and multiprocessor safe. Every
S-list has an associated spin lock and a sequence number. The spin lock is used to
protect the list while entries are inserted or deleted. The sequence number is
incremented each time an entry is inserted or deleted. On some hardware
architectures, using a sequence number enables these routines to avoid using a
spin lock.

A driver must be running at IRQL <= DISPATCH_LEVEL to call the S-list routines.
S-lists are useful for maintaining caches because a driver can simply and quickly
remove the most recently used item from the list. Internally, Windows uses S-lists to
implement lookaside lists.

7 Fast Mutexes
Fast mutexes, also called executive mutexes, enable a driver to protect a region for
exclusive access. While a thread holds a fast mutex, no other thread can acquire
the mutex. A fast mutex is an opaque structure of type FAST_MUTEX, which must
be allocated from nonpaged memory.

Fast mutexes have low overhead and do not require the use of the system-wide
dispatcher lock. As their name implies, fast mutexes are faster and more efficient
than kernel mutexes.

Code paths that are protected by a fast mutex run at IRQL=APC_LEVEL, thus
disabling delivery of all APCs and preventing the thread from suspension. Table 6 is
a summary of the fast mutex acquisition routines.

Table 6. Fast Mutex Acquisition Routines

Routine Description

ExAcquireFastMutex Raises the IRQL to APC_LEVEL before acquiring the fast
mutex. Blocks until the mutex is available.

ExAcquireFastMutexUnsafe Acquires the mutex at the current IRQL. Blocks until the
mutex is available.

ExTryToAcquireFastMutex Raises the IRQL to APC_LEVEL before acquiring the fast
mutex. Does not block if the mutex is not available.

ExAcquireFastMutex and ExAcquireFastMutexUnsafe cause the thread to block
until the mutex is available. ExTryToAcquireFastMutex returns FALSE
immediately if another thread has already acquired the mutex. Both
ExAcquireFastMutex and ExTryToAcquireFastMutex raise the IRQL to
APC_LEVEL before acquiring the fast mutex. Drivers should use
ExAcquireFastMutexUnsafe (which does not raise the IRQL) only if either of the
following is true:

 The thread is already running at APC_LEVEL.

 The thread acquires the mutex within a critical region that was previously
entered by a call to KeEnterCriticalRegion or FsRtlEnterFileSystem.

In either of these situations, user-mode and normal kernel-mode APC delivery has
already been disabled for the thread.

To use a fast mutex, a driver must:

1. Allocate a structure of type FAST_MUTEX from nonpaged pool.

2. Initialize the fast mutex by calling ExInitializeFastMutex.

Locks, Deadlocks, and Synchronization- 14

© 2004 Microsoft Corporation. All rights reserved.

3. Immediately before accessing the protected region, acquire the fast mutex by
calling ExAcquireFastMutex, ExAcquireFastMutexUnsafe, or
ExTryToAcquireFastMutex.

4. Perform the required operations on the protected data.

5. Release the fast mutex by calling ExReleaseFastMutex or
ExReleaseFastMutexUnsafe.

Fast mutexes have the following limitations:

 Fast mutexes cannot be acquired recursively. Attempting to do so causes a
deadlock.

 Driver code that holds a fast mutex runs at IRQL=APC_LEVEL. Therefore, such
code cannot call routines that can be called only at IRQL=PASSIVE_LEVEL,
such as IoBuildDeviceIoControlRequest.

 Fast mutexes are not kernel dispatcher objects. Therefore, a driver cannot use
the KeWaitForMultipleObjects routine to wait for a fast mutex and a kernel

dispatcher object simultaneously.

8 Kernel Dispatcher Objects
The operating system defines several types of kernel dispatcher objects, which
provide various types of synchronization. Kernel dispatcher objects are relatively
simple to use and provide locks that can be held at IRQL=PASSIVE_LEVEL.
Table 7 is a summary of the kernel dispatcher object types.

Table 7. Kernel Dispatcher Object Types

Object type Description IRQL restrictions

Kernel mutex Provides mutually exclusive
access to data at
PASSIVE_LEVEL or
APC_LEVEL.

Wait at IRQL
<=APC_LEVEL.

Event Provides synchronization
under driver-determined
conditions; can be used to
synchronize with user-mode
applications.

Wait at
IRQL<=APC_LEVEL; set at
IRQL<=DISPATCH_LEVEL.

Semaphore Protects a group of identical
objects.

Wait at
IRQL<=APC_LEVEL; set at
IRQL<=DISPATCH_LEVEL.

Timer Provides notification or
synchronization at an
absolute or relative time.

Wait at IRQL
<=APC_LEVEL; set at IRQL
<=DISPATCH_LEVEL.

Threads, processes, and
files

Synchronizes with the
creation or termination of a
thread or process, or the
completion of I/O to a file.

Wait at IRQL
<=APC_LEVEL.

A driver can pass a kernel dispatcher object to the KeWaitForSingleObject and
KeWaitForMultipleObject routines. Using these routines, a driver can wait with a
specified time-out and can wait for one or more objects simultaneously.

Locks, Deadlocks, and Synchronization- 15

© 2004 Microsoft Corporation. All rights reserved.

8.1 Common Features

The operating system manages all kernel dispatcher objects in the kernel’s
dispatcher database (hence their name). To manipulate any of these objects, the
system must raise the IRQL to DISPATCH_LEVEL and acquire the system-wide
dispatcher lock, which protects the dispatcher database. However, the dispatcher
lock is used frequently by many components, so sometimes the system must wait
for it. Such waits can slow driver performance. For this reason, drivers should use
executive resources or fast mutexes instead of kernel dispatcher objects whenever
possible.

Kernel dispatcher objects are all based on the same common header
(DISPATCHER_HEADER), but each type of object has its own object-type-specific
initialization and release routines. Kernel dispatcher objects must be allocated from
nonpaged pool or in the device extension of the device object.

A driver can refer to a kernel dispatcher object by using either a handle or a pointer.
If a driver uses a handle to refer to a kernel dispatcher object that it created in an
arbitrary thread context, that driver must set the OBJ_KERNEL_HANDLE attribute
for the object. Setting this attribute protects system security by preventing user-
mode threads from accessing the handle.

Drivers usually use kernel dispatcher objects to wait for the results of a
synchronous I/O operation. Highest-level drivers that create and send IRPs to
lower-level drivers wait in the context of the thread that issued the I/O request.
Lower-level drivers sometimes must wait in an arbitrary thread context to
synchronize execution among driver routines that run at IRQL PASSIVE_LEVEL or
APC_LEVEL. For example, a driver might wait in its DispatchPnP routine for an
event that is set when certain device operations are complete. As a general rule,
however, drivers should avoid blocking any thread other than the thread that
initiated the current I/O request.

Kernel dispatcher objects have two states: signaled and not signaled. Signaling
indicates that the object is available for acquisition. Thus, an object in the signaled
state is not owned (acquired) by any thread. An object in the not-signaled state is
owned by one or more threads. The type of object determines the state to which the
object is initially set. For example, kernel mutexes are set to the signaled state
immediately upon initialization, but events must be explicitly signaled by a call to the
KeSetEvent routine.

Although each type of object has its own type-specific initialization and release
routines, drivers use KeWaitForSingleObject and KeWaitForMultipleObjects to
acquire any kernel dispatcher object. Using KeWaitForSingleObject, a driver can
wait for a single kernel dispatcher object. Using KeWaitForMultipleObjects, a
driver can wait for more than one kernel dispatcher object; the objects need not be
of the same type. Each of these routines takes as parameters:

 A pointer to the object(s) that are to be acquired.

 A reason for the wait. Drivers that are waiting on behalf of a user request in the
context of a user thread should specify UserRequest; otherwise, drivers should
specify Executive. The value of this field is informational only.

 A Boolean value (Alertable) that indicates whether the thread should be
alertable while it is waiting. For drivers, this is usually FALSE.

 A wait mode (WaitMode), either KernelMode or UserMode. For drivers, this is
usually KernelMode. If one or more of the objects is a mutex, this value must
be KernelMode.

Locks, Deadlocks, and Synchronization- 16

© 2004 Microsoft Corporation. All rights reserved.

 An optional time-out value, which indicates how long the thread is to wait before
it times out.

8.1.1 IRQL Restrictions

A thread can signal a kernel dispatcher object at IRQL <= DISPATCH_LEVEL, but it
can wait for such an object only at IRQL <= APC_LEVEL. This IRQL restriction
means that a driver cannot wait for an event or other dispatcher object in an
IoCompletion routine, in a StartIo routine, or in any deferred procedure call (DPC)
routine, because these routines can be called at DISPATCH_LEVEL. Highest-level
drivers that are called in the context of the user thread that made the I/O request
can wait for kernel dispatcher objects in their read and write dispatch routines.
Lower-level drivers should not wait in these routines; the read and write dispatch
routines of some lower-level drivers, particularly in the storage and USB stacks, can
be called at IRQL = DISPATCH_LEVEL.

However, a thread can acquire a kernel dispatcher object at DISPATCH_LEVEL if it
does not wait for the object. To acquire a kernel dispatcher object without waiting, a
thread sets the time-out value to zero in its call to KeWaitForSingleObject or
KeWaitForMultipleObjects. A time-out value equal to zero means that the driver
does not wait for the object to be signaled; instead, the call returns immediately with
a status that indicates whether an object was available and acquired or is not
currently available. Because no waiting is involved, such a call is valid at
DISPATCH_LEVEL.

This feature is useful for testing whether an object has been signaled. For example,
a DPC routine that must perform a task in synchronization with some other routine
might check to see whether the object has been signaled. If so, the DPC can
perform the task. If not, the DPC can do some other, unrelated task, or it can queue
a work item to perform the original task. Because the work item runs in a thread at
IRQL=PASSIVE_LEVEL, the work item can wait for a nonzero period.

8.1.2 Alerts and Wait Modes

The Alertable and WaitMode parameters to KeWaitForSingleObject and
KeWaitForMultipleObjects determine how the system handles user-mode APCs
while the thread is waiting. Table 8 is a summary of the effects of these parameters
on APC delivery.

Table 8. Effects of the Alertable and WaitMode Parameters on APC Delivery

Value of

Alertable
and
WaitMode
parameters

Special
kernel-mode APC

Normal
kernel-mode APC

User-mode APC

Terminate
wait?

Deliver
and run
APC?

Terminate
wait?

Deliver
and run
APC?

Terminate
wait?

Deliver and
run APC?

Alertable =

TRUE

WaitMode =
UserMode

No If (A*),
then Yes

No If (B**),
then Yes

Yes Yes, after
thread
returns to
user mode

Alertable =

TRUE

WaitMode =
KernelMode

No

If (A), then
Yes

No If (B), then
Yes

No No

Locks, Deadlocks, and Synchronization- 17

© 2004 Microsoft Corporation. All rights reserved.

Value of

Alertable
and
WaitMode
parameters

Special
kernel-mode APC

Normal
kernel-mode APC

User-mode APC

Alertable =

FALSE

WaitMode =
UserMode

No If (A), then
Yes

No If (B), then
Yes

No No (with
exceptions,
such as
CTRL+C to
terminate)

Alertable =

FALSE

WaitMode =
KernelMode

No If (A), then
Yes

No If (B), then
Yes

No No

 *A: IRQL < APC_LEVEL.

**B: IRQL < APC_LEVEL, thread not already in an APC, and thread not in a critical region.

The system delivers most user-mode APCs when a thread unwinds from kernel
mode back to user mode after an alertable wait. User-mode APCs do not interrupt
user-mode code. After an application queues a user-mode APC to a thread, the
application can cause the system to deliver the APCs by calling a wait function with
the Alertable parameter set to TRUE. (The user-mode terminate APC is an
exception. This APC is queued to terminate a thread, and the system delivers it
whenever the thread unwinds back to user mode from kernel mode, not only after
an alertable wait.)

If a driver calls either KeWaitForSingleObject or KeWaitForMultipleObjects with
the Alertable parameter set to TRUE and the WaitMode parameter set to
UserMode, the wait aborts with STATUS_USER_APC or STATUS_ALERTED
whenever a user-mode APC (or an alert) is pending. When the thread returns to
user mode, the system automatically delivers the user-mode APC. Drivers should
not call either of the KeWaitXxx routines with Alertable set to TRUE and WaitMode
set to UserMode unless the application has explicitly requested delivery of user-
mode APCs during the wait.

If a driver calls KeWaitForSingleObject or KeWaitForMultipleObjects with
WaitMode set to UserMode, but Alertable set to FALSE, the wait will abort with
STATUS_USER_APC if the thread is being terminated. However, the driver must
be waiting at IRQL = PASSIVE_LEVEL and must not be in a critical region.

The wait mode also determines whether the thread’s kernel-mode stack can be
paged out while waiting. If WaitMode is set to UserMode, the system pages out the
kernel-mode stack while the thread is waiting. Waiting in UserMode is safe only if
the waiting driver is the only driver on the stack. If one or more other drivers is on
the stack, one of those drivers might try to update a stack variable, thereby causing
a page fault. If that driver is running at IRQL=DISPATCH_LEVEL or higher, the
page fault will cause the system to crash. Because PnP driver stacks often include
filter drivers, PnP drivers rarely set WaitMode to UserMode.

Note

For more information about alertable waits, APCs, and the rules for operating at
IRQL=DISPATCH_LEVEL, see the companion white paper “Scheduling, Thread
Context, and IRQL” and the section “Do Waiting Threads Receive Alerts and APCs”
under “Kernel-Mode Driver Architecture” in the Windows DDK.

Locks, Deadlocks, and Synchronization- 18

© 2004 Microsoft Corporation. All rights reserved.

8.2 Events

Drivers use events to synchronize activities between kernel-mode threads or
between kernel-mode threads and user-mode applications. Both user-mode and
kernel-mode code can create events. Windows also defines several standard event
objects in the \\KernelObject object directory. Drivers can wait on these standard
events.

An event is a synchronization object of type KEVENT, which must be allocated in
nonpaged memory. Events can be either named or unnamed. Drivers usually use
named events only to synchronize with external processes, such a user-mode
application or another driver. Internally, drivers use unnamed events. Windows
supports two types of events, notification events and synchronization events. The
two types of event differ in the actions taken when they are signaled, as described
later under “Notification Events” and “Synchronization Events.”

To create and initialize an unnamed event of either type, a driver allocates an object
of type KEVENT in nonpaged memory. The driver then calls KeInitializeEvent and
specifies the type of event as a parameter in the call. To create and initialize a
named event, the driver calls IoCreateNotificationEvent or
IoCreateSynchronizationEvent.

To wait for an event, a driver calls KeWaitForSingleObject or
KeWaitForMultipleObjects, as described previously under “Kernel Dispatcher
Objects.”

To signal an event, a driver calls KeSetEvent, which has three parameters: a
pointer to the event, a priority boost, and the Boolean Wait. Setting Wait to TRUE
indicates that the thread intends to call KeWaitXxx immediately after KeSetEvent
returns. This parameter provides an optimization in the cases where the driver
intends to wait for another kernel dispatcher object immediately.

Normally, drivers call KeSetEvent with Wait set to FALSE. When Wait is FALSE,
KeSetEvent raises the IRQL to DISPATCH_LEVEL, acquires the dispatcher lock,
modifies the signaled-state of the event object, satisfies any outstanding waits,
unlocks the dispatcher database, lowers the IRQL to its original value, and returns.

If the Wait parameter is TRUE, however, KeSetEvent does not release the
dispatcher lock or lower the IRQL. This optimization can prevent unnecessary
context switches because the caller thus signals the event and waits in one atomic
operation. If a driver uses this feature, it must call KeSetEvent from IRQL <
DISPATCH_LEVEL and in a non-arbitrary thread context.

A driver routine that operates in a producer/consumer scenario might use this
feature. Such a driver usually works with two events in the following way. The driver
routine that produces data signals the first event to indicate that it is ready to send
data. It then immediately waits for the second event to be signaled by another
thread. The second thread sets the second event to indicate it has received the
data and is ready for more. Drivers should use this feature only in the context of the
thread that requested the I/O operation; a driver should avoid blocking an unrelated
thread.

8.2.1 Notification Events

A notification event wakes every waiting thread and remains in the signaled state
until it is explicitly reset by a call to KeResetEvent. In the Win32® API, notification
events are called manual reset events.

Locks, Deadlocks, and Synchronization- 19

© 2004 Microsoft Corporation. All rights reserved.

Drivers typically use notification events to wait for the completion of IRPs that they
allocate and send. For example, a driver might send an I/O control code (IOCTL) to
lower drivers in its device stack by calling IoBuildDeviceIoControlRequest. One of
the parameters to this routine is a pointer to an event object. After the driver routine
creates and sends the IRP, it waits on the event object. When the IRP is complete,
the I/O Manager signals the event, thus satisfying the wait. The event remains
signaled until a call to KeResetEvent returns it to the non-signaled state.

8.2.2 Synchronization Events

Synchronization events, also called auto-resetting events, wake a single thread and
immediately return to the non-signaled state. Drivers use synchronization events
less frequently than notification events.

A driver for a device that requires a long time to initialize might wait on a
synchronization event in its StartDevice routine to ensure that its device is fully
initialized. The driver’s DpcForIsr routine signals the event after the device has
interrupted and any additional processing at IRQL DISPATCH_LEVEL is complete.
Control then returns to the StartDevice routine, which can continue with device and
driver initialization. Similarly, a driver might wait on a synchronization event in its
DispatchPnp routine to ensure that I/O has completed before stopping or removing
the device.

8.2.3 Synchronizing with User-Mode Applications

Kernel-mode drivers cannot make calls to user-mode routines. However, a kernel-
mode driver with a closely-coupled application might sometimes need to notify the
application about a device- or driver-related occurrence. There are several ways to
implement such notification; two recommended methods are outlined in this section.

One way to coordinate activities between a kernel-mode driver and a user-mode
application is to share an event. In the driver:

1. Define a private I/O control code (IOCTL) with which a user-mode application
can pass an event.

2. Provide a DispatchDeviceControl routine that handles the private IOCTL
supplied in IRP_MJ_DEVICE_CONTROL requests.

3. Validate the handle received in the IOCTL by calling
ObReferenceObjectByHandle. In the DesiredAccess parameter, specify
SYNCHRONIZE access, and in the ObjectType parameter, specify
*ExEventObjectType.

6. To signal the event, call KeSetEvent; to reset a notification event, call
KeResetEvent.

7. Call ObDereferenceObject to free the handle when the event is no longer
needed.

In the user-mode application:

1. Create a named event by calling CreateEvent.

2. Pass the handle to the event to the driver by calling DeviceIoControl,
specifying the driver-defined IOCTL.

3. To wait for the kernel-mode driver to signal the event, call
WaitForSingleObject or WaitForMultipleObjects.

4. Delete the event object before exiting by calling CloseHandle.

Locks, Deadlocks, and Synchronization- 20

© 2004 Microsoft Corporation. All rights reserved.

This technique is suitable in situations where the driver routine and the user-mode
thread that share the event always run in the same process context. However, in
the layered WDM driver model, lower-level driver routines are not usually called in
the context of the requesting thread or process.

A more general approach that eliminates thread context problems is to use a
DeviceIoControl request without an event. In this technique, the driver defines a
private IOCTL for the I/O request. The application creates a dedicated thread that
sends the DeviceIoControl request to the driver, which returns
STATUS_PENDING. To notify the user-mode application, the driver completes the
request. Because this technique does not depend upon the validity of user-mode
data, it is suitable for use in lower-level drivers.

For an example of both of these techniques, see the event sample
(src\general\event) in the Windows DDK.

8.3 Kernel Mutexes

Kernel mutexes, often just called mutexes, are useful for synchronizing access to
memory in pageable code or over a relatively long period of time. A kernel mutex
ensures that a thread has exclusive access to the protected data. Drivers can use
kernel mutexes at IRQL <= APC_LEVEL.

Kernel mutexes depend on thread context. Driver routines that use kernel mutexes
are usually highest-level driver routines that run in the context of the thread that
requested the I/O operation. A driver routine that acquires a mutex should release it
within the same thread context.

Kernel mutexes differ from fast mutexes in the following ways:

 Kernel mutexes can be acquired recursively; fast mutexes cannot.

 Kernel mutexes are acquired by using KeWaitForSingleObject,
KeWaitForMultipleObjects, and KeWaitForMutexObject. Fast mutexes are
acquired by using ExAcquireFastMutex, ExTryToAcquireFastMutex, and
ExAcquireFastMutexUnsafe.

 Kernel mutexes require the use of the system-wide dispatcher lock. Therefore,
they have greater overhead and are less efficient than fast mutexes.

To use a kernel mutex, a driver must:

1. Allocate a KMUTEX data structure in nonpaged memory such as the device
extension of a driver-created device object or nonpaged pool.

2. Initialize the mutex by calling KeInitializeMutex, passing a pointer to the
previously allocated data structure. (The Level parameter is ignored.)

3. Wait for the mutex by calling KeWaitForSingleObject,
KeWaitForMultipleObjects, or KeWaitForMutexObject.

4. Perform the required operations on the protected data.

5. Release the mutex by calling KeReleaseMutex.

The operating system initializes every kernel mutex to the signaled state.
Consequently, the first thread’s initial call to wait for the mutex succeeds
immediately and returns.

Driver routines should always specify KernelMode when they are waiting for a
kernel mutex. Waiting in kernel mode prevents the thread’s kernel-mode stack from
being paged out and disables the delivery of user-mode and normal kernel-mode
APCs, thus preventing thread termination and suspension. Special kernel-mode

Locks, Deadlocks, and Synchronization- 21

© 2004 Microsoft Corporation. All rights reserved.

APCs, such as the special kernel-mode APC for I/O completion, can still be
delivered. Internally, acquiring a kernel mutex calls KeEnterCriticalRegion. If the
thread is running at PASSIVE_LEVEL when it acquires the mutex, this call disables
the delivery of normal kernel-mode APCs until the thread releases the mutex. If the
thread is running at APC_LEVEL when it acquires the mutex, entering a critical
region has no effect because normal kernel-mode APC delivery is already disabled.

A thread that holds a mutex must release the mutex before any transition to user
mode; the system crashes if a thread holds a mutex during the transition. For
example, a highest-level driver that acquires a mutex while servicing a user-mode
I/O request must release the mutex before returning to the user-mode code.

When a thread releases a mutex, it passes a Wait parameter. The Wait parameter
has the same meaning in KeReleaseMutex as in KeSetEvent; see the section
“Events” for details.

A thread that acquires a mutex recursively must release the mutex the same
number of times as it acquired the mutex. The operating system does not signal the
mutex or call KeLeaveCriticalRegion until all acquisitions have been released.

8.4 Semaphores

A semaphore is similar to a mutex, except that multiple threads can simultaneously
acquire a semaphore. Semaphores are useful for protecting a set of identical data
structures that are shared among several threads.

Every semaphore has a limit and a count. The limit is the maximum number of
threads that can acquire the semaphore at a time, and the count is the number of
threads that can currently acquire the semaphore.

For example, a driver might allocate several buffers for I/O and protect them with a
semaphore. The semaphore’s limit is the number of buffers. When a driver routine
needs an I/O buffer, it waits for the semaphore. If the semaphore’s count is equal to
zero, all buffers are in use. If the count is equal to its limit, all buffers are free.

To use a semaphore, a driver must:

1. Allocate a KSEMAPHORE data structure in the device extension of a driver-
created device object or in nonpaged pool allocated by the caller.

2. Initialize the semaphore by calling KeInitializeSemaphore, specifying the
semaphore’s count and limit. Setting the count to 0 initializes the semaphore in
the not-signaled state; setting the count greater than 0 signals the semaphore
and indicates how many threads can acquire it initially.

3. Wait for the semaphore by calling KeWaitForSingleObject or
KeWaitForMultipleObjects.

4. Perform the required operations on the protected data.

5. Release the semaphore by calling KeReleaseSemaphore, passing a value to
add to the current count.

If a driver increases the count of a semaphore above the semaphore’s limit, the
system raises an exception. Such an error could occur if the driver attempts to
release the semaphore too many times. This behavior is different from that of
events; setting an already signaled event has no effect.

When a thread releases a semaphore, it can also specify a Wait parameter. The
Wait parameter has the same effect for a semaphore as for a mutex or for an event;
see the section “Events” for details.

Locks, Deadlocks, and Synchronization- 22

© 2004 Microsoft Corporation. All rights reserved.

A thread can determine whether a semaphore is signaled or not signaled by calling
KeReadStateSemaphore.

8.5 Timers

Drivers often use timers for polling and handling device time-outs. Like events,
timers can be used for synchronization or for notification. A driver creates a
notification timer by calling KeInitializeTimer; it can create either a notification timer
or a synchronization timer by calling KeInitializeTimerEx.

Both types of timers expire after a specified interval at either an absolute or relative
time. Absolute times are measured in 100-nanosecond units starting on January 1,
1601. This time is tied to the calendar—advancing the clock by one hour brings the
expiration time one hour closer. Relative times are negative numbers measured in
100-nanosecond units from the moment the timer was started. Relative time is
measured in machine running time and is unaffected by system clock changes.
Relative time includes time spent sleeping. When the computer awakens, the
operating system adjusts the internal machine time to include the time that the
computer was asleep. As a result, many timers expire simultaneously as soon as
the operating system resumes. When a notification timer expires, all waiting threads
are released. The timer remains in the signaled state until a thread explicitly resets
by calling KeSetTimer. When a synchronization timer expires, a single waiting
thread is released and the operating system immediately resets the timer to the
non-signaled state.

A driver can wait on a timer object at IRQL <= APC_LEVEL, or it can specify a
CustomTimerDpc routine to be called when the timer expires. Drivers can use
CustomTimerDpc routines instead of driver-created threads to perform short-lived
operations. CustomTimerDpc routines are also used to time out a request at
IRQL=DISPATCH_LEVEL.

To use a timer, a driver should do the following, as necessary:

1. Allocate a structure of type KTIMER in nonpaged memory.

2. Create and initialize the timer by calling KeInitializeTimer or
KeInitializeTimerEx. KeInitializeTimer creates a notification timer.
KeInitializeTimerEx creates a notification timer or a synchronization timer.

3. To associate the timer with a CustomTimerDpc routine, call KeInitializeDpc to
initialize a DPC object and register the CustomTimerDpc routine.

4. Set the timer by calling KeSetTimer or KeSetTimerEx, specifying the interval
at which the timer expires. To queue the CustomTimerDpc routine when the
timer expires, include the optional Dpc parameter.

5. To wait on a timer object, call KeWaitForSingleObject or
KeWaitForMultipleObjects.

6. To cancel a timer before it expires, call KeCancelTimer.

7. To reset a notification timer after it expires, call KeSetTimer.

Both notification and synchronization timers can be recurring (or periodic) timers. As
soon as a periodic timer’s interval expires, the operating system immediately
queues the timer again. Consequently, a DPC routine that is associated with a
periodic timer can run simultaneously on more than one CPU in an SMP system.
Such simultaneous execution can occur, for example, if the DPC routine takes
longer to run than the timer interval or if its execution is delayed because other
DPCs precede it in the DPC queue. Because the DPC routines run at IRQL =

Locks, Deadlocks, and Synchronization- 23

© 2004 Microsoft Corporation. All rights reserved.

DISPATCH_LEVEL, drivers must use spin locks to protect any data that these
routines share.

If your driver uses more than one timer object, DPC object, or CustomTimerDpc
routine, you should understand the order in which the operating system signals the
objects and queues the DPCs, the consequences of using these objects in varying
combinations, and the effects of canceling one or more of the timers. See “Using a
CustomTimerDpc Routine” in the “Kernel Mode Drivers Architecture Design Guide”
section of the Windows DDK for details.

8.6 Threads, Processes, and Files

Threads, processes, and files are also kernel dispatcher objects. Drivers can use
the KeWaitXxx routines to synchronize actions with the termination of a thread or
process or with the completion of I/O to a file. In addition, a driver can request
notification when a new thread or process is created.

To synchronize with a particular process, thread, or file, the driver must get a
pointer to the object that represents that process, thread, or file. A driver that
creates a thread can pass the handle returned by the PsCreateSystemThread
routine to ObReferenceObjectByHandle to get a pointer to the thread object.
Similarly, a driver can get a pointer to a file object by passing a file handle to
ObReferenceObjectByHandle. The resulting object pointers can then be passed
to KeWaitXxx.

To wait on a thread, process, or file object, a kernel-mode driver must specify a
KernelMode wait. Waiting in kernel mode prevents paging of the waiting thread’s
stack and disables user-mode and normal kernel-mode APCs. The wait is satisfied
when the thread or process terminates or when the current file I/O operation is
complete.

A file I/O operation (a single IRP) is complete when the operating system signals an
internal event that is embedded in the file object. Every file object has such an
embedded event. The event is a synchronization (auto-reset) event; that is, the
event is reset as soon as a waiting thread is notified. Applications and file system
drivers that implement asynchronous I/O can wait on the file event to find out when
the I/O operation completes.

Synchronizing with a specific thread is generally useful only in drivers that create
device-dedicated or other driver-specific threads. Most driver routines, except for
the I/O dispatch routines of highest-level drivers, are called in the context of an
arbitrary thread. Consequently, synchronizing driver activity with the current thread
context is rarely meaningful.

A driver can also request notification whenever a thread or process is created or
deleted system-wide. To do so, the driver sets a callback routine by calling
PsSetCreateProcessNotifyRoutine or PsSetCreateThreadNotifyRoutine. The
operating system calls the routine any time a process or thread is created or
deleted. A driver that establishes thread or process callback routines must not exit
before the operating system shuts down.

9 Executive Resources
By using an executive resource, a driver can implement a read/write lock. Executive
resources are designed for use with data structures that require exclusive access
for writing but that can be read by several threads concurrently. Executive
resources are not maintained in the system’s dispatcher database, so they usually
are faster and more efficient than kernel dispatcher objects. A thread can acquire

Locks, Deadlocks, and Synchronization- 24

© 2004 Microsoft Corporation. All rights reserved.

an executive resource for exclusive (write) access or for shared (read) access.
Code that runs at IRQL=PASSIVE_LEVEL or APC_LEVEL can use executive
resources.

An executive resource is a structure of type ERESOURCE, which must be allocated
in nonpaged memory (for example, the device extension of the device object or
nonpaged pool). An ERESOURCE structure must be naturally aligned; that is, the
structure must be aligned on a 4-byte boundary on a 32-bit system and on an 8-
byte boundary on a 64-bit system. The ERESOURCE structure itself is opaque to
driver writers.

Table 9 is a summary of the acquisition routines for executive resources. It includes
the type of access that each routine provides and when such access is granted.

Table 9. Executive Resource Acquisition Routines

Routine Type of
access

Conditions

ExAcquireResourceSharedLite Shared Acquires resource if either:

The resource is not already
acquired exclusively and no thread
is waiting to acquire exclusive
access.

 or

The requesting thread already has
shared or exclusive access.

ExAcquireResourceExclusiveLite Exclusive Acquires resource if the resource is
not already acquired for shared or
exclusive access.

ExAcquireSharedStarveExclusive Shared Acquires resource if either:

The resource is not already
acquired exclusively.

 or

The requesting thread already has
shared or exclusive access.

Threads waiting for exclusive
access continue to wait.

ExAcquireSharedWaitForExclusive Shared Same as
ExAcquireResourceSharedLite
except that:

If the requesting thread already has
access to the resource and one or
more threads are waiting for
exclusive access, the recursive
request blocks until the exclusive
requests have been satisfied.

 Exclusive Same as
ExAcquireResourceExclusiveLite,

but it does not block if access is not
available.

If a thread acquires a resource for exclusive access, it can later convert to shared
access. However, a thread cannot convert shared access to exclusive access. The
ExConvertExclusiveToSharedLite routine changes a thread’s access from
Exclusive to Shared and grants shared access to any additional threads that are

Locks, Deadlocks, and Synchronization- 25

© 2004 Microsoft Corporation. All rights reserved.

waiting for shared access. On a checked build, the system ASSERTs if the
requesting thread does not own exclusive access to the resource.

One thread can release a resource on behalf of another by calling the routine
ExReleaseResourceForThread. File system drivers use this routine when one
thread acquires a resource, partially processes an I/O request, and then posts the
I/O request to another thread. In this case, the thread that completes the I/O
request can call this routine to release the resource on behalf of the first thread.

A driver can determine whether a resource has already been acquired by any
thread using the utility routines ExIsResourceAcquiredLite,
ExIsResourceAcquiredSharedLite, and ExIsResourceAcquiredExclusiveLite.
In addition, a driver can determine how many other threads are waiting for either
shared or exclusive access to a resource by calling ExGetSharedWaiterCount or
ExGetExclusiveWaiterCount.

Suspending a thread that owns an executive resource can cause a deadlock. For
example, assume that Thread 1 has shared access to a resource and that Thread 2
is waiting for exclusive access to the same resource. If Thread 1 is suspended,
Thread 2 could wait forever for the resource. A malicious user could intentionally
create a deadlock in this manner to mount a denial-of-service attack on the driver
and, perhaps, on the entire operating system. For this reason, drivers must prevent
thread suspension while holding an executive resource. For details, see “Security
Issues” later in this paper.

10 To use an executive resource, a driver must:
1. Allocate an ERESOURCE structure from nonpaged pool.

2. Initialize the resource by calling ExInitializeResourceLite, usually from a
DriverEntry or AddDevice routine.

3. Disable normal kernel-mode APCs before acquiring the resource. A device
driver calls KeEnterCriticalRegion; a file system driver calls
FsRtlEnterFileSystem. If the driver routine is running in the context of a
system thread, however, it generally does not need to disable APCs because
the thread is unlikely to be suspended.

4. Acquire the resource by calling one of the resource acquisition routines listed in
Table 9.

5. Perform the required operations on the protected data.

6. Release the resource by calling ExReleaseResourceLite.

7. Re-enable normal kernel-mode APCs by calling KeLeaveCriticalRegion or
FsRtlLeaveFileSystem.

All of the resource acquisition routines return a Boolean value that indicates
whether acquisition succeeded. When the thread acquires the resource, the
acquisition routine returns TRUE. If the driver does not block and the resource is
not available, the routine returns FALSE.

Unlike fast mutexes and spin locks, executive resources can be acquired
recursively. A thread that acquires an executive resource recursively must release
the resource as many times as it was acquired. Recursive acquisition of resources
is common in file system drivers. For example, a file system driver might implement
a cache by mapping files into a reserved area in virtual memory. The driver holds
certain locks while it processes the cached data. If that processing causes a page
fault, the operating system generates an additional I/O request, which is sent to the

Locks, Deadlocks, and Synchronization- 26

© 2004 Microsoft Corporation. All rights reserved.

same file system driver and interrupts that driver’s processing of the cached I/O. To
handle the additional I/O request, the file system driver must recursively acquire
some of the same locks it uses when processing the cached I/O.

Executive resources are similar to fast mutexes in that a thread that tries to acquire
a resource while another thread has exclusive access to it will block. While this
thread is waiting, other threads in the Ready state run.

11 Callback Objects
Callback objects are useful for synchronization and notification between kernel-
mode routines. Callback objects are kernel-mode only; they cannot be shared with
user-mode applications.

A driver creates a callback object by calling ExCreateCallback. Users of the object
register a callback routine by calling ExRegisterCallback. When the driver-
specified callback conditions occur, the driver calls ExNotifyCallback to request
that the callback routines be run. ExNotifyCallback can be called at
IRQL<=DISPATCH_LEVEL, and the callback routines are called at the same IRQL
at which ExNotifyCallback was called, in the context of the notifying thread. If your
driver registers a callback routine, be sure that you know the IRQL at which
notification takes place and code the callback routine appropriately.

12 Driver-Defined Locks
In addition to the synchronization mechanisms provided by the operating system,
drivers can define their own locks. If you implement a driver-defined lock, you must
keep in mind that optimizing compilers and certain hardware architectures
sometimes reorder read and write instructions to improve performance. To prevent
such reordering, driver code sometimes requires a memory barrier.

A memory barrier is a processor instruction that preserves the ordering of read and
write operations, as seen from the perspective of any other processor. The
operating system’s locking mechanisms (spin locks, fast mutexes, kernel dispatcher
objects, and executive resources) all have implied memory barriers that preserve
the ordering of instructions.

If you create your own locks, you might need to put memory barriers in the locked
code to ensure the correct results. The ExInterlockedXxx and InterlockedXxx
routines and the KeMemoryBarrier and KeMemoryBarrierWithoutFence routines
insert memory barriers to prevent such reordering.

For details about memory barriers and processor reordering, see the white paper
“Memory Barriers on Multiprocessor Architectures,” which is available at
www.microsoft.com/hwdev.

13 Using Multiple Synchronization Mechanisms
Simultaneously

Attempting to acquire two or more synchronization mechanisms at once can cause
a deadlock if this is done improperly. For this reason, the Windows DDK advises
driver writers to never acquire more than one lock at a time. However, in some
situations, using multiple locks is appropriate, or even necessary.

For example, a driver might maintain two lists that require protection at IRQL
DISPATCH_LEVEL. Most code accesses only one of the lists at any given time.
Occasionally, however, a driver routine must move an item from one list to another.

Locks, Deadlocks, and Synchronization- 27

© 2004 Microsoft Corporation. All rights reserved.

Using a single spin lock to protect both lists is inefficient. If a driver routine running
in Thread 1 acquires the lock to update the first list, another driver routine running in
Thread 2 must wait to access the second list.

A better solution is to protect each list with its own spin lock. Code that accesses
List A acquires the spin lock for List A. Code that accesses List B acquires the spin
lock for List B. Code that accesses both lists acquires both locks. To prevent
deadlocks, code that acquires both locks must always acquire the locks in the same
order.

To determine the proper order for acquiring the locks, you should establish a lock
hierarchy for your code. The hierarchy ranks the locks in order of increasing IRQL.
List the lock that requires the lowest IRQL first, the second lowest IRQL next, and
so forth. When driver code must acquire multiple locks at once, it should acquire
them in order of increasing IRQL. A code sequence that requires more than one
lock at the same IRQL should acquire the most frequently used lock first.

Similarly, a code sequence that uses multiple locks should release them in the
inverse of the order in which it acquired them. That is, it should release the most
recently acquired lock first.

If the driver follows the locking hierarchy consistently, deadlocks will not occur.
However, if the driver violates the hierarchy, deadlocks are inevitable.

14 Preventing Deadlocks
A deadlock occurs when a thread waits for something it can never acquire. For
example, a thread that holds a spin lock cannot recursively acquire the same spin
lock. The thread will spin forever waiting for itself to release the lock.

Two threads can create a mutual deadlock (sometimes called a deadly embrace) if
each holds a lock that the other is trying to acquire. For example, assume a driver
has created spin locks to protect two structures, A and B. Thread 1 acquires the
lock that protects Structure A and Thread 2 acquires the lock that protects
Structure B. If Thread 1 now attempts to acquire the lock for B, and Thread 2
attempts to acquire the lock for A, the threads deadlock. Neither can acquire the
second lock until the other thread releases it. Establishing and following lock
hierarchies prevents deadly embraces.

Follow these guidelines to prevent deadlocks:

 Never wait on a kernel dispatcher object in any driver routine that can be called
at IRQL>=DISPATCH_LEVEL. Routines that can be called at
IRQL>=DISPATCH_LEVEL include IoCompletion routines and the I/O dispatch
routines of storage drivers and USB hub drivers. If in doubt, use the ASSERT()
macro on a checked build to test for the IRQL at which the routine is called.

 Disable normal kernel-mode APC delivery before calling any of the executive
resource acquisition routines and before calling KeWaitXxx to wait on an event,
semaphore, timer, thread, file object, or process. In a device driver, call
KeEnterCriticalRegion and KeLeaveCriticalRegion to disable and
subsequently re-enable APC delivery. In a file system driver, call
FsRtlEnterFileSystem and FsRtlLeaveFileSystem.

 Use the Driver Verifier (verifier.exe) Deadlock Detection option to find potential
deadlocks. This option is available on Windows XP and later releases of
Windows.

 Always establish and follow a lock hierarchy in code that acquires more than
one lock at any given time.

Locks, Deadlocks, and Synchronization- 28

© 2004 Microsoft Corporation. All rights reserved.

15 Security Issues
Drivers that use locks at IRQL PASSIVE_LEVEL outside a critical region are open
to denial of service attacks if the thread that holds the lock is suspended. This
problem occurs because Windows queues a normal kernel-mode APC to suspend
the thread. Even if the driver specifies a KernelMode wait, normal kernel-mode
APCs are delivered whenever all of the following are true:

 The target thread is running at IRQL < APC_LEVEL.

 The target thread is not already running an APC.

 The target thread is not in a critical region; that is, it did not call
KeEnterCriticalRegion before calling KeWaitXxx.

Note

Kernel mutexes and fast mutexes do not have this problem. The operating system
enters a critical region before it acquires a fast mutex or kernel mutex on behalf of a
thread.

Consider the following scenario:

While it is handling an I/O request from a user-mode application, a driver waits for a
kernel dispatcher object (other than a mutex) or acquires an executive resource.
The driver requests a KernelMode wait that is not alertable: that is, the WaitMode
parameter is KernelMode and the Alertable parameter is FALSE.

Assume that the requesting application has a second thread running. If the second
thread acquires a handle to the thread that requested the I/O operation, it can
suspend the requesting thread, thus rendering the driver – and possibly the whole
system—unusable.

To eliminate this possible security threat, a driver should enter a critical region
(disable APCs) before calling KeWaitXxx. To disable and subsequently re-enable
APCs, a device driver calls KeEnterCriticalRegion and KeLeaveCriticalRegion; a
file system driver calls the FsRtlEnterFileSystem and FsRtlLeaveFileSystem
macros. A driver can check whether normal kernel-mode APCs are disabled by
calling KeAreApcsDisabled. KeAreApcsDisabled is available on Windows XP
and later releases of Windows.

16 Performance Issues
Although nearly every driver requires spin locks and other synchronization
mechanisms, these mechanisms by their very nature can cause performance
bottlenecks. Follow these guidelines to improve performance in synchronization
code:

 Use locks only when necessary. For example, to gather statistical information,
use per-processor data structures instead of a single, system-wide data
structure that requires a lock.

 Use executive resources (ERESOURCE structures) to protect read/write data at
IRQL < DISPATCH_LEVEL, so that multiple readers can be active at once.

 Use fast mutexes or executive resources instead of kernel dispatcher objects
whenever possible. Because fast mutexes and executive resources are not
maintained in the dispatcher database, the system can acquire them without
using the dispatcher lock. As a result, they are faster and contribute to better
performance system-wide.

Locks, Deadlocks, and Synchronization- 29

© 2004 Microsoft Corporation. All rights reserved.

 Use the InterlockedXxx routines whenever possible. These routines do not
acquire a spin lock and are therefore relatively fast.

 Use an in-stack queued spin lock instead of an ordinary spin lock whenever
several components might frequently contend for the lock

 Use the ExTryToAcquireXxx routines to acquire a lock whenever possible,
particularly if you have established a locking hierarchy and are using multiple,
nested locks. If you need to wait for the second or third lock in a hierarchy,
consider releasing the locks that you have already acquired so that another
thread that might need fewer locks can proceed, and then later reacquire the
locks from the top of the hierarchy.

 Minimize the number of times your driver calls routines that use the dispatcher
lock. Such routines include those to wait on a dispatcher object
(KeWaitForSingleObject, KeWaitForMultipleObjects, and
KeWaitForMutexObject) and calls that set and release dispatcher objects
(KeSetEvent, KeReleaseSemaphore, and so forth). Frequent use of the
dispatcher lock can slow performance system-wide because calls that require it
must sometimes spin.

 Hold each spin lock for the minimum amount of time necessary, particularly if
the lock is frequently required by other code. For example, traversing a long,
linked list in a linear order while holding a heavily used spin lock can cause a
performance bottleneck.

17 Best Practices for Driver Synchronization
To avoid problems related to synchronization in drivers, adopt these practices:

 Determine the highest IRQL at which any code can access the data.

 If any code that accesses the data runs at IRQL>=DISPATCH_LEVEL, you
must use a spin lock.

 If all code runs at IRQL PASSIVE_LEVEL or APC_LEVEL, you can use an
executive resource, a fast mutex, or one of the kernel dispatcher objects—
whichever is best suited to the driver’s requirements.

 To synchronize driver execution with a user-mode application, define a private
IOCTL and use either an event that is defined by the user-mode application or
an I/O request that the driver completes to notify the application.

 To prevent thread suspension, a driver should enter a critical region before
acquiring an executive resource or waiting for a kernel-dispatcher object (other
than a mutex) at IRQL=PASSIVE_LEVEL.

 To manage lists or to perform arithmetic or logical operations on a single
memory location, use the ExInterlockedXxx and the InterlockedXxx routines.

 Test every driver on as many different hardware configurations as possible.
Always test drivers on multiprocessor systems to find errors that are related to
locking, multi-threading, and concurrency.

 Use Driver Verifier (verifier.exe) to test for IRQL and synchronization issues.
Use the Forced IRQL Checking option to ensure that spin locks are not used at
the wrong IRQL.

 Use the Driver Verifier global counters to monitor IRQL raises and spin lock
acquisitions.

 Use Call Usage Verifier (CUV) to check whether the spin locks are allocated
and used consistently.

Locks, Deadlocks, and Synchronization- 30

© 2004 Microsoft Corporation. All rights reserved.

18 Call to Action and Resources
 Take into account multiprocessor issues when you design and test drivers.

 Design drivers to minimize the need for locks.

 Follow the best practices for driver synchronization described in this paper.

 For more information about IRQL issues for drivers, see the companion paper
“Scheduling, Thread Context, and IRQL,” at
http://www.microsoft.com/whdc/hwdev/driver/IRQL.mspx.

 For other related information, see:

 “Memory Barriers on Multiprocessor Architectures” at
http://www.microsoft.com/whdc/hwdev/driver/mpmem-barrier.mspx.

 “Interrupt Architecture Enhancements in Microsoft Windows Vista” at
http://www.microsoft.com/whdc/hwdev/bus/pci/MSI.mspx.

 Microsoft Windows Driver Development Kit (DDK) at
http://www.microsoft.com/ddk/.

 Inside Microsoft Windows 2000, Third Edition. Solomon, David A. and Mark
Russinovich. Redmond, WA: Microsoft Press, 2000.

 Designed for Microsoft Windows XP Application Specification at
http://www.microsoft.com/winlogo/software/windowsxp-sw.mspx.

 Microsoft Windows Logo Program System and Device Requirements,
Version 2.1a at http://www.microsoft.com/winlogo/hardware/default.mspx.

http://www.microsoft.com/whdc/hwdev/driver/LOCKS.mspx
http://www.microsoft.com/whdc/hwdev/driver/mpmem-barrier.mspx
http://www.microsoft.com/whdc/hwdev/bus/pci/MSI.mspx
http://www.microsoft.com/ddk/
http://www.microsoft.com/winlogo/software/windowsxp-sw.mspx
http://www.microsoft.com/winlogo/hardware/default.mspx

