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Abstract 
This paper explains how to use synchronization mechanisms to protect shared 
memory locations in kernel-mode drivers for the Microsoft® Windows® family of 
operating systems. By following the guidelines in this paper, driver writers will be 
able to determine when synchronization is required, what synchronization 
mechanisms are provided by the operating system, and how each type of 
synchronization mechanism is used. 

This paper builds on topics that are introduced in the companion white paper 
“Scheduling, Thread Context, and IRQL” at 
http://www.microsoft.com/whdc/hwdev/driver/IRQL.mspx. Readers of this paper 
should be familiar with the information presented there. 
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1 Introduction 
The Microsoft® Windows® family of operating systems provides a variety of 
mechanisms that drivers can use for synchronization. Synchronization is required 
for: 

 Any shared data that multiple threads might access, unless all threads access it 
in a read-only manner. 

 A set of operations that must be performed atomically. 
 

To understand why synchronization is important, consider a situation in which two 
threads attempt to add one to the same global variable. This operation might 
require three processor instructions: 

1. Read MyVar into a register. 

2. Add 1 to the value in the register. 

3. Write the value of the register into MyVar. 
 

If the two threads run simultaneously on a multiprocessor system with no locks or 
other synchronization, the results of an update could be lost. For example, assume 
that the initial value of MyVar is 0 and that the operations proceed in the order 
shown below. 

Threads Using No Locks on a Multiprocessor System 

Thread A on Processor 1 Thread B on Processor 2 

Read MyVar into register on 
Processor 1. 

 

 Read MyVar into register on 
Processor 2. 

 Add 1 to Processor 2 register. 

 Write Processor 2 register into 
MyVar. 

Add 1 to Processor 1 register.  

Write Processor 1 register into 
MyVar. 

 

 

After both threads have updated MyVar, its value should be 2. However, the 
Thread B update is lost when Thread A increments the original value of MyVar and 
then overwrites the variable. Problems like this are often called race conditions. 

On a single-processor system, thread pre-emption can also cause race conditions. 
At any time, the operating system may temporarily stop running a thread and 
instead run a different, higher-priority thread. When the system pre-empts a thread, 
the operating system saves the values of the processor’s registers in the thread and 
restores them when the thread runs again. 
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The following example shows how a race condition can result from thread pre-
emption. As in the previous example, assume that the initial value of MyVar is 0. 

Threads Using No Locks on a Single Processor System 

Thread A Thread B 

Read MyVar into register.  

Pre-empt Thread A; run Thread B. 

 Read MyVar into register. 

 Add 1 to register. 

 Write register into MyVar. 

Pre-empt Thread B; run Thread A. 

Add 1 to register.  

Write register into MyVar.  
 

As in the multiprocessor example, the resulting value in MyVar is 1 instead of 2. 

In both examples, using a lock to synchronize access to the variable would prevent 
the race condition. The lock ensures that Thread A has finished its update before 
Thread B accesses the variable, as shown in the following example. 

Threads Using a Lock on Any System 

Thread A Thread B 

Acquire lock.  

Read MyVar into register.  

Add 1 to register.  

Write register into MyVar.  

Release lock. Acquire lock. 

 Read MyVar into register. 

 Add 1 to register. 

 Write register into MyVar. 

 Release lock. 
 

The lock ensures that one thread’s read and write operations are complete before 
another thread can access the variable. With locks in place, the final value of MyVar 
after these two code sequences complete is 2, which is the correct, intended result 
of the operation. 

2 Choosing a Synchronization Mechanism 
The best way to synchronize access in any particular situation depends on the 
operations that require synchronization. Synchronization methods fall into several 
broad categories. Within each category, Windows provides one or more specific 
mechanisms that drivers can use. Table 1 is a list of common synchronization 
methods. 

Table 1. Common Synchronization Methods 

Synchronization 
method 

Description Windows mechanisms 

Interlocked 
operations 

Provides atomic logical, 
arithmetic, and list 
manipulation operations that 
are both thread-safe and 
multiprocessor safe. 

InterlockedXxx and 
ExInterlockedXxx routines 
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Synchronization 
method 

Description Windows mechanisms 

Mutexes Provides (mutually) exclusive 
access to memory. 

Spin locks, fast mutexes, kernel 
mutexes, synchronization 
events 

Shared/exclusive lock Allows one thread to write or 
many threads to read the 
protected data. 

Executive resources 

Counted semaphore Allows a fixed number of 
acquisitions. 

Semaphores 

 

The following sections provide additional details about each of these 
synchronization methods. 

2.1.1 Interlocked Operations 

An interlocked operation completes a common task atomically. Windows provides 
interlocked routines to perform arithmetic and logical operations and to manipulate 
lists. 

2.1.2 Mutexes 

A mutex ensures mutually exclusive access; that is, while one thread has the 
mutex, all other threads are excluded from using it. A thread acquires the mutex 
before accessing the protected data and releases the mutex when access is 
complete. If the mutex is acquired, other threads must either spin or wait until it is 
released before they can acquire it. 

Any lock that grants mutually exclusive access can be considered a mutex. For 
example, spin locks and synchronization events are both mutexes because only 
one thread can acquire a spin lock at a time and only one thread becomes eligible 
for execution when a synchronization event is signaled, The type of mutex that is 
appropriate for any particular situation depends on where and how the mutex will be 
used. When you are selecting a mutex, consider the following: 

 At what IRQLs can the mutex be acquired and released? 

 Does acquiring the mutex raise the current IRQL? If so, where is the old IRQL 
stored? 

 Must the mutex be released on the same thread that acquired it? 

 Can the mutex be acquired recursively? (That is, can a thread acquire the same 
mutex more than once without releasing it?) 

 What happens to a mutex if the thread that is holding it is terminated? (This 
issue applies primarily to the mutexes that are used in user-mode applications.) 
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Table 2 is a list of the types of mutexes that are used in Windows drivers, along with 
their characteristics. Detailed information about each of the Windows mechanisms 
appears later in this paper. 

Table 2. Windows Mutex Mechanisms 

Type of mutex IRQL considerations Recursion and thread 
details 

Interrupt spin 
lock 

Acquisition raises IRQL to DIRQ and 
returns previous IRQL to caller. 

Not recursive. 

Release on same thread as 
acquire. 

Spin lock Acquisition raises IRQL to 
DISPATCH_LEVEL and returns 
previous IRQL to caller. 

Not recursive. 

Release on same thread as 
acquire. 

Queued spin lock Acquisition raises IRQL to 
DISPATCH_LEVEL and stores 
previous IRQL in lock owner handle. 

Not recursive. 

Release on same thread as 
acquire. 

Fast mutex Acquisition raises IRQL to 
APC_LEVEL and stores previous 
IRQL in lock. 

Not recursive. 

Release on same thread as 
acquire. 

Kernel mutex (a 
kernel dispatcher 
object) 

Enters critical region upon acquisition 
and leaves critical region upon 
release. 

Recursive. 

Release on same thread as 
acquire. 

Synchronization 
event (a kernel 
dispatcher 
object) 

Acquisition does not change IRQL. 
Wait at IRQL <= APC_LEVEL and 
signal at IRQL <= 
DISPATCH_LEVEL. 

Not recursive. 

Release on the same thread 
or on a different thread. 

Unsafe fast 
mutex 

Acquisition does not change IRQL. 
Acquire and release at IRQL <= 
APC_LEVEL. 

Not recursive. 

Release on same thread as 
acquire. 

 

2.1.3 Shared/Exclusive Locks 

Shared/exclusive locks, also called read/write locks, allow one thread to have 
exclusive access to shared data or allow many threads to share access to the same 
data. The thread that has exclusive access can write the data; threads that share 
access can only read the data. 

In Windows, executive resources provide a shared/exclusive lock. 

2.1.4 Counted Semaphores 

A counted semaphore is similar to a mutex, except that multiple threads can 
simultaneously acquire a semaphore. Counted semaphores are useful for 
protecting a set of identical data structures that are shared among several threads. 

In Windows, the semaphore (a kernel dispatcher object) is a counted semaphore. 

3 Windows Synchronization Mechanisms 
Windows provides a variety of synchronization mechanisms, many of which are 
subject to IRQL restrictions. Therefore, you must consider the effects of thread 
interruption and understand the IRQLs at which your code might run. 
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When the operating system interrupts a thread, it forces that thread to temporarily 
run code at a higher interrupt request level (IRQL). (In other words, interruption is 
similar to a forced procedure call.) 

Consider the case where code running at a low IRQL successfully acquires a lock, 
but the thread is interrupted to run code at a higher IRQL. If the higher-IRQL code 
tries to acquire the same lock, the thread may hang forever. The lower-IRQL code 
cannot run until the higher-IRQL code exits, but the higher-IRQL code cannot exit 
until the lower-IRQL code releases the lock. Only a single thread is involved. To 
prevent this problem, code that acquires a lock usually raises its IRQL to the 
highest IRQL at which any driver code that acquires the lock can run. 

Table 3 is a list of the synchronization mechanisms available in Windows and the 
IRQL restrictions for each. Note that kernel dispatcher objects provide several types 
of synchronization that have a common structure and similar interfaces. The 
sections that follow this one describe each of the Windows mechanisms in detail. 

Table 3. Summary of Windows Synchronization Mechanisms 

Windows 
synchronization 
mechanism 

Description IRQL restrictions 

InterlockedXxx routines Perform atomic logical and 
arithmetic operations on 
pageable data. 

Call at any IRQL. 

Spin locks Allow exclusive access to 
data in nonpaged memory. 

Acquire at IRQL <= 
DISPATCH_LEVEL. 

ExInterlockedXxx 

routines 
Perform atomic logical, 
arithmetic, and list 
manipulation operations that 
are thread-safe and 
multiprocessor safe. 

Call SList routines at IRQL 
<= DISPATCH_LEVEL; call 
other routines at any IRQL. 

Fast mutexes Protect data at APC_LEVEL, 
preventing thread 
suspension. 

Acquire at IRQL <= 
APC_LEVEL. 

Executive resources Allow one thread to write or 
many threads to read the 
protected data. 

Acquire at 
IRQL<=APC_LEVEL. 

Kernel dispatcher objects 
(events, kernel mutexes, 
semaphores, timers, files, 
threads, processes) 

Provide various types of 
synchronization at 
IRQL<=APC_LEVEL; can be 
used for synchronizing with 
user-mode applications. 

Wait at IRQL <= 
APC_LEVEL; signal at IRQL 
<= DISPATCH_LEVEL. 

Callback objects Provides kernel-mode code 
synchronization at 
IRQL<=DISPATCH_LEVEL; 
can be used to synchronize 
activity between drivers. 

Notify at IRQL <= 
DISPATCH_LEVEL; 
callback routines are called 
in the context of the notifying 
thread at the same IRQL at 
which notification occurred. 

 

4 InterlockedXxx Routines 
The InterlockedXxx routines perform common arithmetic and logical operations 
atomically, ensuring correct results on SMP systems. Whenever possible, drivers 
should use these routines. Most of them are native processor instructions and 
therefore do not require a lock. 
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The InterlockedXxx routines can be used with pageable data. They are usually 
implemented inline by the compiler and can be called at any IRQL. 

5 Spin Locks 
A spin lock does exactly what its name implies: while one thread owns a spin lock, 
any other threads that are waiting to acquire the lock “spin” on a memory location in 
a busy wait until the lock is available. The threads do not block—that is, they are not 
suspended or paged out; they retain control of the CPU, thus preventing execution 
of other code at the same or a lower IRQL. 

Spin locks are opaque objects of type KSPIN_LOCK. They must be allocated from 
nonpaged memory, such as the device extension of a driver-created device object 
or nonpaged pool allocated by the caller. Windows defines several types of spin 
locks, as described in Table 4. 

Table 4. Windows Spin Locks 

Type of spin lock Description 

Ordinary spin lock Protects shared data at DISPATCH_LEVEL or higher. 
Used with ExInterlockedXxx routines and elsewhere 

throughout drivers. (Drivers for Windows XP or later 
versions of Windows should use queued spin locks 
instead of ordinary spin locks.) 

Queued spin lock Protects shared data at DISPATCH_LEVEL or higher. 
Used with ExInterlockedXxx routines and elsewhere 

throughout drivers. Queued spin locks are supported on 
Windows XP and later versions of Windows. 

Interrupt spin lock Protects shared data at DIRQL. Used in 
InterruptService and SynchCritSection routines. 

 

All types of spin locks raise the IRQL to DISPATCH_LEVEL or higher. Spin locks 
are the only synchronization mechanism that can be used at IRQL >= 
DISPATCH_LEVEL. Code that holds a spin lock runs at IRQL >= 
DISPATCH_LEVEL, which means that the system’s thread switching code (the 
dispatcher) cannot run and, therefore, the current thread cannot be pre-empted. 
Therefore, drivers should hold spin locks for only the minimum required amount of 
time and eliminate from the locked code path any tasks that do not require locking. 
Holding a spin lock for an unnecessarily long duration can hurt performance 
system-wide. 

All code within the spin lock must conform to the guidelines for running at IRQL >= 
DISPATCH_LEVEL. Every driver writer should understand these rules. For 
example, code within the spin lock must not cause a page fault because at IRQL >= 
DISPATCH_LEVEL, the operating system cannot wait for the kernel dispatcher 
event that is set internally when paging I/O completes. A page fault within a spin 
lock causes the system to crash with the bug check value 
IRQL_NOT_LESS_OR_EQUAL. Additional restrictions also apply. For complete 
information about these guidelines, see the companion white paper “Thread 
Context, Scheduling, and IRQL,” which is available at 
http://www.microsoft.com/whdc/hwdev/driver/IRQL.mspx. 

To implement spin locks on a single-processor system, the operating system has 
only to raise the IRQL, which prevents pre-emption of the current thread. Because 
no other threads can run concurrently, raising the IRQL is adequate to protect any 
shared structures. (Note, however, that the checked build of the operating system 
uses spin locks, even on single-processor systems.) On an SMP system, the 
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operating system raises the IRQL and then spins by testing and setting a variable 
using an interlocked instruction. 

5.1 Ordinary Spin Locks 

Ordinary spin locks work at DISPATCH_LEVEL. To create an ordinary spin lock, a 
driver allocates a KSPIN_LOCK structure in nonpaged memory and then calls 
KeInitializeSpinLock to initialize it. Code that runs at IRQL < DISPATCH_LEVEL 
must acquire and release the lock by calling KeAcquireSpinLock and 
KeReleaseSpinLock. These routines raise the IRQL before acquiring the lock and 
then lower the IRQL upon release of the lock. 

Code that is already running at IRQL = DISPATCH_LEVEL should call 
KeAcquireSpinLockAtDpcLevel and KeReleaseSpinLockFromDpcLevel 
instead. These routines do not change the IRQL. 

5.2 Queued Spin Locks 

Queued spin locks are a more efficient variation of ordinary spin locks. Queued spin 
locks are available in Windows XP and later releases of Windows. Whenever 
multiple threads request the same queued spin lock, the waiting threads are queued 
in order of their request. In addition, queued spin locks test and set a variable that is 
local to the current CPU, so they generate less bus traffic and are more efficient on 
non-uniform memory architectures (NUMA). 

A queued spin lock requires a KLOCK_QUEUE_HANDLE structure in addition to a 
KSPIN_LOCK structure. The KLOCK_QUEUE_HANDLE structure provides storage 
for a handle to the queue and the associated lock. This structure can be allocated 
on the stack. To initialize a queued spin lock, the driver calls KeInitializeSpinLock. 

To ensure that the IRQL is properly raised and lowered, driver routines that run at 
PASSIVE_LEVEL or APC_LEVEL must call KeAcquireInStackQueuedSpinLock 
and KeReleaseInStackQueuedSpinLock to acquire and release these locks 
Driver routines that run at DISPATCH_LEVEL should call 
KeAcquireInStackQueuedSpinLockAtDpcLevel and 
KeReleaseInStackQueuedSpinLockFromDpcLevel instead. These routines do 
not raise and lower the IRQL. 

5.3 Interrupt Spin Locks 

An interrupt spin lock protects data such as device registers that a driver’s 
InterruptService routine and SynchCritSection routine access at DIRQL. When a 
device driver connects its interrupt object, the operating system creates an interrupt 
spin lock associated with that interrupt object. The driver is not required to allocate 
storage for the spin lock or to initialize it. 

When an interrupt occurs, the system raises the IRQL on the processor to DIRQL 
for the interrupting device, acquires the default interrupt spin lock associated with 
the interrupt object, and then calls the driver’s InterruptService routine. While the 
InterruptService routine is running, the processor IRQL remains at DIRQL and the 
operating system holds the corresponding interrupt spin lock. When the 
InterruptService routine exits, the operating system releases the lock and lowers the 
IRQL (unless another interrupt is pending at that level). 

The system also acquires the default interrupt spin lock when a driver calls 
KeSynchronizeExecution to run a SynchCritSection routine. The operating system 
raises the IRQL to DIRQL for the device, acquires the lock, and invokes the 
SynchCritSection routine. When the routine exits, the operating system releases the 
lock and lowers the IRQL. Other driver routines that share data with the 
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InterruptService routine or SynchCritSection routine must call 
KeAcquireInterruptSpinLock to acquire this lock before they can access the 
shared data. KeAcquireInterruptSpinLock is available on Windows XP and later 
releases of Windows. 

Some types of devices can generate multiple interrupts at different levels. Examples 
include devices that support PCI 3.0 MSI-X, which generate message-signaled 
interrupts (MSI), and a few older devices that interrupt at more than one IRQL. 
Drivers that support such devices must serialize access to data among two or more 
InterruptService routines. 

In this case, the driver must create a spin lock to protect shared data at the highest 
DIRQL at which any interrupt may arrive. When the driver connects its interrupt 
objects, it passes a pointer to the driver-allocated KSPIN_LOCK structure, along 
with the highest DIRQL at which the device interrupts. The operating system 
associates the driver-created spin lock and the DIRQL with the interrupt object. 

When the operating system calls the InterruptService routines, it raises the IRQL to 
the DIRQL specified with the interrupt object and acquires the driver-created spin 
lock. The system also uses this lock when it runs a SynchCritSection routine. Other 
driver routines that share data with the InterruptService or SynchCritSection routine 
must call KeAcquireInterruptSpinLock to acquire this lock before they can access 
the shared data. 

Note 

The next version of Windows, Microsoft Vista™ includes significant changes to the 
interrupt architecture to support message-signaled interrupts. Specifically, the 
IoConnectInterrupt routine is deprecated. You should use its replacement, 
IoConnectInterruptEx in new drivers, and older versions of drivers should be 
updated to use this new routine if possible. The Windows DDL provides this routine 
for use in Windows 2000 and later releases of Windows. For more information 
about these upcoming changes, see the white paper “Interrupt Architecture 
Enhancements in Microsoft Windows Vista,” which is available at 
http://www.microsoft.com/whdc/hwdev/bus/pci/MSI.mspx. 

 

6 ExInterlockedXxx Routines 
The ExInterlockedXxx routines perform arithmetic and list manipulation operations. 
All of these routines (except for ExInterlockedAddLargeStatistic) use a driver-
allocated spin lock. 

The ExInterlockedXxx routines are coded in assembly language and usually 
disable interrupts at the processor; in effect, they run at IRQL = HIGH_LEVEL. To 
protect data on SMP systems, the operating system raises the IRQL and acquires 
the spin lock before performing the operation. When the routine completes, the 
operating system releases the lock and returns the IRQL to its original value. Like 
other routines that run at IRQL>= DISPATCH_LEVEL, ExInterlockedXxx routines 
can operate only on data in nonpaged memory. Therefore, any parameter passed 
to one of these routines must be allocated on the kernel stack, from nonpaged pool, 
or in the device extension of the device object. 

Use the ExInterlockedXxx routines to perform arithmetic operations on a shared 
variable that a driver also accesses elsewhere, perhaps as part of a larger structure 
or in a longer sequence of tasks. For example, assume that a driver maintains a 
structure that contains status information about its device. The driver’s DpcForIsr 
routine accesses this structure, as do several routines that run at IRQL = 
PASSIVE_LEVEL. Therefore, the driver must protect the structure with a spin lock. 
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To update several fields of the structure in a tight code path, the driver acquires the 
spin lock and assigns new values to the fields. To update the value of a single field, 
the driver uses an ExInterlockedXxx routine, passing the spin lock that protects 
the structure. 

In addition to routines for arithmetic operations, Windows includes 
ExInterlockedXxx routines for managing three types of lists: 

 Singly linked lists 

 Doubly linked lists 

 S-lists (sequenced, singly linked lists) 
 

Drivers often maintain internal lists of IRPs, buffers, or other objects. If two or more 
threads have access to a list, the driver must protect the list while items are inserted 
and removed. For singly linked and doubly linked lists, the system provides both 
interlocked and non-interlocked versions of the manipulation routines, as shown in 
Table 5. 

Table 5. List Manipulation Routines 

Purpose Noninterlocked routine Interlocked routine 

Insert entry at front of 
singly linked list. 

PushEntryList ExInterlockedPushEntryList 

Remove entry from front 
of singly linked list. 

PopEntryList ExInterlockedPopEntryList 

Insert entry at front of 
doubly linked list. 

InsertHeadList ExInterlockedInsertHeadList 

Remove entry from front 
of doubly linked list. 

RemoveHeadList ExInterlockedRemoveHeadList 

Insert entry at end of 
doubly linked list. 

InsertTailList ExInterlockedInsertTailList 

Remove entry from end 
of doubly linked list. 

RemoveTailList None. 

Initialize doubly linked 
list. 

InitializeListHead None. 

Check whether list has 
entries. 

IsListEmpty None. 

Remove entry from 
doubly linked list. 

RemoveListEntry None. 

Initialize S-list. None. ExInitializeSListHead 

Insert entry at front of 
S-list. 

None. ExInterlockedPushEntrySList 

Remove entry from end 
of S-list. 

None. ExInterlockedPopEntrySList 

Remove all entries from 
an S-list. 

None. ExInterlockedFlushSList 

 

The ExInterlockedXxxList routines use a driver-allocated spin lock. These routines 
can be called at any IRQL, provided that the driver always accesses a given list by 
using the ExInterlockedXxxList routines. 
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The ExInterlockedXxxSList routines manipulate S-lists. An S-list is a sequenced, 
interlocked, singly linked list that is both thread-safe and multiprocessor safe. Every 
S-list has an associated spin lock and a sequence number. The spin lock is used to 
protect the list while entries are inserted or deleted. The sequence number is 
incremented each time an entry is inserted or deleted. On some hardware 
architectures, using a sequence number enables these routines to avoid using a 
spin lock. 

A driver must be running at IRQL <= DISPATCH_LEVEL to call the S-list routines. 
S-lists are useful for maintaining caches because a driver can simply and quickly 
remove the most recently used item from the list. Internally, Windows uses S-lists to 
implement lookaside lists. 

7 Fast Mutexes 
Fast mutexes, also called executive mutexes, enable a driver to protect a region for 
exclusive access. While a thread holds a fast mutex, no other thread can acquire 
the mutex. A fast mutex is an opaque structure of type FAST_MUTEX, which must 
be allocated from nonpaged memory. 

Fast mutexes have low overhead and do not require the use of the system-wide 
dispatcher lock. As their name implies, fast mutexes are faster and more efficient 
than kernel mutexes. 

Code paths that are protected by a fast mutex run at IRQL=APC_LEVEL, thus 
disabling delivery of all APCs and preventing the thread from suspension. Table 6 is 
a summary of the fast mutex acquisition routines. 

Table 6. Fast Mutex Acquisition Routines 

Routine Description 

ExAcquireFastMutex Raises the IRQL to APC_LEVEL before acquiring the fast 
mutex. Blocks until the mutex is available. 

ExAcquireFastMutexUnsafe Acquires the mutex at the current IRQL. Blocks until the 
mutex is available. 

ExTryToAcquireFastMutex Raises the IRQL to APC_LEVEL before acquiring the fast 
mutex. Does not block if the mutex is not available. 

 

ExAcquireFastMutex and ExAcquireFastMutexUnsafe cause the thread to block 
until the mutex is available. ExTryToAcquireFastMutex returns FALSE 
immediately if another thread has already acquired the mutex. Both 
ExAcquireFastMutex and ExTryToAcquireFastMutex raise the IRQL to 
APC_LEVEL before acquiring the fast mutex. Drivers should use 
ExAcquireFastMutexUnsafe (which does not raise the IRQL) only if either of the 
following is true: 

 The thread is already running at APC_LEVEL. 

 The thread acquires the mutex within a critical region that was previously 
entered by a call to KeEnterCriticalRegion or FsRtlEnterFileSystem. 

 

In either of these situations, user-mode and normal kernel-mode APC delivery has 
already been disabled for the thread. 

To use a fast mutex, a driver must: 

1. Allocate a structure of type FAST_MUTEX from nonpaged pool. 

2. Initialize the fast mutex by calling ExInitializeFastMutex. 
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3. Immediately before accessing the protected region, acquire the fast mutex by 
calling ExAcquireFastMutex, ExAcquireFastMutexUnsafe, or 
ExTryToAcquireFastMutex. 

4. Perform the required operations on the protected data. 

5. Release the fast mutex by calling ExReleaseFastMutex or 
ExReleaseFastMutexUnsafe. 

 

Fast mutexes have the following limitations: 

 Fast mutexes cannot be acquired recursively. Attempting to do so causes a 
deadlock. 

 Driver code that holds a fast mutex runs at IRQL=APC_LEVEL. Therefore, such 
code cannot call routines that can be called only at IRQL=PASSIVE_LEVEL, 
such as IoBuildDeviceIoControlRequest. 

 Fast mutexes are not kernel dispatcher objects. Therefore, a driver cannot use 
the KeWaitForMultipleObjects routine to wait for a fast mutex and a kernel 

dispatcher object simultaneously. 

8 Kernel Dispatcher Objects 
The operating system defines several types of kernel dispatcher objects, which 
provide various types of synchronization. Kernel dispatcher objects are relatively 
simple to use and provide locks that can be held at IRQL=PASSIVE_LEVEL. 
Table 7 is a summary of the kernel dispatcher object types. 

Table 7. Kernel Dispatcher Object Types 

Object type Description IRQL restrictions 

Kernel mutex Provides mutually exclusive 
access to data at 
PASSIVE_LEVEL or 
APC_LEVEL. 

Wait at IRQL 
<=APC_LEVEL. 

Event Provides synchronization 
under driver-determined 
conditions; can be used to 
synchronize with user-mode 
applications. 

Wait at 
IRQL<=APC_LEVEL; set at 
IRQL<=DISPATCH_LEVEL. 

Semaphore Protects a group of identical 
objects. 

Wait at 
IRQL<=APC_LEVEL; set at 
IRQL<=DISPATCH_LEVEL. 

Timer Provides notification or 
synchronization at an 
absolute or relative time. 

Wait at IRQL 
<=APC_LEVEL; set at IRQL 
<=DISPATCH_LEVEL. 

Threads, processes, and 
files 

Synchronizes with the 
creation or termination of a 
thread or process, or the 
completion of I/O to a file. 

Wait at IRQL 
<=APC_LEVEL. 

 

A driver can pass a kernel dispatcher object to the KeWaitForSingleObject and 
KeWaitForMultipleObject routines. Using these routines, a driver can wait with a 
specified time-out and can wait for one or more objects simultaneously. 
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8.1 Common Features 

The operating system manages all kernel dispatcher objects in the kernel’s 
dispatcher database (hence their name). To manipulate any of these objects, the 
system must raise the IRQL to DISPATCH_LEVEL and acquire the system-wide 
dispatcher lock, which protects the dispatcher database. However, the dispatcher 
lock is used frequently by many components, so sometimes the system must wait 
for it. Such waits can slow driver performance. For this reason, drivers should use 
executive resources or fast mutexes instead of kernel dispatcher objects whenever 
possible. 

Kernel dispatcher objects are all based on the same common header 
(DISPATCHER_HEADER), but each type of object has its own object-type-specific 
initialization and release routines. Kernel dispatcher objects must be allocated from 
nonpaged pool or in the device extension of the device object. 

A driver can refer to a kernel dispatcher object by using either a handle or a pointer. 
If a driver uses a handle to refer to a kernel dispatcher object that it created in an 
arbitrary thread context, that driver must set the OBJ_KERNEL_HANDLE attribute 
for the object. Setting this attribute protects system security by preventing user-
mode threads from accessing the handle. 

Drivers usually use kernel dispatcher objects to wait for the results of a 
synchronous I/O operation. Highest-level drivers that create and send IRPs to 
lower-level drivers wait in the context of the thread that issued the I/O request. 
Lower-level drivers sometimes must wait in an arbitrary thread context to 
synchronize execution among driver routines that run at IRQL PASSIVE_LEVEL or 
APC_LEVEL. For example, a driver might wait in its DispatchPnP routine for an 
event that is set when certain device operations are complete. As a general rule, 
however, drivers should avoid blocking any thread other than the thread that 
initiated the current I/O request. 

Kernel dispatcher objects have two states: signaled and not signaled. Signaling 
indicates that the object is available for acquisition. Thus, an object in the signaled 
state is not owned (acquired) by any thread. An object in the not-signaled state is 
owned by one or more threads. The type of object determines the state to which the 
object is initially set. For example, kernel mutexes are set to the signaled state 
immediately upon initialization, but events must be explicitly signaled by a call to the 
KeSetEvent routine. 

Although each type of object has its own type-specific initialization and release 
routines, drivers use KeWaitForSingleObject and KeWaitForMultipleObjects to 
acquire any kernel dispatcher object. Using KeWaitForSingleObject, a driver can 
wait for a single kernel dispatcher object. Using KeWaitForMultipleObjects, a 
driver can wait for more than one kernel dispatcher object; the objects need not be 
of the same type. Each of these routines takes as parameters: 

 A pointer to the object(s) that are to be acquired. 

 A reason for the wait. Drivers that are waiting on behalf of a user request in the 
context of a user thread should specify UserRequest; otherwise, drivers should 
specify Executive. The value of this field is informational only. 

 A Boolean value (Alertable) that indicates whether the thread should be 
alertable while it is waiting. For drivers, this is usually FALSE. 

 A wait mode (WaitMode), either KernelMode or UserMode. For drivers, this is 
usually KernelMode. If one or more of the objects is a mutex, this value must 
be KernelMode. 
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 An optional time-out value, which indicates how long the thread is to wait before 
it times out. 

 

8.1.1 IRQL Restrictions 

A thread can signal a kernel dispatcher object at IRQL <= DISPATCH_LEVEL, but it 
can wait for such an object only at IRQL <= APC_LEVEL. This IRQL restriction 
means that a driver cannot wait for an event or other dispatcher object in an 
IoCompletion routine, in a StartIo routine, or in any deferred procedure call (DPC) 
routine, because these routines can be called at DISPATCH_LEVEL. Highest-level 
drivers that are called in the context of the user thread that made the I/O request 
can wait for kernel dispatcher objects in their read and write dispatch routines. 
Lower-level drivers should not wait in these routines; the read and write dispatch 
routines of some lower-level drivers, particularly in the storage and USB stacks, can 
be called at IRQL = DISPATCH_LEVEL. 

However, a thread can acquire a kernel dispatcher object at DISPATCH_LEVEL if it 
does not wait for the object. To acquire a kernel dispatcher object without waiting, a 
thread sets the time-out value to zero in its call to KeWaitForSingleObject or 
KeWaitForMultipleObjects. A time-out value equal to zero means that the driver 
does not wait for the object to be signaled; instead, the call returns immediately with 
a status that indicates whether an object was available and acquired or is not 
currently available. Because no waiting is involved, such a call is valid at 
DISPATCH_LEVEL. 

This feature is useful for testing whether an object has been signaled. For example, 
a DPC routine that must perform a task in synchronization with some other routine 
might check to see whether the object has been signaled. If so, the DPC can 
perform the task. If not, the DPC can do some other, unrelated task, or it can queue 
a work item to perform the original task. Because the work item runs in a thread at 
IRQL=PASSIVE_LEVEL, the work item can wait for a nonzero period. 

8.1.2 Alerts and Wait Modes 

The Alertable and WaitMode parameters to KeWaitForSingleObject and 
KeWaitForMultipleObjects determine how the system handles user-mode APCs 
while the thread is waiting. Table 8 is a summary of the effects of these parameters 
on APC delivery. 

Table 8. Effects of the Alertable and WaitMode Parameters on APC Delivery 

Value of 

Alertable 
and 
WaitMode 
parameters 

Special  
kernel-mode APC 

Normal  
kernel-mode APC 

 
User-mode APC 

Terminate 
wait? 

Deliver 
and run 
APC? 

Terminate 
wait? 

Deliver 
and run 
APC? 

Terminate 
wait? 

Deliver and 
run APC? 

Alertable = 

TRUE 

WaitMode = 
UserMode 

No If (A*), 
then Yes 

No If (B**), 
then Yes 

Yes Yes, after 
thread 
returns to 
user mode 

Alertable = 

TRUE 

WaitMode = 
KernelMode 

No 

 

If (A), then 
Yes 

No If (B), then 
Yes 

No No 
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Value of 

Alertable 
and 
WaitMode 
parameters 

Special  
kernel-mode APC 

Normal  
kernel-mode APC 

 
User-mode APC 

Alertable = 

FALSE 

WaitMode = 
UserMode 

No If (A), then 
Yes 

No If (B), then 
Yes 

No No (with 
exceptions, 
such as 
CTRL+C to 
terminate) 

Alertable = 

FALSE 

WaitMode = 
KernelMode 

No If (A), then 
Yes 

No If (B), then 
Yes 

No No 

 
  *A: IRQL < APC_LEVEL. 

**B: IRQL < APC_LEVEL, thread not already in an APC, and thread not in a critical region. 

The system delivers most user-mode APCs when a thread unwinds from kernel 
mode back to user mode after an alertable wait. User-mode APCs do not interrupt 
user-mode code. After an application queues a user-mode APC to a thread, the 
application can cause the system to deliver the APCs by calling a wait function with 
the Alertable parameter set to TRUE. (The user-mode terminate APC is an 
exception. This APC is queued to terminate a thread, and the system delivers it 
whenever the thread unwinds back to user mode from kernel mode, not only after 
an alertable wait.) 

If a driver calls either KeWaitForSingleObject or KeWaitForMultipleObjects with 
the Alertable parameter set to TRUE and the WaitMode parameter set to 
UserMode, the wait aborts with STATUS_USER_APC or STATUS_ALERTED 
whenever a user-mode APC (or an alert) is pending. When the thread returns to 
user mode, the system automatically delivers the user-mode APC. Drivers should 
not call either of the KeWaitXxx routines with Alertable set to TRUE and WaitMode 
set to UserMode unless the application has explicitly requested delivery of user-
mode APCs during the wait. 

If a driver calls KeWaitForSingleObject or KeWaitForMultipleObjects with 
WaitMode set to UserMode, but Alertable set to FALSE, the wait will abort with 
STATUS_USER_APC if the thread is being terminated. However, the driver must 
be waiting at IRQL = PASSIVE_LEVEL and must not be in a critical region. 

The wait mode also determines whether the thread’s kernel-mode stack can be 
paged out while waiting. If WaitMode is set to UserMode, the system pages out the 
kernel-mode stack while the thread is waiting. Waiting in UserMode is safe only if 
the waiting driver is the only driver on the stack. If one or more other drivers is on 
the stack, one of those drivers might try to update a stack variable, thereby causing 
a page fault. If that driver is running at IRQL=DISPATCH_LEVEL or higher, the 
page fault will cause the system to crash. Because PnP driver stacks often include 
filter drivers, PnP drivers rarely set WaitMode to UserMode. 

Note 

For more information about alertable waits, APCs, and the rules for operating at 
IRQL=DISPATCH_LEVEL, see the companion white paper “Scheduling, Thread 
Context, and IRQL” and the section “Do Waiting Threads Receive Alerts and APCs” 
under “Kernel-Mode Driver Architecture” in the Windows DDK. 
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8.2 Events 

Drivers use events to synchronize activities between kernel-mode threads or 
between kernel-mode threads and user-mode applications. Both user-mode and 
kernel-mode code can create events. Windows also defines several standard event 
objects in the \\KernelObject object directory. Drivers can wait on these standard 
events. 

An event is a synchronization object of type KEVENT, which must be allocated in 
nonpaged memory. Events can be either named or unnamed. Drivers usually use 
named events only to synchronize with external processes, such a user-mode 
application or another driver. Internally, drivers use unnamed events. Windows 
supports two types of events, notification events and synchronization events. The 
two types of event differ in the actions taken when they are signaled, as described 
later under “Notification Events” and “Synchronization Events.” 

To create and initialize an unnamed event of either type, a driver allocates an object 
of type KEVENT in nonpaged memory. The driver then calls KeInitializeEvent and 
specifies the type of event as a parameter in the call. To create and initialize a 
named event, the driver calls IoCreateNotificationEvent or 
IoCreateSynchronizationEvent. 

To wait for an event, a driver calls KeWaitForSingleObject or 
KeWaitForMultipleObjects, as described previously under “Kernel Dispatcher 
Objects.” 

To signal an event, a driver calls KeSetEvent, which has three parameters: a 
pointer to the event, a priority boost, and the Boolean Wait. Setting Wait to TRUE 
indicates that the thread intends to call KeWaitXxx immediately after KeSetEvent 
returns. This parameter provides an optimization in the cases where the driver 
intends to wait for another kernel dispatcher object immediately. 

Normally, drivers call KeSetEvent with Wait set to FALSE. When Wait is FALSE, 
KeSetEvent raises the IRQL to DISPATCH_LEVEL, acquires the dispatcher lock, 
modifies the signaled-state of the event object, satisfies any outstanding waits, 
unlocks the dispatcher database, lowers the IRQL to its original value, and returns. 

If the Wait parameter is TRUE, however, KeSetEvent does not release the 
dispatcher lock or lower the IRQL. This optimization can prevent unnecessary 
context switches because the caller thus signals the event and waits in one atomic 
operation. If a driver uses this feature, it must call KeSetEvent from IRQL < 
DISPATCH_LEVEL and in a non-arbitrary thread context. 

A driver routine that operates in a producer/consumer scenario might use this 
feature. Such a driver usually works with two events in the following way. The driver 
routine that produces data signals the first event to indicate that it is ready to send 
data. It then immediately waits for the second event to be signaled by another 
thread. The second thread sets the second event to indicate it has received the 
data and is ready for more. Drivers should use this feature only in the context of the 
thread that requested the I/O operation; a driver should avoid blocking an unrelated 
thread. 

8.2.1 Notification Events 

A notification event wakes every waiting thread and remains in the signaled state 
until it is explicitly reset by a call to KeResetEvent. In the Win32® API, notification 
events are called manual reset events. 
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Drivers typically use notification events to wait for the completion of IRPs that they 
allocate and send. For example, a driver might send an I/O control code (IOCTL) to 
lower drivers in its device stack by calling IoBuildDeviceIoControlRequest. One of 
the parameters to this routine is a pointer to an event object. After the driver routine 
creates and sends the IRP, it waits on the event object. When the IRP is complete, 
the I/O Manager signals the event, thus satisfying the wait. The event remains 
signaled until a call to KeResetEvent returns it to the non-signaled state. 

8.2.2 Synchronization Events 

Synchronization events, also called auto-resetting events, wake a single thread and 
immediately return to the non-signaled state. Drivers use synchronization events 
less frequently than notification events. 

A driver for a device that requires a long time to initialize might wait on a 
synchronization event in its StartDevice routine to ensure that its device is fully 
initialized. The driver’s DpcForIsr routine signals the event after the device has 
interrupted and any additional processing at IRQL DISPATCH_LEVEL is complete. 
Control then returns to the StartDevice routine, which can continue with device and 
driver initialization. Similarly, a driver might wait on a synchronization event in its 
DispatchPnp routine to ensure that I/O has completed before stopping or removing 
the device. 

8.2.3 Synchronizing with User-Mode Applications 

Kernel-mode drivers cannot make calls to user-mode routines. However, a kernel-
mode driver with a closely-coupled application might sometimes need to notify the 
application about a device- or driver-related occurrence. There are several ways to 
implement such notification; two recommended methods are outlined in this section. 

One way to coordinate activities between a kernel-mode driver and a user-mode 
application is to share an event. In the driver: 

1. Define a private I/O control code (IOCTL) with which a user-mode application 
can pass an event. 

2. Provide a DispatchDeviceControl routine that handles the private IOCTL 
supplied in IRP_MJ_DEVICE_CONTROL requests. 

3. Validate the handle received in the IOCTL by calling 
ObReferenceObjectByHandle. In the DesiredAccess parameter, specify 
SYNCHRONIZE access, and in the ObjectType parameter, specify 
*ExEventObjectType. 

6. To signal the event, call KeSetEvent; to reset a notification event, call 
KeResetEvent. 

7. Call ObDereferenceObject to free the handle when the event is no longer 
needed. 

 

In the user-mode application: 

1. Create a named event by calling CreateEvent. 

2. Pass the handle to the event to the driver by calling DeviceIoControl, 
specifying the driver-defined IOCTL. 

3. To wait for the kernel-mode driver to signal the event, call 
WaitForSingleObject or WaitForMultipleObjects. 

4. Delete the event object before exiting by calling CloseHandle. 
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This technique is suitable in situations where the driver routine and the user-mode 
thread that share the event always run in the same process context. However, in 
the layered WDM driver model, lower-level driver routines are not usually called in 
the context of the requesting thread or process. 

A more general approach that eliminates thread context problems is to use a 
DeviceIoControl request without an event. In this technique, the driver defines a 
private IOCTL for the I/O request. The application creates a dedicated thread that 
sends the DeviceIoControl request to the driver, which returns 
STATUS_PENDING. To notify the user-mode application, the driver completes the 
request. Because this technique does not depend upon the validity of user-mode 
data, it is suitable for use in lower-level drivers. 

For an example of both of these techniques, see the event sample 
(src\general\event) in the Windows DDK. 

8.3 Kernel Mutexes 

Kernel mutexes, often just called mutexes, are useful for synchronizing access to 
memory in pageable code or over a relatively long period of time. A kernel mutex 
ensures that a thread has exclusive access to the protected data. Drivers can use 
kernel mutexes at IRQL <= APC_LEVEL. 

Kernel mutexes depend on thread context. Driver routines that use kernel mutexes 
are usually highest-level driver routines that run in the context of the thread that 
requested the I/O operation. A driver routine that acquires a mutex should release it 
within the same thread context. 

Kernel mutexes differ from fast mutexes in the following ways: 

 Kernel mutexes can be acquired recursively; fast mutexes cannot. 

 Kernel mutexes are acquired by using KeWaitForSingleObject, 
KeWaitForMultipleObjects, and KeWaitForMutexObject. Fast mutexes are 
acquired by using ExAcquireFastMutex, ExTryToAcquireFastMutex, and 
ExAcquireFastMutexUnsafe. 

 Kernel mutexes require the use of the system-wide dispatcher lock. Therefore, 
they have greater overhead and are less efficient than fast mutexes. 

 

To use a kernel mutex, a driver must: 

1. Allocate a KMUTEX data structure in nonpaged memory such as the device 
extension of a driver-created device object or nonpaged pool. 

2. Initialize the mutex by calling KeInitializeMutex, passing a pointer to the 
previously allocated data structure. (The Level parameter is ignored.) 

3. Wait for the mutex by calling KeWaitForSingleObject, 
KeWaitForMultipleObjects, or KeWaitForMutexObject. 

4. Perform the required operations on the protected data. 

5. Release the mutex by calling KeReleaseMutex. 
 

The operating system initializes every kernel mutex to the signaled state. 
Consequently, the first thread’s initial call to wait for the mutex succeeds 
immediately and returns. 

Driver routines should always specify KernelMode when they are waiting for a 
kernel mutex. Waiting in kernel mode prevents the thread’s kernel-mode stack from 
being paged out and disables the delivery of user-mode and normal kernel-mode 
APCs, thus preventing thread termination and suspension. Special kernel-mode 
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APCs, such as the special kernel-mode APC for I/O completion, can still be 
delivered. Internally, acquiring a kernel mutex calls KeEnterCriticalRegion. If the 
thread is running at PASSIVE_LEVEL when it acquires the mutex, this call disables 
the delivery of normal kernel-mode APCs until the thread releases the mutex. If the 
thread is running at APC_LEVEL when it acquires the mutex, entering a critical 
region has no effect because normal kernel-mode APC delivery is already disabled. 

A thread that holds a mutex must release the mutex before any transition to user 
mode; the system crashes if a thread holds a mutex during the transition. For 
example, a highest-level driver that acquires a mutex while servicing a user-mode 
I/O request must release the mutex before returning to the user-mode code. 

When a thread releases a mutex, it passes a Wait parameter. The Wait parameter 
has the same meaning in KeReleaseMutex as in KeSetEvent; see the section 
“Events” for details. 

A thread that acquires a mutex recursively must release the mutex the same 
number of times as it acquired the mutex. The operating system does not signal the 
mutex or call KeLeaveCriticalRegion until all acquisitions have been released. 

8.4 Semaphores 

A semaphore is similar to a mutex, except that multiple threads can simultaneously 
acquire a semaphore. Semaphores are useful for protecting a set of identical data 
structures that are shared among several threads. 

Every semaphore has a limit and a count. The limit is the maximum number of 
threads that can acquire the semaphore at a time, and the count is the number of 
threads that can currently acquire the semaphore. 

For example, a driver might allocate several buffers for I/O and protect them with a 
semaphore. The semaphore’s limit is the number of buffers. When a driver routine 
needs an I/O buffer, it waits for the semaphore. If the semaphore’s count is equal to 
zero, all buffers are in use. If the count is equal to its limit, all buffers are free. 

To use a semaphore, a driver must: 

1. Allocate a KSEMAPHORE data structure in the device extension of a driver-
created device object or in nonpaged pool allocated by the caller. 

2. Initialize the semaphore by calling KeInitializeSemaphore, specifying the 
semaphore’s count and limit. Setting the count to 0 initializes the semaphore in 
the not-signaled state; setting the count greater than 0 signals the semaphore 
and indicates how many threads can acquire it initially. 

3. Wait for the semaphore by calling KeWaitForSingleObject or 
KeWaitForMultipleObjects. 

4. Perform the required operations on the protected data. 

5. Release the semaphore by calling KeReleaseSemaphore, passing a value to 
add to the current count. 

 

If a driver increases the count of a semaphore above the semaphore’s limit, the 
system raises an exception. Such an error could occur if the driver attempts to 
release the semaphore too many times. This behavior is different from that of 
events; setting an already signaled event has no effect. 

When a thread releases a semaphore, it can also specify a Wait parameter. The 
Wait parameter has the same effect for a semaphore as for a mutex or for an event; 
see the section “Events” for details. 
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A thread can determine whether a semaphore is signaled or not signaled by calling 
KeReadStateSemaphore. 

8.5 Timers 

Drivers often use timers for polling and handling device time-outs. Like events, 
timers can be used for synchronization or for notification. A driver creates a 
notification timer by calling KeInitializeTimer; it can create either a notification timer 
or a synchronization timer by calling KeInitializeTimerEx. 

Both types of timers expire after a specified interval at either an absolute or relative 
time. Absolute times are measured in 100-nanosecond units starting on January 1, 
1601. This time is tied to the calendar—advancing the clock by one hour brings the 
expiration time one hour closer. Relative times are negative numbers measured in 
100-nanosecond units from the moment the timer was started. Relative time is 
measured in machine running time and is unaffected by system clock changes. 
Relative time includes time spent sleeping. When the computer awakens, the 
operating system adjusts the internal machine time to include the time that the 
computer was asleep. As a result, many timers expire simultaneously as soon as 
the operating system resumes. When a notification timer expires, all waiting threads 
are released. The timer remains in the signaled state until a thread explicitly resets 
by calling KeSetTimer. When a synchronization timer expires, a single waiting 
thread is released and the operating system immediately resets the timer to the 
non-signaled state. 

A driver can wait on a timer object at IRQL <= APC_LEVEL, or it can specify a 
CustomTimerDpc routine to be called when the timer expires. Drivers can use 
CustomTimerDpc routines instead of driver-created threads to perform short-lived 
operations. CustomTimerDpc routines are also used to time out a request at 
IRQL=DISPATCH_LEVEL. 

To use a timer, a driver should do the following, as necessary: 

1. Allocate a structure of type KTIMER in nonpaged memory. 

2. Create and initialize the timer by calling KeInitializeTimer or 
KeInitializeTimerEx. KeInitializeTimer creates a notification timer. 
KeInitializeTimerEx creates a notification timer or a synchronization timer. 

3. To associate the timer with a CustomTimerDpc routine, call KeInitializeDpc to 
initialize a DPC object and register the CustomTimerDpc routine. 

4. Set the timer by calling KeSetTimer or KeSetTimerEx, specifying the interval 
at which the timer expires. To queue the CustomTimerDpc routine when the 
timer expires, include the optional Dpc parameter. 

5. To wait on a timer object, call KeWaitForSingleObject or 
KeWaitForMultipleObjects. 

6. To cancel a timer before it expires, call KeCancelTimer. 

7. To reset a notification timer after it expires, call KeSetTimer. 
 

Both notification and synchronization timers can be recurring (or periodic) timers. As 
soon as a periodic timer’s interval expires, the operating system immediately 
queues the timer again. Consequently, a DPC routine that is associated with a 
periodic timer can run simultaneously on more than one CPU in an SMP system. 
Such simultaneous execution can occur, for example, if the DPC routine takes 
longer to run than the timer interval or if its execution is delayed because other 
DPCs precede it in the DPC queue. Because the DPC routines run at IRQL = 
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DISPATCH_LEVEL, drivers must use spin locks to protect any data that these 
routines share. 

If your driver uses more than one timer object, DPC object, or CustomTimerDpc 
routine, you should understand the order in which the operating system signals the 
objects and queues the DPCs, the consequences of using these objects in varying 
combinations, and the effects of canceling one or more of the timers. See “Using a 
CustomTimerDpc Routine” in the “Kernel Mode Drivers Architecture Design Guide” 
section of the Windows DDK for details. 

8.6 Threads, Processes, and Files 

Threads, processes, and files are also kernel dispatcher objects. Drivers can use 
the KeWaitXxx routines to synchronize actions with the termination of a thread or 
process or with the completion of I/O to a file. In addition, a driver can request 
notification when a new thread or process is created. 

To synchronize with a particular process, thread, or file, the driver must get a 
pointer to the object that represents that process, thread, or file. A driver that 
creates a thread can pass the handle returned by the PsCreateSystemThread 
routine to ObReferenceObjectByHandle to get a pointer to the thread object. 
Similarly, a driver can get a pointer to a file object by passing a file handle to 
ObReferenceObjectByHandle. The resulting object pointers can then be passed 
to KeWaitXxx. 

To wait on a thread, process, or file object, a kernel-mode driver must specify a 
KernelMode wait. Waiting in kernel mode prevents paging of the waiting thread’s 
stack and disables user-mode and normal kernel-mode APCs. The wait is satisfied 
when the thread or process terminates or when the current file I/O operation is 
complete. 

A file I/O operation (a single IRP) is complete when the operating system signals an 
internal event that is embedded in the file object. Every file object has such an 
embedded event. The event is a synchronization (auto-reset) event; that is, the 
event is reset as soon as a waiting thread is notified. Applications and file system 
drivers that implement asynchronous I/O can wait on the file event to find out when 
the I/O operation completes. 

Synchronizing with a specific thread is generally useful only in drivers that create 
device-dedicated or other driver-specific threads. Most driver routines, except for 
the I/O dispatch routines of highest-level drivers, are called in the context of an 
arbitrary thread. Consequently, synchronizing driver activity with the current thread 
context is rarely meaningful. 

A driver can also request notification whenever a thread or process is created or 
deleted system-wide. To do so, the driver sets a callback routine by calling 
PsSetCreateProcessNotifyRoutine or PsSetCreateThreadNotifyRoutine. The 
operating system calls the routine any time a process or thread is created or 
deleted. A driver that establishes thread or process callback routines must not exit 
before the operating system shuts down. 

9 Executive Resources 
By using an executive resource, a driver can implement a read/write lock. Executive 
resources are designed for use with data structures that require exclusive access 
for writing but that can be read by several threads concurrently. Executive 
resources are not maintained in the system’s dispatcher database, so they usually 
are faster and more efficient than kernel dispatcher objects. A thread can acquire 
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an executive resource for exclusive (write) access or for shared (read) access. 
Code that runs at IRQL=PASSIVE_LEVEL or APC_LEVEL can use executive 
resources. 

An executive resource is a structure of type ERESOURCE, which must be allocated 
in nonpaged memory (for example, the device extension of the device object or 
nonpaged pool). An ERESOURCE structure must be naturally aligned; that is, the 
structure must be aligned on a 4-byte boundary on a 32-bit system and on an 8-
byte boundary on a 64-bit system. The ERESOURCE structure itself is opaque to 
driver writers. 

Table 9 is a summary of the acquisition routines for executive resources. It includes 
the type of access that each routine provides and when such access is granted. 

Table 9. Executive Resource Acquisition Routines 

Routine Type of 
access 

Conditions 

ExAcquireResourceSharedLite Shared Acquires resource if either: 

The resource is not already 
acquired exclusively and no thread 
is waiting to acquire exclusive 
access. 

                or 

The requesting thread already has 
shared or exclusive access. 

ExAcquireResourceExclusiveLite Exclusive Acquires resource if the resource is 
not already acquired for shared or 
exclusive access. 

ExAcquireSharedStarveExclusive Shared Acquires resource if either: 

The resource is not already 
acquired exclusively. 

                or 

The requesting thread already has 
shared or exclusive access. 

Threads waiting for exclusive 
access continue to wait. 

ExAcquireSharedWaitForExclusive Shared Same as 
ExAcquireResourceSharedLite 
except that: 

If the requesting thread already has 
access to the resource and one or 
more threads are waiting for 
exclusive access, the recursive 
request blocks until the exclusive 
requests have been satisfied. 

 Exclusive Same as 
ExAcquireResourceExclusiveLite, 

but it does not block if access is not 
available. 

 

If a thread acquires a resource for exclusive access, it can later convert to shared 
access. However, a thread cannot convert shared access to exclusive access. The 
ExConvertExclusiveToSharedLite routine changes a thread’s access from 
Exclusive to Shared and grants shared access to any additional threads that are 
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waiting for shared access. On a checked build, the system ASSERTs if the 
requesting thread does not own exclusive access to the resource. 

One thread can release a resource on behalf of another by calling the routine 
ExReleaseResourceForThread. File system drivers use this routine when one 
thread acquires a resource, partially processes an I/O request, and then posts the 
I/O request to another thread. In this case, the thread that completes the I/O 
request can call this routine to release the resource on behalf of the first thread. 

A driver can determine whether a resource has already been acquired by any 
thread using the utility routines ExIsResourceAcquiredLite, 
ExIsResourceAcquiredSharedLite, and ExIsResourceAcquiredExclusiveLite. 
In addition, a driver can determine how many other threads are waiting for either 
shared or exclusive access to a resource by calling ExGetSharedWaiterCount or 
ExGetExclusiveWaiterCount. 

Suspending a thread that owns an executive resource can cause a deadlock. For 
example, assume that Thread 1 has shared access to a resource and that Thread 2 
is waiting for exclusive access to the same resource. If Thread 1 is suspended, 
Thread 2 could wait forever for the resource. A malicious user could intentionally 
create a deadlock in this manner to mount a denial-of-service attack on the driver 
and, perhaps, on the entire operating system. For this reason, drivers must prevent 
thread suspension while holding an executive resource. For details, see “Security 
Issues” later in this paper. 

10 To use an executive resource, a driver must: 
1. Allocate an ERESOURCE structure from nonpaged pool. 

2. Initialize the resource by calling ExInitializeResourceLite, usually from a 
DriverEntry or AddDevice routine. 

3. Disable normal kernel-mode APCs before acquiring the resource. A device 
driver calls KeEnterCriticalRegion; a file system driver calls 
FsRtlEnterFileSystem. If the driver routine is running in the context of a 
system thread, however, it generally does not need to disable APCs because 
the thread is unlikely to be suspended. 

4. Acquire the resource by calling one of the resource acquisition routines listed in 
Table 9. 

5. Perform the required operations on the protected data. 

6. Release the resource by calling ExReleaseResourceLite. 

7. Re-enable normal kernel-mode APCs by calling KeLeaveCriticalRegion or 
FsRtlLeaveFileSystem. 

 

All of the resource acquisition routines return a Boolean value that indicates 
whether acquisition succeeded. When the thread acquires the resource, the 
acquisition routine returns TRUE. If the driver does not block and the resource is 
not available, the routine returns FALSE. 

Unlike fast mutexes and spin locks, executive resources can be acquired 
recursively. A thread that acquires an executive resource recursively must release 
the resource as many times as it was acquired. Recursive acquisition of resources 
is common in file system drivers. For example, a file system driver might implement 
a cache by mapping files into a reserved area in virtual memory. The driver holds 
certain locks while it processes the cached data. If that processing causes a page 
fault, the operating system generates an additional I/O request, which is sent to the 
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same file system driver and interrupts that driver’s processing of the cached I/O. To 
handle the additional I/O request, the file system driver must recursively acquire 
some of the same locks it uses when processing the cached I/O. 

Executive resources are similar to fast mutexes in that a thread that tries to acquire 
a resource while another thread has exclusive access to it will block. While this 
thread is waiting, other threads in the Ready state run. 

11 Callback Objects 
Callback objects are useful for synchronization and notification between kernel-
mode routines. Callback objects are kernel-mode only; they cannot be shared with 
user-mode applications. 

A driver creates a callback object by calling ExCreateCallback. Users of the object 
register a callback routine by calling ExRegisterCallback. When the driver-
specified callback conditions occur, the driver calls ExNotifyCallback to request 
that the callback routines be run. ExNotifyCallback can be called at 
IRQL<=DISPATCH_LEVEL, and the callback routines are called at the same IRQL 
at which ExNotifyCallback was called, in the context of the notifying thread. If your 
driver registers a callback routine, be sure that you know the IRQL at which 
notification takes place and code the callback routine appropriately. 

12 Driver-Defined Locks 
In addition to the synchronization mechanisms provided by the operating system, 
drivers can define their own locks. If you implement a driver-defined lock, you must 
keep in mind that optimizing compilers and certain hardware architectures 
sometimes reorder read and write instructions to improve performance. To prevent 
such reordering, driver code sometimes requires a memory barrier. 

A memory barrier is a processor instruction that preserves the ordering of read and 
write operations, as seen from the perspective of any other processor. The 
operating system’s locking mechanisms (spin locks, fast mutexes, kernel dispatcher 
objects, and executive resources) all have implied memory barriers that preserve 
the ordering of instructions. 

If you create your own locks, you might need to put memory barriers in the locked 
code to ensure the correct results. The ExInterlockedXxx and InterlockedXxx 
routines and the KeMemoryBarrier and KeMemoryBarrierWithoutFence routines 
insert memory barriers to prevent such reordering. 

For details about memory barriers and processor reordering, see the white paper 
“Memory Barriers on Multiprocessor Architectures,” which is available at 
www.microsoft.com/hwdev. 

13 Using Multiple Synchronization Mechanisms 
Simultaneously 

Attempting to acquire two or more synchronization mechanisms at once can cause 
a deadlock if this is done improperly. For this reason, the Windows DDK advises 
driver writers to never acquire more than one lock at a time. However, in some 
situations, using multiple locks is appropriate, or even necessary. 

For example, a driver might maintain two lists that require protection at IRQL 
DISPATCH_LEVEL. Most code accesses only one of the lists at any given time. 
Occasionally, however, a driver routine must move an item from one list to another. 
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Using a single spin lock to protect both lists is inefficient. If a driver routine running 
in Thread 1 acquires the lock to update the first list, another driver routine running in 
Thread 2 must wait to access the second list. 

A better solution is to protect each list with its own spin lock. Code that accesses 
List A acquires the spin lock for List A. Code that accesses List B acquires the spin 
lock for List B. Code that accesses both lists acquires both locks. To prevent 
deadlocks, code that acquires both locks must always acquire the locks in the same 
order. 

To determine the proper order for acquiring the locks, you should establish a lock 
hierarchy for your code. The hierarchy ranks the locks in order of increasing IRQL. 
List the lock that requires the lowest IRQL first, the second lowest IRQL next, and 
so forth. When driver code must acquire multiple locks at once, it should acquire 
them in order of increasing IRQL. A code sequence that requires more than one 
lock at the same IRQL should acquire the most frequently used lock first. 

Similarly, a code sequence that uses multiple locks should release them in the 
inverse of the order in which it acquired them. That is, it should release the most 
recently acquired lock first. 

If the driver follows the locking hierarchy consistently, deadlocks will not occur. 
However, if the driver violates the hierarchy, deadlocks are inevitable. 

14 Preventing Deadlocks 
A deadlock occurs when a thread waits for something it can never acquire. For 
example, a thread that holds a spin lock cannot recursively acquire the same spin 
lock. The thread will spin forever waiting for itself to release the lock. 

Two threads can create a mutual deadlock (sometimes called a deadly embrace) if 
each holds a lock that the other is trying to acquire. For example, assume a driver 
has created spin locks to protect two structures, A and B. Thread 1 acquires the 
lock that protects Structure A and Thread 2 acquires the lock that protects 
Structure B. If Thread 1 now attempts to acquire the lock for B, and Thread 2 
attempts to acquire the lock for A, the threads deadlock. Neither can acquire the 
second lock until the other thread releases it. Establishing and following lock 
hierarchies prevents deadly embraces. 

Follow these guidelines to prevent deadlocks: 

 Never wait on a kernel dispatcher object in any driver routine that can be called 
at IRQL>=DISPATCH_LEVEL. Routines that can be called at 
IRQL>=DISPATCH_LEVEL include IoCompletion routines and the I/O dispatch 
routines of storage drivers and USB hub drivers. If in doubt, use the ASSERT() 
macro on a checked build to test for the IRQL at which the routine is called. 

 Disable normal kernel-mode APC delivery before calling any of the executive 
resource acquisition routines and before calling KeWaitXxx to wait on an event, 
semaphore, timer, thread, file object, or process. In a device driver, call 
KeEnterCriticalRegion and KeLeaveCriticalRegion to disable and 
subsequently re-enable APC delivery. In a file system driver, call 
FsRtlEnterFileSystem and FsRtlLeaveFileSystem. 

 Use the Driver Verifier (verifier.exe) Deadlock Detection option to find potential 
deadlocks. This option is available on Windows XP and later releases of 
Windows. 

 Always establish and follow a lock hierarchy in code that acquires more than 
one lock at any given time. 
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15 Security Issues 
Drivers that use locks at IRQL PASSIVE_LEVEL outside a critical region are open 
to denial of service attacks if the thread that holds the lock is suspended. This 
problem occurs because Windows queues a normal kernel-mode APC to suspend 
the thread. Even if the driver specifies a KernelMode wait, normal kernel-mode 
APCs are delivered whenever all of the following are true: 

 The target thread is running at IRQL < APC_LEVEL. 

 The target thread is not already running an APC. 

 The target thread is not in a critical region; that is, it did not call 
KeEnterCriticalRegion before calling KeWaitXxx. 

 

Note 

Kernel mutexes and fast mutexes do not have this problem. The operating system 
enters a critical region before it acquires a fast mutex or kernel mutex on behalf of a 
thread. 
 

Consider the following scenario: 

While it is handling an I/O request from a user-mode application, a driver waits for a 
kernel dispatcher object (other than a mutex) or acquires an executive resource. 
The driver requests a KernelMode wait that is not alertable: that is, the WaitMode 
parameter is KernelMode and the Alertable parameter is FALSE. 

Assume that the requesting application has a second thread running. If the second 
thread acquires a handle to the thread that requested the I/O operation, it can 
suspend the requesting thread, thus rendering the driver – and possibly the whole 
system—unusable. 

To eliminate this possible security threat, a driver should enter a critical region 
(disable APCs) before calling KeWaitXxx. To disable and subsequently re-enable 
APCs, a device driver calls KeEnterCriticalRegion and KeLeaveCriticalRegion; a 
file system driver calls the FsRtlEnterFileSystem and FsRtlLeaveFileSystem 
macros. A driver can check whether normal kernel-mode APCs are disabled by 
calling KeAreApcsDisabled. KeAreApcsDisabled is available on Windows XP 
and later releases of Windows. 

16 Performance Issues 
Although nearly every driver requires spin locks and other synchronization 
mechanisms, these mechanisms by their very nature can cause performance 
bottlenecks. Follow these guidelines to improve performance in synchronization 
code: 

 Use locks only when necessary. For example, to gather statistical information, 
use per-processor data structures instead of a single, system-wide data 
structure that requires a lock. 

 Use executive resources (ERESOURCE structures) to protect read/write data at 
IRQL < DISPATCH_LEVEL, so that multiple readers can be active at once. 

 Use fast mutexes or executive resources instead of kernel dispatcher objects 
whenever possible. Because fast mutexes and executive resources are not 
maintained in the dispatcher database, the system can acquire them without 
using the dispatcher lock. As a result, they are faster and contribute to better 
performance system-wide. 
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 Use the InterlockedXxx routines whenever possible. These routines do not 
acquire a spin lock and are therefore relatively fast. 

 Use an in-stack queued spin lock instead of an ordinary spin lock whenever 
several components might frequently contend for the lock 

 Use the ExTryToAcquireXxx routines to acquire a lock whenever possible, 
particularly if you have established a locking hierarchy and are using multiple, 
nested locks. If you need to wait for the second or third lock in a hierarchy, 
consider releasing the locks that you have already acquired so that another 
thread that might need fewer locks can proceed, and then later reacquire the 
locks from the top of the hierarchy. 

 Minimize the number of times your driver calls routines that use the dispatcher 
lock. Such routines include those to wait on a dispatcher object 
(KeWaitForSingleObject, KeWaitForMultipleObjects, and 
KeWaitForMutexObject) and calls that set and release dispatcher objects 
(KeSetEvent, KeReleaseSemaphore, and so forth). Frequent use of the 
dispatcher lock can slow performance system-wide because calls that require it 
must sometimes spin. 

 Hold each spin lock for the minimum amount of time necessary, particularly if 
the lock is frequently required by other code. For example, traversing a long, 
linked list in a linear order while holding a heavily used spin lock can cause a 
performance bottleneck. 

 

17 Best Practices for Driver Synchronization 
To avoid problems related to synchronization in drivers, adopt these practices: 

 Determine the highest IRQL at which any code can access the data. 

 If any code that accesses the data runs at IRQL>=DISPATCH_LEVEL, you 
must use a spin lock. 

 If all code runs at IRQL PASSIVE_LEVEL or APC_LEVEL, you can use an 
executive resource, a fast mutex, or one of the kernel dispatcher objects—
whichever is best suited to the driver’s requirements. 

 To synchronize driver execution with a user-mode application, define a private 
IOCTL and use either an event that is defined by the user-mode application or 
an I/O request that the driver completes to notify the application. 

 To prevent thread suspension, a driver should enter a critical region before 
acquiring an executive resource or waiting for a kernel-dispatcher object (other 
than a mutex) at IRQL=PASSIVE_LEVEL. 

 To manage lists or to perform arithmetic or logical operations on a single 
memory location, use the ExInterlockedXxx and the InterlockedXxx routines. 

 Test every driver on as many different hardware configurations as possible. 
Always test drivers on multiprocessor systems to find errors that are related to 
locking, multi-threading, and concurrency. 

 Use Driver Verifier (verifier.exe) to test for IRQL and synchronization issues. 
Use the Forced IRQL Checking option to ensure that spin locks are not used at 
the wrong IRQL. 

 Use the Driver Verifier global counters to monitor IRQL raises and spin lock 
acquisitions. 

 Use Call Usage Verifier (CUV) to check whether the spin locks are allocated 
and used consistently. 
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18 Call to Action and Resources 
 Take into account multiprocessor issues when you design and test drivers. 

 Design drivers to minimize the need for locks. 

 Follow the best practices for driver synchronization described in this paper. 

 For more information about IRQL issues for drivers, see the companion paper 
“Scheduling, Thread Context, and IRQL,” at 
http://www.microsoft.com/whdc/hwdev/driver/IRQL.mspx. 

 For other related information, see: 

 “Memory Barriers on Multiprocessor Architectures” at 
http://www.microsoft.com/whdc/hwdev/driver/mpmem-barrier.mspx. 

 “Interrupt Architecture Enhancements in Microsoft Windows Vista” at 
http://www.microsoft.com/whdc/hwdev/bus/pci/MSI.mspx. 

 Microsoft Windows Driver Development Kit (DDK) at 
http://www.microsoft.com/ddk/. 

 Inside Microsoft Windows 2000, Third Edition. Solomon, David A. and Mark 
Russinovich. Redmond, WA: Microsoft Press, 2000. 

 Designed for Microsoft Windows XP Application Specification at 
http://www.microsoft.com/winlogo/software/windowsxp-sw.mspx. 

 Microsoft Windows Logo Program System and Device Requirements, 
Version 2.1a at http://www.microsoft.com/winlogo/hardware/default.mspx. 
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