
Lynx: Using OS and Hardware Support for Fast
Fine-Grained Inter-Core Communication

Konstantina Mitropoulou, Vasileios Porpodas1, Xiaochun Zhang and Timothy M. Jones
Computer Laboratory

University of Cambridge, UK
firstname.lastname@cl.cam.ac.uk

ABSTRACT

Designing high-performance software queues for fast inter-
core communication is challenging, but critical for maximis-
ing software parallelism. State-of-the-art single-producer /
single-consumer queues for streaming applications contain
multiple sections, requiring the producer and consumer to
operate independently on different sections from each other.
While these queues perform well for coarse-grained data
transfers, they perform poorly in the fine-grained case.

This paper proposes Lynx, a novel SP/SC queue, specif-
ically tuned for fine-grained communication. Lynx is built
from the ground up, reducing the generated code on the
critical-path to just two operations per enqueue and de-
queue. To achieve this it relies on existing commodity pro-
cessor hardware and operating system exception handling
support to deal with infrequent queue maintenance opera-
tions. Lynx outperforms the state-of-the art by up to 1.57×
in total 64-bit throughput reaching a peak throughput of
15.7GB/s on a common desktop system. Real applications
using Lynx get a performance improvement of up to 1.4×.

CCS Concepts

•Software and its engineering → Buffering;

Keywords

Single-Producer / Single-Consumer Software Queue, Fine-
grained Communication, Hardware Exceptions

1. INTRODUCTION
High-performance parallel applications rely on fast inter-

core communication to share data between tasks. Existing
commodity processors implement cache coherence protocols
to maintain a consistent shared memory for this purpose.
Software then builds upon this memory model with data
structures that facilitate the transfer. For asynchronous

1Currently at Intel, Santa Clara.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’16, June 01-03, 2016, Istanbul, Turkey

c© 2016 ACM. ISBN 978-1-4503-4361-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926274

communication of large volumes of data, software queues are
the most common programming abstraction, which provide
a first-in first-out (FIFO) buffer with simple enqueue and de-
queue operations. However, building high-performance soft-
ware queues has proven to be a major challenge and there
has been significant work on improving their efficiency [8,
14, 15, 22, 24, 25].

Single-producer / single-consumer (SP/SC) queues are a
subset of the generic multiple-producer / multiple-consumer
(MP/MC) model. This more specialised type of queue is
widely used to aid pipeline parallelism, where each stage of
the pipeline produces data for the next. The performance
of the SP/SC queue is critical in determining the amount
and granularity of parallelism that can be extracted. Even
the fastest state-of-the-art queues have a prohibitively high
overhead for transferring small amounts of data. To amor-
tise this cost, programmers typically only use a queue for
coarse-grained communication, thus limiting the potential
for parallelism. However, there are application domains that
rely on extremely fast SP/SC queues for fine-grained data
transfers, such as automatic parallelization [9, 20], software-
based error detection [24, 25, 28] and fast line-rate network
traffic monitoring [16].

SP/SC queues require numerous major innovations to
achieve high performance. These involved lock-free imple-
mentations [7, 14]; minimising or completely avoiding fre-
quent bidirectional inter-core communication (a.k.a. cache
ping-pong [11]) of the queue control variables [8, 15, 16,
24, 25]; and avoiding cache thrashing using specialised non-
temporal memory instructions [11]. However, our analysis of
a state-of-the-art queue shows that there is still performance
left on the table.

In this work we propose a new SP/SC queue design that
provides extremely fast inter-core communication even at
a very fine granularity. We show that current queues dis-
play poor fine-grained performance due to the execution of
infrequently-required code for producer/consumer synchro-
nisation, and for reaching the end of the queue. We then
develop Lynx, a novel architecture that makes use of ex-
isting processor hardware and operating system support for
exception handling to minimise enqueue and dequeue oper-
ation overheads. Moving code off the critical path realises
performance benefits of up to 1.57× compared to a state-of-
the-art queue.

In the following sections we first provide an overview of
the existing queue designs (section 2), then show the per-
formance bottleneck of the state-of-the-art (section 3). Sec-
tion 4 provides a detailed description of Lynx, which we

http://dx.doi.org/10.1145/2925426.2926274

state3state2 stateN

Ptr : Local Variable stateX

Shared Variable

: Infrequently Accessed

Section1

Q

Section3Section2

deqPtr enqPtr

SectionN

...

...

state1

Figure 1: State-of-the-art lock-free multi-section queue.

evaluate in section 5. We then present related work (sec-
tion 6) and section 7 concludes.

2. MULTI-SECTION QUEUE FOR

STREAMING
We start with an overview of the current state-of-the-art

queue implementation to provide insights into the overheads.
Multi-section lock-free SP/SC queues are designed for

streaming, specialised compared to generic SP/SC queues so
they are tuned for high throughput. The queue is divided
into sections and only one thread (producer or consumer) is
allowed to access each section at any time. Synchronisation
occurs only at section boundaries. The multi-section queue
is lock-free by design: both producer and consumer access
the queue simultaneously without locking, provided that
they do not access the same section [16]. This multi-section
design solves many generic SP/SC performance problems,
such as cache ping-pong and false sharing [11, 15, 16, 24].

Figure 1 shows an example and listing 1 gives the code.
The queue shown uses lazy synchronisation [24, 25] for syn-
chronising across sections (lines 5 to 10 and 15 to 20). Over-
all, an efficient implementation of a multi-section queue must
address a number of challenges.

Queue Size.
In general, the larger the queue, the larger the sections and

the smaller the amount of synchronisation required. How-
ever, once the queue is larger than the last level cache, per-
formance drops because the data gets invalidated before be-
ing read and the dequeue thread must obtain it from main
memory instead. Figure 2 shows the throughput for increas-
ing queue sizes when using mov instructions to write data,
and three other schemes (described in the following para-
graphs). Our Intel Core i5-4570 evaluation system (more
details in section 5), contains a 32KB first level cache so,
counter-intuitively, there is a large performance boost once
the queue is too large for the L1. This is because the threads
evict their own data from their L1, meaning the other thread
gets the cache line from the private L2, which is lower la-
tency compared to another core’s L1. Further, the last level
cache is 6MB, so performance drops off when the queue is
8MB or larger because data is evicted to slow main memory.

Cache Thrashing.
When an application’s working set fits into the cache, the

queue should avoid evicting it which prevents later cache
misses and performance loss. This can be achieved by re-
placing regular store instructions into the queue with non-
temporal stores, as in the Liberty queues [11]. These in-
structions write directly to memory, bypassing the caches
altogether and removing the problem. In x86-64 (SSE ex-

1 void enqueue (queue_t q, long data) {

2 *q->enqPtr = data;

3 q->enqPtr = (q->enqPtr + 8) & ROTATE_MASK;

4 /* Synchronisation */

5 if ((q->enqPtr & SECTION_MASK) == 0) {

6 while (q->enqPtr == q->deqLocalPtr) {

7 q->deqLocalPtr = q->deqSharedPtr;

8 }

9 q->enqSharedPtr = q->enqPtr;

10 }

11 }

12
13 long dequeue(queue_t q) {

14 /* Synchronisation */

15 if ((q->deqPtr & SECTION_MASK) == 0) {

16 q->deqSharedPtr = q->deqPtr;

17 while (q->deqPtr == q->enqLocalPtr) {

18 q->enqLocalPtr = q->enqSharedPtr;

19 }

20 }

21 long data = *((long *)q->deqPtr);

22 q->deqPtr = (q->deqPtr + 8) & ROTATE_MASK);

23 return data;

24 }

Listing 1: State-of-the-art multi-section queue [24, 25].

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

1
6

B
3

2
B

6
4

B
1

2
8

B
2

5
6

B
5

1
2

B
1

K
B

2
K

B
4

K
B

8
K

B
1

6
K

B
3

2
K

B
6

4
K

B
1

2
8

K
B

2
5

6
K

b
5

1
2

K
B

1
M

B
2

M
B

4
M

B
8

M
B

1
6

M
B

3
2

M
B

6
4

M
B

1
2

8
M

B
2

5
6

M
B

G
B

y
te

s
/s

mov
movnti

mov-pf-1K
movnti-pf-1KF

it
s
 i
n
 L

1

F
it
s
 i
n
 L

3

Figure 2: Throughput exploration for a state-of-the-art 2-
section queue on an Intel Core i5-4570 using common mov

instructions and non-temporal movnti, both with and with-
out software prefetching.

tensions) the non-temporal store instruction is the non-
sequentially-consistent movnti [4].

The impact of movnti instructions is shown in figure 2.
Its performance is largely unaffected by the cache size once
the queue is too large for the L1 because the data to the de-
queue thread is fetched straight from main memory. On the
other hand, its performance is limited by the memory band-
width available, and so is slower than a normal mov when
the bandwidth is saturated but the queue fits in the last level
cache (i.e., from 128KB to 4MB in this experiment). This
trend is also shown in figure 9 (section 5.2). Overall it is up
to the programmer to determine the correct instruction to
use given their program’s characteristics.

Prefetching.
Liberty queues [11] propose using software prefetch in-

structions in the dequeue function code. Figure 2 shows
the throughput of dequeue with a software prefetching dis-
tance of 1024 bytes, labelled mov-pf-1K and movnti-pf-1K.
Prefetching leads to 10% lower peak performance compared
to mov alone, but slightly better performance for queue sizes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

8
B

1
6

B

3
2

B

6
4

B

1
2

8
B

2
5

6
B

5
1

2
B

1
K

B

2
K

B

4
K

B

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

G
B

y
te

s
/s

e
c

mov
movnti

F
it
s
 i
n
 C

a
c
h
e
 L

in
e

Figure 3: Throughput exploration as we increase the section
size of a 1MB queue from 8B (128K sections) to 512KB (2
sections) on an Intel Core i5-4570.

larger than 8MB. The throughput of movnti with prefetch-
ing is about 10% lower than using movnti alone because the
prefetch instructions simply add to the already-saturated
off-chip memory bandwidth. Again, the use of software
prefetch is orthogonal to the queue design and left for the
programmer to determine.

Section Size.
The size of each section has an impact on the amount of

data each thread can push or pop until hitting the section
“owned” by the other thread. Larger sections mean that
synchronisation is infrequent, but are less efficient at dealing
with bursty queue usage from either thread. With larger
sections, there is less room between enqueue and dequeue to
absorb bursts.

Figure 3 shows the throughput of a 1MB queue as we in-
crease the section size. For sections smaller than a cache-line
(64 bytes in this case), performance is dominated by false
sharing between enqueue and dequeue threads as they may
both access the same cache line, even though they are in dif-
ferent sections. For larger sections the queue’s performance
is influenced by the overhead of synchronisation, but this be-
comes negligible for section sizes of 8KB and higher. When
using movnti, performance is dominated by the fence in-
structions required at the end of each section that maintain
correctness (i.e., between the spin-loop and the instruction
that signals the other thread, in listing 1 line 9), so its per-
formance increases steadily with the section size.

Software implementation.
An efficient implementation must ensure that global vari-

ables frequently modified by each individual thread, but
rarely read by the other, end up in different cache lines,
in order to avoid false sharing. Therefore the enqPtr and
deqPtr (listing 1) should be declared in the code with suf-
ficient padding, large enough to guarantee that they map to
different cache lines.

3. ANALYSIS OF REMAINING

OVERHEADS
A multi-section lock-free queue with infrequent accesses to

the queue’s shared synchronisation control variables is the
state-of-the-art design. The performance bottleneck of this
queue is no longer false sharing or inter-core communica-

1 lea rax, [rdx+8] ;Increment pointer

2 mov QWORD PTR [rdx], rcx ;Store to queue

3 mov rdx, rax ;Compiler’s copy

4 and rdx, ROTATE_MASK ;Rotate pointer

5 test eax, SECTION_MASK ;End of section

6 jne .L2 ;Skip sync code

Listing 2: Multi-section critical path in x86-64 assembly.

tion of the control variables for synchronisation, but rather
the boilerplate code for the enqueue and dequeue opera-
tions which is responsible for checking whether the thread
has reached the end of the current section and moving the
thread’s pointer back to the beginning of the queue once it
reaches the end. This boilerplate code becomes a signifi-
cant overhead in the context of frequent fine-grained queue
transfers. This section studies these overheads, motivating
the need for a new queue implementation.

3.1 Critical Path Code
Listing 2 shows the most frequently-executed code for an

enqueue in the multi-section queue (dequeue is very similar).
This code was generated by the GCC-4.8.2 compiler [1] and
is x86-64 assembly (Intel’s dialect where the output is the
leftmost operand). The rest of the code (not shown here)
is 10 instructions long and has non-trivial control-flow (that
includes the spin-loop).

The first two instructions are fundamental to the opera-
tion of enqueue (mov and lea, lines 1 and 2). They incre-
ment the queue pointer to the next location and store the
data into the queue (into the old location—note the desti-
nation rax in line 1 but source rdx in line 2). The following
and instruction (line 4) performs rotation of the index, once
it reaches the end of the queue. This can be done in one
instruction with an AND mask because the queue size is a
power of 2 and is aligned in memory at a multiple of the
queue size. Next, test (line 5) checks whether the thread
is at the end of the section and sets the flag for the con-
ditional jump that follows. The end of section is critical
for the queue as it is the point where synchronisation hap-
pens. The jne (line 6) will fall through if the index is at
the end of the section to execute the synchronisation code
(not shown). This happens rarely, given that the section
is large, so synchronisation is not on the critical path. In
the common case, where the pointer is not at the end of
the section, the jne will skip synchronisation and continue
executing the application code after the enqueue.

The instruction in line 3 (mov rdx, rax) is a copy for
performance optimisation (created by both GCC [1] and
LLVM [3]). It allows the instructions in lines 1 and 2 to
execute in parallel, as well as those in lines 4 and 5. With-
out this copy there would be one fewer instruction, but
only lines 1 and 2 could execute in parallel, meaning less
instruction-level parallelism (and they would have to exe-
cute in a different order: mov, lea, test, jne, and).

3.2 Performance Enhancements
Examination of the enqueue instructions shows that the

last three (rotating the pointer, checking for the end of a
section, and skipping the synchronisation code) are there to
perform infrequent actions. If we had alternative mecha-
nisms to perform these tasks only when needed, we would
reduce the enqueue instructions down to the absolute mini-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

MSQ NR NS NSNR

E
x
e
c
u
ti
o
n
 S

p
e
e
d
u
p

Figure 4: Removing index rotation (NR), synchronisation
(NS) and both (NRNS) from the enqueue function in a
256MB queue on an Intel Core i5-4570.

mum: just the store and the increment of the index.
To quantify the benefits of removing these overheads we

measured the performance of a hypothetical queue with these
infrequently-required instructions removed from the code1.
We measured the execution time of the baseline state-of-the-
art queue [24] (“MSQ”) and three overhead-removing opti-
misations. It is important to note that for these experiments
we simply removed the corresponding assembly instructions
from the code. Therefore, they do not account for any opti-
misations that the compiler could perform on the code with
these enhancements.

Removing Pointer Rotation Overhead (NR).
The first optimisation is to remove the pointer rotation

(listing 2 line 4). This is only required once for each traversal
through the queue (that is in the order of once per hundreds
of thousands of executions), once the pointer reaches the
end. At all other times it has no effect on the pointer vari-
able. The NR bar in figure 4 shows the performance of en-
queue when removing this instruction, indicating that there
is 7% performance improvement available over the original
queue.

Removing Synchronisation Overhead (NS).
Avoiding the synchronisation overhead is critical for per-

formance. It not only means that we can remove two in-
structions from the critical path (listing 2 lines 5 and 6),
but it also means that we can remove the body of the syn-
chronisation code. This acts as an optimisation barrier for
both the compiler and the architecture as it comprises of
9 assembly instructions in 4 basic blocks (including a spin-
loop). According to Jablin et al. [11], the compiler will not
perform efficient code movement across the spin-loop as it
has no guarantee that the spin-loop will halt. Another ex-
ample of a simple compiler optimisation that is not applied
due to this code is loop unrolling. Figure 4 shows the per-
formance of removing this code from enqueue (the NS bar),
which is approximately 17% faster than the full queue.

Removing Both Overheads (NSNR).
Removing both synchronisation and pointer rotation over-

heads leads to even better performance. The NSNR bar

1For this experiment the queue size was set to 256MB, the
dequeue function was disabled and the workload was a loop
pushing the 64-bit loop index into the queue until it gets
full.

���
���
���

���
���
���

��
��
��

��
��
��

fixed

Queue

END
ofdeqPtr enqPtr

SS SS PRSection 2Section 1

: Written data: Free space

SS

PR : Pointer Rotation Red−Zone. Fixed At End.

: Section Synchronisation Red−Zone. Moves Left.

Figure 5: Memory layout in Lynx.

in figure 4 indicates that the performance improvements of
both optimisations aid each other, meaning there is 27%
speed-up available if we can remove these instructions.

3.3 Summary
Analysis of the enqueue operation shows that there are 4

instructions that are only required infrequently, for rotating
the queue pointer and checking for the end of a section. The
results in figure 4 show that removing these infrequently-
required instructions can lead to speed-ups of 27%. The
next section shows how we can build a queue that does this.

4. LYNX
Lynx is a radically different queue design that reduces the

overheads of enqueue and dequeue actions to a minimum
by removing instructions that perform infrequently-required
operations. The novelty resides in a combination of hard-
ware and operating system support, using memory access
violations to deal with uncommon events in a specialised sig-
nal handler. We first explain Lynx’s memory layout, then
show the C code to access the queue, and finally describe
how signals are handled to synchronise the threads using
the queue and to move from the end of the queue back to
the beginning. Lynx is architecture and operating system
independent, but we evaluate it in section 5 on x86-64 sys-
tems running Linux.

4.1 Memory Layout
An overview of the memory layout in Lynx is shown in

figure 5. The queue is aligned on a page boundary and
is split into sections by red-zones (red-filled boxes). Each
red-zone is one page-size long (usually 4KB) and is marked
as non-readable and non-writable (e.g., using mprotect()

on Unix-like systems or VirtualProtect() on Windows).
Therefore, whenever a thread attempts to access data in a
red-zone, the processor triggers an interrupt and an operat-
ing system exception is raised.

There are two types of red-zone. Section synchronisa-
tion red-zones (SSRZs) deal with thread synchronisation for
each section and a pointer rotation red-zone (PRRZ) en-
ables threads to move back to the start of the queue once
they reach the end. Both are explained in more detail in sub-
sequent sections. Figure 5 shows a queue with two sections,
hence it has two SSRZs and one PRRZ.

Red-zones are core components of Lynx. Their purpose is
to allow the removal of non-essential code from the enqueue
and dequeue operations, replacing instructions in the critical
path of an application with those in a specialised signal han-
dler which is called infrequently. This means that code to

��
��
��

��
��
��

SS SS PR

Ptr1 Ptr2

Section 1 Section 2 Sec1

SS

(a) Ptr1 hits SSRZ; Ptr2 in spin-loop before section1.

��
��
��

��
��
��

SS SS SS PR

Ptr1 Ptr2
New SS

SS

(b) New SSRZ created.

��
��
��
��SS SS PRSS

Ptr1 Ptr2signal

(c) At signal, Ptr2 deletes old SSRZ, enters section1.

��
��
��
��SS PRSS

Ptr2Ptr1

(d) Ptr1 deletes old SSRZ and enters section2.

Figure 6: Moving a Section Synch. Red-Zone (SSRZ).

move from the end of the queue to the start, to find the next
queue section, to wait until the next section becomes free,
and to signal the other thread that the old section is avail-
able can all be moved out of enqueue and dequeue functions
and placed in the signal handler.

4.1.1 Section Synchronisation Red-Zones (SSRZs)

The first type of red-zone is used for synchronising threads
between sections. These are to ensure that a thread only
enters a queue section when the other thread has left, en-
suring that a maximum of one thread occupies any section
at any time. The SSRZs are not fixed, but move through
the queue towards the front as the threads move between
sections. Once they get to the beginning of the queue, they
wrap around to the back and move towards the front again.
Moving these red-zones means that instructions do not get
trapped in a red-zone and the signal handler can operate in-
dependently; once it is finished, the queue access instruction
will be re-executed (at the same address as before) and will
succeed so execution can continue.

Figure 6 shows the details of how red-zone movement and
synchronisation are performed. In figure 6a a thread accesses
the queue (in this case to perform an enqueue operation) and
uses an address in the SSRZ at the end of section 1 (Ptr1).
This causes a hardware interrupt from an access violation,
since the red-zone is non-readable and non-writable, and, in
response, the OS kernel calls the queue signal handler. The
first thing the signal handler does is to create a new red-zone
immediately to the left of the current one (figure 6b). The
thread then signals to the other thread that it has left section
1, meaning that the other thread (Ptr2) can safely access
section 1 (to read from the queue), shown in figure 6c. The
first thread spin-waits for section 2 to become free, which
in this example happens immediately, then it deletes the
original red-zone and leaves the signal handler (figure 6d).
The original instruction is then re-executed and, since it is
now accessing an address inside section 2, rather than an
SSRZ, it will succeed and the application can continue.

The SSRZs never meet each other because they always
move in the same direction, always move when they are hit,

��
��
��

��
��
��

SS SS PR

Ptr

(a) Ptr hits PRRZ.

��
��
��
��SSSS PR

Ptr

(b) Ptr updated to point to the beginning of the queue.

Figure 7: Rotating the pointer when the Pointer Rotation
Red-Zone (PRRZ) is hit.

and they move by the same amount when a thread reaches
them. When a red-zone gets moved towards its predecessor,
its predecessor has already been moved by the same thread,
meaning that the SSRZs are always a fixed distance from
their neighbours ± one page-size. Additionally, we size the
queue so that each section is at least two pages long (in-
cluding an SSRZ), so that there is always room to move the
SSRZs without overlapping another red-zone.

Note that pushed data is never over-written when moving
the SSRZ because the operation only alters the access per-
mission bits of the memory page. When moving a red-zone,
the enqueue thread will place the new one over the top of
the data it has just written into the queue. However, when
the dequeue thread hits that red-zone, it will move it again
and, since the access address remains the same, once the
signal handler has finished it will be able to read the data
out of the queue. The only difference is that this page of
memory it reads from will be in a later section of the queue
to the one it was written into, but this has no effect on the
queue’s operation.

4.1.2 Pointer Rotation Red-Zone (PRRZ)

As previously mentioned in section 3.2, pointer rotation
is another performance overhead for enqueue and dequeue
that is on the critical path. Even in a highly optimised
queue with a power-of-two size and aligned start address, it
is still one instruction in the critical path of execution that
does not alter the pointer for the vast majority of accesses.
Lynx optimises this away through an additional red-zone
just after the end of the queue. Unlike the SSRZs, this red-
zone is fixed and is unique, serving only to rotate the access
pointer back to the start of the queue when it reaches the
end.

Figure 7 shows how this occurs. In figure 7a the enqueue
thread accesses the queue just past the end, hitting in the
PRRZ. The hardware interrupt again results in the OS call-
ing the signal handler, which alters the address that the
instruction is trying to access back to the start of the queue.
Section 4.3 describes how this is performed. The result is
shown in figure 7b which is the state of the queue once
the signal handler finishes. The thread now proceeds to
re-execute its access, and this time it will succeed because
it will write at the start of the queue in the continuation of
section 1.

4.2 User Code
C code for the enqueue and dequeue functions is shown in

listing 3 using inline assembly for the x86-64 architecture.
Inline assembly code is required for reading and writing to
the queue so that we have control over the instruction and

1 void enqueue (queue_t q, long data) {

2 asm("movq %0, (%1, %2)"

3 : /* no output */

4 : "r" (data), /* input %0 */

5 "r" (q->enqBase), /* input %1 */

6 "r" (q->enqIdx) /* input %2 */

7 : "1"); /* clobber */

8 q->enqIdx += sizeof(long);

9 }

10
11 long dequeue(queue_t q) {

12 long data;

13 asm("movq (%1, %2), %0"

14 : "=&r" (data) /* output */

15 : "r" (q->deqBase), /* input %1 */

16 "r" (q->deqIdx) /* input %2 */

17 : "1"); /* clobber */

18 deqIdx += sizeof(long);

19 return data;

20 }

Listing 3: Implementation of Lynx.

���
���
���

���
���
���

2.

1. Get Pointer That Triggered Exception

Get Type Of Red−Zone

PRRZSSRZ

Calculate New Index
Set Register

4. 5.
Raise

ExceptionMove SSRZ

Not in RZ

3.

Resume Execution
Leave Handler

6.

Synchronise

Figure 8: Overview of the operation of Lynx’s handler.

operands used, which is vital to enable the PRRZ to func-
tion correctly. Section 4.3.2 describes this in more detail.
An implementation of a subset of Lynx without the PRRZ
pointer rotation functionality would not require assembly
coding and could be implemented purely in C.

Once compiled, the final assembly code for Lynx’s enqueue
and dequeue functions consists of just two x86-64 instruc-
tions each: a memory instruction (for storing or loading from
the queue) and an addition that increments the pointer. As
with state-of-the-art queues, the compiler fully inlines this
code. However, in contrast to the state-of-the-art, there is
no complicated control flow (and no spinning loop) which
allows the code to get heavily optimised by the compiler.

4.3 Lynx’s Exception Handler
The Lynx exception handler is called whenever a thread

attempts to access one of the queue’s red-zones. As ex-
plained in sections 4.1.1 and 4.1.2, the handler’s actions de-
pend on the type of red-zone being accessed. An overview
of the handler is shown in figure 8.

Step 1. The first task is to get the address which caused
the exception, so that it can take appropriate actions
based on the type of red-zone being accessed (if any).
This is available through the arguments to the signal
handler (specifically the si_addr field in the POSIX
siginfo_t structure).

Step 2. Using the address, the type of red-zone can be
determined and acted upon.

1 enqSync() {

2 newRedzone = getNewRedzoneLeft(currPtr);

3 configRedZone (ON, newRedzone);

4 redzone = newRedzone;

5 prevSectionState = ENQ_DONE;

6 /* Spin-loop */

7 while (nextSectionState != DEQ_DONE) ;

8 configRedZone (OFF, currPtr);

9 *nextSectionState = ENQ_WRITES;

10 }

11
12 deqSync() {

13 newRedzone = getNewRedzoneLeft(currPtr);

14 configRedZone (ON, newRedzone);

15 redzone = newRedzone;

16 if (prevSectionState != ENQ_EXITED)

17 prevSectionState = DEQ_DONE;

18 /* Spin-loop */

19 while (nextSectionState != ENQ_DONE

20 && nextSectionState != ENQ_EXITED) ;

21 configRedZone (OFF, currPtr);

22 nextSectionState = DEQ_READS;

23 }

Listing 4: Lynx handler’s synchronisation code.

Step 3. If the address is in the SSRZ then the red-zone
must be moved and the threads synchronised, as ex-
plained in section 4.3.1.

Step 4. If the address is in the PRRZ then the thread’s
state needs to be altered so that it re-executes the ac-
cess at the beginning of the queue. This is described
in section 4.3.2, and requires altering the instruction’s
source registers.

Step 5. Otherwise the exception did not come from ac-
cess the queue, but is part of the actual program, so it
gets re-raised.

Step 6. Once the handler has dealt with an exception
in a red-zone, the thread is free to leave and execution
continues by replaying the instruction that caused the
fault.

4.3.1 SSRZ Movement and Synchronisation

As section 4.1.1 explained, accessing an SSRZ means that
the handler must move the red-zone towards the start of
the queue and synchronise the threads. Listing 4 shows the
C code for these actions. The functions to enqueue and
dequeue are almost the same, except the dequeue operation
has to deal with the enqueue thread exiting before reaching
a red-zone in line 16, so for brevity we only walk through
the enqSync() function.

Each section has its own state variable, and these are used
to synchronise the threads. The first step is to get the ad-
dress of a new red-zone on the left of the current one (list-
ing 4 line 2). The new red-zone is configured (access per-
mission bits set, line 3) then the previous section’s state is
updated (line 5). This allows the dequeue thread to enter
the previous section, if it is ready to, and so avoids dead-
lock. The enqueue thread then enters a spin-loop, waiting
for the next section to become available (line 7), which it
will when the other thread is no longer accessing it (state
set to DEQ DONE). Keeping the thread spinning avoids re-
peatedly calling the signal handler while waiting which is
important for performance; handling an exception has a sig-
nificant overhead because the operating system has to be

involved. Finally, in lines 8 and 9, the current red-zone is
disabled and the next section’s state changed to indicate the
enqueue thread accessing it.

In both enqueue and dequeue functions, deadlock is
avoided by unblocking the other thread before trying to
move into the next section. In addition, by creating the
new red-zone before setting the previous section’s state, we
ensure that the two threads can both be at the end of the
same section, but will be hitting different red-zones.

To guarantee correctness, the compiler should not re-
order the memory operations in the handler’s synchro-
nisation code. We do this by inserting compiler mem-
ory reordering barriers between the critical instructions:
asm volatile(" ::: “memory”) in GCC. Under the
Total Store Order (TSO) memory model of the x86 archi-
tectures [4], no memory barrier instructions are required in
either the enqueue()/dequeue() or the handler. Even though
memory operations may execute out-of-order on the actual
hardware, TSO guarantees that loads will see the values of
earlier stores across cores. The handler requires fences for
movnti instructions (these are not TSO) and architectures
with relaxed consistency models. These fences guarantee
that the status variables get updated after all queue data
has been updated. Supporting targets with more relaxed
memory models does not introduce any performance over-
heads as all the additional barrier instructions are in the
handler, not in the critical path of execution.

4.3.2 Pointer Rotation in PRRZ

The sole job of the PRRZ is to alter the thread’s state
so that it accesses the start of the queue again, instead of
continuing past the end. This requires the signal handler to
identify the registers used by the instruction to create the
memory address, determine the values they need to access
the start of the queue, and then update them.

As shown in listing 3, we use inline assembly to specify the
instructions that read and write to the queue. Using inline
assembly means that we have control over the exact instruc-
tion that is used and the format of the memory access calcu-
lation. The compiler is allowed to choose the actual registers
that contain the operands so that it can perform register al-
location as usually. Using the POSIX sigaction API, the
handler can get a pointer to the instruction which it can
then parse to identify the source operands. Once the regis-
ters involved in the computation are identified, their values
at the point of the exception can be retrieved through the
ucontext_t structure that is given as the third argument
to the signal handler.

As a concrete example, an x86 memory instruction calcu-
lates its address using equation 1.

Addr = SegReg + BaseReg + (IdxReg ∗ Scale) + Offset (1)

Our inline assembly instruction uses only the BaseReg and
IdxReg , which are linked to queue variables, setting Scale
to 1 and Offset to 0. We allow the IdxReg to increment
whenever the queue is accessed, as shown in listing 3 line 8,
and do not alter it in the signal handler. The BaseReg comes
from another queue variable that we modify when accessing
the PRRZ to set the address in equation 1 back to the start
of the queue. In practice, this means we use equation 2.

Val = QueueStartAddr − IdxReg (2)

The result of this is that IdxReg can take any value, even

addresses that are beyond the boundaries of the queue, but
the effective address calculation performed by the processor
will always create an address within the queue. This works
even when the value of IdxReg overflows. We perform a sim-
ilar calculation and transformation for other architectures.

Using inline assembly is required for correctness for two
reasons: 1) By using it we have a dedicated BaseReg for
our own use, and we are free to update it within the han-
dler without modifying the semantics of the surrounding
code. If inline assembly is not used, then the compiler
may optimise the code to use one register for both the
loop iteration variable and IdxReg(or BaseReg), meaning
that if we alter IdxReg (or BaseReg) within the signal han-
dler, we also change the semantics of the code. 2) The in-
line assembly acts as an instruction re-ordering barrier in
GCC, prohibiting dangerous re-ordering like in this case:
obj->elem = x; enqueue(obj);

To actually update the BaseReg from within the signal
handler, we cannot use a simple mov instruction because any
changes to registers are reverted once the handler finishes.
Instead we alter the relevant entry in the ucontext_t struc-
ture which defines the values of the registers that will be
restored once the signal has been dealt with. We also up-
date the variables that BaseReg is linked to (q->enqBase
and q->deqBase as listed in listing 1 lines 4 and 15) so that
the code will work even when compiled without optimisation
(-O0), because in this case the value is read straight from
memory before being used, and is not kept in a register.

4.4 Reporting Program Exceptions Correctly
It is crucial for the queue to be completely transparent

for all exceptions that are unrelated to the workings of the
queue. For example, if the program has a bug and de-
references a pointer to invalid memory, this should not be
confused with the exceptions triggered by Lynx’s enqueue or
dequeue actions. We can effectively distinguish between the
two by setting the handler to only catch segmentation faults
(SIGSEGV) and by re-raising these faults if they are not re-
lated to queue operations (i.e., if the address that triggers
the exception is not in a red-zone).

4.5 Summary
We have presented Lynx, a novel queue that uses hard-

ware virtual memory permission checks and OS signal sup-
port to deal with infrequently-occurring queue actions. We
augment the queue with two types of red-zone and configure
them so that the threads are not allowed access. This allows
us to read and write to the queue using only two machine
instructions, placing all other code in a signal handler that
is executed whenever a red-zone is touched.

5. RESULTS
We evaluate the throughput of Lynx for different data

types and compare it to the state-of-the-art Multi-Section
Queue (MSQ). We then show case studies for the use of
Lynx in real applications in section 5.6.

5.1 Experimental Setup
We evaluated Lynx on a number of machines ranging from

architectures used in embedded systems (like the Intel Bay-
Trail-based J1900), up to those used in servers (like the Xeon
and the Opteron). They are listed in table 1. Unless oth-
erwise stated, our analysis was performed on the Intel Core

0
2
4
6
8

10
12
14

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(a) 64-Bit Integers (-O3)

0
1
2
3
4
5
6
7
8
9

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(b) 32-Bit Integers (-O3)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

MSQ-mov Lynx-mov

(c) 16-Bit Integers (-O3)

0.0

0.5

1.0

1.5

2.0

6
4
K

B

1
2
8
K

B

2
5
6
K

B

5
1
2
K

B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

MSQ-mov Lynx-mov

(d) 8-Bit Integers (-O3)

Figure 9: Throughput GBytes/s (y axis) of Lynx and the
state-of-the-art Multi-Section Queue for different queue sizes
(x axis) on an Intel Core i5-4570.

i5-4570. We pinned the enqueue and dequeue threads to
distinct cores in all experiments (avoiding core sharing in
processors supporting hyper-threading), choosing cores that
shared the highest level of cache, i.e., an L2 cache if shared,
otherwise L3. All experiments used a 2-section queue (for
both Lynx and the state-of-the-art queue).

The throughput experiment’s code consists of two threads
moving 8GB of data through the queue. One thread pushes
values into the queue and sums them, while the other thread
removes them from the queue and also sums them. We
ran the throughput experiments 3 times for warm-up and
then took the average over the following 10 runs. We
compiled with the system’s GCC (shown in table 1) with
-O3. The binaries in section 5.5 were generated with -O3

-funroll-loops.

5.2 Throughput Tests
We measured the throughput of Lynx for various queue

sizes and compared it against the state-of-the-art [11, 15,
16, 24] (as in listing 1). We tested four data widths: 64-
bit, 32-bit, 16-bit and 8-bit, shown in figure 9. We only
show the mov results for the latter two because there is no
non-temporal move instruction for these data widths2.

Once the queue reaches a certain size, Lynx outperforms
the state-of-the-art queue. The results show that Lynx
(Lynx-mov) outperforms the state-of-the-art queue (MSQ-
mov) for a range of queue sizes, depending on the data
width. For the 64-bit test, Lynx is better for any size larger
than 512KB. As the data width decreases, Lynx becomes
better sooner, with the 32-bit and 16-bit cases starting at
256KB, and the 16-bit case at 128KB. The reason is that the
narrower the data width, the more data of this type can fit
in each queue section, therefore the larger the effective sec-
tion size. For example, for the 8-bit data type (figure 9d),
a 128KB queue size is effectively 8 times larger than that of

2A movnti with a wider data type could be used, but ex-
ploring this is not in the scope of this paper.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
100

6
4
K

B

1
2
8
K

B

2
5
6
K

b

5
1
2
K

B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

%
 E

x
e
c
u
ti
o
n
 T

im
e

real kernel sync handler other

Figure 10: Breakdown of Lynx’s cycles for the throughput
test on the Intel Core-i5 system and 64-bit integers.

the 64-bit case (equal to 1MB), and, as shown in figure 9a,
Lynx is better than the state-of-the-art for that size. The
maximum throughput speedup of Lynx versus MSQ is 1.44×
for 64-bit, 1.6× for 32-bit, and 1.4× for 16- and 8-bit data.

The throughput of the MSQ-movnti and Lynx-movnti for
64-bit data (figure 9a) is lower than the peak MSQ-mov and
Lynx-mov by a large margin (8.5GB/s versus 14.6GB/s).
This is because the movnti experiments’ throughput is lim-
ited by the throughput of the system’s main DRAM memory,
since all stores bypass the caches completely. The evaluation
system was equipped with dual-channel 1600MT/s DDR3
modules, with a maximum total interface throughput of ap-
proximately 2×12.8GB/s = 25.6GB/s. The 8.5GB/s queue
throughput involves both storing and loading from memory,
thus causing a 2×8.5GB/s = 17GB/s write+read memory
load, which is very close to the theoretical maximum. This
also explains the more intuitive results of the 32-bit tests
(figure 9b where the maximum throughput with movnti is
at 7.8GB/s versus 5GB/s for the standard mov.

Accessing data through the cache (MSQ-mov and Lynx-
mov) has higher memory bandwidth compared to bypassing
the caches altogether. This is the reason why the throughput
of Lynx-mov (figure 9a) is significantly higher compared to
Lynx-movnti or MSQ-movnti for the bandwidth-stagnated
64-bit case.

5.3 Breakdown of Lynx Overheads
Figure 10 breaks down the execution time of Lynx for in-

creasing queue sizes, showing that the overheads decrease
rapidly, becoming negligible for large queues. Data was
collected while running the throughput test for 64-bit in-
tegers using perf, which uses sampling to perform its mea-
surements. The kernel time spent servicing the red-zone
interrupts (kernel) is a significant fraction of the overall ex-
ecution time for small queues. It is approximately 60% for
a 64KB queue, but decreases as the queue gets larger at a
rate of about 12% per queue size increment, until it gets
to about 10% for a 2MB queue. This is expected as the
kernel is involved in section synchronisation and index ro-
tation, which together occur at least three times per walk
of the queue. For small sizes, traversing the queue is fast,
so the kernel is entered frequently. For larger queues, there
are more entries to push and pop within each section, so the
SSRZ and PRRZ are not hit as often and the kernel is less
regularly called.

Processor Name u-arch nm TDP GHz Cores L1 Cache L2 Cache L3 Cache Mem MT/s Linux GCC

Intel Xeon E5-2667 v2 Sandy Bridge 32 130W 3.30 2×8 6×32KB 6×256KB 15MB (S) 4×1600 3.13.0 4.8.4
AMD Opteron 6376 Piledriver 32 115W 2.3 2×16 16×16KB 8×2MB (S) 2×8MB (S) 4×1600 3.13.0 4.8.4
Intel Core i5-4570 Haswell 22 84W 3.20 1×4 4×32KB 4×256KB 6MB (S) 2×1600 3.10.17 4.8.3
Intel Core i3-2367M Sandy Bridge 32 17W 1.40 1×2 2×32KB 2×256KB 3MB (S) 1×1333 3.9.3 4.8.2
Intel Celeron J1900 BayTrail-D 22 10W 2.42 1×4 4×24KB 2×1MB (S) - 1×1333 3.16.0 4.9.2

Table 1: Description of systems that we evaluated. The shared cache is marked with an (S).

T
IM

E
enqueue dequeue

Section 2Section 1

Section 2

Section 1
Inter−Core Latency

Section 1

: Real Execution
: Synchronisation (in spin−lock)

(a) Multi-Section Queue

: Kernel Overhead

Section 2

Section 1

Section 1

Section 2

Section 1

enqueue dequeue

(b) Lynx

Figure 11: The synchronisation overhead of queues.

The kernel overhead is strongly correlated to the synchro-
nisation overhead (sync). This is because when one thread
is in the process of servicing an interrupt (in kernel mode)
the other thread is likely in a spin-loop, waiting for the state
variable to change from the other thread, allowing it to pro-
ceed to the next section. This is illustrated in figure 11 where
the threads execute from a cold start (dequeue has nothing
to read in the beginning). In Lynx (figure 11b), even though
the real execution is faster (shorter green boxes), there is
the additional kernel overhead (dark red) that leads to more
time spent in spin-loops (yellow). In MSQ (figure 11a), on
the other hand, synchronisation is direct and faster. The
cycles spent in the spin-loops ranges from 15% for a queue
size of 64KB down to less than 2% for queue sizes 2MB or
higher.

Finally there are miscellaneous remaining overheads. The
code of the handler itself (handler) is the code that parses the
instruction and calculates the value of the index. Its over-
head is negligible even for small queue sizes. The remaining
overheads (other) refer to time spent in other boilerplate
code, e.g., libc and libpthread. Again, these overheads are
negligible for all queue sizes.

5.4 Performance Impact of Compiler
Optimisations

Lynx, due to its minimal instruction count and lack of
control flow in enqueue and dequeue operations, allows the
compiler to highly optimise it within its surrounding code.
Figure 12 shows the throughput impact of increasing the
compiler optimisation level (using GCC-4.8.3), starting from
no optimisation (-O0) all the way to -O3 and then forcing
loop unrolling (-O3 -funroll-loops). At -O0, the compiler will
not cache values in registers. Instead, before each instruction
all its inputs are loaded from memory and after its execution
the outputs are stored back into memory. However with
higher optimisation levels Lynx is significantly better.

0
2

4
6

8

10

12

14

16

-O0 -O1 -O2 -O3 -O3-unroll

T
h
ro

u
g
h
p
u
t

G
B

y
te

s
/s 14.9 14.2 14.5

15.7
MSQ-mov
Lynx-mov

Figure 12: Throughput under several compiler optimisation
levels on Intel Core-i5 for 64-bit integers (4MB queue).

There is a mismatch between the two queue implementa-
tions at -O1, with Lynx seeing a dramatic rise in through-
put, whereas the MSQ achieves only a modest increase. The
MSQ code when compiled with -O1 contains more instruc-
tions (some of them even access memory). Adding strict
aliasing and partial redundancy elimination to -O1 (by de-
fault only enabled in -O2) brings the performance of MSQ
to the expected levels. On the other hand, the code of Lynx
is only 2 instructions long, contains no control-flow instruc-
tions and therefore it can be optimised very efficiently even
with fewer optimisation passes.

While MSQ achieves the same throughput from -O2 on-
wards, Lynx improves when compiled with the unrolling flag,
reaching a peak throughput of 15.69 GB/s, 5% faster than
the previous best at -O1. The compiler’s unrolling pass suc-
cessfully unrolls Lynx’s code 8 times, but it fails to do so for
the MSQ due to its larger code size and complexity.

5.5 Evaluation on Various Machines
We evaluated Lynx on several systems in a large range of

the power and performance spectrum. We evaluated low-
power architectures (Intel Celeron J1900 Bay Trail-D 10W),
low-power laptop processors (like the Intel Core i3 M se-
ries), common desktop processors (Intel Core i5) and pow-
erful server components (Intel Xeon and AMD Opteron). A
description of the systems can be found in table 1. The 64bit
throughput for these machines is shown in figure 13 and the
32bit throughput in figure 14.

In all systems Lynx-mov starts to outperform the state-of-
the-art queue (MSQ-mov) once the queue size is big enough
to amortise the cost of frequent exception handling. This
point is at a queue size of either 512KB or 1MB for the
64bit test and usually earlier (starting from 256KB for the
Core-i3 and Celeron-J1900) for the 32-bit test. The results
for the movnti versions of the queues are similar but Lynx-
movnti usually overtakes MSQ-movnti for larger queue sizes
in the 64-bit test, usually 4MB, and the performance differ-
ence is significantly smaller compared to the regular mov.
For the 32-bit results, just like in figure 9b for the Core
i5, the queue’s performance is less constrained by the mem-

0
2
4
6
8

10
12
14
16
18

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(a) Intel Xeon E5-2667 v2

0

1

2

3

4

5

6

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(b) AMD Opteron 6376

0

1

2

3

4

5

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(c) Intel Core-i3 2367M

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(d) Intel Celeron J1900

Figure 13: Throughput GB/s (y axis) of 64-bit data for
different queue sizes (x axis) and machines.

ory throughput of either caches or DRAM. Lynx, with its
lightweight enqueue and dequeue operations achieves signif-
icantly higher bandwidth for both mov and movnti versions
with speedups of 1.9× for Core-i3 mov and 2.0× for Xeon
and Opteron with movnti.

5.6 Case Studies
This section evaluates Lynx in actual applications to show

its speedups over state-of-the-art transfer to real-world set-
tings.

SRMT Fault Tolerance.
SRMT [24, 25] is a technique for detecting transient errors

(i.e., bit-flips) with software support, by running the appli-
cation on one thread (main thread) and a modified copy
of the code on another thread (checker thread). The main
thread sends all data it reads / writes from / to memory to
the checker thread via a software queue. The checker thread
compares this data against the values that are produced lo-
cally. If they differ, then a fault has occurred.

We implemented SRMT using both the state-of-the-art
MSQ and Lynx and used benchmarks from the NAS NPB-
2.3 [2] suite (BT, CG, EP, IS, LU, MG and SP) as inputs.
FT is missing due to compilation error in SRMT’s imple-
mentation. We used the queue size that performed best on
average for each queue (256KB for MSQ and 2MB for Lynx),
the best performing instruction (mov for MSQ and movnti

for Lynx) and prefetch instructions for both. We measured
the execution time and standard deviation on the Core-i5
system (table 1). Figure 16a shows that the performance
with Lynx is improved up to 1.4× at an average of 1.12×
(geometric mean). For some benchmarks, the Lynx queue
size is not ideal. Choosing the best queue size per bench-
mark means Lynx always out-performs MSQ.

SD3 Data-Dependence Profiling Tool.
This is a state-of-the-art tool for fast dynamic data-

dependence profiling [12]. At a high level view, the in-

0

2

4

6

8

10

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(a) Intel Xeon E5-2667 v2

0

1

2

3

4

5

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(b) AMD Opteron 6376

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(c) Intel Core-i3 2367M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

MSQ-mov
MSQ-movnti

Lynx-mov
Lynx-movnti

(d) Intel Celeron J1900

Figure 14: Throughput GB/s (y axis) of 32-bit data for
different queue sizes (x axis) and machines.

Queue

Thread

Main

Thread

Checker

(a) SRMT [24]

...
Queue

Thread

Code

Instrum.

D
is

p
a

tc
h

Threads
Worker

...

(b) SD3 [12]

Analysis

D
is

p
a
tc

h

Parser
Packet

Analysis
Partial Main

......

(c) Network Monitoring[16]

Figure 15: Software structure of case studies.

strumented code of a benchmark sends information about
data accesses to the worker threads, which perform the data-
dependence analysis. To speed up the execution we use an
intermediate thread, the dispatcher thread, to minimise the
burden on the instrumented thread. This enhancement im-
proves both queues equally.

Since SD3 has a total of 10 parallel threads (instrumen-
tation, dispatch and 8 workers), we configured the queue
size at 1MB such that they all fit in L3 cache (best perfor-
mance). We pinned all threads on a single physical hyper-
threaded 8-core Xeon (table 1) and made sure that the in-
strumentation and dispatch threads ran on different cores.
The normalised performance and standard deviation of SD3
for the NAS benchmarks with mov instructions are shown
in figure 16b. SD3 benefits from high-speed inter-core com-
munication. The performance improvement with Lynx is up
to 1.16× with a geometric mean of 1.07×.

Network Traffic Monitoring (NTM).
This tool is a fast parallel network traffic monitor to be

used for line-rate network statistics on very high-speed net-
works. The design is based on the tool evaluated by Lee

0.80

0.90

1.00

1.10

1.20

1.30

1.40

BT CG EP IS LU MG SPGeo

MSQ Lynx

(a) SRMT

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

BT CG EP IS LU MG SPGeo

MSQ Lynx

(b) SD3

0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

1T 2T 3T 4T 5T 6T Geo

MSQ Lynx

(c) NTM Speedups

Figure 16: Normalised Speedup using Lynx over MSQ.

CLF SP/SC Queue Sections Drawbacks Performance Enhancements

Lamport’s [14, 7] 1 Cache ping-pong Lock-free queue
FastForward [8] 1 Non-generic synchronisation Write/Read slip
DBLS[24] > 1 Number of synchronisation instructions Lazy synchronisation
MCRingBuffer[15, 16] > 1 Number of synchronisation instructions Lazy synchronisation
Liberty[11] > 1 Number of synchronisation instructions Non-temporal SSE instructions (e.g. movnti), prefetching
HAQu [17] 1 Hardware modification Extra Hardware
Lynx (proposed) > 1 Handler’s overhead on very small queue sizes Synchronisation overhead is moved off the critical path

Table 2: Overview of features provided by CLF queues.

et al. [16] and is composed of several threads, as shown in
figure 15c. The main thread parses IPv4 network packet
headers, extracts information and dispatches them to sub-
analyser threads. These gather partial statistics and provide
the data to the main analyser which collects them together.

We evaluated NTM performance on the Xeon E5-2667
(table 1) varying the number of sub-analyser threads from 1
to 6. We used the queue size that leads to best performance
for each queue (128KB for MSQ, 2MB for Lynx), mov for
both. The speedups shown in figure 16c are normalised to
MSQ. The geometric mean speedup of Lynx over MSQ is
1.09x.

6. RELATED WORK
Lamport proved that a concurrent lock-free (CLF) queue

can be implemented in a SP/SC scenario [7, 14]. However,
even though it is lock-free, this queue has very poor per-
formance due to frequent cache ping-pong of queue control
variables.

An improvement over Lamport’s implementation is the
FastForward CLF queue [8]. In this implementation the en-
queue and dequeue indices are private to the enqueue and
dequeue functions and their values are never passed to the
other. To avoid the threads overtaking each other, the de-
queue operation writes NULL values to the queue after read-
ing data from it; enqueue checks that the queue value at
the write index is NULL before overwriting it. False shar-
ing (reading and writing to different queue elements in the
same cache line) is avoided by enforcing a buffer between
the writes and reads (referred to as slip).

Multiple sections were introduced by DBLS [24] and
MCRingBuffer [15, 16] queues. Both queues keep enqueue
and dequeue indices private and occasionally share these val-
ues, once for every section. Liberty queues [11] are similar to
both DBLS and MCRingBuffer in design, but they introduce
several implementation-specific performance improvements,
including non-symmetric producer and consumer, prefetch-
ing, streaming instructions. Finally, [26] studies the dead-

lock problem of multi-section queues and proposes a solution
to it.

In HAQu [17], the authors recognise that the high instruc-
tion overhead of existing software queues becomes critical
in fine-grained communication. They propose a hardware-
accelerated queue to decrease the number of instructions
within enqueue/dequeue functions.

An overview of the attributes of the SP/SC CLF queues
are shown in table 2. Several CLF queues have been stud-
ied since Lamport’s research [13, 18, 19, 21, 22, 23]. These
works, however, have focused on improving MP/MC queues,
rather than improving the SP/SC case. These have higher
overheads to avoid ABA problems [18] and to maintain lin-
earizability [10].

Exploiting the hardware/OS memory protection systems
for improving performance has been used in the past. A
survey of algorithms that make use of memory protection
techniques is presented in [6]. Typical uses include garbage
collection, and overflow protections. A similar technique has
been used under the fine-grained Mondrian memory protec-
tion [27] system to implement a zero-copy network stack.
More recently, the memory protection system has also been
used in the context of software transactional memories to
achieve strong atomicity [5].

7. CONCLUSION
High performance single-producer / single-consumer soft-

ware queues are fundamental building components of par-
allel software. Maximising their efficiency is crucial for ex-
tracting the maximum performance of parallel software. This
paper has presented Lynx, a radically new software archi-
tecture for SP/SC queues, which reduces the critical path
overhead of enqueue and dequeue operations down to a min-
imum. Evaluation of Lynx on various commodity hardware
platforms shows throughput improvements of over 1.57×
compared to the state-of-the-art and significant improve-
ments in actual applications of up to 1.4×.

Acknowledgements

This work was supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC), through grant
reference EP/K026399/1. Additional data related to
this publication is available in the data repository at
https://www.repository.cam.ac.uk/handle/1810/254651.

8. REFERENCES

[1] GCC: Gnu Compiler Collection. http://gcc.gnu.org.

[2] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html.

[3] The LLVM Compiler Infrastructure. http://llvm.org.

[4] Intel 64 and IA-32 Architectures Software Developer’s
Manual. 2015.

[5] M. Abadi, T. Harris, and M. Mehrara. Transactional
Memory with Strong Atomicity Using Off-the-shelf
Memory Protection Hardware. In Proceedings of the
14th Symposium on Principles and Practice of Paral-
lel Programming (PPoPP), 2009.

[6] A. W. Appel and K. Li. Virtual Memory Primitives for
User Programs. In Proceedings of the 4th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), 1991.

[7] K. Gharachorloo and P. B. Gibbons. Detecting Viola-
tions of Sequential Consistency. In Proceedings of the
3rd Annual Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), 1991.

[8] J. Giacomoni, T. Moseley, and M. Vachharajani. Fast-
Forward for Efficient Pipeline Parallelism: A Cache-
Optimized Concurrent Lock-free Queue. In Proceedings
of the 13th Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2008.

[9] M. Girkar and C. D. Polychronopoulos. Automatic Ex-
traction of Functional Parallelism from Ordinary Pro-
grams. Transactions on Parallel and Distributed Sys-
tems, 3(2), 1992.

[10] M. P. Herlihy and J. M. Wing. Linearizability: A Cor-
rectness Condition for Concurrent Objects. Transac-
tions on Programming Languages and Systems, 12(3),
1990.

[11] T. B. Jablin, Y. Zhang, J. A. Jablin, J. Huang, H. Kim,
and D. I. August. Liberty Queues for EPIC Architec-
tures. In Proceedings of EPIC Workshop, 2010.

[12] M. Kim, H. Kim, and C.-K. Luk. SD3: A Scalable Ap-
proach to Dynamic Data-Dependence Profiling. In Pro-
ceedings of the 43rd Annual International Symposium
on Microarchitecture (MICRO 43), 2010.

[13] E. Ladan-Mozes and N. Shavit. An Optimistic Ap-
proach to Lock-Free FIFO Queues. Distributed Com-
puting, 20(5), 2007.

[14] L. Lamport. Specifying Concurrent Program Modules.
Transactions on Programming Languages and Systems,
5(2), 1983.

[15] P. P. C. Lee, T. Bu, and G. Chandranmenon. A Lock-
Free, Cache-Efficient Shared Ring Buffer for Multi-Core
Architectures. In Proceedings of the 5th Symposium on
Architectures for Networking and Communications Sys-
tems (ANCS), 2009.

[16] P. P. C. Lee, T. Bu, and G. Chandranmenon. A
Lock-Free, Cache-Efficient Multi-Core Synchronization
Mechanism for Line-Rate Network Traffic Monitoring.

In International Parallel and Distributed Processing
Symposium (IPDPS), 2010.

[17] S. Lee, D. Tiwari, Y. Solihin, and J. Tuck.
HAQu: Hardware-Accelerated Queueing for Fine-
Grained Threading on a Chip Multiprocessor. In 17th
International Symposium on High Performance Com-
puter Architecture (HPCA), 2011.

[18] M. M. Michael and M. L. Scott. Nonblocking Al-
gorithms and Preemption-Safe Locking on Multipro-
grammed Shared Memory Multiprocessors. Journal of
Parallel and Distributed Computing, 51(1), 1998.

[19] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Us-
ing Elimination to Implement Scalable and Lock-Free
FIFO Queues. In Proceedings of the 17th Annual Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), 2005.

[20] G. Ottoni, R. Rangan, A. Stoler, and D. I. August.
Automatic Thread Extraction with Decoupled Software
Pipelining. In Proceedings of the 38th Annual Interna-
tional Symposium on Microarchitecture (MICRO 38),
2005.

[21] S. Prakash, Y. H. Lee, and T. Johnson. A Nonblock-
ing Algorithm for Shared Queues Using Compare-and-
Swap. Transactions on Computers, 43(5), 1994.

[22] W. N. Scherer, III, D. Lea, and M. L. Scott. Scalable
Synchronous Queues. In Proceedings of the 11th Sym-
posium on Principles and Practice of Parallel Program-
ming (PPoPP), 2006.

[23] P. Tsigas and Y. Zhang. A Simple, Fast and Scal-
able Non-blocking Concurrent FIFO Queue for Shared
Memory Multiprocessor Systems. In Proceedings of the
13th Annual Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), 2001.

[24] C. Wang, H. s. Kim, Y. Wu, and V. Ying. Compiler-
Managed Software-based Redundant Multi-Threading
for Transient Fault Detection. In International Sym-
posium on Code Generation and Optimization (CGO),
2007.

[25] C. C. Wang and Y. Wu. Apparatus and Method for
Redundant Software Thread Computation. 2010. US
Patent 7,818,744.

[26] J. Wang, K. Zhang, X. Tang, and B. Hua. B-Queue:
Efficient and Practical Queuing for Fast Core-to-Core
Communication. International Journal of Parallel Pro-
gramming, 41(1), 2012.

[27] E. Witchel, J. Cates, and K. Asanović. Mondrian mem-
ory protection. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS X), 2002.

[28] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August.
DAFT: Decoupled Acyclic Fault Tolerance. In Proceed-
ings of the 19th International Conference on Paral-
lel Architectures and Compilation Techniques (PACT),
2010.

	Introduction
	Multi-Section Queue for Streaming
	Analysis of Remaining Overheads
	Critical Path Code
	Performance Enhancements
	Summary

	Lynx
	Memory Layout
	Section Synchronisation Red-Zones (SSRZs)
	Pointer Rotation Red-Zone (PRRZ)

	User Code
	Lynx's Exception Handler
	SSRZ Movement and Synchronisation
	Pointer Rotation in PRRZ

	Reporting Program Exceptions Correctly
	Summary

	Results
	Experimental Setup
	Throughput Tests
	Breakdown of Lynx Overheads
	Performance Impact of Compiler Optimisations
	Evaluation on Various Machines
	Case Studies

	Related Work
	Conclusion
	References

