
10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 1/12

Emulating Operating System
Synchronization

Ruediger R. Asche
Software Consultant

October 1997

Abstract
This article describes ways to emulate the synchronization mechanisms found in operating systems (that is, interrupt-
driven concurrency and appropriate mutual exclusion primitives) using Microsoft Windows synchronization
mechanisms. The associated sample application OSPORT implements a very rudimentary operating system that
employs the techniques discussed.

Introduction
Most modern operating systems support multithreading and the synchronization schemes related to multithreading.
However, the primary concurrency mechanism on the system level of most operating systems is hardware-supported
concurrency between user processes and interrupt handlers.

Those of you who write device drivers will be more familiar with interrupt masks and interrupt levels as means of
synchronization than with semaphores, events, and threads, which are the domain of low-level application
programmers. During a recent project, I had to jump back and forth between being an application and a device driver
programmer: My assignment was to port the TCP/IP stack of a public domain-provided operating system to a
different platform. Unfortunately, the machine I was to port the operating system to was not yet available when the
project started, so I first decided to port the code I needed up to Windows and then back to the final operating
system. The main challenge buried in this approach was that the TCP-stack would execute as a user-mode DLL as
opposed to a kernel module. Thus, the synchronization mechanisms found in the original code—statements with
names such as SetPriorityLevel(NETSOFTINTERRUPT)*—had to be mapped to user-mode synchronization primitives.

This article is sort of a case study of implementing an operating system as a user-mode process. It's up to you to
decide whether this is a useful endeavor or not; but regardless of what you decide, you'll hopefully learn quite a lot
about synchronization (in particular, new synchronization primitives). The first section of the article explains the inner
workings of hardware-supported synchronization, and the second section explains how I successfully implemented
these using application-level synchronization primitives. The third section discusses my sample operating system
G.R.E.A.T., which I implement as an application.

How Hardware Handles Synchronization
Note

In the following discussion, I will assume "standard" hardware, that is, a CPU that follows the
hierarchical interrupt architectures adapted by most of today's processors such as the Intel x86 families,

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 2/12

or the Motorola 68xxx families, or the VAX family of microprocessors. I use the generic term toaster
processor to depict such a gizmo.

A toaster processor executes only one instruction at any given time, and during normal processing, the sequence of
instructions processed is determined by the instructions: Unless the instruction implies a command that branches to
somewhere else, the next instruction to be processed is the instruction that immediately succeeds the current
instruction.

Concurrency in a toaster processor is implemented via interrupts. Given certain circumstances, the toaster processor
can decide to suspend the current stream of execution that we discussed above, and transfer control to a different
routine called an "interrupt handler" (hereafter frequently referred to as "ISR" or "interrupt service routine"). When
the interrupt handler has finished its processing, control is returned to the instruction stream that was previously
interrupted. To the original stream, the execution of the interrupt handler is perfectly transparent; the original stream
is not aware of the fact that it was suspended and re-awakened. This idea of concurrent execution is similar to
application-level concurrency only in that streams of execution will not be aware of any concurrency.

Interrupt handlers can be nested. That is, if a user-mode application is interrupted, and an interrupt handler gains
control over the CPU, that interrupt handler becomes the new current stream of execution, and another interrupt
handler can kick in and interrupt the first interrupt handler.

The ordering of interrupt handlers normally follows a priority scheme, that is, interrupt handlers can only be
interrupted by handlers that have a higher priority. Priorities are implemented on the hardware level, but can be
defined by software. We will work out an example, but before that, let's become a little bit more precise about what
constitutes an "interrupt." An interrupt can normally be triggered by one of two conditions:

A hardware interrupt is triggered by some event that is controlled by a hardware device. For example,
whenever a character arrives at a serial communications port, the port will generate a hardware interrupt that
can be processed by the operating system.
A software interrupt is triggered by a software instruction. Frequently, software interrupts come in two flavors:
explicit software interrupts (that is, machine instructions that translate to "invoke the interrupt handler") and
implicit software interrupts (for example, when a machine instruction that does a division encounters a 0 in the
divisor, a software interrupt handler can be invoked to handle a division by 0 error).

Unfortunately, over different platforms, the terminology concerning interrupt handlers is often unclear; sometimes all
software interrupts are labeled "traps," sometimes only implicit software interrupts are called "traps" as opposed to
"interrupts," which depict explicit software interrupts on those architectures, sometimes all interrupts are named
"traps," and so on. In this discussion, we'll stick to the distinction between hardware interrupts, explicit software
interrupts, and implicit software interrupts.

Now let's look at an example. My sample operating system G.R.E.A.T. (this is fictitious, in case you haven't figured that
out yet) defines seven interrupt levels in the following order:

There is deliberation behind this ordering, of course. The hardware clock interrupt handler has the
highest priority for two reasons: First, whenever this interrupt executes, it can update the software clock
(which should be as exact as possible) as well as keep track of such things as timeouts. Second, this
interrupt handler will typically execute very briefly so that other time-critical interrupt handlers aren't
interrupted for an extensive amount of time. Finally, the data that the hardware clock interrupt handler
manipulates are normally not shared by other interrupt handlers and processes in such a way that
synchronization is necessary.

Similar reasoning applies to all of the above levels; in general, interrupt handlers that execute less time-

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 3/12

critical code than others are placed lower in the hierarchy than those other interrupt handlers.
Hardware interrupts from devices that process very fast I/O should be assigned high priority so that the
system doesn't run a risk of losing input.

For the sake of this discussion, we can define a user-process as the lowest-level interrupt handler that
executes whenever no other interrupt handlers execute. Note that this is not a "correct" definition, but
in the discussion to come, I will frequently state things like "a lower-priority interrupt handler is
interrupted by" In order not to have to write "a lower-priority interrupt handler or a user process is
interrupted by," I imply that a user process behaves a lot like a very low-priority interrupt.

Now, what is a "software clock interrupt," as opposed to a "hardware clock interrupt"? Let's look at
typical (pseudo-) code for a hardware interrupt handler:

This code is executed whenever the hardware clock interrupts the processor (normally at periodic
intervals). The important part is the "submit software clock interrupt" instruction, which is an explicit
software interrupt: The hardware interrupt handler requests that the code for the software clock
interrupt be executed. What is that rubbish?

Well, here's the beauty. Remember that the clock hardware interrupt has a higher priority than the
clock software interrupt, so at the point where the "submit software clock interrupt" instruction is
submitted, there is no chance for the clock software interrupt handler to execute until later on. The
hardware will mark the software interrupt as pending, and as soon as there is no higher-priority
interrupt executing, the software clock interrupt handler can do its thing. (Actually, it's not that simple,
but we'll get to the details in a second.)

Figure 1. An interrupt scenario

Let's look at Figure 1, which depicts a typical sequence of control over a period of time. The user
process is running and gets interrupted by a level 3 network card interrupt (1). That interrupt handler in
turn is interrupted by a hardware clock interrupt (2), which, as we saw before, submits a software clock
interrupt (3). As we discussed before, the software clock interrupt is marked pending by the hardware.
The hardware clock interrupt finishes and returns control to the network card interrupt handler (4).

hardwareinterrupt()
{
 read hardware clock and store value in soft clock data structure();
 do other brief time-critical processing();
 submit software clock interrupt();
}

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 4/12

Remember that the network card interrupt handler still has higher priority than the software clock
handler, so the clock software interrupt handler will still not execute. As the level 3 interrupt handler
terminates, it would normally return control to the user process, but at this point, there is no interrupt
handler at a level higher than the software clock interrupt executing, so the software clock interrupt
handler gets to execute (5). Once this interrupt handler finishes what it's doing, the user process
continues to execute unless other interrupts have occurred or been marked pending in the meantime
(6).

This is most of what you need to know about concurrency on the hardware level of a toaster processor.
Have you ever wondered how I/O subsystems work in operating systems? Well, here's the deal in a
nutshell. Assume a user process attempts to read 20 bytes from a serial communications port. The
process submits a "read" call to the operating system, which in effect means that the operating system
asks whether there are 20 characters or more in the serial port's input buffer. If the answer is yes, 20
characters are removed and placed into the user process's buffer and the process continues happily. If
there are fewer than 20 characters available, the requesting process is put to sleep.

The serial port's interrupt handler is invoked the next time a character arrives at the port, and the
interrupt handler (or possibly some other intermediate interrupt handler which is invoked in turn) will
know that a user process is waiting for characters from the port. Thus, the newly arrived character is
placed in the process's buffer, and as soon as there are 20 buffers in the user process's input buffer, the
process will be resumed. And that's it.

Well, not quite. Here's a glitch. Below is some real-life code, although it is slightly rewritten to protect
the innocent. This code is basically adapted from a network protocol suite and implements the control
flow that passes network packets on to a protocol.

Needless to say, the software interrupt handler for the protocol has a lower priority than the handler for
the network card. The problem here is the following If you are familiar with concurrent programming,
you will have noticed that there is a problem here: Assume the interrupt handler for the net card has
scheduled a software protocol interrupt, and eventually, the software interrupt for the protocol
executes. As SoftIntHandlerForProtocol() attempts to remove a packet from its input queue, the
software interrupt handler for the network card interrupts again, and two streams of execution try to
party on the same queue concurrently, which is a safe recipe for ugly disaster.

SoftIntHandlerForNetCard()
{
 Place character from input device into buffer();
 look at buffer gathered so far and determine whether the characters
 make up a complete packet();
 if we have a packet together, insert packet on protocol's input queue
 and submit protocol software interrupt();
}

SoftIntHandlerForProtocol()
{
 Remove a packet from input queue();
 look at packet, decode, and forward to whoever needs it();
}

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 5/12

The way to handle this issue is for the lower-priority interrupt to inhibit higher-level interrupts
temporarily. For example, a correct way to write the software interrupt handler for the protocol would
be as follows:

Note that this code in practice implements mutual exclusion between the software interrupt handlers
for the protocol and the network card, respectively, for the code that parties on the protocol input
queue. This mutual exclusion may not be obvious, but remember that by definition, as long as an
interrupt handler executes, no lower-priority interrupt handlers have a chance to execute. On the other
hand, as soon as the protocol interrupt handler gets to execute
SuppressAllInterruptsUpToNetCard(), we know that no higher-priority interrupt handler can be
executing (otherwise the code wouldn't be executing in the first place), and once this call returns, the
higher-priority interrupt handler that competes with the protocol interrupt handler for access to the
protocol's input queue will not be allowed to execute until the lower-priority interrupt has finished
working on the buffer.

The net effect of this mutual exclusion process is similar to what mutexes can accomplish on the
application level, except for two important differences:

The mutual exclusion is "asymmetric" in that the higher-level interrupt implicitly prevents the
lower-level interrupt handler from executing, whereas the lower-level interrupt handler explicitly
inhibits ("masks off" is the official terminology for this kind of thing) the higher-level interrupt.
There are the mutual exclusion process has side effects. For example, when a lower-level
interrupt handler masks off interrupts, it masks off all levels in between itself and the highest
level that the mask call specified. There is no way for, say, a G.R.E.A.T. level 4 interrupt handler to
say, "I don't want level 2 interrupts to go through, but level 3 interrupt are fine." Another side
effect is that higher-level interrupt handlers always inhibit all lower-level interrupts, regardless of
whether those lower-level interrupt handlers execute critical code or not.

As it turns out, the hardware-controlled synchronization mechanism is no more powerful than a
software synchronization scheme that provides adequate primitives. It would be possible for a
microprocessor to implement interrupt handlers using multithreading and on-board arbitration code.
How to emulate hardware synchronization in software using (in this example) the synchronization
primitives is the subject of the rest of this article.

Emulating Hardware
In distinction to the synchronization scheme discussed so far, the Windows API defines threads as the
main units of concurrent execution. Thus, we will model each interrupt handler by a separate thread
that executes the following pseudo-code,

SoftIntHandlerForProtocol()
{
 SuppressAllInterruptsUpToNetCard();
 Remove a packet from input queue();
 RevertBackToPreviousLevel();
 look at packet, decode and forward to whoever needs it();
}

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 6/12

where intHandler() is the interrupt handler supplied for the appropriate level. StartISRProcessing() is a
function that ensures two things: (1) the interrupt mask is low enough for this thread to proceed; and
(2) all ISRs and user processes running on levels lower than iLevel do not execute when
StartISRProcessing returns. As a side effect, StartISRProcessing() may suspend the current thread
until the interrupt mask has been lowered to a level appropriate to the caller.

Any software or hardware that needs to trigger an interrupt calls the function

and we also need a function that can mask interrupts. We will use the semantics of Berkeley Software
Distribution (BSD) UNIX for this function group. BSD UNIX defines the following function set for
interrupt masking:

The functions are to be used as follows: A section of code that needs to mask interrupts of a given level
is wrapped into calls to splXXX() or splYYY() in the beginning and splx() in the end, like so:

void InterruptThread(int iLevel)
{
 while(1)
 {
 WaitForIntSubmitted(iLevel);
 StartISRProcessing(iLevel);
 intHandler();
 StopISRProcessing(iLevel);
 };
}

SubmitInt(iLevel);

int splXXX(), where XXX is one of a fixed number of string constants,
 such as net, tty, imp, or high;
int splYYY(), where YYY is a fixed numeric level from 0 to the level
 supported by the target operating system;
void splx(int iLevel). The x is NOT a metasymbol here; the function is
 really called splx().

{
 int s=splnet(); /* Inhibit all interrupts between the current executing ISR and net software interrupts. */
 ... /* Do the processing that relies on net interrupts being masked out. */
 splx(s); /* Restore the previous interrupt level. */

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 7/12

Each of the functions returns the current interrupt level, and the automatic variable s is used to save a
previously retrieved level. At the end of the critical code, the interrupt mask is restored to the previous
level. Needless to say, even without knowing how these functions work exactly, it is tricky to use them
correctly. Those of you who have read a lot of BSD UNIX system code will probably have come across a
few occurrences of "sloppy spl-ing," where an interrupt mask level has been set but is never restored to
the previous level due to a premature error exit in which the corresponding splx() is not called. Likewise,
it is easily possible to deadlock an operating system due to a careless sequence of masking calls.

Anyway, we will use the generic call

to set and retrieve an interrupt mask.

The API we need to implement to emulate our hardware with software is very small; namely, we have to
implement the interrupt levels themselves as well as the functions WaitForIntSubmitted, SubmitInt,
StartISRProcessing, StopISRProcessing, SetISRMask, plus a few functions that set up the entire
system.

Easier said than done, of course. As usual with concurrent programming, the hard part is doing it right;
it took me about ten attempts to write a functioning set of primitives. In the meantime, I encountered
everything that makes the life of a concurrent programmer fun: Unpredictable and irreproducible data
corruptions, deadlocks, lockouts, and other surprises. Here’s a version that works. It's probably not the
only working solution, and by no means the most efficient one, but it works.

A first attempt to tackle the priority hierarchies would try to make use of the built-in priority scheme
and map the threads that model the interrupts to respective priority levels. However, it doesn’t work
like this, for the following reasons:

There are only five available distinct priority levels per process, which is normally not enough to
model a sufficiently complex toaster processor.
Priorities are not static; that is, priorities can change dynamically over time due to dynamic
priority boosting.

Thus, we model the priority preemption scheme through thread suspension and resuming. Let's first
define the data structures we need to keep the entire scheme together:

};

int SetISRMask(int iLevel);

typedef struct ISRINFO
{
 int iStatus;
 HANDLE hThread;
 HANDLE hEvent; /* Determines whether ints can be processed.

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 8/12

The global array isrlevels has one entry per interrupt handler, where the position of an ISR implies its
relative priority (ISRs that come earlier in the array have a higher priority). The iStatus member of the
ISRINFO structure can be either STATUS_FREE or STATUS_MASKED. The associated event object hEvent
will be used to guard entry to the interrupt handler (we will see how this works in a second). The
hThread member contains the identification of the thread that executes the InterruptThread()
function of the given level. The CriticalInit and ISSRFunc members are pointers to functions that
execute initialization code for the given ISR and the ISR code itself, respectively.

Finally, the g_hISRMutex object (which is created at system-initialization time) is a simple mutex object
that is used to arbitrate access to the isrlevels table itself.

Let's look at StartISRProcessing. I have removed error-handling logic to make the code more
readable, but as usual, you’re well advised to do better than me in real life.

 Set when the iStatus == STATUS_FREE
 unset otherwise. */
 ISRProc CriticalInit; /* Contains the critical initialization code. */
 ISRProc ISRFunc; /* Contains the code to be executed at interrupt
 time. */
} ISRINFO, *PISRINFO;

struct ISRINFO isrlevels[MAXTHREADS];

int g_CurrentMask;

HANDLE g_hISRMutex;

// The interrupt is not masked.

#define STATUS_FREE 0

// The interrupt is masked -- suspend ISR.

#define STATUS_MASKED -1

int StartISRProcessing(int iLevel)
{
 int iReturn;
 TryAgain:
 WaitForSingleObject(g_hISRMutex,INFINITE);
 switch(isrlevels[iLevel].iStatus)
 {
 case STATUS_MASKED:
 SignalObjectAndWait(g_hISRMutex,isrlevels[iLevel].hEvent,
 INFINITE,FALSE);

 goto TryAgain;
 case STATUS_FREE:
 iReturn=SuspendEveryoneBelowMe(iLevel);

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 9/12

The basic idea of the code is very simple: If our level is masked out, wait on the mutex
isrlevels[iLevel].hEvent until the interrupt becomes unmasked. If our level is unmasked, suspend all
threads that execute on lower priorities. Because each interrupt handler that wishes to execute
interrupt code must first call StartISRProcessing(), the suspending of threads can be done in a
controlled manner: The global mutex object g_hISRMutex ensures that only one interrupt thread can be
in masking-related code at any time.

The only gotcha here is that if it weren't for the cool SignalObjectAndWait function, this code would
be hard to implement, because we can't release g_hISRMutex before waiting on the level-specific event;
but on the other hand, we can’t first release the global mutex and then wait on the event object
because another ISR may hop in between and change the masking status of our level. Using
SignalObjectAndWait, we do both the signaling and waiting atomically, which ensures that the status
flag and the state of the event are always consistent.

Why is there a goto TryAgain after the SignalObjectAndWait call? Doesn't a successful return from the
SignalObjectAndWait call imply that our level is unmasked, and we can proceed? Theoretically yes,
but unfortunately, we don’t own the g_hISRMutex anymore once we return from the
SignalObjectAndWait call, but we need to own the mutex to prevent other ISRs from trying to enter
ISR processing. Worse, we can’t simply claim the mutex here because if we did so, some other ISR may
have kicked in after we returned from SignalObjectAndWait and before we did enter the mutex, so
our level may be masked off again. Thus, we need to jump back until we own the global ISR mutex and
our level is free. Once those two conditions are met, it's safe to suspend all intermediate ISRs and user
threads, like so:

Note that this scheme is a little weird because it assumes that user threads also have entries in the
isrlevels array, although they are strictly speaking not ISRs.

The counterpart to StartISRProcessing is StopISRProcessing(), which reverses actions taken by
StartISRProcessing:

 ReleaseMutex(g_hISRMutex);
 break;
};
 return iReturn;
}

int SuspendEveryoneBelowMe(int iLevel)
{
 int iLoop;
 for(iLoop=iLevel+1;iLoop<MAXTHREADS;iLoop++)
 if (isrlevels[iLoop].hThread)
 SuspendThread(isrlevels[iLoop].hThread);
 return 0;
}

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 10/12

This code is fairly straightforward and doesn’t need a lot of annotation; however, here's one bit of trivia
that needs to be mentioned. Strictly speaking, it is not necessary to match splXXX() and splx() calls on a
toaster-processor–based architecture, because there is no harm done in masking off interrupts that are
already masked; the toaster hardware has no "memory" in which masking operations are kept.
Normally, there is only one global register that contains masking information, and as soon as an
appropriate operation has masked off an interrupt level, that level is masked, regardless of how many
times unmasking operations have been submitted.

On the other hand, calls to SuspendThread and ResumeThread must be matched because an
implementation is required to keep track of thread suspension, and a thread that has been suspended
n times must also be resumed n times before resuming execution. Thus, operating system code that
uses the Resume/Suspend scheme to implement interrupt masking must match the splXXX with splx()
calls.

The remaining function in the synchronization set is SetISRMask, which, as we discussed before, is the
one-size-fits-all solution for interrupt mask manipulation:

int StopISRProcessing(int iLevel)
{
 int iReturn;
 WaitForSingleObject(g_hISRMutex,INFINITE);
 iReturn = ResumeEverybodyBelowMe(iLevel);
 ReleaseMutex(g_hISRMutex);
 return iReturn;
}

int ResumeEverybodyBelowMe(int iLevel)
{
 int iLoop;
 for(iLoop=iLevel+1;iLoop<MAXTHREADS;iLoop++)
 if (isrlevels[iLoop].hThread)
 ResumeThread(isrlevels[iLoop].hThread);
 return 0;
}

int SetISRMask(int iLevel)
{
 int iLoop;
 int iCurrentMask;
 int iReturn;
 WaitForSingleObject(g_hISRMutex,INFINITE);
 iCurrentMask=g_CurrentMask;
 g_CurrentMask = iLevel;
 for (iLoop=0;iLoop<MAXTHREADS;iLoop++)
 switch (isrlevels[iLoop].iStatus)
 {
 case STATUS_FREE:
 if (iLoop>=g_CurrentMask)

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 11/12

Again, this code is rather straightforward. Note that the global variable g_CurrentMask needs to be
initialized to the lowest level. SetISRMask basically does two things: (1) the function exchanges
g_CurrentMask and the level passed in atomically, and (2) all event objects associated with a higher
priority than the one requested are set, and the remaining event objects are reset. The event objects
are naturally created as manual-reset objects.

A Sample Operating System
The code sample that accompanies this article, OSPORT, implements our little G.R.E.A.T. operating
system. OSPORT is our typical compromise between readability of code and usefulness. There are no
"user processes" provided with the sample code, only four interrupt handlers that conspire to do
something completely silly and impractical: Every few seconds, a dot is displayed on the screen unless
the user of OSPORT types in characters. When enough characters have been entered, OSPORT
transforms those characters to uppercase and displays them on the screen.

G.R.E.A.T. implements four little interrupt handlers: A hard clock interrupt, a soft clock interrupt, a hard
tty interrupt, and a soft tty interrupt. Of course, the term "hard interrupt" is misleading; there is no way
for a user-mode application (which OSPORT is, at the end of the day) to access hardware interrupts.
The "hard" clock and tty interrupt handlers in OSPORT are fed from background threads that pretend
to be hardware devices: The "clock" interrupt thread calls SubmitInt() periodically, and the "tty"
interrupt thread does so whenever a character has arrived in the input stream (this is actually
implemented via scanf). The interaction between the respective soft and hard interrupt handlers is
much like that in a real operating system: The "hard clock" interrupt synchronizes its own time with the
system time and then submits software interrupts for less time-critical code to execute delayed, and the
"hard tty" interrupt pre-buffers characters from the input device and then submits a soft tty interrupt
which, in a real operating system, would serve user mode processes that wait on input from the
respective serviced device.

In order not to complicate the discussion, I have so far omitted the functions that are needed to set up
and initialize the data structures and threads. In the code sample, you'll find the functions InitOS,
RegisterThreadAsISR, and RegisterUserThread that are needed to set up the ISRs and associated
data structures. I do not go into too much detail here because most of the code is very straightforward
Windows API programming.

 {
 isrlevels[iLoop].iStatus = STATUS_MASKED;
 ResetEvent(isrlevels[iLoop].hEvent);
 };
 break;
 case STATUS_MASKED:
 if (iLoop<g_CurrentMask)
 {
 SetEvent(isrlevels[iLoop].hEvent);
 isrlevels[iLoop].iStatus=STATUS_FREE;
 };
 break;
};
ReleaseMutex(g_hISRMutex);
return iCurrentMask;
}

10/6/2015 Emulating Operating System Synchronization

https://msdn.microsoft.com/en-us/library/ms810431(d=printer).aspx 12/12

Although the code sample is rather simple and rudimentary, I used the very same API set to port major
portions of a full-blown multi-user operating system to proprietary hardware. If you are interested in
some of the more subtle issues that arose during the port, please let me know, and I’ll be happy to
follow up on this article.

© 2015 Microsoft

