
10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 1/21

Multithreading Performance

Ruediger R. Asche
Microsoft Developer Network Technology Group

January 31, 1996

Abstract
This article discusses strategies for rewriting single-threaded applications to be multithreaded applications. It
analyzes the performance of multithreaded computations over compatible single-threaded ones in terms of
throughput and response.

Introduction
Most of the material you can find about multithreading deals with synchronization concepts, such as how to serialize
threads that share common data. This focus on synchronization makes sense because synchronization is an
indispensable part of multithreaded programming. This article takes a step back and focuses on an aspect of
multithreading that is hardly documented: Deciding how a computation can meaningfully be split into multiple
threads. The accompanying sample application, THRDPERF, implements a test suite that compares serial and
concurrent implementations of the same computations to each other in terms of throughput and performance.

The first section of this article establishes some vocabulary on multithreaded applications, discusses the scope of the
test suite, and describes how the sample application suite was designed. The second section discusses the results of
the tests and contains recommendations for multithreaded application design. The related article "Interacting with
Microsoft Excel: A Case Study in OLE Automation" discusses one interesting side issue of the sample application suite,
namely, how the data that was obtained using the test set was fed into Microsoft Excel using OLE Automation.

If you are an experienced programmer of multithreaded applications, you can probably safely skip the introductory
section and jump right to the "Results" section below.

Multithreading Vocabulary
So your application has been around for a long time—it works great, is reliable, and the whole bit—but it's terribly
sluggish, and you have a bazillion ideas of how you could make good use of multithreading. Wait a second before
going to work; there are a number of traps that can lead you into believing that a particular multithreaded design is
good when in reality it is not.

Before you jump to conclusions about what I'm getting you into here, let's first clarify what we are not discussing in
this article:

We are not concerned with the different libraries that provide access to multithreading under the Windows
application programming interface (API). The sample application suite, Threadlib.exe, was written using the
multithreading API in a Microsoft Foundation Class Library (MFC) application, but I am not concerned at all
with whether the Microsoft C run-time (CRT) libraries, the MFC libraries, or the barebones Windows API is used

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 2/21

to create and maintain the threads.
As a matter of fact, each of these libraries will, at the end of the day, call to the CreateThread function to
create a worker thread, and the multithreading itself will always be performed by the operating system. Which
one of the encapsulation mechanisms you use does not make any difference for the purpose of this article.
There may be a performance penalty involved when using one or the other wrapper library, but here we are
mostly concerned with the essentials of multithreading, not the wrapping.

The discussions in this article refer to multithreaded applications that run on single-processor machines.
Multiprocessor computers are in a completely different league, and almost none of the discussion in this
article applies to multiprocessor machines. I haven't had a chance yet to execute the set on a scalable
symmetric multiprocessing (SMP) machine. If you have access to one, I'd love to see your results.
Within this article, I rather generically refer to "computations." A computation is defined as a subtask of your
application that may be executed in parts or as a whole before or after another computation or concurrently
with other computations. As an example, let us consider an application that requests user data and saves the
data onto disk. We could argue that entering the data constitutes one computation, and saving the data
another one. Depending on the application design, it is possible either to interleave the saving of the data
with the input of new data or to wait until the user has entered all data before saving all the data onto disk.
The former case can typically be implemented using some form of multithreading; we refer to that way of
organizing the computations as concurrent or interleaved. The latter case is typically implemented in a single-
threaded application and is in this article referred to as serial execution.
The design of concurrent applications is a very complex process that is normally performed by people who
make a ton of money, because it takes years of study to figure out how exactly a given task can benefit from
concurrent execution. This article does not intend to teach you how to design multithreaded applications.
Instead, I point out some of the problem areas of multithreaded application design to you, and I use real-life
performance measurements to argue my case. After reading this article, you should be able to look at a given
design and be able to determine if that particular design will enhance the overall performance of the
application or not.
Part of the process of multithreaded application design is to determine where data access conflicts between
multiple threads can potentially lead to data corruption and how to avoid such conflicts using thread
synchronization. This task will not be discussed in this article at all. For the discussion in this article, we will
assume that the computations that can be interleaved do not share any data and, therefore, do not require
any serialization. This stipulation may seem a little bit restrictive, but please keep in mind that there can be no
"generic" discussion of synchronized multithreaded applications because each serialization forces a unique
waiting-and-waking pattern onto the serialized threads, which directly affects the performance.
Most input/output (I/O) operations come in two flavors: asynchronous or synchronous. It turns out that in
many cases a multithreaded design using synchronous I/O can be approximated using asynchronous single-
threaded I/O. This article does not discuss asynchronous single-threaded I/O as an alternative to
multithreading, but I encourage you to consider both designs.
Note that the way the Windows I/O system is designed provides a few mechanisms that make asynchronous
I/O preferable over synchronous I/O (for example, I/O completion ports). I plan on taking up the issue of
synchronous versus asynchronous I/O in a later article.

As the article "Multiple Threads in the User Interface" points out, multiple threads and graphical user
interfaces (GUIs) do not work together very well. In the course of this article I imply that the work that can be
performed by a background thread does not utilize the Windows GUI at all; the type of threads I deal with are
merely "worker threads" that perform background computations that do not require direct interaction with the
user.
There are infinite computations as opposed to finite computations. An example of an infinite computation
would be a "listening" thread in a server application, which does not serve any purpose but to wait for a client
to connect to the server. After a client has connected, that thread sends a notification to the main thread and
returns to the listening state until the next client connects. Naturally, such a computation cannot possibly
reside in the same thread as an application's user interface (UI) unless an asynchronous I/O operation is
employed. (Note that this particular problem can, and should, be solved using asynchronous I/O and

https://msdn.microsoft.com/en-us/library/ms810439.aspx

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 3/21

completion ports rather than multiple threads; I use the example for illustration purposes only). In this article, I
will deal only with finite computations, that is, subtasks of an application that are completed after a finite
amount of time.

CPU-bound Versus I/O-bound Computations
One of the most important factors that determines whether a given computation is a good candidate for a separate
thread is whether the computation is CPU-bound or I/O-bound. A CPU-bound computation is a computation that
spends most of its time keeping the CPU busy. Typical examples of CPU-bound computations are the following:

Complex mathematical computations, such as matrix manipulations, operations on graphs, or off-screen
graphics calculations
Operations on memory-resident file images, such as scanning a memory image of a text file for a given string

In contrast, I/O-bound computations are computations that spend most of their time waiting for an I/O request to
finish. In most modern operating systems, incoming device I/O will be serviced asynchronously, either by a dedicated
I/O processor or by an efficient interrupt handler, and the I/O request from an application will suspend the calling
thread until the I/O is completed. Threads that spend most of their time waiting for I/O requests normally do not
compete with other threads for the CPU; thus, I/O-bound computations may not deteriorate the performance of
other threads as much as CPU-bound threads. (I will explain this statement later.)

Note that this juxtaposition is pretty radical. Most computations are not completely I/O-bound or CPU-bound but
instead have both I/O- and CPU-bound components. The same set of computations may run better using serialized
computations in one scenario and using concurrent computations in another scenario, depending on the relative
CPU- and I/O-bound distributions.

Goals for Multithreaded Designs
Before you think about multithreading your application, you should ask yourself what the goal of such a transition
would be. Multithreading has several potential benefits:

Enhanced performance
Increased throughput
Greater user responsiveness

Let us address each of those benefits in turn.

Performance
For the time being, let us define performance simply as the total elapsed time of a given computation or set of
computations. Performance comparison, by definition, is an issue only when it comes to finite computations.

Believe it or not, the scenarios in which multithreading enhances the performance of an application are rather limited.
The reasons for that are not obvious, but perfectly reasonable:

Unless the application executes on a multiprocessor machine (in which subcomputations can truly execute in
parallel), CPU-bound computations cannot possibly execute faster in multiple threads than in a single thread.
This is because the single CPU must still execute all computations, be it in little pieces (in the multithreaded
case) or in big chunks (as is the case when the computations are executed one after another in the same
thread). As a rule, a given set of computations, when executed in multiple threads, will typically finish later
than the same set of computations executed sequentially because there is an overhead incurred in creating

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 4/21

the threads and switching the CPU between threads.
Normally, there has to be some point at which the results of computations must be synchronized with each
other anyway, regardless of which computation finishes first. For example, if multiple threads are employed to
read several files into memory concurrently, it is very likely that regardless of what order the files are
processed in, at some point the application must wait until all data is read into memory before proceeding.
We will look at this idea next in the "Throughput" section.

For the purpose of this article, we will measure performance in terms of elapsed time, that is, the total time it takes for
all computations to finish.

Throughput
Throughput (or response) refers to the average turnaround time for each computation. As an example to demonstrate
throughput, let us assume a supermarket scenario (always a great visualization tool for operating systems): Let each
computation be the servicing of one customer at a checkout counter. One could either open up a separate checkout
counter for each customer, or try to gate all customers through the same counter. In order to make our analogy
work, we would require that in the multiple checkout case, only one cashier (poor individual!) serves all customers
regardless of whether they line up on one or more checkout counters. Such a super cashier would jump from counter
to counter at hyperspeed, ringing up only one item from one customer at a time, then moving on to the next
customer. This super cashier simulates the CPU being chopped up between multiple computations.

As we saw in the "Performance" section earlier, the overall time it takes to serve all customers does not decrease
when several checkout stands are open because it is always the one cashier that does all the work, regardless of
whether customers are served from one or several checkout stands. However, chances are that the customers will on
the average prefer the super cashier over only one checkout stand. This is because normally the carts of customers
will look very different; some customers have a lot of items in their carts, and some very few. If you ever wanted to
buy a box of granola bars and a quart of milk and got stuck behind someone shopping for a 24-person household,
you'll know what I'm talking about.

In any case, if you would be served by Mr. Clark Kent in hyperspeed instead of waiting in line, you probably wouldn't
care if it takes a little longer or not to get your shopping done because two items are rung up pretty fast anyway, and
the shopping cart for the 24-person household is processed at a different counter, so you're out of there quickly
regardless.

Thus, throughput is a measurement of how many computations can be performed in a given time. Each computation
measures its own progress by how long it takes to complete the computation in relation to how long the
computation is supposed to be in the first place. In other words, if you go into a supermarket and hope to be out of
there in two minutes, but it takes you two hours to get your two items rung up because you got stuck behind Betty
Crocker shopping for her 1997 product line, you'd say your progress was pretty lousy.

For the purpose of this article, we define the response time for a computation to be the time it takes for the
computation to finish divided by the time it was expected to take. Thus, a computation that would take 10
milliseconds (ms) and finished after 20 ms would have a response turnaround of 2, but if the same computation
would be finished after 200 ms (possibly because another long computation completed first), the response
turnaround would be 20. Intuitively, the shorter the response turnaround, the better.

As we will see later on, throughput can be a relevant factor in introducing multithreading into an application even if
the overall performance decreases; however, in order for throughput to be relevant as a measurement, certain
conditions have to be met:

1. Each computation must be independent of others, in that the result of any computation can be processed or
used as soon as the computations are done. If you are a member of a college football team, each of whom

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 5/21

tries to buy his travel goodies at the same supermarket, it won't make a difference to you if your items get
rung up first or last—or even how fast your two items get rung up compared to how long you waited—
because in the end your bus won't leave before everybody has been served anyway, and your waiting time
would simply be shifted from waiting in line to waiting for everybody else if super cashier served you.
This is an important point that is frequently neglected. As I mentioned before, most applications sooner or later
do synchronize their computations implicitly or explicitly. For example, if your application gathers data from
separate files concurrently, you will probably want to display the results on the screen, or save them into
another file. In the former case (displaying the results on the screen), you should be aware that most graphic
systems perform some kind of internal batching or serialization that may very well display nothing until all
output has been collected; in the latter case (saving results into another file), there is normally not a whole lot
your application (or another one) can do until the entire protocol file has been written. Thus, all the benefits
you could gain from processing the files may disappear if somebody or something—either the application, the
operating system, or possibly even the user—serializes the results in some form.

2. The computations must have significantly different sizes. If everybody in the supermarket has only two items
to ring up, the supercashier doesn't do any good; if he has to jump between three cash registers, each of
which serves a customer who has exactly two items (or three, or four, or n) to ring up, then each customer has
to wait n times as long to get his or her purchases finished, which is worse than lining up all customers in the
same line. Think of multithreading as a shock absorber here: The short computations do not run a high risk of
getting stuck behind long computations, but instead become distributed to threads in which they may finish
sooner in the long run.

3. If the lengths of the computations can be determined beforehand, a serial process will be better than a
multithreaded one, simply by ordering the computations in ascending order. In the supermarket example, this
would correspond to lining up the customers by numbers of items (a variation of the Express Lane scheme),
the idea being that customers with few items to ring up will appreciate it if their short jobs will not be delayed
significantly, and those with many items don't care because they'll have to wait a long time anyway with all of
their merchandise, and everybody before them has less than they do.

If you know approximately what the span of computation times is, but your application cannot sort the
computations, you should take the time to perform a worst-case analysis. In such an analysis, you would assume that
the computations would not be lined up in ascending time order, but on the contrary, in descending order. This
scenario can be considered worst-case in terms of response because each computation would have the highest
possible response turnaround as measured by the formula defined above.

Responsiveness
The final criterion for multithreading an application that I will discuss here is responsiveness (which is linguistically
close enough to response to totally confuse you). Let us for the purpose of this article simply define an application as
responsive if its design guarantees that the user can always interact with the application within a short time (short
time here means short enough for the user not to have the impression that the application has hung).

For an application with a GUI, responsiveness can be accomplished rather easily as long as it is ensured that lengthy
computation be delegated to background threads, but the architecture required to accomplish responsiveness may
be a little tricky; as I mentioned earlier, somebody will probably wait for a computation to return sooner or later, so to
perform a lengthy computation in the background may require changes to the UI (for example, a Cancel option may
have to be added, and menu choices that depend on the result of the computation may have to be dimmed).

Reasons other than performance, throughput, and responsiveness may recommend multithreaded designs. For
example, in certain architectures it is necessary to let computations interleave in a pseudo-random fashion (an
example that comes to mind once more is the Bolzmann-machine type of neural networks, where the predicted
behavior of the interconnected network only works if each node in the network performs its computation
asynchronously). In this article, however, I will limit the discussion to the three factors mentioned above, that is,
performance, throughput, and responsiveness.

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 6/21

Test Approach
I have heard a lot of discussions about abstraction mechanisms that encapsulate all the nasty aspects of
multithreading into, say, a C++ object and therefore let an application get all the benefits of multithreading, but not
the disadvantages.

I began this article by designing exactly such an abstraction. I defined a prototype for a C++ class,
ConcurrentExecution, that would have member functions such as DoConcurrent and DoSerial, where the
parameters to both member functions would be a generic array of objects and an array of callback functions that
would be called on the respective objects concurrently or sequentially; the C++ class would encapsulate all of the
gory details of maintaining the threads and the internal data structures.

It was pretty clear to me from the very beginning, however, that such an abstraction has extremely limited use at best
because the bulk of the work in designing a multithreaded application goes into a task that cannot be automated—
namely, the task of determining how to multithread. The first restriction on ConcurrentExecution was that the
callback functions would not be allowed to share data implicitly or explicitly, or require any other form of
synchronization that would immediately sacrifice all of the benefits of the abstraction and open up all of the traps
and pitfalls of the wonderful world of synchronization, such as deadlocking, race conditions, or the need for fairly
complex compound synchronization objects.

Likewise, it would not be permissible for computations that may potentially be executed concurrently to call into the
UI because, as I mentioned earlier, the Windows API forces several implicit synchronizations onto threads that call
into the UI. Note that there are many other API subsets and libraries that force implicit synchronizations upon threads
that share them.

These restrictions left ConcurrentExecution with limited functionality, namely, an abstraction that manages pure
worker threads (totally independent computations that are mostly limited to mathematical computations on disjoint
memory areas).

Nevertheless, it turned out to be very useful to implement the ConcurrentExecution class and to put it to use
through performance tests, because a lot of hidden details about multithreading surfaced when I implemented the
class and designed and ran the test sets. Please be aware that although the ConcurrentExecution class can make
multithreading easier to handle, the class implementation needs some work before being usable in a commercial
product. In particular, I bail out of all error-condition handling in a very crude, intolerable way. I assume that for the
purpose of the test suite (for which I exclusively use ConcurrentExecution), errors will simply not show up.

The ConcurrentExecution Class
Here is the prototype for the ConcurrentExecution class:

class ConcurrentExecution
{
 < private members omitted>
public:
 ConcurrentExecution(int iMaxNumberOfThreads);
 ~ConcurrentExecution();
 int DoForAllObjects(int iNoOfObjects,long *ObjectArray,
 CONCURRENT_EXECUTION_ROUTINE pObjectProcessor,
 CONCURRENT_FINISHING_ROUTINE pObjectTerminated);

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 7/21

The class is exported from the library Thrdlib.dll, which is one of the projects in the THRDPERF sample test suite. Let
us first discuss the semantics of the member functions before discussing the internal architecture of the class:

You will notice that the ConcurrentExecution constructor takes a numeric argument. This argument specifies the
"maximum degree of concurrency" that an instance of the class supports; in other words, if an instance of
ConcurrentExecution is created with n as an argument, then not more than n computations will execute at any given
time. According to our previous analogy, this argument means "do not open more than n checkout counters
regardless of how many customers show up."

This is the only interesting member function that is implemented at this point. The main arguments to
DoForAllObjects are an array of objects, a processor function, and a terminator function. There is no format
whatsoever forced upon the objects; each time the processor is invoked, one of the objects is passed to it, and it is
totally up to the processor to interpret the object. The first argument, iNoOfObjects, is simply to make known to
ConcurrentExecution the number of elements there are in the array of objects. Note that calling DoForAllObjects
with an object array of length 1 is fairly similar to simply calling CreateThread (except that CreateThread does not
accept a terminator parameter).

The semantics of DoForAllObjects are as follows: The processor will be called for each of the objects. The order in
which the objects are processed is not specified; all that is guaranteed is that each object will be passed to the
processor at some point. The maximum degree of concurrency is determined by the parameter passed to the
constructor of the ConcurrentExecution object.

The processor function cannot access shared data and cannot call into the UI or do anything else that requires
explicit or implicit serialization. Currently, only one processor function exists to work on all objects; it would be easy,

 BOOL DoSerial(int iNoOfObjects, long *ObjectArray,
 CONCURRENT_EXECUTION_ROUTINE pObjectProcessor,
 CONCURRENT_FINISHING_ROUTINE pObjectTerminated);
};

ConcurrentExecution::ConcurrentExecution(int iMaxNumberOfThreads)
{
 m_iMaxArraySize = min(iMaxNumberOfThreads, MAXIMUM_WAIT_OBJECTS);
 m_hThreadArray = (HANDLE *)VirtualAlloc(NULL,m_iMaxArraySize*sizeof(HANDLE),
 MEM_COMMIT,PAGE_READWRITE);
 m_hObjectArray = (DWORD *)VirtualAlloc(NULL,m_iMaxArraySize*sizeof(DWORD),
 MEM_COMMIT,PAGE_READWRITE);
 // a real-life implementation must provide error handling here, of course...
};

 int DoForAllObjects(int iNoOfObjects,long *ObjectArray,
 CONCURRENT_EXECUTION_ROUTINE pObjectProcessor,
 CONCURRENT_FINISHING_ROUTINE pObjectTerminated);

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 8/21

however, to replace the processor argument with an array of processors.

The prototype for the processor is as follows:

The terminator function is called immediately after the processor has finished working on one object. Unlike the
processor, the terminator function is called serialized in the context of the calling function and can call everything
and access all data that the caller can. It should be noted, however, that the terminator should be optimized as much
as possible because lengthy computations in the terminator can affect the performance of DoForAllObjects. Note
that, although the terminator is called as soon as the processor has finished each object, DoForAllObjects itself does
not return before the last object has been terminated.

Why do we go through so much pain with the terminator? We could as well have each computation perform the
terminator code at the very end of the processor function, right?

That is basically right; however, it is important to emphasize that the terminator is called in the context of the thread
that called DoForAllObjects. That design makes it much easier to process the results of each computation as they
come in, without having to worry about synchronization issues.

The prototype of the terminator function is as follows:

The first parameter is the object that was processed, and the second argument is the result of the processor function
on that object.

The sibling to DoForAllObjects is DoSerial, which has the same parameter list as DoForAllObjects, but the
computations are processed in serial order, beginning with the first object in the list.

The Inner Works of ConcurrentExecution

Note

The discussion in this section is very technical and implies that you understand a lot about the
threading API. If you are more interested in how the ConcurrentExecution class is used to gather the
test data than in how ConcurrentExecution::DoForAllObjects is implemented, you can now scroll
down to the "Using ConcurrentExecution to Sample Thread Performance" section.

Let's start with DoSerial, because that one is pretty much a no-brainer:

typedef DWORD (WINAPI *CONCURRENT_EXECUTION_ROUTINE)
 (LPVOID lpParameterBlock);

typedef DWORD (WINAPI *CONCURRENT_FINISHING_ROUTINE)
 (LPVOID lpParameterBlock,LPVOID lpResultCode);

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 9/21

The code simply loops through the array, calls the processor for each iteration, and then calls the terminator on the
result of the processor and the object itself. Nice 'n clean, ain't it?

The interesting member function is DoForAllObjects. At first glance, there is nothing dramatic that DoForAllObjects
should have to do—ask the operating system to create a thread for each computation, and make sure that the
terminator function gets called properly. However, there are two issues that make DoForAllObjects trickier than it
looks: First, the "maximum degree of concurrency factor" parameter that an instance of ConcurrentExecution is
created with may require some additional bookkeeping when more computations than threads are available. Second,
the terminator function for each computation is called in the context of the thread that calls DoForAllObjects, not
the thread that the computation runs in; also, the terminator is called immediately after the processor has finished. It
is a little tricky to address those concerns.

Let's go through the code to figure out what's going on. The code is adapted from the file Thrdlib.cpp, but
abbreviated for clarity:

BOOL ConcurrentExecution::DoSerial(int iNoOfObjects,long *ObjectArray,
 CONCURRENT_EXECUTION_ROUTINE pProcessor,
 CONCURRENT_FINISHING_ROUTINE pTerminator)
{
 for (int iLoop=0;iLoop<iNoOfObjects;iLoop++)
 {
 pTerminator((LPVOID)ObjectArray[iLoop],(LPVOID)pProcessor((LPVOID)ObjectArray[iLoop]));
 };
 return TRUE;

};

int ConcurrentExecution::DoForAllObjects(int iNoOfObjects,long *ObjectArray,
 CONCURRENT_EXECUTION_ROUTINE pObjectProcessor,
 CONCURRENT_FINISHING_ROUTINE
pObjectTerminated)
{
 int iLoop,iEndLoop;
 DWORD iThread;
 DWORD iArrayIndex;
 DWORD dwReturnCode;
 DWORD iCurrentArrayLength=0;
 BOOL bWeFreedSomething;
 char szBuf[70];

m_iCurrentNumberOfThreads=iNoOfObjects;

HANDLE *hPnt=(HANDLE *)VirtualAlloc(NULL,m_iCurrentNumberOfThreads*sizeof(HANDLE)
 ,MEM_COMMIT,PAGE_READWRITE);
 for(iLoop=0;iLoop<m_iCurrentNumberOfThreads;iLoop++)
 hPnt[iLoop] = CreateThread(NULL,0,pObjectProcessor,(LPVOID)ObjectArray[iLoop],
 CREATE_SUSPENDED,(LPDWORD)&iThread);

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 10/21

First, we create individual threads for each of the objects. Because we use CREATE_SUSPENDED to create the threads,
no thread will be started yet. An alternative would be to create each thread as it is needed. I decided not to use that
alternative strategy because I found that a CreateThread call is much more expensive when called with several
threads running in the same application; thus, the overhead to create the threads at this point is much more bearable
than creating every thread "on the fly" as we go along.

for (iLoop = 0; iLoop < m_iCurrentNumberOfThreads; iLoop++)
 {
 HANDLE hNewThread;
 bWeFreedSomething=FALSE;
// If array is empty, allocate one slot and boogie.
 if (!iCurrentArrayLength)
 {
 iArrayIndex = 0;
 iCurrentArrayLength=1;
 }
 else
 {
// First, check if we can recycle any slot. We prefer to do this before we
// look for a new slot so that we can invoke the old thread's terminator right
// away...
 iArrayIndex=WaitForMultipleObjects(iCurrentArrayLength,
 m_hThreadArray,FALSE,0);
 if (iArrayIndex==WAIT_TIMEOUT) // no slot free...
 {
 {
 if (iCurrentArrayLength >= m_iMaxArraySize)
 {
 iArrayIndex= WaitForMultipleObjects(iCurrentArrayLength,
 m_hThreadArray,FALSE,INFINITE);
 bWeFreedSomething=TRUE;
 }
 else // We could free up a slot somewhere, so go for it...
 {
 iCurrentArrayLength++;
 iArrayIndex=iCurrentArrayLength-1;
 }; // Else iArrayIndex points to a thread that has been nuked
 };
 }
 else bWeFreedSomething = TRUE;
 }; // At this point, iArrayIndex contains a valid index to store the
 // new thread in.
 hNewThread = hPnt[iLoop];
 ResumeThread(hNewThread);
 if (bWeFreedSomething)
 {
 GetExitCodeThread(m_hThreadArray[iArrayIndex],&dwReturnCode); //error
 CloseHandle(m_hThreadArray[iArrayIndex]);

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 11/21

The heart of DoForAllObjects is hPnt, an array of threads that is allocated when the ConcurrentExecution object is
constructed. This array can accommodate as many threads as the maximum degree of concurrency specified in the
constructor; thus, each element in the array is a "slot" into which one computation fits.

The algorithm to determine how to fill and free the slots is as follows: The array of objects is traversed from the
beginning to the end, and for each object, we do the following: If no slot has been filled yet, we fill the first slot in the
array with the current object and resume the thread that will process the current object. If there is at least one slot in
use, we use the WaitForMultipleObjects function to determine whether any of the ongoing computations has
finished yet; if yes, we call the terminator on that object and "recycle" the slot for the new object. Note that we might
also first fill up every free slot until there are no slots left and then start filling up vacant slots. However, if we did that,
the terminator functions for the vacated slots wouldn't be called until all slots have been filled, which violates our
requirement that the terminator gets called as soon as the processor has finished one object.

Finally, it may be the case that no slot is free (that is, the number of currently active threads is equal to the maximum
degree of concurrency that the ConcurrentExecution objects allows). In that case, WaitForMultipleObjects is called
again to put DoForAllObjects to sleep until one slot is vacated; as soon as that happens, the terminator is called on
the vacating object, and the thread that works on the current object is resumed.

Eventually, all computations will either have finished or will occupy slots in the array of threads. The following code
will process all remaining threads:

 pObjectTerminated((void *)m_hObjectArray[iArrayIndex],(void *)dwReturnCode);
 };
 m_hThreadArray[iArrayIndex] = hNewThread;
 m_hObjectArray[iArrayIndex] = ObjectArray[iLoop];
 }; // End of for loop

iEndLoop = iCurrentArrayLength;
 for (iLoop=iEndLoop;iLoop>0;iLoop--)
 {
 iArrayIndex=WaitForMultipleObjects(iLoop, m_hThreadArray,FALSE,INFINITE);
 if (iArrayIndex==WAIT_FAILED)
 {
 GetLastError();
 _asm int 3; // Do something intelligent here...
 };
 GetExitCodeThread(m_hThreadArray[iArrayIndex],&dwReturnCode); // Error?
 if (!CloseHandle(m_hThreadArray[iArrayIndex]))
 MessageBox(GetFocus(),"Can't delete thread!","",MB_OK); // Make this
 better...

 pObjectTerminated((void *)m_hObjectArray[iArrayIndex],
 (void *)dwReturnCode);
 if (iArrayIndex==iLoop-1) continue; // We are fine here; no backfilling
 in need.
 m_hThreadArray[iArrayIndex]=m_hThreadArray[iLoop-1];
 m_hObjectArray[iArrayIndex]=m_hObjectArray[iLoop-1];
 };

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 12/21

Finally, clean up:

Using ConcurrentExecution to Sample Thread Performance
The scope of the performance test is as follows: The user of the test application Threadlibtest.exe can specify whether
to test CPU-bound or I/O-bound computations, how many computations to perform, how long the computations are,
how the computations are ordered (in order to test worst case versus random delays), and whether the computations
are to be performed concurrently or serially.

In order to eliminate stray results, each test can be performed ten times, and the results of all ten tests are averaged
to yield a more reliable result.

By choosing the menu option "Run entire test set," the user can request to run permutations of all test variables. The
computation lengths used in the test vary between 10 and 3,500 ms base values (I will discuss these in a second), and
the number of computations varies between 2 and 20. If Microsoft Excel has been installed on the machine that runs
the tests, Threadlibtest.exe will dump the results in a Microsoft Excel sheet located at C:\Temp\Values.xls. The
resulting values will in any case also be saved into a clear text file located at C:\Temp\Results.fil. Note that my
hardcoding the protocol file locations is pure laziness; if you need to recreate the test results on your machine and
need a different location, simply rebuild the project, changing the values of the TEXTFILELOC and SHEETFILELOC
identifiers near the beginning of Threadlibtestview.cpp.

Keep in mind that running the entire test set will always order the computations in worst-case order (that is, in serial
execution mode, the longest computation will be performed first, followed by the second longest, and so forth). This
scenario penalizes the serial execution variation a little bit in that the response times for concurrent executions will
not change under a scenario that is not worst-case, whereas the response times for serial execution would probably
improve.

As I mentioned earlier, in a real-life scenario you should probably analyze whether the duration of the individual
computations can be predicted.

The code that utilizes the ConcurrentExecution class to gather performance data is located in Threadlibtestview.cpp.
The sample application itself (Threadlibtest.exe) is a straightforward single-document interface (SDI) MFC application.
All the code that's relevant for the sampling resides in the view class implementation CThreadLibTestView, which
derives from CEasyOutputView. There is not a whole lot of interesting code in that class; mostly it's statistical
number crunching and user-interface processing. The "meat" in executing the tests is in
CThreadLibTestView::ExecuteTest, which will perform one test run. Here's the abbreviated code for
CThreadLibTestView::ExecuteTest:

if (hPnt) VirtualFree(hPnt,m_iCurrentNumberOfThreads*sizeof(HANDLE),
 MEM_DECOMMIT);

 return iCurrentArrayLength;

};

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 13/21

The code first creates an object of the class ConcurrentExecution, then samples the current time (which will be used
to compute the elapsed and response time for the computations), and, depending on whether a serial or concurrent
executed was requested, calls the DoSerial or DoForAllObjects member of the ConcurrentExecution object,
respectively. Note that I request a maximum concurrency degree of 25 for concurrent execution; if you want to run
the test suite on more than 25 computations, you should raise that value to something that is greater than or equal
to the maximum number of computations you run your test on.

Let us look at the processor and terminator functions to figure out what is measured exactly:

void CThreadlibtestView::ExecuteTest()
{
 ConcurrentExecution *ce;
 bCPUBound=((m_iCompType&CT_IOBOUND)==0); // This is global...
 ce = new ConcurrentExecution(25);
 if (!QueryPerformanceCounter(&m_liOldVal)) return; // Get current time.
 if (!m_iCompType&CT_IOBOUND) timeBeginPeriod(1);
 if (m_iCompType&CT_CONCURRENT)
 m_iThreadsUsed=ce->DoForAllObjects(m_iNumberOfThreads,
 (long *)m_iNumbers,
 (CONCURRENT_EXECUTION_ROUTINE)pProcessor,
 (CONCURRENT_FINISHING_ROUTINE)pTerminator);
 else
 ce->DoSerial(m_iNumberOfThreads,
 (long *)m_iNumbers,
 (CONCURRENT_EXECUTION_ROUTINE)pProcessor,
 (CONCURRENT_FINISHING_ROUTINE)pTerminator);
 if (!m_iCompType&CT_IOBOUND) timeEndPeriod(1);
 delete(ce);
 < the rest of the code sorts the results into an array for Excel to process...>
}

extern "C"
{
long WINAPI pProcessor(long iArg)
{
 PTHREADBLOCKSTRUCT ptArg=(PTHREADBLOCKSTRUCT)iArg;
 BOOL bResult=TRUE;
 int iDelay=(ptArg->iDelay);
 if (bCPUBound)
 {
 int iLoopCount;
 iLoopCount=(int)(((float)iDelay/1000.0)*ptArg->tbOutputTarget->m_iBiasFactor);
 QueryPerformanceCounter(&ptArg->liStart);
 for (int iCounter=0; iCounter<iLoopCount; iCounter++);
 }
 else
 {
 QueryPerformanceCounter(&ptArg->liStart);
 Sleep(ptArg->iDelay);

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 14/21

The processor simulates a computation of a length that has been placed into a computation-specific data structure, a
THREADBLOCKSTRUCT. The THREADBLOCKSTRUCT holds data that is relevant for a computation, such as its delay, its
beginning and end time (in terms of performance counter ticks), and a back pointer to the view that utilizes the
structure.

I/O-bound computations are simulated by simply putting the computation to sleep for the time specified. A CPU-
bound computation will enter a for loop with an empty body. Some comments are in order here to understand what
the code does: The computation is CPU-bound and is supposed to execute for a specified number of milliseconds. In
earlier versions of the test application, I had the for loop simply iterate as many times as the delay specified without
worrying what the number meant. (Due to the coding involved, the number actually meant milliseconds for I/O-
bound computations, but iterations for CPU-bound computations.) In order to be able to compare CPU- and I/O-
bound computations to each other in terms of absolute times, however, I decided to rewrite the code so that the
computation-specific delay meant milliseconds for both I/O-bound and CPU-bound computations.

I discovered that it is not easy to write code that simulates CPU-bound computations of a specific, predefined length.
The reason for that is that such code cannot query the system time itself because the call involved will most likely
yield the CPU sooner or later and, therefore, violate the requirement to be CPU-bound. Trying to use asynchronous
multimedia timer events was also unsatisfying because of the way the timer services work under Windows. The
thread that sets a multimedia timer is, in effect, suspended until the timer callback is called; thus, the CPU-bound
computation suddenly becomes an I/O-bound operation.

Thus, I ended up using a slightly sleazy trick: The code in CThreadLibTestView::OnCreate runs 100 loops that count
from 1 to 100,000 and samples the average time to go through that loop. The result is stored in the member variable
m_iBiasFactor, a float that is used in the processor function to determine how milliseconds translate into iterations.
Unfortunately, because of the highly dynamic nature of operating systems, it is difficult to determine reliably how
many iterations through a given loop it takes to run a computation of a specific length. However, I found that the
strategy employed works fairly reliably in determining computation times for CPU-bound operations.

Note

If you rebuild the test application, be careful with the optimization options. If you specify the "Minimize
execution time" optimization, the compiler will detect a for loop with an empty body and eliminate the
loop altogether.

The terminator is very simple: The current time is sampled and stored in the THREADBLOCKSTRUCT of the
computation. After the test has been completed, the code computes the difference between the time that

 };
 return bResult;
}

long WINAPI pTerminator(long iArg, long iReturnCode)
{
 PTHREADBLOCKSTRUCT ptArg=(PTHREADBLOCKSTRUCT)iArg;
 QueryPerformanceCounter(&ptArg->liFinish);
 ptArg->iEndOrder=iEndIndex++;
 return(0);
}

}

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 15/21

ExecuteTest was executed and the terminator was called for each computation. The total elapsed time for all
computations is then determined as the time it took the last of all finished computations to finish, and the response
time is computed as the average of all the response times of the individual computations, where each response time,
once more, is defined as the thread's elapsed time from the beginning of the test divided by the thread's delay factor.
Note that the terminator runs serialized in the main thread's context, so the increment instruction on the shared
iEndIndex variable is safe.

That's really all there is to the test; the rest is mostly setting up parameters for the test runs and performing some
math on the results. The logic that stuffs the results into a Microsoft Excel sheet is discussed in the article "Interacting
with Microsoft Excel: A Case Study in OLE Automation."

Results
If you wish to recreate the test results on your machine, you should do the following:

1. If you need to change test parameters, such as the maximum number of computations or the location of the
protocol files, edit Threadlibtestview.cpp in the THRDPERF sample project and rebuild the application. (Note
that you need long file name support on the build machine to build the application.)

2. Make sure that Thrdlib.dll is in a location from which Threadlibtest.exe can link to it.
3. If you would like to use Microsoft Excel to view the test results, make sure that Microsoft Excel is properly
installed on the machine that runs the tests.

4. Execute Threadlibtest.exe and choose "Run entire test set" from the Run performance tests menu. One test run
typically takes several hours to complete.

5. After the test is completed, examine the results using either the plain text protocol file in C:\Temp\Results.fil or
the spreadsheet C:\Temp\Values.xls. Note that the Microsoft Excel automation logic does not automatically
generate charts from the raw data for you; I have used a few macros to rearrange the results and generate the
charts for you. I hate number crunching, but I really must give Microsoft Excel credit for providing such a good
UI that even a spreadsheet-paranoid person like me can make a few columns of data into a useful chart within
a few minutes.

The test results I present were gathered on a 486/33 MHz system with 16 MB of RAM. The computer has both
Windows NT (version 3.51) and Windows 95 installed; thus, the test results for the respective tests on both operating
systems are compatible in terms of underlying hardware.

So, let's go into the interpretation of the values. Here are the charts that summarize the computation results; the
interpretations follow. The charts should be read as follows: The x-axis on each chart has six values (except for the
elapsed-time charts for long computations, which have only five because in my test run, the counter overflowed at
the very long computations). A value represents a number of computations; I ran each test with 2, 5, 8, 11, 14, and 17
computations. In the resulting Microsoft Excel sheet, you will find results for each number of computations for CPU-
bound and I/O-bound threads, executed concurrently and sequentially, with delay biases of 10 ms, 30 ms, 90 ms, 270
ms, 810 ms, and 2430 ms, but in the charts I include only the 10 ms and 2430 ms results so that all the numbers are
reduced to something easier to comprehend.

I need to explain the meaning of "delay bias." If a test is run with a delay bias of n, each computation has a multiple
of n as its computation time. For example, if 5 computations with a delay bias of 10 are sampled, then one of the
computations will execute for 50 ms, the second one for 40 ms, the third one for 30 ms, the fourth one for 20 ms, and
the fifth one for 10 ms. Once more, when the computations are performed sequentially, worst-case order is assumed,
so that the computation with the longest delay is executed first, and the other ones follow in descending order. Thus,
in the "ideal" case (that is, an execution with no overhead), the total required time for all computations would be 50
ms + 40 ms + 30 ms + 20 ms + 10 ms = 150 ms for CPU-bound computations.

The values on the y-axis correspond to milliseconds for the elapsed charts and relative turnaround lengths (that is,

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 16/21

milliseconds in fact executed divided by milliseconds scheduled) for response charts.

Figure 1. Elapsed-time comparison for short computations under Windows NT

Figure 2. Elapsed-time comparison for long computations under Windows NT

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 17/21

Figure 3. Response-time comparison for short computations under Windows NT

Figure 4. Response-time comparison for long computations under Windows NT

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 18/21

Figure 5. Elapsed-time comparison for short computations under Windows 95

Figure 6. Elapsed-time comparison for long computations under Windows 95

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 19/21

Figure 7. Response-time comparison for short computations under Windows 95

Figure 8. Response-time comparison for long computations under Windows 95

I/O-bound Tasks
In terms of both elapsed and turnaround time, I/O-bound threads perform dramatically better when performed
concurrently rather than sequentially. As a function of computations, the elapsed time increases in a linear fashion for

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 20/21

concurrent executions and exponentially for serial executions (see Figures 1 and 2 for Windows NT and Figures 5 and
6 for Windows 95).

Note that this observation is consistent with our earlier analysis that I/O-bound computations are good candidates
for multithreading because the time that a thread is suspended while waiting for an I/O request to complete does not
use up CPU-time and can, therefore, be meaningfully used by another thread.

The average response is about constant for concurrent computations and increases linearly for serial ones (see
Figures 3, 4, 7, and 8, respectively).

Note that in any case, the scenarios in which few computations execute do not behave significantly differently if
executed serially or concurrently, regardless of the test parameters.

CPU-bound Tasks
As we said earlier, CPU-bound tasks cannot possibly execute faster concurrently than serially when executed on a
single-processor machine, but we can see that under Windows NT, the thread creation and switching overhead is
quite good; for very short computations, the concurrent execution is only about 10 percent slower than the
sequential one, and as the computation lengths increase, the two times approach within 99 percent of each other. In
terms of response time, we can see that with long computations, the response gain for concurrent execution over
serial execution can be as much as 50 percent, but for short computations, serial execution tends to actually do better
than concurrent.

Comparisons Between Windows 95 and Windows NT
If we look at the charts for the long computations (that is, Figures 2, 4, 6, and 8), we can see that the behavior of
Windows 95 and Windows NT is remarkably alike. Please don't be confused by the fact that Windows 95 seems to
handle I/O-bound versus CPU-bound computations differently than Windows NT. I attribute this observation to the
fact that the algorithm I employ to determine how many test iterations correspond to a millisecond (as described
above) is rather inaccurate; I found that the same algorithm, executed several times under exactly the same
circumstances, may yield results that differ by as much as 20%. Thus, comparing CPU-bound to I/O-bound operations
is not really a fair thing to do.

The one area in which Windows 95 and Windows NT differ is when it comes to short computations. As we can see in
Figures 1 and 5, Windows NT does much better for concurrent I/O-bound short computations. I attribute this
observation to a more efficient thread-creation scheme. Note that for long computations, the difference between
serial and concurrent I/O operations vanishes, so we are dealing with a fixed, relatively small overhead here.

In terms of response time for short computations (Figures 3 and 7), note that under Windows NT there is a break-
even point at about 10 threads where more computations perform better when executed concurrently, whereas for
Windows 95, serial computations do better throughout.

Please note that these comparisons are made based on the current versions of the respective operating systems
(Windows NT version 3.51 and Windows 95), and as the operating systems evolve, the threading engines will very
possibly be enhanced, so that differences in the respective behaviors of the two operating systems may disappear. It
is interesting to note, however, that short computations do not generally seem to make good candidates for
multithreading, and they specifically don't under Windows 95.

Recommendations
The results lead us to the following recommendations: The major factor that determines multithreading performance
is I/O-bound computation versus CPU-bound computation, and the major criterion that determines whether to

10/6/2015 Multithreading Performance

https://msdn.microsoft.com/en-us/library/ms810437(d=printer).aspx 21/21

multithread at all is foreground user responsiveness.

Let us assume that in your application, there are several subcomputations that can potentially be executed in
separate threads. In order to determine whether multithreading those computations makes sense, consider the
following points.

If the user-interface-responsiveness analysis determines that something should be done in secondary threads, it
makes sense to determine whether the tasks to be performed are CPU-bound or I/O-bound. I/O-bound
computations are good candidates to be relocated into background threads. (Note, however, that asynchronous
single-threaded I/O processing may be preferable to multithreaded synchronous I/O, depending on the problem.)
CPU-bound threads that are very long may benefit from being executed in separate threads; however, unless the
response of the threads is important, it probably makes sense to execute all CPU-bound subtasks in the same
background thread instead of in separate threads. Remember that in any case, short computations will normally
suffer from considerable overhead in thread creation when executed concurrently.

If the response is crucial for CPU-bound computations—that is, the results of the individual computations can be
utilized as soon as they are obtained—you should try to determine whether the computations can be ordered in
ascending order, in which case the overall performance will still be better when the computations are executed
sequentially than when executed in parallel. Note that there are some computer architectures that are designed to
process long computations (such as matrix operations) very efficiently; thus, by multithreading long computations on
such a machine, you might actually forfeit some of the benefits of those architectures.

All of this analysis assumes that the application is run on a single-processor machine and the computations are
independent. In fact, if the computations are dependent and serialization is required, the performance of serial
execution will not be affected (because the serialization is implicit), whereas the concurrent version will always be
affected adversely.

I also suggest that you base your multithreaded design on the degree of dependency. In most cases, it is intuitively
clear which subcomputations are good candidates for multithreading, but if you have several choices for splitting
your application into subcomputations that could be processed in separate threads, I'd recommend that you use the
complexity of synchronization as a criterion. In other words, a split into multiple threads that requires very little and
straightforward synchronization is preferable to one that requires heavy and complex thread synchronization.

As a final note, please remember that threads are a system resource that is not free; thus, there may be a greater
penalty to multithreading than performance hits alone. As a rule of thumb, I would argue that you employ
multithreading intelligently and conservatively. Use threads where they can benefit your application design, but avoid
them wherever serial execution can achieve the same effect.

Summary
Running the attached performance test suite yields a few spectacular results that provide quite a few insights into the
inner logic of concurrent application design. Please note that many of my assumptions are pretty radical; I chose to
compare very long to very short computations, and I assumed the computations to be completely independent and
either completely I/O-bound or completely CPU-bound. Most real-life problems lie somewhere in between in terms
of computation lengths and boundedness. Please consider the material in the article as a starting point for you to
have a closer look at your application to determine where to multithread.

A future article in this series will deal with performance enhancements for I/O-bound operations through
asynchronous I/O.

© 2015 Microsoft

