MATCHINGS IN k-PARTITE k-UNIFORM HYPERGRAPHS

JIE HAN, CHUANYUN ZANG, AND YI ZHAO

Abstract

For $k \geq 3$ and $\epsilon>0$, let H be a k-partite k-graph with parts V_{1}, \ldots, V_{k} each of size n, where n is sufficiently large. Assume that for each $i \in[k]$, every $(k-1)$-set in $\prod_{j \in[k] \backslash\{i\}} V_{i}$ lies in at least a_{i} edges, and $a_{1} \geq a_{2} \geq \cdots \geq a_{k}$. We show that if $a_{1}, a_{2} \geq \epsilon n$, then H contains a matching of size $\min \left\{n-1, \sum_{i \in[k]} a_{i}\right\}$. In particular, H contains a matching of size $n-1$ if each crossing $(k-1)$-set lies in at least $\lceil n / k\rceil$ edges, or each crossing $(k-1)$-set lies in at least $\lfloor n / k\rfloor$ edges and $n \equiv 1 \bmod k$. This special case answers a question of Rödl and Ruciński and was independently obtained by Lu, Wang, and Yu.

The proof of Lu , Wang, and Yu closely follows the approach of Han [Combin. Probab. Comput. 24 (2015), 723-732] by using the absorbing method and considering an extremal case. In contrast, our result is more general and its proof is thus more involved: it uses a more complex absorbing method and deals with two extremal cases.

1. Introduction

A k-uniform hypergraph (in short, k-graph) consists of a vertex set V and an edge set $E \subseteq\binom{V}{k}$, that is, every edge is a k-element subset of V. A k-graph H is k-partite if $V(H)$ can be partitioned into k parts V_{1}, \ldots, V_{k} such that every edge consists of exactly one vertex from each class, in other words, $E(H) \subseteq$ $V_{1} \times \cdots \times V_{k}$. A matching in H is a collection of vertex-disjoint edges of H. A matching covering all vertices of H is called perfect.

Given a k-graph H and a set S of d vertices in $V(H)$, where $1 \leq d \leq k-1$, a neighbor of S is a $(k-d)$-set $T \subseteq V(H) \backslash S$ such that $S \cup T \in E(H)$. Denote by $N_{H}(S)$ the set of the neighbors of S, and define the degree of S to be $\operatorname{deg}_{H}(S)=\left|N_{H}(S)\right|$. We omit the subscript H if it is clear from the context. The minimum d-degree $\delta_{d}(H)$ of H is the minimum of $\operatorname{deg}_{H}(S)$ over all d-subsets S of $V(H)$. The minimum $(k-1)$-degree is also called the minimum codegree.

The minimum d-degree thresholds that force a perfect matching in k-graphs have been studied intensively, see [2, 3, 5, 8, 12, 13, 15, 18, 19, 22, 23, 24, 25, 26] and surveys [20, 29]. In particular, Rödl, Ruciński and Szemerédi [23] determined the minimum codegree threshold that guarantees a perfect matching in an n vertex k-graph for large n and all $k \geq 3$. The threshold is $n / 2-k+C$, where $C \in\{3 / 2,2,5 / 2,3\}$ depending on the values of n and k. In contrast, the minimum codegree threshold for a matching of size $\lceil n / k\rceil-1$ is much smaller. Rödl, Ruciński and Szemerédi [23] showed that every k-graph H on n vertices satisfying $\delta_{k-1}(H) \geq n / k+O(\log n)$ contains a matching of size $\lceil n / k\rceil-1$. Han [6] improved this by reducing the assumption to $\delta_{k-1}(H) \geq\lceil n / k\rceil-1$, which is best possible.

In this paper we are interested in the corresponding thresholds in k-partite k-graphs. Suppose H is a k-partite k-graph with parts V_{1}, \ldots, V_{k}. A subset $S \subset V(H)$ is called crossing if $\left|S \cap V_{i}\right| \leq 1$ for all i. For any $I \subseteq[k]$, let $\delta_{I}(H)$ be the minimum of $\operatorname{deg}_{H}(S)$ taken over all crossing $|I|$-vertex sets S in $\prod_{i \in I} V_{i}$. Then the partite minimum d-degree $\delta_{d}^{\prime}(H)$ is defined as the minimum of $\delta_{I}(H)$ over all d-element sets $I \subseteq[k]$.

Let H be a k-partite k-graph with n vertices in each part. For $k \geq 3$, Kühn and Osthus [14] proved that if $\delta_{k-1}^{\prime}(H) \geq n / 2+\sqrt{2 n \log n}$ then H has a perfect matching. Later Aharoni, Georgakopoulos and Sprüssel [1] improved this result by requiring only two partite minimum codegrees. They showed that H contains a perfect matching if $\delta_{[k] \backslash\{1\}}(H)>n / 2$ and $\delta_{[k] \backslash\{2\}}(H) \geq n / 2$, and consequently, if $\delta_{k-1}^{\prime}(H)>n / 2$ then H has a perfect matching.

Similarly to the non-partite case, when targeting almost perfect matchings, the minimum degree threshold also drops significantly. Kühn and Osthus in [14] proved that $\delta_{k-1}^{\prime}(H) \geq\lceil n / k\rceil$ guarantees a matching of size

[^0]$n-(k-2)$. Rödl and Ruciński [20, Problem 3.14] asked whether $\delta_{k-1}^{\prime}(H) \geq\lceil n / k\rceil$ guarantees a matching in H of size $n-1$. In this paper, we answer this question in the affirmative and show that the threshold can be actually weakened to $\lfloor n / k\rfloor$ if $n \equiv 1(\bmod k)$. In fact, our result is much more general - it only requires that the sum of the partite minimum codegrees is large and at least two partite codegrees are not small.

Theorem 1.1 (Main Result). For any $k \geq 3$ and $\epsilon>0$, there exists n_{0} such that the following holds for all $n \geq n_{0}$. Let H be a k-partite k-graph with parts of size n and $a_{i}:=\delta_{[k] \backslash\{i\}}(H)$ for all $i \in[k]$ such that $a_{1} \geq a_{2} \geq \cdots \geq a_{k}$ and $a_{2}>\epsilon n$. Then H contains a matching of size at least $\min \left\{n-1, \sum_{i=1}^{k} a_{i}\right\}$.

Our proof, based on the absorbing method, unfortunately fails when a_{1} is close to n and all of a_{2}, \ldots, a_{k} are small. It is unclear (to us) if the same assertion holds in this case.

The following corollary follows from Theorem 1.1 immediately. It was announced at [28] and appeared in the dissertation of the second author [27]. The second case of Corollary 1.2 resolves [20, Problem 3.14] and was independently proven by Lu , Wang and Yu [17.

Corollary 1.2. Given $k \geq 3$, there exists n_{0} such that the following holds for all $n \geq n_{0}$. Let H be a k-partite k-graph with parts of size n. Then H contains a matching of size $n-1$ if one of the following holds.

- $n \equiv 1 \bmod k$ and $\delta_{k-1}^{\prime}(H) \geq\lfloor n / k\rfloor$;
- $\delta_{k-1}^{\prime}(H) \geq\lceil n / k\rceil$.

Let $\nu(H)$ be the size of a maximum matching in H. The following greedy algorithm, which essentially comes from [14, gives a simple proof of Theorem 1.1 when $\sum_{i=1}^{k} a_{i} \leq n-k+2$ or when $a_{1}+a_{2} \geq n-1$.

Fact 1.3. Let $n \geq k-2$. Suppose H is a k-partite k-graph with parts of size at least n. Let $a_{i}:=\delta_{[k] \backslash\{i\}}(H)$ for $i \in[k]$. Then

$$
\nu(H) \geq \min \left\{n-k+2, \sum_{i=1}^{k} a_{i}\right\} \quad \text { and } \quad \nu(H) \geq \min \left\{n-1, a_{1}+a_{2}\right\}
$$

Proof. Assume a maximum matching M of H has size $|M| \leq \min \left\{n-k+1, \sum_{i=1}^{k} a_{i}-1\right\}$. Since each class has at least $k-1$ vertices unmatched, we can find k disjoint crossing $(k-1)$-sets U_{1}, \ldots, U_{k} such that U_{i} contains exactly one unmatched vertex in V_{j} for $j \neq i$. Each U_{i} has at least a_{i} neighbors and all of them lie entirely in $V(M)$. Since $\sum_{i=1}^{k} a_{i}>|M|$, there exist distinct indices $i \neq j$ such that U_{i} and U_{j} have neighbors on the same edge $e \in M$, say $v_{i} \in N\left(U_{i}\right) \cap e$ and $v_{j} \in N\left(U_{j}\right) \cap e$. Replacing e by $\left\{v_{i}\right\} \cup U_{i}$ and $\left\{v_{j}\right\} \cup U_{j}$ gives a larger matching, a contradiction. The second inequality can be proved similarly.

The following construction, sometimes called a space barrier, shows that the degree sum conditions in Theorem 1.1 and Fact 1.3 are best possible. Let $H_{0}=H_{0}\left(a_{1}, \ldots, a_{k}\right)$ be a k-partite k-graph with n vertices in each part V_{1}, \ldots, V_{k}. For each $i \in[k]$, fix a set $A_{i} \subseteq V_{i}$ of size a_{i}. Let $E\left(H_{0}\right)$ consist of all crossing k-sets e such that $e \cap A_{i} \neq \emptyset$ for some $i \in[k]$. Suppose $\sum_{i=1}^{k} a_{i} \leq n-1$. Clearly both $\nu\left(H_{0}\right)$ and the partite degree sum of H_{0} equal to $\sum_{i=1}^{k} a_{i}$ (so we cannot expect a matching larger than $\sum_{i=1}^{k} a_{i}$).

Given a set V, let $V_{1} \cup \cdots \cup V_{k}$ and $A \cup B$ be two partitions of V. For $i \in[k]$ we always write $A_{i}:=A \cap V_{i}$ and $B_{i}:=B \cap V_{i}$. A set $S \subseteq V$ is even (otherwise odd) if it intersects A in an even number of vertices. Let $E_{\text {even }}(A, B)$ (respectively, $\left.E_{\text {odd }}(A, B)\right)$ denote the family of all crossing k-subsets of V that are even (respectively, odd).

To see that we cannot always expect a perfect matching when $\sum_{i=1}^{k} a_{i} \geq n$, consider the following example, sometimes called a divisibility barrier. Let H_{1} be a k-partite k-graph with n vertices in each of its parts V_{1}, \ldots, V_{k}. For $i \in[k]$, let $V_{i}=A_{i} \cup B_{i}$ such that $\sum_{i=1}^{k}\left|A_{i}\right|$ is odd and for each $i \in[k], n / 2-1 \leq\left|A_{i}\right| \leq n / 2+1$. Let $E\left(H_{1}\right)=E_{\text {even }}(A, B)$. So the partite degree sum of H_{1} is at least $k(n / 2-1)$. However, H_{1} does not contain a perfect matching because any matching in H_{1} covers an even number of vertices in $\bigcup_{i=1}^{k} A_{i}$ but $\left|\bigcup_{i=1}^{k} A_{i}\right|$ is odd.

When proving Corollary 1.2 directly, the authors of [17, 27] closely followed the approach used by the first author [6] by separating two cases based on whether H is close to H_{0}. In contrast, to prove Theorem 1.1. we have to consider three cases separately: when H is close to H_{0}, when H is close to (a weaker form of) H_{1}, and when H is far from both H_{0} and H_{1}.

Now we define two extremal cases formally. Let H be a k-partite k-graph with each part of size n and let $a_{i}:=\delta_{[k] \backslash\{i\}}(H)$ for all $i \in[k]$. We call $H \epsilon$-S-extremal if $\sum_{i=1}^{k} a_{i} \leq(1+\epsilon) n$ and $V(H)$ contains an independent set C such that $\left|C \cap V_{i}\right| \geq n-a_{i}-\epsilon n$ for each $i \in[k]$. We call $H \epsilon$ - D-extremal if there is a partition $A \cup B$ of $V(H)$ such that
(i) $(1 / 2-\epsilon) n \leq a_{1}, a_{2},\left|A_{1}\right|,\left|A_{2}\right| \leq(1 / 2+\epsilon) n$, and $a_{i} \leq \epsilon n$ for $i \geq 3$,
(ii) $\left|E_{\text {even }}(A, B) \backslash E(H)\right| \leq \epsilon n^{k}$ or $\left|E_{\text {odd }}(A, B) \backslash E(H)\right| \leq \epsilon n^{k}$.

Our proof of Theorem 1.1 consists of the following three theorems.
Throughout the paper, we write $\alpha \ll \beta \ll \gamma$ to mean that we can choose the positive constants α, β, γ from right to left. More precisely, there are increasing functions f and g such that, given γ, whenever $\beta \leq f(\gamma)$ and $\alpha \leq g(\beta)$, the subsequent statement holds. Hierarchies of other lengths are defined similarly. Moreover, when we use variables of the reciprocal form in the hierarchy, we implicitly assume that the variables are integers. Throughout this paper, we omit the assumption $k \geq 3$ in the hierarchies.

Theorem 1.4 (Non-extremal case). Let $1 / n \ll \gamma \ll \epsilon \ll 1 / k$. Suppose H is a k-partite k-graph with parts of size n with $a_{i}:=\delta_{[k] \backslash\{i\}}(H)$ for $i \in[k]$ such that $(1-\epsilon) n \geq a_{1} \geq a_{2} \geq \cdots \geq a_{k}, a_{2} \geq \epsilon n$, and $\sum_{i=1}^{k} a_{i} \geq(1-\gamma / 5) n$. Then one of the following holds:
(i) H contains a matching of size at least $n-1$;
(ii) H is γ-S-extremal;
(iii) H is $2 k^{2} \epsilon$ - D-extremal.

Theorem 1.5 (Extremal case I). Let $1 / n \ll \gamma \ll \epsilon \ll 1 / k$. Let H be a k-partite k-graph with parts of size n and $a_{i}:=\delta_{[k] \backslash\{i\}}(H)$ for $i \in[k]$ such that $(1-\epsilon) n \geq a_{1} \geq a_{2} \geq \cdots \geq a_{k}$ and $a_{2} \geq$ єn. Suppose H is γ-S-extremal. Then one of the following holds:
(i) H contains a matching of size at least $\min \left\{n-1, \sum_{i=1}^{k} a_{i}\right\}$;
(ii) H is 3ϵ - D-extremal.

Theorem 1.6 (Extremal case II). Let $1 / n \ll \epsilon \ll 1 / k$. Suppose H is a k-partite k-graph with parts of size n and $a_{i}:=\delta_{[k] \backslash\{i\}}(H)$ for $i \in[k]$. If H is ϵ-D-extremal, then H contains a matching of size at least $\min \left\{n-1, \sum_{i=1}^{k} a_{i}\right\}$.
Proof of Theorem 1.1. When $\sum_{i=1}^{k} a_{i} \leq n-k+2$ or $a_{1} \geq(1-\epsilon) n$, Theorem 1.1 follows from Fact 1.3 immediately. When $\sum_{i=1}^{k} a_{i} \geq n-k+3$ and $a_{1} \leq(1-\epsilon) n$, it follows from Theorems 1.41 .6 .

The rest of the paper is organized as follows. In Section 2 we introduce two absorbing lemmas that are needed for the proof of Theorem 1.4. Lemma 2.1 is a simple k-partite version of [23, Fact 2.3]; Lemma 2.2 is derived from a more involved approach by considering the lattice generated by the edges of H. In Sections 35 , we give the proofs of Theorems 1.4 1.6, respectively. Note that Lemma 2.1, Lemma 3.1, and a portion of Section 4 suffice for the proof of Corollary 1.2 - this was exactly the approach used in [6, 17]. The rest of our proof was carried through with new ideas.
Notation: Given integers $k^{\prime} \geq k \geq 1$, we write $[k]:=\{1, \ldots, k\}$ and $\left[k, k^{\prime}\right]:=\left\{k, k+1, \ldots, k^{\prime}\right\}$. Throughout this paper, we denote by H a k-partite k-graph with the vertex partition $V(H)=V_{1} \cup \cdots \cup V_{k}$. A vertex set S is called balanced if it consists of an equal number of vertices from each part of $V(H)$. Given a k-graph H and a set $W \subseteq V(H)$, let $H[W]$ denote the subgraph of H induced on W and $H \backslash W:=H[V(H) \backslash W]$.

2. Absorbing Techniques in k-Partite k-Graphs

The main tool in the proof of Theorem 1.4 is the absorbing method. This technique was initiated by Rödl, Ruciński and Szemerédi [21] and has proven to be a powerful tool for finding spanning structures in graphs and hypergraphs. In this section, we prove the absorbing lemmas that will be used in the proof of Theorem 1.4. In fact, we present two different notions of absorbing sets and use them in two different cases.

Let H be a k-partite k-graph. Given a balanced $2 k$-set S, an edge $e \in E(H)$ disjoint from S is called S-absorbing if there are two disjoint edges $e_{1}, e_{2} \subseteq S \cup\{e\}$ such that $\left|e_{1} \cap S\right|=k-1,\left|e_{1} \cap e\right|=1,\left|e_{2} \cap S\right|=2$, and $\left|e_{2} \cap e\right|=k-2$. Note that S-absorbing works in the following way: assume that M is a matching such that $S \cap V(M)=\emptyset$ and M contains an S-absorbing edge e, then we can replace e by e_{1} and e_{2} and get a matching larger than M. Given a crossing k-set S, a set $T \subset V(H) \backslash S$ is called S-perfect-absorbing if T is
balanced and both $H[T]$ and $H[S \cup T]$ contain perfect matchings. These two definitions work very differently - they are needed for the following two different absorbing lemmas.

Our first absorbing lemma is an analog of [23, Fact 2.3] for k-partite k-graphs.
Lemma 2.1 (Absorbing lemma I). Let $1 / n \ll \alpha \ll \epsilon \ll 1 / k$. Suppose H is a k-partite k-graph with parts of size n such that $\delta_{[k] \backslash\{i\}}(H) \geq \epsilon n$ for $i \in[3]$, then there exists a matching M^{\prime} in H of size at most $\sqrt{\alpha} n$ such that for every balanced $2 k$-set S of H, the number of S-absorbing edges in M^{\prime} is at least αn.

Our second absorbing lemma deals with the case when only two partite minimum codegrees are large and their sum is not significantly smaller than n.

Lemma 2.2 (Absorbing Lemma II). Let $1 / n \ll \alpha \ll \epsilon \ll 1 / t \ll 1 / k$. Suppose H is a k-partite k-graph with parts of size n and $a_{i}:=\delta_{[k] \backslash\{i\}}(H)$ for each $i \in[k]$. If $\sum_{i=1}^{k} a_{i} \geq(1-\epsilon) n, a_{1} \geq a_{2} \geq \epsilon n$ and $a_{j}<\epsilon n$ for $j \geq 3$, then one of the following holds.
(i) H is $2 k^{2} \epsilon$-D-extremal.
(ii) There exists a family \mathcal{F}^{\prime} of disjoint tk-sets such that $\left|\mathcal{F}^{\prime}\right| \leq \sqrt{\alpha} n$, each $F \in \mathcal{F}^{\prime}$ spans a matching of size t and for every crossing k-set S of H, the number of S-perfect-absorbing sets in \mathcal{F}^{\prime} is at least αn.

We first prove the following proposition, which is a standard application of Chernoff's bound. We will apply it in both proofs of Lemmas 2.1 and 2.2 for randomly sampling the absorbing sets.

Proposition 2.3. Let $1 / n \ll \lambda, 1 / k, 1 / i_{0}$. Let V be a vertex set with k parts each of size n, and let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{t}$ be families of balanced $i_{0} k$-sets on V such that $\left|\mathcal{F}_{i}\right| \geq \lambda n^{i_{0} k}$ for $i \in[t]$ and $t \leq n^{2 k}$. Then there exists a family $\mathcal{F}^{\prime} \subseteq \bigcup_{i \in[t]} \mathcal{F}_{i}$ of disjoint balanced $i_{0} k$-sets on V such that $\left|\mathcal{F}^{\prime}\right| \leq \lambda n /\left(4 i_{0} k\right)$ and $\left|\mathcal{F}_{i} \cap \mathcal{F}^{\prime}\right| \geq \lambda^{2} n /\left(32 i_{0} k\right)$ for each $i \in[t]$.

Proof. We build \mathcal{F}^{\prime} by standard probabilistic arguments. Choose a collection \mathcal{F} of balanced $i_{0} k$-sets in H by selecting each balanced $i_{0} k$-set on V independently and randomly with probability $p=\epsilon /\left(2 n^{i_{0} k-1}\right)$, where $\epsilon=\lambda /\left(4 i_{0} k\right)$. Since $t \leq n^{2 k}$, Chernoff's bound implies that, with probability $1-o(1)$, the family \mathcal{F} satisfies the following properties:

$$
|\mathcal{F}| \leq 2 p\binom{n}{i_{0}}^{k} \leq 2 n^{i_{0} k} p=\epsilon n \quad \text { and } \quad\left|\mathcal{F}_{i} \cap \mathcal{F}\right| \geq \frac{p}{2} \cdot \lambda n^{i_{0} k}=\frac{1}{4} \lambda \epsilon n \text { for any } i \in[t]
$$

Furthermore, the expected number of intersecting pairs of members in \mathcal{F} is at most

$$
p^{2} n^{i_{0} k} \cdot i_{0} k \cdot n^{i_{0} k-1}=\epsilon^{2} i_{0} k n / 4
$$

By Markov's inequality, \mathcal{F} contains at most $\epsilon^{2} i_{0} k n / 2$ intersecting pairs of $i_{0} k$-sets with probability at least $1 / 2$.

Let $\mathcal{F}^{\prime} \subset \mathcal{F}$ be the subfamily obtained by deleting one $i_{0} k$-set from each intersecting pair and removing all $i_{0} k$-sets that do not belong to any $\mathcal{F}_{i}, i \in[t]$. Therefore, $\left|\mathcal{F}^{\prime}\right| \leq|\mathcal{F}| \leq \epsilon n$ and for each $i \in[t]$, we have

$$
\left|\mathcal{F}_{i} \cap \mathcal{F}^{\prime}\right| \geq\left|\mathcal{F}_{i} \cap \mathcal{F}\right|-\frac{1}{2} \epsilon^{2} i_{0} k n \geq \frac{1}{4} \lambda \epsilon n-\frac{1}{2} \epsilon^{2} i_{0} k n=\frac{\lambda^{2}}{32 i_{0} k} n
$$

and we are done.
Now we prove our first absorbing lemma.
Proof of Lemma 2.1. We claim that for every balanced $2 k$-set S, there are at least $\epsilon^{3} n^{k} / 2 S$-absorbing edges. Since there are at most $n^{2 k}$ balanced $2 k$-sets, the existence of the desired matching follows from Proposition 2.3 .

Indeed, assume that $\{w, v\}:=S \cap V_{3}$ and $u \in S \cap V_{2}$. We obtain S-absorbing edges $e=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ as follows. First, for each $j \in[4, k]$, we choose arbitrary $v_{i} \in V_{j} \backslash S$ - there are $n-2$ choices for each v_{j}. Having selected $\left\{v_{4}, v_{5}, \ldots, v_{k}\right\}$, we select a neighbor of $\left\{u, v, v_{4}, \ldots, v_{k}\right\}$ as v_{1}. Next, we choose a neighbor of S^{\prime} as v_{2}, where S^{\prime} is an arbitrary crossing $(k-1)$-subset of $S \backslash V_{2}$ that contains w. Finally, we choose a neighbor of $\left\{v_{1}, v_{2}, v_{4}, \ldots, v_{k}\right\}$ as v_{3}. There are at least $\epsilon n-2$ choices for v_{j} for $j=1,2,3$. Hence, there are at least

$$
(n-2)^{k-3}(\epsilon n-2)^{3} \geq \frac{1}{2} \epsilon^{3} n^{k}>\sqrt{32 k \alpha} n^{k}
$$

S-absorbing edges, since n is sufficiently large and $\alpha \ll \epsilon$. Then we get the absorbing matching M^{\prime} by applying Proposition 2.3 with $\lambda=\sqrt{32 k \alpha}$ and $i_{0}=1$.

The proof of Lemma 2.2 is more involved than that of Lemma 2.1 - we need to apply a lattice-based absorbing method, a variant of the absorbing method developed recently by the first author 9. Roughly speaking, the method provides a vertex partition \mathcal{P} of H (Lemma 2.6) which refines the original k-partition so that we can work on the vectors of $\{0,1\}^{|\mathcal{P}|}$ that represent the edges of H. Using the information obtained from these vectors, we will show that if Lemma 2.2 (ii) does not hold, then H is close to a divisibility barrier based on \mathcal{P}. The rest of this section is devoted to the proof of Lemma 2.2, for which we need the following notation and auxiliary results.

The following concepts are introduced by Lo and Markström [16]. Let H be a k-partite k-graph with n vertices in each part. Given $\beta>0, i \in \mathbb{N}, j \in[k]$ and two vertices $u, v \in V_{j}$, we say that u, v are (β, i) reachable in H if and only if there are at least $\beta n^{i k-1}(i k-1)$-sets W such that both $H[\{u\} \cup W]$ and $H[\{v\} \cup W]$ contain perfect matchings. In this case W is called a reachable set for u, v. A set $X \subseteq V_{j}$ is (β, i)-closed in H if all $u, v \in X$ are (β, i)-reachable in H. Denote by $\tilde{N}_{\beta, i}(v)$ the set of vertices that are (β, i)-reachable to v in H. Clearly, since H is k-partite, for any $j \in[k]$ and $v \in V_{j}, \tilde{N}_{\beta, i}(v) \subseteq V_{j}$.

We need the following simple fact on k-partite k-graphs.
Fact 2.4. Let H be a k-partite k-graph with parts of size n. Let $a_{1}:=\delta_{[k] \backslash\{1\}}(H)$.
(i) For any $i \in[2, k]$ and $v \in V_{i}$, we have $\operatorname{deg}(v) \geq a_{1} n^{k-2}$.
(ii) If $a_{1} \geq(1 / 3+\gamma) n$, then for any $i \in[2, k]$, any set of three vertices $u, v, w \in V_{i}$ contains a pair of vertices which are $(\gamma, 1)$-reachable.

Proof. To see (i), note that we can obtain an edge containing v by first choosing a ($k-2$)-set $S \in \Pi_{j \neq 1, i} V_{j}$, and then choosing a neighbor of $\{v\} \cup S$. To see (ii), by (i) and $a_{1} \geq(1 / 3+\gamma) n$, we have $|N(u)|,|N(v)|,|N(w)| \geq$ $(1 / 3+\gamma) n^{k-1}$. Also note that $|N(u) \cup N(v) \cup N(w)| \leq n^{k-1}$, then by the inclusion-exclusion principle, we have

$$
n^{k-1} \geq|N(u)|+|N(v)|+|N(w)|-|N(u) \cap N(v)|-|N(u) \cap N(w)|-|N(v) \cap N(w)|
$$

So we get $|N(u) \cap N(v)|+|N(u) \cap N(w)|+|N(v) \cap N(w)| \geq 3 \gamma n^{k-1}$. Without loss of generality, assume that $|N(u) \cap N(v)| \geq \gamma n^{k-1}$. This implies that u and v are $(\gamma, 1)$-reachable.

The following proposition reflects the property of $\left|\tilde{N}_{\epsilon, 1}(v)\right|$.
Proposition 2.5. Suppose $1 / n \ll \epsilon \ll 1 / k$ and let H be a k-partite k-graph with n vertices in each part such that $\delta_{[k] \backslash\{1\}}(H), \delta_{[k] \backslash\{2\}}(H) \geq(1 / 2-\epsilon) n$. Then for any $j=1,2$ and $v \in V_{j},\left|\tilde{N}_{\epsilon / 3,1}(v)\right| \geq(1 / 2-2 \epsilon) n$. Moreover, for each $j \in[3, k]$, either $\left|\tilde{N}_{\epsilon / 3,1}(v)\right| \geq \epsilon n$ holds for all vertices $v \in V_{j}$, or there exists a set $V_{j}^{\prime} \subseteq V_{j}$ of size at most $\epsilon n+1$ such that $V_{j} \backslash V_{j}^{\prime}$ is $(\epsilon / 3,1)$-closed in H.

Proof. Fix a vertex $v \in V_{j}$ for some $j=1,2$, note that for any other vertex $u \in V_{j}, u \in \tilde{N}_{\epsilon / 3,1}(v)$ if and only if $|N(u) \cap N(v)| \geq \epsilon n^{k-1} / 3$. By double counting, we have

$$
\sum_{S \in N(v)}(\operatorname{deg}(S)-1)<\left|\tilde{N}_{\epsilon / 3,1}(v)\right| \cdot|N(v)|+n \cdot \epsilon n^{k-1} / 3
$$

Note that $\sum_{S \in N(v)}(\operatorname{deg}(S)-1) \geq((1 / 2-\epsilon) n-1)|N(v)|$. Moreover, by Fact 2.4 (i), $|N(v)| \geq(1 / 2-\epsilon) n^{k-1}>$ $2 n^{k-1} / 5$. Putting these together, we conclude that

$$
\left|\tilde{N}_{\epsilon / 3,1}(v)\right|>\left(\frac{1}{2}-\epsilon\right) n-1-\frac{\epsilon n^{k} / 3}{|N(v)|} \geq\left(\frac{1}{2}-\epsilon\right) n-\epsilon n=\left(\frac{1}{2}-2 \epsilon\right) n
$$

Now assume $j \in[3, k]$ and assume that $\left|\tilde{N}_{\epsilon / 3,1}(v)\right|<\epsilon n$ for some $v \in V_{j}$. Let $V_{j}^{\prime}:=\{v\} \cup \tilde{N}_{\epsilon / 3,1}(v)$. Thus $\left|V_{j}^{\prime}\right| \leq \epsilon n+1$. For any $u, u^{\prime} \in V_{j} \backslash V_{j}^{\prime}$, since $u \notin \tilde{N}_{\epsilon / 3,1}(v)$ and $u^{\prime} \notin \tilde{N}_{\epsilon / 3,1}(v)$, by Fact 2.4 (ii), we conclude that u and u^{\prime} are $(\epsilon / 3,1)$-reachable. This implies that $V_{j} \backslash V_{j}^{\prime}$ is $(\epsilon / 3,1)$-closed.

We use the following lemma from [10] to find a partition of each part of H.

Lemma 2.6. [10, Lemma 6.3] Let $1 / m \ll \beta \ll \gamma \ll 1 / c, \delta^{\prime}, 1 / k$. Suppose that H is an m-vertex k-graph, and a subset $S \subseteq V(H)$ satisfies that $\left|\tilde{N}_{\gamma, 1}(v)\right| \geq \delta^{\prime} m$ for any $v \in S$ and every set of $c+1$ vertices in S contains at least two vertices that are $(\gamma, 1)$-reachable. Then we can find a partition \mathcal{P}_{0} of S into W_{1}, \ldots, W_{d} with $d \leq \min \left\{\left\lfloor 1 / \delta^{\prime}\right\rfloor, c\right\}$ such that for any $i \in[d],\left|W_{i}\right| \geq\left(\delta^{\prime}-\gamma\right) m$ and W_{i} is $\left(\beta, 2^{c-1}\right)$-closed in H.

The following useful proposition was proved in [16].
Proposition 2.7. [16, Proposition 2.1] Let $i \geq 1, k \geq 2$ and $1 / n \ll \beta \ll \epsilon, \beta, 1 / i, 1 / k$. Suppose H is a k-graph of order $n \geq n_{0}$ and there exists a vertex $x \in V(H)$ with $\left|\tilde{N}_{\beta, i}(x)\right| \geq \epsilon n$. Then for all $0<\beta^{\prime} \leq \beta_{0}$, $\tilde{N}_{\beta, i}(x) \subseteq \tilde{N}_{\beta^{\prime}, i+1}(x)$.

Let H be a k-partite k-graph with parts of size n. Suppose $\mathcal{P}=\left\{W_{0}, W_{1}, \ldots, W_{d}\right\}$ is a partition of $V(H)$ for some integer $d \geq k$ that refines the original k-partition of H. In later applications, W_{0} will be so small that we only need to consider the edges not intersecting W_{0}. The following concepts were introduced by Keevash and Mycroft [11]. The index vector of a subset $S \subseteq V(H)$ with respect to \mathcal{P} is the vector

$$
\mathbf{i}_{\mathcal{P}}(S):=\left(\left|S \cap W_{1}\right|, \ldots,\left|S \cap W_{d}\right|\right) \in \mathbb{Z}^{d}
$$

Given an index vector \mathbf{v}, we denote by $\left.\mathbf{v}\right|_{W_{i}}$ its value at the coordinate that corresponds to W_{i}. For $\mu>0$, define $I_{\mathcal{P}}^{\mu}(H)$ to be the set of all $\mathbf{v} \in \mathbb{Z}^{d}$ such that H contains at least μn^{k} edges with index vector \mathbf{v}; let $L_{\mathcal{P}}^{\mu}(H)$ denote the lattice in \mathbb{Z}^{d} generated by $I_{\mathcal{P}}^{\mu}(H)$. For $i \in[d]$, let $\mathbf{u}_{W_{i}} \in \mathbb{Z}^{d}$ be the unit vector such that $\left.\mathbf{u}_{W_{i}}\right|_{W_{i}}=1$ and $\left.\mathbf{u}_{W_{i}}\right|_{W_{j}}=0$ for $j \neq i$.
Lemma 2.8. [7, Lemma 3.4] Suppose $\beta^{\prime} \ll \mu, \beta \ll \epsilon \ll 1 / i_{0}, 1 / k$ and $1 / i^{\prime} \ll 1 / i_{0}, 1 / k$, then the following holds for sufficiently large m. Suppose H is an m-vertex k-graph and $\mathcal{P}=\left\{W_{0}, W_{1}, \ldots, W_{d}\right\}$ is a partition with $d \leq 2 k$ such that $\left|W_{0}\right| \leq \sqrt{\epsilon} m,\left|W_{i}\right| \geq \epsilon^{2} m$ and W_{i} is $\left(\beta, i_{0}\right)$-closed in H for $i \geq 1$. If $\mathbf{u}_{W_{i}}-\mathbf{u}_{W_{j}} \in$ $L_{\mathcal{P}}^{\mu}(H)$, then $W_{i} \cup W_{j}$ is $\left(\beta^{\prime}, i^{\prime}\right)$-closed in H.

The following lemma shows that if V_{1} is closed and $\delta_{[k] \backslash\{1\}}(H) \geq \epsilon n$ then Lemma 2.2 (ii) holds.
Lemma 2.9. Let $1 / n \ll \alpha \ll \beta, \epsilon, 1 / i_{0}, 1 / k$. Suppose H is a k-partite k-graph with parts each of size n and $\delta_{[k] \backslash\{1\}}(H) \geq \epsilon n$. If V_{1} is $\left(\beta, i_{0}\right)$-closed, then there exists a family of disjoint $i_{0} k$-sets \mathcal{F}^{\prime} in H such that $\left|\mathcal{F}^{\prime}\right| \leq \sqrt{\alpha} n$ and each $F \in \mathcal{F}^{\prime}$ spans a matching of size i_{0} and for every crossing k-set S of H, the number of S-perfect-absorbing sets in \mathcal{F}^{\prime} is at least αn.

Proof. Fix a crossing k-set $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ such that $v_{j} \in V_{j}$, we claim there are at least $\sqrt{32 i_{0} k \alpha} n^{i_{0} k}$ S-perfect-absorbing $i_{0} k$-sets. First of all, we find $v_{1}^{\prime} \in V_{1} \backslash\left\{v_{1}\right\}$ such that $\left\{v_{1}^{\prime}, v_{2}, \ldots, v_{k}\right\}$ spans an edge. Since $\operatorname{deg}\left(S \backslash\left\{v_{1}\right\}\right) \geq \epsilon n$, there are at least $\epsilon n-1$ choices for v_{1}^{\prime}. Since V_{1} is $\left(\beta, i_{0}\right)$-closed, there are at least $\beta n^{i_{0} k-1}$ reachable $\left(i_{0} k-1\right)$-sets W for v_{1} and v_{1}^{\prime}. Among them, at least $\beta n^{i_{0} k-1}-(k-1) n^{k-2} \geq \beta n^{i_{0} k-1} / 2$ reachable $\left(i_{0} k-1\right)$-sets W are disjoint from S. To see that $\left\{v_{1}^{\prime}\right\} \cup W$ is an S-perfect-absorbing set, note that $H\left[\left\{v_{1}^{\prime}\right\} \cup W\right]$ has a perfect matching by the definition of W, and $H\left[\left\{v_{1}^{\prime}\right\} \cup W \cup S\right]$ has a perfect matching because $\left\{v_{1}^{\prime}\right\} \cup\left(S \backslash\left\{v_{1}\right\}\right)$ spans an edge and $H\left[\left\{v_{1}\right\} \cup W\right]$ has a perfect matching by the definition of W. In total, we have at least $\epsilon \beta n^{i_{0} k} / 4>\sqrt{32 i_{0} k \alpha} n^{i_{0} k} S$-perfect-absorbing sets. So we get the family of absorbing sets \mathcal{F}^{\prime} by applying Proposition 2.3 with $\lambda=\sqrt{32 i_{0} k \alpha}$. Note that each $F \in \mathcal{F}^{\prime}$ is an S-perfect-absorbing set for some crossing k-set S and thus F spans a matching of size i_{0}.

Proof of Lemma 2.2. We apply Lemma 2.8 inductively k times, at the j th time with $i=t_{j-1}$ and $i^{\prime}=t_{j}$, where $t_{0}=2$. Let $t=t_{k}$. Pick further constants such that

$$
1 / n \ll \alpha \ll \beta_{k} \ll \beta_{k-1} \ll \cdots \ll \beta_{1} \ll \mu, \beta \ll \epsilon \ll 1 / t_{k} \ll 1 / k
$$

Let H be a k-partite k-graph as given by Lemma 2.2. Suppose that (ii) does not hold. In particular, by Lemma 2.9, we may assume that neither V_{1} nor V_{2} is $\left(\beta_{k}, t_{k}\right)$-closed in H. By Fact 2.4 (i), we have $\operatorname{deg}(v) \geq a_{1} n^{k-2}$ for any $v \notin V_{1}$, and $\operatorname{deg}(v) \geq a_{2} n^{k-2}$ for any $v \in V_{1}$.

First note that if $a_{1} \geq(1 / 2+\epsilon) n$, then for any $u, v \in V_{2}$, we have $|N(u) \cap N(v)| \geq 2 \epsilon n^{k-1}$, and thus V_{2} is $(2 \epsilon, 1)$-closed. By Proposition 2.7, V_{2} is $\left(\beta_{k}, t_{k}\right)$-closed, a contradiction.

So we may assume that $a_{1}<(1 / 2+\epsilon) n$. Thus, we have

$$
a_{2} \geq \sum_{i=1}^{k} a_{i}-a_{1}-(k-2) \epsilon n \geq(1-\epsilon) n-(1 / 2+\epsilon) n-(k-2) \epsilon n=(1 / 2-k \epsilon) n
$$

i.e., $(1 / 2-k \epsilon) n \leq a_{2} \leq a_{1}<(1 / 2+\epsilon) n$. Let $\gamma:=(k-1) \epsilon / k$. We apply Proposition 2.5 with $k \epsilon$ in place of ϵ and obtain that, using $\gamma \leq \epsilon \leq k \epsilon / 3$,
(1) for any $i=1,2$ and $v \in V_{i},\left|\tilde{N}_{\gamma, 1}(v)\right| \geq(1 / 2-2 k \epsilon) n$,
(2) for any $i \in[3, k]$, either $\left|\tilde{N}_{\gamma, 1}(v)\right| \geq k \epsilon n$ for all vertices $v \in V_{i}$, or there exists a set $V_{i}^{\prime} \subseteq V_{i}$ of size at most $k \epsilon n+1$ such that $V_{i}^{\prime \prime}=V_{i} \backslash V_{i}^{\prime}$ is $(\gamma, 1)$-closed in H.

Since $a_{1}, a_{2} \geq(1 / 2-k \epsilon) n \geq(1 / 3+\gamma) n$, Fact 2.4 (ii) implies that for any $i \in[k]$, every set of three vertices of V_{i} contains two vertices that are $(\gamma, 1)$-reachable in H. Together with (1), it allows us to apply Lemma 2.6 to V_{1}, V_{2} separately with $c=2$ and $\delta^{\prime}=1 /(2 k)-2 \epsilon$ and partition each of V_{1} and V_{2} into at most two parts such that each part is $(\beta, 2)$-closed. If V_{1} or V_{2} is $(\beta, 2)$-closed, then by Proposition 2.7, it is $\left(\beta_{k}, t_{k}\right)$-closed, a contradiction. Thus we assume that each of V_{1} and V_{2} is partitioned into two parts $V_{1}=A_{1} \cup B_{1}$ and $V_{2}=A_{2} \cup B_{2}$ such that A_{i}, B_{i} are ($\beta, 2$)-closed, and

$$
\left|A_{i}\right|,\left|B_{i}\right| \geq\left(\frac{1}{2 k}-2 \epsilon-\gamma\right) k n>\left(\frac{1}{2}-3 k \epsilon\right) n
$$

Without loss of generality, assume that $\left|A_{1}\right| \leq\left|B_{1}\right|$ and $\left|A_{2}\right| \leq\left|B_{2}\right|$.
Let I be the set of $i \in[3, k]$ such that $\left|\tilde{N}_{\gamma, 1}(v)\right| \geq k \epsilon n$ for all vertices $v \in V_{i}$, and let $I^{\prime} \subseteq I$ consist of those $i \in I$ such that V_{i} is not $(\beta, 2)$-closed. We now apply Lemma 2.6 to V_{i} for $i \in I^{\prime}$ with $c=2$ and $\delta^{\prime}=\epsilon$ and partition V_{i} into at most two parts such that each part is of size at least $(\epsilon-\gamma) k n=\epsilon n$ and is $(\beta, 2)$-closed. Since $V_{i}, i \in I^{\prime}$, is not $(\beta, 2)$-closed, it must be the case that V_{i} is partitioned into two parts, denoted by A_{i} and B_{i}. Let $W_{0}=\bigcup_{i \in[3, k] \backslash I} V_{i}^{\prime}$ and note that $\left|W_{0}\right| \leq(k-2)(k \epsilon n+1)$. Let \mathcal{P}_{0} be the partition of $V(H)$ consisting of $W_{0}, A_{1}, B_{1}, A_{2}, B_{2}$ and $V_{i}^{\prime \prime}$ if $i \in[3, k] \backslash I, V_{i}$ if $i \in I \backslash I^{\prime}$, or A_{i}, B_{i} if $i \in I^{\prime}$. By Proposition 2.7. each part of \mathcal{P}_{0} except W_{0} is $(\beta, 2)$-closed.

For $i \in[k]$ for which A_{i} and B_{i} were defined, if $\mathbf{u}_{A_{i}}-\mathbf{u}_{B_{i}} \in L_{\mathcal{P}_{0}}^{\mu}(H)$, then we merge A_{i} and B_{i} by replacing A_{i} and B_{i} with V_{i}. By Lemma 2.8, $V_{i}=A_{i} \cup B_{i}$ is $\left(\beta_{1}, t_{1}\right)$-closed. We inductively merge A_{i}, B_{i} as long as $\mathbf{u}_{A_{i}}-\mathbf{u}_{B_{i}} \in L_{\mathcal{P}^{\prime}}^{\mu}(H)$, where \mathcal{P}^{\prime} represents the current partition after merging some parts. Since neither V_{1} nor V_{2} is $\left(\beta_{k}, t_{k}\right)$-closed in H, A_{1} and B_{1} (also A_{2} and B_{2}) cannot be merged. After at most $k-2$ merges, we obtain a partition \mathcal{P} such that each part except W_{0} is $\left(\beta_{k}, t_{k}\right)$-closed (by Proposition 2.7). Write $\mathcal{P}:=\left\{W_{0}, W_{1}, \ldots, W_{d}\right\}$. Let $\tilde{I} \subseteq[k]$ be the set of i such that $A_{i}, B_{i} \in \mathcal{P}$ (note that $\mathbf{u}_{A_{i}}-\mathbf{u}_{B_{i}} \notin L_{\mathcal{P}}^{\mu}(H)$ for $i \in \tilde{I})$. Write $T:=I_{\mathcal{P}}^{\mu}(H) \subseteq\{0,1\}^{d}$. Given $i, j \in \tilde{I}$ and $\mathbf{w} \in T$, let $\mathbf{w}^{i}:=\mathbf{w}+\mathbf{u}_{A_{i}}-\mathbf{u}_{B_{i}}(\bmod 2)$ and $\mathbf{w}^{i, j}:=\mathbf{w}+\mathbf{u}_{A_{i}}-\mathbf{u}_{B_{i}}+\mathbf{u}_{A_{j}}-\mathbf{u}_{B_{j}}(\bmod 2)$. We have the following observations.
(\dagger) If $\mathbf{w} \in T$, then $\mathbf{w}^{i} \notin T$ for $i \in \tilde{I}$.
(\ddagger) If $\mathbf{w} \in T$, then $\mathbf{w}^{i, 1} \in T$ for $i \in \tilde{I}$.
Indeed, for (\dagger), if $\mathbf{w} \in T$, then $\mathbf{w}^{i} \notin T$ because $\mathbf{u}_{A_{i}}-\mathbf{u}_{B_{i}} \notin L_{\mathcal{P}}^{\mu}(H)$ for $i \in \tilde{I}$. For (\ddagger), note that \mathbf{w}^{i} has 1 at k coordinates, which correspond to $W_{j} \subseteq V_{j}, j \in[k]$ of size at least ϵn (where W_{j} is V_{j} or $V_{j}^{\prime \prime}$ or A_{j} or $\left.B_{j}\right)$. The number of the edges in H that contain a crossing $(k-1)$-set in $\prod_{j \in[2, k]} C_{j}$ is at least $(\epsilon n)^{k-1} a_{1}$. Since $\mathbf{w}^{i} \notin T$, there are at most μn^{k} edges e in H with $\mathbf{i}_{\mathcal{P}}(e)=\mathbf{w}^{i}$. Consequently, the number of edges e with $\mathbf{i}_{\mathcal{P}}(e)=\mathbf{w}^{i, 1}$ is at least $(\epsilon n)^{k-1} a_{1}-\mu n^{k} \geq \mu n^{k}$, because $\mu \ll \epsilon$ and $a_{1} \geq n / 3$. Hence $\mathbf{w}^{i, 1} \in T$ and this proves (\ddagger).

A vector $\mathbf{v} \in\{0,1\}^{d}$ is even (respectively, odd) if there is an even (respectively, odd) number of $i \in \tilde{I}$ such that $\left.\mathbf{v}\right|_{A_{i}}=1$. We claim that all the vectors in T have the same parity. Indeed, assume that there is an even vector $\mathbf{v} \in T$. By (\ddagger), we know that all even vectors are in T. Together with (\dagger), this implies that T contains no odd vector.

Assume that T only contains even vectors (the case when T only contains odd vectors is analogous). Let $A:=\bigcup_{i \in \tilde{I}} A_{i}$ and $B:=V \backslash A$. Recall that an edge e of H is even if $|e \cap A|$ is even. Since T only contains even vectors, $E\left(H \backslash W_{0}\right)$ contains at most $2^{k} \mu n^{k}$ odd edges. Recall that $(1 / 2-3 k \epsilon) n \leq\left|A_{1}\right|,\left|A_{2}\right| \leq n / 2$. In addition, we have shown that $\operatorname{deg}(v) \geq(1 / 2-k \epsilon) n^{k-1}$ for all $v \in V(H)$ and thus $|E(H)| \geq(1 / 2-k \epsilon) n^{k}$. Since $\mu \ll \epsilon$ and $\left|W_{0}\right| \leq(k-2)(k \epsilon n+1)$, there are at least

$$
|E(H)|-2^{k} \mu n^{k}-\left|W_{0}\right| n^{k-1} \geq(1 / 2-k \epsilon) n^{k}-2^{k} \mu n^{k}-(k-2)(k \epsilon n+1) n^{k-1} \geq\left(1 / 2-k^{2} \epsilon\right) n^{k}
$$

even edges in $E(H)$. Let $\left|A_{1}\right|=n / 2-y$ for some $0 \leq y \leq 3 k \epsilon n$ and assume that the number of odd crossing ($k-1$)-sets in $V \backslash V_{1}$ is x for some $0 \leq x \leq n^{k-1}$, then we get

$$
\begin{aligned}
\left|E_{\text {even }}(A, B)\right| & =(n / 2-y) x+(n / 2+y)\left(n^{k-1}-x\right) \\
& =n^{k} / 2+y\left(n^{k-1}-2 x\right) \leq n^{k} / 2+3 k \epsilon n^{k}
\end{aligned}
$$

Thus we have $\left|E_{\text {even }}(A, B) \backslash E(H)\right| \leq n^{k} / 2+3 k \epsilon n^{k}-\left(1 / 2-k^{2} \epsilon\right) n^{k} \leq 2 k^{2} \epsilon n^{k}$. Together with $(1 / 2-3 k \epsilon) n \leq$ $\left|A_{1}\right|,\left|A_{2}\right| \leq n / 2$ and $(1 / 2-k \epsilon) n \leq a_{2} \leq a_{1}<(1 / 2+\epsilon) n$, and $a_{i}<\epsilon n, 3 \leq i \leq k$, we conclude that H is $2 k^{2} \epsilon$-D-extremal. This completes our proof.

3. Nonextremal k-partite k-Graphs: proof of Theorem 1.4

In this section we first show that every k-partite k-graph H contains an almost perfect matching if $\sum a_{i}$ is near n and H is not close to H_{0}. The following lemma is an analog of [6, Lemma 1.7] in k-partite k-graphs. To make it applicable to other problems, we prove it under a weaker assumption which allows a small fraction of crossing $(k-1)$-sets to have small degree.
Lemma 3.1 (Almost perfect matching). Let $1 / n \ll \eta \ll \alpha, \gamma, 1 / k$. For $i \in[k]$, let $a_{i}=a_{i}(n)$ such that $\sum_{i=1}^{k} a_{i} \geq(1-\gamma) n$. Let H be a k-partite k-graph with parts of size n which is not 2γ - S-extremal. Suppose for each $i \in[k]$, there are at most ηn^{k-1} crossing $(k-1)$-sets S such that $S \cap V_{i}=\emptyset$ and $\operatorname{deg}(S)<a_{i}$. Then H contains a matching that covers all but at most α n vertices in each vertex class.

Proof. Let M be a maximum matching in H and assume $m=|M|$. Let $V_{i}^{\prime}=V_{i} \cap V(M)$ and $U_{i}=V_{i} \backslash V(M)$. Suppose to the contrary, that $\left|U_{1}\right|=\cdots=\left|U_{k}\right|>\alpha n$.

Let $t=\lceil k(k-1) / \gamma\rceil$. We find a family \mathcal{A} of disjoint crossing $(k-1)$-subsets $A_{1}, \ldots, A_{k t}$ of $V \backslash V(M)$ such that $A_{j} \cap V_{i}=\emptyset$ and $\operatorname{deg}\left(A_{j}\right) \geq a_{i}$ whenever $j \equiv i \bmod k$. This can be done greedily because when selecting A_{j}, the crossing $(k-1)$-sets that cannot be picked are either those that intersect the ones that have been picked, or those with low degree, whose number is at most

$$
k(k-1) t n^{k-2}+\eta n^{k-1}<(\alpha n)^{k-1}<\prod_{\ell \in[k] \backslash\{i\}}\left|U_{\ell}\right|,
$$

because $1 / n \ll \eta \ll \alpha$. Note that the neighbors of A_{j} are in V_{i}^{\prime} with $j \equiv i \bmod k$ by the maximality of M.
For $i \in[k]$, let D_{i} be the set of the vertices of V_{i}^{\prime} that have at least k neighbors in \mathcal{A} and let $D=\bigcup D_{i}$. We claim that $|e \cap D| \leq 1$ for each $e \in M$. Indeed, otherwise assume that $x, y \in e \cap D$ and pick A_{i}, A_{j} for some $i, j \in[k t]$ such that $\{x\} \cup A_{i},\{y\} \cup A_{j} \in E(H)$. We obtain a matching of size $m+1$ by deleting e and adding $\{x\} \cup A_{i}$ as well as $\{y\} \cup A_{j}$ in M, contradicting the maximality of M.

Next we show that $\left|D_{i}\right| \geq a_{i}-\gamma n / k$ for each $i \in[k]$. Since $N\left(A_{j}\right) \cap V_{i}^{\prime}=\emptyset$ for $j \not \equiv i \bmod k$, we get

$$
t \cdot a_{i} \leq \sum_{j \equiv i \bmod k} \operatorname{deg}\left(A_{j}\right) \leq\left|D_{i}\right| t+n(k-1)
$$

Since $t \geq k(k-1) / \gamma$, it follows that

$$
\left|D_{i}\right| \geq a_{i}-\frac{n(k-1)}{t} \geq a_{i}-\frac{\gamma n}{k}
$$

This implies that $|D|=\sum_{i=1}^{k}\left|D_{i}\right| \geq \sum_{i=1}^{k} a_{i}-\gamma n$. Since every edge of M contains at most one vertex of D, we have $|D| \leq|M|<n$ and consequently, $\sum_{i=1}^{k} a_{i} \leq n+\gamma n=(1+\gamma) n$.

Define $M^{\prime}:=\{e \in M: e \cap D \neq \emptyset\}$. Then for each $i \in[k]$, we have

$$
\left|\left(V\left(M^{\prime}\right) \backslash D\right) \cap V_{i}\right|=\sum_{j \neq i}\left|D_{j}\right| \geq \sum_{j \in[k]}\left(a_{j}-\frac{\gamma n}{k}\right)-a_{i} \geq n-a_{i}-2 \gamma n
$$

Since H is not 2γ-S-extremal, $H\left[V\left(M^{\prime}\right) \backslash D\right]$ contains at least one edge, denoted by e_{0}. Note that $e_{0} \notin M$ because each edge of M^{\prime} contains exactly one vertex of D and $e_{0} \subset V\left(M^{\prime}\right) \backslash D$. Assume that e_{0} intersects e_{1}, \ldots, e_{p} in M for some $2 \leq p \leq k$. Suppose $\left\{v_{j}\right\}:=e_{j} \cap D$. Note that $v_{j} \notin e_{0}$ for all $j \in[p]$. Since each v_{j} has at least k neighbors in \mathcal{A}, we can greedily pick $A_{\ell_{1}}, \ldots, A_{\ell_{p}} \in \mathcal{A}$ such that $\left\{v_{j}\right\} \cup A_{\ell_{j}} \in E(H)$ for all $j \in[p]$. Let $M^{\prime \prime}$ be the matching obtained from M after replacing e_{1}, \ldots, e_{p} by e_{0} and $\left\{v_{j}\right\} \cup A_{\ell_{j}}$ for $j \in[p]$. Thus, $M^{\prime \prime}$ has $m+1$ edges, contradicting the choice of M.

Now we are ready to prove Theorem 1.4 .

Proof of Theorem 1.4. Let $1 / n \ll \eta \ll \alpha \ll \gamma \ll \epsilon \ll 1 / t \ll 1 / k$. Suppose both (ii) and (iii) fail and we will show that (i) holds.

First assume that $a_{1} \geq a_{2} \geq a_{3} \geq \epsilon n$. We first apply Lemma 2.1 to H and find a matching M^{\prime} of size at most $\sqrt{\alpha} n$ such that for every balanced $2 k$-set $S \subset V(H)$, the number of S-absorbing edges in M^{\prime} is at least αn. Let $H^{\prime}:=H \backslash V\left(M^{\prime}\right), n^{\prime}:=\left|V\left(H^{\prime}\right) \cap V_{i}\right| \geq(1-\sqrt{\alpha}) n$ and $a_{i}^{\prime}:=\delta_{[k] \backslash\{i\}}\left(H^{\prime}\right)$. Note that $\sum_{i=1}^{k} a_{i}^{\prime} \geq$ $\sum_{i=1}^{k} a_{i}-k \sqrt{\alpha} n \geq(1-2 \gamma / 5) n^{\prime}$. Assume for a moment that H^{\prime} is ($4 \gamma / 5$)-S-extremal, i.e., $\sum_{i=1}^{k} a_{i}^{\prime} \leq$ $n^{\prime}+(4 \gamma / 5) n^{\prime}$ and $V\left(H^{\prime}\right)$ contains an independent set C such that $\left|C \cap\left(V_{i} \cap V\left(H^{\prime}\right)\right)\right| \geq n^{\prime}-a_{i}^{\prime}-4 \gamma n^{\prime} / 5$ for each $i \in[k]$. Then as $\alpha \ll \gamma$, it follows that $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} a_{i}^{\prime}+k \sqrt{\alpha} n \leq n^{\prime}+(4 \gamma / 5) n^{\prime}+k \sqrt{\alpha} n \leq n+\gamma n$ and

$$
n^{\prime}-a_{i}^{\prime}-4 \gamma n^{\prime} / 5 \geq(1-\sqrt{\alpha}) n-a_{i}-4 \gamma n / 5 \geq n-a_{i}-\gamma n
$$

This means that H is γ-S-extremal, a contradiction. Thus, H^{\prime} is not ($4 \gamma / 5$)-S-extremal. By applying Lemma 3.1 to H^{\prime} with parameters $2 \gamma / 5, \alpha$ and η, we obtain a matching $M^{\prime \prime}$ in H^{\prime} that covers all but at most αn vertices in each vertex class.

Since there are at least $\alpha n S$-absorbing edges in M^{\prime} for every balanced $2 k$-set $S \subset V(H)$, we can repeatedly absorb the leftover vertices until there is one vertex left in each class. Denote by \tilde{M} the matching obtained after absorbing the leftover vertices into M^{\prime}. Therefore $\tilde{M} \cup M^{\prime \prime}$ is the required matching of size $n-1$ in H.

Secondly assume that $a_{1} \geq a_{2} \geq \epsilon n$ and $a_{i}<\epsilon n$ for $i \in[3, k]$. Since (iii) does not hold, by applying Lemma 2.2 , there exists a family of disjoint absorbing $t k$-sets \mathcal{F}^{\prime} of size $\left|\mathcal{F}^{\prime}\right| \leq \sqrt{\alpha} n$ such that each $F \in \mathcal{F}^{\prime}$ spans a matching of size t and for every crossing k-set S of H, the number of S-perfect-absorbing sets in \mathcal{F}^{\prime} is at least αn. Let $H^{\prime}:=H \backslash V\left(M^{\prime}\right)$ and $n^{\prime}:=\left|V\left(H^{\prime}\right) \cap V_{i}\right| \geq(1-t \sqrt{\alpha}) n$ and $a_{i}^{\prime}:=\delta_{[k] \backslash\{i\}}\left(H^{\prime}\right)$. Note that $\sum_{i=1}^{k} a_{i}^{\prime} \geq \sum_{i=1}^{k} a_{i}-k t \sqrt{\alpha} n \geq(1-2 \gamma / 5) n^{\prime}$ as $\alpha \ll \epsilon, 1 / t$. As before, we may assume that H^{\prime} is not $(4 \gamma / 5)$-S-extremal. By applying Lemma 3.1 to H^{\prime} with parameters $2 \gamma / 5, \alpha$ and η, we obtain a matching $M^{\prime \prime}$ in H^{\prime} that covers all but at most αn vertices in each vertex class. Let U be the set of leftover vertices. Since any crossing k-subset S of U has at least $\alpha n S$-perfect-absorbing $t k$-sets in \mathcal{F}^{\prime}, we can greedily absorb all the leftover vertices into \mathcal{F}. Denote by \tilde{M} the resulting matching that covers $V\left(\mathcal{F}^{\prime}\right) \cup U$. We obtain a perfect matching $\tilde{M} \cup M^{\prime \prime}$ of H.

4. Proof of Theorem 1.5

We prove Theorem 1.5 in this section. Following the approach in 6], we use the following weaker version of a result by Pikhurko [19]. Let H be a k-partite k-graph with parts V_{1}, \ldots, V_{k}. Given $L \subseteq[k]$, recall that

$$
\delta_{L}(H)=\min \left\{\operatorname{deg}(S): S \in \prod_{i \in L} V_{i}\right\} .
$$

Lemma 4.1. [19, Theorem 3] Given $k \geq 2$ and $L \subseteq[k]$, let m be sufficiently large. Let H be a k-partite k-graph with parts V_{1}, \ldots, V_{k} of size m. If

$$
\delta_{L}(H) m^{|L|}+\delta_{[k] \backslash L}(H) m^{k-|L|} \geq \frac{3}{2} m^{k}
$$

then H contains a perfect matching.
Proof of Theorem 1.5. Let $\alpha=\sqrt{\gamma}$. Assume that H is not 3ϵ-D-extremal. Our goal is to find a matching in H of size at least $\min \left\{n-1, \sum_{i=1}^{k} a_{i}\right\}$. Assume that H is γ-S-extremal, namely, $\sum_{i=1}^{k} a_{i} \leq n+\gamma n$ and there is an independent set $C \subseteq V(H)$ such that $\left|C \cap V_{i}\right| \geq n-a_{i}-\gamma n$ for each $i \in[k]$.

We may assume that $\sum_{i=1}^{k} a_{i} \geq n-k+3$, as otherwise we are done by Fact 1.3. So we have

$$
\begin{equation*}
n-k+3 \leq \sum_{i=1}^{k} a_{i} \leq n+\gamma n \tag{4.1}
\end{equation*}
$$

For each $i \in[k]$, let $C_{i}:=C \cap V_{i}$. We know that $\left|C_{i}\right| \geq n-a_{i}-\gamma n \geq(\epsilon-\gamma) n$ from the assumption that $a_{i} \leq(1-\epsilon) n$. We partition each $V_{i} \backslash C_{i}$ into $A_{i} \cup B_{i}$ such that

$$
\begin{equation*}
A_{i}:=\left\{x \in V_{i} \backslash C_{i}: \operatorname{deg}(x, C) \geq(1-\alpha) \prod_{j \neq i}\left|C_{j}\right|\right\} \tag{4.2}
\end{equation*}
$$

and $B_{i}:=V_{i} \backslash\left(A_{i} \cup C_{i}\right)$. Moreover, let $A:=\bigcup_{1 \leq i \leq k} A_{i}$ and $B:=\bigcup_{1 \leq i \leq k} B_{i}$.
Claim 4.2. For $i \in[k]$, we have
(1) $a_{i} \leq\left|A_{i}\right|+\left|B_{i}\right| \leq a_{i}+\gamma n$,
(2) $\left|B_{i}\right| \leq \alpha n$, and
(3) $a_{i}-\alpha n \leq\left|A_{i}\right| \leq a_{i}+\gamma n$.

Proof. For $i \in[k]$, since $\left|C_{i}\right| \geq n-a_{i}-\gamma n$, we have $\left|A_{i}\right|+\left|B_{i}\right| \leq a_{i}+\gamma n$. For any crossing $(k-1)$-set $S \subset C \backslash V_{i}$, we have $N(S) \subseteq A_{i} \cup B_{i}$. By the codegree condition, we have $\left|A_{i}\right|+\left|B_{i}\right| \geq a_{i}$.

Let E_{i} denote the set of the edges that consist of a $(k-1)$-set in $\prod_{j \neq i} C_{i}$ and one vertex in $A_{i} \cup B_{i}$. By the definition of A_{i}, we have

$$
a_{i} \prod_{j \neq i}\left|C_{j}\right| \leq\left|E_{i}\right| \leq\left|B_{i}\right|(1-\alpha) \prod_{j \neq i}\left|C_{j}\right|+\left|A_{i}\right| \prod_{j \neq i}\left|C_{j}\right|,
$$

which implies $a_{i} \leq\left|A_{i}\right|+\left|B_{i}\right|-\alpha\left|B_{i}\right|$. It follows that $\alpha\left|B_{i}\right| \leq\left|A_{i}\right|+\left|B_{i}\right|-a_{i} \leq \gamma n$ by Part (1). Since $\alpha=\sqrt{\gamma}$, it follows that $\left|B_{i}\right| \leq \alpha n$.

Part (3) follows from Parts (1) and (2) immediately.
Our procedure towards the desired matching consists of three steps. First, we remove a matching that covers all the vertices of B. Secondly, we remove another matching in order to have $\left|C_{i}^{\prime \prime}\right|-\sum_{j \neq i}\left|A_{j}^{\prime \prime}\right| \leq$ $\max \left\{1, n-\sum_{i=1}^{k} a_{i}\right\}$ for all $i \in[k]$, where $C_{i}^{\prime \prime}$ and $A_{i}^{\prime \prime}$ denote the set of the remaining vertices in C_{i} and A_{i}, respectively. Finally, we apply Lemma 4.1 to get a matching that covers all but at most max $\left\{1, n-\sum_{i=1}^{k} a_{i}\right\}$ vertices in each V_{i}.

Step 1. Cover the vertices of B.
For $i \in[k]$, define $t_{i}:=\max \left\{0, a_{i}-\left|A_{i}\right|\right\}$. By Claim 4.2(1), we have $\left|B_{i}\right| \geq a_{i}-\left|A_{i}\right|$. Together with the definition of t_{i} and Claim 4.2 (2), we have

$$
\begin{equation*}
t_{i} \leq\left|B_{i}\right| \leq \alpha n \quad \text { and } \quad t_{i}+\left|A_{i}\right| \geq a_{i} \tag{4.3}
\end{equation*}
$$

First we build a matching M_{1}^{i} of size t_{i} for each $i \in[k]$ and let M_{1} be the union of them. If $t_{i}=0$, then $M_{1}^{i}=\emptyset$. Otherwise, since $a_{i}=\delta_{[k] \backslash\{i\}}(H)$ and C is independent, every $(k-1)$-set in $\prod_{j \neq i} C_{j}$ has at least $a_{i}-\left|A_{i}\right|=t_{i}$ neighbors in B_{i}. We greedily pick t_{i} disjoint edges each of which consists of a $(k-1)$-set in $\prod_{j \neq i} C_{j}$ and one vertex in B_{i}.

Next for each i, we greedily build a matching M_{2}^{i} that covers all the remaining vertices in B_{i} and let M_{2} be the union of them. Indeed, for each of the remaining vertices $v \in B_{i}$ with $i \neq 1$, we pick one uncovered $(k-2)$-set S^{\prime} in $\prod_{j \neq i, 1} C_{j}$, and one uncovered vertex in $N\left(\{v\} \cup S^{\prime}\right) \subseteq V_{1}$. For each of the remaining vertices in $v \in B_{1}$, we pick one uncovered $(k-2)$-set S^{\prime} in $\prod_{j \neq 1,2} C_{j}$, and one uncovered vertex in $N\left(\{v\} \cup S^{\prime}\right) \subseteq V_{2}$. Since the number of vertices in V_{i} covered by the existing matchings is at most $\left|M_{1} \cup M_{2}\right| \leq|B| \leq k \alpha n<\epsilon n \leq a_{2} \leq a_{1}$, we can always find an uncovered vertex from $N\left(\{v\} \cup S^{\prime}\right)$.

For $i \in[k]$, let

$$
A_{i}^{\prime}:=A_{i} \backslash V\left(M_{1} \cup M_{2}\right), C_{i}^{\prime}:=C_{i} \backslash V\left(M_{1} \cup M_{2}\right) \text { and } V_{i}^{\prime}:=V_{i} \backslash V\left(M_{1} \cup M_{2}\right)
$$

Step 2. Adjust the sizes of A_{i}^{\prime} and C_{i}^{\prime}.
In this step, we will build a small matching M_{3} in order to adjust the sizes of A_{i}^{\prime} and C_{i}^{\prime}.
Claim 4.3. There exists a matching M_{3} of size at most $2 k \gamma n$ in $H\left[\bigcup_{i=1}^{k} V_{i}^{\prime}\right]$ so that $\left|C_{i}^{\prime} \backslash V\left(M_{3}\right)\right|-\sum_{j \neq i} \mid A_{j}^{\prime} \backslash$ $V\left(M_{3}\right) \mid=r$ for some integer $0 \leq r \leq \max \left\{1, n-\sum_{i=1}^{k} a_{i}\right\}$.
Proof. Let $n^{\prime}:=\left|V_{i}^{\prime}\right|=\left|A_{i}^{\prime}\right|+\left|C_{i}^{\prime}\right|$. Let $s_{0}:=\left|C_{i}^{\prime}\right|-\sum_{j \neq i}\left|A_{j}^{\prime}\right|=n^{\prime}-\sum_{j=1}^{k}\left|A_{j}^{\prime}\right|$, which is independent of i. We claim that $-2 k \gamma n \leq s_{0} \leq n-\sum_{i=1}^{k} a_{i}$. Indeed,

$$
s_{0} \geq\left(n-\left(\left|M_{1}\right|+\left|M_{2}\right|\right)\right)-|A| \geq n-|B|-|A| \stackrel{\text { Claim } 4.2}{\geq} n-\sum_{i=1}^{k}\left(a_{i}+\gamma n\right) \stackrel{4.1}{\geq}-2 k \gamma n
$$

On the other hand, since $V\left(M_{1}\right) \cap A=\emptyset$ and $\left|M_{1}\right|=\sum_{j=1}^{k} t_{j}$, we have

$$
s_{0} \leq n-\left(\left|M_{1}\right|+\left|M_{2}\right|\right)-\left(\sum_{j=1}^{k}\left|A_{j}\right|-\left|M_{2}\right|\right)=n-\sum_{j=1}^{k}\left(t_{j}+\left|A_{j}\right|\right) \stackrel{4.3}{\leq} n-\sum_{j=1}^{k} a_{j}
$$

If $s_{0} \geq 0$, then set $M_{3}=\emptyset$ and we are done. Otherwise, we build M_{3} by adding edges that contain two or three vertices of A one by one until $s \in\{0,1\}$, where $s:=\left(n^{\prime}-\left|M_{3}\right|\right)-\sum\left|A_{j}^{\prime} \backslash V\left(M_{3}\right)\right|$. This will be done in the next few paragraphs. Note that since $s_{0} \geq-2 k \gamma n$ and adding an edge to M_{3} increases s by one or two, we will have $\left|M_{3}\right| \leq 2 k \gamma n$.

Now we show how to build M_{3}. First assume that $a_{3} \geq 2 k \alpha n$. In this case we greedily choose the edges of M_{3} until $s \in\{0,1\}$ by picking two uncovered vertices, one from A_{2}^{\prime} and one from A_{3}^{\prime}, an uncovered $(k-3)$-set in $\prod_{j \in[4, k]} C_{j}^{\prime}$, and one uncovered vertex in V_{1}^{\prime} by the degree condition. To see why we can find these edges, first, we can always pick two uncovered vertices in $A_{2}^{\prime} \cup A_{3}^{\prime}$ because by Claim 4.2 (3),

$$
\begin{equation*}
\left|A_{i}^{\prime}\right| \geq\left|A_{i}\right|-\left|M_{2}\right| \geq a_{i}-\alpha n-k \alpha n \geq 2 k \gamma n \tag{4.4}
\end{equation*}
$$

for $i=2,3$. Secondly, we can find an uncovered $(k-3)$-set in $\prod_{j \in[4, k]} C_{j}^{\prime}$ because

$$
\begin{equation*}
\left|C_{j}^{\prime}\right| \geq\left|C_{j}\right|-\left|M_{1} \cup M_{2}\right| \geq \epsilon n-\gamma n-k \alpha n \geq 2 k \gamma n \tag{4.5}
\end{equation*}
$$

Thirdly, we can find the desired vertex in V_{1} because the number of covered vertices in V_{1} is at most $|B|+2 k \gamma n \leq 2 k \alpha n<a_{1}$.

Next assume that $\left|A_{1}\right| \geq(1 / 2+\epsilon) n$. In this case we greedily choose the edges of M_{3} until $s \in\{0,1\}$ by picking an uncovered vertex in A_{2}^{\prime}, an uncovered $(k-2)$-set in $\prod_{j \in[3, k]} C_{j}^{\prime}$, and by the degree condition, one uncovered vertex in A_{1}^{\prime}. To see why we can find these edges, first, we can pick an uncovered $(k-1)$-set $S \in A_{2}^{\prime} \times \prod_{i \in[3, k]} C_{i}^{\prime}$ because of (4.4) and 4.5). Secondly, note that $a_{1} \geq\left|A_{1}\right|-\gamma n \geq(1 / 2+\epsilon-\gamma) n$ and

$$
\left|A_{1}^{\prime}\right| \geq\left|A_{1}\right|-\left|M_{2}\right| \geq\left(\frac{1}{2}+\epsilon\right) n-k \alpha n=\left(\frac{1}{2}+\epsilon-k \alpha\right) n
$$

Thus, S has at least $a_{1}-\left(n-\left|A_{1}^{\prime}\right|\right) \geq 2 k \gamma n$ neighbors in A_{1}^{\prime} so we can find an uncovered neighbor of S.
Now we assume that $\left|A_{1}\right|<(1 / 2+\epsilon) n$ and $a_{3}<2 k \alpha n \leq \epsilon n$. In this case we show that (ii) holds, i.e., H is 3ϵ-D-extremal. First, $a_{1} \leq\left|A_{1}\right|+\alpha n<(1 / 2+\epsilon+\alpha) n$. Since $a_{i} \leq a_{3}$ for $i \in[3, k]$ and $\sum_{i=1}^{k} a_{i} \geq n-k+3$, we have

$$
a_{2} \geq \sum_{i=1}^{k} a_{i}-a_{1}-(k-2) a_{3} \geq n-k+3-\left(\frac{1}{2}+\epsilon+\alpha\right) n-2 k(k-2) \alpha n \geq\left(\frac{1}{2}-2 \epsilon\right) n
$$

i.e., $(1 / 2-2 \epsilon) n \leq a_{2} \leq a_{1} \leq(1 / 2+2 \epsilon) n$. By Claim $4.2(3),\left|A_{2}\right| \leq(1 / 2+2 \epsilon) n+\gamma n \leq(1 / 2+3 \epsilon) n$ and $\left|A_{i}\right| \leq a_{i}+\gamma n \leq 3 k \alpha n$ for $i \in[3, k]$. The lower bounds on a_{1}, a_{2} implies that $\left|A_{1}\right|,\left|A_{2}\right| \geq(1 / 2-2 \epsilon) n-\alpha n \geq$ $(1 / 2-3 \epsilon) n$. Finally, let x be the number of crossing k-sets in $V(H)$ that intersect A_{i} for some $i \in[3, k]$, then $x \leq(k-2) 3 k \alpha n \cdot n^{k-1} \leq 3 k^{2} \alpha n^{k}$. Let y_{1} be the number of non-edges in $H\left[A_{1}, B_{2} \cup C_{2}, \ldots, B_{k} \cup C_{k}\right]$ and let y_{2} be the number of non-edges in $H\left[B_{1} \cup C_{1}, A_{2}, B_{3} \cup C_{3}, \ldots, B_{k} \cup C_{k}\right]$. By the definition of A and $\left|B_{i}\right| \leq \alpha n$, for $1 \leq i \leq k$ we have

$$
y_{i} \leq\left|A_{i}\right| \cdot \alpha \prod_{j \neq i}\left|C_{j}\right|+\sum_{j \neq i}\left|B_{j}\right| \cdot n^{k-1} \leq \alpha n^{k}+(k-1) \alpha n^{k}=k \alpha n^{k}
$$

Note that $\left|E_{\text {odd }}(A, B \cup C) \backslash E(H)\right| \leq x+y_{1}+y_{2} \leq 3 k^{2} \alpha n^{k}+2 \cdot k \alpha n^{k} \leq \epsilon n^{k}$. So (ii) holds, a contradiction.
Step 3. Cover the remaining vertices.
Let M_{3} and r be as in Claim 4.3. For each $i \in[k]$, let

$$
A_{i}^{\prime \prime}:=A_{i}^{\prime} \backslash V\left(M_{3}\right), C_{i}^{\prime \prime}:=C_{i}^{\prime} \backslash V\left(M_{3}\right) \text { and } V_{i}^{\prime \prime}:=V_{i}^{\prime} \backslash V\left(M_{3}\right)
$$

By the definitions of M_{1}, M_{2}, M_{3}, we have $\left|M_{1} \cup M_{2} \cup M_{3}\right| \leq k \alpha n+2 k \gamma n \leq(k+1) \alpha n$. By Claim 4.2 (3), for each $i \in[k]$, we have

$$
\left|A_{i}^{\prime \prime}\right| \geq\left|A_{i}\right|-\left|M_{1} \cup M_{2} \cup M_{3}\right| \geq\left(a_{i}-\alpha n\right)-(k+1) \alpha n \geq a_{i}-2 k \alpha n
$$

Recall that $a_{1} \geq a_{2} \geq \epsilon n$, by $\gamma \ll \epsilon$, we have

$$
\begin{equation*}
\left|A_{1}^{\prime \prime}\right|,\left|A_{2}^{\prime \prime}\right| \geq a_{2}-2 k \alpha n \geq \epsilon n / 2 \tag{4.6}
\end{equation*}
$$

By Claim 4.3. we have

$$
\begin{equation*}
0 \leq r=\left|C_{i}^{\prime \prime}\right|-\sum_{j \neq i}\left|A_{j}^{\prime \prime}\right| \leq \max \left\{1, n-\sum_{i=1}^{k} a_{i}\right\} \tag{4.7}
\end{equation*}
$$

For $i \in[k]$, since $a_{i} \leq(1-\epsilon) n$, we get that $\left|C_{i}\right| \geq \epsilon n-\gamma n \geq 2(k+1) \alpha n$. Thus,

$$
\begin{equation*}
\left|C_{i}^{\prime \prime}\right| \geq\left|C_{i}\right|-\left|M_{1} \cup M_{2} \cup M_{3}\right| \geq\left|C_{i}\right|-(k+1) \alpha n \geq\left|C_{i}\right| / 2 \tag{4.8}
\end{equation*}
$$

Now we greedily cover the vertices of $A_{3}^{\prime \prime}, \ldots, A_{k}^{\prime \prime}$ with disjoint edges of H. Indeed, for every $3 \leq i \leq k$ and every vertex $v \in A_{i}^{\prime \prime}$, we find a neighbor of v from $\bigcup_{j \neq i} C_{i}^{\prime \prime}$. By 4.2) and 4.8), at most

$$
\alpha \prod_{j \neq i}\left|C_{j}\right| \leq 2^{k-1} \alpha \prod_{j \neq i}\left|C_{j}^{\prime \prime}\right|
$$

crossing $(k-1)$-sets in $\prod_{j \neq i} C_{j}^{\prime \prime}$ are not neighbors of v. Since $\left|C_{i}^{\prime \prime}\right|=\sum_{j \neq i}\left|A_{j}^{\prime \prime}\right|+r$, at least min $\left\{\left|A_{1}^{\prime \prime}\right|+\right.$ $\left.r,\left|A_{2}^{\prime \prime}\right|+r\right\} \geq \epsilon n / 2$ vertices of $C_{i}^{\prime \prime}$ remain at the end of the greedy process. The greedily algorithm works because $(\epsilon n / 2)^{k-1} \geq 2^{k-1} \alpha n^{k-1}>2^{k-1} \alpha \prod_{j \neq i}\left|C_{j}^{\prime \prime}\right|$.

Let M_{4} be the resulting matching in this step. Let $m_{i}:=\left|A_{i}^{\prime \prime}\right|$ for all $i=1,2$. Note that there are $m_{2}+r$ and $m_{1}+r$ remaining vertices in $C_{1}^{\prime \prime}, C_{2}^{\prime \prime}$, respectively, and $m_{1}+m_{2}+r$ remaining vertices in $C_{i}^{\prime \prime}$ for $i \geq 3$. Our goal is to cover all the remaining vertices of H. For $i=1,2$, let C_{1}^{2} be a set of m_{2} vertices in $C_{1}^{\prime \prime} \backslash V\left(M_{4}\right)$ and let C_{2}^{1} be a set of m_{1} vertices in $C_{2}^{\prime \prime} \backslash V\left(M_{4}\right)$; for $i \in[3, k]$, we can partition all but r vertices of $C_{i}^{\prime \prime} \backslash V\left(M_{4}\right)$ into C_{i}^{1} of size m_{1} and C_{i}^{2} of size m_{2}. Therefore, we get k-partite k-graphs $H_{i}:=H\left[A_{i}^{\prime \prime} \cup \bigcup_{\ell \neq i} C_{\ell}^{i}\right]$ for $i=1,2$. Below we verify the assumptions of Lemma 4.1 for H_{i}.

First, for $i \in[2]$ and any $(k-1)$-set $S \in \prod_{\ell \neq i} C_{\ell}^{i}$, the number of its non-neighbors in $A_{i} \cup B_{i}$ is at most

$$
\left|A_{i}\right|+\left|B_{i}\right|-a_{i} \stackrel{\text { Claim }}{\leq} \gamma n \stackrel{4.2}{\leq} \gamma \cdot \frac{2}{\epsilon} m_{i} \leq \alpha m_{i}
$$

as $\gamma \ll \epsilon$ and $\alpha=\sqrt{\gamma}$. So we have

$$
\delta_{[k] \backslash\{i\}}\left(H_{i}\right) \geq m_{i}-\alpha m_{i}=(1-\alpha) m_{i} .
$$

Next, for any $v \in A_{i}^{\prime \prime}$, by 4.2 the number of its non-neighbors in $\prod_{\ell \neq i} C_{\ell}^{i}$ is at most

$$
\alpha \prod_{\ell \neq i}\left|C_{\ell}\right|<\alpha n^{k-1} \stackrel{\sqrt{4.6}}{\leq} \alpha\left(\frac{2}{\epsilon} m_{i}\right)^{k-1} \leq \sqrt{\alpha} m_{i}^{k-1}
$$

which implies that $\delta_{\{i\}}\left(H_{i}\right) \geq(1-\sqrt{\alpha}) m_{i}^{k-1}$. Thus, we have

$$
\delta_{\{i\}}\left(H_{i}\right) m_{i}+\delta_{[k] \backslash\{i\}}\left(H_{i}\right) m_{i}^{k-1} \geq(1-\sqrt{\alpha}) m_{i}^{k-1} m_{i}+(1-\alpha) m_{i} m_{i}^{k-1}>\frac{3}{2} m_{i}^{k}
$$

since γ is small enough. By Lemma 4.1. we find a perfect matching M_{5}^{i} in H_{i} for each $i \in[2]$. Let $M_{5}:=M_{5}^{1} \cup M_{5}^{2}$, then $M_{1} \cup M_{2} \cup M_{3} \cup M_{4} \cup M_{5}$ is a matching in H of size at least $n-r$. If $r \leq 1$, then we obtain a matching of size at least $n-1$. Otherwise, since $0<r \leq n-\sum_{i=1}^{k} a_{i}$, we get a matching of size at least $\sum_{i=1}^{k} a_{i}$.

5. Proof of Theorem 1.6

We call a binary vector $\mathbf{v} \in\{0,1\}^{k}$ even (otherwise odd) if it contains an even number of coordinates that have value 1. Let $E V_{k}$ denote the set of all even vectors in $\{0,1\}^{k}$. Note that $\left|E V_{k}\right|=2^{k-1}$. Let $H=(V, E)$ be a k-partite k-graph with parts V_{1}, \ldots, V_{k}. Suppose V also has a partition $A \cup B$, and let $A_{i}:=A \cap V_{i}$ and $B_{i}:=B \cap V_{i}$ for $i \in[k]$. Recall that a set $S \subseteq V$ is even (or odd) if $|S \cap A|$ is even (or odd) and $E_{\text {even }}(A, B)$ consists all crossing even k-subsets of V. Given a vector $\mathbf{v} \in\{0,1\}^{k}$, we write $V^{\mathbf{v}}=V_{1}^{\mathbf{v}} \cup \cdots \cup V_{k}^{\mathbf{v}}$, where $V_{i}^{\mathbf{v}}:=A_{i}$ if $\left.\mathbf{v}\right|_{V_{i}}=1$ and $V_{i}^{\mathbf{v}}:=B_{i}$ otherwise. Let $H(\mathbf{v}):=H\left[V^{\mathbf{v}}\right]$. For any crossing k-set $S \in V^{\mathbf{v}}$, we say that \mathbf{v} is the location vector of S. For $v \in V$, we define $\overline{\operatorname{deg}}_{H}(v):=\prod_{j \neq i}\left|V_{j}\right|-\operatorname{deg}_{H}(v)$, which is the degree of v in the complement of H under the same k-partition. Let $\overline{\delta_{1}}(H):=\max _{v \in V(H)} \overline{\operatorname{deg}}_{H}(v)$.

The following theorem is a key step in the proof of Theorem 1.6 .

Theorem 5.1. Suppose $1 / n \ll \eta \ll \epsilon_{0}, 1 / k$ and n is an even integer. Let H be a k-partite k-graph with parts V_{1}, \ldots, V_{k} of size n. Suppose $A \cup B$ is a partition of $V(H)$ with $A_{i}:=A \cap V_{i}$ and $B_{i}:=B \cap V_{i}$ such that
(i) $\left|A_{1}\right|=\left|A_{2}\right|=n / 2$,
(ii) $\left|A_{i}\right|=0$ or $\epsilon_{0} n \leq\left|A_{i}\right| \leq\left(1-\epsilon_{0}\right) n$ for $i \geq 3$,
(iii) for any even vector $\mathbf{v}, \overline{\delta_{1}}(H(\mathbf{v})) \leq \eta n^{k-1}$.

Then H contains a matching of size $n-1$. Furthermore, if $|A|$ is even, then H contains a perfect matching.
To prove Theorem 5.1, we need the following simple result.
Lemma 5.2. Given a set V of $k n$ vertices for some even integer n, let $V_{1} \cup \cdots \cup V_{k}$ and $A \cup B$ be two partitions of V such that $\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n$ and $\left|A_{1}\right|=\left|A_{2}\right|=n / 2$, where $A_{i}:=A \cap V_{i}$ and $B_{i}:=B \cap V_{i}$. Let $H=\left(V, E_{\text {even }}(A, B)\right)$. If $|A|$ is odd, then H contains a matching of size $n-1$; if $|A|$ is even, then H contains a perfect matching.

Proof. We first prove the case when $|A|$ is even by induction on n. The base case $n=2$ is simple: we divide the $2 k-2$ vertices in $\bigcup_{i \geq 2} V_{i}$ arbitrarily into two $(k-1)$-sets and add the vertices of V_{1} to make both sets even (these two k-sets have the same parity because $|A|$ is even). For the induction step, assume $n \geq 4$ (as n is even). By picking two vertices in $V_{i}, i \geq 3$, with the same parity, we find two disjoint crossing $(k-2)$-sets in $\bigcup_{i \geq 3} V_{i}$ with the same parity. We next extend them to two even k-sets by adding four vertices, one from each of $A_{1}, A_{2}, B_{1}, B_{2}$. Since both k-sets are even, after deleting them, we can apply the inductive hypothesis.

For the case when $|A|$ is odd, we apply the previous case after moving one vertex from $\bigcup_{i \in[3, k]} A_{i}$ to B (note that $\sum_{i \in[3, k]}\left|A_{i}\right|$ is odd because $\left|A_{1}\right|+\left|A_{2}\right|=n$ is even). Since exactly one edge has the 'wrong' parity, we obtain a matching of H of size $n-1$.

We also use the following result of Daykin and Häggkvist [4] while proving Theorem 5.1.
Theorem 5.3. [4] Let $1 / n \ll 1 / k$. If H is a k-partite k-graph with parts of size n such that $\delta_{1}(H) \geq$ $(1-1 / k)\left(n^{k-1}-1\right)$, then H contains a perfect matching.

Proof of Theorem 5.1. We first note that for any $\mathbf{v} \in E V_{k}$ and for arbitrary subsets $U_{i} \subseteq V_{i}^{\mathbf{v}}, i \in[k]$, such that $\left|U_{i}\right| \geq \eta^{1 /(2 k)} n$, (iii) implies that

$$
\begin{equation*}
\overline{\delta_{1}}\left(H\left[U_{1}, \ldots, U_{k}\right]\right) \leq \eta n^{k-1} \leq \eta^{1 / 2} \prod_{2 \leq i \leq k}\left|U_{i}\right| \tag{5.1}
\end{equation*}
$$

We now apply Lemma 5.2 to $H^{\prime}:=\left(V, E_{\text {even }}(A, B)\right)$ and conclude that H^{\prime} contains a matching M of size at least $n-1$; moreover, M is perfect if $|A|$ is even. Let $S:=V \backslash V(M)$. For each $\mathbf{v} \in E V_{k}$, let $m_{\mathbf{v}}$ be the number of edges in M with location vector \mathbf{v}. Then $\sum_{\mathbf{v} \in E V_{k}} m_{\mathbf{v}}=|M|$ as all the edges in M are even.

It suffices to build a matching of H that consists of $m_{\mathbf{v}}$ edges with location vector \mathbf{v} for each $\mathbf{v} \in E V_{k}$. Let us partition $E V_{k}$ into $\mathcal{V}_{1} \cup \mathcal{V}_{2}$ such that \mathcal{V}_{1} consists of all \mathbf{v} with $m_{\mathbf{v}}<\eta^{1 /(2 k)} n$. For each $\mathbf{v} \in \mathcal{V}_{1}$, we greedily find a matching of size $m_{\mathbf{v}}$ in $H_{\mathbf{v}}$. To see why this is possible, note that in total at most $2^{k-1} \eta^{1 /(2 k)} n \leq \epsilon_{0}^{2} n$ edges of M have their location vectors in \mathcal{V}_{1}. Consequently the number of the crossing $(k-1)$-sets in $V_{2}^{\mathbf{v}} \cup \cdots \cup V_{k}^{\mathbf{v}}$ that intersect these edges is at most

$$
\epsilon_{0}^{2} n \sum_{2 \leq i \leq k} \prod_{2 \leq j \leq k, j \neq i}\left|V_{j}^{\mathbf{v}}\right| \leq(k-1) \epsilon_{0} \prod_{2 \leq i \leq k}\left|V_{i}^{\mathbf{v}}\right|
$$

because $\left|V_{i}^{\mathbf{v}}\right| \geq \epsilon_{0} n$ for $2 \leq i \leq k$. By (5.1), for any $v \in V_{1}^{\mathbf{v}}$, we have $\operatorname{deg}_{H(\mathbf{v})}(v) \geq\left(1-\eta^{1 / 2}\right) \prod_{2 \leq i \leq k}\left|V_{i}^{\mathbf{v}}\right|>$ $(k-1) \epsilon_{0} \prod_{2 \leq i \leq k}\left|V_{i}^{\mathbf{v}}\right|$ - this guarantees the existence of the desired matchings for all $\mathbf{v} \in \mathcal{V}_{1}$.

Next we arbitrarily divide the remaining vertices of $V \backslash S$ into balanced vertex partitions $U_{\mathbf{v}}=U_{1}^{\mathbf{v}} \cup \cdots \cup U_{k}^{\mathbf{v}}$, $\mathbf{v} \in \mathcal{V}_{2}$, such that $U_{i}^{\mathbf{v}} \subseteq V_{i}^{\mathbf{v}}$ and $\left|U_{1}^{\mathbf{v}}\right|=\cdots=\left|U_{k}^{\mathbf{v}}\right|=m_{\mathbf{v}}$ - this is possible because $\sum_{\mathbf{v} \in E V_{k}} m_{\mathbf{v}}=|M|$. By (5.1), we know that $\delta_{1}\left(H\left[U_{\mathbf{v}}\right]\right) \geq\left(1-\eta^{1 / 2}\right) m_{\mathbf{v}}^{k-1} \geq(1-1 / k) m_{\mathbf{v}}^{k-1}$ as η is small enough. We thus apply Theorem 5.3 to each $H\left[U_{\mathbf{v}}\right]$ and get a perfect matching of $H\left[U_{\mathbf{v}}\right]$. Putting all the matchings that we obtained together gives a matching of size $|M|$ in H.

Proof of Theorem 1.6. Pick a new constant ϵ_{0} such that $\epsilon \ll \epsilon_{0} \ll 1 / k$. We assume that $\sum_{i=1}^{k} a_{i} \geq n-k+3$ - otherwise we are done by Fact 1.3. Moreover, suppose H has a vertex bipartition $A \cup B=V_{1} \cup \cdots \cup V_{k}$ such that
(†) $(1 / 2-\epsilon) n \leq a_{1}, a_{2},\left|A_{1}\right|,\left|A_{2}\right| \leq(1 / 2+\epsilon) n$, and $a_{i} \leq \epsilon n, 3 \leq i \leq k$,
$(\ddagger)\left|E_{\text {even }}(A, B) \backslash E\right| \leq \epsilon n^{k}$.
Note that we obtain (\ddagger) after switching A_{1} and B_{1} if $\left|E_{o d d}(A, B) \backslash E\right| \leq \epsilon n^{k}$. Furthermore, the above two properties remain valid if we switch an even number of A_{i} with B_{i}. Thus we may switch A_{1}, A_{i} with B_{1}, B_{i} whenever $\left|A_{i}\right|>\left|B_{i}\right|$ for some $i \geq 3$. This results in $\left|A_{i}\right| \leq\left|B_{i}\right|$ for all $i \geq 3$ eventually. Moreover, by Fact 2.4 (i) and (\dagger), we know that $\delta_{1}(H) \geq(1 / 2-\epsilon) n^{k-1}$.

We now define atypical vertices. Let W be the set of $u \in V$ such that there exists an even $\mathbf{v} \in E V_{k}$ such that $u \in V^{\mathbf{v}}$ and $\overline{\operatorname{deg}}_{H(\mathbf{v})}(u)>\sqrt{\epsilon} n^{k-1} / 2$. Let $W_{0}:=W \cap\left(V_{1} \cup V_{2}\right)$. Since each vertex in W contribute at least $\sqrt{\epsilon} n^{k-1} / 2 k$-sets towards $\left|E_{\text {even }}(A, B) \backslash E\right|$ (and such a k-set can be counted at most k times), by (\ddagger), we have

$$
\begin{equation*}
\left|W_{0}\right| \leq|W| \leq \frac{k \epsilon n^{k}}{\sqrt{\epsilon} n^{k-1} / 2} \leq 2 k \sqrt{\epsilon} n \tag{5.2}
\end{equation*}
$$

When forming a matching of H, we prefer to use the edges that intersect both A_{1}, A_{2} or both $B_{1}, B_{2}-$ we will call them horizontal edges. Correspondingly, the edges that intersect both A_{1}, B_{2} or both A_{2}, B_{1} are diagonal. We distinguish the vertices of W_{0} that lie in fewer horizontal edges from the rest of W_{0}. For $i=1,2$, let $W_{A_{i}}$ be the set of vertices of $W_{0} \cap A_{i}$ that lie in less than $\epsilon_{0} n^{k-1}$ horizontal edges; similarly let $W_{B_{i}}$ be the set of vertices of $W_{0} \cap B_{i}$ that lie in less than $\epsilon_{0} n^{k-1}$ horizontal edges.

Define $B_{i}^{0}:=\left(B_{i} \backslash W_{B_{i}}\right) \cup W_{A_{i}}$ for $i=1,2$ and $B_{i}^{0}:=B_{i}$ for $i \geq 3$. Let $A_{i}^{0}:=V_{i} \backslash B_{i}^{0}$ for all i. Let $A^{0}:=\bigcup_{i \in[k]} A_{i}^{0}$ and $B^{0}:=V \backslash A^{0}$. Finally, let

$$
q:=\left|B_{2}^{0}\right|-\left|B_{1}^{0}\right|=\left|B_{2}\right|-\left|B_{1}\right|+\left|W_{A_{2}}\right|+\left|W_{B_{1}}\right|-\left|W_{A_{1}}\right|-\left|W_{B_{2}}\right|
$$

By (\dagger) and (5.2), $|q| \leq 2 \epsilon n+2 k \sqrt{\epsilon} n \leq 3 k \sqrt{\epsilon} n$. By relabelling V_{1} and V_{2} if necessary, we may assume that $q \geq 0$. Note that we still have $\left|A_{i}\right| \leq\left|B_{i}\right|$ for all $i \geq 3$.

Our goal is to remove a small matching and possibly some crossing k-sets (non-edges) from H such that we can apply Theorem 5.1 to the remaining subgraph of H. To achieve the goal, we conduct the following five steps: we remove disjoint matchings M_{1}, \ldots, M_{4} in the first four steps and a balanced vertex set S_{5} in the fifth step. For $1 \leq j \leq 4$, we define $A^{j}:=A^{j-1} \backslash V\left(M_{j}\right), B^{j}:=B^{j-1} \backslash V\left(M_{j}\right)$, and $V^{j}:=A^{j} \cup B^{j}$. Let $A^{5}:=A^{4} \backslash S_{5}, B^{5}:=B^{4} \backslash S_{5}$ and $V^{5}:=A^{5} \cup B^{5}$. For $1 \leq j \leq 5$ and $1 \leq i \leq k$, define $A_{i}^{j}:=A^{j} \cap V_{i}$, $B_{i}^{j}:=B^{j} \cap V_{i}$, and $V_{i}^{j}:=A_{i}^{j} \cup B_{i}^{j}$.
Step 1. Reducing the gap between $\left|B_{1}^{0}\right|$ and $\left|B_{2}^{0}\right|$. Our first matching M_{1} is crucial for balancing the sizes of B_{1}^{0} and B_{2}^{0}, and this is the only place that we need the exact codegree condition. Let $H_{1}:=H\left[A_{1}^{0} \cup B_{2}^{0} \cup\right.$ $\left.V_{3} \cup \cdots \cup V_{k}\right]$ and note that

$$
\delta_{[k] \backslash\{1\}}\left(H_{1}\right) \geq a_{1}-\left|B_{1}^{0}\right|, \quad \delta_{[k] \backslash\{2\}}\left(H_{1}\right) \geq a_{2}-\left(n-\left|B_{2}^{0}\right|\right)
$$

and $\delta_{[k] \backslash\{i\}}\left(H_{1}\right) \geq a_{i}$ for $3 \leq i \leq k$. So we have

$$
\sum_{i=1}^{k} \delta_{[k] \backslash\{i\}}\left(H_{1}\right) \geq \sum_{i=1}^{k} a_{i}+\left|B_{2}^{0}\right|-\left|B_{1}^{0}\right|-n=q-n+\sum_{i=1}^{k} a_{i}
$$

By (\dagger), we have $\sum_{i=1}^{k} a_{i} \leq n+k \epsilon n$. Thus,

$$
q-n+\sum_{i=1}^{k} a_{i} \leq q+k \epsilon n \leq 4 k \sqrt{\epsilon} n<\min _{i \in[k]}\left|V\left(H_{1}\right) \cap V_{i}\right|-k .
$$

If $q-n+\sum_{i=1}^{k} a_{i}>0$, then Fact 1.3 provides a matching M^{\prime} of size $q-n+\sum_{i=1}^{k} a_{i}$ in H_{1}. Let $M_{1}:=M^{\prime}$ if $\sum_{i=1}^{k} a_{i} \leq n$ and let $M_{1} \subseteq M^{\prime}$ be a (sub)matching of size q if $\sum_{i=1}^{k} a_{i}>n$. Otherwise let $M_{1}:=\emptyset$. So we have $\left|M_{1}\right| \leq q \leq 3 k \sqrt{\epsilon} n$ in all cases.
Step 2. Cleaning V_{1} and V_{2}. In this step we find a matching M_{2} that covers all the remaining vertices of W_{0} and uses the same amount of the vertices from A_{1}^{0} and A_{2}^{0}. Let $W_{0}^{\prime}:=\left(W_{A_{1}} \cup W_{A_{2}} \cup W_{B_{1}} \cup W_{B_{2}}\right) \backslash V\left(M_{1}\right)$ and $W_{0}^{\prime \prime}:=W_{0} \backslash\left(W_{0}^{\prime} \cup V\left(M_{1}\right)\right)$. We cover the vertices of $W_{0}^{\prime \prime}$ and W_{0}^{\prime} as follows.
(1) By definition, each vertex $u \in W_{0}^{\prime \prime}$ lies in at least $\epsilon_{0} n^{k-1}$ horizontal edges, i.e., those that intersect both A_{1} and A_{2}, or intersect both B_{1} and B_{2}. By 5.2. among these edges, at least $\epsilon_{0} n^{k-1} / 2$ horizontal edges do not intersect W, so they intersect both A_{1}^{0} and A_{2}^{0}, or intersect both B_{1}^{0} and B_{2}^{0}. We greedily cover the vertices of $W_{0}^{\prime \prime}$ by these disjoint horizontal edges.
(2) Since $\delta_{1}(H) \geq(1 / 2-\epsilon) n^{k-1}$, by definition, every vertex $u \in W_{0}^{\prime}$ lies in at least $(1 / 2-\epsilon) n^{k-1}-\epsilon_{0} n^{k-1}$ diagonal edges. By the definitions of $A_{1}^{0}, A_{2}^{0}, B_{1}^{0}, B_{2}^{0}$ and $\epsilon \ll \epsilon_{0}$, each $u \in W_{0}^{\prime}$ lies in at least $(1 / 2-\epsilon) n^{k-1}-\epsilon_{0} n^{k-1}-\left|W_{0}\right| n^{k-2} \geq \epsilon_{0} n^{k-1}$ edges that intersect both A_{1}^{0} and A_{2}^{0}, or both B_{1}^{0} and B_{2}^{0}. We greedily cover the vertices of W_{0}^{\prime} by such edges.
To see why the above process is possible, we note that when finding an edge for a vertex u, the number of vertices that we need to avoid is at most $\left|V\left(M_{1}\right)\right|+k\left|W_{0}\right| \leq 3 k^{2} \sqrt{\epsilon} n+2 k^{2} \sqrt{\epsilon} n=5 k^{2} \sqrt{\epsilon} n$ by (5.2) and $\left|M_{1}\right| \leq 3 k \sqrt{\epsilon} n$. Hence these vertices lie in at most $5 k^{2} \sqrt{\epsilon} n^{k-1}<\epsilon_{0} n^{k-1} / 2$ crossing $(k-1)$-sets, so we can find an edge that covers u and avoids all the existing edges.

Let us bound $\left|B_{2}^{2}\right|-\left|B_{1}^{2}\right|=\left|B_{2}^{0} \backslash V\left(M_{1} \cup M_{2}\right)\right|-\left|B_{1}^{0} \backslash V\left(M_{1} \cup M_{2}\right)\right|$. By the definition of M_{1}, we have $\left|B_{1}^{0} \cap V\left(M_{1}\right)\right|=0$ and $\left|B_{2}^{0} \cap V\left(M_{1}\right)\right|=\left|M_{1}\right|$. By the definition of M_{2}, we have $\left|B_{1}^{0} \cap V\left(M_{2}\right)\right|=\left|B_{2}^{0} \cap V\left(M_{2}\right)\right|$. Thus,

$$
\left|B_{2}^{2}\right|-\left|B_{1}^{2}\right|=\left|B_{2}^{0}\right|-\left|B_{1}^{0}\right|-\left|M_{1}\right|=q-\left|M_{1}\right|
$$

Note that

$$
q-\left|M_{1}\right|= \begin{cases}n-\sum_{i=1}^{k} a_{i} & \text { if } q-n+\sum_{i=1}^{k} a_{i} \geq 0 \text { and } \sum_{i=1}^{k} a_{i} \leq n \\ 0 & \text { if } q-n+\sum_{i=1}^{k} a_{i} \geq 0 \text { and } \sum_{i=1}^{k} a_{i}>n \\ q \leq n-\sum_{i=1}^{k} a_{i} & \text { if } q-n+\sum_{i=1}^{k} a_{i}<0\end{cases}
$$

So we have

$$
\begin{equation*}
0 \leq\left|B_{2}^{2}\right|-\left|B_{1}^{2}\right|=q-\left|M_{1}\right| \leq \max \left\{0, n-\sum_{i=1}^{k} a_{i}\right\} \leq k-3 \tag{5.3}
\end{equation*}
$$

Step 3. Cleaning V_{3}, \ldots, V_{k}. Let X consist of all $x \in A_{i} \backslash W$ for some $i \geq 3$ such that $\left|A_{i}\right| \leq 2 \epsilon_{0} n$. In this step we build a matching M_{3} which covers all the remaining vertices of W and the vertices of X and satisfies that

$$
\begin{equation*}
-1 \leq\left|B_{1}^{2} \cap V\left(M_{3}\right)\right|-\left|B_{2}^{2} \cap V\left(M_{3}\right)\right| \leq 0 \tag{5.4}
\end{equation*}
$$

Let W^{\prime} be the set of vertices in $\left(W_{3} \cup \cdots \cup W_{k}\right) \backslash V\left(M_{1} \cup M_{2}\right)$ that are contained in at least $3 k^{2} \epsilon_{0} n^{k-1}$ horizontal edges. Let $W^{\prime \prime}:=\left(W_{3} \cup \cdots \cup W_{k}\right) \backslash\left(V\left(M_{1} \cup M_{2}\right) \cup W^{\prime}\right)$. Since $\delta_{1}(H) \geq(1 / 2-\epsilon) n^{k-1}$, by definition, each $u \in W^{\prime \prime}$ is contained in at least $(1 / 2-\epsilon) n^{k-1}-3 k^{2} \epsilon_{0} n^{k-1}$ diagonal edges. Note that by (\dagger), we have $\left|B_{1}\right|\left|A_{2}\right| \leq(1 / 4+3 \epsilon) n^{2}$. Then since u lies in at most $\left|B_{1}\right|\left|A_{2}\right| n^{k-3} \leq(1 / 4+3 \epsilon) n^{k-1}$ edges that intersect both B_{1} and A_{2}, there are at least $3 k^{2} \epsilon_{0} n^{k-1}$ edges that contain u and intersect both A_{1} and B_{2}. Note that by symmetry, the same statement holds for u, A_{2} and B_{1}. Finally, for any vertex $x \in X$, assume that $x \in A_{i}$ for some $3 \leq i \leq k$. Since the binary vectors $\mathbf{v} \in\{0,1\}^{k}$ with exactly two 1^{\prime} 's are even, the fact that $x \notin W$ implies that x is contained in at least

$$
\prod_{j \in[k] \backslash\{1, i\}}\left|B_{j}\right| \cdot\left|A_{1}\right|-\frac{1}{2} \sqrt{\epsilon} n^{k-1} \geq \frac{n^{k-1}}{2^{k}}-\frac{1}{2} \sqrt{\epsilon} n^{k-1}>3 k^{2} \epsilon_{0} n^{k-1}
$$

edges in $A_{1} \cup\left(\bigcup_{2 \leq j \leq k, j \neq i} B_{j}\right) \cup A_{i}$, and in at least $3 k^{2} \epsilon_{0} n^{k-1}$ edges in $B_{1} \cup A_{2} \cup\left(\bigcup_{3 \leq j \leq k, j \neq i} B_{j}\right) \cup A_{i}$, where we used $\left|A_{1}\right|\left|B_{2}\right| \geq n^{2} / 8$ and $\left|B_{i}\right| \geq n / 2$ for $3 \leq i \leq k$ in the first inequality.
(1) We first greedily find $\left|W^{\prime}\right|$ disjoint horizontal edges such that each of them contains one vertex of W^{\prime} and no other vertices from $W \cup X \cup V\left(M_{1} \cup M_{2}\right)$.
(2) Next, we split $W^{\prime \prime} \cup X$ arbitrarily to $W_{1}^{\prime \prime}$ and $W_{2}^{\prime \prime}$ of sizes $\left\lfloor\left|W^{\prime \prime} \cup X\right| / 2\right\rfloor$ and $\left\lceil\left|W^{\prime \prime} \cup X\right| / 2\right\rceil$, respectively. We greedily find $\left|W_{1}^{\prime \prime}\right|$ disjoint edges such that each of them contains one vertex $u \in W_{1}^{\prime \prime}$, one vertex from each of B_{1} and A_{2}, and no other vertices from $W \cup X \cup V\left(M_{1} \cup M_{2}\right)$; moreover, if $u \in A_{i} \subseteq X$, then the edge is taken in $B_{1} \cup A_{2} \cup\left(\bigcup_{3 \leq j \leq k, j \neq i} B_{j}\right) \cup A_{i}$.

Finally, we greedily find $\left|W_{2}^{\prime \prime}\right|$ disjoint edges such that each of them contains one vertex $u \in W_{2}^{\prime \prime}$, one vertex from each of A_{1} and B_{2}, but no other vertices from $W \cup X \cup V\left(M_{1} \cup M_{2}\right)$; moreover, if $u \in A_{i} \subseteq X$, then the edge is taken in $A_{1} \cup\left(\bigcup_{2 \leq j \leq k, j \neq i} B_{j}\right) \cup A_{i}$.

The above process is possible because when considering a vertex u, the number of vertices that we need to avoid is at most $\left|V\left(M_{1}\right)\right|+\left|V\left(M_{2}\right)\right|+k|W|+k \cdot 2(k-2) \epsilon_{0} n \leq\left|V\left(M_{1}\right)\right|+2 k|W|+k \cdot 2(k-2) \epsilon_{0} n<3 k^{2} \epsilon_{0} n$ because of $\sqrt{5.2}$, the facts $\left|M_{1}\right| \leq 3 k \sqrt{\epsilon} n$ and $|X| \leq 2(k-2) \epsilon_{0} n$. Hence these vertices lie in less than $3 k^{2} \epsilon_{0} n^{k-1}(k-1)$-sets, so we can always find a desired edge that covers u and avoids all the existing edges. Let M_{3} be the matching obtained in this step. Note that (5.4) holds by construction.

Step 4. Balancing the sizes of B_{1}^{3} and A_{2}^{3}. Let $m:=\left|B_{1}^{3}\right|-\left|A_{2}^{3}\right|$. We find a matching M_{4} of size $|m|$ as follows. If $m \geq 0$, then M_{4} consists of m disjoint edges from B^{3} that are disjoint from $M_{1} \cup M_{2} \cup M_{3}$. Since $(0, \ldots, 0) \in E V_{k}$, this can be done since $H[(0, \ldots, 0)]$ is almost complete. Otherwise M_{4} consists of $|m|$ disjoint edges with location vector $(1,1,0, \ldots, 0)$ that are disjoint from $M_{1} \cup M_{2} \cup M_{3}$ - this is possible because $H[(1,1,0, \ldots, 0)]$ is almost complete.

After removing M_{4}, the resulting sets B_{1}^{4} and A_{2}^{4} satisfy $\left|B_{1}^{4}\right|=\left|A_{2}^{4}\right|$. The definition of M_{4} implies that $\left|B_{1}^{2} \cap V\left(M_{4}\right)\right|=\left|B_{2}^{2} \cap V\left(M_{4}\right)\right|$. Together with (5.3) and (5.4), this gives

$$
-1 \leq\left|B_{2}^{4}\right|-\left|B_{1}^{4}\right|=\left|B_{2}^{2}\right|-\left|B_{1}^{2}\right|+\left|B_{1}^{2} \cap V\left(M_{3}\right)\right|-\left|B_{2}^{2} \cap V\left(M_{3}\right)\right| \leq k-3
$$

Step 5. Balancing the sizes of B_{1}^{4} and B_{2}^{4}. Let $t:=\left|B_{2}^{4}\right|-\left|B_{1}^{4}\right|$ and thus $-1 \leq t \leq k-3$. If $t>0$, then $n-\sum_{i=1}^{k} a_{i} \geq t>0$. Let S_{5} be a $k t$-set in V^{4} with t vertices from each of A_{1}^{4}, B_{2}^{4}, and V_{i}^{4} for $3 \leq i \leq k$ such that $\left|A^{4} \backslash S_{5}\right|$ is even. The requirement that $\left|A^{4} \backslash S_{5}\right|$ is even can be easily fulfilled if any $A_{i}^{4}, i \geq 3$, is not empty. On the other hand, if all $A_{3}^{4}, \ldots, A_{k}^{4}$ are empty, then since $\left|B_{2}^{4} \backslash S_{5}\right|=\left|B_{1}^{4}\right|$, we have $\left|A_{1}^{4} \backslash S_{5}\right|=\left|A_{2}^{4}\right|$ and consequently,

$$
\left|A^{4} \backslash S_{5}\right|=\left|A_{1}^{4} \backslash S_{5}\right|+\left|A_{2}^{4}\right|=2\left|A_{2}^{4}\right|
$$

is even. Since $t \leq n-\sum_{i=1}^{k} a_{i}$, to complete the proof, it suffices to find a perfect matching in $V^{5}:=V^{4} \backslash S_{5}$. If $t=-1$, then let S_{5} be a k-set with one vertex from each of B_{1}^{4}, A_{2}^{4} and V_{i}^{4} for $3 \leq i \leq k$ such that $\left|A^{4} \backslash S_{5}\right|$ is even - this can be achieved by the same argument as in the $t>0$ case. Again it suffices to find a perfect matching in V^{5}. At last, if $t=0$ then set $S_{5}=\emptyset$. In this case $\left|A^{5}\right|=\left|A^{4} \backslash S_{5}\right|$ may be odd; however, it suffices to find a matching of size $\left|V^{5}\right|-1$ in $H\left[V^{5}\right]$. In summary, it remains to find a perfect matching in $H\left[V^{5}\right]$ if $\left|A^{5}\right|$ is even and a matching of size $\left|V^{5}\right|-1$ otherwise. This will follow from Theorem 5.1 after we verify its assumptions.

Let $n^{\prime}:=\left|V_{1}^{5}\right|$ and $H^{\prime}:=H\left[V^{5}\right]$. Note that

$$
\begin{gathered}
\left|M_{1} \cup M_{2} \cup M_{3}\right| \leq\left|M_{1}\right|+|W|+|X| \leq 3 k \sqrt{\epsilon} n+2 k \sqrt{\epsilon} n+2 k \epsilon_{0} n, \quad \text { and } \\
\left|M_{4}\right|=\left|\left|B_{1}^{3}\right|-\left|A_{2}^{3}\right|\right| \leq\left|B_{1}\right|-\left|A_{2}\right|+\left|M_{1} \cup M_{2} \cup M_{3}\right| \leq 3 k \epsilon_{0} n,
\end{gathered}
$$

where $\left|B_{1}\right|-\left|A_{2}\right| \leq 2 \epsilon n$ by (\dagger). Note that we have $V\left(M_{4}\right) \cap A_{i}=\emptyset$ for $3 \leq i \leq k$, and when building M_{3}, we may use the vertices of $A_{i}, 3 \leq i \leq k$, of size at least $2 \epsilon_{0} n$ only when we cover the vertices of W. Thus for $3 \leq i \leq k$, if $\left|A_{i}^{5}\right| \neq 0$, then

$$
\begin{aligned}
\left|A_{i}^{5}\right| & \geq\left|A_{i}\right|-\left|M_{1}\right|-\left|V\left(M_{2} \cup M_{3}\right) \cap A_{i}\right|-\left|S_{5} \cap A_{i}\right| \\
& \geq 2 \epsilon_{0} n-3 k \sqrt{\epsilon} n-2 k \sqrt{\epsilon} n-(k-3) \geq \epsilon_{0} n \geq \epsilon_{0} n^{\prime},
\end{aligned}
$$

and $\left|A_{i}^{5}\right| \leq\left|A_{i}\right| \leq n / 2<\left(1-\epsilon_{0}\right) n^{\prime}$. Moreover, by the choice of M_{4} and S_{5}, we have $\left|A_{2}^{5}\right|=\left|B_{1}^{5}\right|=\left|B_{2}^{5}\right|$, and thus $\left|A_{1}^{5}\right|=\left|A_{2}^{5}\right|=n^{\prime} / 2$. In particular, this means that n^{\prime} is even. Finally, note that

$$
\begin{aligned}
n^{\prime} & =n-\left|M_{1}\right|-\left|M_{2}\right|-\left|M_{3}\right|-\left|M_{4}\right|-\left|S_{5}\right| / k \\
& \geq n-3 k \sqrt{\epsilon} n-2 k \sqrt{\epsilon} n-2 k \epsilon_{0} n-3 k \epsilon_{0} n-(k-3) \geq\left(1-6 k \epsilon_{0}\right) n
\end{aligned}
$$

So for any $\mathbf{v} \in E V_{k}$, and any vertex $u \in H^{\prime}(\mathbf{v})$, since $u \notin W$ and n is large enough, we have

$$
\overline{\operatorname{deg}}_{H^{\prime}(\mathbf{v})}(u) \leq \sqrt{\epsilon} n^{k-1} / 2<\sqrt{\epsilon} n^{\prime k-1}
$$

So we are done by Theorem 5.1 with $\eta=\sqrt{\epsilon}$.

Acknowledgement

We thank two referees for their careful reading and detailed comments that improve the presentation of the paper. In particular, we are grateful to one referee for pointing out an error in the earlier version and suggesting a simpler proof of Lemma 5.2 .

References

[1] R. Aharoni, A. Georgakopoulos, and P. Sprüssel. Perfect matchings in r-partite r-graphs. European J. Combin., 30(1):3942, 2009.
[2] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov. Large matchings in uniform hypergraphs and the conjecture of Erdős and Samuels. J. Combin. Theory Ser. A, 119(6):1200-1215, 2012.
[3] A. Czygrinow and V. Kamat. Tight co-degree condition for perfect matchings in 4-graphs. Electron. J. Combin., 19(2):Paper 20, 16, 2012.
[4] D. E. Daykin and R. Häggkvist. Degrees giving independent edges in a hypergraph. Bull. Austral. Math. Soc., 23(1):103109, 1981.
[5] H. Hàn, Y. Person, and M. Schacht. On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discrete Math, 23:732-748, 2009.
[6] J. Han. Near perfect matchings in k-uniform hypergraphs. Combin. Probab. Comput., 24(5):723-732, 2015.
[7] J. Han. Near perfect matchings in k-uniform hypergraphs II. SIAM J. Discrete Math, 30:1453-1469, 2016.
[8] J. Han. Perfect matchings in hypergraphs and the Erdős matching conjecture. SIAM J. Discrete Math, 30:1351-1357, 2016.
[9] J. Han. Decision problem for perfect matchings in dense k-uniform hypergraphs. Trans. Amer. Math. Soc., 369(7):51975218, 2017.
[10] J. Han and A. Treglown. The complexity of perfect matchings and packings in dense hypergraphs. arXiv:1609.06147.
[11] P. Keevash and R. Mycroft. A geometric theory for hypergraph matching. Mem. Amer. Math. Soc., 233(1098):vi+95, 2015.
[12] I. Khan. Perfect matchings in 3-uniform hypergraphs with large vertex degree. SIAM J. Discrete Math., 27(2):1021-1039, 2013.
[13] I. Khan. Perfect matchings in 4-uniform hypergraphs. J. Combin. Theory Ser. B, 116:333-366, 2016.
[14] D. Kühn and D. Osthus. Matchings in hypergraphs of large minimum degree. J. Graph Theory, 51(4):269-280, 2006.
[15] D. Kühn, D. Osthus, and A. Treglown. Matchings in 3-uniform hypergraphs. J. Combin. Theory Ser. B, 103(2):291-305, 2013.
[16] A. Lo and K. Markström. F-factors in hypergraphs via absorption. Graphs Combin., 31(3):679-712, 2015.
[17] H. Lu, Y. Wang, and X. Yu. Almost perfect matchings in k-partite k-graphs. SIAM J. Discrete Math., 32:522-533, 2018.
[18] K. Markström and A. Ruciński. Perfect Matchings (and Hamilton Cycles) in Hypergraphs with Large Degrees. European J. Comb., 32(5):677-687, July 2011.
[19] O. Pikhurko. Perfect matchings and K_{4}^{3}-tilings in hypergraphs of large codegree. Graphs Combin., 24(4):391-404, 2008.
[20] V. Rödl and A. Ruciński. Dirac-type questions for hypergraphs a survey (or more problems for Endre to solve). An Irregular Mind, Bolyai Soc. Math. Studies 21:561-590, 2010.
[21] V. Rödl, A. Ruciński, and E. Szemerédi. A Dirac-type theorem for 3-uniform hypergraphs. Combin. Probab. Comput., 15(1-2):229-251, 2006.
[22] V. Rödl, A. Ruciński, and E. Szemerédi. Perfect matchings in uniform hypergraphs with large minimum degree. European J. Combin., 27(8):1333-1349, 2006.
[23] V. Rödl, A. Ruciński, and E. Szemerédi. Perfect matchings in large uniform hypergraphs with large minimum collective degree. J. Combin. Theory Ser. A, 116(3):613-636, 2009.
[24] A. Treglown and Y. Zhao. Exact minimum degree thresholds for perfect matchings in uniform hypergraphs. J. Combin. Theory Ser. $A, 119(7): 1500-1522,2012$.
[25] A. Treglown and Y. Zhao. Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II. J. Combin. Theory Ser. A, 120(7):1463-1482, 2013.
[26] A. Treglown and Y. Zhao. A note on perfect matchings in uniform hypergraphs. Electron. J. Combin., 23:P1.16, 2016.
[27] C. Zang. Matchings and Tilings in hypergraphs. PhD thesis, Georgia State University, 2016.
[28] C. Zang. Matchings in k-partite k-uniform hypergraphs. AMS Spring Southeastern Sectional Meeting, University of Georgia, Athens, GA, 2016.
[29] Y. Zhao. Recent advances on Dirac-type problems for hypergraphs. In Recent Trends in Combinatorics, volume 159 of the IMA Volumes in Mathematics and its Applications. Springer, New York, 2016.

Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, Brazil

E-mail address, Jie Han: jhan@ime.usp.br

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303
E-mail address, Chuanyun Zang: chuanyun.zang@gmail.com
E-mail address, Yi Zhao: yzhao6@gsu.edu

[^0]: Date: February 17, 2018.
 2010 Mathematics Subject Classification. Primary 05C70, 05C65.
 Key words and phrases. matching, hypergraph, absorbing method.
 The first author is supported by FAPESP (Proc. 2013/03447-6, 2014/18641-5, 2015/07869-8). The third author is partially supported by NSF grants DMS-1400073 and DMS-1700622.

