
Microsoft Tech·Ed 2004 Europe

DEV 430 1

Maximizing Performance of PC Games on Maximizing Performance of PC Games on
6464--bit Platformsbit Platforms

Michael WallMichael Wall
Senior Member of Technical StaffSenior Member of Technical Staff

Advanced Micro Devices, Inc.Advanced Micro Devices, Inc.

Microsoft Tech·Ed 2004 Europe

DEV 430 2

6464--bit PCs: Raise the Bar Againbit PCs: Raise the Bar Again

•• MinimumMinimum system spec is high!system spec is high!
–– Model 3000+ CPU, 512MB RAM, DX9Model 3000+ CPU, 512MB RAM, DX9

•• 6464--bit PCs are bit PCs are GamersGamers’’ PCsPCs
•• High endHigh end moving toward dualmoving toward dual--core core

CPU, 4+GB RAM, PCI Express SLI CPU, 4+GB RAM, PCI Express SLI
graphicsgraphics

•• DesignDesign games to swamp this games to swamp this
machine at max detail settingsmachine at max detail settings

Microsoft Tech·Ed 2004 Europe

DEV 430 3

AgendaAgenda
This talk is for experienced WindowsThis talk is for experienced Windows®® game game

developers who care about performancedevelopers who care about performance

• A very quick look at the 64-bit OS and compatibility
• A quick look at the AMD 64-bit processors & systems
• Maximizing performance of 64-bit games!!

– Leveraging Large memory
– Multi-threading for Dual Core CPUs
– 64-bit Tools, Techniques, and Extra Registers

• Demo: 64-bit code on single-core and dual-core
• Q & A, developer resources

Microsoft Tech·Ed 2004 Europe

DEV 430 4

AMD64 TechnologyAMD64 Technology

AMD64 Processor Family NamesAMD64 Processor Family Names

•AMD AthlonTM 64
Single processor
Desktop, Mobile

•AMD OpteronTM

Multi-processor
Workstation, Server

and Windowsand Windows®® ““x64x64”” = AMD64= AMD64

Microsoft Tech·Ed 2004 Europe

DEV 430 5

•• Processor: Native hardware support for 32Processor: Native hardware support for 32--bit bit
and 64and 64--bit x86 codebit x86 code

•• OS: 64OS: 64--bit Windowsbit Windows®® runs 32runs 32--bit and 64bit and 64--bit bit
applications side by side, seamlesslyapplications side by side, seamlessly

•• Source Code: A single C/C++ source code tree Source Code: A single C/C++ source code tree
compiles to both 32compiles to both 32--bit and 64bit and 64--bit binariesbit binaries

WindowsWindows®® and AMD64 Technologyand AMD64 Technology
Unifying theme: Designed for CompatibilityUnifying theme: Designed for Compatibility

The 64The 64--bit PC is evolutionarybit PC is evolutionary

Microsoft Tech·Ed 2004 Europe

DEV 430 6

An AMD64An AMD64--based Processor can run both 32based Processor can run both 32-- and 64and 64--bit bit
WindowsWindows®® operating systemsoperating systems

3232--bitbit

STARTSTARTSTART

BOOT UP
Using 32 bit BIOS

BOOT UPBOOT UP
Using 32 bit BIOSUsing 32 bit BIOS

Look
at OS
LookLook
at OSat OSLoad 32 bit OSLoad 32 bit OSLoad 32 bit OS

Run 32 bit
Applications
Run 32 bitRun 32 bit

ApplicationsApplications

Load 64 bit OSLoad 64 bit OSLoad 64 bit OS
6464--bitbit

Run 32 & 64
bit apps

Run 32 & 64Run 32 & 64
bit appsbit apps

WindowsWindows®® for x64for x64--based Systemsbased Systems
3232--bit and 64bit and 64--bit on a single platformbit on a single platform

Microsoft Tech·Ed 2004 Europe

DEV 430 7

Why the 64Why the 64--bit Windowsbit Windows®® OS Benefits 32OS Benefits 32--bit Applicationsbit Applications
3232--bit x86 systembit x86 system

x64-based System

0 GB

2 GB

4 GB

256 TB

0 GB

2 GB

4 GB

Shared
3232--bitbit

OSOS

3232--bitbit
AppApp

3232--bitbit
AppApp

3232--bitbit
OSOS

Virtual
Memory

4GB
DRAM

Virtual
Memory

3232--bit bit
AppApp

0 GB

4 GB

0 GB

4
GB

3232--bit bit
AppApp

256
TB

NotNot
sharedshared

NotNot
sharedshared

NotNot
sharedshared

6464--bitbit
OSOS

6464--bitbit
OSOS

Virtual
Memory

Virtual
Memory

12GB
DRAM

••OS uses Virtual Memory space OS uses Virtual Memory space
outside range of 32outside range of 32--bits bits

••Application has exclusive use of Application has exclusive use of
virtual memory space virtual memory space

••OS can allocate each application OS can allocate each application
dedicated portions of physical dedicated portions of physical
memorymemory

••Reduces the amount of paging Reduces the amount of paging
•• Supports larger file and dataset Supports larger file and dataset

sizessizes

••OS and applications share virtual OS and applications share virtual
and physical memoryand physical memory

••Results in a lot of paging of info Results in a lot of paging of info
in and out of memoryin and out of memory

••Limits the size of files and Limits the size of files and
datasetsdatasets

Microsoft Tech·Ed 2004 Europe

DEV 430 8

64-bit Processor Core

• Compatible with existing x86
applications while providing 64-bit
memory addressing capabilities

Integrated Memory Controller

• Memory is directly attached to the
processor providing high
bandwidth, low latency access

HyperTransport Technology

• Provides higher bandwidth for
efficient I/O activities and a
glueless approach to
multiprocessing

AMD Opteron ArchitectureAMD Opteron Architecture

L2
Cache

L1
Instruct
Cache

L1
Data

Cache

HyperTransport™

DDR Memory
Controller

64-bit
Processor

Core

AMD64 Technology: Unique Architectural Advantages

Microsoft Tech·Ed 2004 Europe

DEV 430 9

AMD64 Technology: Addresses Multiprocessing Limitations

The old Front Side Bus = Front Side Bottleneck!The old Front Side Bus = Front Side Bottleneck!
CPUs must wait for each other, memory and I/OCPUs must wait for each other, memory and I/O
North Bridge chip slows memory accessNorth Bridge chip slows memory access

processor processor

Front Side bus

DRAM memory

North Bridge
Chip

I/O devices

Microsoft Tech·Ed 2004 Europe

DEV 430 10

AMD64 Solution: Glueless MP, Direct Connect Architecture

HyperTransportHyperTransportTMTM links connect CPUs, and I/Olinks connect CPUs, and I/O
No extra silicon required for multiprocessing!No extra silicon required for multiprocessing!
SuperSuper--low latency to local memory bankslow latency to local memory banks
Now I/O has its own separate link(s)Now I/O has its own separate link(s)
Memory bandwidth scales up with added CPUsMemory bandwidth scales up with added CPUs

AMD OpteronTM

processor
AMD OpteronTM

processor

DRAM memory

DRAM memory

HyperTransport
linksI/O devices

Microsoft Tech·Ed 2004 Europe

DEV 430 11

Porting and Optimizing for 64Porting and Optimizing for 64--bitbit

Three different ways to get more performanceThree different ways to get more performance

•• Large Memory!!Large Memory!!
–– Virtually unlimited address spaceVirtually unlimited address space

•• MultiMulti--threadingthreading
–– Take advantage of dual core CPUsTake advantage of dual core CPUs

•• Extra Registers in 64Extra Registers in 64--bit modebit mode
–– Twice as many General Purpose Registers (GPRs)Twice as many General Purpose Registers (GPRs)
–– Twice as many SSE/SSE2 RegistersTwice as many SSE/SSE2 Registers
–– The compiler uses The compiler uses ‘‘emem all, and moreall, and more

Microsoft Tech·Ed 2004 Europe

DEV 430 12

Large Memory and PerformanceLarge Memory and Performance

Memory is the obvious 64Memory is the obvious 64--bit advantagebit advantage

•• Instruction set implements a full 64Instruction set implements a full 64--bit virtual bit virtual
address, in full 64address, in full 64--bit registersbit registers

•• 5252--bit physical address (4 million gigabytes)bit physical address (4 million gigabytes)
•• Current generation AMD CPUs support a 40Current generation AMD CPUs support a 40--bit bit

physical address (1 Terabyte)physical address (1 Terabyte)

Microsoft Tech·Ed 2004 Europe

DEV 430 13

PDO PTOPDPSign-Extend
64-bit

VA Offset

Page PA

PML4 Base (PA)

PDP Base (PA) PDP

Page Dir Base (PA)

Page Tbl Base (PA)

PML4-O

52-bit
PA

CR3

AMD OpteronTM and
AMD AthlonTM 64
support 40-bit PA.

51 12 11 23 0

51 12 11 23 0

51 12 11 23 0

51 12 11 23 0

51 12

51 12 11 0

63 12 11 048 3947 3038 202129

PML4-O

PTO

PDO 000

000

000

000

Offset

Access PML4 EntryAccess PML4 Entry

Access PDP EntryAccess PDP Entry

Access PD EntryAccess PD Entry

Access PT EntryAccess PT Entry

AMD64 extends x86 PAE
mode to 64-bit VA and
52-bit PA.

Microsoft Tech·Ed 2004 Europe

DEV 430 14

•• Map files to memory:Map files to memory:
CreateFileMappingCreateFileMapping and and MapViewOfFileMapViewOfFile
–– A single, flat address space for all dataA single, flat address space for all data
–– Let WindowsLet Windows®® manage disk and RAM manage disk and RAM
–– Simplified programming modelSimplified programming model
–– Performance scales up naturally with Performance scales up naturally with

increased physical RAMincreased physical RAM

Creative use of big virtual address spaceCreative use of big virtual address space

Microsoft Tech·Ed 2004 Europe

DEV 430 15

•• Expected availability in midExpected availability in mid--20052005

•• One chip with 2 CPU cores, each One chip with 2 CPU cores, each
core has separate L1/L2 cache core has separate L1/L2 cache
hierarchies hierarchies
–– L2 cache sizes expected to be L2 cache sizes expected to be

512KB or 1MB512KB or 1MB

•• Shared integrated NorthShared integrated North--Bridge & Bridge &
HostHost--Bridge interface Bridge interface
–– Integrated memory controller Integrated memory controller

& HyperTransport& HyperTransport™™ links links
route out same as todayroute out same as today’’s s
implementationimplementation

CPU0

1MB
L2 Cache

CPU1

System Request Interface
Crossbar Switch

Memory
Controller HT0 HT1 HT2

Existing single-core design

1MB
L2 Cache

AMD64 Dual Core CPU!AMD64 Dual Core CPU!
Coming soon to a PC near youComing soon to a PC near you

Microsoft Tech·Ed 2004 Europe

DEV 430 16

AMD64 DualAMD64 Dual--Core Physical DesignCore Physical Design
90nm

Approximately same die size as

130nm single-core AMD

Opteron™ processor*

~205 million transistors*

95 watt power envelope

Fits into 90nm power

infrastructure

940 Socket compatible
• Opteron

939 Socket compatible
• Athlon 64

*Based on current revisions of the design

Microsoft Tech·Ed 2004 Europe

DEV 430 17

Developers: MultiDevelopers: Multi--thread Your Codethread Your Code
Two different types of threadingTwo different types of threading

•• Functional ThreadingFunctional Threading
–– Different threads perform different tasksDifferent threads perform different tasks
–– Example: Example:

•• Thread #1 does audio decodeThread #1 does audio decode
•• Thread #2 performs 3D object transformationThread #2 performs 3D object transformation
•• Thread #3 handles user inputThread #3 handles user input

•• DataData--parallel Threadingparallel Threading
–– Threads do the same thing with different dataThreads do the same thing with different data
–– Example:Example:

•• Thread #1 animates half of the charactersThread #1 animates half of the characters
•• Thread #2 animates the other half of the charactersThread #2 animates the other half of the characters

Microsoft Tech·Ed 2004 Europe

DEV 430 18

Developers: MultiDevelopers: Multi--thread Your Codethread Your Code

DataData--parallel Threading is best for performanceparallel Threading is best for performance

•• A very good match for AMDA very good match for AMD’’s true duals true dual--core CPUscore CPUs
–– Two separate cache systemsTwo separate cache systems

•• Can hold two separate data streamsCan hold two separate data streams
–– Two complete CPU cores with Two complete CPU cores with FPUsFPUs, , ALUsALUs, etc., etc.

•• Can process similar workloads concurrentlyCan process similar workloads concurrently
–– Processing load is well balancedProcessing load is well balanced
–– Full utilization of both cores (and 4 cores later)Full utilization of both cores (and 4 cores later)

•• Clean data decomposition is the key to threadingClean data decomposition is the key to threading

Microsoft Tech·Ed 2004 Europe

DEV 430 19

OpenMPOpenMP Makes Threading SimpleMakes Threading Simple

A A ““Fork and JoinFork and Join”” programming modelprogramming model

•• There is a pool of sleeping threadsThere is a pool of sleeping threads

•• Execution is singleExecution is single--thread until a thread until a ““forkfork”” is reachedis reached

•• Then Multiple threads proceed in parallelThen Multiple threads proceed in parallel

•• Once all threads complete, resume singleOnce all threads complete, resume single--threadthread

Microsoft Tech·Ed 2004 Europe

DEV 430 20

Fork and Join Programming ModelFork and Join Programming Model

main main threadthread

fork to multiple threadsfork to multiple threads

parallel executionparallel execution

join when all threads finishjoin when all threads finish

back to main back to main threadthread

Microsoft Tech·Ed 2004 Europe

DEV 430 21

Thread Example: game pipeline Thread Example: game pipeline (don(don’’t laugh)t laugh)

Character animation/skinningCharacter animation/skinning

main main threadthread

main main threadthread

Physics on objectsPhysics on objects

main main threadthread

Particle system animationParticle system animation

main main threadthread

Microsoft Tech·Ed 2004 Europe

DEV 430 22

OpenMPOpenMP Implementation DetailsImplementation Details

Measured on 64Measured on 64--bit Windowsbit Windows®®

•• OneOne--time startup overhead for time startup overhead for OpenMPOpenMP
–– ItIt’’s relatively big, but only happens onces relatively big, but only happens once

•• Some overhead for Some overhead for ““waking upwaking up”” a thread and a thread and
beginning a parallel sectionbeginning a parallel section
–– Approximately 20k CPU cycles, or ~10usApproximately 20k CPU cycles, or ~10us
–– Sanity check: is that too much?Sanity check: is that too much?

•• 60fps = 16.6ms per frame60fps = 16.6ms per frame
•• 10 parallel sections need (10 x 10us) = 100us overhead10 parallel sections need (10 x 10us) = 100us overhead
•• ThatThat’’s 0.1ms overhead in a 16.6ms frame, less than 1% s 0.1ms overhead in a 16.6ms frame, less than 1%

–– Thread overhead is quite reasonableThread overhead is quite reasonable

Microsoft Tech·Ed 2004 Europe

DEV 430 23

5 Step Plan for 645 Step Plan for 64--bit Portingbit Porting

Step 1: Get your code Step 1: Get your code ““6464--bit cleanbit clean””

•• Build your project using the /Wp64 compiler switchBuild your project using the /Wp64 compiler switch
–– This switch is supported by 32This switch is supported by 32--bit VS.NET compiler!bit VS.NET compiler!

•• Warns about nonWarns about non--portable codeportable code
•• Fix it so your project compiles cleanly to 32Fix it so your project compiles cleanly to 32--bit bit

targettarget
•• ThenThen youyou’’re ready to use the 64re ready to use the 64--bit toolsbit tools

Microsoft Tech·Ed 2004 Europe

DEV 430 24

Step 1: cleanupStep 1: cleanup

CleanClean--up example 1: use new up example 1: use new ““polymorphicpolymorphic””
data types where appropriatedata types where appropriate

•• Original bad code stores a pointer in a LONGOriginal bad code stores a pointer in a LONG
LONG userdata = (LONG) &max_coordinate;LONG userdata = (LONG) &max_coordinate;

•• When built for a 64When built for a 64--bit target, this will truncate the pointer (64bit target, this will truncate the pointer (64--
bit value) by storing in a LONG (32bit value) by storing in a LONG (32--bit size).bit size).

•• Use LONG_PTR instead:Use LONG_PTR instead:
LONG_PTR userdata = (LONG_PTR) &max_coordinate;LONG_PTR userdata = (LONG_PTR) &max_coordinate;

•• Data type LONG_PTR is Data type LONG_PTR is ““a long the size of a pointera long the size of a pointer”” so it grows so it grows
to 64 bits when you compile for 64to 64 bits when you compile for 64--bit target (like bit target (like size_tsize_t))

Microsoft Tech·Ed 2004 Europe

DEV 430 25

CleanClean--up example 2: a few API calls have been up example 2: a few API calls have been
updatedupdated

•• Old API call uses a 32Old API call uses a 32--bit LONG for user databit LONG for user data
LONG udat = myUserData; LONG udat = myUserData;

LONG v = SetWindowLong(hWnd, GWL_USERDATA, udat);LONG v = SetWindowLong(hWnd, GWL_USERDATA, udat);

•• New API call replaces the old one:New API call replaces the old one:
LONG_PTR udat = myUserData; LONG_PTR udat = myUserData;

LONG_PTR v = SetWindowLongPtr(hWnd, GWLP_USERDATA, udat);LONG_PTR v = SetWindowLongPtr(hWnd, GWLP_USERDATA, udat);

•• The old call is deprecated; the new call works for 32The old call is deprecated; the new call works for 32--bit bit
and 64and 64--bit targets, so you can (and should) change all bit targets, so you can (and should) change all
your codeyour code

Microsoft Tech·Ed 2004 Europe

DEV 430 26

Step 2: buildStep 2: build
Get everything to build for 64Get everything to build for 64--bit targetbit target

•• There may be additional compiler warnings/errorsThere may be additional compiler warnings/errors
•• Data structure alignment is a common trouble spotData structure alignment is a common trouble spot

–– Data is Data is ““naturally alignednaturally aligned”” in in structsstructs
–– Pointer members and polymorphic members growPointer members and polymorphic members grow
–– Shared data (e.g. access by assembly code) needs special careShared data (e.g. access by assembly code) needs special care

•• Data files shared between 32Data files shared between 32--bit and 64bit and 64--bit processes may bit processes may
need special handling, especially if they contain pointersneed special handling, especially if they contain pointers

•• Skip assembly code porting, for initial 64Skip assembly code porting, for initial 64--bit buildbit build

Microsoft Tech·Ed 2004 Europe

DEV 430 27

Step 3: measure and analyze!Step 3: measure and analyze!

Benchmark and profile your 64Benchmark and profile your 64--bit codebit code
•• Performance profile may differ from old 32Performance profile may differ from old 32--bit bit

buildbuild
–– There are new driversThere are new drivers……
–– and there are new optimized librariesand there are new optimized libraries……
–– and a new 64and a new 64--bit optimizing compilerbit optimizing compiler……
–– all running on new CPU microall running on new CPU micro--architecture.architecture.

Focus optimization efforts on real,
measured hot spots!

You may be surprised by where your code
spends time

Microsoft Tech·Ed 2004 Europe

DEV 430 28

Step 3: measure and analyzeStep 3: measure and analyze
Use AMD CodeAnalyst to profile your 64Use AMD CodeAnalyst to profile your 64--bit code!!bit code!!

•• TimerTimer--based & eventbased & event--based profilerbased profiler

•• You can get a detailed pipeline view of critical code sectionsYou can get a detailed pipeline view of critical code sections

CodeAnalyst can be downloaded at CodeAnalyst can be downloaded at
www.amd.comwww.amd.com developer sectiondeveloper section

Microsoft Tech·Ed 2004 Europe

DEV 430 29

Step 4: optimizeStep 4: optimize
Tune for maximum 64Tune for maximum 64--bit performancebit performance
•• AMD64 technology offers 8 extra GPRs and 8 extra SSE AMD64 technology offers 8 extra GPRs and 8 extra SSE

registersregisters…… all used by the compilerall used by the compiler
•• Many old C/C++ tricks still work, some extraMany old C/C++ tricks still work, some extra--wellwell

–– The compiler optimizes, but you can help it at source levelThe compiler optimizes, but you can help it at source level

•• Compiler intrinsic functions for SSE, SSE2 and other Compiler intrinsic functions for SSE, SSE2 and other
funcsfuncs
–– Portable across 32Portable across 32--bit and 64bit and 64--bit targets, compiler does bit targets, compiler does regreg allocationallocation

•• Assembly code can still be used for absolute max Assembly code can still be used for absolute max
performanceperformance
–– VectorizeVectorize your 64your 64--bit SSE code, tweak instruction scheduling, etc.bit SSE code, tweak instruction scheduling, etc.

Microsoft Tech·Ed 2004 Europe

DEV 430 30

Step 4: optimizeStep 4: optimize

•• Use the 64Use the 64--bit compilerbit compiler’’s optimization featuress optimization features
•• Good Good olol’’ standard optimization switchesstandard optimization switches

–– Compile with /O2 or /O2b2, and use /Compile with /O2 or /O2b2, and use /fp:fastfp:fast
•• Whole Program Optimization (WPO)Whole Program Optimization (WPO)

–– Compile with /GL and link with /LTCGCompile with /GL and link with /LTCG
–– Enables more function Enables more function inlininginlining, other cross, other cross--module module

improvements improvements
•• Profile Guided Optimization (PGO or Profile Guided Optimization (PGO or ““PogoPogo””))

–– Build instrumented binaries, run your workload, reBuild instrumented binaries, run your workload, re--linklink
–– Can improve function layout (ICan improve function layout (I--cache usage) and branch flowcache usage) and branch flow

Microsoft Tech·Ed 2004 Europe

DEV 430 31

Libc 64Libc 64--bit functions are optimizedbit functions are optimized
–– example: Memcpy performance 64 vs. 32example: Memcpy performance 64 vs. 32

Also memset,
memcmp,
strlen, strcpy,
strcat, strncpy …

} Not polluting L2 cache
in 64-bit memcpy

bytes clocks clocks relative
copied 64-bit 32-bit performance

4 68 77 113.24%
10 41 42 102.44%
50 49 67 136.73%

100 53 63 118.87%
200 55 90 163.64%
500 111 330 297.30%

1000 166 451 271.69%
5000 667 1288 193.10%

10000 1297 2533 195.30%
50000 22606 22127 97.88%

100000 58451 52863 90.44%
500000 250190 266773 106.63%

1000000 669057 2040253 304.94%
5000000 4074051 10867828 266.76%

Microsoft Tech·Ed 2004 Europe

DEV 430 32

Step 4: optimizeStep 4: optimize
C/C++ optimization example 1: special loop unrolling C/C++ optimization example 1: special loop unrolling

for greater parallelismfor greater parallelism
•• The compiler unrolls loops automatically, but The compiler unrolls loops automatically, but

manual unrolling can introduce manual unrolling can introduce explicit parallelismexplicit parallelism
double a[100], sum = 0.0;double a[100], sum = 0.0;

for (int i = 0; i < 100; i++) {for (int i = 0; i < 100; i++) {

sum += a[i]; // no parallelism possiblesum += a[i]; // no parallelism possible

}}

•• The compiler must use a single The compiler must use a single ““sumsum”” and perform and perform
addition inaddition in--order, creating a long dependency chain order, creating a long dependency chain
and leaving execution units idle much of the timeand leaving execution units idle much of the time

•• How can this be improved?How can this be improved?

Microsoft Tech·Ed 2004 Europe

DEV 430 33

•• Manually unroll the loop into Manually unroll the loop into parallel dependency parallel dependency
chainschains
double a[100], sum, sum1, sum2, sum3, sum4;double a[100], sum, sum1, sum2, sum3, sum4;
sum1 = sum2 = sum3 = sum4 = 0.0;sum1 = sum2 = sum3 = sum4 = 0.0;
for (int i = 0; i < 100; i += 4) {for (int i = 0; i < 100; i += 4) {

sum1 += a[i]; // these foursum1 += a[i]; // these four
sum2 += a[i+1]; // chains cansum2 += a[i+1]; // chains can
sum3 += a[i+2]; // run insum3 += a[i+2]; // run in
sum4 += a[i+3]; // parallelsum4 += a[i+3]; // parallel

}}
sum = sum1 + sum2 + sum3 + sum4;sum = sum1 + sum2 + sum3 + sum4;

•• With 4 separate dependency chains the execution With 4 separate dependency chains the execution
units can be kept busy with pipelined operationsunits can be kept busy with pipelined operations……
over 3x faster here!over 3x faster here!

•• This trick is particularly advantageous in more This trick is particularly advantageous in more
complex loops with AMD64 technology because of complex loops with AMD64 technology because of
all the registers available.all the registers available.

The switch
/fp:fast

can do this
automatically

in many cases.

Use it!

Microsoft Tech·Ed 2004 Europe

DEV 430 34

C/C++ optimization example 2: aliasingC/C++ optimization example 2: aliasing
•• Perhaps the biggest optimization roadblock for Perhaps the biggest optimization roadblock for

the compiler is the compiler is aliasing.aliasing. Pointers may step on Pointers may step on
each otherseach others’’ datadata

int *a, *b, *c;int *a, *b, *c;
for (int i = 0; i < 100; i++) {for (int i = 0; i < 100; i++) {

*a += *b++ *a += *b++ -- *c++; // b or c may point to a*c++; // b or c may point to a
}}

•• The compiler must be cautious, and write to The compiler must be cautious, and write to
memory for each loop iteration. It cannot memory for each loop iteration. It cannot
safely keep the sum safely keep the sum ““aa”” in a register. in a register.

•• How can this be improved?How can this be improved?

Microsoft Tech·Ed 2004 Europe

DEV 430 35

•• Use the __restrict keyword to help the Use the __restrict keyword to help the
compilercompiler

•• Apply your external knowledge that *a does Apply your external knowledge that *a does
not alias *b or *c not alias *b or *c

int* __restrict a;int* __restrict a;
int *b, *c;int *b, *c;
for (int i = 0; i < 100; i++) {for (int i = 0; i < 100; i++) {

*a += *b++ *a += *b++ -- *c++; // no aliases exist*c++; // no aliases exist
}}

•• Now the compiler can safely keep the sum in a Now the compiler can safely keep the sum in a
register, and avoid many memory writes. register, and avoid many memory writes.

•• Read more about keyword __restrict, Read more about keyword __restrict,
declspec(restrict) and declspec(noalias) in declspec(restrict) and declspec(noalias) in
Microsoft docs. They are powerful.Microsoft docs. They are powerful.

Microsoft Tech·Ed 2004 Europe

DEV 430 36

C/C++ optimization example 3: C/C++ optimization example 3: structstruct data data
packingpacking

•• Structure data members are Structure data members are ““naturally alignednaturally aligned””
•• Padding may get added when you compile for 64Padding may get added when you compile for 64--bitbit
structstruct foo_originalfoo_original { int a, void *b, int c };{ int a, void *b, int c };

•• 12 bytes in 3212 bytes in 32--bit mode, but bit mode, but 2424 bytes in 64bytes in 64--bit mode!bit mode!

•• Fix it by reFix it by re--ordering elements for better packingordering elements for better packing
structstruct foo_newfoo_new { void *b, int a, int c };{ void *b, int a, int c };

•• 12 bytes in 3212 bytes in 32--bit mode, only 16 bytes in 64bit mode, only 16 bytes in 64--bit mode.bit mode.

•• Also reAlso re--order order structstruct elements for better cache localityelements for better cache locality

Microsoft Tech·Ed 2004 Europe

DEV 430 37

C/C++ optimization example 4: replace a C/C++ optimization example 4: replace a
pointer with smaller datapointer with smaller data

•• Structures with many pointers may get bloatedStructures with many pointers may get bloated
–– Pointers may not need full 64Pointers may not need full 64--bit rangebit range
–– Replace pointer with INT, WORD, or BYTE indexReplace pointer with INT, WORD, or BYTE index

structstruct foo_originalfoo_original { { thing *athing *a, int b, , int b, …… };};
My_Thing = *(My_Thing = *(foo_original.afoo_original.a););

structstruct foo_newfoo_new { { int aint a, int b, , int b, …… };};
My_Thing = My_Thing = Thing_Array[foo_new.aThing_Array[foo_new.a];];

Microsoft Tech·Ed 2004 Europe

DEV 430 38

Compiler intrinsic examples: SSE and SSE2Compiler intrinsic examples: SSE and SSE2
__m128 ___m128 _mm_mul_ssmm_mul_ss(__m128 a, __m128 b);(__m128 a, __m128 b);

SSE MULSS scalar singleSSE MULSS scalar single--precision multiply instructionprecision multiply instruction
__m128d _mm_add_pd(__m128d a, __m128d b);__m128d _mm_add_pd(__m128d a, __m128d b);

SSE2 ADDPD packed doubleSSE2 ADDPD packed double--precision add instructionprecision add instruction
__m128i _mm_load_si128(__m128i *p);__m128i _mm_load_si128(__m128i *p);

SSE2 MOVDQA instruction for 128SSE2 MOVDQA instruction for 128--bit integerbit integer
__m128d _mm_set_pd(double x, double y);__m128d _mm_set_pd(double x, double y);

SSE2 initialize a packed vector variableSSE2 initialize a packed vector variable
__m128d ___m128d _mm_setzero_pdmm_setzero_pd();();

SSE2 XORPD initialize packed double to zeroSSE2 XORPD initialize packed double to zero
__m128i _mm_cvtsi32_si128(int a);__m128i _mm_cvtsi32_si128(int a);

SSE2 MOVD load a 32SSE2 MOVD load a 32--bit int as lower bits of SSE2 bit int as lower bits of SSE2 regreg

Microsoft Tech·Ed 2004 Europe

DEV 430 39

Compiler intrinsic examples: other goodiesCompiler intrinsic examples: other goodies
void __cpuid(int* CPUInfo, int InfoType);void __cpuid(int* CPUInfo, int InfoType);

for detecting CPU featuresfor detecting CPU features
unsigned __int64 __rdtsc(void);unsigned __int64 __rdtsc(void);

for reading the timestamp counter (cycle counter) andfor reading the timestamp counter (cycle counter) and
accurately measuring performance of critical code sectionsaccurately measuring performance of critical code sections

__int64 _mul128(__int64 Multiplier, __int64 Multiplicand,__int64 _mul128(__int64 Multiplier, __int64 Multiplicand,

__int64 *HighProduct);__int64 *HighProduct);

fast multiply of two 64fast multiply of two 64--bit integers, returning full 128bit integers, returning full 128--bit resultbit result
(lower 64 bits are return value, upper 64 bits by indirect point(lower 64 bits are return value, upper 64 bits by indirect pointer)er)

__int64 __mulh(__int64 a, __int64 b);__int64 __mulh(__int64 a, __int64 b);
fast multiply of two 64fast multiply of two 64--bit integers, returning the high 64 bitsbit integers, returning the high 64 bits

void _void _mm_prefetchmm_prefetch(char* p, (char* p, intint i);i);
software software prefetchprefetch instruction for reading data into CPU cacheinstruction for reading data into CPU cache

void _void _mm_stream_psmm_stream_ps(float* p, __m128 a);(float* p, __m128 a);
streaming store of data to memory, bypassing CPU cachestreaming store of data to memory, bypassing CPU cache

Microsoft Tech·Ed 2004 Europe

DEV 430 40

C/C++ optimization example 5: cache controlC/C++ optimization example 5: cache control

•• Data can be fetched with Data can be fetched with ““nonnon--temporaltemporal”” tagtag
_mm_prefetch ((char *) _mm_prefetch ((char *) foo_ptrfoo_ptr, _MM_HINT_NTA);, _MM_HINT_NTA);

•• Loads a 64Loads a 64--byte cache line into L1, wonbyte cache line into L1, won’’t disturb L2t disturb L2

•• Streaming store: write directly to memory, not to cacheStreaming store: write directly to memory, not to cache
__mm_stream_psmm_stream_ps ((float *) ((float *) foo_ptrfoo_ptr, var_128);, var_128);

•• var_128 is type __m128 (really an SSE register)var_128 is type __m128 (really an SSE register)
•• A bit awkward, pack 16 bytes and write to aligned A bit awkward, pack 16 bytes and write to aligned

addressaddress
•• Four 16Four 16--byte packets = 64byte packets = 64--byte writebyte write--combine buffercombine buffer

Microsoft Tech·Ed 2004 Europe

DEV 430 41

Assembly code, if youAssembly code, if you’’re man enoughre man enough

•• Assembly code is still worthwhile for maximum Assembly code is still worthwhile for maximum
performance in certain critical inner loopsperformance in certain critical inner loops

•• InIn--line _line _asmasm code is not supported for 64code is not supported for 64--bit bit
code, use MASM 64code, use MASM 64

•• Pay attention to prolog/epilog, itPay attention to prolog/epilog, it’’s differents different……
and fasterand faster
–– Values passed in registers, rarely pushed on stackValues passed in registers, rarely pushed on stack
–– Certain Certain regsregs are volatile, others are nonare volatile, others are non--volatilevolatile

•• Be careful about data layout: 64Be careful about data layout: 64--bit code may bit code may
be different (pointers grow from 4 to 8 bytes)be different (pointers grow from 4 to 8 bytes)

Microsoft Tech·Ed 2004 Europe

DEV 430 42

RAX

63

GG
PP
RR

xx
88
77

079

31

AHEAX AL

0715In x86

XMM0SS
SS
EE

127 0

XMM7

EAX

EIP

Added by AMD64
technology

EDI

XMM8
XMM8

XMM15

R8

R15

AMD64 (x64) Assembly ProgrammerAMD64 (x64) Assembly Programmer’’s Models Model

Microsoft Tech·Ed 2004 Europe

DEV 430 43

Assembly code example: software pipeliningAssembly code example: software pipelining
•• asmasm code, calculates Mandelbrot setcode, calculates Mandelbrot set

movapd xmm2, xmm0;movapd xmm2, xmm0;
mulpd xmm2, xmm1; c = z_real x mulpd xmm2, xmm1; c = z_real x z_imagz_imag
mulpd xmm0, xmm0; a = z_real x z_realmulpd xmm0, xmm0; a = z_real x z_real
mulpd xmm1, xmm1; b = mulpd xmm1, xmm1; b = z_imagz_imag x x z_imagz_imag
subpd xmm0, xmm1; z_real = a subpd xmm0, xmm1; z_real = a -- bb
addpd xmm2, xmm2; c = c x 2addpd xmm2, xmm2; c = c x 2
addpd xmm0, xmm12; z_real = z_real + c_realaddpd xmm0, xmm12; z_real = z_real + c_real
movapd xmm1, xmm2;movapd xmm1, xmm2;
addpd xmm1, xmm13; addpd xmm1, xmm13; z_imagz_imag = c + = c + c_imagc_imag

•• Lots of data dependencies limiting performanceLots of data dependencies limiting performance……
what can we do to fix that?what can we do to fix that?

Microsoft Tech·Ed 2004 Europe

DEV 430 44

•• Use the extra registers: implement Use the extra registers: implement software pipeliningsoftware pipelining
movapd xmm2, xmm0;movapd xmm2, xmm0;

movapd xmm6, xmm4;movapd xmm6, xmm4;
mulpd xmm2, xmm1; c = z_real x mulpd xmm2, xmm1; c = z_real x z_imagz_imag

mulpd xmm6, xmm5;mulpd xmm6, xmm5;
mulpd xmm0, xmm0; a = z_real x z_realmulpd xmm0, xmm0; a = z_real x z_real

mulpd xmm4, xmm4;mulpd xmm4, xmm4;
mulpd xmm1, xmm1; b = mulpd xmm1, xmm1; b = z_imagz_imag x x z_imagz_imag

mulpd xmm5, xmm5;mulpd xmm5, xmm5;
subpd xmm0, xmm1; z_real = a subpd xmm0, xmm1; z_real = a -- bb

subpd xmm4, xmm5;subpd xmm4, xmm5;
addpd xmm2, xmm2; c = c x 2addpd xmm2, xmm2; c = c x 2

addpd xmm6, xmm6;addpd xmm6, xmm6;
addpd xmm0, xmm12; z_real = z_real + c_realaddpd xmm0, xmm12; z_real = z_real + c_real

addpd xmm4, xmm14;addpd xmm4, xmm14;
movapd xmm1, xmm2;movapd xmm1, xmm2;

movapd xmm5, xmm6;movapd xmm5, xmm6;
addpd xmm1, xmm13; addpd xmm1, xmm13; z_imagz_imag = c + = c + c_imagc_imag

addpd xmm5, xmm15;addpd xmm5, xmm15;

No need to overlay
the two chains
quite this tightly.

The CPU re-orders
instructions
aggressively, so
dependency chains
only need to be
reasonably close
together.

For max
performance…
experiment!

•• Working 2 independent data sets Working 2 independent data sets
makes the code run 35% faster here!makes the code run 35% faster here!

Microsoft Tech·Ed 2004 Europe

DEV 430 45

Step 5: beverageStep 5: beverage

•• After you have your 64After you have your 64--bit code bit code
running like blazesrunning like blazes……

•• Enjoy a beverage of your choiceEnjoy a beverage of your choice

•• DonDon’’t skip this stept skip this step

Microsoft Tech·Ed 2004 Europe

DEV 430 46

64-bit
and multi-threading
optimization demo

demo

Microsoft Tech·Ed 2004 Europe

DEV 430 47

Demo results: dependency chainsDemo results: dependency chains

•• Inserting a second dependency chain in the loop dramatically Inserting a second dependency chain in the loop dramatically
improves performance on both 32improves performance on both 32--bit and 64bit and 64--bitbit

•• 6464--bit code benefits more, because of the extra SSE bit code benefits more, because of the extra SSE regsregs

•• 6464--bit mode provides a 30%+ boost over 32bit mode provides a 30%+ boost over 32--bit modebit mode

3232--bit bit 6464--bit__ bit__

1 chain 1 chain .92 .92 GflopGflop 1.01 1.01 GflopGflop ~10% 64~10% 64--bit benefitbit benefit
2 chains 2 chains 1.31 1.31 GflopGflop 1.72 1.72 GflopGflop ~~30%30% 6464--bit benefitbit benefit

Chain gain = 42% Chain gain = 42% 70%70%

Microsoft Tech·Ed 2004 Europe

DEV 430 48

Demo results: multiDemo results: multi--threadingthreading
•• OpenMPOpenMP support in Visual Studio 2005 Whidbeysupport in Visual Studio 2005 Whidbey

–– The main loop was threaded with a single The main loop was threaded with a single pragmapragma!!
##pragmapragma ompomp parallel forparallel for

–– OpenMPOpenMP automatically figures out how many threadsautomatically figures out how many threads

•• Almost 2x the performance on dualAlmost 2x the performance on dual--core or 2Pcore or 2P
–– True dualTrue dual--core can give true dual performancecore can give true dual performance

•• Performance will scale up automatically as more Performance will scale up automatically as more
cores or CPUs are addedcores or CPUs are added

•• Threading is the Way Forward for performanceThreading is the Way Forward for performance

Microsoft Tech·Ed 2004 Europe

DEV 430 49

SummarySummary

••Windows x64 has excellent backward Windows x64 has excellent backward
compatibilitycompatibility

••Porting to 64Porting to 64--bit mode is not too hardbit mode is not too hard

••6464--bit code has performance advantagesbit code has performance advantages

••DualDual--core CPUs are coming sooncore CPUs are coming soon

Microsoft Tech·Ed 2004 Europe

DEV 430 50

Call to ActionCall to Action
•• Test all your 32Test all your 32--bit games on Windows x64bit games on Windows x64

–– 99% will just work fine99% will just work fine
–– 1% need tweaks (replace 161% need tweaks (replace 16--bit installer, tweak OS version bit installer, tweak OS version

detection)detection)
–– All drivers need to be portedAll drivers need to be ported

•• Port to 64Port to 64--bit mode and optimize performancebit mode and optimize performance
–– Familiar tools, classic optimization techniques, plus a few new Familiar tools, classic optimization techniques, plus a few new

onesones

•• MultiMulti--thread your game to leverage dualthread your game to leverage dual--core!core!
–– OpenMPOpenMP makes multimakes multi--threading very straightforwardthreading very straightforward
–– Relevant in Relevant in every application segmentevery application segment

Microsoft Tech·Ed 2004 Europe

DEV 430 51

ResourcesResources
Start now, on your 64Start now, on your 64--bit porting/optimization projectbit porting/optimization project

•• Compile with /Wp64 all the time for both 32Compile with /Wp64 all the time for both 32--bit and 64bit and 64--
bit, and use /O2b2 /GL /bit, and use /O2b2 /GL /fp:fastfp:fast for 64for 64--bit, and use bit, and use
Profile Guided Optimization. See MSFT docs on PGO, Profile Guided Optimization. See MSFT docs on PGO,
OpenMPOpenMP!!

•• Go to Go to amd.comamd.com and get all the AMD developer docsand get all the AMD developer docs
–– ““Develop with AMDDevelop with AMD”” and and ““AMD64 Developer Resource KitAMD64 Developer Resource Kit””, ,

Optimization Guide, ProgrammerOptimization Guide, Programmer’’s Manuals, etc.s Manuals, etc.
–– Download and use the Download and use the CodeAnalystCodeAnalyst profiler, for 32 and 64profiler, for 32 and 64--bit codebit code
–– Learn how to use the 64Learn how to use the 64--bit PSDK compiler with VS 6 and .NETbit PSDK compiler with VS 6 and .NET
–– Other presentations, including Other presentations, including TechEdTechEd and GDC 2003+2004 and GDC 2003+2004
–– AMD Developer Center in Sunnyvale, CA! Visit us, or remote AMD Developer Center in Sunnyvale, CA! Visit us, or remote

accessaccess

Microsoft Tech·Ed 2004 Europe

DEV 430 52

More ResourcesMore Resources
•• Go to MSDN and get the x64 Customer Preview OS, Go to MSDN and get the x64 Customer Preview OS,

Platform SDK tools, Visual Studio 2005 Whidbey betaPlatform SDK tools, Visual Studio 2005 Whidbey beta
–– Latest Windows x64 build and Platform SDK on Latest Windows x64 build and Platform SDK on WindowsBetaWindowsBeta
–– Current x64 Platform SDK based on VC6.0 Current x64 Platform SDK based on VC6.0 libslibs; for 7.1 ATL/MFC, ; for 7.1 ATL/MFC,

CRT, STL lib files: eCRT, STL lib files: e--mail mail libs7164@microsoft.comlibs7164@microsoft.com
–– DirectX for x64: already released in DirectX 9.0 SDKDirectX for x64: already released in DirectX 9.0 SDK

•• Go to MSDN and Microsoft.com for more docsGo to MSDN and Microsoft.com for more docs
–– Search for 64Search for 64--bit, AMD64, x64 or bit, AMD64, x64 or ““6464--bit Extendedbit Extended””
–– Read about new 64Read about new 64--bit compiler features, bit compiler features, OpenMPOpenMP, intrinsics, etc., intrinsics, etc.
–– Especially read about Especially read about ““WhidbeyWhidbey”” performance optimization performance optimization

featuresfeatures

•• OpenMPOpenMP is simple and powerful is simple and powerful www.openmp.orgwww.openmp.org

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft and
Windows are registered trademarks of Microsoft Corporation. Other product names used in this presentation are for
identification purposes only and may be trademarks of their respective companies.

