
Linköping Studies in Science and Technology

Dissertation No. 828

Memory Efficient
Hard Real-Time Garbage Collection

Tobias Ritzau

Department of Computer and Information Science
Linköping University, SE-581 83 Linköping, Sweden

Linköping 2003

Abstract

As the development of hardware progresses, computers are expected to
solve increasingly complex problems. However, solving more complex
problems requires more complex software. To be able to develop these
software systems, new programming languages with new features and
higher abstraction levels are introduced. These features are designed to
ease development, but sometimes they also make the runtime behavior
unpredictable. Such features can not be used in real-time systems.

A feature that traditionally has been unpredictable is garbage collec-
tion. Moreover, even though a garbage collector frees unused memory,
almost all such methods require large amounts of additional memory. Gar-
bage collection relieves developers of the responsibility to reclaim memory
that is no longer used by the application. This is very tedious and error
prone if done manually. Since garbage collection increases productivity
and decreases programming errors, developers find it attractive, also in
the real-time domain.

This thesis presents a predictable garbage collection method, real-time
reference counting, that increases memory efficiency by about 50 % com-
pared to the most memory efficient previously presented predictable gar-
bage collector.

To increase performance, an optimization technique called object own-
ership that eliminates redundant reference count updates is presented. Ob-
ject ownership is designed for reference counters, but can also be used to
increase the performance of other incremental garbage collectors.

Finally, a static garbage collector is presented. The static garbage collec-
tor can allocate objects statically or on the runtime stack, and insert explicit
instructions to reclaim memory allocated on the heap. It makes it possi-
ble to eliminate the need for runtime garbage collection for a large class of
Java applications. The static garbage collection method can also be used
to remove costly synchronization instructions. Competing static garbage
collection methods with reasonable analysis time are restricted to stack al-
location, and thus handle a smaller class of applications.

To the one
who invented

icecream

— I don’t know half of you half as well as I should like;
and I like less than half of you half as well as you deserve.

Bilbo Baggins

Acknowledgments

Jag vill börja med att tacka min handledare Peter Fritzson för handledning,
stöd och för det förtroende du har visat mig. Jag vill också tacka min bi-
handlerade Roger Henriksson för alla givande diskussioner vi har haft och
Boris Magnusson för inspiration och en arbetsplats.

Ett varmt tack går också till hela PELAB och till programvarugruppen
vid LTH för den otroligt trevliga och inspirerande forskningsmiljön jag har
fått vara en del av. Ett speciellt tack vill jag skänka till Bodil Mattson-
Kihlström för att du har hållit reda på mig.

Jag vill också tacka Gösta Sundberg, Mathias Hedenborg och Ulf Ced-
erling vid Växjö universitet. Det var ni som fick mig att fundera på forskar-
studier och de var ni som gjorde det möjligt för mig att påbörja dem. Ett
extra varmt tack vill jag ge min vän och arbetskamrat Jesper Andersson.
Hoppas att jag har hjälpt dig lika mycket som du har hjälpt mig.

Dessutom vill jag tacka Peter Fritzson, Christoph Kessler och Roger
Henriksson för de kommentarer och förbättringar ni har bidragit med efter
att ha läst avhandlingen.

Jag vill också passa på att tacka alla de lärare som under åren har fått
mig att vilja lära mig mer. Speciellt vill jag tacka Leif Svensson och Bengt-
Göran Magnusson vid Dalslundsskolan; Tomas Träpja, Klas Nilsson och
Bert Konsberg vid Pauliskolan; samt Ulf Söderberg vid Växjö universitet.

Sist och främst vill jag tacka mamma, pappa, Anja, Annette, Atlas,
Medes, Musen, Bamse och ljusstrålarna Elsa och Axel för att ni finns, för
att ni står ut med mig och för att ni gjort mig till den jag är. Och ett sista
varmt tack skänker jag till alla mina vänner.

Frid och lycka!

Tobias Ritzau
Lund, den 22 april 2003

This work has been support by the ECSEL research school, the EC funded JOSES
and HIDOORS projects, the ESA funded AERO project, and Växjö University.

Contents

1 Introduction 1
1.1 Perspective . 1
1.2 Problem Definition . 2
1.3 Contributions . 3
1.4 Thesis Organization . 4
1.5 Publications . 5

2 Real-Time Systems 7
2.1 Definition . 7
2.2 Categorizing Real-Time Systems 8

2.2.1 Interactive Systems . 8
2.2.2 Soft Real-Time . 8
2.2.3 Hard Real-Time . 8

2.3 Predictability . 9
2.3.1 Execution Time . 10
2.3.2 Memory Usage . 10

2.4 Scheduling . 11
2.4.1 Cyclic Executive . 12
2.4.2 Pre-emptive Priority Scheduling 12

2.5 Which Systems Are Hard? . 14

3 Garbage Collection Techniques 15
3.1 Terminology . 16
3.2 Reference Counting . 18

3.2.1 Lazy Reference Counting 20
3.2.2 Cyclic Reference Counting 20
3.2.3 Bobrow’s Approach to Reclaim Cycles 22
3.2.4 Deferred Reference Counting 23

3.3 Mark-and-Sweep . 24
3.3.1 Incremental Mark-and-Sweep 25
3.3.2 Yuasa’s Algorithm . 25
3.3.3 Dijkstra’s Algorithm 26

viii CONTENTS

3.4 Mark-and-Compact . 27
3.4.1 Compaction Methods 28
3.4.2 Steele’s Incremental Mark-and-Compact Algorithm . 29
3.4.3 Bengtsson’s Mark-and-Compact Algorithm 30

3.5 Copying Algorithms . 31
3.5.1 Cheney’s Algorithm 32
3.5.2 Incremental Copying Algorithms 33

3.6 Generation Scavenging . 35
3.6.1 Inter-generational References 35
3.6.2 Promotion Strategies 37
3.6.3 The Train Algorithm 37
3.6.4 Beltway Collectors . 37

3.7 Replication Copying . 38
3.8 The Treadmill . 38
3.9 Hardware-Supported Garbage Collection 41
3.10 Requirements of a Hard Real-Time GC 41
3.11 Algorithm Analysis . 42

3.11.1 Reference Counting 42
3.11.2 Mark-and-Sweep . 42
3.11.3 Mark-and-Compact 43
3.11.4 Two Sub-Heap Copying 43
3.11.5 Generational Scavenging 44
3.11.6 Replication Copying 44
3.11.7 Baker’s Treadmill . 44
3.11.8 Hardware Solutions 45

3.12 Summary . 45

4 Real-Time Reference Counting 47
4.1 Drawbacks of Standard Reference Counting 47
4.2 Eliminating External Fragmentation 48

4.2.1 Selecting the Block Size 49
4.3 Eliminating Recursive Freeing 50
4.4 Improving WCET of Allocation 50
4.5 Manually Reclaiming Cycles 51

4.5.1 Manually Breaking Cycles 51
4.5.2 Weak References . 51
4.5.3 Balloon Types . 52

4.6 Automatically Reclaiming Cycles 53
4.6.1 Mark-and-Sweep Backup 53

4.7 Design . 54
4.7.1 Configuration . 54
4.7.2 Type Definitions . 55
4.7.3 Global State . 56
4.7.4 Initialization . 57

CONTENTS ix

4.7.5 Allocation . 57
4.7.6 Increasing Allocation Performance 61
4.7.7 Releasing References 61
4.7.8 Public Interface . 61

4.8 Complexity and Overhead . 62
4.8.1 Execution Time . 62
4.8.2 Memory . 63

4.9 Emitted GC Code . 64
4.9.1 Allocations . 64
4.9.2 Reference Assignments 65
4.9.3 Method Calls . 66
4.9.4 Methods . 67

4.10 RTRC vs. The Competition . 67
4.10.1 Execution time . 67
4.10.2 Memory Overhead . 70

4.11 Summary . 72

5 Object Ownership 77
5.1 Basic Idea . 77
5.2 Owning an Object . 78
5.3 Static Analysis . 80

5.3.1 Supporting Separate Compilation 81
5.4 Benchmarks . 83
5.5 Extensions . 85

5.5.1 Explicit Freeing . 85
5.5.2 Overlapping References 86
5.5.3 Supporting Other GC Techniques 86

5.6 Summary . 86

6 Static Garbage Collection 87
6.1 Overview . 87
6.2 Optimizing Memory Management 89

6.2.1 Static Allocation . 90
6.2.2 Thread Local Allocation 92
6.2.3 Stack Allocation . 92
6.2.4 Explicit Freeing . 94
6.2.5 Variable Sized Objects 95
6.2.6 An Example . 96

6.3 Extended Escape Analysis . 96
6.3.1 The Data Flow Graph 96
6.3.2 Building the Data Flow Graph 99
6.3.3 Converting the Call Graph into a Tree 99
6.3.4 The Escape Analysis 101

6.4 Code Generator Extensions 105

x CONTENTS

6.5 Limitations . 105
6.5.1 Handling Fields . 106
6.5.2 Large Systems Can not Be Analyzed 106
6.5.3 Objects Are Kept Alive 106
6.5.4 Exceptions Are Not Handled 107
6.5.5 Finalizers Are Not Handled 107

6.6 Overcoming Limitations . 108
6.6.1 Fields . 108
6.6.2 Large Systems . 108
6.6.3 Calling Methods from Different Contexts 109

6.7 Summary . 110

7 Implementation 111
7.1 C implementation of RTRC 111
7.2 CoSy Implementation . 112

7.2.1 CoSy . 113
7.2.2 The Reference Counter Engine 117
7.2.3 The Record Splitter Engine 118
7.2.4 The Runtime System 119
7.2.5 The Compiler . 123
7.2.6 The CCMIR Engines 126
7.2.7 Future Work . 126

7.3 The Jamaica VM . 127
7.3.1 Real-Time Reference Counting 127
7.3.2 Static Garbage Collection 129
7.3.3 Debug Output . 131

7.4 Summary . 131

8 Benchmarks 133
8.1 Benchmarking a Garbage Collector 133
8.2 Control System Application 135
8.3 Java Grande Benchmarks . 136

8.3.1 Low Level Operations 136
8.3.2 Kernels . 137
8.3.3 Large Scale Applications 139

8.4 Summary . 141

9 Related Work 143
9.1 Real-Time Garbage Collection 143

9.1.1 One-Pass Real-Time Mark-and-Sweep 143
9.1.2 Henriksson’s Scheduling Strategy 144
9.1.3 Siebert’s Real-Time Mark-and-Sweep 145
9.1.4 Mostly Non-copying GC 146

9.2 GC Optimization . 147

CONTENTS xi

9.2.1 Deferred and Anchored Pointers 147
9.2.2 Reference Escape . 147

9.3 Static Garbage Collection . 148
9.3.1 Escape Analysis . 148

9.4 Region Interference . 148

10 Future Work 151
10.1 Real-Time Runtime Garbage Collection 151

10.1.1 Worst Case Memory Requirements Analysis 151
10.1.2 Reclaiming Cycles . 152
10.1.3 Mark-and-Compact GC 152
10.1.4 Optimizations . 152

10.2 Static Garbage Collection . 153
10.2.1 Inter-Procedural Def-Use Analysis 153
10.2.2 Reusing Objects in Loops 153
10.2.3 Object Inlining . 153
10.2.4 Supporting Separate Compilation 153

10.3 Dynamically Updated Systems 154

11 Conclusion 155
11.1 Garbage Collection in Real-Time 157
11.2 Selecting a Base Algorithm . 158
11.3 Contributions . 159

11.3.1 Real-Time Reference Counting 159
11.3.2 Object Ownership . 159
11.3.3 Static Garbage Collection 160
11.3.4 Usefulness of Contribution 161

A Source Code of the Reference Counter 163
A.1 rc.h . 163
A.2 rc.c . 165

B Source Code of the Object Ownership Test 171
B.1 ootest.c . 171

List of Figures

2.1 Temporal scopes . 12

3.1 Standard reference counting 19
3.2 Lazy reference counting . 21
3.3 Reference counting using Bobrow’s groups 22
3.4 Bobrow’s groups . 23
3.5 Deferred reference counting 24
3.6 The write barrier in Yuasa’s algorithm 26
3.7 Yuasa’s write-barrier . 26
3.8 Dijkstra’s incremental update write barrier 27
3.9 Dijkstra’s write-barrier . 27
3.10 The two-finger algorithm . 28
3.11 Threading objects . 30
3.12 Steele’s mark-and-compact write-barrier 30
3.13 Steele’s write-barrier . 31
3.14 Read-barrier in Baker’s copying algorithm 33
3.15 The layout of to-space in Baker’s algorithm 34
3.16 Brooks’ read and write barriers 35
3.17 Replication copying . 39
3.18 Structure of the treadmill . 40
3.19 Flipping a treadmill . 41

4.1 Configuration . 54
4.2 Type declarations . 55
4.3 Global data . 57
4.4 Initialization . 57
4.5 Allocating from the free list 58
4.6 Allocating blocks from the to-be-free-list 59
4.7 Data structures used by tbf alloc 60
4.8 Allocating objects . 60
4.9 Pre-allocating blocks . 61
4.10 Releasing objects . 62

xiv LIST OF FIGURES

4.11 Memory layout using RTRC 64
4.12 Memory usage using RTRC 65
4.13 Reference Assignment . 66
4.14 Invoking a method that returns a reference to an object . . . 67
4.15 A method using RTRC implemented in C 68
4.16 Memory layout using RT-Mark-and-Sweep 70
4.17 Memory layout using RT-Copying 71
4.18 Memory overhead of RT-Mark-and-Sweep 73
4.19 Memory overhead of RT-Copying 73
4.20 Memory overhead comparison diagram using 16 bytes blocks 74
4.21 Memory overhead comparison diagram using 32 bytes blocks 74
4.22 Memory overhead comparison diagram using 64 bytes blocks 75

5.1 Redundant reference count update 78
5.2 Inner and outer references . 79
5.3 Optimized Reference Counting 82
5.4 Object Ownership benchmark with objects that are owned . 84
5.5 Object Ownership benchmark with objects that are not owned 84

6.1 Overview of a compiler with a static GC 88
6.2 Java program that is used to present program transformations 89
6.3 Unoptimized C translation . 90
6.4 C version using static allocation 91
6.5 Java method that allocates multiple objects per invocation . 91
6.6 C version of the program in Figure 6.5 using static allocation 92
6.7 C version using thread local objects 93
6.8 C version using a local variable 93
6.9 C version using alloca() function 94
6.10 C version of using explicit free 95
6.11 Java program with three allocation statements 97
6.12 Eliminating the use of a runtime GC in Figure 6.11 98
6.13 The Java program that is presented as a graph in Figure 6.14 99
6.14 The graph of the Java program in Figure 6.13. 100
6.15 Converting the graph into a tree 102
6.16 Finding the dataflow of allocations 103
6.17 Marking the data flow of general nodes 104
6.18 Marking the dataflow of return values 104

7.1 A function using the C version of RTRC 112
7.2 CoSy . 113
7.3 BAR syntax . 115
7.4 Hello World program in C . 116
7.5 Hello World program in BAR 116
7.6 Java example for virtual tables 120

LIST OF FIGURES xv

7.7 Virtual tables using the standard implementation 120
7.8 Calling methods and accessing members in C++ 120
7.9 Virtual tables using JOC . 121
7.10 Calling virtual methods and accessing members in JOC . . . 121
7.11 The structure of JoC . 123
7.12 The structure of barc . 124
7.13 The OMIR engines of barc. 125
7.14 The CCMIR engines of barc 126
7.15 Redundant reference count updates in the JVM 128

8.1 Control system benchmarks 135
8.2 Java Grande — Section 1, Arithmetics 137
8.3 Java Grande — Section 1, Assignments 138
8.4 Java Grande — Section 1, Casts 138
8.5 Java Grande — Section 2, Kernels, Size A 139
8.6 Java Grande — Section 2, Kernels, Size B 140
8.7 Java Grande — Section 3, Large Scale Applications, Size A . 140
8.8 Java Grande — Section 3, Large Scale Applications, Size B . 141

9.1 Henriksson’s scheduling . 145
9.2 Linear LISP examples . 147

11.1 Memory usage comparison 160

— It’s a dangerous business
going out your front door.

Bilbo Baggins

Chapter 1

Introduction

This thesis presents work in the area of automatic memory management
for hard real-time and embedded systems. The motivation of the thesis is
to be able to develop hard real-time and embedded systems using mod-
ern languages. Since these languages commonly use automatic memory
management or garbage collection (GC), which traditionally has had an
unpredictable runtime behavior, we could either try to eliminate the need
for GC using manual techniques, or we could develop GC techniques for
these systems. Since GC is such a powerful tool to eliminate memory re-
lated programming errors, we decided to develop techniques to use GC in
hard real-time and embedded systems. During this work three other GC
techniques for these systems have been published. The main advantage
of our work compared to the other three is that memory utilization effi-
ciency increased by about 50 %. We have also developed an optimization
for incremental garbage collectors and a static garbage collector that aims
to eliminate the need for runtime garbage collection.

1.1 Perspective

Once upon a time, programming required a deep knowledge of how the
machines were constructed and the programmers had full control of the
execution of the system. Charles Babbage became the first programmer
when he programmed his difference machine in 1822. It was programmed
by exchanging the gears that performed the calculations. More than 100
years later in about 1945 Konrad Zuse developed Plankalkül [BW72], the
first programming language. Unfortunately, most work was lost or con-
fiscated in the aftermath of World War II and the work was not published
until 1972. Plankalkül was used to program the Z3, the first universal com-
puter in the world [Roj98].

2 CHAPTER 1. INTRODUCTION

Contemporary computers were more like calculators, and the calcula-
tions where input by punching holes in paper tapes (Z3 and Colossus) or
even by making physical changes to the hardware (ENIAC). In 1945 John
von Neumann published the EDVAC report [vN45] and Alan Turing pub-
lished the ACE Report [TCD86]. Both came to the conclusion that pro-
grams should be stored in memory in the same way as data was. This
was the birth of the computer architecture that is still used today. In 1949,
Short Code [Sch88] was introduced by John W. Mauchly, it was the first
programming languages for the new generation computers.

Programming languages has since evolved, adding features like recur-
sion, pointers, dynamic memory management, garbage collection, struc-
tured programming, object-orientation, etc. Many of these features have
become natural parts of programming languages, and most developers
can not write a non-trivial program without them. These features makes
programming less error-prone, and more complex systems can be imple-
mented. However, with a higher level of abstraction, the control of the
applications runtime behavior is lost. When developing real-time systems,
i.e. systems whose correctness is not only dependent of their output but
also on their timing, it is crucial that the runtime behavior can be predicted.

A conflict occurs when real-time systems become increasingly more
complex. Modern languages would certainly ease development and pro-
duce more stable systems, but the control of the runtime behavior is lost.
The features of modern languages are not the problem, it is the way they
are implemented that cause problems. Their implementations usually try
to optimize average performance, and not worst case performance as is
required in real-time systems. This thesis focuses on automatic memory
management of real-time and embedded systems, and presents techniques
to make it predictable and still efficient.

1.2 Problem Definition

To be able to maintain full control of the runtime behavior of a system,
it must be possible to predict the amount of resources (e.g. CPU time and
memory) that is required for any (virtual) machine level instruction and for
all runtime system work. Note that using such a system does not prevent
writing an unpredictable application. An example is an application that
waits for external events, e.g. input from a user. First, it is not always
possible to know when the event occurs, and second the data passed with
the event may be unknown. Thus, developers must still follow rules to
handle such cases.

Early implementations of new languages are typically designed to be
easy to implement and prove correct. Then follows optimizations for the
average case, which is commonly interactive window based applications

1.3. CONTRIBUTIONS 3

or possibly servers. Techniques that are optimized for such systems are sel-
dom appropriate for hard real-time and embedded systems, because their
target systems need not be predictable and they have much more memory
resources available.

To be more specific, garbage collection algorithms may be designed to
interrupt the application for short time periods in the general case, but it
need not be guaranteed that it will collect all garbage memory before the
system runs out of memory. If the memory runs out, the system can be
stopped to collect the remaining garbage memory. Such stop may take
a second or two, but that does not matter to these systems. Unfortunately
many such techniques are called real-time garbage collectors, which is con-
fusing. Another problem with garbage collectors is that they consume very
much memory. The runtime systems that use real-time garbage collectors
that guarantee memory availability need about 70 % of the system mem-
ory for internal use, which leaves about 30 % for the application. A large
contribution to the overhead comes from the memory that is needed to al-
locate objects while the garbage collector collects garbage memory. This
alone typically causes an overhead of about 50 %.

The garbage collector is not the only part of a runtime system that needs
to be redesigned to make it predictable. Examples of other parts that need
attention are thread support, synchronization, messaging, and some com-
plex instructions. This is, however, out of scope for this thesis.

1.3 Contributions

The main contributions of this work can be divided into three parts.

Hard Real-Time Garbage Collection Real-Time Reference Counting, or
RTRC for short, is a real-time garbage collection technique based on refer-
ence counting. Its main advantages are that the memory usage efficiency
is increased with approximately 50 % compared to competing techniques,
and that the synchronization that is required only locks the system for a
few machine instructions.

Garbage Collection Optimization Object ownership is an optimization
technique for incremental garbage collectors. It optimizes the code needed
to maintain the garbage collection state when one reference is known to
keep an object alive. That is, the garbage collector can ignore other refer-
ences to an object if one reference is known to refer to the object during the
life times of the other references. It can typically be applied to the formal
parameters of methods, since the passed objects are commonly referred to
by the calling method. It can also remove overhead caused by temporary
variables. The optimization can work in two modes, either a conservative

4 CHAPTER 1. INTRODUCTION

mode, or a more aggressive mode that also requires some memory over-
head in each object. In the conservative approach the overhead caused by
the write-barrier is completely eliminated, and using the other approach
the execution time performance of the write-barrier increases with up to
75 %.

Static Garbage Collection A problem that remains is how to predict the
memory usage of an application. No garbage collector can keep a system
from running out of memory if it uses more memory than is available. By
using static analysis, the task of predicting memory usage can be simpli-
fied. A static garbage collector determines when objects can be reclaimed
at compile-time. This information can be used to optimize allocations and
to insert explicit free instructions. As a side effect, the task of calculating
how much memory an application requires is greatly simplified. The static
garbage collector presented here is not limited to stack allocation, as other
static garbage collectors with a reasonable analysis time. By using the static
garbage collector presented in this thesis, many real-time systems can be
designed to execute without a runtime garbage collector, which increases
performance and the ease of proving them correct.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 gives a short introduction to real-time systems. Common ap-
proaches are presented, and problems are discussed.

Chapter 3 presents basic garbage collection techniques that most new gar-
bage collectors are based upon. The chapter is concluded with a dis-
cussion of which technique to use as the basis of our real-time gar-
bage collector.

Chapter 4 presents the Real-Time Reference Counting technique. First the
problems of the standard reference counting technique are presented,
followed by their solutions. The full design is then presented with a
discussion of how it can be implemented. The chapter is concluded
by a theoretic comparison in both execution time and memory usage.

Chapter 5 presents an optimization technique, called Object Ownership for
RTRC. Even though it is designed for RTRC it can be used to optimize
all incremental garbage collectors. A benchmark of a version of the
technique is also presented.

Chapter 6 presents the design of the static garbage collection technique. The
chapter also contains a discussion of some shortcomings of the tech-
nique and how to solve these problems.

1.5. PUBLICATIONS 5

Chapter 7 presents implementations of the techniques presented in the
thesis in three different runtime systems. The first implementation
is of RTRC in C. Some manual work is needed to use it, but it gives
the developer direct control of the generated code. Then follows a
presentation of the RTRC implementation in the CoSy framework,
which is an industrial strength compiler framework. The third im-
plementation is that of the static garbage collector in the Jamaica VM.
The Jamaica VM is a commercially available real-time Java imple-
mentation. It is currently the only Java implementation with a run-
time system that has been published and proved predictable.

Chapter 8 presents measurements of the C and CoSy implementations of
RTRC and discusses the results.

Chapter 9 presents related work.

Chapter 10 presents some ideas of future direction of this work.

Chapter 11 concludes the work presented in this thesis.

1.5 Publications

This thesis is partially based on publications of the RTRC listed below. The
Object Ownership optimization and the static garbage collector have not
yet been published. However, we plan to submit articles that present the
techniques to conferences and journals.

[Rit99c] Tobias Ritzau. Real Time Reference Counting in RT-Java. Licentiate
thesis, Linköping University, March 1999.

[RBLP00] Tobias Ritzau, Marcel Beemster, Florian Liekweg, and Christian
Probst. JoC — the JOSES compiler. Presented at the Java for
Embedded Systems Workshop, London, May 2000.

[Rit01] Tobias Ritzau. Hard real-time reference counting without ex-
ternal fragmentation. In Dr. Uwe Assmann, editor, Java Opti-
mization Strategies for Embedded Systems Workshop at ETAPS 2001,
Genova, Italy, April 2001.

[RF02] Tobias Ritzau and Peter Fritzson. Decreasing memory overhead
in hard real-time garbage collection. In Alberto L. Sangiovanni-
Vincentelli and Joseph Sifakis, editors, Embedded Software, Second
International Conference, EMSOFT 2002, Grenoble, France, October
7-9, 2002, Proceedings, volume 2491 of Lecture Notes in Computer
Science, pages 213–226. Springer, 2002.

6 BIBLIOGRAPHY

We also consider the possibility of integrating RTRC with the JDrums
technique as presented in the following publications. JDrums is a frame-
work for dynamic updating of executing Java applications.

[ACR98] Jesper Andersson, Marcus Comstedt, and Tobias Ritzau. Run-
time support for dynamic Java architectures. In Proceedings
of the Workshop on Object-Oriented Software Architectures. The
ECOOP’98 Workshop on Object-Oriented Software Architec-
tures. Brussels, July 1998.

[AR00] Jesper Andersson and Tobias Ritzau. Dynamic code update in
JDrums. In Procedings of the First workshop on Software Engineer-
ing for Wearable and Pervasive Computing (SEWPC) in Conjunction
with ICSE’2000, Limerick, June 2000.

— A wizard is never late, Frodo Baggins, nor is he early.
He arrives precisely when he means to.

Gandalf

Chapter 2

Real-Time Systems

This chapter gives a brief overview of real-time systems. It is presented
here to give the reader an insight in the systems we are targeting, not to
give a full introduction to the topic. Burns and Wellings [BW89] give a
good starting point for deeper study of this topic.

2.1 Definition

There are many interpretations of the term real-time system. The Oxford
Dictionary of Computing gives the following definition:

Any system in which the time at which output is produced is sig-
nificant. This is usually because the input corresponds to some move-
ment in the physical world, and the output has to relate to that same
movement. The lag from input time to output time must be suffi-
ciently small for acceptable timeliness.

Burns and Wellings [BW89] are more concise when they state:

The correctness of a real-time system depends not only on the logi-
cal results of the computation, but also on the time at which the results
are produced.

All agree that time is an important factor and that the system must re-
spond within a specified time, a deadline. The consequence of missing a
deadline might not be critical in some systems, but in other it might be
disastrous. It is common to model a real-time system by dividing it into
separate tasks. These tasks can, for example, be implemented using pro-
cesses, threads or co-routines.

8 CHAPTER 2. REAL-TIME SYSTEMS

2.2 Categorizing Real-Time Systems

The terms soft and hard real-time systems are often used to categorize real-
time systems. Another category, interactive systems, is closely related to
soft real-time systems. The borders between these categories are very un-
clear, and it is not always easy to decide to what category a system belongs.

2.2.1 Interactive Systems

Interactive systems have an active dialog with their users. Normally the
users of an interactive system want response as soon as possible, but it is
also important to keep the variance of the response limited. If an inter-
active system normally responds within tenths of a second, and in some
cases after a few seconds, it could lead to repeated input from the user. An
example of systems having problem with this are the early digital satellite
receivers which sometime have a terrible response time that often lead to
repeated input. This is extremely annoying when the input toggles a fea-
ture. However, most systems are so fast that the variance is not a problem.

Other examples of interactive systems are calculators, database front-
ends, and the editor in which this thesis is written. Most of these systems
do not have any specified deadlines and no analysis is performed to guar-
antee response time. In the worst case a slow response lead to annoyance
(which on the other hand could render the system useless.)

2.2.2 Soft Real-Time

A soft real-time system has specified deadlines, but an occasional slightly
missed deadline does not lead to disaster. However, the quality of the
result is reduced. Multi-media systems, e.g. audio and video decoders,
are examples of soft real-time systems. At worst a single missed deadline
would cause a hardly noticeable jerk in the audio or video stream. This
does not mean that deadlines can be ignored, since no user would like to
use a decoder that produces jerky output.

Another example is a freezer. An occasionally slightly missed deadline
does not cause any problems or is easy to fix afterward. However, if misses
are frequent or large it causes the system to malfunction, which in turn
could cause the food in the freezer to go bad. Which indeed is a disaster if
that is the only food you have.

2.2.3 Hard Real-Time

A hard real-time system has strict deadlines that should be guaranteed to
be met at all times. Even an occasional slightly missed deadline in a hard
real-time system could lead to a disaster, e.g. fatalities or large financial

2.3. PREDICTABILITY 9

losses. Examples of hard real-time systems are airplane flight controllers
and medical equipment. These systems must, in all cases, meet their dead-
lines.

However, many hard real-time systems can cope with an occasional
slightly missed deadline, i.e. a missed deadline is not necessarily fatal.
A missed deadline in an airplane control system could send the plane off
course for a moment, which is not a problem during mid-flight, but if it
happens during the landing of a plane, it might crash.

Another example of a hard real-time system is a paper mill controller.
The paper should be stretched at all times, and if a missed deadline causes
too much tension, the paper might tear which causes a lot of extra work
and thus financial losses.

2.3 Predictability

To be able to meet a deadline the system must be predictable, i.e. it must
be possible to foresee the runtime behavior of the system for all possible
inputs.

Some literature [BW89] goes to an extreme and prohibits the use of cer-
tain language features. These include:

• recursion

• dynamic allocation of memory

• dynamic creation of processes

This is too restrictive for others. Generally, the features listed above might
be unpredictable, but they can be implemented to be predictable and then
they can also be used. It is customary that loops are given an explicit max-
imum loop count. The same can be applied to recursion to make it as pre-
dictable.

Under normal circumstances, dynamically allocating memory would
interfere with the virtual memory manager, which has terrible worst case
execution time. However, using virtual memory in real-time system might
not be a good idea anyway. Dynamically allocating memory can be im-
plemented in a fully predictable manner as described in Chapter 4. As an
alternate work-around a simple memory manager can be implemented by
keeping a pool of memory regions that can be allocated predictably by the
system.

Creating new processes need not be a problem. However, scheduling
the new process might be. An alternate solution would be to use a pool of
idle processes which are scheduled using specified parameters, e.g. with
preset frequencies.

10 CHAPTER 2. REAL-TIME SYSTEMS

An important property of a real-time system is that its resource usage
must be predictable in a way that the system does not fail because of re-
source shortage. Two important resources are execution time and memory.
These are discussed in the following sections.

2.3.1 Execution Time

There must be an upper bound of the execution time of all tasks regardless
of input. This bound is called worst case execution time (WCET). To be able
to calculate an upper bound, all possible execution paths need to be con-
sidered. Certain programming features can cause infinite execution paths,
and should be used with caution. These include while-loops and recursion.
It is common to limit the number of iterations in loops and the depth of re-
cursions. Recursion can also cause the stack to overflow, so extra caution
is needed if it is used.

Virtual method calls can cause very pessimistic WCETs if methods are
analyzed separately. If a method is redefined in several subclasses and
there is no knowledge of the exact types of the objects, all methods need to
be taken in consideration. Inter-class analysis is needed to limit the possi-
ble types of objects. One such approach is rapid type analysis [Bac97]. The
same problem may occur in all selection statements. Common solutions
include using constant propagation and interval analysis.

2.3.2 Memory Usage

Since all possible execution paths are needed to calculate the WCET, it is
also known how memory is allocated. However, the memory analysis is
more complicated since the size of memory regions need not be constant,
and because of internal and external fragmentation. External fragmenta-
tion occurs when no contiguous memory region is large enough to fit a
new object, but the total amount of memory is larger than the object. Inter-
nal fragmentation occurs when more memory than requested is allocated,
which causes unused memory in the in the end of the allocated memory.
If a garbage collector is used, the problem is even more difficult since the
instructions that reclaim memory are not explicit. Thus, it is hard to tell
when the garbage collector will be able to reclaim memory.

The amount of memory allocated at every allocation must be limited.
Constant propagation and interval analysis are useful if the size is not con-
stant. The fragmentation problem is more serious. Depending on the allo-
cation strategy, the internal fragmentation may be predictable (but maybe
not constant.) However, most allocators give unpredictable external frag-
mentation, i.e. no large enough contiguous memory region may be avail-
able even though the total amount of free memory is sufficient. A sys-
tem that must not fail can not suffer from external fragmentation. External

2.4. SCHEDULING 11

fragmentation can be avoided, for example using compaction and fixed
allocation units.

It is not enough to guarantee fully predictable allocation. Deallocation
must also be predictable. That problem is strongly connected to the prob-
lems of allocation, but if automatic memory management, or garbage col-
lection, is to be supported the problems increase. Not only must the execu-
tion time of the garbage collector be predictable, it must also be guaranteed
that memory is reclaimed at a pace that guarantees that the system never
runs out of memory.

One might question the use of garbage collection in a real-time sys-
tem. On the other hand garbage collection relieves programmers of the
difficult task of finding positions in the code where memory can be safely
reclaimed without leaving memory leaks. However, in a real-time system
the programmers need to have full control, therefore it should be clear at
what positions memory should be reclaimed. Also, if there is a memory
related programming error in the software, a garbage collector might in-
dicate it by some missed deadlines. A system without a garbage collector
could fail completely during the same circumstances.

2.4 Scheduling

A real-time system consists of a set of tasks. A task is either periodic or
aperiodic. A periodic task has explicit deadlines and typically samples data
or executes a control loop. An aperiodic task is activated by an external
(asynchronous) event. An aperiodic task must respond within a specified
response time.

The notion of temporal scopes [LG85], can be used to describe the timing
specification of a real-time application. The attributes of a temporal scope
are illustrated in Figure 2.1, and include:

• Deadline

• Minimum delay

• Maximum delay

• Maximum execution time

• Maximum elapse time

To simplify the discussion we will use the term deadline for all timing
constraints. A schedule is an ordering of tasks, which may be split into sub-
tasks. A real-time system is said to be schedulable if there exists a schedule
such that all tasks will meet all upcoming deadlines.

12 CHAPTER 2. REAL-TIME SYSTEMS

Maximum elapse time

Maximum delay

Execution of task

Trigger Deadline

Minumum delay

Figure 2.1. Temporal scopes

2.4.1 Cyclic Executive

The most primitive form of scheduling a set of tasks is to do it statically
using a technique called cyclic executive. It is often required to split a task
into parts to make the application schedulable. An example is presented
below. If the number of processes is small, this approach is feasible, but
the problem gets drastically more complex when the number of tasks in-
creases. If the system contains aperiodic tasks, these must be polled.

Example – Cyclic Executive

Tasks A and B should be scheduled according to the following specifica-
tion: Task A has an execution time of 0.2 s and is periodic and should be
invoked twice every second. Task B has an execution time of 0.1 s and
should be invoked 5 times per second.

B A0 B A1 B − B A0 B A1

0 1 2 3 4 5 6 7 8 9

This solution requires a resolution of 10 units per second. Task A needs
to be split into two tasks, and one time slot is left unused. This sequence
can be repeated indefinitely, and all deadlines will be met. Thus, task A
and B are schedulable.

2.4.2 Pre-emptive Priority Scheduling

The idea is simple: assign a priority to every task, and execute the task
with the highest priority among the tasks that are ready to execute. Pre-
emptive means that a task can be interrupted by other tasks, e.g. a high
priority process can interrupt a low priority process when the high priority

2.4. SCHEDULING 13

process becomes ready to execute. Most modern (workstation and server)
operating systems use some kind of pre-emptive priority scheduling (often
in combination with other strategies.) Aperiodic tasks cause no problem
for the scheduler, but it makes schedulability analysis more complex.

One problem that can arise is priority inversion, which is best explained
in an example. Consider three tasks, A, B and C. Task A has highest priority
followed by task B, and task C has the lowest priority. First task C acquires
a mutually exclusive resource. Task A interrupts C and tries to acquire
the same resource. Task A has to wait for C to be finished, and while C
still uses the resource task B interrupts C and starts executing. Now task
A has to wait for B to finish even though A has higher priority and they
do not share any resources. This is called priority inversion. A solution is
to let C inherit the priority of A, as soon as A tries to acquire the shared
resource. Then B can not interrupt C, and A does not need to wait for B.
This technique is called priority inheritance.

It is hard to statically predict how long a task can be blocked in the gen-
eral case. Using priority inheritance this can be achieved, but the predic-
tion is usually too pessimistic. The inheritance protocol does not prohibit
deadlocks either. These problems are solved by the ceiling protocol [SRL88].
The ceiling protocol guarantees that no deadlocks occur, that chains of
blocks can not occur, and that a high priority task can only be blocked once
by a lower priority task per activation. The ceiling protocol has evolved
into the optimal mutex policy [RSLR95], which further guarantees that no
other priority inheritance policy can guarantee a better worst case block-
ing duration.

The priorities of the tasks can be assigned statically or dynamically.
Some approaches to assigning priorities are presented in the following sec-
tions.

Rate Monotonic Scheduling

A set of independent tasks can be scheduled using rate monotonic sched-
uling [CJ73]. The priorities are assigned according to the frequencies of the
tasks. Highest frequency gets highest priority. If the tasks are independent
and the overall CPU utilization is below 69 %, rate monotonic scheduling
will guarantee that all deadlines are met indefinitely. Regrettably, there are
inter-task dependencies in most real-time systems, but in combination with
for example the ceiling protocol a predictable solution can be achieved.

Another problem is how to handle aperiodic tasks. Since rate mono-
tonic scheduling is a static scheduling technique, aperiodic tasks have to
be handled as periodic tasks with a frequency. This could lead to very pes-
simistic predictions. Still, rate monotonic scheduling is a good start when
assigning priorities to tasks.

14 CHAPTER 2. REAL-TIME SYSTEMS

Earliest Deadline First

Earliest deadline first is a dynamic approach where the scheduler must have
knowledge of all tasks deadlines. The task with the earliest deadline is al-
lowed to execute first. This technique can handle aperiodic tasks as well
as periodic ones. It can also be proven that a system that can be sched-
uled using rate monotonic scheduling can also be scheduled using earliest
deadline first.

Least Slack Time First

Least slack time first is also a dynamic technique. The scheduler needs infor-
mation about all deadlines and of the execution time of all tasks. The task
with the least time left to its deadline after its execution is given control.
This scheduler can schedule all set of tasks that a rate monotonic scheduler
can handle, and can also handle aperiodic tasks well. The advantage of this
scheduler compared to earliest deadline first is that if a task takes longer
time than expected, there is a better chance that all deadlines will be met.
The disadvantage is that the scheduler needs more information, but that
information is normally available in a real-time system.

2.5 Which Systems Are Hard?

As stated above, the border between soft and hard real-time systems is
fuzzy. It is easy to separate them by saying that in hard real-time systems a
deadline must never be missed and in soft real-time systems an occasional
miss may occur. The problem becomes to decide if an occasional dead-
line can be missed or not. Most real-time systems can cope with a slightly
missed deadline, but that does not make all real-time systems soft.

When designing a real-time system one have to specify the deadlines
of the different tasks in the system. In some systems, e.g. audio and
video decoders, it is easy, since there is a specified frequency in the out-
put stream that has to be kept, but in other systems like cruise controls it
is much harder. By decreasing the frequency of the controller and give its
task longer time to complete its execution, the system need less computing
power but will act in a jerky way. The decision is often based on a com-
bination of calculations and testing. Therefore a slightly missed deadline
need not cause a system failure, even in hard real-time systems. However,
a miss might still be disastrous, therefore a hard real-time system must be
designed with that in mind.

— The time you enjoy wasting is not wasted time.

Bertrand Russel

Chapter 3

Garbage Collection
Techniques

This chapter gives an overview of fundamental garbage collection tech-
niques. These techniques are commonly used as the basis of new garbage
collectors. In this chapter we also discuss what the requirements of a real-
time garbage collector are, and the chapter concludes with a discussion of
which technique to use as the basis of our real-time garbage collector.

The purpose of a garbage collector is to reclaim memory regions that
will not be accessed in the future. Most techniques do this by reclaiming
memory that can not be referenced anymore, i.e. they reclaim memory
regions that are not referenced by any reference in the system.

By handing over the responsibility of freeing up memory to the runtime
system, many memory related programming errors are eliminated. These
errors are otherwise very hard to detect and correct, since the code where
the error is detected may have very little to do with the code that generates
the error. Typical errors are memory leaks, premature freeing, and multiple
freeing of the same region.

Memory leaks occur when allocated memory is forgotten and is not
reclaimed. A long running application with a memory leak will eventually
run the system out of memory.

If a memory region is prematurely freed, i.e. reclaimed while it is still in
use, the data in the region will be corrupted by multiple uses. This can cor-
rupt the internal data structure of the memory manager, which may cause
obscure errors later. Even if the memory manager is not corrupted, the er-
rors can be very hard to detect. Best is probably if it causes the system to
crash, since it may be much harder to find out why the output is wrong.
Symptoms from double usage may be very confusing, e.g. if the type in-
formation is changed in an object-oriented system, wrong methods may be
called.

16 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

Finally, if a region is reclaimed more than once, the internal data struc-
ture of the memory manager may be corrupted. This can cause many ob-
scure errors, e.g. a crash when the memory region is later allocated again.
All these problems can be eliminated by using a garbage collector.

3.1 Terminology

To make the presentation simpler everything that is allocated into mem-
ory regions is called objects. These objects are connected via referencesobject

that form the directed edges of the object graph in which the objects areobject graph

nodes. The objects which are directly referenced from an object, A, are
called children of A, and if A is a child of B, then B is a parent of A. An objectchild

parent can have many parents.
An application using garbage collection can be divided into a mutatormutator

and a collector. The mutator is the actual application, which mutates thecollector

object graph, hence the name. The rest of the application is called the col-
lector and performs the garbage collection work.

Objects that always exist in a system are called roots. Roots consist ofroot

permanent objects (e.g. global and static objects), run-time stacks, and pro-
cessor registers.

An object is reachable if there exists a path from one of the root objects toreachable

the object in the object graph, and objects that will be used by the mutator
in the future are called live. Note that a reachable object does not have to belive

live, but all live objects are reachable. To simplify garbage collectors, they
often assume that all reachable objects are live. This is a safe assumption,
but increases the memory usage of applications.

Fragmentation can appear in two versions. Internal fragmentation ap-internal
fragmentation pears when more memory than requested is allocated. Thus, some mem-

ory in the end of the allocated region remains unused. External fragmen-
tation, on the other hand, appears when no contiguous memory region isexternal frag-

mentation large enough, even though the total amount of unused memory is.
Some garbage collection techniques allow objects to be moved around

in memory. These techniques are denoted moving garbage collectors. Tech-moving

niques that do not move objects are called non-moving. The purpose ofnon-moving

a moving collector can be to improve cache performance, or to compactcompact

live objects, i.e. to move them into a contiguous memory range. Com-
paction eliminates external fragmentation, and since all free memory be-
comes contiguous, allocation becomes a very cheap operation of incre-
menting a pointer in the free region.

If a garbage collector performs a complete garbage collection cycle, i.e.GC cycle

finds dead objects and reclaims them each time it is invoked, long unpre-
dictable pauses may delay the mutator. An incremental garbage collector canincremental

be interrupted so that pause times of the mutator can be shorter. Garbage

3.1. TERMINOLOGY 17

collectors that can not be interrupted are called stop-the-world garbage col- stop-the-world

lectors.
While performing garbage collection work, objects can be divided into

three groups. This classification is called tricolor marking and was intro- tricolor mark-
ingduced by Dijkstra et al. [DLM+78]. The objects which have been processed

by the collector are black. This means that all children of black objects have black

been found. Objects which have been found to be reachable, but have not
yet been fully processed, i.e. all their children may not have been found,
are colored grey. The remaining objects have not yet been reached by the grey

collector; these are colored white. If an object is white when all reachable white

objects have been found, i.e. no grey objects exist, it can not be live. Thus,
it can safely be reclaimed by the collector.

If an incremental garbage collector is used, the object graph is mutated
while it is being analyzed by the collector. If a reference to a white object
is stored in a black object, it may be missed by the collector. To ensure
that this does not occur, the mutator is responsible of keeping white objects
from being referenced by black ones. This is done by inserting code barriers barriers

that protect the mutations of the object graph. Two kinds of barriers exist:
read- and write-barriers. Depending on the garbage collection technique
only one of them may be required.

A read-barrier is used to protect reference read operations so the mutator read-barrier

never sees a white object (and can thus never store references to them.) If
a white object is accessed, it has to be immediately colored grey or black.
A write-barrier, on the other hand, protects reference store operations. If a write-barrier

reference to a white object is stored in a black object, the black object could
be degraded to grey, or the white object can be colored grey (or black.)

A snapshot-at-the-beginning collector only reclaims memory that was gar- snapshot-at-
the-beginningbage at the start of the GC cycle. Thus, at the start of a new cycle a snapshot

is taken. All objects that are dead in the snapshot will be reclaimed at the
end of the cycle. A consequence of this technique is that garbage will float
from one cycle to the next where in most cases it is reclaimed. The opposite
of snapshot-at-the-beginning collectors are the incremental-update collectors incremental-

updatethat keeps the garbage collector up to date at all times. The garbage col-
lector tries to reclaim all garbage at the end of each cycle. An incremental-
update-collector can leave some garbage floating between cycles. For ex-
ample, many algorithms do not reclaim objects that are allocated during
the current cycle.

If garbage is allowed to float between cycles, it may be necessary to
complete more than one cycle to free sufficient amounts of memory. This
may lead to longer pauses for the mutator. However this is very rare and
many applications can cope with such interruptions.

All garbage collectors have to be able to analyze the object graph. Con- conservative

servative garbage collectors use heuristics to find out whether a memory cell
represents a reference or other data. The heuristics must find all references,

18 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

but may also regard other data as references. Exact garbage collectors, on theexact

other hand, have exact knowledge of the types at run-time, and can thus
use this information to find the children of every object. Some techniques
can be implemented as either conservative or exact. However, real-time
garbage collectors must be exact, otherwise they can not be predictable. In
the pseudo code that follows, it is assumed that an iterator of the children
of an object is returned using the getChildren() method.

3.2 Reference Counting

Reference counting differs radically from other garbage collection tech-
niques. Instead of having a separate collector, the collection process is in-
terleaved with the mutator using a code similar to a write-barrier. It is not
really a write-barrier, but it is used in the same way. To make comparisons
easier, the routine will be called a write-barrier in this thesis.

The idea of reference counting is to count the number of references to
each object. When the reference count falls to zero, there are no more ref-
erences to the object. Thus, the object becomes unreachable and can be re-
claimed. A problem that may arise is an overflow in the reference counter.
An overflow would cause the reference counter to be corrupted, e.g. be-
come zero, which probably causes the system to fail. There are two main
approaches to eliminate this problem. Overflows can be allowed by lock-
ing the counter at a position. The real value of the reference counter can
later be calculated by following all references and counting the references
to objects with locked reference counts. There are reference counters that
only use one bit for the reference counter to take advantage of the fact that
in some systems many objects only have one reference. The other solution
is to use a reference counter that is too large to overflow, e.g. a 32 bit ref-
erence counter in most current systems are more than enough since their
memory can not hold 232 references.

Each object must be associated with a reference count. This reference
count is updated when the number of references to the object is changed.
This happens each time a reference is assigned to a variable, when a ref-
erence is passed as an argument to a method, when a variable goes out of
scope, and when a reference is returned from a method. Reference assign-
ment is shown in Figure 3.1. Passing references as arguments to a method
increases the reference count by one. When a method returns, all local ref-
erences must be released (see Figure 3.1.) If a reference is returned from a
method, the referenced object’s reference count must be increased before
the method returns, and decreased when the return value has been passed
on to the caller of the method.

Allocation and free operations can be performed using any technique
used for manual memory management. The allocation techniques can be
chosen and tuned according to the requirements of the system.

3.2. REFERENCE COUNTING 19

algorithm release(Object obj)
obj.refCount ← obj.refCount - 1
if obj.refCount = 0 then

foreach child in obj.getChildren() do
if child �= null then

release(child)
end if

end loop
free(obj)

end if
end

algorithm write-barrier(Object in out lhs, Object rhs)
{ Maintain the reference counts of lhs and rhs }
if rhs �= null then

rhs.refCount ← rhs.refCount + 1
end if
if lhs �= null then

release(lhs)
end if
lhs ← rhs

end

Figure 3.1. Standard reference counting

It is very important to increment the reference count of the right-hand
side before the reference count of the left-hand side is decreased, otherwise
the following code would cause a serious program fault.

Foo a ← new Foo()
{ The reference count of a is 1 }
a ← a
{ If the reference count is first decremented it will reach zero! }

Even though this code looks bizarre, it is correct. The problem can also
be solved by comparing lhs to rhs in the write barrier. If they are equal,
the write-barrier does nothing. This would improve the execution time of
assignments like the one above, but slow down other assignments. While
the special assignments should be very rare, it is better to do the increment-
ing first and get rid of the problem.

If reference counting is to be used in a multi-threaded system, some
synchronization has to be performed. Problems will arise if a thread is
interrupted in the middle of an increment or decrement operation of a ref-
erence count while another thread is updating the same reference count.
To ensure that this never happens, the counter update operations must be
performed atomically.

20 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

The allocation and free operations will probably need locks as well.
This is no different from the synchronization in other multi-threaded mem-
ory allocators.

3.2.1 Lazy Reference Counting

Weizenbaum [Wei63] describes a technique to eliminate the recursive be-
havior of the decrement operation. The technique eliminates recursion by
adding objects to a list when their reference count falls to zero, instead of
decrementing the reference counts of their children. This list is called a to-
be-free list, since the objects of the list may still refer to live objects. When
a new object is needed from the to-be-free list, it is removed and then the
reference counts of its children is decremented, which may add new ob-
jects to the to-be-free list. Thus, it is important that the child references are
not corrupted when objects are added to the list. The to-be-free list can be
implemented as a linked list, and the reference count field can be used to
store the links, since the reference count is always zero when objects are in
the list. The algorithm is presented in Figure 3.2.

However, this technique can not be used directly in systems where ob-
jects have varying sizes. If differently sized objects are used, the worst case
of allocation becomes to free all objects on the heap (just to find an object
of right size.)

3.2.2 Cyclic Reference Counting

A major disadvantage of reference counting is its inability to reclaim dead
cyclic data structures. If a cyclic data structure becomes unreachable from
the roots of the system, the objects in it keep each others reference count
larger than zero. Thus, they are not reclaimed.

One approach to collect dead cyclic data structures, first proposed by
Christopher [Chr84], is to find potentially cyclic data structures and inves-
tigate whether they are isolated cycles or not. The basic idea is to inves-
tigate objects whose reference counts are decremented to a value greater
than zero. These objects could be part of isolated (dead) cycles and are fur-
ther investigated. During the investigation, the objects child references are
decremented recursively. If all traversed objects have a reference count of
zero, there are no external references. Thus, an isolated cyclic data struc-
ture has been found and can be reclaimed. If any object has a reference
count that is greater or equal to one, there is at least one external refer-
ence and all reference counts need to be restored. This is costly, and many
improvements have been proposed.

Bacon and Rajan [BR01] proposes an improvement of Christopher’s
technique. This technique compares well to other garbage collectors. Un-
fortunately, the WCET is too large for hard real-time systems. The main

3.2. REFERENCE COUNTING 21

algorithm new(int size) returns Object
{ Allocate without distorting memory (from tbf-list) }
Object obj ← allocate(size)
foreach child in obj.getChildren() do

if child �= null then
release(child)

end if
end loop

{ Call the constructor }
obj.init()
return ref

end

algorithm release(Object obj)
obj.refCount ← obj.refCount - 1
if obj.refCount = 0 then

{ Free the object without distorting the memory }
{ (add to tbf-list) }
free(obj)

end if
end

Figure 3.2. Lazy reference counting

idea is to check several sub-graphs at once, instead of doing a cycle check
each time a reference count is decremented to something greater than zero.
Herein lies the WCET problem, since all objects on the heap may need to be
investigated. Bacon and Rajan also proposes other improvements such as
marking objects that can not possibly be part of any cyclic data structures,
so these need not be checked during run-time.

We propose yet another optimization that may be successful. If all ob-
jects are marked with a time stamp, this could be checked while decreasing
reference counts. The idea is that non-cyclic references should go from a
younger object to older ones. If this property holds, no cycle could be cre-
ated if a new edge (reference) is created from a young object to an older
one. On the other hand if a younger object is referenced by an older one,
the reference can be part of a cycle. If an edge (reference) from an older
object to a younger one does not create a cycle, the younger object and the
objects that are reachable from it need to be aged to uphold the property as
described above.

This optimization will reduce the need for doing cycle checks, but it
also introduces the aging process and an extra field to store the age of an
object. A problem occurs if the age of an object overflows. This problem
remains to be solved.

22 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

algorithm write-barrier(Object lhsParent, Object in out lhs, Object rhs)
{ Only count inter-group references }
Group g ← lhsParent.group
if rhs �= null and then g �= rhs.group then

rhs.group.refCount ← rhs.group.refCount + 1
end if
if lhs �= null and then g �= lhs.group then

lhs.group.refCount ← lhs.group.refCount - 1
if lhs.group.refCount = 0 then

freeGroup(lhs.group)
end if

end if
lhs ← rhs

end

Figure 3.3. Reference counting using Bobrow’s groups

Depending on the run-time behavior of the systems, it might be better
to reverse the property and only allow references from older to younger
objects. In any case, the excessive WCET makes the solution inappropriate
for hard real-time systems.

3.2.3 Bobrow’s Approach to Reclaim Cycles

Using Bobrow’s technique, as presented in Figure 3.3, objects are divided
into groups that may contain cycles. The groups must be formed so that
no cycle involves more than one group. All groups maintain a reference
count of references from other groups (external references). An example is
presented in Figure 3.4. External references are not counted in individual
objects. All objects in a group can be reclaimed when the reference count
of a group becomes zero. Thus, cycles are collected.

The disadvantage of Bobrow’s technique is that it is difficult to assign
groups to objects. One must first decide how to divide all objects into
groups, and then it must be possible to tell the runtime system to which
group recently allocated objects belong. The latter problem is minor when
all code is written with the technique in mind. However, reusing legacy
code can cause major problem.

A major problem occurs when an object is part of more than one cycle.
Since no cycle can be part of more than one group, all cycles that share a
node must be in the same group. If a cycle becomes isolated within a group
it is still not reclaimed until the group is, neither is any other object that is
(or has been) part of the group. Thus, Bobrow’s groups do not completely
solve the problem. However, it can be useful in many cases.

3.2. REFERENCE COUNTING 23

Group A
RC: 2

Group B
RC: 2

Figure 3.4. Two groups in an object graph using Bobrow’s cycles. The
group A has a reference count of two. So does group B, since the reference
from group A is external to group B.

3.2.4 Deferred Reference Counting

Deutch and Bobrow [DB76] discovered that much time was spent updat-
ing reference counts due to local variables, i.e. variables stored on the stack.
To improve the performance, Deutch and Bobrow proposed that local vari-
ables should not update reference counts. Thus, a reference count of zero
does not mean that an object can be reclaimed, only that it is not accessed
from the heap. The decrement operation is modified to add objects with a
reference count of zero to a table called Zero-Count-Table (ZCT). This table
has to be fast and is commonly implemented as a hash table or a bitmap.
Since the decrement operation does not reclaim memory, a separate routine
must be used for that. This routine scans the stack and increment the ref-
erence counts of all objects that are referred from the stack. Then, the ZCT
is traversed to find objects with a reference count of zero. These objects are
neither referred from the stack nor from the heap, and can be reclaimed as
before. Finally the reference counts of objects referred from the stack need
to be reset by decrementing them again. The algorithms are presented in
Figure 3.5.

Unfortunately, deferred reference counting is not suitable for hard real-
time. First, objects are not reclaimed immediately when they become un-
reachable. Thus, memory usage is increased. And second, the routine that
collects garbage can not be interrupted, which is unacceptable in most hard
real-time systems.

24 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

algorithm decrement(Object obj)
obj.refCount ← obj.refCount - 1
if obj.refCount = 0 then

zct.add(obj)
end if

end

algorithm increment(Object obj)
obj.refCount ← obj.refCount + 1
zct.remove(obj)

end

algorithm collect()
foreach obj in the stack do

increment(obj)
end loop
foreach obj in zct do

if obj.refCount = 0 then
foreach child in obj.getChildren() do

decrement(child)
end loop
free(obj)

end if
end loop
foreach obj in the stack do

decrement(obj)
end loop

end

Figure 3.5. Deferred reference counting

3.3 Mark-and-Sweep

Mark-and-sweep collectors perform the garbage collection in two phases.
First, live memory is marked by traversing the object graph starting at the
roots. Next all unmarked memory is reclaimed in the sweep phase. The
algorithm starts by marking the roots. Marking an object includes finding
its children and marking them. By marking the roots, all reachable objects
will be marked. The sweeping phase traverses the heap and all unmarked
objects found are reclaimed.

It is a common choice to start the garbage collector from the memory
allocation function. In a non-incremental algorithm the collector is often
started when the system runs out of memory. When using incremental
collectors, some work is commonly performed every time memory is allo-
cated. The amount of work in each increment is often proportional to the
amount of allocated memory.

3.3. MARK-AND-SWEEP 25

3.3.1 Incremental Mark-and-Sweep

The classical implementation of the mark phase is recursive. However, that
is not suitable if the collector is to make small increments at each invoca-
tion. A frequent solution is to use a mark stack where all grey objects are
stored. When using a mark stack, only one bit is required to represent the
color of an object. All objects on the mark stack are grey. Objects which are
not on the mark stack are white if the mark bit is unset, otherwise they are
black.

Numerous incremental mark-and-sweep garbage collectors have been
proposed. In this section two algorithms are briefly described. The first
algorithm is a snapshot-at-the-beginning-collector by Yuasa [Yua90], the
other is an incremental update algorithm by Dijkstra et al. [DLM+76].

3.3.2 Yuasa’s Algorithm

Since Yuasa’s algorithm is a snapshot-at-the-beginning algorithm, it is the
most conservative of these algorithms. The algorithm works in one of three
phases: idle, marking, or sweeping. The algorithm starts out in the idle
phase. Each time an object is allocated, the amount of free memory is
checked against a threshold value. If the amount of free memory is lower
than the threshold, the collector goes into the marking phase, marks all
roots except the stack as grey, and makes a copy of the runtime stack. The
stack is copied to get a snapshot of the state at the beginning of the GC
cycle.

During the marking phase, a write-barrier ensures that the object ref-
erenced by the left-hand side of the assignment is colored grey if it was
previously white (see Figure 3.6 and 3.7). When an object is allocated dur-
ing the marking phase, the collector starts traversing the object graph. The
traversal finishes when a fixed number of objects have been processed or
when the mark stack is empty. If the mark stack is empty, objects from the
copied program stack are pushed onto it. The number of transferred ob-
jects is limited by a constant. If the copied stack also becomes empty, the
collector goes into its sweeping phase.

Allocations in the sweeping phase are preceded by a sweep of a con-
stant number of white objects. When all white objects have been swept,
the collector goes back into its idle phase.

Except for the write-barrier, all work in Yuasa’s collector is done while
allocating new objects. When the collector is invoked, it always processes
a fixed number of objects. Consequently, Yuasa describes this algorithm as
real-time even though no guarantee of memory availability is given. The
only guarantee that is given is the WCET of the barrier.

Even though this is a snapshot-at-the-beginning algorithm, new objects
are not necessarily marked black. During the idle phase all objects are

26 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

algorithm write-barrier(Object in out lhs, Object rhs)
{ Color lhs grey if it is white }
if phase = marking then

if lhs.isWhite() then
gcStack.push(lhs)

end if
end if
lhs ← rhs

end

Figure 3.6. The write barrier in Yuasa’s algorithm

(a) Before (b) After

Figure 3.7. Yuasa’s write-barrier

marked white, during the mark phase they are marked black, and all ob-
jects allocated “behind” the sweeping front are allocated white when the
collector is sweeping, the ones that risk being swept are allocated black.

The write-barrier is special since it permits a white object to be ref-
erenced from black objects, but the implementation guarantees that the
white object is referenced from at least one other reachable object, other-
wise it could not be referenced in the assignment. The object referring
to the white object must be non-black, otherwise the white objects would
have been non-white. Thus, the white object will be found by the collector
if it is reachable at the end of the mark phase.

3.3.3 Dijkstra’s Algorithm

Dijkstra et al. has presented an incremental-update garbage collector based
mark-and-sweep [DLM+76]. The algorithm is designed to be simple to
prove correct. Even though it is an incremental-update-collector, it is quite
conservative. The write-barrier, shown in Figure 3.8 and 3.9, shades the
right-hand side of the assignment to grey if it was previously white. This
ensures that there can be no reference from a black object to a white one.

3.4. MARK-AND-COMPACT 27

algorithm write-barrier(Object out lhs, Object rhs)
{ Color rhs grey is it is white }
lhs ← rhs
if rhs.isWhite() then

rhs.setColor(grey)
end if

end

Figure 3.8. Dijkstra’s incremental update write barrier

(a) Before (b) After

Figure 3.9. Dijkstra’s write-barrier

To simplify the proof of this algorithm the free-list is considered to be
reachable and should also be marked. This implies that all new objects
are allocated as grey or black, depending on the color of the head of the
free list. Thus, a new object survives at least one cycle, even if it becomes
unreachable before the end of it.

To determine when the marking phase is over, the run-time stack is
scanned for grey objects. If a grey object is found, the marking starts from
that object. This gives a worst-case execution time which is quadratic to the
size of the heap. Kung and Song [KS77] have improved the performance
of the algorithm using auxiliary data structures.

3.4 Mark-and-Compact

If fragmentation is a problem, a solution is to compact the heap, i.e. to
move objects so that free memory becomes contiguous. Since the heap is
compacted, the sweep phase is superfluous.

28 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

First free

First free

Last live

Last live

Dead object

Live object

Figure 3.10. The two-finger algorithm

3.4.1 Compaction Methods

Compacting the heap includes moving live regions and updating pointers
to the regions which have been moved. Several mark-and-compact tech-
niques have been proposed.

Two-Finger Algorithm

This algorithm, described by Saunders [Sau74], is designed for equal sized
objects. Two pointers are used to point out the first free region, and the
last reachable region (see Figure 3.10). Objects are moved from the end of
the heap to the first free slot. When the two pointers meet, all memory is
compacted. Forward references, which are stored in the first cell of moved
objects, are then used to update references from other objects. The algo-
rithm does not require any extra space (except for the mark bit), but the
objects are re-ordered. This is not a problem in most systems, but some
systems depend on the ordering of objects.

Forwarding-Address Algorithm

These algorithms can keep variable sized objects in order. An extra field
is used to store a forward reference in each object. Different strategies can
be used to compact live regions. In some cases it is important to keep the
objects in order, but other strategies can be used to save time.

The drawback of these algorithms is the space overhead and an extra
phase to compute the new addresses of objects (the two-finger algorithm
computes new addresses while objects are being moved.)

3.4. MARK-AND-COMPACT 29

Table-based Methods

These methods need no extra memory to keep live regions in order. In-
stead holes between live regions are used to temporarily store a table of
information on where the regions have been moved to.

The table-based method of Haddon and Waite [HW67] starts by slid-
ing live regions towards the top of the heap. The table is used to log the
original starting address of each region and how far it is moved. To im-
prove performance, the table is sorted according to the start address of the
regions. In the last phase all references are updated by looking up how far
each object has been moved.

Threaded Methods

These methods do not scan the heap to find which pointers to update as the
algorithms above do. During garbage collection, a cell in each referenced
object is replaced by a reference to the head of a list containing all fields
(not objects) referring to the object. The last element of the list contains the
value which was replaced by the reference to the list. Thus, it must be pos-
sible to distinguish a value from a pointer to distinguish a pointer from the
end of the list. The data structure is only used during garbage collection.
All pointers are restored when the collection cycle finishes. Fisher [Fis74]
was first to find an effective way of building the lists and restoring the ob-
ject graph. Since the object graph is distorted during reference updates, the
mutator has to be locked during that phase. Thus, these algorithms are not
appropriate in real-time systems.

Figure 3.11 shows how objects are threaded. Objects A and B refer to
object C. During reference updates, the field x in C is replaced by a pointer
to the field in A which references C. The reference in A is then replaced by
a pointer to B’s reference to object C. The reference in B is finally replaced
by the original value of x. This list is then traversed to update references to
C.

3.4.2 Steele’s Incremental Mark-and-Compact Algorithm

Steele has presented an incremental mark-and-compact technique that is
designed for multi-processor systems consisting of one list-processing pro-
cessor and one garbage collector processor [Ste75, Ste76].

The algorithm is a two-finger algorithm, but it also keeps free-lists and
can be used in a non-compacting mode if the compaction and pointer up-
date phases are disabled.

The mark phase is less conservative than Yuasa’s. In the write-barrier,
the object which contains the left-hand side reference is colored grey if
the assignment would create a black to white reference (see Figure 3.12
and 3.12). Thus, a grey to white reference is created and the new object

30 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

c : C

x : X = bar

b : B

c : C

a : A

c : C

(a) Mutator Execution

c : C

x : X

b : B

c : C = bar

a : A

c : C

(b) During threading

Figure 3.11. Threading objects

algorithm write-barrier(Object lhsParent, int offset, Object rhs)
{ Color rhs grey if it is white and the parent is black }
lhsParent.data[offset] ← rhs
if phase = marking then

if lhsParent.isBlack() and rhs.isWhite() then
lhsParent.mark ← false
gcStack.push(lhs)

end if
end if

end

Figure 3.12. Steele’s mark-and-compact write-barrier

might be reclaimed if the reference is discarded before the end of the cycle.
Thus, the GC takes a step back by changing a black object into a grey one,
but this makes the algorithm less conservative.

Steele’s write-barrier takes three arguments: a reference to the objects
where the reference will be stored, the offset of the field where the reference
will be stored, and the reference which will be stored. This can not be
applied to local references. Local references are stored on the run-time
stack. Thus, they will be marked when the roots are scanned.

3.4.3 Bengtsson’s Mark-and-Compact Algorithm

Bengtsson describes an incremental mark-and-compact algorithm for use
in real-time systems [Ben90]. The heap is divided into three areas. Area
A should be large enough to hold all live objects. Areas B1 and B2 should
be equally sized and large enough to keep all objects which are allocated
during the period of a GC cycle.

To eliminate the reference update phase, all objects are accessed via an

3.5. COPYING ALGORITHMS 31

(a) Before (b) After

Figure 3.13. Steele’s write-barrier

object table. Thus, only references in the object table have to be updated.
To find the reference in the table, each object keeps a pointer to its reference
in an extra field.

Marking is done using a mark stack. Bengtsson uses the same write-
barrier as Dijkstra does, i.e. the left-hand side is shaded before the assign-
ment (see Figure 3.8 on page 27.) When the mark stack is empty, there are
no more grey objects and the mark phase is finished.

The garbage collector now goes into its compaction phase. During com-
paction areas A and B1, or A and B2 are compacted into A. A and B1 are
compacted during even GC cycles, and A and B2 is compacted during
odd GC cycles. Compaction is performed by scanning the areas involved.
When a marked object is found, it is moved into the lowest free address in
A, and the reference in the object table is updated. If an unmarked object
is found, it is ignored. While memory is compacted, allocation is done in
the B area which is not being compacted. This region is empty.

As soon as memory is compacted, allocation can be done in A. When A
is exhausted, a new cycle starts, and allocation is continued in B1 during
odd GC cycles, and in B2 during even GC cycles.

3.5 Copying Algorithms

A copying garbage collector uses a heap which is divided into two or more
sub-heaps. This section describes two sub-heap versions.

The two sub-heaps are labeled to-space and from-space, respectively.
All objects are allocated in to-space where all live memory regions reside.
When to-space is full, a flip is performed. First the labels are swapped, i.e.
to-space becomes from-space and from-space becomes to-space. Next, the
roots are copied from from-space (previously called to-space) into to-space.
When an object is copied, all children of that object are copied too. When

32 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

all live objects have been copied, all pointers have to be updated to point
to the new copies of the objects. Finally the garbage collector hands over
control to the mutator.

An advantage of a copying garbage collector is that when the objects
are copied, they are compacted. Thus, a copying garbage collector does
not suffer from external fragmentation. Because the memory is compacted
and placed at one end of the heap, allocation of n bytes can be done by
simply sliding a pointer n positions in the free memory region.

An advantage of the technique is that the running time of the garbage
collector is proportional to the number of live objects. Thus, a large heap
size does not affect the running time of the collector, and the collector can
be run less frequently. Appel [App87] has demonstrated that using a “stan-
dard” computer with a heap size seven times larger than the amount of live
memory, a copying garbage collector is faster than stack allocation! How-
ever, Miller and Rozas [MR94] have demonstrated that stack allocation can
be performed even faster than allocation using copying garbage collection
on some platforms.

3.5.1 Cheney’s Algorithm

A naive implementation of a copying collector would be recursive. Recur-
sive implementations have the disadvantage that the depth of the runtime
stack is crucial. An elegant iterative copying collector is described be Ch-
eney [Che70].

A GC cycle starts by copying the roots into to-space. When an object is
copied, the new address is stored in the from-space copy. Since the from-
space copy will never be referred to again, the forward address can over-
write data in the object. Thus, no extra field is needed.

Objects in to-space are grey or black. To separate grey objects from
black ones, a pointer named scan is used. Objects to the left of scan have
been scanned and are thus black. The object that scan points to is being
scanned. While an object is being scanned, its children are examined. If a
child reference refers into from-space and the object has not been copied, it
is copied into to-space and the child reference is updated to refer to the to-
space copy. If the child has been copied, the child reference is updated to
refer to the to-space copy using the forward address stored in from-space.
When all roots have been copied and all copied objects have been scanned,
the collector is finished.

The algorithm is a stop-and-copy algorithm, because it stops the muta-
tor to perform garbage collection. Thus, it may interrupt the mutator for
long periods of time which makes it unsuitable for use in most real-time
systems.

3.5. COPYING ALGORITHMS 33

algorithm read-barrier(Object in out obj)
{ Copy the object into to-space if it is in from-space }
obj ← obj.copy()

end

Figure 3.14. Read-barrier in Baker’s copying algorithm

3.5.2 Incremental Copying Algorithms

A major problem when interleaving garbage collection work with the mu-
tator is synchronization. The mutator must not update an object which is
being copied. Thus, the collector has to lock the mutator when copying an
object, or be prepared to restart the copying if the object is updated. Un-
conditionally locking the mutator can be fatal in real-time systems, if object
size is not limited. If copying is to be restarted, it is difficult to guarantee
the collector’s progress.

Baker’s Copying Algorithm

This incremental copying algorithm is described by Baker [Bak78b]. In a
non-incremental copying algorithm, objects in from-space are white, and
the objects in to-space are grey or black depending on whether their chil-
dren have been found or not. When using an incremental update technique
the mutator must not create any black to white references (if there are no
other references from a reachable non-black object to the white one.) To
ensure this property, a read-barrier copies all objects seen by the mutator.
Since no white objects can be seen by the mutator, there can be no black
to white pointers. Copied objects are found using a forward pointer as in
Cheney’s algorithm.

Cheney’s algorithm allocates new objects in the memory region directly
after the objects which have been copied. While allocation is interleaved
with copying in an incremental algorithm, it is impossible to tell at which
memory position the allocations should start. Thus, Baker chose to allocate
objects from the top instead.

Baker has chosen to allocate all objects black, thus in to-space. New
objects are allocated from the top of to-space at the same time as objects
are being copied to the bottom of to-space. A flip has to be performed
when the two regions meet. It is crucial that all live objects are copied to
to-space before the flip is made. If not, the application cannot continue.

Three pointers scan, B (bottom), and T (top), are used to divide to-
space into grey, black, and newly allocated objects as shown in Figure 3.15.

Cheney’s copy function has to be adjusted to move the objects to the B
pointer (and increment it.) It also has to check whether B passes T, which
should cause the system to be aborted. The allocation function adjusts the
scan and T pointers.

34 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

Copied and
scanned

Newly
allocated

Copied Free

tospace scan TB

Figure 3.15. The layout of to-space in Baker’s algorithm

The collector must also copy objects which are not accessed. Baker’s
algorithm does this when new objects are allocated. Each time an object
is allocated, k grey objects are scanned, and their children are copied. The
value of k has to be carefully chosen. If it is too small, the application will
abort because a flip will be performed before all live objects are copied into
to-space. On the other hand, if k is too large, the application will not run
smoothly due to long interrupts.

Brooks’ Algorithm

Many garbage collection algorithms have been optimized by using a write-
barrier instead of a read-barrier. This improves the performance in most
cases, because read operations are generally more frequent than write op-
erations. Brooks [Bro84] modified Baker’s algorithm to use a write-barrier
and a very lightweight read-barrier, instead of an expensive read-barrier.

Baker chose to copy every object seen by the mutator to ensure the no-
black-to-white-pointer property. Thus, the mutator can never see a white
object and no black-white pointers can be created. Brooks found it too ex-
pensive to risk copying an object at every read operation. If no read-barrier
is used to copy objects seen by the mutator, the mutator must be able to ac-
cess objects in both to- and from-space. To ensure that no black-to-white
pointers are created, the write-barrier copies left-hand side objects into to-
space (in a way similar to Dijkstra and Bengtsson.) While all references
refer to grey or black objects, no black-to-white pointers can exist.

The mutator refers to all objects via a forward reference stored in each
object. If the object has been copied, the forward reference refers to the
to-space copy, otherwise it refers to the from-space copy. The forward ref-
erence must be stored in a separate field, because it is impossible to dis-
tinguish a forward reference from any other reference. Thus, the penalty
for the faster read-barrier is extra space for the forward references and an
indirection at access (the read-barrier.)

3.6. GENERATION SCAVENGING 35

algorithm write-barrier(Object out lhs, Object rhs)
{ Copy rhs to to-space if it is in from-space }
if rhs.inFromSpace() then

if not rhs.isEvacuated() then
Object newCopy ← rhs.copy()
B ← B + rhs.size
rhs.forward ← newCopy
newCopy.forward ← newCopy

end if
rhs ← rhs.forward

end if
lhs ← rhs

end

algorithm read-barrier(Object in out obj)
obj ← obj.forward

end

Figure 3.16. Brooks’ read and write barriers

3.6 Generation Scavenging

By studying lifetimes of objects, it has been shown that most objects die
shortly after their allocation [Ung84]. Objects which have lived longer are
less probable to die. The idea of generation based collection is to scan
young objects more often than older ones. This can be done by extend-
ing the copying technique, as described above, to use more than two sub-
heaps. Other techniques can also be used, as the generational GC based
on mark-and-sweep in Section 9.1.1, but most generational collectors are
based on copying collectors. This section will only describe garbage collec-
tors based on the copying technique.

3.6.1 Inter-generational References

When a generation is collected, references from other generations have to
be taken into account. Usually all younger generations are collected when
an older one is collected. Thus, references from younger generations need
no extra attention, but references from older generations to younger ones
have to be considered. Several techniques to solve this problem have been
proposed. These include:

Entry Tables

Each generation keep an entry table [LH83]. When a reference to an ob-
ject in a younger generation is stored in an object of an older generation,

36 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

a write-barrier stores the reference to the younger object in its entry table.
The reference stored in the older object is the reference to the cell in the
entry table. A read-barrier is used to detect references to younger genera-
tions, and returns the value of the cell in the entry table. When a generation
is collected it has to take references in the entry table into account.

Remembered Sets

It is expensive to use an extra indirection to access objects in younger gen-
erations. Using remembered sets [Ung84], objects in older generations
which refer to objects in younger generations are remembered. Pointers
to objects in older generations that refer to objects in a younger genera-
tion are stored in remembered sets of the younger generations. To prevent
duplicate data in a remembered set, a bit in each object is used to indi-
cate whether the object has been stored in a remembered set or not. When
collecting garbage in a generation, objects in its remembered sets are also
scanned.

Sequential Store Buffers

The sequential store buffers [HD90] technique was developed to simplify
the write-barrier. Pointers to all potential pointers to younger generations
are saved in a fixed sized buffer. The write-barrier can thus be very small
and efficient. A protected page after the sequential store buffer is used to
indicate a buffer overflow, which further simplifies the write-barrier. The
garbage collector is activated when the buffer has overflowed. The gar-
bage collector filters out uninteresting pointers, i.e. pointers which do not
refer to references to objects in younger generations, from the buffer. In-
teresting pointers are saved in a hash table. Since a hash table is used,
duplicate entries are prevented. The resulting hash table can now be used
as a remembered set.

Card Marking

When using card marking [AKPY98], generations are split into equally
sized cards. The size of a card is usually a power of two. Each time a
reference is written to an object, a dirty bit in a bit vector is marked. The
bit to mark is decided depending on which card is updated. The bit vector
is called a modification bit table (MBT). Each generation has its own MBT.
The write-barrier is slightly more complicated than that of a collector using
sequential store buffers, but the need for a buffer is removed. At garbage
collection time, the cards marked by a modification bit are scanned. The bit
is cleared if the card does not contain a reference to an object in a younger
generation, otherwise the bit is left marked for later collections.

3.6. GENERATION SCAVENGING 37

3.6.2 Promotion Strategies

The age of an object is decided by which sub-heap the object resides in. A
generation based collector has to apply a strategy to decide which objects
should be promoted to an older generation and when to do it. A simple
solution is to promote all live objects each time the sub-heap is collected.
In addition to its simplicity, no age recording has to be done and only the
oldest generation needs to be divided into to- and from-space. All other
generations can be regarded as from-space when they are collected. The
next older generation is considered as to-space. A disadvantage is that it
is probable that most objects survive at least a couple of GC cycles. Thus,
more generations are needed, otherwise most objects will end up in the
oldest generation. Having many generations is not only a memory issue,
it also means that more inter-generation references will be caught by the
write-barrier, which is expensive.

If objects are to be kept in the same generation for several GC cycles,
each generation needs a from- and a to-space. One possibility is to promote
all objects within a generation. Using that scheme, there is no way to tell
when a promoted object has arrived to the generation, i.e. relatively young
objects can be promoted. To ensure that only older objects are promoted,
age information can be kept in each object. This is costly, since it requires
an extra field in each object. Another solution is to store age information
in references to objects. Shawn [Sha88] describes a system where each sub-
space, i.e. to- and from-space, is split into buckets. Buckets act like sub-
generations. Every n:th GC cycle, objects are promoted to the next bucket.
Objects in the last, i.e. oldest, bucket are promoted to the next generation.
If m buckets are used in each generation, an object has to survive at least
n ∗ (m − 1) + 1 GC cycles to be promoted.

3.6.3 The Train Algorithm

The train algorithm [HM92, SG95], by Hudson and Moss, is a generational
garbage collector where only part of the oldest generation is collected at
every “full” invocation. Using the standard generational approach the en-
tire heap needs to be collected occasionally, which causes longer interrupts.
Using the train algorithm, the oldest generation is divided into trains, and
the trains consist of cars. The algorithm guarantees that all cycles end up
in a single train, which is reclaimed if no external references refer to it, and
only one car needs to be collected at every “full” invocation.

3.6.4 Beltway Collectors

Beltway collectors [BJMM02], by Blackburn, Jones, McKinley, and Moss,
generalize copying garbage collectors. They can be configured at runtime

38 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

to act like most1 copying garbage collectors. Objects are grouped into incre-
ments that can be independently collected. The increments are organized
into belts, and the increments of a belt are collected in first-in-first-out or-
der. They present configurations of beltway collectors that acts like several
existing copying garbage collectors and present two new collectors that
outperform the competition.

3.7 Replication Copying

Synchronization is expensive in a copying garbage collector. In a repli-
cation copying system, the mutator only sees from-space objects, i.e. the
opposite of Baker’s algorithm where only to-space is visible to the muta-
tor. Since only from-space is visible to the mutator no synchronization with
the collector is required.

Objects which have been copied into to-space have to be updated when
the from-space version is modified. A write-barrier can be used to modify
the to-space object, or to keep an update log, which is used to update to-
space objects before a flip is performed (see Figure 3.17.) When to- and
from-space are flipped, the root references are updated to refer to objects
in to-space. As in other copying algorithms, references between objects
have to be updated. This can be solved by any technique which does not
overwrite any data in from-space objects. An extra field can be used to
store the forward address of a from-space object. If space is crucial, the
forward pointer can be written over header data, but then this pointer has
to be followed to access header information. Of course, the system must
be able to distinguish a forward pointer from other header data. A bit
indicating whether the object has been evacuated is one of the solutions
which can be used.

Several variations of this technique have been proposed. These include
Nettles et al. [NOPH92] and Nettles and O’Toole [NO93].

3.8 The Treadmill

A disadvantage of copying algorithms is that objects have to be moved.
This is expensive, especially for applications which allocate memory ag-
gressively. The treadmill algorithm due to Baker [Bak92] is a non-moving
version of a Baker’s copying algorithm [Bak78a].

To-space and from-space form two sets of objects in a copying garbage
collector. These sets need not be implemented as two sub-heaps, they can

1Beltway collectors encompass all copying garbage collectors the authors of the publica-
tion are aware of, but they have left the train algorithm to possible future work

3.8. THE TREADMILL 39

from-space to-space

read-barrier

write-barrier

Copy

Figure 3.17. Replication copying

be implemented as two lists: one to-list and one from-list. Instead of copy-
ing the objects, the objects are moved from one list to the other. If the
lists are doubly-linked, this is a constant time operation. Objects which
are left in the from-list when all live objects have been moved are consid-
ered free, and can now be added to the free-list. Allocation is expensive in
the original version of the treadmill, because the free-list must be searched
for an object of appropriate size. However, if all objects are equally sized,
allocation becomes a fast constant time operation. Techniques handling
different sized objects better include Brent [Bre89], and Wilson and John-
stone [WJ93].

The treadmill concatenates the to-list, the from-list, and the free-list into
a circular structure. Three pointers are used to divide the ring into from-
list (B), to-list (T), and the free-list (free). A fourth pointer (scan) is used
to mark the last black object of the to-list.

Since the treadmill has evolved from Baker’s copying algorithm, the
names of the pointers are analogous. The pointer T refers to the first object
in the to-list, i.e. the top of the from-list. B refers the first object of the from-
list, i.e. the bottom of the from-list. Objects from B to, but not including,
T are colored ecru (off-white.) Grey objects reside between T and scan,
including T but not scan. Objects between scan and free, not including
the object pointed to by free, are black. Objects between free and B,
not including B are white. The white objects form the free-list. This is
illustrated in Figure 3.18.

The collector scans grey objects, and moves their white children either
to the head or the tail of the list of grey objects. If white objects are moved
to the tail, a depth-first traversal is performed, if they are moved to the
head, a breadth-first traversal is performed. To distinguish white objects

40 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

T

scan

freeB

from-space
to-space

free list

Figure 3.18. Structure of the treadmill

from non-white objects, a single mark bit is used. When a grey object has
been scanned, the scan pointer is advanced towards T. When scan meets
T, all live objects have been processed.

Allocation is done by advancing the free pointer towards B. If the free-
list contains different sized objects, the list has been searched. The object
which is allocated must then be inserted behind the head of the free-list.
When free meets B the memory is exhausted. If all objects have been
moved, a flip is performed. Otherwise, the collector has to scan all grey
objects or insert additional objects into the treadmill if more memory is
available.

T and B are swapped when the treadmill is flipped. The mark bit must
also be reinterpreted so ecru means white and black means ecru. The roots
are then moved to the grey region, i.e. between scan and T. This is done
by removing the objects from the from-list and inserting them between T
and the ecru objects. T is then set to point to the root object next to an ecru
object, and scan is set to point to the grey object next to a white object,
as described in Figure 3.19. With some imagination flipping can be seen
as turning the circular structure. This is why the algorithm is called the
treadmill.

The benefits lie in the properties inherited from the copying algorithm:
only live objects are traversed and fast allocation (if only equal sized ob-
jects are used.) The main disadvantage is the space overhead. The space
overhead is due to the fact that objects are stored in a doubly linked struc-
ture. The structure has to be doubly linked, otherwise advancement and
movement can not be performed effectively.

3.9. HARDWARE-SUPPORTED GARBAGE COLLECTION 41

T
scan

free
B

from-space
to-space

(a) Before

B

scan
free
T

free list
from-space

(b) After

Figure 3.19. Flipping a treadmill

3.9 Hardware-Supported Garbage Collection

GC algorithms implemented in hardware can be used to increase perfor-
mance. It is important to keep in mind, that predictability is not achieved
by this alone. Nilsen [NS93] has presented an implementation in hardware.
Simulation indicates a worst case interruptions of 1 µs. Unfortunately, the
implementation does not guarantee memory availability.

In any case, specially designed hardware has not been successful to
date, particularly regarding portability, which is becoming increasingly im-
portant, also in the real-time domain.

3.10 Requirements of a Hard Real-Time GC

The chief requirement is that a hard read-time garbage collector is pre-
dictable. It must be predictable in both execution time and memory usage,
i.e. given the requirements of a system it must be possible to calculate how
much memory is required and how much work is needed by the garbage
collector to keep the system from running out of memory.

As a secondary goal, the garbage collector should be fast and use a
small amount of memory. Here it is the worst case that is most important,
because that is what has to be used when designing the system. A good
average performance is also nice, but not as important.

42 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

To be able to guarantee memory availability, external fragmentation
must be taken into consideration. External fragmentation occurs when free
memory is split up into fragments that can not be used by new objects even
if enough free memory exists. The fragmentation must be predictable, oth-
erwise it is too difficult to guarantee that the system does not run out of
memory.

3.11 Algorithm Analysis

When a real-time garbage collector is to be developed, one can either start
from scratch or use an existing technique as the basis for the new one. To
our knowledge, all successful garbage collection techniques presented the
last 10 years are improvements of the base GC techniques. You could even
say that all successful garbage collectors are based on reference count-
ing, mark-and-sweep, mark-and-compact, or copying garbage collection,
which where all invented in the 60’s. Thus, the odds of succeeding are
probably better if an existing GC technique is used as the basis for a new
one. The following sections discuss the whether the techniques can be im-
proved to fulfill our requirements of a real-time garbage collector.

3.11.1 Reference Counting

Reference counting garbage collectors have the advantage of reclaiming
objects as soon as they become unreachable, and does not work in cycles
as the other collectors do. Thus, no memory is needed to allocate objects
while the collector fulfills its cycle. Another advantage is that locking is
extremely fine grained, i.e. they only lock the system for very short periods
of time. Finally, the objects do not move around in memory, therefore no
execution time overhead is caused by copying. This also results in fast
access.

On the other side, reference counters can not reclaim dead cyclic data
structures, since the objects in the cycle keep each other from decrementing
their reference count to zero. Another disadvantage, caused by the advan-
tage of not moving objects, is that memory is not compacted, thus external
fragmentation may be a problem.

3.11.2 Mark-and-Sweep

Mark-and-sweep collectors also use very fine grained locking, thus inter-
ruptions from the GC are very short. Another advantage is that objects do
not move around in memory.

However, since objects are not moved, mark-and-sweep collectors suf-
fer from fragmentation as reference counting collectors do. Another prob-

3.11. ALGORITHM ANALYSIS 43

lem is that the collectors work in cycles, thus objects are only reclaimed in
the end of the cycle. It is common that some dead objects float from one
GC cycle to the next, e.g. objects that are allocated in one cycle can sel-
dom be reclaimed in the same cycle. Since objects are only reclaimed in the
end of the cycle, the memory must hold all objects that were not collected
during the last cycle plus all objects that are allocated during the current
cycle. This does not only increase memory usage, but also make it harder
to predict how much memory is required to run the system. To decrease
the memory overhead, the garbage collector must finish cycles faster, i.e.
do more GC work, and thus increase the execution time overhead. A good
balance between execution time and memory usage is achieved when us-
ing a third of the heap to store objects allocated during the current cycle,
i.e. an overhead of 50 %. When using a smaller part of the heap for new
objects, the overhead of execution time increases rapidly. The execution
time overhead is O(1/memory overhead).

3.11.3 Mark-and-Compact

Mark-and-compact garbage collectors have the advantage of compacting
the memory, which eliminates external fragmentation and improves the
speed of allocation.

However, since memory is compacted, objects must be copied, which
cause an execution time overhead, both while copying and while access-
ing objects. It may be possible to update all references to a copied object,
but the cost of those updates can be even higher than the cost of accessing
copied objects via handles. Copying objects may also cause the GC to lock
the system for long periods of time. If a copy operation is allowed to be
interrupted, it has to be restarted to guarantee that the latest version of the
object is copied. A write-barrier, as used in replication copying GC, could
be used to prevent this, but it is expensive. The GC work needed to com-
plete a cycle is hard to calculate if copies are allowed to be restarted. Mark-
and-compact also shares the problem of working in cycles, as all collectors
except reference counters do. This results in large memory overhead.

3.11.4 Two Sub-Heap Copying

The main advantage of copying collectors is that the execution time of a
cycle is only dependent on the size of the live objects, not on the size of the
heap. However, this advantage is lost if finalization is to be supported. Fi-
nalization is a language feature that makes it possible to call a user defined
cleanup method before the memory occupied by the object is reused. Most
systems do well without finalization. Another advantage is that memory
is compacted.

44 CHAPTER 3. GARBAGE COLLECTION TECHNIQUES

On the down side, objects need to be copied and the collector works
in cycles, which cause a number of disadvantages (see above.) Another
problem is that there is no way to continue if the system runs out of mem-
ory. Other techniques can often release some memory and then continue,
but a copying collector gets stuck, since the GC cycle can not run to its
end. Further, only half the heap can be used at any time, thus the memory
requirement is doubled.

3.11.5 Generational Scavenging

Generational garbage collectors are often fast, since only parts of the heap
is collected at most invocations. However, most generational collectors
have to collect the entire heap sometimes. The exceptions either require
complicated (and therefore slow) barriers to maintain inter-generational
references, or may allow large amounts of garbage to float between GC
cycles (train algorithm.) Thus, we have the choice of slow barriers, col-
lecting the entire heap, or use methods that require more memory (that
may be very hard to estimate.) The first two choices give a worse WCET
than using the technique that is used to collect the generations, and the
third give large and hard to predict memory usage. Since hard real-time
systems have to calculate with the WCET and not the average execution,
generational scavenging seems to be a poor choice.

3.11.6 Replication Copying

Replication copying garbage collectors have the advantages of copying
garbage collectors plus that no synchronization is needed when accessing
objects. Unfortunately, it also shares the disadvantages (except for the syn-
chronization) and has a very complicated write-barrier. It may be possible
to make a really effective solution using special purpose hardware. How-
ever, software solutions tend to be slow. The exception is when using func-
tional languages where destructive operations are rare or prohibited, i.e.
live data is seldom or never overwritten. However, destructive operations
are common in the languages we target.

3.11.7 Baker’s Treadmill

The treadmill shares many of the advantages of copying garbage collec-
tion without using separate sub-heaps, and thus without copying objects.
Still, the treadmill does not suffer from fragmentation, since all objects are
pre-allocated. Since objects are pre-allocated and of equal size, it may be
difficult to use the treadmill in systems where the objects sizes vary, and
may be unknown at compile-time. The solutions for this is commonly to

3.12. SUMMARY 45

use multiple treadmills, but that decrease the possibility of reusing mem-
ory and depends on the developers to be able to predict the maximum
number of objects of different sizes. Another disadvantage is the large per
object overhead of keeping the objects in a double-linked list. An interest-
ing alternative would be to construct larger objects by linking a number of
smaller ones as files are constructed from blocks in a file system.

3.11.8 Hardware Solutions

Using custom has rarely been a success historically. It makes development
dependent on special platforms, and the systems become difficult to port.
These points plus the fact that we lack the knowledge to develop the hard-
ware eliminates a hardware solution as an alternative.

3.12 Summary

When selecting a base technique, we started to remove candidates that we
did not consider interesting. Two sub-heap copying collectors were elim-
inated since they use too much memory. Generational garbage collectors
were eliminated since their WCET is longer than the techniques they are
based on. Replication copying was eliminated since it seems too expensive
to update the replicas if updates are too frequent. The treadmill was elim-
inated because its large per object overhead combined with its fixed object
sizes. However as stated above, it would be interesting to see how a tread-
mill garbage collector where larger objects are constructed from smaller
ones could compete. Finally a hardware solution is not interesting, since it
would limit us to special hardware. At a later stage it may be interesting
to investigate whether our collector should be implemented in hardware,
but at this stage the algorithms are more important.

This leaves us with: reference counting, mark-and-sweep, and mark-
and-compact. Mark-and-compact collectors suffer from the disadvantage
of copying objects. This may are may not be a problem. Copying large
objects are expensive in time, and can cause long interrupts or it may com-
plicate the calculation of the GC work needed to complete a cycle. Since we
do not want to limit the object size, mark-and-compact garbage collection
is eliminated.

Reference counting has the advantage that objects can be reclaimed im-
mediately when they become unreachable and that it does not work in
cycles. These advantages should be compared to the disadvantage of not
being able to collect cyclic data structures. We chose reference counting
because a low memory usage is a high priority in many hard real-time sys-
tems.

— Those are my principles. If you don’t like them I have others.

Groucho Marx

Chapter 4

Real-Time Reference
Counting

This chapter introduces a new real-time garbage collection technique called
real-time reference counting (RTRC) [Rit01, RF02]. The main advantage of
the technique is that it increases memory usage efficiency by about 50 %
compared to previously published real-time garbage collectors. The chap-
ter is concluded with a thorough comparison with the competing tech-
niques.

The standard reference counting algorithm was chosen as the basis of
our real-time garbage collector because:

1. it reclaims memory immediately when it becomes garbage

2. its work is not organized in cycles

3. it locks the system during very short periods of time

However there are still a number of issues that must be handled to make
reference counting attractive for hard real-time.

4.1 Drawbacks of Standard Reference Counting

Recursive freeing When the last reference to a data structure is deleted,
all objects in that structure are reclaimed. If the data structure is large, in
the worst case all objects on the heap, this behavior causes long interrupts
in the execution of the system. Since recursive freeing can occur anywhere
when reference counts are decremented, e.g. at assignments, the WCET
becomes very pessimistic. To be able to use reference counting in hard
real-time systems, recursive freeing must be eliminated.

48 CHAPTER 4. REAL-TIME REFERENCE COUNTING

External fragmentation External fragmentation occurs when small re-
gions of free memory exist between the allocated objects. Even though
there is enough memory to allocate a new object, there may be no contigu-
ous region that is large enough. Thus, the allocation fails even if there is
memory available. External fragmentation rarely causes problems, since
clever allocation strategies keep it small. Even if the heap becomes more
fragmented, most systems have enough memory to continue. But to pre-
dict the external fragmentation in advance is a difficult problem with no
known solution. In a hard real-time system, the worst case memory usage
must be known in advance, thus external fragmentation must be handled.

WCET of allocation Allocators usually have a WCET that is proportional
to the heap size or to the logarithm of the heap size. The average execution
time is normally much shorter due to pools of blocks of common sizes, but
the average execution time is of little use in hard real-time. Thus, execution
time should be improved for the technique to be competitive.

Inability to reclaim cyclic garbage Since the internal references of cyclic
data structures keep all reference counts above zero, the objects that are
part of cycles can not be reclaimed. Many systems can be implemented
to have no dead cyclic data structures. However, for the technique to be
useful when dead cycles can not be avoided, it must be possible to reclaim
them.

4.2 Eliminating External Fragmentation

There are a few techniques that can be used to decrease external fragmen-
tation. By using clever allocation techniques, external fragmentation can
be decreased in general, but the outcome can not be predicted. If a fixed
set of fixed size blocks are used as a pool of memory regions, all blocks can
be statically allocated. This eliminates external fragmentation, but objects
of different sizes can not reuse the same memory. Thus, the end result is
commonly a larger memory foot print, and the analysis to find out what to
statically allocate is tedious.

Fragmentation can also be eliminated by compacting memory, e.g. us-
ing copying [FY69] or mark-and-compact [Sau74] techniques. However,
these methods are often considered too expensive and/or unpredictable.
Moving objects also makes interfacing to other systems harder. In the Java
platform [TGJS96], this is solved by the possibility to lock objects in fixed
positions. This could cause serious fragmentation problems if the locks
are kept for longer periods of time. And most of all it makes the system
unpredictable. Other solutions include prohibiting heap allocation or lim-

4.2. ELIMINATING EXTERNAL FRAGMENTATION 49

iting allocation into arenas, i.e. memory areas that are freed as a whole, as
in the real-time Java specifications [fJEG00, Con00].

In RTRC objects are divided into equally sized blocks, which is also
used in many file systems and virtual memory systems. This eliminates
external fragmentation completely, but introduces internal fragmentation
which occurs when the last block of an object is not fully used. An impor-
tant difference between internal and external fragmentation is that internal
fragmentation is predictable, but external is not.

There are several ways to combine blocks into an object, e.g. linked
lists and trees. For performance reasons most objects should fit into one or
two blocks, so a linked schema works well. However, large objects such
as arrays can be allocated using index blocks or trees. In the remainder
of this thesis we assume that the blocks are kept in a linked list, but other
techniques work as well. The requirements are that member access should
be predictable, that taking a step in the iteration through the blocks of an
object should take constant time, and that it must be possible to disconnect
a block from the object in constant time.

At first, this technique may seem expensive in execution time, but it
compares well to other alternatives. Real-time techniques that compact
memory needs one dereference to find objects. To eliminate the derefer-
ence operation, all references to an object needs to be updated when an
object is moved. Although this may be possible, it can be very expensive.
Updating all pointers could be done, e.g. using a stop-the-world solution,
but it causes too long interruptions for most non-trivial real-time systems.
Thus, if memory is compacted a dereference operation is needed. One
dereference operation is also what is needed to access members in the sec-
ond block of an object using the blocked technique. Accessing a member
in an object consisting of three blocks also needs one dereference on the av-
erage. Thus, the execution time of memory access using compaction and
blocks are comparable when objects are relatively small. However, access-
ing data in larger objects is more expensive using blocks. On the other
hand, compacting the heap also takes time.

4.2.1 Selecting the Block Size

Selecting the size of the blocks is crucial to limit the loss in both execution
time and internal fragmentation. You would like to find a size that makes
most objects fit in one or two blocks, but still does not cause the internal
fragmentation to be too large.

A thorough investigation of allocation behavior of Java applications has
been done by Dieckmann and Hölze [DH01]. The average size of objects
(non-arrays) in the SPECjvm98 benchmarks [spe98] ranges from 12 to 23
bytes, which fits into one or two 32 byte blocks (including the overhead
of the blocks and the object header.) The arrays are larger, but less com-

50 CHAPTER 4. REAL-TIME REFERENCE COUNTING

mon. Only in two cases (compr and jess) would more than 10 % of the
objects require more than 2 blocks (including arrays). Many of the arrays
are strings that can be allocated statically and thus contiguously.

Siebert investigates the impact of using different block sizes in the Ja-
maica JVM [Sie02] using the SPECjvm98 benchmarks. His results show
that 32, 64, and 128 gives the best performance. The difference between
these choices is small. Thus, a block size of 32 bytes seems like a good start-
ing point, since it gives the least internal fragmentation. It is worth noting
that arrays are allocated contiguously if possible in Jamaica, which often
is possible in short running applications such as the SPECjvm98 bench-
marks. It is likely that more arrays will be fragmented in longer running
applications. This may suit some block sizes better than others.

The best block size is application dependent. To tune the application,
the allocation function can be used to produce statistics about how many
objects of different sizes are allocated. This information can be used when
selecting the block size. One should also consider the behavior of the cache
when selecting the block size.

4.3 Eliminating Recursive Freeing

Lazy reference counting (see Section 3.2.1) can be used to eliminate the
recursive behavior of the decrement operation. However, it has a limitation
in that only one object size is allowed. However, by constructing objects
from equally sized blocks, this limitation is eliminated. Since the allocator
constructs objects from blocks of dead objects, it is not necessary to search
the to-be-free list to find an appropriate memory region. If the blocks of
the first object in the list are not enough more blocks can be taken from the
next object. Thus, recursive freeing is eliminated.

4.4 Improving WCET of Allocation

The WCET of allocation is linear in the size of the allocated object. Better
WCET than this can not be achieved if objects are initialized. The execution
time compares well to that of compacting memory managers, which are
often considered to have superior allocation performance. An incremen-
tal compacting allocator needs to perform some compaction work during
allocation, then the object is allocated by incrementing a pointer in the con-
tiguous free memory region, and finally the memory is initialized. When
using Weizenbaum’s lazy technique to eliminate the recursive behavior of
freeing with a heap divided into blocks, the allocation takes blocks from
the to-be-free list and releases their child references, connects them, and
initializes the new object.

4.5. MANUALLY RECLAIMING CYCLES 51

4.5 Manually Reclaiming Cycles

A weakness in standard reference counting is that cyclic data structures can
not be reclaimed. Several techniques have been developed to work around
this problem, but none is designed for real-time. An important question to
ask is whether or not cyclic data structures need to be collected. In systems
where it can be guaranteed that no cycles become garbage, no cycles need
to be collected. However, cycles must be collected in the general case.

The following section discusses manual techniques to reclaim cycles.
Manual techniques are often more efficient than automatic ones, but they
suffer from the problem of the human factor. Since humans are known to
make errors, manual techniques should be used with caution.

4.5.1 Manually Breaking Cycles

A straightforward solution is to manually break all cycles before they be-
come garbage. For this to work, the programmer needs to know when
cycles become garbage and how to break them. In a general program that
can be hard, but in a hard real-time system, the programmer needs full
control of the application. Therefore breaking cycles manually should be
possible. Knowing where, in the code, cycles should be broken is not the
only problem. It is just as hard to find the cycles. However, tools can be
developed to help out. During development and testing a garbage detector
could be used to find cycles. A garbage detector could be, for example, a
mark-and-sweep collector that runs periodically. When dead objects are
found they must be part of a cycle. These objects can, for example, be iden-
tified by the expression that created them. Such a tool could be used to
verify that no dead cycles remain allocated. Note that the garbage detector
should only be used during testing.

4.5.2 Weak References

The difference between normal (strong) references and weak references is
that weak references alone do not keep an object alive. An object requires
at least one strong reference to stay alive. Weak references can be imple-
mented in a reference counter by not counting them.

To collect cycles, developers need to guarantee that all cycles contain
a weak reference and that normal references form a spanning tree of the
object graph. For example, in a doubly-linked list all backward references
could be weak, and if the nodes of a tree need references to their parents the
upward reference could be weak. Most data structures can be constructed
so that normal references do not form cycles. The difficult task is to locate
the cycles, especially when legacy code is being reused.

52 CHAPTER 4. REAL-TIME REFERENCE COUNTING

Weak references also needs support from the programming language.
Somehow it must be possible to create weak references, possibly by anno-
tating normal references. In the case of Java, weak references are already
in the language.

4.5.3 Balloon Types

Balloon types [Alm97] were introduced by Almeida. A balloon type is a
data structure with only one entry point, i.e. external objects can not refer
to the internal objects of a balloon object. However, it is possible to refer
to an internal object of a balloon type from a local variable or an actual
parameter. A balloon type that does not allow any external references to
its internal objects is called opaque. Almeida defines the concept with an
invariant. If B is an object of a balloon type then:

1. There is at most one reference to B in the set of all objects.

2. This reference (if it exists) is from an object external to B.

3. No object internal to B is referenced by any object external to B.

Almeida also presents a static analysis to check the invariant.
A cycle within a balloon object can be collected by breaking it when the

reference to the entry point is lost. Balloon types have a lot in common with
Bobrows’s groups (see Section 3.2.3.) In both cases objects are split into
groups, and the inter-group references are counted separately. However,
balloon types are easier to implement correctly.

In Java, an opaque balloon type can be implemented as a package with
only one public class (the entry point). An object of this class must iden-
tify a unique data structure of the balloon type (a balloon object.) Unfor-
tunately (in this case), references to objects of non-public classes can be
returned outside its package. Developers must verify that this does not
cause any problems. A finalizer in the entry point class can be used to
break all internal cycles. This works since the entry point can not be part
of a cycle (it can only be referenced by one other object). To summarize, in
Java an opaque balloon type can be implemented as a package where:

• only one class is public

• objects of the public class uniquely identify a balloon object

• no references to internal objects are returned from the package

• the public objects are not part of any cycles

• a finalizer in the public class is used to break the cycle(s)

4.6. AUTOMATICALLY RECLAIMING CYCLES 53

Note that internal cycles are still not collected. Considering this, cycles
with different life span should be kept in different balloon types. Of course
it must also be verified that separate balloon objects do refer to the internals
of other balloon objects.

Balloon types are easier to work with than Bobrow’s group, and they
do not require any support from the runtime system. However, both tech-
niques share the problem with cycles that are not properly nested.

4.6 Automatically Reclaiming Cycles

The techniques presented in Section 4.5 were all manual, and thus suffer
from the problem of the human factor. However, when developing a hard
real-time system the developers need to have full control of the applica-
tion, so most such systems should be able to use manual techniques. If
manual techniques are considered unsuitable for an application, the appli-
cation may need to be redesigned. If the application still is to complex an
automatic technique may solve the problem.

Automatic techniques suffer from the drawback that all memory is not
reclaimed as soon as it becomes unreachable. This need not cause problems
if the overhead in execution time and memory usage is predictable and
low.

4.6.1 Mark-and-Sweep Backup

The technique presented in Section 3.2.2 does partial scans of the object
graph to find dead cycles. It can not be used for hard real-time systems,
since the sizes of scanned sub-graphs are unknown. This can be solved by
using a full backup garbage collector. This garbage collector should share
properties with the reference counter, so that the integration is as smooth
as possible.

The real-time mark-and-sweep technique in Jamaica is a good example.
The collector is non-moving, and the object layout uses the same blocked
object layout as RTRC does. The attributes needed by the mark-and-sweep
collector can often share memory with the reference counter, by reserv-
ing some high-order bits to the mark-and-sweep collector. Thus, no extra
object overhead is required to merge the techniques. The execution time
overhead is of course dependent on the implementation, but if the refer-
ence counter and mark-and-sweep bits are stored in the same word there
will be large cache benefits, so it should be possible to keep the overhead
low.

The main advantage of reference counting is that the memory over-
head can be kept significantly lower than by using other techniques such
as mark-and-sweep. One may think that this advantage is lost when a

54 CHAPTER 4. REAL-TIME REFERENCE COUNTING

constant BLOCK COUNT ← 4096
constant BLOCK SIZE ← 32

Figure 4.1. Configuration

backup mark-and-sweep garbage collector is used. This is partially true. A
larger memory overhead is needed, but in most cases it can be significantly
smaller than if mark-and-sweep was used alone. The reason for this is that
objects that are not a part of cyclic data structures when they die will be
reclaimed immediately by the reference counter, and will not waste space
until the mark-and-sweep cycle is finished.

The amount of memory overhead that is required is the amount of
memory that is occupied by dead objects that are reachable from cycles
that may die during one mark-and-sweep cycle plus the objects that float
between cycles. Thus, if 10 % of the objects that die during a mark-and-
sweep cycle are reachable from dead cycles or float between cycles, then
10 % of the memory overhead used by a plain mark-and-sweep collector
is required. To minimize the overhead further, all manual techniques pre-
sented above can be used to decrease the number of dead cycles in the
system.

4.7 Design

In this section, the design of a RTRC is presented. This design does not
cover recovering cyclic data structures, since any of the techniques de-
scribed above can be used. As stated above, many systems can quite easily
be designed not to produce any cyclic garbage, especially hard real-time
systems where the developers must have full control of the execution of
the system.

4.7.1 Configuration

Two constants are used to configure the garbage collector. The constant
BLOCK COUNT holds the number of blocks, and BLOCK SIZE holds the size
of the blocks. In Figure 4.1, the size of the blocks is set to 32 and the number
of blocks is set to 4096. These are compile-time constants that can be tuned
for the application. The block size can be set to any size larger than the
object header (see below.) The size of the heap, i.e. the number of blocks,
can easily be turned into a runtime constant, but changing the block size
during runtime would require changes in the member access code.

4.7. DESIGN 55

record type
integer size
integer block count
procedure decchildren(type, object, int)

end

record object
object next { Next block }
type type
union nr

object next { Next object }
integer rc

end
end

union block
record object head
byte[BLOCK SIZE] data

end

Figure 4.2. Type declarations

4.7.2 Type Definitions

The types needed by RTRC are presented in Figure 4.2. The type type de-
fines a record containing type information. The only information needed
by the reference counter is the size of the objects of the type and a func-
tion that decrements the child references of a specific block of an object
(decchildren()). The decchildren() method can be replaced by a
data structure that holds information on where references can be found
in the object. The size has to be given in both bytes (size) and blocks
(block count).

The object type defines the object header. The first field of the header
is a pointer to the next block of the object (next). This field is also used to
connect the blocks in the free list. The next field is a pointer to the type
of the object (type). Next is a union (nr) containing the reference counter
(rc) or the next field (next), which is used when the object is stored in
the to-be-free list. The reference count is always zero when the object is in
the to-be-free list, so it is not needed then. Note the difference between the
next fields. The first is used to connect blocks in live and dead objects,
and the other is used to connect objects in the to-be-free list.

Finally, the type of a block is defined. It is defined as a union of the
type of the head of an object and a byte array type with BLOCK SIZE cells.
The full object header is only used in the first block of objects. In all other
blocks, only the first next field is used.

56 CHAPTER 4. REAL-TIME REFERENCE COUNTING

The per object memory overhead on a 32-bit architecture is 8 bytes plus
4 bytes per block including the type information required by all modern
object-oriented languages.

The real-time copying collector (see Section 9.1.2) uses one word to
store type information and a forwarding pointer to the current copy of the
object. Since all objects are contiguous, no block pointers are needed. How-
ever, to implement the Object.hashCode(), which is common to many
modern languages such as Java and C#, method efficiently on systems us-
ing moving garbage collectors, an extra word per object is required. There
are optimizations that only require one word if the method has been called
and the object has been moved. This problem occurs since implementa-
tions of the Object.hashCode() method simply return the address of
the object when using non-moving collectors. However, the address is not
constant when using a moving collector, so the hash code has to be stored
if the object is moved. Thus, the overhead is 12 bytes per object, i.e. the
same as for RTRC for small objects.

The object overhead in RTRC is the same as in the presented real-time
mark-and-sweep collector (see Section 9.1.3.) It keeps the type information
in one word and the mark-bits in another. A mark-and-compact collector
would only need the type information and a forwarding pointer as the
copying collector does. However, since it moves the objects, the problem
with Object.hashCode() must be solved.

4.7.3 Global State

The global state of the implementation is kept in the variables presented
in Figure 4.3. These variables are internal to the garbage collector, so users
never access them directly. The freelist keeps all blocks that are ready
to be used by the allocator. These blocks should no longer refer to live
objects. Most systems would gain speed if all non-header cells where ini-
tialized to zero before the blocks are added to the freelist.

The available variable stores the number of blocks in the free list.
The tbflist keeps the to-be-free list. Here, all dead objects are listed be-
fore they are either moved to the free list or directly allocated to an object.
Before blocks are reused, their references to other objects need to be decre-
mented. When a block from the to-be-free list is needed, the first object of
the list is removed and stored in the head variable. The head variable is
then used as a list of blocks that are available to the allocator. The refer-
ences stored in blocks are decremented when the blocks are removed from
the head list. To be able to find the references, the type of the current object
is stored in the type variable, and the block sequence number is stored in
blockseq. Finally, an array called heap keeps all blocks available to the
system.

4.7. DESIGN 57

block[BLOCK COUNT] heap

integer available ← BLOCK COUNT
object freelist ← heap
object tbflist ← null

object head ← null
type type ← null
integer blockseq ← 0

Figure 4.3. Global data

algorithm initialize()
for i in 1..BLOCK COUNT-1 do

heap[i-1].head.next ← &heap[i]
end loop

heap[BLOCK COUNT-1].head.next ← null
end

Figure 4.4. Initialization

Access to the global state is protected by mutexes in the code presented
below. The synchronization is designed to be as fine grained as possible.
Several synchronization blocks can be merged to make it coarser. In some
cases synchronization can be avoided using atomic assembler instructions.

4.7.4 Initialization

The RTRC initialization connects all blocks into one huge free list. Depend-
ing on the platform it may or may not be necessary to initialize the heap
with zeros first. Since the heap can be statically allocated, this is often done
automatically. The initialization function is shown in Figure 4.4. Its WCET
is linear to the number of blocks on the heap. This could be very expensive
when using virtual memory, but the systems we are targeting do not use
virtual memory, thus initialization is fast.

4.7.5 Allocation

Allocating blocks from the free list is done by traversing the free list un-
til the requested number of blocks has been found, terminating the list of
blocks, and adjusting available and freelist. The algorithm is pre-
sented in Figure 4.5. Its WCET is proportional to the number of blocks
being allocated.

Allocating from the to-be-free list is slightly more complicated. The
function is shown in Figure 4.6, and important data structures are shown

58 CHAPTER 4. REAL-TIME REFERENCE COUNTING

algorithm freelist alloc(int size, Block out lastBlock) returns Object
Block blocks
Block tail
synchronized available

available ← available - size
end synchronized

synchronized freelist
blocks ← freelist
tail ← blocks
freelist ← freelist.next

end synchronized

for i in 1..size-1 do
synchronized freelist

tail.next ← freelist
tail ← freelist
freelist ← freelist.next

end synchronized
end loop

synchronized freelist
tail.next ← null
lastBlock ← tail

end synchronized

return blocks
end

Figure 4.5. Allocating from the free list

in Figure 4.7. The head variable keeps the object that is currently used to
extract blocks from. If head is null, one object is taken from the to-be-free
list. The type information is stored in type, blockseq is set to zero, and
blocks is set to point to the first block of the object that is allocated. For
each block being allocated, its child references are decremented using the
decchildren() method in the type information. If we run out of blocks
in the current object, the next object in the to-be-free list is taken and its
blocks are used. The WCET of the function is proportional to the number
of blocks being allocated, thus proportional to the object size.

The user function used to allocate objects allocates as many blocks from
the free list as possible. The rest of the blocks are allocated from the to-
be-free-list. Finally the lists of blocks are concatenated and the object is
initiated. The function is presented in Figure 4.8. Its WCET is linear in the
size of the object being allocated.

4.7. DESIGN 59

algorithm tbf alloc(int size, Block out lastBlock) returns Object
Block blocks ← head { The first block of the new object }
lastBlock ← null { The lastBlock of the blocks in the new object }
for n in 1 .. size do

synchronized tbf alloc
if head = null then

if tbflist = null then
error(“Out of memory”)

end if

synchronized tbflist
head ← tbflist

if blocks = null then
blocks ← head

end if

type ← head.type
tbflist ← tbflist.nr.next
blockseq ← 0

end synchronized
end if

if lastBlock �= null then
lastBlock.next ← head

end if

type.decchildren(head, blockseq)
lastBlock ← head
head ← head.next
blockseq ← blockseq + 1

end synchronized
end loop

return blocks
end

Figure 4.6. Allocating blocks from the to-be-free-list

60 CHAPTER 4. REAL-TIME REFERENCE COUNTING

head

tail

tbfblock

Figure 4.7. Data structures used by tbf alloc. The dashed boxes rep-
resent objects and the solid boxes represent blocks. To the left is the free
object from which the blocks are currently taken. In the middle are the
objects in the to-be-free list and to the right is the object being allocated.

algorithm alloc(Type type) returns Object
int size ← type.size
Block tbfblocks ← null
int fromfree ← min(size, available)

if size - fromfree > 0 then
tbfblocks ← tbf alloc(size - fromfree)

end if

if fromfree > 0 then
blocks ← freelist alloc(fromfree, lastBlock)
lastBlock.next ← tbfblocks

else
blocks ← tbfblocks

end if

blocks.type ← type;

return blocks;
end

Figure 4.8. Allocating objects

4.7. DESIGN 61

algorithm prealloc(int size)
if available ≥ size then

return
end if

Block blocks ← tbf alloc(size - available, lastBlock);

synchronized freelist
available ← size
lastBlock.next ← freelist
freelist ← blocks

end synchronized
end

Figure 4.9. Pre-allocating blocks

4.7.6 Increasing Allocation Performance

It is sometimes beneficial to increase the execution speed of high-priority
processes. In RTRC this can be accomplished by guaranteeing that all al-
locations of high-priority processes can be done from the free list. Thus,
no time is spent decrementing child references. The runtime system pro-
vides a function (prealloc()), as presented in Figure 4.9, which allocates
blocks from the to-be-free list and puts them directly into the free list.

When reserving pre-allocated blocks for high-priority tasks, the alloca-
tion function must always leave a specified number of blocks in the free
list when allocating blocks to low-priority tasks. And after the execution
of high-priority code, the prealloc() function must again be called to fill
the free list with blocks. The number of blocks needed in the free list can be
calculated using the technique presented in Henriksson’s thesis [Hen98].
The worst case execution time of prealloc() is proportional to the num-
ber of blocks being pre-decremented.

4.7.7 Releasing References

The function that decrements reference counts (release()) is presented
in Figure 4.10. The function decrements the reference count of the object,
and adds it to the to-be-free list if the reference count falls to zero. The
WCET of release() is constant.

4.7.8 Public Interface

The user interface to RTRC is simple. Users call alloc() to allocate ob-
jects and prealloc() to guarantee that a certain number of blocks are
available in the free-list. The only other operations that are required are
the operations the increment and decrement the reference counts. None of

62 CHAPTER 4. REAL-TIME REFERENCE COUNTING

algorithm release(Object obj)
obj.rc ← obj.rc - 1
if obj.rc = 0 then

synchronized tbflist
object.nr.next ← tbflist
tbflist ← object

end synchronized
end if

end

Figure 4.10. Releasing objects

these functions are normally called directly by the users, since the compiler
generates the necessary calls.

The information stored in the global variables is of little or no interest to
the user. What could be interesting is the heap size and number of available
blocks. However, it is important to note that the available variable does
not hold the number of free blocks in the system, but the number of blocks
in the free-list. There is no way to see how many blocks are in use. To get
this information, a function similar to prealloc() but instead reclaims
as many blocks as possible must be implemented. After this function has
been called, the available variable holds the number of free blocks in the
system. However, the execution time of this function is proportional to the
heap size. A thread on the lowest priority level can execute this function if
this kind of information is vital.

4.8 Complexity and Overhead

4.8.1 Execution Time

Initiating the memory manager is a matter of putting all blocks into a
linked list. The WCET is linear in respect of the size of the heap.

Allocation (from the to-be-free-list or free-list) takes blocks from the re-
spective list. When blocks are taken from the to-be-free-list their references
must also be released. Since releasing references of a block takes constant
time (the size of blocks is constant and thus the maximum number of ref-
erences), the WCET of an allocation is linear with respect to the size of the
allocated object.

Sometimes it is desired that allocation in high-priority tasks should be
as fast as possible. This can be accomplished by pre-decrementing refer-
ences of blocks in the to-be-free list and moving these to the free list. This
is done by the prealloc() function. The worst-case execution time of
this function is proportional to the number of blocks that should be pre-
decremented.

4.8. COMPLEXITY AND OVERHEAD 63

Finally, both the increment and decrement operations have a constant
worst-case execution time.

If a backup garbage collector is used, it needs to execute its read and/or
write barriers as RTRC executes increments and decrements. With proper
data layout, the cache will make the execution time overhead small. The
backup collector would also need to run during allocation. The execution
time per allocated block for this GC work is DC/o, where DC is the amount
of memory that is occupied by dead objects reachable from dead cycles
during one GC cycle and o is the amount of memory in blocks that is not
used to store live objects (see below.)

4.8.2 Memory

The memory overhead can be divided into internal fragmentation, exter-
nal fragmentation, the object header, and the extra memory temporarily
needed to store new objects during a GC cycle.

The internal fragmentation is the extra memory that is unused “inside”
the memory region allocated to an object. It is on the average half the size
of a block per object, if all sizes of objects are equally probable. However,
it should be possible to tune the block size to minimize this overhead in
most cases.

The external fragmentation is the extra memory that can not be used
between the memory regions occupied by objects. It is zero, since all blocks
are of the same size and all blocks can be used to store objects.

The object header consists of type information, the reference counter
(that can also be used to store mark bits), and the pointers that connect
blocks into objects. On a 32-bit architecture, the overhead for one object is
8 bytes plus 4 bytes per block. The pointer to type information can be ex-
changed for an index into an array and the reference counter will in most
cases fit into 16 bits. In smaller systems also the pointers that connect
blocks can be 16-bit indexes. Using this schema the per object overhead
sums up to 4 bytes plus 2 bytes per block.

No extra memory used to store objects during the GC-cycle is required
if the system has no dead cycles, but if they do the amount of memory is
selected to make allocation fast enough (as described above.)

Figure 4.11 illustrates an example of the memory layout of an applica-
tion that uses RTRC, and Figure 4.12 present a diagram of theoretical esti-
mate of how much memory is occupied by the different kinds of memory
overhead in a system with object sizes of 11 – 33 bytes, which are com-
mon in Java systems [DH01].) The results show that 45 % of the memory
can be used to store data (i.e. fields of objects), the rest is occupied by the
runtime system. It may seem as a poor result, but it should be compared
to 30 % for the real-time mark-and-sweep collector and 21 % for the real-
time copying collector (see Figure 4.18 and 4.19.) A thorough comparison

64 CHAPTER 4. REAL-TIME REFERENCE COUNTING

Object header Block header

Live data Internal fragmentation

Figure 4.11. Memory layout using RTRC

is presented in Section 4.10. Internal fragmentation is the main contributor
to the overhead of RTRC, which emphasizes the importance of selecting
the block size.

4.9 Emitted GC Code

All incremental garbage collectors need to insert code to guard modifica-
tions to the object graph, so does RTRC. The fragments of code emitted by
incremental garbage collectors are called barriers. Two kinds of barriers are
used: read- and write-barriers (see Section 3.1.) A read-barrier is inserted
where a reference is read, and a write-barrier is inserted where a reference
is written. Since a reference counter is only concerned with operations that
changes reference counts, read operations can be ignored. However, refer-
ence counts need to be updated when references are written.

4.9.1 Allocations

The allocation is described in detail in Section 4.7.5 and 4.7.6. It is normally
best to initiate the reference counter to one, since a reference to the new
object is normally stored in a variable. However, that is not always the
case. Extra care is needed if no reference to a recently allocated object is
stored. Consider the expression:

new TickerThread().start()

4.9. EMITTED GC CODE 65

Live data

Internal fragmentation

Object header

Block header

Figure 4.12. Memory usage using RTRC

The problem that arises is caused by the lack of a decrement operation that
otherwise would be invoked when the variable is overwritten or goes out
of scope. It does not help to initiate the reference count to zero, since still
no check would be emitted to catch objects with a reference count of zero.

It is neither safe to emit code to reclaim the object after the expression
has been evaluated, since a reference to the object could be stored while
the expression is evaluated. A solution is to initiate the reference count to
zero, and to check if the reference count is still zero after the evaluation.
A simpler solution is to store the allocated object in a temporary variable.
The disadvantage of that is that the object may be kept alive longer than
necessary. A work around for this disadvantage is to set the temporary to
null after the evaluation.

4.9.2 Reference Assignments

The objects that may be involved in an assignment are: the object referred
to by the left hand side (LHS), and object referred to by the right hand side
(RHS). Any of these references can, of course, be null. If the LHS objects ex-
ist, its reference counter should be decremented and the reference counter
of the RHS object should be incremented if it exists. The increment oper-
ation should be invoked first, otherwise problem arise if both references
refers to the same object and there are no other references to the object as
shown in the following expression.

Object a ← new Object()
a ← a

66 CHAPTER 4. REAL-TIME REFERENCE COUNTING

algorithm write-barrier(Object in out lhs, Object rhs)
if rhs �= null then

rhs.rc ← rhs.rc + 1
end if
if lhs �= null then

release(lhs)
end if
lhs ← rhs

end

Figure 4.13. Reference Assignment

Since a reference update of an assignment where LHS and RHS refers to the
same object is redundant, it can be removed. However, this check should
be performed at compile-time, since such assignments are extremely un-
common in real applications. The pseudo code of a reference assignment
is presented in Figure 4.13.

It is also worth noting that RHS can be evaluated twice if care is not
taken. It is probably easiest to store RHS in a temporary variable that is
later used in the increment operation and assignment.

4.9.3 Method Calls

The objects involved in a method call are the objects referred to by the
actual arguments and by the returned reference. The reference counters of
the objects that are passed to a method should either be incremented just
before the call or immediately when the method is entered. Since most
(non-library) methods are called more than once, it is safe to assume that
the code size decreases if the update is performed in the methods instead
of at the call.

When a method that returns a reference is invoked, some work is re-
quired to handle the return value. First, if the return value is not stored in
a variable, it has to be decremented explicitly (analogous to the problem
with allocations).

The variable that will store the return value needs extra care. The object
that it refers to before the call needs to be decremented. However, this can
not be done before the method is invoked, because that could cause the
object to be reclaimed prematurely. Consider the following code fragment:

Object a ← new Object()
a ← foo(a)

If a is decremented before the invocation, it has not been incremented as an
actual parameter yet. Thus, it will be reclaimed. Therefore the old reference
needs to be backed up and decremented after the method returns. The

4.10. RTRC VS. THE COMPETITION 67

algorithm invoke(Object in out result, Method method, Arguments args, . . .)
Object tmp ← result
result ← method(args, . . .)
if tmp �= null then

release(tmp)
end if

end

Figure 4.14. Invoking a method that returns a reference to an object

pseudo code for a method invocation of a method that returns a reference
to an object is presented in Figure 4.14. Invocations of methods that do not
return a reference to an object need no extra code.

To summarize, since the arguments are handled inside methods, they
can be ignored at the call. Only the variable that stores the return value
needs to be taken care of and only if it is a reference.

4.9.4 Methods

To keep the objects referred to by the actual arguments of a method from
being reclaimed, their reference counters are incremented as soon as the
method is invoked. When the execution of a method is finished, e.g. due
to a return statement or an exception, the reference count of objects referred
to by local variables and actual arguments must be decremented. This may
decrease the performance of exception handling. However, if exceptions
are used for exceptional behavior, it will only cause a minor impact on the
overall performance of the system. Figure 4.15 shows how a method, using
RTRC, can be implemented in C. The code that needs to be emitted is the
increments in the prologue, the cleanup code, and the modification of the
return statements.

4.10 RTRC vs. The Competition

As stated above, reference counting has some disadvantages compared to
other garbage collection techniques, and there do exist real-time copying
and mark-and-sweep collectors. Therefore, the need for a real-time refer-
ence counting technique might be questioned. The following sections will
explain the advantages of RTRC compared to the competition.

4.10.1 Execution time

Table 4.1 compares the worst-case execution time of the operations of the
real-time reference counter presented in this paper to the worst-case execu-
tion times of other real-time garbage collectors [Hen98, Sie02]. Neither the

68 CHAPTER 4. REAL-TIME REFERENCE COUNTING

object_t *method(object_t *this,
object_t *arg1,
int arg2,
object_t *arg3)

{
object_t *result = null;
object_t *local = null;

/* Increment the parameters */
RC_INCR(this);
RC_INCR(arg1);
RC_INCR(arg3);

if (arg2 > 0) {
/* return arg1 */
result = arg1;
goto cleanup;

}
else {

/* return arg3 */
result = arg3;
goto cleanup;

}

cleanup:
/* Decrementing locals and parameters except */
/* the value that is returned */
RC_DECR(this);
RC_DECR(arg1);
RC_DECR(arg3);
RC_DECR(local);

return result;
}

Figure 4.15. A method using RTRC implemented in C

4.10. RTRC VS. THE COMPETITION 69

Operation RT-Copying RT-Mark-and-Sweep RTRC

Increment (or equal) O(1) O(1) O(1)
Decrement (or equal) O(1) O(1) O(1)
Allocation/Free O(s + 1

o) O(s + 1
o) O(s)

Member access O(1) O(s) O(s)
Array access O(1) O(log s) O(log s)

Table 4.1. Worst case execution time of operations in real-time garbage
collectors. The size of an object is denoted by s and the memory overhead
by o.

copying nor the mark-and-sweep algorithm use increment or decrement
operations. However, both use read/write barriers that perform equiva-
lent operations. In the table, the worst-case execution time of the barriers
are compared to the worst-case execution time of the increment/decrement
operations. The major improvement of RTRC is the WCET of the alloca-
tion/free pair.

The execution time overhead is caused by the copying and mark-and-
sweep collectors’ inability to reclaim dead objects immediately. These col-
lectors work in cycles, and memory is only reclaimed at the very end of
the cycle. Thus, the system memory must hold the live objects, the objects
allocated during the current cycle, and the dead objects that float between
cycles. To keep the overhead low, the cycles can execute faster, but that in
turn increases the WCET of allocation (since more GC work is needed to
complete the cycle faster.) Since RTRC reclaims dead objects immediately,
there is no such cost.

The execution time of RTRC is not dependent on the memory usage of
the system, therefore all memory can be used without affecting the WCET.
This is not possible using the other techniques due to the behavior of the
allocation/free operations. Using all memory is especially advantageous
for embedded systems.

Copying garbage collectors compacts the memory during garbage col-
lection, which gives fast allocation and eliminates external fragmentation.
However, since objects move around, a handle is used to access the object.
This causes an extra pointer dereference which could be compared to ac-
cessing data in the second block using RTRC. Thus, if most objects can be
stored in one or two blocks, accessing members is as fast or faster in RTRC
compared to using a copying garbage collector.

Large objects, such as arrays, cause problems to all these techniques.
Using a copying collector with large objects cause long interrupts while the
object is being copied. To improve the response time, the system could in-
terrupt a copy in progress, but that in turn causes problems in proving and

70 CHAPTER 4. REAL-TIME REFERENCE COUNTING

Object header Block header

Live data Internal fragmentation

Dead objects

Figure 4.16. Memory layout using RT-Mark-and-Sweep

guaranteeing progress of the GC. The problem of large objects in mark-
and-sweep and RTRC is the access time. Using a tree or a linked list in-
creases access costs if objects grow large. Thus, in all cases it is preferable
to allocate large objects statically at the initiation of the system, so the GC
can ignore them.

4.10.2 Memory Overhead

To be able to compare the memory overhead of RTRC, with the mem-
ory overheads of the RT-Mark-and-Sweep, and RT-Copying collectors, we
need to investigate the object and heap layout of the techniques.

An example of a typical heap layout of a system that uses RT-Mark-
and-Sweep is presented in Figure 4.16. The heap is divided into blocks,
which all have a block header (4 bytes.) Each object is constructed from
a number of blocks. All objects have an object header (8 bytes.) Half of a
block will be lost to internal fragmentation (given that all object sizes are
equally probable.) Finally, about 1/3 of the heap is needed as a buffer to
store dead objects while the current GC cycle is completed. This is a fair
assumption if the WCET of allocation should be acceptable [Sie02, CB01].

The heap layout of a system using an RT-Copying collector is presented
in Figure 4.17. The heap is divided into two sub-heaps, of which only one
can be used to store live objects. Each object has an object header (8 bytes),

4.10. RTRC VS. THE COMPETITION 71

Object header Dead objects

Live data

Figure 4.17. Memory layout using RT-Copying

and about 1/3 of the currently used sub-heap is used as a buffer to store
dead objects while the current GC cycle completes, for the same reasons as
for RT-Mark-and-Sweep.

To compare the memory overhead of the three techniques, a theoretical
model has been set up. The model is presented in Table 4.2. The table
shows the formulas for calculating the different kinds of overhead.

The overhead caused by the block header is calculated as the size of
the header divided by the size of a block. For RT-Mark-and-Sweep, the
value is multiplied by 2/3, since the other third of the memory contains
dead objects. Since RT-Copying does not use blocks there is no overhead
associated with it.

The object header causes an overhead of the size of the header divided
by the object size (including internal fragmentation). For RT-Mark-and-
Sweep and RT-Copying the result is multiplied with the relative amount of
memory that is not occupied by dead objects.

The internal fragmentation of RTRC is the number of bytes available in
the allocated blocks (the size of the blocks minus the headers) subtracted
by the size of the object, and divided by the size of the allocated blocks.

When using RT-Mark-and-Sweep, the internal fragmentation is again
multiplied with the relative amount of memory that is not occupied by
dead objects. RT-Copying can compacts the objects so no internal fragmen-
tation exists. However, it may be necessary to pad the objects, but here it is
assumed that no padding is required.

72 CHAPTER 4. REAL-TIME REFERENCE COUNTING

GC Block head Object head Internal fragmentation Dead

RTRC BH
BS

OH
BS BC

BC (BS−BH)−OH−OS
BC BS 0

RT-MS 2
3

BH
BS

2
3

OH
BS BC

2
3

BC (BS−BH)−OH−OS
BC BS

1
3

RT-C 0 1
3

OH
OS 0 2

3

Table 4.2. Theoretical model of the total memory overhead of RT-RT, RT-
Mark-and-Sweep, and RT-Copying. BS is the block size, BH is the block
header size, BC is the block count, OS is the object size, and OH is the
object header size.

Finally RT-Mark-and-Sweep and RT-Copying needs memory for dead
objects. It is assumed that RT-Mark-and-Sweep uses 33 % of the heap and
RT-Copying uses 33 % of one sub-heap, plus the unused sub-heap [Sie02,
CB01]. The unused sub-heap does not really contain dead objects, but can
not store live objects anyway.

The diagrams in Figure 4.18 and 4.19 presents the distribution of the
memory overhead using RT-Mark-and-Sweep and RT-Copying using an
even distribution of 11 – 33 byte objects. It is clear that large portions of
the overhead are used to store dead objects. Since RTRC does not require
any memory to store dead objects, it enables the usage of 50 % more mem-
ory compared to RT-Mark-and-Sweep and 110 % more than RT-Copying,
assuming that there are no dead cyclic data structures.

Finally, the diagrams in Figure 4.20, 4.21, and 4.22 present how much
of the heap memory can be used to store actual data using the different
techniques and a block size of 16, 32, and 64 bytes. All three diagrams
show that the memory utilization in systems using RTRC is superior to the
utilization in systems using the previously presented techniques. It is also
worth noting that different block sizes do not result in major changes in
the memory utilization.

4.11 Summary

The increment operation of standard reference counting just increments a
variable, which is an operation with predictable worst-case execution time.
However, the decrement operation is potentially recursive. In the worst
case a decrement operation can reclaim all objects on the heap, and even
if the size of the heap is bounded, it is too long for essentially all real-time
applications.

4.11. SUMMARY 73

Live data

Dead

Internal
fragmentation

Object header

Block header

Figure 4.18. Memory overhead of RT-Mark-and-Sweep

Live data

Dead

Object header

Figure 4.19. Memory overhead of RT-Copying

74 CHAPTER 4. REAL-TIME REFERENCE COUNTING

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

A
va

ila
bl

e
m

em
or

y
(%

)

Average object size (bytes)

RT-Reference Counting
RT-Mark-Sweep

RT-Copying

Figure 4.20. Memory overhead comparison diagram using 16 bytes blocks

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

A
va

ila
bl

e
m

em
or

y
(%

)

Average object size (bytes)

RT-Reference Counting
RT-Mark-Sweep

RT-Copying

Figure 4.21. Memory overhead comparison diagram using 32 bytes blocks

4.11. SUMMARY 75

0

10

20

30

40

50

60

70

80

90

100

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

A
va

ila
bl

e
m

em
or

y
(%

)

Average object size (bytes)

RT-Reference Counting
RT-Mark-Sweep

RT-Copying

Figure 4.22. Memory overhead comparison diagram using 64 bytes blocks

By using Weizenbaum’s technique to eliminate the recursive behavior
of the decrement operation [Wei63] the decrement operation becomes con-
stant in time. The objects are added to a to-be-free list instead of decre-
menting its child references and adding the object to the free list. The child
references still need to be decremented, which now is done by the allo-
cator instead. When the allocator needs more memory, objects are taken
from the to-be-free list. Before they are reused their child references are
decremented.

Weizenbaum’s technique assumes that all objects are of equal size, but
that is not the case in most systems. However, since our heap is divided
into equally sized blocks, the technique can be used on the blocks. To de-
crease the WCET of allocation, all references in an object are not decre-
mented at once. Instead, only the references in the blocks needed by the
new object are decremented. To keep allocation fast, it must be possible to
get a single block from the free to-be-free list in constant time.

We now have achieved a system without external fragmentation and
with predictable allocation and reference count update operations. It is
also guaranteed that all dead blocks are immediately available to new ob-
jects. If it is desirable to increase the speed of allocation in high-priority
processes, this can be achieved by forcing the free list (which contains
blocks whose child references have already been decremented) to contain
the number of blocks needed by the high priority process.

76 CHAPTER 4. REAL-TIME REFERENCE COUNTING

Cycles are not handled by this design, but several manual techniques
have been presented. These can be used in any combination and should
eliminate dead cyclic data structures in most cases. If dead cycles can not
be eliminated using the manual techniques, a backup garbage collector can
be used. This will, unfortunately, decrease the benefits of RTRC, since all
memory will not be reclaimed as soon as possible. However, the system
will still require less memory in virtually all cases since all non-cyclic gar-
bage is reclaimed as soon as it dies. If a backup collector is necessary it
should have properties that allow it to be smoothly integrated with RTRC.
In particular it should be a non-moving incremental garbage collector, such
as a mark-and-sweep or a treadmill [Bak94] collector. A disadvantage of
using the treadmill as backup is that it requires two pointers in each object,
which makes the combination expensive.

Dividing objects into blocks introduces an overhead in both memory
usage and execution time. Using a linked list schema, each object needs a
pointer to the next block. These pointers need to be traversed when access-
ing data in blocks other than the first. The number of pointers to traverse
to get a field is known at compile-time. Large objects such as arrays should
not use a linked schema, because that would make the execution time of an
indexing operation a linear function of the size of its argument. Arrays can
be stored as trees that make the execution time a logarithmic function of the
size of the array. Large objects should preferably be allocated contiguously
and statically, so they can be ignored by the collector.

In order to reduce the execution time of reference counting, all reference
counting optimizations with predictable behavior can be used. One such
technique is Object Ownership, which is presented in Chapter 5.

— Beware of bugs in the above code;
I have only proved it correct, not tried it.

Donald Knuth

Chapter 5

Object Ownership

This chapter presents an optimization that increases the performance of
reference counters by eliminating redundant reference count updates. The
main factor that slows down a reference counter is memory accesses. In a
system without garbage collection, storing a reference is a very fast opera-
tion, but when using incremental garbage collection, the GC often need to
access the objects involved in the assignment (or some other memory asso-
ciated with the objects.) When reference counting is used, both the object
referred to by the old (left hand side) and new (right hand side) references
need to be updated. That means that the objects have to be loaded into the
cache and then written back to memory, which is time consuming.

5.1 Basic Idea

The purpose of a reference counter is to reclaim objects as soon as they
become unreachable. Thus, it must be possible to decide whether an object
is reachable or not. This is equivalent to checking if the reference counter
is zero or not, hence the actual number of references to the object is really
of no interest as long as it is larger than zero if it is reachable.

The idea of object ownership is to eliminate reference count updates
while one reference guarantees that the object is kept alive. The reference
that keeps the object alive is said to own the object. If another reference
temporarily refers to an owned object, it need not update the objects ref-
erence counter, since the owning reference will keep the reference counter
over zero while it owns the object. The temporary reference must not refer
to the object when the owner releases (stops owning) the object, since that
would cause the reference counter to be invalid. An example is presented

78 CHAPTER 5. OBJECT OWNERSHIP

algorithm increment(Integer ii)
ii.value ← ii.value + 1

end

Integer i ← new Integer(17)
increment(i)

Figure 5.1. Redundant reference count update

in Figure 5.1. Before entering the increment function, the reference count
of the object referred to by ii must be greater than zero. The reference
count is then incremented by ii. When the increment function returns,
the reference count is decremented since ii is released. Now the reference
count is the same as immediately before increment was called. Thus, the
reference count updates caused by ii are redundant.

5.2 Owning an Object

This section will define terms that help finding reference count updates
that can be eliminated. The approach we use to eliminate redundant refer-
ence count updates is based on the time periods in which references refer
to objects.

Definition 5.1
The life time of a reference to an object is the time from when the reference
starts referring to the object until the reference is updated or when it is
destroyed (goes out of scope or the containing object is reclaimed).

The life time of a reference to an object should not be confused by the
life time of a reference. The life time of the reference can contain several
life times of references to different objects.

Definition 5.2
If the life time of a reference to an object is encapsulated in the life time of
another reference to the same object, the encapsulated reference is called in-
ner and the encapsulating reference is called outer reference (see Figure 5.2.)

Lemma 5.1
Reference count updates caused by inner references are redundant.

Proof For each inner reference to an object there must be at least one outer
reference to the same object (otherwise there would not be an inner ref-
erence.) The outer reference refers to the object during the lifetime of the
inner reference, and since all other references that decrement the reference

5.2. OWNING AN OBJECT 79

Object a ← new Object()
Object b ← a
· · ·
b ← null
· · ·

Object a ← new Object()
Object b ← a
· · ·
a ← null
· · ·

Figure 5.2. In the example to the left, the a reference to the object is an
outer reference to the b reference. However, in the example to the right
does the life span of the a reference not encapsulate the lifespan of other
reference to the object. Thus, it is not an outer reference.

counter must have incremented it first, the reference count is guaranteed
to be greater than zero at all times. Thus, the object will not be prematurely
reclaimed.

During the life time of the inner reference, the reference count of the ob-
ject would first be incremented (when assigning the reference to the object)
and then decremented (when assigning a reference to another object or be-
ing destroyed). These updates cancel each other, so the reference count
is left as it would be if the inner reference would not have performed the
updates.

By eliminating the reference count update, the reference count will be
invalid while the inner reference refers to the object, but it will not be pre-
maturely reclaimed since the outer reference refers to it. It will neither be
forgotten since the reference count becomes valid when the inner reference
stops referring to the object. Thus, the reference count update can be elim-
inated without changing the semantic behavior of the system.

�
The life time of references from the stack can easily be computed since

their lifetimes are bounded by their scope. It is much harder to compute
the lifetime of references from the heap, i.e. references from other objects.
However, reference count updates caused by references from the heap are
rare compared to updates caused by references on the stack, so the over-
head caused by references from the heap is in general small compared to
the overhead caused by references on the stack. Thus, the optimization
will still yield a good result if only updates caused by stack references are
eliminated.

Lemma 5.2
Reference count updates caused by references from the heap can be per-
formed separately while inner references from the stack are eliminated.

Proof For this proof we count the references from the stack and the heap
separately. Neither reference counts can be negative, since there can not be
a negative number of references either on the stack or on the heap. This is
also true if we allow updates caused by inner references to be eliminated.

80 CHAPTER 5. OBJECT OWNERSHIP

Thus, an object can only be reclaimed if both reference counts are zero. It
does not matter if the references from the stack are all grouped into one as
long as the stack references count becomes zero, only when there are no
more references from the stack.

Since the stack’s reference count is always larger than zero when up-
dates of inner references are eliminated (since there is an outer reference
that is counted), the object will never be reclaimed while the outer refer-
ence refer to the object. When the outer reference no longer refers to the
object, there can be no inner references referring to the object, so the refer-
ence count is valid, and the object is still reclaimed if there are no references
from the stack or the heap.

�
Finally we can define which references own objects and prove that ref-

erences from the stack to owned objects can be eliminated.

Definition 5.3
A reference, R, to object O owns O if no outer reference to R owns it, and
if all other references from the stack that refers to O while R does are inner
references to R.

Theorem 5.1
References from the stack to owned objects are redundant and can be elim-
inated while non-local references are counted as in the original reference
counting technique.

Proof Since all references from the stack to an owned object are inner ref-
erences to the reference that owns the object (Definition 5.3) their reference
count updates are redundant (Lemma 5.1 and 5.2). Thus, references from
the stack to owned objects need not be counted.

�

5.3 Static Analysis

By limiting the optimization to references from the stack, the analysis be-
comes simpler. Within a method, simple def-use analysis can be used to
find inner and outer references. However, this can not eliminate the refer-
ence count updates that occur when references are passed as arguments to
methods.

When a reference to an owned object is passed to as an argument, all
reference updates to this object caused by references on the stack can be
eliminated. Thus, all references to that object from the stack within all di-
rectly or indirectly called methods are inner references since their lifetimes
are bounded by the call.

5.3. STATIC ANALYSIS 81

The only requirement to own an object that is passed as an argument is
that the reference is not modified during the call. The only way a reference
in a higher stack frame can be modified from a called method is if a refer-
ence to the reference is available in the current stack frame (or on the heap.)
Many modern languages, such as Java, do not allow such double indirec-
tions, but if it is allowed it can easily be detected by prohibiting references
that store or pass a reference to itself from owning objects.

Since it is very common to pass references from the current stack frame
as parameters, many objects passed to methods will be owned, thus the
optimization will eliminate many reference count updates in these objects.
Many cases where a reference that is not stored in the current stack frame
is passed to methods can be rewritten to store the reference in a variable
first without loosing performance. One should be careful if the object may
be reclaimed in a called method, since keeping a local reference to such
an object will keep it alive, and thus increase the memory usage of the
application. However, eliminating all reference count updates to the object
may be worth loosing some memory.

To be able to tell that an object passed by reference is owned, all ref-
erences passed to that parameter must be owned, so all calls must be ex-
amined. Note that it is not important to know which reference owns the
object. It is enough to know that some reference does.

5.3.1 Supporting Separate Compilation

If inter-procedural analysis is regarded too expensive or if separate compi-
lation is a requirement, it is not possible to know if objects passed as param-
eters to some method are owned or not. Even if inter-procedural analysis
is used, a passed object may sometimes be owned and sometimes not. The
conservative approach is to treat all unknown objects as not owned. How-
ever, by adding more runtime information these objects can also benefit
from the object ownership optimization.

By adding a boolean field in the object header that tells whether an ob-
ject is owned or not would make it possible to check whether the object
is owned or not. Unfortunately, this requires a memory access, but if the
object is owned it is not written back to memory (since it is not updated),
thus the performance increases. If a boolean field is used, it must be known
when an object becomes owned, so that it can be released when that refer-
ence is no longer referring to it. In many cases this will be very difficult to
tell.

A solution is to exchange the boolean field for a reference referring to
the owning reference. The field is set to null when no reference owns the
object, allowing the increment and decrement operations to check it and
skip updating the reference counter. The updated increment and decre-
ment operations are presented in Figure 5.3 with the operations that take
and release the ownership of an object.

82 CHAPTER 5. OBJECT OWNERSHIP

algorithm take ownership(Reference reference, Object obj)
if obj.owner = null then

obj.owner ← adressOf(reference)
end if

end

algorithm release ownership(Reference reference, Object obj)
if obj.owner = adressOf(reference) then

obj.owner ← null
end if

end

algorithm rcinc(Object obj)
if obj �= null and then obj.owner = null then

obj.rc ← obj.rc + 1
end if

end

algorithm rcdec(Object obj)
if obj �= null and then obj.owner = null then

obj.rc ← obj.rc - 1
if obj.rc = 0 then

freelist.add(obj)
end if

end if
end

algorithm write-barrier(Object in out lhs, Object rhs)
rcinc(rhs)
rcdec(lhs)
lhs ← rhs

end

Figure 5.3. Optimized Reference Counting

5.4. BENCHMARKS 83

5.4 Benchmarks

Even though the optimization has not been implemented in a compiler,
measurements of the updated increment and decrement operations have
been performed using the test program in Appendix B. The test program
uses the updated write-barrier (as presented in Figure 5.3) by doing sim-
ulated assignment of references stored in an array. The array in the test
contained 1 000 000 objects of 12 – 16 bytes each (depending on whether
the extra references was added to the header.) Thus, it is large enough to
keep the data out of the cache. The test program was compiled in four
versions:

• with no write-barrier

• with plain RTRC

• with object ownership and all objects owned

• with object ownership and no objects owned

All versions were executed with four difference uses:

• without accessing the objects

• accessing the left-hand-side

• accessing the right-hand-side

• accessing both objects

These tests were run on three configurations:

Config 1 Mobile Pentium III, 700 MHz, 192 MB, running on battery

Config 2 Mobile Pentium III, 700 MHz, 192 MB, running on AC

Config 3 AMD Athlon XP 1800+, 768 MB

Every program was executed five times, and the shortest execution time
was used in the calculations. The shortest execution time was chosen since
it was the execution with least disturbance. The calculations were also
made using the average and maximum execution time, and the results
were practically the same.

To evaluate the impact of the optimization, the execution time of the
write-barrier using plain RTRC was compared to the execution time in the
two cases using object ownership. The execution time of the write-barrier
was calculated by subtracting the execution time of the version without
any barrier code. The results are presented in Figure 5.4 which presents
the increase in execution time performance when objects were owned, and
in Figure 5.5 which presents the impact when objects were not owned.

84 CHAPTER 5. OBJECT OWNERSHIP

-10 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

Config 3

Config 2

Config 1

BothRHSLHSNo access

Figure 5.4. Execution time performance of the write-barrier using Object
Ownership when objects are owned

-25 %

-20 %

-15 %

-10 %

-5 %

0 %

5 %

Config 3

Config 2

Config 1

BothRHSLHSNo access

Figure 5.5. Execution time performance of the write-barrier using Object
Ownership when objects are not owned

5.5. EXTENSIONS 85

Note that these are measurements of the performance of the write-
barrier. It does not say anything of how often the optimization can be
applied. Note also that if object ownership is used to eliminate the write-
barrier, the overhead is also completely eliminated.

When running the laptop (configuration 1) on battery, it is in a power
saving mode, which among other things decrease the frequency of the CPU
clock. The performance of the write-barrier increase with 23 % – 75 % with
an average of 45 %. When using external power (configuration 2), the com-
puter goes out of the power savings mode, and the performance increase
with 10 % – 33 %, compared to the plain RTRC version, with an average
of 20 %. Using the desktop computer (configuration 3), the performance
increase -2 % – 37 % with an average of 13 %. The optimization clearly de-
pends on how the system uses the cache. These tests indicate that slower
systems may gain more on the optimization.

When running the program when the objects are not owned, the opti-
mization adds a check in the write-barrier. Since the objects are not owned,
the write-barrier is executed as in the plain RTRC implementation. Still,
configuration 1 practically does not show any decrease in performance
(-3 % – 1 % increase.) Configuration 2 shows a slight decrease. The per-
formance decreases 3 % – 6 %. However, configuration 3 show a decrease
of execution time performance of 8 % – 22 % with an average of 16 %.

Thus, some systems have much to gain from using this approach. Con-
figuration 1 and 2 barley loose any performance when the objects are not
owned and the execution time performance increase by as much as 75 %.
Configuration 3 may gain as much as 33 %, but when the objects are not
owned it may also loose 19 %. Thus, in that case it should only be used if
most objects are owned.

5.5 Extensions

Object ownership can be very useful as it is, but there are still some possi-
bilities for extending the technique.

5.5.1 Explicit Freeing

If the reference that stores a newly allocated object owns the reference and
no references to the object are stored on the heap, i.e. in a field of another
object, the object can be explicitly reclaimed when the reference releases
the object since no other object on the stack can refer to it (then the first
reference could not have owned the object.) When this can be applied, the
reference counter need not perform any extra work with this object. The
only GC overhead associated with the object is the memory occupied by
the reference counter. This idea is further developed in the next chapter.

86 CHAPTER 5. OBJECT OWNERSHIP

5.5.2 Overlapping References

Sometimes a reference can not take ownership of an object because another
reference starts referring to the object after the first one and still refers to it
when the first reference releases the object, i.e. the life times of the refer-
ences to the object overlaps, but one is not enclosed in the other. A simple
solution is to create a third reference that is an outer reference to both refer-
ences. This reference owns the object and releases it when the last reference
is updated or goes out of scope. The third reference need not actually be
created, the ownership of the reference may be handed over to the other
reference. This extension would make the optimization applicable to more
code.

5.5.3 Supporting Other GC Techniques

An interesting idea is to use the object ownership technique for other in-
cremental garbage collection techniques. What actually happens is that all
overhead caused by references from the stack to owned objects can be ig-
nored by the garbage collector. This ought to be useful information for
other garbage collectors as well. All barrier code can be eliminated when
an object is known to be owned. This should increase execution time and
decrease code size for most systems.

5.6 Summary

This chapter introduced an optimization technique for reference counting.
The technique eliminates reference count updates that are redundant be-
cause another reference is known to keep the object alive while the refer-
ence refers to the object. Since references from the heap are hard to analyze,
only updates by references from the stack are eliminated. References from
the heap can still refer to the same object without corrupting the analysis.

We also present a small benchmark of the version of object ownership
that adds a field in the object header and extra runtime checks. Even
though extra code is added, the optimization increase the execution time
performance of the write-barrier with up to 75 %. This version is used
when it is not known whether an parameter is owned or not. If all of
the system is available at compile time, the optimization can eliminate
the write-barrier completely when objects are owned, and thus completely
eliminate the execution time overhead caused by the write-barrier.

— Time is an illusion. Lunchtime doubly so.

Ford Prefect

Chapter 6

Static Garbage Collection

Garbage collection work is normally performed during runtime, however
static analysis can be used to relieve the runtime GC of work or even make
it redundant. Such analysis, called static garbage collection, generally in-
creases the performance and predictability of runtime GCs of all systems.
Performance can be gained since the runtime garbage collector needs to
pay less attention to objects that can be handled statically. Objects can
sometimes be allocated globally or on the stack to decrease execution time
of allocating and reclaiming objects. Predictability is gained since free op-
erations become explicit in the application, making the memory usage cal-
culations easier. If all objects are handled by the static analysis, and the
worst case execution time can be calculated, the worst case memory usage
can often also be calculated, a task which can be extremely difficult when
using a runtime garbage collector.

All analysis presented in this chapter assumes that there is no dynamic
loading of classes and that introspection is not used. These are normal
restrictions for hard real-time systems, where applications execution be-
havior must be predictable. It is still possible to use dynamic loading if
the complete system is re-analyzed, and all classes that are modified by the
developers or by the optimizers are uploaded.

6.1 Overview

The static garbage collector presented here consists of two parts. First the
application is analyzed using an extended escape analysis. Escape analy-
sis [PG92] is used to examine whether references escape methods, i.e. if
objects live longer than a method’s stack frame. This information is com-
monly used to allocate objects on the stack if possible. Here, escape anal-
ysis has been extended to handle cases even when objects lives extend be-

88 CHAPTER 6. STATIC GARBAGE COLLECTION

Source

Front end

Escape analysis

Optimizers

Code generator

Output

Figure 6.1. An overview of a compiler that uses static garbage collection.
To include the static GC in a compiler, the escape analysis must be intro-
duced and the code generator needs to be extended.

yond the life time of the method in which they are allocated. The result
from the escape analysis is used by the code generator to generate opti-
mized code by inserting explicit free instructions, and possibly by modify-
ing allocation instructions (see Figure 6.1.)

The escape analysis is divided into several phases. First a combined
data flow and call graph is constructed from the intermediate representa-
tion of the compiler. The call graph is then converted into a call tree, and
the data flow graph is updated to fit the call tree. Finally the data flow
from the allocations is traversed to find out where objects can be explicitly
reclaimed. The output of the analysis is the minimum stack depth from
which each object is accessed. An object can be reclaimed when control
returns to a stack frame above the level from where the object can be ac-
cessed. The analysis is further discussed in Section 6.3.

The code generator is extended to optimize allocating and freeing ob-
jects using the result from the escape analysis. Allocations can be turned
into stack allocations, or if it is possible they can refer to statically allocated
objects. It is also possible to insert explicit free instructions in the code
to handle some objects. The extensions of the code generator are further
discussed in Section 6.4.

6.2. OPTIMIZING MEMORY MANAGEMENT 89

class SGCExample {
int i;

void f() {
SGCExample obj = new SGCExample();

obj.i = 17;

// and something interesting
// ...

}
}

Figure 6.2. Java program that is used to present program transformations

6.2 Optimizing Memory Management

The primary goal of a static garbage collector is to relieve the runtime gar-
bage collector of work. Consider all allocation instructions in a system.
The objects that these allocations create can all be handled by a runtime
garbage collector, but it is also possible to free the memory using explicit
free instructions (if the runtime system supports it.) However, to do this
automatically is currently not within reach. Still, it is possible to trace the
data flow of references to find methods from which objects do not escape.
These objects can be reclaimed when the execution of that method has fin-
ished. When an object does not escape the method it is allocated in, it can
even be allocated on the runtime stack, which further improves allocation
and free performance. If a method is not recursive, there can only exist one
instance of its activation record on the stack. Thus, there can be at most
one instance of the object at any given time. Therefore, the object can be al-
located statically, which practically eliminates the need for allocation and
freeing completely. In a multi-threaded environment where the method
that allocates the object can be invoked by different threads, one object per
thread needs to be allocated.

The following sections describe different program transformations that
can be made as the result of the escape analysis. The transformations are
presented as a Java program translated into C. The transformation could
not be Java-to-Java since Java lacks some features that are required. Still,
the transformations can be used in both Java-to-native compilers and Java
virtual machines by updating the compiler and/or virtual machine. The
Java program is presented in Figure 6.2 and the direct translation into C is
presented in Figure 6.3.

90 CHAPTER 6. STATIC GARBAGE COLLECTION

typedef struct Static {
// Type and GC attributes stripped out
int i;

} Static;

void Static_f(Static *this) {
// Allocate the object
Static *obj = malloc(sizeof(Static));

// Initialize and call constructor
Static_initialize(obj);

obj->i = 17;

// and something interesting
}

Figure 6.3. Unoptimized C translation

6.2.1 Static Allocation

This section presents an approach to handle allocations of objects that die
before the next execution of the allocation instruction, i.e. allocations that
can share a single instance of an object. These objects can be allocated
statically as global (or static) objects.

These allocations can be replaced by a reference to the global object and
a call to an initialization method (including a call to a constructor.) No
free instruction is required since the same instance is reused at the next
invocation. An example of such a program transformation is presented in
Figure 6.4.

If an allocation instruction is part of a loop, it can create multiple ob-
jects within the same method invocation. Then it is impossible to refer to a
single instance for all allocations (if the created object does not die before
the next one is created.) Such allocations can be handled by creating an
array of objects statically. The array must be large enough to handle all ob-
jects that are created in the loop. Thus, the loop should have a fixed upper
bound on the number of iterations. The upper bound should also be rel-
atively tight to the average case, otherwise memory resources are wasted.
The program transformation must assure that all allocations return distinct
objects. To present this transformation, the Java program in Figure 6.5 has
been transformed and translated to C in Figure 6.6.

Typical examples of allocations that are handled by allocating static ob-
jects are allocations of constant objects. Allocations of temporary objects in
non-recursive methods commonly fit into this category as well.

6.2. OPTIMIZING MEMORY MANAGEMENT 91

// Allocate the object staticaly
SGCExample SGCExample_f__obj;

void SGCExample_f(SGCExample *this) {
SGCExample *obj;

// Point to static object
obj = &SGCExample_f__obj;

// Initialize and call constructor
SGCExample_initialize(obj);

obj->i = 17;

// and something interesting
// ...

}

Figure 6.4. C version using static allocation

class SGCMultiple {
void f() {

SGCExample[] objs = new SGCExample[10];

for (int i = 0; i < objs.length; i++) {
objs[i] = new SGCExample();

}

// Do something interesting
// ...

}
}

Figure 6.5. Java method that allocates multiple objects per invocation

A conservative approach to find such allocations is to search for alloca-
tions that meet these requirements:

• The allocation must be in a non-recursive method

• The method must not be invoked by multiple threads

• The allocated object must not escape the method

Many more allocations could be handled using this approach. However,
the complexity of the analysis increases if the objects are allowed to escape
the method. Most of the cases that can be handled by this approach, but
does not meet the requirements above, can be handled statically by some
of the approaches that follow.

92 CHAPTER 6. STATIC GARBAGE COLLECTION

SGCExample *SGCMultiple_f__objs[10];
SGCExample SGCMultiple_f__objs_array[10];

void SGCMultiple_f(SGCMultiple *this) {
SGCExample *(*objs)[];
int i;

objs = &SGCMultiple_f__objs;
Array_initialize(objs, 10);

for (i = 0; i < Array_length(objs); i++) {
(*objs)[i] = &SGCMultiple_f__objs_array[i];
SGCExample_initialize((*objs)[i]);

}

// Do something interesting
// ...

}

Figure 6.6. C version of the program in Figure 6.5 using static allocation

This approach requires the runtime system to be augmented with a
method that initializes the object. It must also be possible to call a con-
structor. If all constructors fully initialize objects, there is no need for a
separate initialization method.

6.2.2 Thread Local Allocation

Allocations that pass the above analysis except that the method that con-
tains the allocation is called from more than one thread can be allocated in
thread local memory.

Several approaches to program transformations are possible for these
allocations. Some runtime environments, e.g. the Java 2 platform, support
thread local variables directly. A more general approach that uses a map
that is indexed by a thread ID to get the thread local object is presented in
Figure 6.7. If multiple objects are allocated, the same approach as described
for static allocation can be used.

This approach does not put any requirements on the runtime system
other than the once presented above.

6.2.3 Stack Allocation

Allocations that meets the requirements for the “thread local” category,
except that the method is recursive can be allocated on the runtime stack if
the runtime systems supports it.

6.2. OPTIMIZING MEMORY MANAGEMENT 93

// A set of objects (one for every thread). When
// a thread is created it must also add an object
// to this set. Alternatively checks must be done
// to every time an object is "allocated", and an
// object is added if it does not exist
set _thread_SGCExample_f__obj;

void SGCExample_f(SGCExample *this) {
SGCExample *obj;

// Get the thread local version of obj
obj = set_get(_thread_SGCExample_f__obj, thread_id());

// Initialize and call constructor
SGCExample_initialize(obj);

obj->i = 17;

// and something interesting
// ...

}

Figure 6.7. C version using thread local objects

void SGCExample_f(SGCExample *this) {
// Allocate memory in stack frame
SGCExample _obj;

SGCExample *obj;

// Point to the stacked object
obj = &_obj;

// Initialize and call constructor
SGCExample_initialize(obj);

obj->i = 17;

// and something interesting
// ...

}

Figure 6.8. C version using a local variable

94 CHAPTER 6. STATIC GARBAGE COLLECTION

void SGCExample_f(SGCExample *this) {
SGCExample *obj;

// Allocate object in stack frame
obj = alloca(sizeof(SGCExample));

// Initialize and call constructor
SGCExample_initialize(obj);

obj->i = 17;

// and something interesting
// ...

}

Figure 6.9. C version using alloca() function

The transformation changes the allocation statement to allocate the ob-
ject on the stack instead of on the heap. This can be achieved either by
making it a local variable, as in Figure 6.8, or using an allocation function
that allocates memory from the stack, as in Figure 6.9 using the alloca()
function in available in many C runtime libraries. In either case no free
instruction is necessary since all memory that is allocated is allocated on
the stack is implicitly freed when the method returns.

A local array can be used to store the objects if a fixed number of objects
are allocated. However, if the number of allocations varies from time to
time, valuable memory resources may be wasted. If this is a problem, the
alloca() approach can be used instead.

This approach requires the runtime system to support allocation on the
runtime stack, and that the objects allocated there can be initialized as re-
quired before.

6.2.4 Explicit Freeing

In theory, all allocations can be handled using explicit free instructions, as
is the case when using manual memory management. However, we are far
from handling all allocations by automatically inserting free instructions.
This problem is extremely hard if memory leaks are not accepted.

Our approach to the problem is to trace the data flow from the alloca-
tions to all their uses using the escape analysis described below. The output
from the analysis is the minimum stack depth from which each allocated
object is accessed.

The program translation can either insert explicit free instructions to
free objects, but this can become complicated. A simpler and still efficient
solution is to associate a set with each stack level. When an object is allo-

6.2. OPTIMIZING MEMORY MANAGEMENT 95

// An array of sets. One for every stack level.
set _free_sets[MAX_STACK_DEPTH];

// Variable that holds the current stack depth.
// It is updated when entering and leaving methods
unsigned int _stack_depth;

void SGCExample_f(SGCExample *this) {
SGCExample *obj;

_stack_depth++;

// Allocate object on the heap
obj = malloc(sizeof(SGCExample));

// Schedule it to be freed when leaving
// this stack level
set_add(_free_sets[_stack_depth]);

// Initialize and call constructor
SGCExample_initialize(obj);

obj->i = 17;

// and something interesting
// ...

set_forall(_free_sets[_stack_depth], free);
_stack_depth--;

}

Figure 6.10. C version of using explicit free

cated, it is also added to the set that is associated with the stack level where
it can be reclaimed. When execution leaves a method, all objects associated
with its stack level are freed. Given the output of the escape analysis, this
code is trivial to output. There is a small overhead in memory usage to
keep the sets and a small overhead in execution time to handle the sets.
The transformation is presented in Figure 6.10. This solution is further dis-
cussed in Section 6.4.

6.2.5 Variable Sized Objects

To statically allocate objects that can vary in size, such as arrays, may cause
problems if the sizes vary much. One possibility is to allocate the largest
possible object (if this is known), but this can lead to waste of too much

96 CHAPTER 6. STATIC GARBAGE COLLECTION

memory. The problem arises only when using static allocation or using lo-
cal variables to store objects (since most languages do not support variable
sized local variables.) The solution is simply to use one of the other ap-
proaches to handle these objects. If an alloca() function is available this
can be used to store the object in the stack frame, otherwise explicit freeing
can be used.

6.2.6 An Example

The example in Figure 6.11 and 6.12 shows how a Java program with three
allocations can be transformed into C++ code where all allocations are han-
dled statically.

The method compare() compares the sum of an array of complex
numbers with a complex number that is passed as two doubles. To sum
up the array the method add() is called. This method creates two objects.
The first one is the object that is passed as the result from the method and
the second is a temporary object. The third allocation is in the compare()
method, and it creates a temporary object that holds the complex number
which is compared to the sum returned from add().

In the transformed program, the first allocation (of the result of the
add() method) is allocated on the heap and reclaimed explicitly in the
compare() method. The second allocation is allocated on the stack, since
it is part of a recursive method, and does not escape it. Finally, the complex
number that is allocated in the compare() method is allocated statically,
since it does not escape and it is not part of a recursive method. To save
memory, it can also be allocated on the stack.

6.3 Extended Escape Analysis

The goal of the escape analysis is to find the earliest point in the application
where objects can be reclaimed. This is achieved using an inter-procedural
data flow analysis that searches for the minimum stack level from which
each object is accessed.

6.3.1 The Data Flow Graph

The graph represents both the data flow and the method calls of an appli-
cation. The nodes represent sources of data and methods, and the edges
represent the data flow and method calls. There are eight kinds of nodes:

• Class nodes represent classes which are global and may contain fields

• Null nodes represent null values (only one is needed)

• Variable nodes represent local variables and actual arguments

6.3. EXTENDED ESCAPE ANALYSIS 97

class Complex {
double r, i;

Complex(double r, double i) {
this.r = r;
this.i = i;

}
}

Complex add(double[] v, int i) {
if (i == v.length) {

return new Complex(0, 0);
}
else {

Complex c = new Complex(v[i], v[i+1]);
Complex tail = add(v, i + 2);
tail.r += c.r; tail.i += c.i;

return tail;
}

}

boolean compare(double[] v, double r, double i) {
Complex c1 = new Complex(r, i);
Complex c2 = add(v, 0);

return c1.r == c2.r & c1.i == c2.i;
}

Figure 6.11. Java program with three allocation statements

• Method nodes represent methods (call graph) and their return values
(data flow graph)

• String nodes represent string constants

• Field nodes represent fields (static or not)

• New nodes represent allocations

• Throw nodes represent thrown exceptions

These nodes are connected using five kinds of edges:

• Send-to edges represent assignments

• Pass-to edges represent argument passing

98 CHAPTER 6. STATIC GARBAGE COLLECTION

struct Complex {
double r, i;
Complex(double r = 0, double i = 0) { initialize(r, i); }
Complex *initialize(double r, double i) {

this->r = r; this->i = i;
return this;

}
};

Complex *add(vector<double> v, int i) {
if (i == v.size()) {

// Heap allocation that is freed above
return new Complex(0, 0);

}
else {

// Stack allocation
Complex c(v[i], v[i+1]);
Complex *tail = add(v, i + 2);
tail->r += c.r; tail->i += c.i;

return tail;
}

}

Complex compare__c1;

bool compare(vector<double> v, double r, double i) {
// Static allocation
Complex *c1 = compare__c1.initialize(r, i);
Complex *c2 = add(v, 0);
bool returnValue = c1->r == c2->r && c1->i == c2->i;

// Explicit free of object returned from add()
delete c2;

return returnValue;
}

Figure 6.12. Eliminating the use of a runtime GC in Figure 6.11

6.3. EXTENDED ESCAPE ANALYSIS 99

class SGCGraph {
SGCGraph field;

static void f() {
SGCGraph obj1 = new SGCGraph();
SGCGraph obj2 = new SGCGraph();

obj2 = g(0, obj1, obj2);
}

static SGCGraph g(int i, SGCGraph p1, SGCGraph p2) {
p2.field = new SGCGraph();

if (i == 0) return p1;
else if (i == 1) return p2;
else return new SGCGraqh();

}
}

Figure 6.13. The Java program that is presented as a graph in Figure 6.14

• Return-to edges represent a value being returned

• Field edges connects fields to their objects (bidirectional)

• Call edges connects methods with the methods they call (bidirec-
tional)

The graph of the Java program in Figure 6.13 is presented in Figure 6.14.
Note that variables and parameters that do not contain references are ig-
nored by the analysis and are not included in the graph.

6.3.2 Building the Data Flow Graph

The graph is constructed in the first phase of the escape analysis. It is
done by traversing all classes, all methods, all their basic blocks, and all
instructions. This procedure is specific for each compiler. The creation
procedure for the Jamaica VM builder is presented in Section 7.3.2.

6.3.3 Converting the Call Graph into a Tree

The current design requires that the call graph is converted into a call tree
to be able to analyze each invocation of each method separately. The reason
for this is to separate calling contexts and to make it possible to associate
a unique stack depth to each invocation (except for recursive calls.) Con-
verting is a major disadvantage since it enlarges the input to the analysis

100 CHAPTER 6. STATIC GARBAGE COLLECTION

newnew

locallocal

param param

returnnew

field

new

f()

g()

send

pass return

field

calls

send

pass

sendsend

send

send

Figure 6.14. The graph of the Java program in Figure 6.13.

and thus requires more memory and CPU resources. However, the analy-
sis phase can be redesigned to use a graph instead of a tree. This is further
discussed in Section 6.6.2.

The conversion is started by calling the makeTree() method, which
is presented in Figure 6.15, on the main-method node. This method con-
verts the call graph into a call tree (with back edges for recursive calls) in
a bottom-up fashion. To detect recursive calls, the path of the called meth-
ods from the main method to the caller of the currently analyzed method is
passed as an argument to the makeTree() method. This path is checked
to see if it already contains the current method node. If it does, the call is
recursive, and a counter that keeps track of the number of recursive calls to
each method node is incremented, all methods in the recursion are marked
as such, and the current node is returned. If the node is not recursive, the
nodes level is set to the length of the path, and the node is added to the
end of the path.

The next step ensures that all call edges from the node refers to trees
by calling makeTree() recursively on each of them. All call-edges are
replaced by edges to the resulting trees that are returned from the recursive
calls to makeTree().

To guarantee that the returned method has exactly one non-recursive
caller, the method node is duplicated if the number of non-recursive callers
is greater than zero. When a method is duplicated, a deep copy is per-
formed.

6.3. EXTENDED ESCAPE ANALYSIS 101

The deepCopy() method also takes a list of method nodes as its ar-
gument to detect recursive calls. If a recursive call is detected, the first
instance of the method node is returned to generate a call to the correct
instance of the method (the one that is an ancestor of the called method.)
If the method is not recursive, the method is cloned. When a method is
cloned, all directly or indirectly called methods are recursively cloned and
calls and callers edges are added.

In the next step, all local nodes (arguments, variables, allocations, etc.)
are copied to the new copy of the method. However, the edges of the
cloned local nodes still target the local nodes of the original method. There-
fore, the local nodes in the cloned method are rewired. When a node is
rewired, all edges to other local nodes are re-targeted to target the cor-
responding node in the cloned method. This is achieved using the lo-
cal nodes’ unique indexes in the list that contains all local nodes in each
method node. Finally, the cloned node is returned.

Now, the graph has been converted into a call tree (with recursive calls
allowed), but the data flow between the methods is still corrupted. This
is fixed by the relinkCalls() method after the call tree has been cre-
ated. This phase filters out and re-targets edges so that values only can
be returned to calling methods, and parameters only can be passed to
called methods. As a special case a return value can be passed to a sibling
method, i.e. a method that is called by the method that calls the method
that returns the value. The relinkCalls() method is called recursively
on all non-recursively called method nodes.

6.3.4 The Escape Analysis

The analysis starts by searching for allocations in the main method of the
application using the markAllocations() method as presented in Fig-
ure 6.16. When an allocation is found, its data flow is traversed as de-
scribed below. When all allocations in a method have been processed, all
methods that are called from it are analyzed to find allocations. This con-
tinues recursively until all called methods have been analyzed.

Next all started threads are analyzed by analyzing their start methods
(Thread.start() in Java). All objects that are used by multiple threads
are handled by the runtime GC, since this analysis can not decide the exe-
cution order in different threads.

Figure 6.17 presents the markDataFlow() method, which analyzes
the data flow of general nodes. The input to the method is the current
stack depth, and the output is the minimum level from which it has been
found to be accessed. The analysis of a node recursively follows all send-to
edges (assignments) and passed-to edges (parameter passing). When fol-
lowing a pass-to edge, the passed stack depth parameter is increased by
one, since it is passed to a called method. The result of analyzing a node

102 CHAPTER 6. STATIC GARBAGE COLLECTION

algorithm makeTree(MethodNode this, List path) returns MethodNode
MethodNode recursive ← null
foreach n in path do

if recursive �= null or n = this then
recursive ← n
n.recursiveCalls ← n.recursiveCalls + 1

end if

if recursive �= null then
n.recursive ← true

end if
end loop

if recursive �= null then
return recursive

end if

level ← size(path)
addLast(path, this)

Set backup ← this.calls
this.calls ← new Set()
foreach n in backup do

remove(n.callers, this)
addCall(this, makeTree(n, path))

end loop

removeLast(path, this)
this.level ← -1

if this.callers.size() > this.recursiveCalls then
return deepCopy(this, path)

else
return this

end if
end

Figure 6.15. Converting the graph into a tree

6.3. EXTENDED ESCAPE ANALYSIS 103

algorithm markAllocations(MethodNode this)
foreach l in this.locals do

if l instanceof NewNode then
NewNode n ← l
n.accLevel ← markDataFlow(n, this.level)

end if
end loop
foreach m in this.calls do

if m.level > level then
markAllocations(m)

end if
end loop

end

Figure 6.16. Finding the dataflow of allocations

is the minimum result of all recursively invoked analyzes. This result is
returned and stored in the node. To prevent infinite recursion, all nodes
are initialized to be accessed from Integer.MAX VALUE. If the attribute
is not equal to that when a node is about to be analyzed, the previously
stored result is returned directly.

When analyzing method nodes (that represents return values), the anal-
ysis is modified as presented in Figure 6.18. As before, the method first
checks if the node has been analyzed before by checking the value of the
accLevel field. If not, the analysis continues. Since, these nodes repre-
sent returned values they have no send-to edges. When analyzing method
nodes, the analysis progresses by analyzing all nodes accessed via return-
to edges with the current level - 1 as input parameter, and via pass-to-edges
with the current level as input. Note that if a returned value is passed to
a method, it corresponds to passing the returned value to another method,
i.e. a method at the same level as the current one.

All local nodes are treated as general nodes if the method that they
belong to has been analyzed. However if it has not, the method is looked
up in a table of safe methods. A safe method is a method that does not store
or return its arguments. The result of calling a safe method is the same as
the input, i.e. the object is not passed to any stack level above the current
level. If the method is unknown, the worst case must be assumed. Thus -1
is returned which is equivalent to store the object in a global variable.

Finally, all objects that may be stored in fields or thrown as exceptions
can not be analyzed with this design, therefore the analysis returns -1 when
such case is detected. Returning -1 corresponds to saving a reference in a
static variable and these objects should be handled by the runtime GC.
How to handle fields is discussed in Section 6.6.

104 CHAPTER 6. STATIC GARBAGE COLLECTION

algorithm markDataFlow(Node this, int level)
if this.accLevel �= Integer.MAX VALUE then

return accLevel
end if

int min ← this.level

foreach n in this.sendTo do
min ← min(min, markDataFlow(n, level))

end loop
foreach n in this.passTo do

min ← min(min, markDataFlow(n, level+1))
end loop

this.accLevel ← min

return min
end

Figure 6.17. Marking the data flow of general nodes

algorithm markDataFlow(MethodNode this, int level)
if this.accLevel �= Integer.MAX VALUE then

return accLevel
end if

int min ← this.level

foreach n in this.passTo do
{ Passing the return value to a sibling method }
min ← min(min, markDataFlow(n, level))

end loop
foreach n in this.returnTo do

min ← min(min, markDataFlow(n, level-1))
end loop

this.accLevel ← min

return min
end

Figure 6.18. Marking the dataflow of return values

6.4. CODE GENERATOR EXTENSIONS 105

6.4 Code Generator Extensions

The escape analysis itself does not modify the generated code. Instead its
output is communicated to the code generator that in turn uses this in-
formation to generate optimized code. Since the analysis is global, it needs
information on all classes before it can produce any output. Thus, the anal-
ysis must be executed in a separate phase before the code is generated.

When source code is compiled into an executable format, the compiler
can insert explicit free instructions according to the output of the analysis.
There are several possibilities of how the data can be used.

An object can be allocated on the runtime stack when no reference to
it escapes to any higher stack frame (or to global scope). This solution
gives high performance since stack allocation is faster than heap allocation.
Depending on the runtime support, it can or can not be used for objects
with non-fixed size.

Another alternative that requires less work by the code generator is to
associate sets of objects with each stack frame level. The sets contain the
objects that should be reclaimed when the control returns from the stack
level. The advantage of this solution is that it is easier to implement and it
can also be used in interpreters such as the Java VM. The disadvantage is
that the sets consume memory resources and it may be some what slower.
Since the only operations on the sets are addition and iteration, the sets can
be implemented as singly linked lists.

Objects may be kept alive longer than necessary they are allocated in a
method that is called from different contexts. One invocation to a method
that returns a newly allocated object might use the returned object tem-
porarily, and another invocation to the same method may return the object
to its calling method where it is further processed. Since both objects are
allocated using the same instruction, they can not be reclaimed until con-
trol leaves the minimum stack level of the contexts that accesses any of the
objects in the current design. Thus, the temporary object is kept alive for
longer time than necessary. In the worst case, one object will be stored in a
static variable which would prohibit all objects allocated by the associated
allocation instruction to be handled by the static GC. An outline of how to
solve this problem is described in Section 6.6.3.

Finally the code generator can eliminate all code that keeps track of
objects that are handled by the static GC. The synchronization code can
also be eliminated for all objects that are only accessed by one thread.

6.5 Limitations

This is the first incarnation of the static GC, and it has limitations. The fol-
lowing sections discuss these, and Section 6.6 outlines designs to overcome
the ones that limit the system most.

106 CHAPTER 6. STATIC GARBAGE COLLECTION

6.5.1 Handling Fields

The current design does not handle objects that are stored in fields. One
reason for this is that many field nodes may represent the same field in the
graph. However, it is possible to merge all field nodes that may represent
the same field in the same object. This information is in the graph, hence
it is just a matter of extracting it. An outline of how this can be done is
presented below.

In general, it is very hard to determine the life time of objects that are
referred to by other objects. A safe assumption is to keep an object alive
until all objects that may refer to it die, but that can waste memory since
the object may have become unreachable long before that.

6.5.2 Large Systems Can not Be Analyzed

The execution time of the analysis phase is O(ANt) where A is the number
of allocations and Nt is the number of nodes in the tree, and since A < Nt

it is O(N2
t). This becomes a problem since the size of the graph grows

quickly when the graph is converted into a tree. The size of the resulting
tree is O(IC) where I is the maximum number of call edges to a node and
C is the maximum number of clones on any path from the root to a leaf
(and clones occur whenever a method is called non-recursively from more
than one other method.) Thus, the execution time is exponential in the
number of clones on a path from the root to a leaf. To get around this,
the conversion must be avoided. A design of a solution is presented in
Section 6.6.2.

The current solution is to only analyze part of the system. As soon as
data leaves the part of the system that is analyzed it is assumed that it is
saved in global scope, and thus should be handled by the runtime GC. To
be able to optimize the system, a list of safe methods can be input to the
analyzer. These methods must not let any references that are passed to
them escape to prevent from interfering with the analysis. Apart from the
fact that manual techniques are tedious and error prone, there is another
disadvantage of not analyzing the complete system. If a method that is
not analyzed invokes a method that is, the return value may be used in a
way that is not expected. Thus, to be sure of the correctness of the analysis,
references must not escape from analyzed methods that are called from
methods that have not been analyzed.

6.5.3 Objects Are Kept Alive

When using the technique where objects are stored in sets that are freed
when methods return, objects are only reclaimed at the end of method in-
vocations. This may cause objects that die to be kept alive longer than

6.5. LIMITATIONS 107

necessary. This is often not a problem, but if, for example, an object is cre-
ated in the main method while the application initializes, and then is not
used anymore, it will still be kept alive until the end of the method. An
inter-procedural def-use analysis would make it possible to reclaim many
such objects immediately when they die. That is even better than dynamic
GCs which can not free an object before it becomes unreachable.

Objects may also be kept alive because a method that allocates an object
is called from different contexts. An outline of a solution of this problem is
presented in Section 6.6.3.

6.5.4 Exceptions Are Not Handled

All objects that are thrown must be handled by the runtime GC using
the current design. If exceptions are used in exceptional cases only, they
should occur rarely and poses no major impact of the performance of the
dynamic GC. Neither do exceptions cause problems when manually pre-
dicting their memory usage. Thus, this limitation does not restrict the ap-
plications that use the static GC in practice.

If exceptions must be handled statically, they can be stored in thread
local variables, since there can only be one exception per thread in most
cases. If exceptions can be wrapped in other exception, a stack of exception
may be used. This work around does not work if references to the thrown
exceptions are stored in the exception handlers.

It should be noted that handling exceptions statically can be done simi-
lar to handling return values. Thus, the problem is not hard, but it has low
priority.

6.5.5 Finalizers Are Not Handled

The Java finalizers are methods that are used to free up resources that can
not be freed by the GC. They are comparable to the destructors of C++.
However, there is a major difference in that destructors are invoked when
objects go out of scope or when they are explicitly deleted, and finalizers
are invoked before the memory that is occupied by the object is reused. An-
other difference is that finalizers are invoked asynchronously in a separate
thread. Since we can not tell when objects die, it is impossible to tell when
the memory is reused. Another complication of finalizers is that a finalizer
can make its object reachable again. Thus, objects can be reincarnated in the
finalizer and then it shall not be freed until it becomes unreachable again.
Even if an object is reincarnated, its finalizer should only be executed at
most once.

A conservative approach is to add invocations to all finalizers in all ob-
jects that define them. The finalizers are executed in a separate thread, so

108 CHAPTER 6. STATIC GARBAGE COLLECTION

they can be inserted into the graph with a common parent method in a sep-
arate thread. To be sure that the finalizers do not cause any problems, all
objects that are accessed by the finalizers should be handled by the runtime
GC. Note, that since the this reference is passed to the finalizer, an object
with a finalizer must be handled by the runtime garbage collector. Using
this technique, finalizers can be used in applications that use the static GC.

Another possibility may be to handle finalizers as destructors if its cor-
responding object is handled by the static garbage collector. Since the static
garbage collector makes the point where the object is reclaimed explicit, it
can also invoke the finalizer that could be treated as any method. However,
if the finalizer reincarnates the object, one has to be very careful.

6.6 Overcoming Limitations

6.6.1 Fields

The problem of handling fields originates from that multiple field nodes
can represent the same actual field. The problem can be solved by adding
edges from the allocation nodes to the fields that may be part of the ob-
ject in a separate phase before the analysis. During the analysis, when a
reference to an object is stored in a field, special edges from the stored ob-
ject to the objects that may contain the field will indicate that one object
may be stored in a field of other objects. The minimal stack depth from
which an object is accessed from can then be calculated as the minimum
stack depth according to the data flow of the object (which is stored in the
method node) and the minimum stack depth of all objects that it may be
stored in.

6.6.2 Large Systems

The major disadvantage of the technique presented above is its inability to
handle large programs. The source of this restriction is that the call graph
is converted into a call tree to make the analysis possible.

The conversion is necessary to associate a stack depth to each method
invocation, and it is also used to separate calling contexts of methods that
are called from more than one method. However, if we aim to calculate
the stack depth of which an object can be reclaimed relative to the stack
depth where it is allocated at, the stack depth of method invocations can
be ignored. If we ignore fields at first, the only way an object can escape a
method is by being returned. The relative stack depth is simply decreased
by one for every time the reference is returned and increased by one every
time it is passed as an argument. When all reachable nodes have been
found, the minimum level is stored in the method node. Thus, the tree is

6.6. OVERCOMING LIMITATIONS 109

no longer necessary to track the relative stack depth from which an object
is accessed if fields are not handled.

The approach used to handle fields, as described in Section 6.6.1, is to
keep objects alive until all objects that may refer to them dies. As described,
there are edges indicating that an object is stored in a field of another object.
To be able to tell how long the referred object should be kept alive, we must
be able to tell the relative stack depth distance between the allocations.
This information can be found by following the data flow backwards from
the point where the reference is stored to the allocation of the object that
contains the field. Again, the relative stack depth is decreased every time
a return-edge is traversed and incremented by one every time a pass-edge
is traversed.

If the data flow passes a field node, all field nodes that may refer to the
same field in the same object must be examined. To be able to find the rel-
ative distance between the allocations, the calls edges can be examined to
find a common ancestor (there must be one or else the objects are allocated
in different threads and can not be handled anyway.) If a common ances-
tor is found, the task to calculate the relative distance becomes trivial. This
method can always be used if other approaches fail.

Hence, the relative stack depth distance of the allocations can always be
found, and thus it is possible to find the minimum stack depth from which
objects are referred from.

Using relative stack depths, one should be careful when using recursive
methods. The presented analysis can only reclaim objects when the top-
most invocation has finished its execution.

The WCET of the analysis is now O(N2
g), where Ng is the number of

nodes in the graph, instead of O(N2
t), which is a remarkable improvement

since the Nt grows exponentially compared to Ng .
To further improve the execution time of the analysis, dynamic pro-

gramming can be used. By analyzing the methods of the graph in a bottom-
up manor, and making shortcuts wherever possible, a sub-graph need only
be analyzed ones. If shortcuts are made, it is important to record the num-
ber of stack frames that are skipped.

6.6.3 Calling Methods from Different Contexts

When a method that returns an object that it allocates is called from differ-
ent contexts, the minimum stack depth from where the object is accessed
can vary from context to context. The current design is conservative and
reclaims the allocated object when leaving the minimum stack depth from
which it is accessed in all contexts.

A better solution is to pass the minimum stack depth from which the
object is accessed as a parameter to the method that allocates it. This infor-
mation is available in the graph, so it can easily be added to the call. The

110 CHAPTER 6. STATIC GARBAGE COLLECTION

same approach can be used for objects stored in fields, by following the
data flow of the objects containing the field.

6.7 Summary

This chapter introduces a static garbage collection technique that comes a
long way in moving the garbage collection work from runtime to compile-
time. The two major disadvantages is its execution time and its lack of
handling objects that are stored in other object’s fields. Solutions to both
these problems are presented in Section 6.6. The technique has been imple-
mented in the Jamaica VM [Sie02] and is presented in Chapter 7.

The static garbage collector will make it possible to run many Java ap-
plications without any runtime garbage collector. The only objects that can
not be handled by the static garbage collector are objects that are part of the
global state of the application and objects that are passed between threads.
If these objects can be statically allocated, no runtime garbage collector
is necessary. No previously published static garbage collection technique
with reasonable execution time can eliminate the runtime garbage collec-
tor for such large class of applications. Unfortunately, the presented im-
plementation does not have a reasonable execution time for large systems,
but that has been fixed in the design presented in Section 6.6.2. However,
this design has not yet been implemented.

— As soon as we started programming, we found to our surprise that it wasn’t as
easy to get programs right as we had thought. Debugging had to be discovered. I

can remember the exact instant when I realized that a large part of my life from
then on was going to be spent finding mistakes in my own programs.

Maurice Wilkes

Chapter 7

Implementation

This chapter presents implementations of the real-time reference counting
method and the static garbage collecting method. RTRC was first imple-
mented as a set of CPP macros and a small library of functions. To use it,
the developer has to make explicit calls to perform GC operations. RTRC
was also implemented in a Java compiler that was built using the CoSy
framework [ACE] and in the Jamaica JVM [Sie02]. Furthermore, the static
garbage collector was implemented in the Jamaica builder that compiles
Java to native executable code.

7.1 C implementation of RTRC

A first implementation of RTRC was developed using the CPP macro pro-
cessor and a small library of C functions. Developers can easily maintain
full control of the emitted GC operations, since all RTRC operations are
explicitly invoked. This is also a disadvantage since mistakes can lead to a
memory leak or prematurely reclaimed objects.

The interface to the implementation consists of functions and macros.
The functions are used for: initialization, allocation, and for preparing blocks
for allocation by high priority threads. The increment and decrement op-
erations are implemented as macros for performance. Macros for assign-
ment, function call, and function return have also been implemented to
increase usability. An example using the C version of RTRC is presented in
Figure 7.1.

The implementation is configured using macros. One macro enables
the reference counter. If this is not set, reference counting completely dis-
abled. Another macro enables statistics counters that count the number
of invocations of the increment and decrement operations, as well as the
number of actual increments and decrements. The statistics can be used to

112 CHAPTER 7. IMPLEMENTATION

flow_t *flow_create(double flow, double a,
tank_t *from, tank_t *to)

{
flow_t *f;

/* Increment the parameters */
RC_INCR(from);
RC_INCR(to);

/* Allocate an object */
f = flow_alloc();

/* Assigning primitive members */
FLOW__FLOW(f) = flow;
FLOW__AREA(f) = a;

/* Assigning references */
RC_ASSIGN(FLOW__FROM(f), from);
RC_ASSIGN(FLOW__TO(f), to);

FLOW__CALCULATE(f) = calculate_pipe;

cleanup:
/* Decrementing locals and parameters except */
/* the value that is returned */
RC_DECR(from);
RC_DECR(to);

return f;
}

Figure 7.1. A function using the C version of RTRC

help verifying the correctness of the use of the reference counter. The size
of the blocks and the number of blocks on the heap can also be customized.

This implementation does not automatically split objects, since it can
not be done transparently without modifying the compiler. The imple-
mentation is presented in Appendix A and benchmarks are presented in
Section 8.2.

7.2 CoSy Implementation

The real-time reference counting technique described in Chapter 4 has also
been implemented in the JOSES1 Java-to-native compiler (JOC) [RBLP00,
Vee01].

1ESPRIT LTR project #28198 “JAVA and CoSy Technology for Embedded Systems”

7.2. COSY IMPLEMENTATION 113

Figure 7.2. CoSy

7.2.1 CoSy

The CoSy compiler framework from ACE Associated Compiler Experts
was used to develop JOC, the JOSES compiler. CoSy was first developed
within the Compare ESPRIT project [AvSM93]. A CoSy compiler is built
using modules called engines. These engines communicate via a shared
memory called common data pool (CDP). To access the CDP, the engines
must define the structure of the data. These definitions are used to gener-
ate the data manipulation and control package (DMCP) library, which is
called by the engines to access data in the CDP. The structure of the data
in the CDP is defined using the full structure definition language (fSDL).
A CoSy compiler is constructed by combining engines using the engine
description language (EDL).

CoSy Engines

Engines can be programmed in any language that can interface with C, i.e.
most modern languages. The engines in a compiler usually include fron-
tends, optimizers, lowerers, and backends. The frontend reads the source
language and generates the intermediate representation (IR), which is used
to represent the input to the complier. The IR is then passed to optimizers
and lowerers to be transformed. A lowerer is an engine that transforms the
IR to a simpler form to make backends (and possibly optimizers) easier to
implement. A lowerer can, for example, transform switch statements into
if statements. The IR is finally passed to the backend that generates the
output of the compiler.

114 CHAPTER 7. IMPLEMENTATION

Engines can also be used to analyze the program and annotate the IR to
simplify the work of other engines. An example is the loop analyzer, which
finds loop constructs and extracts initialization, condition, advancement,
and body information.

The interface of an engine is defined in EDL. Since different engines
have different requirements on the IR, engines can specify their own view
of it. The DMCP library only allows access to the IR according to the spec-
ified view of the engine.

A tool, called BEG (back-end generator) [ESL89], has been developed to
ease development of backends. A BEG engine scans the IR for patterns that
it can translate into the destination language. If several transformations are
possible, the cheapest one is selected according to the cost associated with
every transformation in the specification of the backend.

The Engine Description Language — EDL

The engines of a CoSy compiler are glued together using the Engine De-
scription Language (EDL). EDL supports six possibilities to combine en-
gines into a compiler or into a composite engine.
pipeline The output of one engine is passed as input to the next.

data-parallel The IR can split into disjoint subsets that can be processed in
parallel, e.g. one instance of an engine per procedure.

fork Several independent engines work in parallel.

loop As in a pipeline the data is passed from one engine to the next. How-
ever in a loop, a status engine determines whether the loop should
end or continue. If the loop continues, the data is passed from the last
engine to the first, otherwise data is passed to the engine following
the loop.

speculative Several engines modify the IR graph. The result is passed to
a selector engine which determines which result should be used and
the results of the other engines are discarded. The output is that of
the selected engine.

optimistic First one engine is used to generate several potential solutions
for a specific problem. A status engine determines when enough
work has been done and stops the first one. A third engine selects
which results (IR) are to be considered for further processing. The
IR that passes the third engine is passed on to an instance each of
a fourth engine. All instances of the fourth engine work in parallel.
Results that are rejected by the third engine are discarded. Each in-
stance of the fourth engine continues to processes the IR and finally a
fifth engine chooses which IR is to be used and discards the rest. The
chosen IR is passed on to the next engine.

7.2. COSY IMPLEMENTATION 115

term ::= icon | rcon | scon | const
| op { fields } | [list]

fields ::= field1 = term1, . . . , fieldn = termn

list ::= term1, . . . , termn

Figure 7.3. BAR syntax

The Intermediate Representation – CCMIR

The CoSy system does not force engines to use a particular IR, but since
supplied engines use the Common COMPARE Medium Intermediate Rep-
resentation (CCMIR), the use of this IR is recommended. Engines can easily
extend the IR without interfering with existing engines and the extensions
are hidden from engines that do not use them. CCMIR is defined in fSDL
as is all data that is communicated between engines.

CCMIR is defined to be language-independent. Currently most imper-
ative and object-oriented constructs are supported. The object-oriented ex-
tension was designed within the JOSES project. Other extensions, e.g. a
DSP (Digital Signal Processor) extension, already exist.

BAR — an Interface to CoSy

To simplify frontend development we have designed an ASCII representa-
tion of CCMIR called BAR. To convert BAR into CCMIR a BAR frontend
for CoSy has been developed. The frontend can be combined with any
CCMIR engine to create an industrial strength optimizing BAR compiler.
So far prototype compilers for Pentium II and Sparc have been developed.

BAR was originally developed to connect frontends written in the Rela-
tional Meta-Language (RML) [Pet95], a natural-semantics like specification
language, with the CoSy system. BAR makes it possible to use virtually all
frontend construction tools available. The only requirement is that ASCII
files can be produced. BAR also makes it easier to debug the output of
frontends.

A BAR file contains a sequence of terms. A term can be an operator, a
constant, or a list of terms. Operators may have attributes, which can be set
to values represented by terms. Some attributes are mandatory, for others
default values can be calculated, e.g. for alignment of types. The complete
syntax is shown in Figure 7.3.

An example is presented in Figure 7.4 and Figure 7.5 where the C ver-
sion of “Hello world” has been translated into BAR.

116 CHAPTER 7. IMPLEMENTATION

int printf(char *, ...);

int main() {
printf("Hello World!\n");

return 0;
}

Figure 7.4. Hello World program in C

Integer {Name = "int", Size = 32}
Integer {

Name = "char", Size = 8, Signed = FALSE
}
Pointer {Name = "char*", RefType = "char"}
ProcType {

Name = "printf", ReturnType = "int",
Params = [Parameter{Type = "char*"}],
MoreArgs = TRUE

}

ProcGlobal {
Linkage = ImportLinkage, Type = "printf",
Name = "printf"

}

ProcType {
Name = "main", ReturnType = "int", Params = []

}

ProcGlobal{
Linkage = ExportLinkage,
Name = "main",
Body = [

Call {
Proc = "printf",
Params = [CStringConst {Value = "Hello World!\n"}]

},
Return {Value = IntConst {Value = 0}}

]
}

Figure 7.5. Hello World program in BAR

7.2. COSY IMPLEMENTATION 117

7.2.2 The Reference Counter Engine

The refcount engine introduces operations to maintain reference counts
in the IR. This is done in one or two passes through the code. The first
pass introduces calls to the functions ckf incrc() and ckf decrc() to
perform the actual reference count updates and the optional second pass
inlines these operations.

The engine works on the object-oriented layer of CCMIR, but it could
easily be adapted to work older version of CCMIR to support non-object-
oriented languages. However, the objects which should be handled by the
reference counter must then be marked somehow. In the current imple-
mentation, all object instances are reference counted.

The reference counter requires at most three temporary variables per
function: one to store the return value during cleanup (if the function re-
turns a value), and two that are needed when emitting assignments and
function calls.

When refcount starts, the Object-type is located, i.e. the type that
all other objects directly or indirectly inherits from, and the union type
needed to store the reference count and next pointer is created. Then one
dereference function is created for each class. The dereference function
decrements the reference counts of all children of an object. This imple-
mentation decrements all children and can not take one block at the time,
which is required in a full implementation.

Then all functions are processed. If a function returns a value, a tempo-
rary variable is created to temporarily store the value. A new basic-block
is created to clean up the activation record when the function is to return.
Cleaning up is done by decrementing the reference counts of the objects re-
ferred to by all parameters and local variables except for the return value.

In the next step all statements in the function are processed. The first
statement in all functions is the begin statement. Following that all lo-
cal variables which refer to objects are initialized to null and all reference
counters of objects referred by the actual arguments are increased.

The assignment statements referring to objects are the most compli-
cated. The right-hand-side of the assignment is stored in a temporary
variable and incremented. The address of the left-hand-side is stored in
another temporary and decremented. The temporaries are used since the
expression could have side-effects and should then not be evaluated more
then once. Finally the value of the right-hand-side is stored in the address
of the left-hand-side.

Return statements are changed into an assignment to the return value
temporary variable (if the function returns a value) and a goto to the clean-
up block.

Each function call which store a return value that holds a reference to
an object is updated to first save the reference that will be replaced by the

118 CHAPTER 7. IMPLEMENTATION

return value in a temporary variable. After the call, the reference count of
the object referred to by the temporary variable is decremented. The refer-
ence count can not be decremented before the call, since that could cause
the object to be prematurely reclaimed. An alternate approach to handling
function calls is to increment all actual arguments referring to objects be-
fore the call. That would eliminate the need for saving the reference that
is updated by the return value, but it would increase the code size (given
that functions are called one or more times.)

When all functions have been processed the reference count union, i.e.
the union that contains the reference counter or the next pointer as de-
scribed in Chapter 4, is added to the Object-type, and the reference count
operations are optionally inlined.

7.2.3 The Record Splitter Engine

The record splitter works on CCMIR without the object-oriented features.
Thus, all object instances have been transformed into records. To help find-
ing the records to split, the lowerer that removes the object-oriented con-
structs was updated to mark the object instance records. However, some
objects can not be divided since they are used as global or local variables or
as parameters. This is only an issue for objects that represent classes in JOC
since they are stored as global variables. To verify this, the IR is traversed
and object records that are used as global or local variables or parameters
are added to a set of instances that should not be split.

Next, the engine iterates over the list of all types to find object records.
The fields of records which are in the set described above are prepended
with a next field (a void pointer), so they get the same prefix fields as other
objects (next pointer, type information and reference counter.) All other
object records are divided into blocks.

While a record is split, a new block type is created and a next field is
added to it. The original type is associated with a list of the resulting block
types by storing it in a map. The fields of the object record are added to
the new block type until the size of the block type would exceed the block
size. New block types are created as needed. The block number and offset
of each field is stored to make it possible to find the field using reflection
at run-time. The number of blocks needed by an object is also stored to
be used when allocating objects at run-time. All information needed at
runtime is stored in the initialization expressions of the type information.

In the next phase, all member accesses are modified to use the next
fields if necessary. This is done by checking the type of the object record
and using the map to find the list of block types. These blocks are then
searched for the field. For every block passed, a next reference is generated.

All class record initialization are then prepended with a null pointer
for the next field. And finally, all instances of pointers to replaced object
records are replaced by pointers to the first block type in the associated list.

7.2. COSY IMPLEMENTATION 119

Currently arrays are not split, but this can easily be implemented by
modifying array subscript implementations, and adapting the array allo-
cation function.

7.2.4 The Runtime System

The design of the runtime system is crucial to the performance of compiled
code. Several issues have to be handled, e.g. virtual method calls, excep-
tions handling, and interfacing to native code.

Virtual Methods

Calling a virtual method in a language that only supports single inheri-
tance is cheap and trivial. All classes keep a table, called virtual table, of
virtual methods. All virtual methods in a class get a unique index in the
table. If a method is inherited from a superclass, its position in the table
is simply set to refer to the superclass’ method in the sub-class’ virtual ta-
ble. An object can be cast to a superclass, since the virtual tables of all
superclasses are prefixes to the sub-class’ virtual table. This is where the
problem with multiple inheritance occurs. A superclass’ virtual table is
not automatically a prefix of the sub-class’ virtual table, since a class can
have multiple superclasses. Thus, when multiple inheritance should be
supported, that simple schema does not work.

The Java interfaces cause the same problem as multiple inheritance in
regards to calling virtual methods (except for possible ambiguity.) In Java
the problem arises when a reference is cast to an interface, the interface’s
virtual table can’t be used (since it is not a prefix of the virtual table of the
object’s class.) Standard implementations [Str94] make references point
into objects (rather then to its beginning) to indicate where to find the vir-
tual table of the interface. The virtual tables of the example in Figure 7.6
is presented in Figure 7.7. To support this schema, the object headers must
include pointers to all virtual tables whose virtual tables are not prefixes
of the object’s class’ virtual table. After the virtual table pointers, offsets
to the beginning of the object are kept to be able to find the start of the
object. The offsets are needed to find the instance variables and to be able
to convert a reference to other classes and interfaces. This schema give an
overhead in all objects, and requires three memory dereferences at every
call, and one dereference for every instance variable access (to find the off-
set.) The source code in Figure 7.8 shows how to call methods and access
members using this method.

The JOC implementation decrease the per object memory overhead and
the number of memory dereferences by increasing the per class memory
overhead. Every class has an interface table which holds references to vir-
tual tables of all implemented interfaces. Every interface gets a globally

120 CHAPTER 7. IMPLEMENTATION

interface I1 {
void f1();

}

interface I2 {
void f2();

}

class A implements I1 {
public void g() {}
public void f1() {}

}

class B extends A implements I2 {
public void f() {}
public void f2() {}

}

Figure 7.6. Java example for virtual tables

b : B

B_I1_tab

B_I2_tab

B_vtab
B.f()
A.g()
A.f1()
B.f2()

B.f2()

A.f1()

B_vtab
0
B_I1_tab
-2
B_I2_tab
-4
...

Figure 7.7. Virtual tables using the standard implementation

// Calling a method (2 dereferences)
obj->vtab[METHOD_ID]()

// Accessing in instance variable (2 derefrerences)
(obj + obj->offset)->member

Figure 7.8. Calling methods and accessing members using the standard
C++ implementation

7.2. COSY IMPLEMENTATION 121

b : B

B-f2()
B_I2_tab

A.f1()
B_I1_tab

B.f()
A.g()
A.f1()
B.f2()

B_vtab

B_vtab
B_I1_tab
B_I2_tab

B_classB_class
...

Figure 7.9. Virtual tables using JOC

// Calling a method (3 dereferences)
obj->class.itab[INTERFACE_ID][METHOD_ID]()

// Accessing a member (1 dereference)
obj->member

Figure 7.10. Calling virtual methods and accessing members in JOC

unique index. The length of the interface table is the largest index of the
implemented interface plus one. The first position in the interface table is
used to store a pointer to the class’ own virtual table. The interface tables
of the example in Figure 7.6 is presented in Figure 7.9, and source code that
calls a method and accesses a field is presented in Figure 7.10.

By making all interface tables be of equal length (the number of inter-
faces) the class’ virtual table can be located at a fixed position in the class
record. Thus, when the type of the reference used to make the call is a class,
one dereference can be omitted. The overhead is presented in Table 7.1

Exception Handling

There are two main approaches to handle exceptions. Either a direct jump
is done to the nearest exception handler, e.g. using the C longjump()
function, or the stack is wound up by returning from all functions until
an exception handler is found. A direct jump is generally faster when an
actual exception is thrown, but it slows down execution when entering a
try/catch block since registers and such data needs to be saved. The main
disadvantage of stack unwinding is that when a function that can throw

122 CHAPTER 7. IMPLEMENTATION

Operation JOC Std. implementation

Virtual calls 2 dereferences 2 dereferences
Interface calls 3 dereferences 2 dereferences
Attribute access 1 dereference 2 dereferences
Object size 1 word 2 words per superclass
Class record size 1 word per interface none

Table 7.1. The overhead of multiple inheritance in JOC and using the stan-
dard (C++) implementation

an exception returns, it must be checked if an exception has been thrown
or not. However, certain run-time systems require some cleanup when
returning from functions, e.g. decreasing reference counts and calling de-
structors. To be able to use the longjump solution, these cleanup blocks
must be registered and called when passing them during a longjump.
Since JOC uses reference counting, which requires the references of all lo-
cal variables and arguments to be released, the longjump solution would
most certainly be slower than using stack unwinding. Thus, JOC uses stack
unwinding.

Since exceptions are local to threads in Java, the exception handler must
be aware of threads. Every function generated by JOC takes an environ-
ment as the first argument. This environment is unique for each thread.
One field of the environment is used to store a possible exception. Throw-
ing an exception is a matter of setting the exceptions field and jumping to
the nearest exceptions handler in the function. If there are no exception
handlers in the function, one is created. If a thrown exception is not han-
dled by the handler, the handler jumps to the next following handler. If
the handler is the last in a function and the exception is not handled by it,
the clean up code is invoked and the function returns. When a function
that can throw exceptions returns, the environment has to be checked. If
an exception has been thrown, the handler jumps to the nearest enclosing
exception handler. This goes on until a handler that handles the exception
is found. If a handler has a finally block it is always invoked regardless if
the exception is caught or not.

Native Interface

The Java Native Interface (JNI) is used to combine Java code with code
written in other languages such as C. This interface sets up an environment
for the native code to execute in. The environment wraps access to data
in the virtual machine and maintains the runtime information. Among
the functionality provided in the JNI are mechanisms for local and global
references. A global reference is a reference that has to be released like any

7.2. COSY IMPLEMENTATION 123

Java Source

tea

barc

Target

Java Byte Code

jd

BAR Code

jazz

Java Assembler

CPP

BAR Code

Figure 7.11. The structure of JoC. The barc compiler is presented in Fig-
ure 7.12

.

reference created by the Java code. Local references, on the other hand, are
automatically released when leaving the native code. This is implemented
by storing a linked list of local references in the environment. All native
calls from the Java code are wrapped with an initializer that initializes the
environment. When the native call returns, the environment is examined
to see if an exception has been thrown, and if there are no other active
native methods on the stack, the local references are released.

7.2.5 The Compiler

The full compiler, presented in Figure 7.11, which compiles Java source
to target code (currently C or Pentium assembler) includes several mod-
ules. First the so called tea compiler translates Java source into “Java as-
sembler”. This compiler was originally developed in two master projects
at PELAB [Com97, Hol00]. The tea compiler was automatically gener-
ated from a Java semantics specification in RML [Pet95], a natural semantic
specification language developed at PELAB.

The Java assembler output from tea is translated into Java byte code
using the jazz assembler also developed at PELAB. This stage was intro-
duced to simplify offset calculations.

The byte code is translated into BAR code to interface to the CoSy com-
piler. The translation is performed by the jd compiler, which is also im-

124 CHAPTER 7. IMPLEMENTATION

barre

Target

Optimized CCMIR

CCMIR

OMIR

BAR Code

backend

CCMIR Engines

OMIR Engines

Figure 7.12. The structure of barc, the BAR to CCMIR translator. The
OMIR engines are presented in Figure 7.13 and the CCMIR engines are
presented in Figure 7.14.

plemented in RML. The implementation was done in three PELAB master
projects [Ben98, Roo00, Kar00] and was later almost completely rewritten
to emit the object-oriented version of CCMIR. Since the byte code is stored
in one file per class, this was also chosen as the compile unit for jd. Thus,
the output is one BAR file per class.

Before the BAR code is passed to the CoSy compiler, all BAR class files
are concatenated and passed through the C macro processor (CPP). CPP
is only used for inclusion of standard types and class specifications (also
generated by jd). By concatenating all class files, a single huge BAR file
is generated even for small Java programs. This was chosen for simplicity,
since inter-class optimizations were planned for JOC.

Finally the BAR code is passed to the barc compiler which is imple-
mented in CoSy. The output from barc is either C code or Pentium assem-
bler. This stage is further described below.

The BAR Compiler — barc

The first stage of barc, as presented in Figure 7.12 is the BAR REader en-
gine, barre. This engine reads the file containing the complete Java appli-
cation and translates it into CCMIR. The IR is then passed to engines that
optimize it before it is passed to the engines that remove the object oriented
features of the IR. Next follows engines that further optimize the code on
the old CCMIR level. Finally the backend generates the target code.

7.2. COSY IMPLEMENTATION 125

rta

OMIR optimizers

OMIR lowerers

refcount

CCMIR

OMIR

Figure 7.13. The OMIR engines of barc.

The OMIR Engines

While the object-oriented version of CCMIR was developed, the object-
oriented subset of CCMIR was named OMIR. At that stage we divided the
engines into engines that were designed to handle OMIR and the older
engines that did not expect any OMIR. This section describes the engines
that were designed to work on OMIR. The structure of the OMIR engines
is presented in Figure 7.13.

The rta engine optimizes the code and decreases the load on the other
engines by using rapid type analysis [Bac97] to remove classes and meth-
ods that are never used by the application. This greatly reduces the com-
pilation time. After that, the refcount engine is invoked to add reference
counting operations to the code (see Section 7.2.2.)

The IR is then passed to the OMIR optimizers. However, no such en-
gines were available when the compiler was implemented. Therefore, the
IR is just passed on to the OMIR lowering engines. The OMIR is lowered
in three steps. The object-oriented nodes, such as classes, instances, mem-
ber access, and dynamic method calls, are first translated into lower level
CCMIR. This stage also creates the run-time type information. Next, the
interface to native code (normally written in C or C++) is wrapped to im-
plement the Java Native Interface [Lia99] standard. Finally the exceptions
are translated into lower level CCMIR. In the evaluation compiler, the ex-
ceptions are simply removed. The resulting IR no longer contains OMIR.

126 CHAPTER 7. IMPLEMENTATION

recsplit

CCMIR optimizers

CCMIR

CCMIR

Figure 7.14. The CCMIR engines of barc

7.2.6 The CCMIR Engines

The CCMIR engines, i.e. the engines that work on non-object-oriented
CCMR, are presented in Figure 7.14. The IR is first passed to the recsplit
engine, which is described in Section 7.2.3. After that the CCMIR optimiza-
tions engines are invoked. The optimizations include constant propagation
and dead code removal. The IR is finally passed to the backend that cur-
rently generates C code.

7.2.7 Future Work

The JOSES compiler is a prototype and is currently not useful for “real”
applications. The compiler executes too slow and the generated code is
not good enough. Some future improvements are discussed below.

Temporary Reference Variables

The JOC frontend generates many temporary variables. This is partially
caused by the design of CCMIR, but can still be greatly improved. The
problems of generating many temporaries are that locality is destroyed,
memory usage increases, execution time increases since temporary refer-
ences are also reference counted, and all objects are not reclaimed imme-
diately since temporary variables still reference them when the original
reference is updated.

There are two approaches to decrease the number of temporary vari-
ables. One is to rewrite the frontend (jd), and the other is to write an en-
gine that reuses temporaries and removes redundant ones. To get the best
improvement both approaches should be combined. Such an engine can be
implemented using a def-use analysis to find out if a temporary variable
could be reused, and a data flow analysis to find redundant ones.

7.3. THE JAMAICA VM 127

To be able to reclaim objects as soon as possible, temporaries should
also be set to null after their last use.

Compilation Time

The compilation time of non-trivial Java programs using JOC is far too long
(5 – 20 minutes far a small benchmark). The reason is that all code of the
application is compiled into one big unit. To be able to perform inter-class
optimizations the classes from the run-time library are also included. A
“Hello world!” application requires over 100 classes and about 150 MB of
memory to compile. These figures are from using the rapid type analysis
engine which removes much of the redundant classes before passing the
IR on.

First, separate compilation should be allowed. To support inter-class
analysis, a database must be kept between compiler invocations. Secondly,
the compiler should be lazier and only compile what is necessary. A static
call tree could be maintained during compilation and only the methods
which could be called should be compiled. These approaches would re-
quire a massive rewrite of the compiler and will, because of the effort re-
quired, not be implemented in the JOSES compiler.

7.3 The Jamaica VM

The Jamaica system, developed at aicas GmbH, is a hard real-time Java
implementation with an interpreter and a compiler. Interpreted and com-
piled code can be mixed to optimize speed and memory usage. There are
actually two interpreters, one that executes class-files directly, and one that
uses a more compact class format. Using the latter, an executable file is
generated. This program embeds the interpreter and the classes. Currently,
Jamaica generates C code, but a more flexible back-end is under develop-
ment. The new back-end will be able to generate native code for several
platforms.

The Jamaica runtime system divides the heap into blocks that are col-
lected using a mark-and-sweep garbage collector. Small objects are built by
linking blocks into a list, and larger objects use a tree structure. If it is pos-
sible, larger trees are contiguously allocated to improve average execution
time.

7.3.1 Real-Time Reference Counting

At first, it was planned to integrate the RT-reference counter into the inter-
preter. However, implementing a reference counter directly in the JVM is
very inefficient because of the nature of the Java byte-code. The easiest ap-
proach is to rewrite the code that pushes and pops references to and from

128 CHAPTER 7. IMPLEMENTATION

Method void main(java.lang.String[])
; RedundantRC obj = new RedundantRC();
; Allocate an object and push it on the stack (rc = 1)
00 new #2 <Class RedundantRC>
; Duplicate the reference (rc = 2)
03 dup
; Invoke the constructor on the top element
; of the stack (rc = 1)
04 invokespecial #3 <Method RedundantRC()>
; Store the reference in local variable
07 astore_1

; int i = obj.i;
; Push it back on the stack (rc = 2)
08 aload_1
; Get the attribute and put it on the stack (rc = 1)
09 getfield #4 <Field int i>
; Store the attribute in a local variable
12 istore_2

; When returning the local variable is cleared (rc = 0)
13 return

Figure 7.15. Redundant reference count updates in the JVM

the stack and the code that stores references in local variables and objects.
However, this would introduce many more reference count updates than
necessary.

Many reference count updates can be eliminated by introducing them
at byte-code level, e.g. a reference that is moved from the stack to a local
variable need no update. This is the best one can do without analyzing
the byte-code first. Unfortunately this approach leaves many redundant
reference count updates in the code. The byte-code in Figure 7.15 shows an
example of reading an attribute of an object. Reading data is an operation
that does not require any reference count updates, but the byte-code needs
to copy a reference to the object containing the attribute to be stored on the
stack. Since the reference counter can not tell how this reference will be
used, it must be counted. The example requires five updates (not counting
the initialization). If the reference count updates are introduced before the
temporary variables (the stack) is introduced, only one update is necessary.
Although it is complicated, this information can also be extracted from the
byte-code.

Still, the reference counter was implemented in the interpreter as a
proof of concept that it can operate with the mark-and-sweep garbage col-
lector. The system runs, but no efforts have been made to benchmark it,

7.3. THE JAMAICA VM 129

since it is too inefficient. Thus, it does not give any interesting indication
about the efficiency of the technique.

The conclusion of this implementation is that the reference counter ei-
ther should be implemented in the compiler or the byte-code need to be
analyzed before it is executed for this technique to be competitive. A pos-
sible approach to perform the optimization is presented below.

Barth’s Peep Hole Analysis

An approach to decrease the number of reference count updates has been
proposed by Barth [Bar77]. By doing a simple peep hole analysis it is possi-
ble to find increment operations followed by decrement operations on the
same object or vice versa. These updates can be discarded with no semantic
change to the program. This simple optimization can be implemented by
traversing the byte-code of a method and insert reference count updates.
This code can then be optimized to eliminate reference count updates ac-
cording to Barth’s technique. These two steps can also be integrated to
increase the performance of the optimizer, which is very important since it
is invoked during runtime.

7.3.2 Static Garbage Collection

The extended escape analysis as described in Chapter 6 has been imple-
mented. Since the modifications to the code generator have not yet been
implemented, the escape analysis is not run in a separate phase. Instead its
execution is interleaved with the code generation to eliminate a separate
phase. The analysis has been fully implemented except for the support of
multiple threads.

Generating the Graph

The only part of the analysis that is compiler dependent is the genera-
tion of the data and call graph as described in Section 6.3.1. This was
mainly implemented by adding methods to the existing classes that rep-
resent the IR of Jamaica. All intermediate commands in the IR that cause
any change to the graph implements the buildDFG() method to repre-
sent the data flow of the command. To be able to generate the graph, it is
necessary to know the sources of the references. This information is found
using the dataSource() method that is implemented in all commands
that can produce a reference. The nodes of the graph are created using
the createDFGNode() method that is implemented in all commands that
may be the sources of references. Finally, the call graph information was
added by the createCallGraph()method that adds the call edges. With
a few exceptions, this was the only changes to the existing code that was

130 CHAPTER 7. IMPLEMENTATION

needed to implement the analysis. The commands that affect the data flow
and the changes that they make to the graph are listed below.

New, NewAArray, NewArray, and NewMultiArray These intermediate
commands allocate new objects and store them in a variable. A node for
the allocation and a send-to-edge to the variable is created.

WriteVar This intermediate command stores a value in a variable. If the
type of the value is a reference type, a send-to-edge is created from the
source of the value to the variable.

GetData The GetData intermediate command reads a field of an object.
It does not directly generate any nodes or edges. However, when it is used
as the source of any intermediate command that creates a data flow, and
no node in the graph represents the field already, it creates such a node and
connects it to its object by adding a field-edge from the object to the field.

SetData The SetData intermediate command stores a value in a field.
Three nodes are created if they do not exist: the destination object that
contains the field, the field and the source (of the right hand side.) These
are connected by adding a fields-edge from the destination object to the
field, and a send-to-edge is added from the source object to the field.

ArrayStore The ArrayStore intermediate command represents a value
that is stored in an array. If the value is a reference, a send-to-edge is added
from the source of the value to the array.

GetClass The GetClass intermediate command represents an interme-
diate command that retrieves the class of an object. This would require a
send-to edge from all classes to the destination node. However, since all
classes end up on the heap (since they are global) they can be handled by a
common dummy class node. A send-to-edge from the dummy node to the
destination node is created.

TermReturn The TermReturn intermediate command is used to repre-
sent a value being returned from a method. If the value is a reference, a
send-to-edge from the source of the value to the node that represents the
method is created.

7.4. SUMMARY 131

TermThrow The TermThrow intermediate command throws an excep-
tion. Since exceptions are not handled, a send-to-edge from the thrown
object to a node that represents the TermThrow intermediate command is
created.

Invoke The Invoke intermediate command generates the most compli-
cated data flow. Since dynamic dispatching is used, one can seldom decide
exactly which method is being called at compile-time. If multiple targets
are possible, data flow has to be created for all possibilities. First pass-
to-edges are added from the parameters that are of reference types to the
corresponding formal arguments of the called method. If the nodes for the
formal arguments have not yet been created these are created. If the return
value is of a reference type, a return-edge is created from the method node
to the variable that receives the return value.

The Invoke intermediate command is also used to generate the call
graph of the system. If the called method is static, a calls-edge is added
to the called method. Otherwise, a calls-edge is added to every possible
target method, i.e. the method that is called and all methods that override
it.

7.3.3 Debug Output

To debug the output of the analysis, the complete graph is output using
the graph description language (GDL) of aiSee (previously called VCG.)
The aiSee tool is developed by AbsInt (see http://www.absint.com .)
The graph can be examined using the aiSee tool. This can be used to un-
derstand why some allocations can not be handled statically, and possible
to improve it to make it possible handle more objects at compile time.

7.4 Summary

RTRC has been implemented as a C library and in a full Java compiler. The
C implementation makes it possible to test the technique with full control
of the emitted source code. It also makes it possible to test the impact
of optimizations by manually making changes to the code. This way, the
optimizations need not be implemented to be tested.

The RTRC implementation in JOC is useful to test the technique on
larger systems, which are hard to implement correctly using the C imple-
mentation. Unfortunately, the JOC compiler is itself a prototype, which
among other things results in that some compilations fail, some generated
code fails, huge CPU and memory requirements, and in excessive gener-
ation of temporary variables. Since all temporary variables are reference

132 CHAPTER 7. IMPLEMENTATION

counted, the performance of this implementation of RTRC is low. How-
ever, it shows that the technique works, and it can be used as the base of
other implementations.

The static garbage collector has been implemented in the Jamaica VM.
Currently, the code generator has not been extended to make use of the
results, but it can be used to estimate the memory requirements of systems
and as a tool to find potential memory leaks in applications. The output
of the analysis can be viewed as an annotated combined data flow and call
graph.

— I love deadlines. I like the whooshing sound they make as they fly by.

Douglas Adams

Chapter 8

Benchmarks

This chapter presents benchmarks of the implementations that have been
presented in Chapter 7. Benchmarking is a hard problem by itself, and
benchmarking a garbage collector is even harder. Therefore, we start by
discussing what to measure when benchmarking a garbage collector.

8.1 Benchmarking a Garbage Collector

Benchmarking is used to measure the performance of a system, e.g. a
hardware platform, a compiler, or a ray tracer. It is common to test hard-
ware and compilers using some standard set of benchmarks applications.
These applications typically measure the execution time of some computa-
tions. When writing the benchmark applications one has to be careful not
to make it possible to optimize away the computations, e.g. by constant
folding or dead code elimination. Constant folding can be avoided by in-
cluding an unknown in the computation, e.g. a random number, and the
result can be output on the console to avoid some dead code removal.

Still, many computations can be optimized away, and that makes com-
parisons difficult. Some examples of such optimizations are presented be-
low. In one test, the system performed about 20 divisions per clock cycle,
which is quite impressive. It is also important to think about how the sys-
tem is going to be used when reading the benchmark results, e.g. if you
buy a processor that is 100 % faster than your old one, the system will not
boot on half the time, and if a garbage collector performs 100 % faster in
one test, it does not mean that it will in your system.

Thus, benchmarking in general is a hard problem, and when including
a garbage collector it becomes even more complicated. As presented in
Chapter 4, many garbage collectors perform differently when the amount
of used memory varies (compared to the available memory). Therefore, the
heap size becomes very important. If you have a large enough heap you

134 CHAPTER 8. BENCHMARKS

may be able to disable the GC completely. However, the execution time of
RTRC does not depend on the heap size, i.e. measuring becomes simpler.
But still, we do not know what to measure.

The execution time of an application depends much on the performance
of the rest of the system, i.e. a plain timing would not give any interest-
ing results. We decided to compare our system to a system that does not
reclaim memory at all. This is not fair, since even manual memory man-
agement takes time, both for reclaiming the memory and sometimes also
for housekeeping to tell when objects can be reclaimed. However, it is as
close as we can get if we do not want to rewrite the benchmark applica-
tions to include manual memory management, and even that is not fair
since we could make a poor job that slows down the application more than
necessary.

Preferably, we should compare RTRC with other techniques, but that is
even harder. To compare garbage collectors they should be implemented
in the same system and the same effort should be made to optimize them
all. The benchmarks presented in this chapter are benchmarks of a pro-
totype GC in a prototype compiler with a prototype runtime system. To
compare these results to industrial strength systems may not give a cor-
rect view of the potential of RTRC. To complicate things further, RTRC is a
real-time garbage collector, and that makes comparisons against non-real-
time garbage collectors even harder and maybe not very interesting since a
non-real-time garbage collector can postpone all GC work, and if the heap
is not exhausted the GC does not have to perform any work at all, while
RTRC continuously performs the GC work.

Still it may be interesting to see approximately how other widely used
garbage collection techniques perform. In a benchmark of a generational
collector [BJMM02], the time spent in GC and the total execution time was
measured. The size of the heap was compared to a “tight heap”, which
should be close to the size of the live memory plus the memory used for
sub-heaps that are not in use, and the execution time was compared to the
shortest measured execution time. For a tight heap the time spent in GC
varies from 12 % – 35 % and the execution time increased 13 % – 40 %
compared to the best run. When using a heap that is about 30 % larger
than a tight heap the time spent in GC was 1 % – 20 % with an average
around 10 % and the execution time increased with 3 % – 11 % compared
to the best run. Note that the memory consumption is compared to a “tight
heap”, which is not necessarily the same as the maximum amount of live
memory. And the execution time is compared to the best run, which also
included garbage collection work.

Since RTRC is designed to work with extremely tight heaps, the results
should be compared to those, and it is also important to keep in mind that
the generational GC is no real-time GC and that the measures below are of
a non-optimized RTRC, i.e. no object ownership and no static GC is used.

8.2. CONTROL SYSTEM APPLICATION 135

-30 %

-25 %

-20 %

-15 %

-10 %

-5 %

0 %

5 %

trdstrdtrtdstdtrdsrdrdsdPe
rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n d divide

s separated
r rc
t thousand

Figure 8.1. Control system benchmarks

8.2 Control System Application

To measure the impact of different memory usage profiles on a realistic
hard real-time application, RTRC was tested on a control system simula-
tion application. This test was written in C to get better control of the
generated code. The control system was tested in 12 versions with and
without: dividing objects in two blocks of 32 bytes each (d), separating
the blocks of an object by half the heap size (ds), using reference count-
ing (r), and running a thousand simultaneous simulations (t). The intent of
running thousand simulations is to get a larger heap size and to get many
cache misses. The result of this evaluation is presented in Figure 8.1 where
the execution times of the different versions are compared to a system
without garbage collection and without splitting the objects into blocks.

The conclusion from these tests is that dividing objects is expensive
when cache misses are common. By comparing the reference counted vari-
ations to their non-reference counted counterparts, we get a maximum
overhead of 13 %. The lowest overhead was achieved when comparing
the test with thousand simulations without dividing objects to its refer-
ence counted counterpart. The reference counted version was 4 % faster.
Over 24 million increment and decrement operations were performed in
each run of the system (with reference counting enabled.)

136 CHAPTER 8. BENCHMARKS

8.3 Java Grande Benchmarks

The sequential Java Grande benchmark suite [BSW+00] was selected to
measure the performance of JOC within JOSES. Thus, efforts were focused
on compiling these benchmarks, and still all benchmarks did not compile.
Due to the instability of the compiler and the fact that the development
has been discontinued, this benchmark suite is the only suite that has been
used to benchmark the JOC RTRC implementation .

The benchmark applications were compiled in four versions: without
GC, with GC and contiguous (i.e. not divided) objects, with GC and 32-
byte blocks, and with GC and 64-byte blocks. The results are presented as
performance improvements compared to the non-GC version.

8.3.1 Low Level Operations

The first section of the Java Grande sequential benchmarks tests low level
operations such as: arithmetic, assignment, casts and object creation. Most
of these applications should not be touched by the garbage collector at all.
To further complicate the interpretation of the results, these applications
can be optimized very aggressively using constant propagation and dead
code elimination.

The measurements of the arithmetic applications are presented in Fig-
ure 8.2. Excluded from the diagram are the tests of addition of ints that
gave a slowdown of 22 % and addition of longs that gave an improve-
ment of 85 % – 178 %. The object creation tests failed to compile, and
has thus also been excluded. The large variations in the integer addition
applications are likely due to hard optimizations and differences in using
the cache. The remaining test results show a variation of ±5 %, which is
normal due to variations in the data layout and cache usage. The integer
addition and int and float multiplication benchmarks gave more than one
operation per clock cycle which is a clear indication of heavy optimiza-
tions.

Next the assignment operations are measured. The results from these
tests are presented in Figure 8.3, where the diagram excludes the results
of the object instance assignments that gave a performance loss of about
99 %. The total loss of performance can only be explained by the fact that
the optimizer could not eliminate the assignments. Thus, it is clear that this
optimizer should be run before the reference counter, which would have
improved the results drastically since many assignments in the benchmark
are redundant. There are some remarkable results. First, assignment of
local variables of primitive types are slowed down about 35 % in all refer-
ence counted version even though no GC-code is output in the timed code.
Second, when testing assignment of class variables of primitive types, the
contiguous version gave a slow down of 12 % – 17 % while the versions us-

8.3. JAVA GRANDE BENCHMARKS 137

-5 %

-4 %

-3 %

-2 %

-1 %

0 %

1 %

2 %

3 %

4 %

5 %

Cont

64

32

Div:Double
Div:Float

Div:Long
Div:Int

Mult:Double

Mult:Float
Mult:Long

Mult:Int

Add:Double
Add:FloatPe

rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n

Figure 8.2. Java Grande — Section 1, Arithmetics

ing blocks gave a slowdown of 0 % – 4 %. Note that the class variables are
allocated statically without using block structure. Third, assignment of ar-
ray elements in class variables gave a slowdown of 12 % using blocks when
the source element and target element were in difference classes, but when
they were located in the same class there was no performance difference.
Finally, assignment of elements in a local array showed a performance gain
of 10 % when using RTRC. Again, the most likely explanation is differences
in data layout, cache usage, and optimization. The remaining tests showed
practically no difference in runtime performance.

Finally, cast measurements are presented in Figure 8.4. All measure-
ments show a slowdown of 1 % – 9 % with an average of 6 %. As before,
the measured code is not touched by the garbage collector.

This first section indicates the great difficulty in benchmarking a new
technique. Even though the measured part of the application is not modi-
fied by the garbage collector, the results can show an improvement of per-
formance with up to 178 %.

8.3.2 Kernels

Section 2 of the Java Grande sequential benchmarks contains various com-
putationally heavy applications, such as IDEA-encryption, FFT and matrix
multiplication. Most of these applications make little use of objects and
therefore cause only a small amount of garbage collection work. The tests
are executed in two versions with different sizes of the input. The results

138 CHAPTER 8. BENCHMARKS

-40 %
-35 %
-30 %
-25 %
-20 %
-15 %
-10 %
-5 %
0 %
5 %
10 %
15 %

Cont

64

32

O:A:Class
O:A:Instance

O:S:Class
S:A:Class

S:A:Instance
S:A:Local

S:S:Class
S:S:LocalPe

rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n

Figure 8.3. Java Grande — Section 1, Assignments

-10 %

-8 %

-6 %

-4 %

-2 %

0 %

Cont

64

32

LongDoubleLongFloatIntDoubleIntFloatPe
rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n

Figure 8.4. Java Grande — Section 1, Casts

8.3. JAVA GRANDE BENCHMARKS 139

-40 %
-35 %
-30 %
-25 %
-20 %
-15 %
-10 %
-5 %
0 %
5 %
10 %
15 %
20 %
25 %

Cont

64

32

SparseMatmult
SOR

FFT
Crypt

HeapSort
LUFact

SeriesPe
rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n

Figure 8.5. Java Grande — Section 2, Kernels, Size A

for the different inputs are similar. Three tests showed larger changes in
performance: LUFact gave a slowdown of about 15 %, Crypt gave slow-
down of about 30 %, and SOR gave a speedup of 20 %. The results are
presented in Figure 8.5 and 8.6.

8.3.3 Large Scale Applications

The JOSES compiler JOC had some difficulties compiling the applications
in section 3 of the Java Grande Benchmarks. The applications are object-
oriented and perform computational heavy calculations such as alpha beta
search and ray-tracing. Only the alpha beta search binary could be exe-
cuted with a valid result, but MolDyn and RayTracer where executable so
their benchmarks are also presented. As in section 2, two different inputs
with different size were used, but only MolDyn could execute without a
garbage collector with the larger input. The results are presented in Fig-
ure 8.7 and 8.8. The overhead in this section is significant, which can be
explained by the amount of redundant reference count updates that is gen-
erated for all temporary reference variables that JOC generates. As noted
in Section 8.3.1, this could be improved first by optimizing the code be-
fore the reference counter processed the code. The overhead can also be
significantly reduced by static analysis.

140 CHAPTER 8. BENCHMARKS

-40 %
-35 %
-30 %
-25 %
-20 %
-15 %
-10 %
-5 %
0 %
5 %
10 %
15 %
20 %
25 %

Cont

64

32

SparseMatmult
SOR

FFT
Crypt

HeapSort
LUFact

SeriesPe
rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n

Figure 8.6. Java Grande — Section 2, Kernels, Size B

-80 %

-70 %

-60 %

-50 %

-40 %

-30 %

-20 %

-10 %

0 %

Cont

64

32

AlphaBetaSearchRayTracerMolDynPe
rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n

Figure 8.7. Java Grande — Section 3, Large Scale Applications, Size A

8.4. SUMMARY 141

-40 %

-35 %

-30 %

-25 %

-20 %

-15 %

-10 %

-5 %

0 %

Cont

64

32

MolDynPe
rf
or
m
an

ce
re
la
tiv

e
to

no
G
C
ve
rs
io
n

Figure 8.8. Java Grande — Section 3, Large Scale Applications, Size B

8.4 Summary

The control system application that was implement in C with full control of
the generated GC code lost at most 29 % performance while making heavy
use of reference counting and accessing fields in different blocks without
using either static garbage collection or the object ownership optimization.
The large scale applications in Java Grande showed a loss of 70 % perfor-
mance in the worst case.

Much GC work could probably be eliminated by using optimizations
that remove redundant assignments. Unfortunately, these optimizations
could not process the code before the reference counter was invoked since
the reference counter expected a higher level IR that the optimizers could
not work on. It is likely that general applications loose 10 % – 25 % us-
ing optimized RTRC and control system applications that are written from
scratch can be designed to loose less than 5 % using static garbage collec-
tion, object ownership, and static allocation of arrays. However, due to the
effects of the cache, these results may vary.

— History will be kind to me
for I intend to write it.

Sir Winston Churchill

Chapter 9

Related Work

This chapter presents related work in the areas of real-time garbage collec-
tion, garbage collection optimizations, and static garbage collection.

9.1 Real-Time Garbage Collection

When this work started, there was no garbage collector available that was
predictable in both memory usage and execution time and that targeted
object-oriented languages. The one-pass mark-and-sweep collector, pre-
sented in Section 9.1.1, has a predictable execution time and is fairly easy
to schedule to guarantee memory availability, but it only targets languages
with no destructive operations, i.e. data can not be overwritten. Thus, it
can not be used in the systems we target.

Still, several garbage collectors claimed to be real-time. Many incre-
mental garbage collectors are presented as real-time collectors, e.g. Baker’s
copying collector that neither guarantees worst case interruption time nor
memory availability. In some cases garbage collectors are even called real-
time because the longest measured interrupt was shorter than a specified
time, which is simply not acceptable in real-time systems.

During our work, three real-time garbage collectors have been pre-
sented: Henrikssons’s copying garbage collector [Hen98], Siebert’s mark-
and-sweep collector [Sie02], and the mostly non-copying collector by Ba-
con et al. [BCR03]. These are presented below.

9.1.1 One-Pass Real-Time Mark-and-Sweep

Armstrong and Virding have proposed a one-pass mark-and-sweep gar-
bage collector [AV95]. The collector is designed for languages that prohibit
destructive operations (i.e. values can not be overwritten), and is used in

144 CHAPTER 9. RELATED WORK

a Erlang [AVW93] implementation. Since destructive operations are not
allowed, references can only refer to older objects. The collector marks the
objects from the youngest to the oldest. If no other object has referred to
an object that is being marked, it can be reclaimed immediately (since only
younger objects can refer to it.) All objects are kept in a singly linked list
to keep the objects in order. All GC operations have predictable runtime
behavior. Thus, it can be used for real-time systems if it is scheduled to
guarantee memory availability.

The collector can also work as a generational collector (see Section 3.6)
by stopping the collector before it has collected the entire heap. It is even
possible to run several collectors simultaneous on the same heap.

A compacting version [LF99] has been developed by Larose and Fee-
ley. This collector compacts the objects instead of keeping the objects in a
linked list. Unfortunately this modification causes the collector to loose its
real-time properties.

However, the one-pass mark-and-sweep collector can not be used in
systems where destructive operations are allowed.

9.1.2 Henriksson’s Scheduling Strategy

Henriksson has presented a scheduling strategy for real-time garbage col-
lectors [Hen98]. The tasks are divided into two categories, one with high
priority and one with low priority. Both categories can be internally sched-
uled using any pre-emptive scheduling technique, so several priority levels
are supported. The difference of the high and low priority tasks are that
the high priority tasks only performs minimal garbage collection work. All
tasks are predictable in both execution time and memory usage.

The main idea is to reserve and initialize the maximum amount of
memory needed by an invocation of any high priority task, so high pri-
ority tasks are relieved of garbage collection work. However, some work
is still required to maintain the garbage collection state when the object
graph is modified. When leaving a high priority task to execute a low pri-
ority one, the work to reserve and initialize memory for the next invocation
of a high priority task starts (see Figure 9.1.) This work can either be sched-
uled immediately when leaving the high priority task or it can be spread
out during the execution of the low priority tasks. While low priority tasks
are executing, the reserved memory is maintained by advancing the collec-
tor every time new memory is allocated. The amount of garbage collection
work needed can be computed at compile-time. The required analysis is
also provided by Henriksson.

Henrikson provides an implementation using CPP macros expressed
in C. The implementation uses Brooke’s version of Baker’s copying tech-
nique (see Section 3.5.2) with modifications that include the new sched-
uling strategy. To relieve high priority tasks of garbage collection work

9.1. REAL-TIME GARBAGE COLLECTION 145

High priority tasks

Low priority tasks and GC

GCGC

Figure 9.1. Using Henriksson’s scheduling, garbage collection work is
mostly done when leaving high priority tasks.

they do not copy any memory themselves. Instead memory regions that
should be copied are queued and copied while low priority tasks execute.
Since Brooke’s algorithm uses two sub-heaps, more than three times the
maximum amount of live memory is often required to keep the rate of
copying down and the performance up. As a solution to this problem
Henriksson proposes to use a mark-and-compact technique instead, but
no such implementation has been presented. A mark-and-compact solu-
tion is further discussed in Section 10.1.3. However, since both copying
and mark-and-compact solutions move objects, they suffer from long and
hard to predict interrupts when large objects are moved.

9.1.3 Siebert’s Real-Time Mark-and-Sweep

In parallel with our work, Siebert has presented a real-time mark-and-
sweep collector [Sie02]. The heap is divided into equally sized blocks, and
arrays are formed by connecting blocks into a tree structure. However, ar-
rays can also be allocated contiguous if such memory is available. Other
objects are formed using linked lists. The garbage collector does not collect
objects. Instead individual blocks are reclaimed, which simplifies WCET
analysis. The garbage collection work can be modeled as:

GC Work = Root Scanning + Marking + Sweeping

Scanning the roots is generally unpredictable, but Siebert solves it by
copying all references on the stack to the heap and treats the blocks of refer-

146 CHAPTER 9. RELATED WORK

ences as any block on the heap. The other roots are known at compile-time,
therefore scanning the roots becomes predictable.

To improve efficiency, a threading model is developed that only allows
thread switching at specified synchronization points. This model allows
relaxations of the runtime behavior between the synchronization points,
e.g. no locking is required during garbage collection operations, black ob-
jects (objects that have already been processed by the garbage collector)
may refer to white ones (objects that has not yet been found by the garbage
collector), and references on the stack may be ignored. However, at syn-
chronization points all these requirements must still hold. For this to work,
synchronization points must be spread out evenly in the code, so that the
delay from trigger to invocation of a task can be predicted. Currently, this
is not fully implemented, but synchronization points are emitted after a
maximum amount of byte-codes, which is a solution that seems to work
in practice. Note that this threading model only can be applied to single
processor systems.

9.1.4 Mostly Non-copying GC

Bacon et al. have proposed a mostly non-copying technique that is de-
signed to decrease the memory overhead without loosing execution time
performance [BCR03]. The technique is based on an incremental mark-
and-sweep collector that allocates equally sized objects in pages, which
are not necessarily virtual memory pages. When a page becomes to frag-
mented, the objects on that page is copied to a mostly full page. To over-
come the problem of locking the system while copying large objects, i.e.
arrays, these are split into arraylets. Arraylets are fixed size arrays that are
accessed via an indirection. Since they have a fixed size, the interruptions
are bounded.

The presented benchmarks show a minimum mutator utilization (MMU)
of 45 % while using 1.6 – 2.5 times the live memory without taking the ob-
ject overhead into account. The MMU is defined as the minimum fraction
of the processor devoted to mutator execution during a given time period.
The object header contains type information and a forwarding pointer to
find (as in Baker’s copying algorithm), which occupies 8 bytes using a 32-
bit architecture. Since objects may be moved, one word is needed to im-
plement the Object.hashCode() method. When using non-moving col-
lectors, this method normally returns the address of the object. The paper
does not discuss the problem, but no better solution has been presented.
For 22 byte objects (including the header), the overhead is 12

12+22 ≈ 35 %.
Thus, the memory usage of the system according to the model presented in
Chapter 4 is about 26 % – 40 %. Note that these figures are measured and
not worst case. The authors state that the worst case memory usage for
most programs is smaller than those of a two sub-heap copying collector.

9.2. GC OPTIMIZATION 147

(defun five (x) (kill x) 5)
(defin square (x)

(let* ((x x-prime (dup x)))
(* x x-prime)))

Figure 9.2. Linear LISP examples

9.2 GC Optimization

9.2.1 Deferred and Anchored Pointers

The technique was presented by Baker [Bak94] for a LISP dialect called
linear LISP. In Linear LISP each bound name is referenced exactly once,
i.e. each actual argument or local variable must be used once. The dup
function duplicates a value if it is to be used a second time (duplicating
the reference does not count as a usage.) If a value is not used, it must
be destroyed with the kill function. Two small examples are given in
Figure 9.2.

A pointer can be marked as deferred, which means that it has a deferred
reference count update, i.e. the reference count should have been incre-
mented but the update has been deferred. If a deferred pointer is killed,
the update is canceled against the decrement operation that would nor-
mally be executed. Several other rules must be applied for this technique
to work correctly.

Deferred pointers can alone eliminate several reference count updates.
However, a weakness is that only normal (non-deferred) pointers can be
returned from functions. To get around this disadvantage, pointers can be
anchored at a certain level in the stack. Below that level deferred pointer
may be returned, but when returning to the level where it is anchored, the
pointer must be converted to a normal pointer.

9.2.2 Reference Escape

An alternative approach to eliminate redundant reference count updates
is presented by Park and Goldberg [PG95]. The idea of reference escape is
the same as for object ownership: if an object is known to be kept alive by a
reference, no temporary references to that object need to be counted. How-
ever, reference escape is designed for a functional language that has no
side-effects, which is very different from object-oriented languages where
side-effects are part of the foundation. The object ownership optimization
can be viewed as an extension of reference escape that handles modern
object-oriented languages.

148 CHAPTER 9. RELATED WORK

9.3 Static Garbage Collection

Ruggieri first presented a partial life-time analysis for object-oriented lan-
guages [RM88]. The analysis associated each allocation with a function
which can free the object when it returns. However, it is very restricted and
does not support many of the features that are common in object-oriented
programs, neither is any implementation mentioned. To decrease com-
plexity, Park and Goldberg restricted the analysis to find data that can be
allocated on the stack. This technique was called escape analysis.

9.3.1 Escape Analysis

Escape analysis [PG92] was first applied to functional programming. The
technique has been incrementally improved and has also been applied
to object-oriented languages. The research of escape analysis for object-
oriented languages include [CGS+99, Bla99], which focus on eliminating
synchronizations and allocating objects on the stack. Similar work is pre-
sented by Gay and Steensgaard [GS00], which also includes replacing ob-
jects by their fields stored as local variables. This work also mentions al-
locating objects in stack frames of the calling method. However, no pre-
sented work that we are aware of can associate allocations with functions
that can free the allocated objects as we do. In this respect our static gar-
bage collection is similar to the analysis presented by Ruggieri, but it can
also be applied to modern object-oriented languages and an implementa-
tion is provided.

9.4 Region Interference

Similar to activation records, regions [TT93, Tof98] are stored on a stack,
but regions allow objects to be added at any time in contrary to activation
records. Thus, the same flexibility as dynamic allocation is obtained. How-
ever, individual objects can not be reclaimed from a region as they can be
from the heap. The only way to reclaim an object is to reset the region that
holds it. When a region is reset, all objects in the region are reclaimed.

Region interference analysis [TT93, Tof98] has been developed for func-
tional languages. One implementation annotates Standard-ML programs
with region information, so that all objects are allocated in regions. Thus,
an annotated Standard-ML program needs no runtime garbage collector.
Memory management is performed by allocating objects in regions, reset-
ting regions, pushing regions on the stack, and popping regions from the
stack.

9.4. REGION INTERFERENCE 149

The memory manager of our static garbage collector can be viewed as
associating a region with every method invocation, and new objects are
allocated into the region associated with the method that can reclaim it.
However, the region interference analysis is designed for Standard ML
like languages, and has currently not been applied to object-oriented lan-
guages.

— A thesis is abandoned, not completed.

Mikael Pettersson

Chapter 10

Future Work

10.1 Real-Time Runtime Garbage Collection

The static garbage collector presented in this thesis does its best to elim-
inate runtime garbage collection, but it can not cover all cases. The best
runtime garbage collector is of course one that never has run, but we are
far from that goal in the general case. There is still much work to be done
within runtime collection for real-time systems.

10.1.1 Worst Case Memory Requirements Analysis

As stated before, by not knowing the memory usage of an application you
face the risk of running out of memory. No runtime garbage collection will
ever be able keep a system that uses too much memory up and running in-
definitely. To overcome this problem, an analysis that calculates the worst
case memory usage is required.

An interesting question is whether a runtime GC is needed when you
have such an analysis. Is it possible to calculate how much memory a sys-
tem uses without knowing where all allocated objects can be reclaimed?
If it is impossible, the question is how to find out where objects can be
reclaimed. Thus, this analysis is the same analysis needed by the static
garbage collector. The reverse question is also interesting: Can you cal-
culate the memory usage of a system if you know where objects can be
reclaimed? If all objects are allocated statically or on the runtime stack, this
is true for all systems where it is possible to calculate maximum recursion
depth (and has a predictable object size.) However, what about systems
that allocate from the heap?

152 CHAPTER 10. FUTURE WORK

10.1.2 Reclaiming Cycles

The reference counting technique can not reclaim cycles completely by it-
self. Section 4.5 presents several possible manual techniques that can be
used, and in Section 4.6 an automatic technique is also presented. Manual
techniques suffer from the human-factor problem and can cause memory
leaks, and should be avoided if possible. The automatic alternative is to
use a backup garbage collector. This has not yet been implemented in this
work since it can be considered to be the last alternative, causing an over-
head in both execution time and memory usage. Thus, both the manual
and the automatic techniques have their disadvantages. Is there a better
way of handling the dead cycles?

There are reference counting garbage collectors that are efficient in re-
claiming cycles [BR01], but these are not designed for real-time. It would
be very interesting to see if it is possible to extend such techniques without
loosing too much performance.

10.1.3 Mark-and-Compact GC

The second best alternative to reference counting as the basis for our gar-
bage collector is mark-and-compact. A mark-and-compact garbage collec-
tor marks the live objects as a mark-and-sweep collector, but instead of
reclaiming the dead objects, the live ones are compacted. Again there is a
problem when moving large objects, but with today’s memory bandwidth
a 1 MB object can be copied in about 2 ms. Therefore, such delays may not
cause problems depending on the system that is designed. However, most
embedded systems have significantly lower memory bandwidth (and usu-
ally smaller objects.) The benefit of using mark-and-compact is that you
get fast access to large objects, with much improved memory usage com-
pared to two sub-heap copying (about 45 % using the same model as in
Section 4.10.2.) The drawback is that you do not know exactly when the
garbage collector interrupts the system, since objects may be moved at ev-
ery barrier (e.g. at every reference assignment.) Henriksson’s scheduling
analysis [Hen98] can be used to guarantee that the interrupts do not occur
while a high priority task executes, but the start of a high priority task may
still be delayed by the interrupt.

10.1.4 Optimizations

Further optimizations are always welcome, thus a hot topic for the future.
It would be interesting to know how often object ownership can be used in
real applications. The analysis required is similar to the static GC technique
presented in Chapter 6. An integration of these techniques may be fruitful.
It would also be interesting to see how much object ownership can increase
the performance of RTRC and other incremental garbage collectors.

10.2. STATIC GARBAGE COLLECTION 153

10.2 Static Garbage Collection

Most important to the static garbage collector is the ability to handle full
systems, and to handle objects that are stored in fields of other objects. The
design for these additions is presented in Section 6.6. The performance
of systems using the static garbage collector can be further improved by
extending the analysis. Some ideas are presented in the following sections.

10.2.1 Inter-Procedural Def-Use Analysis

Most garbage collectors keep objects alive for as long as they are reach-
able. However, many objects are reachable long after their last use. If an
inter-procedural def-use analysis can be developed, it would be possible
to reclaim these objects after their last use. The result could be used by
the static garbage collector to explicitly reclaim the object or by a runtime
garbage collector by explicitly marking the object as unreachable after its
last use.

10.2.2 Reusing Objects in Loops

Objects that are allocated inside loops can reuse the same memory area if
the objects die before the next iteration of the loop. The analysis is similar
to the presented static GC technique, but control flow has to be taken into
account as well. What is actually needed is to find out if the object can
be used after the loop, so the inter-procedural def-use analysis described
above may be used to determine whether the objects can share memory or
not.

10.2.3 Object Inlining

Another application of the escape analysis is the possibility of inlining ob-
jects within other objects, i.e. instead of allocating separate objects; their
fields can be merged into their parent object. This is possible when the
lifetime of an object is confined within the life time of another object. This
typically occurs when an object is accessed from exactly one other object.
Another application of object inlining is to replace a stack allocated object
by its fields as local variables.

10.2.4 Supporting Separate Compilation

Even without converting the graph into a tree, large system will take time
to analyze. It would be preferable to support separate compilation to im-
prove analysis time. Separate compilation is possible if the sub-graphs
of methods are stored with the compiled code. The sub-graph should

154 CHAPTER 10. FUTURE WORK

preferably be condensed using the shortcuts described in Section 6.6.2. The
graphs can be merged when analyzing the final system.

However, since a library is not a complete system, it is possible to find
calls to unknown methods, such as methods in other libraries or callbacks.
Calls to other libraries can be handled by including the other library in the
analysis (possible using shortcuts in a separate analysis), but callbacks can
not be handled like this.

10.3 Dynamically Updated Systems

Most inter-procedural analyses such as the ones used by the static garbage
collector and the object ownership optimization assume that the full sys-
tem is available at compile-time. However, modern languages have the
possibility of loading updates and additions while the system is up and
running [ACR98, AR00]. Is it possible to extend these analyses so that such
hot-swaps can be allowed? One work around is to update the complete
system and do the analysis on the complete system, and then update all
affected code, but what if we do not know exactly what code is running on
the system? That may be the case if users of different systems can upload
new features. This problem is not isolated to garbage collection. The same
problem appears in WCET analysis and many other global analyses.

Modern languages also support introspection (or reflection). Introspec-
tion allows a system to access type information, create objects, examine and
change data, and invoke methods, using strings to specify classes, meth-
ods and attributes. Thus, it is easy to write an application that is virtually
impossible analyze. Unfortunately, these features may be interesting to use
even in real-time systems. The same problem may occur when using dy-
namically linked libraries. Is it possible to do any useful analysis of such
systems?

The extreme of a dynamic system are systems that generate executable
code, e.g. to handle regular expressions efficiently as implemented in C#.
It is virtually impossible to analyze the generated source at compile time
(of the generator), but it may be possible to do something before the code
is executed. A possible approach is to integrate the analysis in the runtime
system.

— Sometimes even a blind hen finds a grain of corn.

Unknown

Chapter 11

Conclusion

As the development of hardware progresses, computers are expected to
solve increasingly complex problems. Solving more complex problems re-
quires more complex software. To be able to develop these software sys-
tems, new programming languages with higher levels of abstraction are
introduced. If we generalize the development of programming languages,
they have evolved from an algorithmic description close to the machine
representation towards a problem description closer to human thinking.
This simplifies development of software, but also makes it harder to main-
tain control of the executed code, and thus over the runtime behavior of the
software. Despite the fact that the hard real-time domain requires full con-
trol of the running software these modern languages become increasingly
popular in real-time applications, since the development time is decreased
and the software becomes less error prone.

Since the 80’s most of the new popular languages have been object-
oriented. However, object-oriented languages have a larger need for gar-
bage collection than their imperative counterparts. The increased need
for garbage collection stems from the object-oriented way of programming
where it is common to dynamically allocate more objects (or records) com-
pared to programming using the imperative paradigm. Since more objects
are dynamically allocated, it becomes harder to handle memory manage-
ment manually. To eliminate several memory management related pro-
gramming errors, most modern languages lack the possibility to reclaim
objects manually, and require garbage collection instead.

When this work was started, no presented garbage collection technique
could guarantee predictability in both execution time and memory usage
for the languages we target. A one pass mark-and-sweep GC [AV95] for
functional languages that do not allow destructive operations had been
published. That garbage collector, as well as other ones, is possible to
schedule to guarantee memory availability, but the necessary analysis was

156 CHAPTER 11. CONCLUSION

not presented. Thus, many techniques had predictable interrupt times, but
they did not guarantee that the garbage collection work progressed fast
enough for the system to never run out of memory.

The first approach that could guarantee memory availability was a two
sub-heap copying algorithm [Hen98]. The scheduling technique is not spe-
cific for the copying technique, and can be used by other techniques as
well. Systems that could not afford the overhead in execution time and
memory usage had to be handled manually using static allocation and pos-
sibly stack allocation.

A second approach [Sie02] that guarantees both predictability in execu-
tion time and memory usage has been presented. This approach is based
on mark-and-sweep garbage collection, and solves the external fragmen-
tation problem by dividing the heap into equally sized blocks. The ad-
vantages of this approach are slightly higher memory utilization and that
objects do not move around on the heap. However, dividing the heap into
blocks has a cost when accessing data in objects that contain more than one
block.

A third approach which is a hybrid solution of mark-and-sweep and
copying garbage collection [BCR03] has been presented. The technique is
designed to have low memory requirements, while keeping a consistent
CPU utilization. However, the worst case memory usage is worse than
the two sub-heap copying GC in some cases. A further discussion of these
techniques and the cost of large objects is presented in Section 11.2.

The three previously presented techniques all suffer from low mem-
ory utilization. The memory utilization of the copying garbage collector is
approximately 25 %, the mark-and-sweep collector can use approximately
30 % of the heap to store actual data, and the hybrid approach has similar
memory requirements.

Another disadvantage of the techniques is that it is very difficult to es-
timate the memory requirements of applications that use them. The reason
for the popularity of garbage collection is that the developer is not required
to know when objects turn into garbage and can be reused, since manual
memory administration is very hard and error prone. However, if it is
not known when memory can be reused, it is also unknown how much
memory can be in use at any given point of time. Thus, the memory re-
quirements of applications are usually unknown. It is, of course, possible
to estimate the memory requirement of an application, but it is at least as error
prone as manual memory management. The problem is actually harder, since
references can be forgotten and keep objects alive longer than expected. A
common solution is to run the application and hopefully find the worst
case memory usage this way. This can be compared to running the sys-
tem to find its WCET. Sometimes this is acceptable, but for security critical
systems it is not.

11.1. GARBAGE COLLECTION IN REAL-TIME 157

11.1 Garbage Collection in Real-Time

Due to the problems of predicting the run-time behavior of garbage col-
lected systems, one should consider if garbage collection can at all be a
solution for hard real-time systems. Some would say that even using dy-
namic memory is to complex. On the other hand some would not use while
loops or recursion either [BW89]. Somewhere a line must be drawn.

Most real-time developers would use while loops and recursion if they
can be proved to do what is expected. Dynamic memory management is
more difficult, since this is much harder to prove correct. The problem is
twofold: not only is it hard to reclaim memory correctly, external fragmen-
tation (a problem that occurs when free memory is split into several small
regions) may also cause the system to run out of memory even though
memory is available.

We can overcome these problems using a garbage collector that does
not suffer from external fragmentation. However, new problems are intro-
duced by the garbage collector. The garbage collector must be predictable
in both execution time and memory usage, i.e. it is not enough to prove
that the garbage collector only interrupts the systems for a certain period
of time, it must also be guaranteed that enough memory is reclaimed so
that the system does not run out of memory.

There are garbage collectors (including real-time reference counting as
presented in this thesis) that guarantee predictability in both execution
time and memory availability. The problem is that the memory require-
ment of the system must be known to be able to guarantee its memory
usage. No garbage collection technique can keep a system that uses too
much memory from running out of memory. Thus, the problem is how to
predict the memory requirement of a garbage collected system. This is a
hard problem since there is no easy way of telling when memory can be
reclaimed. If there were, no garbage collector would be necessary.

Whether it is safe to use a garbage collector in a hard real-time system
or not depends on the complete system. If you can predict the worst case
memory requirement, it is perfectly safe to use a correctly configured gar-
bage collector that can guarantee memory availability. Otherwise, static
garbage collection (e.g. as presented in this thesis) can be used to simplify
the work of calculating the worst case memory requirements by inserting
explicit free instructions and allocating objects statically and on the heap.
If the memory requirements are still hard to predict, it might be good to
rethink the design of the system. It will probably be even worse to predict
the runtime behavior of such system if manual memory management is
used.

158 CHAPTER 11. CONCLUSION

11.2 Selecting a Base Algorithm

Since no garbage collector had predictable runtime behavior when this
work started, we developed real-time reference counting (RTRC). The rea-
son for basing the garbage collector on reference counting is that we found
it most suitable after comparing the existing techniques.

Two sub-heap copying garbage collectors have the advantages of com-
pacting the memory and that its execution time is only dependent on the
amount of live memory. However, moving objects around in memory is
time consuming and can cause long interruptions in the system. It also
makes it necessary to access the objects via handles to find the latest ver-
sions. The solution of updating all references to point to the new object
gives better access times, but updating all references can be very time con-
suming even if their locations are known.

To cut down on the interruption time, you may allow the copying op-
eration to be interrupted, but then you have to restart the copying of that
object from the beginning to guarantee that the latest version of the object
is used. This causes problems in guaranteeing progress, and thus memory
availability. Another problem is that only half the heap can be used to store
live objects, which causes large memory requirements.

More sub-heaps can be used to increase the average performance of a
copying garbage collector. Such techniques are usually referred to as gen-
erational garbage collectors. More sub-heaps may also increase memory
utilization, since only one sub-heap needs to be empty using some tech-
niques (while other techniques split each generation into sub-heaps.) Un-
fortunately the worst case execution time of generational garbage collec-
tors are often worse than the corresponding operations using two sub-heap
copying techniques. Even worse is the fact that cyclic dependencies can
keep dead objects alive for long times. This makes predicting memory re-
quirements extremely hard.

Mark-and-sweep garbage collection can be used to avoid copying ob-
jects. However, since objects are not compacted external fragmentation has
to be considered. The memory requirements of mark-and-sweep garbage
collectors are also substantial. However, a mark-and-sweep garbage col-
lector is a good candidate as a backup garbage collector to RTRC.

A combination of copying and mark-and-sweep garbage collectors is
called mark-and-compact garbage collectors. These use less memory than
two sub-heap copying collectors and compacts the memory. Unfortunately,
they share the problem of long interrupts and guaranteeing progress. Still,
mark-and-compact is a good alternative and could probably give good re-
sults in both memory usage and execution time.

All presented techniques have problems with large objects. For tech-
niques that copy objects, large objects cause long interrupts or problems
in guaranteeing progress. Current non-copying techniques solve the prob-

11.3. CONTRIBUTIONS 159

lem of external fragmentation using equally sized blocks. To access data in
large objects, several dereferences are required which consumes additional
time. Large objects, such as bitmaps and large arrays, are best allocated
statically irrespective of what technique is used.

11.3 Contributions

The contributions of this work can be divided into three parts. First, the
work on a real-time garbage collector that was presented in our previous
work [Rit99, Rit01, RF02] has continued. The resulting technique is called
Real-Time Reference Counting or RTRC for short. Since reference counting is
slow, a new optimization technique called Object Ownership was developed
that eliminates many counting operations (and thus memory accesses) for
object references with limited life-span. Finally an improved static garbage
collector was developed to eliminate runtime garbage collection when pos-
sible and to simplify the work of estimating the memory requirements of
applications.

11.3.1 Real-Time Reference Counting

The major advantage of RTRC over other real-time garbage collection tech-
niques is that its runtime behavior is independent of the amount of live
memory in the system (as long as the memory is not exhausted.) Thus, the
memory utilization increases by about 50 % compared to the most memory
efficient approach (mark-and-sweep). The memory utilization of RTRC is
compared to the memory usage of the other presented real-time garbage
collectors in Figure 11.1.

Another advantage is that locking is kept to only a few assembler in-
structions. Thus, the interruptions caused by the garbage collector can be
ignored if the real-time responsiveness of the system is not in the magni-
tude of nanoseconds. Furthermore, the extended escape analysis can be
used to eliminate locking for objects that are only used by a single thread.
Finally, to improve performance of high priority processes, the scheduling
analysis technique by Henriksson [Hen98] can be used. The main impact
of using the scheduling technique is that high priority tasks perform less
garbage collection work, which improves the performance of allocation.

11.3.2 Object Ownership

Since RTRC is based on reference counting, which is a relatively slow gar-
bage collection technique, we developed an optimization, called Object
Ownership, which increase the execution time performance of the write-
barrier in RTRC with up to 75 %, or eliminates the write-barrier completely,

160 CHAPTER 11. CONCLUSION

0 %

10 %

20 %

30 %

40 %

50 %

RTRCMark and SweepCopying

Figure 11.1. Available memory for memory usage in % of total used mem-
ory when using RTRC compared to using other real-time garbage collec-
tors

wherever the technique can be applied. It optimizes the garbage collector
by finding objects that are known to be kept alive by a reference. This refer-
ence is said to own the object. Other references that refer to the object while
it is owned by another reference can be ignored by the garbage collector,
and the overhead caused by counting these references can be eliminated.

Object ownership was designed for reference counting, but can also be
adapted to other incremental garbage collection techniques to decrease the
overhead of barriers (i.e. code that is executed when objects are accessed
to update the garbage collector state.)

11.3.3 Static Garbage Collection

To eliminate runtime GC and to simplify estimation of memory require-
ments, a new static garbage collection technique was developed. The cur-
rent state of the art of static garbage collection methods with reasonable
analysis time is limited to stack allocation, whereas the analysis presented
here also can handle objects that require heap allocation. The only objects
that can not be handled by this technique are the objects that correspond
to the global state of the application, i.e. the objects that may stay alive
during all of the execution of the application, and objects that are used by
multiple threads. If these objects are allocated statically, there is no need
to have a runtime garbage collector in the system. No static garbage col-
lector previously presented in the literature can do this with a reasonable
analysis time.

11.3. CONTRIBUTIONS 161

11.3.4 Usefulness of Contribution

RTRC does not completely replace the competitive techniques, since RTRC
has some problems when it comes to cyclic data structures. Even though
both manual and automatic approaches to handle cyclic data structures are
presented in Chapter 4, some systems may contain too much cyclic data
structures and be too complex to handle manually to benefit from RTRC.
Since the performance gain of RTRC is in the allocator, applications that
rarely allocate objects will gain less than applications that allocate objects
more frequently. The main use of RTRC is in real-time systems with scarce
memory resources, typically embedded systems.

The object ownership technique can be useful to all incremental gar-
bage collectors by eliminating redundant barriers. The technique can be
used in a conservative mode where fewer barriers are removed, or in a
more aggressive mode that requires extra data in the object header.

Finally the static garbage collector can be used to boost performance
and to simplify the work of predicting runtime behavior. The latter is only
useful when memory requirements are important. However, boosting the
performance by decreasing the overhead of runtime garbage collection or
eliminating it completely, is beneficial in all systems using garbage collec-
tion.

Appendix A

Source Code of the
Reference Counter
(C version)

A.1 rc.h

#ifndef RC_H

#ifndef NUM_BLOCKS
define NUM_BLOCKS 10000
#endif

#ifndef BLOCK_SIZE
define BLOCK_SIZE 32
#endif

#define TOBLOCK(N) (((N) + (BLOCK_SIZE-1))/BLOCK_SIZE)

#define RCHEAD_NEXT(OBJ) (((objhead_t *) (OBJ))->next)
#define RCHEAD_FLNEXT(OBJ) (((objhead_t *) (OBJ))->nr.next)
#define RCHEAD_RC(OBJ) (((objhead_t *) (OBJ))->nr.rc)
#define RCHEAD_TYPE(OBJ) (((objhead_t *) (OBJ))->type)

typedef void object_t;

struct objhead_t;

typedef struct type_t {
char *name;
size_t size;

164 APPENDIX A. SOURCE CODE OF THE REFERENCE COUNTER

void (*decchildren)(struct type_t *t, struct objhead_t *b, int n);
} type_t;

typedef struct objhead_t {
struct objhead_t *next;
union { struct objhead_t *next; unsigned int rc; } nr;
type_t *type;

} objhead_t;

extern void rc_init();
extern object_t *rc_alloc(type_t *t);
extern object_t *rc_hpalloc(type_t *t);
extern void rc_prealloc(int n);
extern void rc_release(objhead_t *obj);
extern long rc_stat_inc, rc_stat_dec, rc_stat_incc, rc_stat_decc;

#ifdef STAT
define RC_STAT(X) (X)++
#else
define RC_STAT(X)
#endif

#ifndef RC

#define RC_INCR(OBJ)
#define RC_DECR(OBJ)

#else

#define RC_INCR(OBJ) \
do { \
if (OBJ) { \

RCHEAD_RC(OBJ)++; \
RC_STAT(rc_stat_incc); \

} \
RC_STAT(rc_stat_inc); \

} while(0)

#define RC_DECR(OBJ) \
do { \
if (OBJ) { \

RCHEAD_RC(OBJ)--; \
RC_STAT(rc_stat_decc); \
if (RCHEAD_RC(OBJ) == 0) { \

rc_release((objhead_t *)OBJ); \
} \

} \
RC_STAT(rc_stat_dec); \

A.2. RC.C 165

} while(0)

#endif

#define RC_ASSIGN(LHS, RHS) \
do { \

register void *_rtrc_tmp = (RHS); \
RC_INCR(_rtrc_tmp); \
RC_DECR(LHS); \
(LHS) = (_rtrc_tmp); \

} while (0)

#define RC_FUNCALL(RES,FUNC) \
do { \

void *_rtrc_tmp = (rcobject_t *)RES; \
(RES) = (FUNC); \
DECRC(_rtrc_tmp); \

} while(0)

#define RC_RETURN(RES) \
do { \
ASSIGN(result,(RES)); \
goto _cleanup; \

} while (0)

#endif

A.2 rc.c

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

#include "rc.h"
#include "debug.h"

#define CPS 100

#define MIN(A,B) (((A)<(B))?(A):(B))

long rc_stat_inc, rc_stat_dec, rc_stat_incc, rc_stat_decc;

static objhead_t *freelist = NULL;
static size_t available = 0;
static objhead_t *tbflist = NULL;
static char heap[NUM_BLOCKS][BLOCK_SIZE];
static objhead_t *head = NULL;

166 APPENDIX A. SOURCE CODE OF THE REFERENCE COUNTER

static type_t *type = NULL;
static int blockseq = 0;

void rc_init() {
int i;

DEBUG_MSG1(("rc_init\n"));

#ifdef SPREAD
for (i = 0; i < NUM_BLOCKS/2; i++) {
int upper = NUM_BLOCKS/2 + i;
((objhead_t *) heap[i])->next = (objhead_t *) &heap[upper];
((objhead_t *) heap[upper])->next = (objhead_t *) &heap[i+1];

}
#else

for (i = 1; i < NUM_BLOCKS; i++) {
((objhead_t *) heap[i-1])->next = (objhead_t *) &heap[i];

}
#endif

((objhead_t *) heap[NUM_BLOCKS-1])->next = NULL;
freelist = (objhead_t *) heap;
available = NUM_BLOCKS;

}

static objhead_t *
alloc_from_freelist(int nb, objhead_t **plast) {

objhead_t *bs = freelist;
int n;

assert(nb > 0);
assert(available >= nb);

available -= nb;

for (n = 1; n < nb; n++) {
freelist = freelist->next;

}

{
objhead_t *last = freelist;
freelist = freelist->next;
last->next = NULL;

*plast = last;
}

return bs;
}

A.2. RC.C 167

static objhead_t *alloc_from_TBF(int nb, objhead_t **plast) {
objhead_t *bs = head, *last = NULL;
int n;

assert(nb > 0);

DEBUG_MSG1(("alloc from tbf %d\n", nb));
for (n = 0; n < nb; n++, blockseq++) {

if (head == NULL) {
DEBUG_MSG1(("New object from tbf\n"));
head = tbflist;
if (head == NULL) {

fprintf(stderr, "Out of memory %d:%d:%d\n",
n, nb, blockseq);

exit(5);
}

tbflist = tbflist->nr.next;
type = head->type;
blockseq = 0;

if (last == NULL) {
bs = head;

} else {
last->next = head;

}
}

type->decchildren(type, head, blockseq);
last = head;
head = head->next;

}
last->next = NULL;
*plast = last;

return bs;
}

void rc_prealloc(int nb) {
objhead_t *bs, *last;

assert(nb > 0);

DEBUG_MSG1(("rc_prealloc %d\n", nb));

if (available >= nb) return;

168 APPENDIX A. SOURCE CODE OF THE REFERENCE COUNTER

bs = alloc_from_TBF(nb - available, &last);

available = nb;
last->next = freelist;
freelist = bs;

}

object_t *rc_alloc(type_t *t) {
int nb;
int fromfree;
objhead_t *blocks, *tbfblocks = NULL;
objhead_t *last, *dummy;

assert(t != NULL);

nb = t->size;
fromfree = MIN(nb, available);

DEBUG_MSG1(("rc_alloc %s (%d/%d)\n",
t->name, fromfree, nb - fromfree));

if (nb - fromfree > 0) {
tbfblocks = alloc_from_TBF(nb - fromfree, &dummy);

}

if (fromfree > 0) {
blocks = alloc_from_freelist(fromfree, &last);
last->next = tbfblocks;

} else {
blocks = tbfblocks;

}

blocks->type = t;

return blocks;
}

object_t *rc_hpalloc(type_t *t) {
int nb;
objhead_t *blocks;
objhead_t *dummy;

assert(t != NULL);

nb = t->size;

DEBUG_MSG1(("rc_hpalloc %s (%d)\n", t->name, nb));

A.2. RC.C 169

blocks = alloc_from_freelist(nb, &dummy);
blocks->type = t;

return blocks;
}

void rc_release(objhead_t *b) {
DEBUG_MSG1(("releasing: %p (%s)\n",

b, RCHEAD_TYPE(b)->name));
b->nr.next = tbflist;
tbflist = b;

}

Appendix B

Source Code of the Object
Ownership Test

B.1 ootest.c
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

#define OWN
#define OWNINI NULL
//#define FORCEFLD

#ifdef OWN
#define FORCEFLD
#endif

#define N 1000000
#define N2 5

#ifdef OWN
#define GC(P) ((P) != NULL && (P)->owner == NULL)
#else
#define GC(P) ((P) != NULL)
#endif

#define RELEASE(P) do { (P)->next = fl; fl = (P); } while (0)

#define INC(P) do { if(GC(P)) (P)->rc++; } while (0)

#define DEC(P) \
do { \

172 APPENDIX B. SOURCE CODE OF THE OBJECT OWNERSHIP TEST

if(GC(P) && --(P)->rc == 0) RELEASE(P); \
} while (0)

typedef struct foo {
struct foo *next;
int rc;

#ifdef FORCEFLD
void *owner;

#endif
int data;

} foo;

foo *fl = NULL;

int main() {
int i, j, s = 0;
foo *fs = malloc(N*sizeof(foo));

clock_t start, stop;

for (i = 0; i < N; i++) {
fs[i].rc = 10;

#ifdef OWN
fs[i].owner = (void *) OWNINI;

#endif
}

start = clock();
for (j = 0; j < N2; j++) {
for (i = 0; i < N; i++) {

int r1 = (int) ((double) rand()*(N-1)/RAND_MAX);
int r2 = (int) ((double) rand()*(N-1)/RAND_MAX);
foo *f1 = &fs[r1];
foo *f2 = &fs[r2];

INC(f1);
DEC(f2);

s += r1 + r2;
}

}
stop = clock();

printf("%.2f (%d)\n", (double) (stop-start)/CLOCKS_PER_SEC, s);

return 0;
}

Bibliography

[ACE] ACE Associated Compiler Experts bv, Amsterdam, The
Netherlands. The CoSy Compilation System. see http://www.
ace.nl/products/cosy.htm.

[ACR98] Jesper Andersson, Marcus Comstedt, and Tobias Ritzau. Run-
time support for dynamic Java architectures. In Proceedings
of the Workshop on Object-Oriented Software Architectures. The
ECOOP’98 Workshop on Object-Oriented Software Architec-
tures. Brussels, July 1998.

[AKPY98] Alain Azagury, Elliot K. Kolodner, Erez Petrank, and Zvi Yehu-
dai. Combining card marking with remembered sets: How to
save scanning time. In Jones [Jon98], pages 10–19.

[Alm97] Paulo Sergio Almeida. Balloon types: Controlling sharing of
state in data types. In Mehmet Akşit and Satoshi Matsuoka,
editors, ECOOP ’97 — Object-Oriented Programming 11th Euro-
pean Conference, Jyväskylä, Finland, volume 1241, pages 32–59.
Springer-Verlag, New York, NY, 1997.

[App87] Andrew W. Appel. Garbage collection can be faster than stack
allocation. Information Processing Letters, 25(4):275–279, 1987.

[AR00] Jesper Andersson and Tobias Ritzau. Dynamic code update in
JDrums. In Procedings of the First workshop on Software Engineer-
ing for Wearable and Pervasive Computing (SEWPC) in Conjunc-
tion with ICSE’2000, Limerick, June 2000.

[AV95] Joe Armstrong and Robert Virding. One-pass real-time gener-
ational mark-sweep garbage collection. In Henry Baker, editor,
Proceedings of International Workshop on Memory Management,
volume 986 of Lecture Notes in Computer Science, Computer Sci-
ence Laboratory, Ellemtel Telecommunications Systems Labo
ratories, Alvsjo, Sweden, September 1995. Springer-Verlag.

174 BIBLIOGRAPHY

[AvSM93] U. Aßmann, H. van Someren, and Alt M. Compilers for Parallel
architectures – The Compare project. In Sips H.J., editor, Fourth
International Workshop on Compilers for Parallel Computers, vol-
ume 786, pages 451–454. Delft University of Technology, Fac-
ulty of Applied Science, Advanced School for Computing and
Imaging, December 1993.

[AVW93] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent
Programming in ERLANG. Prentice Hall, 1993.

[Bac97] D. F. Bacon. Fast and Effective Optimzation of Statically Typed
Object–Oriented Languages. PhD thesis, University of Califor-
nia, 1997.

[Bak78a] Henry G. Baker. Actor systems for real-time computation.
Technical Report MIT Rep. TR–197, Laboratory for Computer
Science, March 1978.

[Bak78b] Henry G. Baker. List processing in real-time on a serial com-
puter. Communications of the ACM, 21(4):280–94, 1978. Also AI
Laboratory Working Paper 139, 1977.

[Bak92] Henry G. Baker. The Treadmill, real-time garbage collection
without motion sickness. ACM SIGPLAN Notices, 27(3):66–70,
March 1992.

[Bak94] Henry G. Baker. Minimising reference count updating with
deferred and anchored pointers for functional data structures.
ACM SIGPLAN Notices, 29(9), September 1994.

[Bar77] Jeffrey M. Barth. Shifting garbage collection overhead to com-
pile time. Communications of the ACM, 20(7):513–518, July 1977.

[BC92] Yves Bekkers and Jacques Cohen, editors. Proceedings of Interna-
tional Workshop on Memory Management, volume 637 of Lecture
Notes in Computer Science, St Malo, France, 16–18 September
1992. Springer-Verlag.

[BCR03] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time gar-
bage collecor with low overhead and consistent utilization. In
Conference Record of the Thirtieth Annual ACM Symposium on
Principles of Programming Languages, ACM SIGPLAN Notices,
New Orleans, LA, January 2003. ACM Press.

[Ben90] Mats Bengtsson. Real-time Compacting Garbage Collection Al-
gorithms. Licentiate thesis, Department of Computer Science,
Lund Un iversity, 1990.

BIBLIOGRAPHY 175

[Ben98] Joakim Bengtsson. Compiling Java bytecode. Master’s thesis,
Linköping University, 1998.

[BJMM02] Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley,
and J. Eliot B. Moss. Beltway: Getting around garbage col-
lection gridlock. In Proceedings of SIGPLAN 2002 Conference on
Programming Languages Design and Implementation, ACM SIG-
PLAN Notices, pages 153–164, Berlin, June 2002. ACM Press.

[Bla99] Bruno Blanchet. Escape analysis for object oriented languages.
application to Java. In OOPSLA [OOP99], pages 20–34.

[BR01] David F. Bacon and V.T. Rajan. Concurrent cycle collection in
reference counted systems. In Jørgen Lindskov Knudsen, ed-
itor, Proceedings of 15th European Conference on Object-Oriented
Programming, ECOOP 2001, volume 2072 of Springer-Verlag, Bu-
dapest, June 2001. Springer-Verlag.

[Bre89] R. P. Brent. Efficient implementation of the first-fit strategy for
dynamic storage allocation. ACM Transactions on Programming
Languages and Systems, 11(3):388–403, July 1989.

[Bro84] Rodney A. Brooks. Trading data space for reduced time and
code space in real-time garbage collection on stock hardware.
In Guy L. Steele, editor, Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, pages 256–262,
Austin, TX, August 1984. ACM Press.

[BSW+00] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A.
Davey. A benchmark suite for high performance Java. Concur-
rency: Practice and Experience, (12):375–388, 2000.

[BW72] F. L. Bauer and H. Wössner. The Plankalkül of Konrad Zuse:
a forerunner of today’s programming languages. Communica-
tions of the ACM, 15(7):678–685, 1972.

[BW89] Alan Burns and Andy Wellings. Real-Time Systems and their Pro-
gramming Languages. International Computer Science Series.
Addison-Wesley, 1989.

[CB01] Perry Cheng and Guy Belloch. A parallel, real-time gar-
bage collector. In Proceedings of SIGPLAN 2001 Conference on
Programming Languages Design and Implementation, ACM SIG-
PLAN Notices, pages 125–136, Snowbird, Utah, June 2001.
ACM Press.

[CGS+99] Jong-Deok Choi, M. Gupta, Maurice Serrano, Vugranam C.
Sreedhar, and Sam Midkiff. Escape analysis for Java. In OOP-
SLA [OOP99], pages 1–19.

176 BIBLIOGRAPHY

[Che70] C. J. Cheney. A non-recursive list compacting algorithm. Com-
munications of the ACM, 13(11):677–8, November 1970.

[Chr84] T. W. Christopher. Reference count garbage collection. Software
Practice and Experience, 14(6):503–507, June 1984.

[CJ73] Liu C.L and Layland J.W. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[Com97] Marcus Comstedt. Natural sematics specification and com-
piler generation for Java. Master’s thesis, Linköping Univer-
sity, 1997.

[Con00] J Consortium. Real-time core extensions for the Java platform,
2000.

[DB76] L. Peter Deutsch and Daniel G. Bobrow. An efficient incremen-
tal automatic garbage collector. Communications of the ACM,
19(9):522–526, September 1976.

[DH01] Sylvia Diekmann and Urs Hölzle. The allocation behavior of
the specjvm98 Java benchmarks (extended version). In Rudi
Eigenman, editor, Performance Evaluation and Benchmarking with
Realistic Applications. MIT Press, 2001.

[DLM+76] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exer-
cise in cooperation. In Lecture Notes in Computer Science, No. 46.
Springer-Verlag, New York, 1976.

[DLM+78] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exer-
cise in cooperation. Communications of the ACM, 21(11):965–975,
November 1978.

[ESL89] H. Emmelmann, F.W. Schröer, and R. Landwehr. Beg — a gen-
erator for efficient back ends. ACM Sigplan Notices, 24(7):227–
237, 1989.

[Fis74] David A. Fisher. Bounded workspace garbage collection in an
address order preserving list processing environment. Informa-
tion Processing Letters, 3(1):25–32, July 1974.

[fJEG00] The Real-Time for Java Expert Group. The Real-Time Specifica-
tion for Java. Addison Wesley Professional, 2000.

BIBLIOGRAPHY 177

[FY69] Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage
collector for virtual memory computer systems. Communica-
tions of the ACM, 12(11):611–612, November 1969.

[GS00] David Gay and Bjarne Steensgaard. Fast escape analysis and
stack allocation for object-based programs. In International Con-
ference on Compiler Construction (CC’2000), volume 1781 of Lec-
ture Notes in Computer Science. Springer-Verlag, 2000.

[HD90] Richard L. Hudson and Amer Diwan. Adaptive garbage collec-
tion for Modula-3 and Smalltalk. In Eric Jul and Niels-Christian
Juul, editors, OOPSLA/ECOOP ’90 Workshop on Garbage Collec-
tion in Object-Oriented Systems, Ottawa, October 1990.

[Hen98] Roger Henriksson. Scheduling Garbage Collection in Embedded
Systems. PhD thesis, Lund Institute of Technology, July 1998.

[HM92] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage
collection for mature objects. In Bekkers and Cohen [BC92].

[Hol00] Mikael Holmén. Natural semantics specification and frontend
generation for Java 1.2. Master’s thesis, Linköping University,
2000.

[HW67] B. K. Haddon and W. M. Waite. A compaction procedure for
variable length storage elements. Computer Journal, 10:162–165,
August 1967.

[Jon98] Richard Jones, editor. ISMM’98 Proceedings of the First Interna-
tional Symposium on Memory Management, volume 34(3) of ACM
SIGPLAN Notices, Vancouver, October 1998. ACM Press.

[Kar00] Henrik Karlsson. Exception handling in RT-Java. Master’s the-
sis, Linköping University, 2000.

[KS77] H. T. Kung and S. W. Song. An efficient parallel garbage col-
lection system and its correctness proof. In IEEE Symposium
on Foundations of Computer Science, pages 120–131. IEEE Press,
1977.

[LF99] Martin Larose and Marc Feeley. A compacting incremental col-
lector and its performance in a production quality compiler.
ACM SIGPLAN Notices, 34(3):1–9, 1999.

[LG85] I. Lee and V. Gehlot. Language constructs for distributed real-
time systems. In Proceedings of the Real-time Symposium. IEEE
Computer Society Press, 1985.

178 BIBLIOGRAPHY

[LH83] Henry Lieberman and Carl E. Hewitt. A real-time garbage col-
lector based on the lifetimes of objects. Communications of the
ACM, 26(6):419–429, 1983. Also report TM–184, Laboratory for
Computer Science, MIT, Cambridge, MA, July 1980 and AI Lab
Memo 569, 1981.

[Lia99] Sheng Liang. Java Native Interface. Addison-Wesley, 1999.

[MR94] James S. Miller and Guillermo J. Rozas. Garbage collection is
fast, but a stack is faster. Technical Report AIM-1462, MIT AI
Laboratory, March 1994.

[NO93] Scott M. Nettles and James W. O’Toole. Real-time replication-
based garbage collection. In Proceedings of SIGPLAN’93 Confer-
ence on Programming Languages Design and Implementation, vol-
ume 28(6) of ACM SIGPLAN Notices, Carnegie Mellon Univer-
sity, USA, June 1993. ACM Press.

[NOPH92] Scott M. Nettles, James W. O’Toole, David Pierce, and Nicholas
Haines. Replication-based incremental copying collection. In
Bekkers and Cohen [BC92].

[NS93] Kelvin D. Nilsen and William J. Schmidt. Cost-effective object-
space management for hardware-assisted real-time garbage
collection. Letters on Programming Languages and Systems,
1(4):338–354, December 1993.

[OOP99] OOPSLA’99 ACM Conference on Object-Oriented Systems, Lan-
guages and Applications, volume 34(10) of ACM SIGPLAN No-
tices, Denver, CO, October 1999. ACM Press.

[Pet95] Mikael Pettersson. Compiling Natural Semantics. PhD thesis,
Linköping University, 1995.

[PG92] Young Gil Park and Benjamin Goldberg. Escape analysis on
lists. In Proceedings of the 5th ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 116–127.
ACM Press, 1992.

[PG95] Young G. Park and Benjamin Goldberg. Static analysis for
optimising reference counting. Information Processing Letters,
55(4):229–234, August 1995.

[RBLP00] Tobias Ritzau, Marcel Beemster, Florian Liekweg, and Chris-
tian Probst. JoC — the JOSES compiler. Presented at the Java
for Embedded Systems Workshop, London, May 2000.

BIBLIOGRAPHY 179

[RF02] Tobias Ritzau and Peter Fritzson. Decreasing memory over-
head in hard real-time garbage collection. In Alberto L.
Sangiovanni-Vincentelli and Joseph Sifakis, editors, Embedded
Software, Second International Conference, EMSOFT 2002, Greno-
ble, France, October 7-9, 2002, Proceedings, volume 2491 of Lecture
Notes in Computer Science, pages 213–226. Springer, 2002.

[Rit99] Tobias Ritzau. Real Time Reference Counting in RT-Java. Licenti-
ate thesis, Linköping University, March 1999.

[Rit01] Tobias Ritzau. Hard real-time reference counting without ex-
ternal fragmentation. In Dr. Uwe Assmann, editor, Java Op-
timization Strategies for Embedded Systems Workshop at ETAPS
2001, Genova, Italy, April 2001.

[RM88] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dy-
namically allocated objects. In Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 285–293. ACM Press, 1988.

[Roj98] R. Rojas. How to make Zuse’s Z3 a universal computer. IEEE
Annals of the History of Computing, 20(3):51–54, 1998.

[Roo00] Anders Roos. Class and object representation in the RT-Java
compiler. Master’s thesis, Linköping University, 2000.

[RSLR95] Ragunathan Rajukumar, Lui Sha, John P. Lehoczky, and Krithi
Ramamritham. An optimal priority inheritance policy for syn-
chronization in real-time systems. In Sang H. Son, editor, Ad-
vances in Real-Time Systems, chapter 11, pages 249–272. Prentice
Hall, 1995.

[Sau74] Robert A. Saunders. The LISP system for the Q–32 computer.
In E. C. Berkeley and Daniel G. Bobrow, editors, The Program-
ming Language LISP: Its Operation and Applications, pages 220–
231, Cambridge, MA, 1974. Information International, Inc.

[Sch88] William F. Schmitt. The UNIVAC SHORT CODE. Annals of the
History of Computing, 10(1):7–18, January/March 1988.

[SG95] Jacob Seligmann and Steffen Grarup. Incremental mature gar-
bage collection using the train algorithm. In O. Nierstras, ed-
itor, Proceedings of 1995 European Conference on Object-Oriented
Programming, Lecture Notes in Computer Science, pages 235–
252, University of Aarhus, August 1995. Springer-Verlag.

[Sha88] Robert A. Shaw. Empirical Analysis of a Lisp System. PhD thesis,
Stanford University, 1988. Technical Report CSL–TR–88–351.

180 BIBLIOGRAPHY

[Sie02] Fridtjof Siebert. Hard Realtime Garbage Collection. PhD thesis,
Universität Karlsruhe, 2002.

[spe98] Spec jvm98 benchmarks. Available at http://www.
specbench.org/osg/jvm98/, 1998.

[SRL88] Liu Sha, Ragunathan Rajkumar, and John P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-time synchro-
nization. Technical report, Department of Computer Science,
Carnegie-Mellon University Pittsburgh PA, 1988.

[Ste75] Guy L. Steele. Multiprocessing compactifying garbage collec-
tion. Communications of the ACM, 18(9):495–508, September
1975.

[Ste76] Guy L. Steele. Corrigendum: Multiprocessing compactifying
garbage collection. Communications of the ACM, 19(6):354, June
1976.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison
Wesley Professional, 1994.

[TCD86] Alan Turing, B.E. Carpenter, and R.W. Doran. A. M. Turing’s
ACE Report of 1946. MIT Press, 1986.

[TGJS96] Java Team, James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley, 1996.

[Tof98] Mads Tofte. A brief introduction to Regions. In Jones [Jon98],
pages 186–195.

[TT93] Mads Tofte and Jean-Pierre Talpin. A theory of stack allocation
in polymorphically typed languages. Technical Report Com-
puter Science 93/15, University of Copenhagen, July 1993.

[Ung84] David M. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. ACM SIG-
PLAN Notices, 19(5):157–167, April 1984. Also published as
ACM Software Engineering Notes 9, 3 (May 1984) — Pro-
ceedings of the ACM/SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environ-
ments, 157–167, April 1984.

[Vee01] Arthur Veen. The JOSES project - compiling Java for embed-
ded systems. In Dr. Uwe Assmann, editor, Java Optimization
Strategies for Embedded Systems Workshop at ETAPS 2001, Gen-
ova, Italy, April 2001.

BIBLIOGRAPHY 181

[vN45] John von Neumann. First draft of a report on the EDVAC. Tech-
nical report, Moore School of Electrical Engineering of the Uni-
versity of Pennsylvania, 1945.

[Wei63] J. Weizenbaum. Symmetric list processor. Communications of
the ACM, 6(9):524–544, September 1963.

[WJ93] Paul R. Wilson and Mark S. Johnstone. Truly real-time non-
copying garbage collection. In Eliot Moss, Paul R. Wilson, and
Benjamin Zorn, editors, OOPSLA/ECOOP ’93 Workshop on Gar-
bage Collection in Object-Oriented Systems, October 1993.

[Yua90] Taichi Yuasa. Real-time garbage collection on general-purpose
machines. Journal of Software and Systems, 11(3):181–198, 1990.

Index

aperiodic task, 11
arraylets, 146

Baker’s algorithm, 33
balloon types, 52
BAR, 115
barriers, 17
Barth’s analysis, 129
BEG, 114
beltway collectors, 37
Bengtsson’s algorithm, 30
black, 17
Bobrows’ groups, 22
Brooks’ algorithm, 34

card marking, 36
CCMIR, 115
CDP, 113
ceiling protocol, 13
Cheney’s algorithm, 32
child, 16
collector, 16
compact, 16
conservative, 17
copying algorithms, 43
CoSy, 113
cyclic executive, 12
cyclic reference counting, 20

deadline, 7, 11
deferred reference counting, 23
Dijkstra’s algorithm, 26
DMCP, 113

earliest deadline first, 14
EDL, 113, 114

engines, 113
entry tables, 35
exact, 18
external fragmentation, 16

forwarding-address algorithm, 28
fSDL, 113

garbage collection, 1–162
garbage collection cycle, 16
garbage detector, 51
generation scavenging, 35
generational scavenging, 44
grey, 17

hard real-time, 8
Henriksson’s scheduling, 144

incremental garbage collector, 16
incremental-update collectors, 17
inner reference, 78
interactive systems, 8
internal fragmentation, 16

Jamaica VM, 127

lazy reference counting, 20
least slack time first, 14
live, 16
lowerer, 113

mark-and-compact, 27, 43
mark-and-sweep, 24, 42
moving, 16
mutator, 16

non-moving, 16

184 INDEX

object, 16
object graph, 16
OMIR, 125
optimal mutex policy, 13
outer reference, 78

parent, 16
periodic task, 11
pre-emptive scheduling, 12
priority inheritance, 13
priority inversion, 13
priority scheduling, 12

reachable, 16
read-barrier, 17
real-time reference counting, 127
real-time systems, 7
recsplit, 118
refcount, 117
reference counting, 18, 42
remembered sets, 36
replication copying, 38, 44
response time, 11
root, 16

schedulable, 11
scheduling, 11
sequential store buffers, 36
Siebert’s real-time algorithm, 145
snapshot-at-the-beginning, 17
soft real-time, 8
static garbage collection, 129
Steele’s algorithm, 29
stop-the-world, 17

table-based methods, 29
task, 7
temporal scopes, 11
threaded methods, 29
train algorithm, 37
treadmill, 38, 44
tricolor marking, 17
two-finger algorithm, 28

WCET, 10

weak references, 51
white, 17
worst case execution time, 10
write-barrier, 17

Yuasa’s algorithm, 25

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 ������� �	�	
������ A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 ������	���	�����Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

No 18 �	��� ����	

�� Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 �		������� A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

No 33 ������������Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

No 51 ��
	������������Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 ������ ����
���� Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

No 55 �����	���
���� Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 �������������!�����
������������The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 �"� �	��#�����������A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 ���$���%����Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

No 77 &�����'��	�������Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

No 94 �	��� (���

�� Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 ����)�*� (���	���Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 ����� +���)�����Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

No 111 ����� ����,	
��� The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 ��������� (�,��-��
���� Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 �	���� ."� /�������� A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

No 170 0�%�� �����A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

No 174 ���	�� +	������1���A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 2�������2��	���,��Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 (��� 	���	���Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 ���3�(�������A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 ����	�
� ����4�	���� Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 ���	��(1�������Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

No 244 �����������������Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 �������
�����An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 	������2�����3� NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 5	���� ��	�������� Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

No 264 5�
��2	�
%�����Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

No 265 �
4�5�
������Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 �	
-���1��6����� Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

No 273 *1���+*�

%���� Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 ��	44	��������� A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 #�����	�� �	��	�
� Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

No 281 ��������� ������1�� Computational Complexity

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

No 292 �	���.��$���Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 �	��	��#	��	�� Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

No 302 ���������0�	��� A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 ������1�������Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

No 338 ������5	�*�7����	��: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

No 371 ������	,$�� Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 �
4� �1����	�� Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

No 383 �����	��#8���	
��Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

No 396 /������+����� Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

No 413 ���	�
� ���������� Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 9��
�� /�� RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 ��	� ����� Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 �	���� :�

��	�� Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

No 431 ��������������Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 ���	���3�� Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

No 439 ����
�	� �*1%���� Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 	������ (�%��;� Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 #*�

� '��%���� On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 '
�4� ���	�������Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

No 461 (��	� ���1�%�����User-Defined Constructions in
Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 (���2�����������Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 +�������5�
����� Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 ���	�
�(���,	

��An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 /1�	��+���
���: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

No 494 �	�������1
�: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 �	���'
�$�: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 ����	��2�	���������Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

No 502 �	��%��;�
����� Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

No 503 ���	���������1���Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

No 512 ���	���%�����Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

No 520 ���	�
�������1�� Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 5��
	��'�
����� Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

No 526 ��	�����#	�
����� A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 �������5�
����� Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 ���	���	

%���� Timing Issues in High-Level Syn-
thesis,1998, ISBN 91-7219-369-7.

No 561 (���� (��� Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

No 563 �,	� (��	����	
�� Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

No 567 �1�����(������1���Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN

91-7219-439-1.

No 582 :	�*	� ����4�,���� Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 ���	�#�,���<�3�: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

No 592 ���	�
� ��������� Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 (��� #	�
������Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 �"�/"����	�
����	�������Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

No 595 �1������	������ Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

No 596 5��
	���	

%���� Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

No 597 :�,�	��:��	�
���� An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 ���	�����,	
���Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

No 607 �	����� �����
� Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

No 611 ��
,�	����	������� Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 �	�� (��� Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 ����3��*����� Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 :	���� ����
����� Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

No 637 ��	�+	
���������Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 ��7����� ������� Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 �����(������ An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

No 688 �	����� *���
	��� Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 ��	���� /���	4����� Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 �	�
7���	�� ����� Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

No 724 	�
���������Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 ������3��: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

No 726 ����	�
��	�����A Usability on Requirements En-
gineering - From Methodology to Product Develop-
ment, 2001, ISBN 91 7373 212 5.

No 732 ���	��	������� From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

No 745 ���	��=%���� An Approach to Intelligent Help for
Web Information Systems, 2002, ISBN 91-7373-
311-3.

No 746 ����� /�	�
����� Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 ������� ����$7�1������� Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 ����
���	��	�
� Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

No 749 ��4��� �
��	
�� Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-
318-0.

No 765 ���4	����
�
����Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 �	����� ������� Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 	��
� ����)	�� A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

No 758 ����� ���
���� Library Communication Among
Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 ������7���>�� Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

No 779 �	���	����;,	

� A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 ������ 	������� A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

No 785 (�����
�� Publika Informationstjänster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

No 800 (����	;$�� A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 #
	�� /���� Tre perspektiv på förväntningar och
förändringar i samband med införande av informa-
tionsystem, 2003, ISBN 91-7373-618-X.

No 821 ���	�
�#���%���� Concurrent Comics - program-
ming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 ��������	�&
,������� On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

No 828 ��%�	�����)	�� Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

����������	
���������������
����	����
No 1 #	�����;�
����� Metodisk systemstrukturering

- att skapa samstämmighet mellan informationssys-
temarkitektur och verksamhet, 1998. ISBN-9172-
19-296-8.

No 2 ���4	��������
�� Metodverktyg och användbar-
het - en studie av datorstödd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

No 3 ��������,���� Användare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

No 4 '������������� Kommunikationskvalitet hos in-
formationssystem och affärsprocesser, 2000. ISBN
91-7219-811-7.

No 5 ���	�
�(�����Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

No 6 �
4���
����Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 ����"�=���4	
���Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

