
Microsoft® Windows

Software Development Kit

Programmer's learning Guide

Version2.0

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of :Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and recording, for
any purpose other than the purchaser's personal use without the written permis
sion of :Microsoft Corporation.

© Copyright :Microsoft Corporation, 1987. All rights reserved.
Simultaneously published in the U.S. and Canada.

Microsoft®, the Microsoft logo, MS®, and MS-DOS® are registered trademarks of
Microsoft Corporation.

IBM® is a registered trademark and PC-DOS is a trademark of International Business
Machines Corporation.

Epson® and FX-80® are registered trademarks of Epson America, Incorporated.

Document No. 050051052-200-I02-1087
Part No. 00477

Contents

1 Introduction 1

1 . 1 About This Guide 3
1 .2 What You Need to Start 3
1 .3 What Tools Do You Need? 4
1 .4 Sample Applications 4
1 . 5 What 's i n the Learning Guide 5
1 . 6 Notational Conventions 6

2 "Windows Overview 7

2 . 1 Overview 9
2 .2 A Comparison : Windows and C 9
2 .3 The Windows Programming Model 12
2 .4 The Windows Libraries 1 6
2 . 5 Building a Windows Application 17
2 . 6 Tips for Writing Windows Applications 20

3 A Sample Application: Generic 21

3 . 1 Introduction 23
3 .2 The Generic Application 23
3.3 A Windows Application 24
3 .4 The WinMain Function 24
3 . 5 The Window Function 35
3 . 6 Creating an About Dialog Box 37
3 . 7 Creating a Module-Definition File 43
3 .8 Putting Generic Together 45
3 . 9 Using Generic as a Template 50

4 Output to a "Window 53

4 . 1 Introduction 55
4 .2 The Display Context 55
4 .3 Creating, Selecting, and Deleting

Drawing Tools 59
4 .4 Drawing and Writing 60
4 .5 Computing a String's Length 62
4 . 6 A Sample Application : Output 62

iii

Microsoft Windows Programmer's Learning Guide

5 Keyboard and Mouse Input 67

5 . 1 Introduction 69
5.2 Input Types 69
5 .3 Displaying Formatted Output 74
5.4 A Sample Application : Input 74

6 Icons 81

6 .1 What Are Icons? 83
6 . 2 Class Icons 83
6 . 3 Creating Icons 84
6 .4 Creating Your Own Icons 85
6 .5 Using an Icon in a Dialog Box 86
6 . 6 A Sample Application : Icon 87

7 The Cursor, the Mouse,
and the Keyboard 89

7 . 1 Introduction 91
7 . 2 Using the Cursor 91
7 .3 Using the Mouse 94
7 .4 Using the Cursor with the Keyboard 98
7 .5 A Sample Application : Cursor 102

8 Menus 109

8 . 1 What Are Menus? 1 11
8 .2 Using Menus 1 1 1
8 . 3 Modifying Menus 1 13
8 .4 Using the System Menu 1 18
8 .5 A Sample Application : FileMenu 120
8 .6 A Sample Application : EditMenu 125

9 Bitmaps 131

9 . 1 What Are Bitmaps? 1 33
9.2 Creating Bitmaps 133
9 . 3 Displaying Bitmaps 140
9 .4 A Sample Application : Bitmap 145

10 Controls and Dialog Boxes 157

iv

10.1 Introduction 159
10.2 Using Controls 159

Contents

10 .3 Using Button Controls 1 63
10.4 Using Static Controls 1 65
10.5 Using List Boxes 1 66
10 .6 Using Edit Controls 1 67
10.7 Using Scroll Bars 167
10.8 Designing Your Own Controls 167
10 .9 A Sample Application : EditCntl 168
10 . 10 What Is a Dialog Box? 171
10. 1 1 A Sample Application : FileOpen 1 74

11 File Input and Output 185

1 1 . 1 Introduction 187
1 1 .2 Multitasking and Files 187
1 1 .3 Creating Files 1 89
1 1 .4 Opening Existing Files 1 90
1 1 . 5 Reading and Writing Files 1 90
1 1 . 6 Reopening Files 1 9 1
1 1 .7 Prompting for Files 1 9 1
11.8 Checking File Status 192
1 1 . 9 A Simple File Editor : EditFile 192

12 Printing 205

1 2 . 1 Introduction 207
12 . 2 Using a Printer 207
12 . 3 A Sample Application : PrntFile 219

13 The Clipboard 227

13. 1 What Is the Clipboard? 229
13 .2 Using the Clipboard 229
13 .3 Special Clipboard Topics 237
13.4 A Sample Application : ClipText 242
13 . 5 A Sample Application : ClipBit 245

A Fonts 251

A. 1 Introduction 253
A.2 Writing Text 253
A.3 Using Color when Writing Text 253
A.4 Using Stock Fonts 254
A.5 Creating a Logical Font 256
A.6 Using Multiple Fonts in a Line 257
A.7 Getting Information About

the Selected Font 258

v

Microsoft Windows Programmer's Learning Guide

B

A.8 Getting Information About a Logical Font 259
A.9 Enumerating Fonts 260
A. lO Checking a Device's Text Capabilities 262
A. l l Adding a Font Resource 265
A. 1 2 Setting the Text Alignment 264
A. 1 3 Creating Font-Resource Files 265
A. 14 A Sample Application : ShowFont 268

Memory Management 269

B . 1 Introduction 271
B.2 Using Memory 271
B.3 Using Segments 276
B.4 A Sample Application : Memory 278

C Windows Libraries 283

vi

C. 1 Introduction 285
C.2 Creating a Library 285
C.3 The Library Data Segment 29 1
C.4 The Library Stack 292
C.5 Linking with Functions in a Library
C .6 A Sample Library: Select 296

295

Figures

Figure 2 . 1 Window Features 13

Figure 2 .2 Processing Hardware Input 14

Figure 2 . 3 Processing Keyboard Input 15

Figure 2 .4 Processing Window-Management Messages 16

Figure 2 .5 Building a Windows Application 17

Figure 3. 1 Generic with an About Dialog Box 23

Figure 4 . 1 Output Window 66

Figure 5. 1 Input Window 79

Figure 6 . 1 Icon Editor with an Icon 84

Figure 6 . 2 The About Dialog Bo x i n Icon 88

Figure 7 . 1 Icon Editor and a Cursor 92

Figure 7 . 2 Cursor Window 108

Figure 7.3 A Selection in Cursor 108

Figure 8 . 1 FileMenu Window 124

Figure 8 .2 FileMenu Error Message 124

Figure 9 . 1 A Bitmap in Icon Editor 1 34

Figure 9 .2 Bitmap Window with Dog 156

Figure 10 . 1 FileOpen Dialog Box 183

Figure 1 1 . 1 EditFile Window 203

Figure 1 2 . 1 Device Modes for an Epson FX-80 212

Figure 13. 1 ClipText Window and Clipboard 244

Figure 13.2 ClipBit Window 248

Figure C. 1 Inverting a Rectangle 300

vii

Chapter 1

Introduction

1 . 1 About This Guide 3
1 .2 What You Need to Start
1.3 What Tools Do You Need?
1 .4 Sample Applications 4

3

1.5 What's in the Learning Guide
1 .6 Notational Conventions 6

4

5

1

Introduction

1.1 About This Guide

This guide is intended to help the experienced C programmer make the
transition to writing applications that use the Microsoft® Windows 2.0
application program interface. The guide provides detailed explanations of
how to use Windows functions, messages, and data structures to carry out
useful tasks common to all Windows applications, and illustrates these
explanations with sample applications that you can compile and run with
Windows 2.0.

1.2 What You Need to Start

To start using this learning guide, you need the following:

• Experience using the Windows user interface and an understanding
of the Windows user interface

• An understanding of the Windows style guidelines

• Experience writing C-language programs and using the standard C
run-time functions

Before starting any development, you should install Windows 2 .0 on your
computer and learn how to use it . Be sure to learn the names, purpose ,
and operation of the various parts of a Windows screen , such as windows,
dialog boxes, menus, controls, and scroll bars. Your own applications will
rely heavily on these features, so it is very important for you to under
stand them so that you use them properly .

One goal of Microsoft Windows is to provide a common user interface for
all applications . This ultimately helps the user by reducing the effort
required to learn the user interface of a Windows application and helps
you by clarifying the choices you have to make when designing a user
interface . To achieve this goal, however, you must base your application's
user interface design on the recommended application style guidelines
described in the Microsoft Windows Application Style Guide. You should
read this style guide before starting your design effort .

The C programming language is the preferred development language for
Windows applications. Many of the programming features of Windows
were designed with the C programmer in mind . Windows applications can
also be developed in Pascal and assembly language, but these languages
present additional challenges that you typically bypass when writing
applications in the C language .

3

Microsoft Windows Programmer's Learning Guide

1.3 What Tools Do You Need?

To build most Windows 2.0 applications, you need the following tools:

• Microsoft C Optimizing Compiler: cl

• Microsoft Resource Compiler: rc

• Microsoft Segmented-Executable Linker: link4

• Microsoft Windows Icon Editor : IconEdit

• Microsoft Windows Dialog Editor: Dialog

• Microsoft Program Maintenance Utility: make

• Microsoft Symbolic Debug Utility: symdeb

To build Windows libraries and font resource files, you need the following
additional tools:

• Microsoft Macro Assembler: masm

• Microsoft Windows Font Editor: FontEdit

Most of these tools are provided in the Microsoft Windows 2.0 Software
Development Kit . The C Compiler and Macro Assembler are not . All are
described more fully in Microsoft Windows Programming Tools.

1.4 Sample Applications

The sample applications in this guide are written in the C programming
language and conform to the user- interface style recommended by Micro
soft for Windows applications.

The source files for all sample applications are provided on the Learning
Guide Samples disk supplied with the Microsoft Windows 2.0 Software
Development Kit . It is recommended that you review the sample applica
tion sources while reading the corresponding description in this guide . For
your convenience, the subdirectories containing the sample sources are
named by chapter. You may also use the sources as a basis for your own
applications.

4

Introduction

1.5 What's in the Learning Guide

The following list briefly describes the contents of this learning guide,
chapter by chapter:

• Chapter 1, "Introduction ," serves as an introduction to the content
and purpose of the Microsoft Windows Programmer 's Learning
Guide.

• Chapter 2, "Windows Overview," compares Windows to the stan
dard C environment, provides a brief overview of Windows, and
describes the Windows programming model and the Windows
application-development process .

• Chapter 3, "A Generic Windows Application , " shows how to create
a simple Windows application called Generic . You 'll then use this
application as a basis for subsequent examples in this learning
guide .

• Chapter 4, "Output to the Screen , " introduces the graphics device
interface (GDI) and shows how to use GDI tools to create your own
output.

• Chapter 5, "Keyboard and Mouse Input ," shows how to process
input from the mouse and keyboard.

• Chapter 6, "Icons, " shows how to create and display icons for your
applications.

• Chapter 7, "The Cursor, the Mouse , and the Keyboard , " explains
the purpose of the cursor, the mouse, and the keyboard , and shows
how to use them in your applications.

• Chapter 8, "Menus, " shows how to create menus for your applica
tions and how to process input from menus.

• Chapter 9 , "Bitmaps," shows how to create and display bitmaps .

• Chapter 10, "Dialog Boxes and Controls, " explains dialog boxes
and controls, how to create dialog boxes, and how to fill them with
controls . This chapter also shows how to use a control in a window
other than a dialog box.

• Chapter 11, "File Input and Output ," explains the OpenFile func
tion, as well as rules about disk files.

• Chapter 12, "Printing," shows how to use a printer with Windows.

• Chapter 13, "The Clipboard , " explains the clipboard and shows
how to use it in your applications .

• Appendix A, "Fonts, " shows how to create and load fonts, and how
to use them in the TextOut function .

5

Microsoft Windows Programmer's Learning Guide

• Appendix B, "Memory Management , " shows how to allocate global
and local memory.

• Appendix C, "Windows Libraries, " explains how to create a Win-
dows library.

Microsoft Windows 2 .0 runs with the MS-DQS® operating system, also
known as DOS or PC-DOS . ln this learning guide, MS-DOS will be referred
to as DOS.

1.6 Notational Conventions

Here are a few notes about the typographic conventions used in this
manual:

Convention

t"talic

mono space

bold

Usage

Used for filenames, such as generic. def.

Used for code excerpts taken from the various files
that make up the sample applications. For example:

if (hPrevlnstance)
return (NULL);

Used for names of programs, fields, data types, struc
tures, statements, options, registers, and keywords.
These items appear exactly as they would in code .

Windows Functions

The Windows functions appear in bold; for example, ShowWindow,
GetDoubleClickTime, or BeginPaint. In addition to these functions,
the sample applications in this guide use several "locally defined" func
tions : functions that are defined in the . h files for their respective applica
tions. To help you distinguish these locally defined functions from Win
dows functions, the locally defined functions appear in roman type, not
bold ; for example, AddExt, GenericWndProc , or UpdateListBox.

Local and Global Variables

These variables, like locally defined functions, appear in roman type; for
example, lParam, hlnstance, or OrgX. Since many of these variables have
the same names as fields (hlnstance, for example), it is necessary to make
the typographic distinction between fields, in bofd, and variables, in
roman .

6

Chapter 2

Windows Overview

2. 1
2 .2

2.2 . 1

2 .2 .2

2 .2 .3
2.2.4
2.3
2.3. 1
2.3.2
2.3.3
2.3.4
2.4
2.5
2.5. 1
2 .5 .2
2.5.3
2.5.4
2.5.5

Overview 9
A Comparison: Windows and C

The User Interface 9

Queued Input 10

Device-Independent Graphics
Multitasking 1 1

The Windows Programming Model
Windows 12
Menus 13
Dialog Boxes 14
The Message Loop 14

The Windows Libraries 16
Building a Windows Application

C Compiler 18
Resource Compiler 18
Linker 18
Debugger 19
Resource Editors 19

2.5 .6 Program :Nfaintainer 19

9

11

12

17

2.6 Tips for Writing Windows Applications 20

7

Windows Overview

2.1 Overview

Microsoft Windows 2.0 has many features that the standard C environ
ment does not. For this reason , Windows applications may, at first , seem
more complex than standard C programs, which is understandable when
you consider some of the additions that Windows offers:

• A graphical user interface featuring windows, menus, dialog boxes,
and controls for applications

• Queued input

• Device-independent graphics

• Multitasking

• Data interchange between applications

This chapter describes these features and explains the impact they have
on the way you develop and write applications . This chapter also provides
a brief definition of Windows and explains the Windows programming
model . It starts with a comparison of Windows and the standard C
environment, and ends with a discussion of the Windows application
development process .

2.2 A Comparison: Windows and C

Most C programmers use the standard C run-time library to carry out a
program's input, output, memory management, and other activities . The
C run-time library assumes a standard operating environment consisting
of a character-based terminal for user input and output, and exclusive
access to system memory as well as the input and output devices of the
computer. In Windows, these assumptions are no longer valid . Windows
applications share the computer's resources, including the CPU, with
other applications and interact with the user through a graphics-based
display, a keyboard, and a mouse . The following sections describe some of
the major differences between the standard C environment and Windows .

2.2.1 The User Interface

One of the principle design goals of Windows is to provide visual access to
most, if not all, applications at the same time . In a multitasking environ
ment, it is important to give all applications some portion of the screen
through which they can interact with the user. In some systems, this
access is granted by giving a selected program full use of the screen while
other programs wait in the background. In Windows, every application has
access to some portion of the screen at all times.

9

Microsoft Windows Programmer's Learning Guide

An application shares the display with other applications by using a "win
dow" for interaction with the user. Technically, a window is little more
than a rectangular portion of the system display that the system grants
use of to an application . In reality, a window is a combination of useful
visual devices, such as menus, controls, and scroll bars, that the user uses
to direct the actions of the application .

In the standard C environment, the system automatically prepares the
system display for your application, typically passing a file handle to the
application that you can use to send output to the system display by using
conventional C run-time or DOS system calls. In Windows, you must
create your own window before carrying out any output or receiving any
input . But once you create a window, Windows provides a host of informa
tion about what the user is doing with the window and automatically car
ries out many of the tasks the user requests, such as moving and sizing a
window.

Another advantage to Windows is that although a standard C program
has access to a single screen , a Windows application can create and use
any number of windows to display information in any number of ways .
There are some terminate-but-stay-resident C programs that take control
of a portion of the display when another program is running, but these
programs are entirely responsible for managing the screen . Such programs
must also make sure that their use of the screen does not interfere with
other programs and that the screen is properly restored to its original con
tent when the program returns control to the program previously having
control . In Windows, the screen is managed for you by Windows, which
controls the placement and display of windows and ensures that no two
applications attempt to access the same part of the system display at the
same time .

2.2.2 Queued Input

One of the biggest differences between Windows and standard C program
ming is the method of input . In the C environment , a program reads from
the keyboard by making an explicit call to a function, such as getehar.
The function typically waits unti l the user presses a key before returning
the character code to the program. In Windows, an application does not
make explicit calls to read from the keyboard . Instead , Windows receives
all input from the keyboard , mouse, and timer in its system queue, and
automatically redirects the input to the application by copying it from the
system queue to the application's queue. When the application is ready to
retrieve input, it reads from its queue and dispatches the message to the
appropriate window.

In the standard C environment, input is typically in the form of 8-bit char
acters from the keyboard . The standard input functions, getehar and
fscanf, read characters from the keyboard and return ASCII or other
codes corresponding to the keys pressed . A program may also intercept

10

Windows Overview

interrupts from input devices such as the mouse and timer to use informa
tion from those devices as input . So in the standard C environment, input
is either not very informative or is technically difficult to manage.

In Windows, input from the keyboard and mouse is provided automati
cally to every window created . Windows provides input in a uniform for
mat, called an "input message , " containing information about the input
that far exceeds the type of information available in other environments.
An input message specifies the system time, the position of the mouse,
the state of the keyboard, the scan code of the key (if a key is pressed) ,
the mouse button pressed, as well as the device generating the message .
For example, there are two keyboard messages : WM.... KEYDOWN and
�KEYUP. These messages correspond to the press and release of a
specific key. With each message, Windows provides a device-independent
virtual keycode that identifies the key, no matter which keyboard it is on,
the device-dependent scan code generated by the keyboard , as well as the
status of other keys on the keyboard , such as the SIDFT, CONTROL, and
NUMLOCK keys. Keyboard, mouse, and timer messages all have the same
format and are all processed in the same manner.

2.2.3 Device-Independent Graphics

In Windows, you have access to a rich set of device-independent graphics
operations. This means your application can draw lines, rectangles, circles,
and complex regions simply, and can use the same calls and data to draw
on a high-resolution graphics display as well as on a dot-matrix printer.

Windows requires device drivers to convert graphics output requests to
output for a printer, plotter, display, or other output device . A device
driver is a special executable library that an application can load and
connect to a specific output device and port . Your application can then
carry out graphics operations in the "context" of the specific device . A
"device context" comprises the device driver, the output device, and the
communications port .

2.2.4 Multitasking

Windows is a multitasking system. This means that more than one appli
cation can run at a time. In the standard C environment, there are no par
ticular provisions for multitasking. C programs typically "assume" that
they have exclusive control of all resources in the computer, including the
input and output devices, memory, the system display, and even the CPU
itself. In Windows, however, applications must share these valuable
resources with all other applications that are currently running. For this
reason, Windows carefully controls these resources and requires Windows
applications to use a specific program interface that guarantees control .

11

Microsoft Windows Programmer's Learning Guide

For example , in the standard C environment, a program has access to all
of memory that has not been taken up by the system, by the program, or
by terminate-but-stay-resident programs. This means programs are free to
use all of available memory for whatever they like and may access memory
by whatever method they like .

In Windows, memory is a shared resource . Since more than one application
can be running at the same time, you must cooperatively share memory to
avoid exhausting the resource . Applications may allocate what they need
from system memory; however, to make the most efficient use of memory,
the Windows memory manager often moves or even discards memory
blocks that have not been locked. This means you cannot assume that
objects to which you have assigned a memory location remain where you
put them. If there are several applications running, Windows may move
and discard memory blocks often. Also, in Windows, there are two sources
of allocated memory: global memory, for large allocations, and local
memory, for small allocations.

Another example of a shared resource is the system display . In the stan
dard C environment, the system typically grants your application exclu
sive use of the system display . This means you can use the display in any
manner you like, from changing the color of text and background, to
changing the video mode from text to graphics. Your applications can
even directly access video memory to change the content of the screen .
In Windows, your application must share the system display with other
applications, so it does not, and must not, take control of the display .

2.3 The Windows Programming Model

The Windows programming model describes what elements an application
has available to interact with the user. These elements are primarily win
dows, menus, dialog boxes, and the message loop . The following sections
describe these elements in detail .

2.3.1 Wmdows

A window is the primary input and output device of any application . It
is an application 's only access to the system display. Since nearly all pro
grams interact with the user in some way through the system display,
Windows applications must use windows if they want to communicate
with the user.

A window is a combination of a title bar, a menu bar, scroll bars, borders,
or other features that occupy a rectangle on the system display. You list
the features you want for a window when you create the window. Windows

12

Windows Overview

then draws the window and otherwise manages it . Figure 2 .1 shows the
main features of a window:

Minilllize
Mal!illlize

'lose Alt+F4

Window border

tle bar Menu bar

Scroll bar

Maxi111ize box
Mini111ize box

Scroll box

Figure 2.1 Window Features

Although an application creates a window and technically "owns" it , the
management of the window is actually a collaborative effort between the
application and Windows. Windows maintains the position and appear
ance of the window, manages the standard window features such as the
border, scroll bars, and title , and carries out many tasks initiated by the
user that directly affect the window. The application maintains everything
else about the window-in particular, the client area in which an applica
tion is free to display anything it wants.

To manage this collaborative effort, Windows advises each window of
changes that might affect it . So every window must have a corresponding
"window function . " A window function receives window-management mes
sages that it must respond to appropriately . Window-management mes
sages either specify actions for the function to take or are requests for
information from the function .

2.3.2 Menus

Menus are the principle means of user input in a Windows application . A
menu is a list of commands that the user can view and choose from. When
you create an application , you supply the menu and command names.

13

Microsoft Windows Programmer's Learning Guide

Windows displays and manages the menus for you , sending a message to
the window function when the user makes a choice. The message is your
signal to carry out the command.

2.3.3 Dialog Boxes

A dialog box is a temporary window that you can create to give the user
an opportunity to supply more information for a command. A dialog box
contains one or more controls. A control is a small window that has a very
simple input or output function . For example, an edit control is a simple
window that lets the user enter and edit text . The controls in a dialog box
give the user a method of supplying filenames, choosing options, and oth
erwise directing the action of the command.

2.3.4 The Message Loop

Since your application receives input through an application queue, the
chief feature of any Windows application is the message loop. The message
loop retrieves input messages from the application queue and dispatches
them to the appropriate windows.

As shown in Figure 2 .2, Windows collects hardware input, in the form of
messages, in its system queue. It then copies this input to the appropriate
application queue. The message loop in the application retrieves a message
and dispatches it, through Windows, to the appropriate window function :

14

CD RegisterCiass

Create Window

Create
_w_i_nd_o_w_-t Application

window

Figure 2.2 Processing Hardware Input

Windows Overview

The window function can respond to an input message by calling Windows
functions to carry out work on the window.

Figure 2 .3 shows how Windows and an application collaborate to process
keyboard input messages. Window receives keyboard input when the user
presses and releases a key. Windows copies the keyboard messages from
the system queue to the application queue. The message loop retrieves the
keyboard messages, translates them into an ANSI character message,
WM_ CHAR, and dispatches the WM_ CHAR message, as well as the key
board messages, to the appropriate window function :

Appl ication

_ __..:.__--1 Appl ication
window

WM_CHAR

TextOut

Figure 2.3 Processing Keyboard Input

The window function uses the TextOut function to display the character
in the client area of the window.

Figure 2 .4 shows how Windows sends window-management messages
directly to a window function . After Windows carries out a request to des
troy a window, it sends a WM_ DESTROY message directly to the window
function, bypassing the application queue. The window function must then
signal the main function that the window is destroyed and the application
should terminate . It does this by copying a WM_ QUIT message into the
application queue by using the PostQuitMessage function :

15

Microsoft Windows Programmer's Learning Guide

® WM_QUIT

® PostQu it

WM_DESTROY

Destroyed
appl ication

window

Figure 2.4 Processing Window-Management Messages

When the message loop retrieves the WM.. QUIT message , the loop ter
minates and the main function exits.

2.4 The Windows Libraries

Windows functions, like C run-time functions, are defined in libraries . The
Windows libraries, unlike the C run-time library, are special dynamic-link
libraries that the system links your application with when it loads your
application . Dynamic- link libraries are an important feature of Windows
because they minimize the amount of code required by each application
to run.

Windows consists of three main libraries, as described in the following list:

Library

User

Kernel

GDI

16

Description

Provides window management . This library manages
the overall Windows environment, as well as your
windows.

Provides system services, such as multitasking,
memory management , and resource management .

Provides the graphics device interface .

Windows Overview

2.5 Building a Windows Application

You build a Windows application by following these steps:

1 . Write the WinMain and window functions and place them i n C
language or assembly-language source files .

2 . Write the menu , dialog box, and other resource descriptions and
place them in a resource script file .

3 . Use Icon Editor to create the cursors, icons, and bitmaps.

4. Use Dialog Editor to create dialog boxes .

5 . Write the module definitions and place them in the module
definition file .

6 . Compile and link all C-language sources.

7 . Compile the resource script file and add it to the executable file .

Figure 2 .5 shows the steps required to build a Windows application :

I .asm �� Masm J Windows
Source fi le and

C run-time l ibraries

.c l
I Source fi le Windows

r- Object
Cl t- Linker r- .exe fi le

fi le

I .h
Include fi le

+ l Module-defin ition I fi le

I Resource
Rc r- .res

fi le fi le

f
Icon

Editor Resources
(.dig, .bmp,
.cur, . ico

Dialog
files)

Editor

Figure 2.5 Building a Windows Application

17

Microsoft Windows Programmer's Learning Guide

To create a Windows application, you use many new development tools, as
well as some familiar tools with new options . The following sections briefly
describe each tool.

2.5.1 C Compiler

You may compile Windows applications by using the same options you use
for standard C programs. However, Windows also requires two special
options : -Gw and -Zp. The -Gw option adds the required Windows pro
log and epilog code to each function. The -Zp option packs structures,
ensuring that the structures used in your application are the same size as
the corresponding structures used by Windows. The following shows a typ
ical cl command:

c l - c -AS -Gw -Os - Zdp test . c

Since the object files generated by the C compiler must be linked with the
Windows linker, link4, the - c option should be used to prevent cl from
creating a file that is not executable with Windows.

2 .5 .2 Resource Compiler

Most Windows applications use a variety of resources, such as icons, cur
sors, menus, and dialog boxes. You must define these resources in a file
called a "resource script file , " then compile the file and add it to the
application 's executable file . When the application runs, it can load and
use the resources from the executable file. The following is an example of
a resource script file identifying two resources, a cursor and an icon:

bul lseye CURSOR bul lseye . cur
generic ICON generic . ico

To compile a resource script file and add it to an executable file, use the rc
command. The following example shows a typical rc command:

rc generic . rc

The resource compiler is fully described in Microsoft Windows Program
ming Tools.

2.5.3 Linker

The Windows linker, link4, produces Windows-format executable files.
The linker is similar to its previous versions except that it requires a
module-definition file . This file names the callback functions in the appli
cation and defines the name of the application . The following is an exam
ple of a typical module-definition file :

18

Windows Overview

NAME Generic

EXPORTS
GenericWndProc
AboutDl gFunc

To link a Windows application, you specify the name of the object files
created by the compiler, the name of the Windows import library, the
name of the module-definition file, and other options and files. The follow
ing example is a typical link4 command:

l ink4 generic ,ja lign : 16 ,jmap , s libw, generic.de f

For more information on link4 and the module-definition file, see M£cro
soft W£ndows Programm£ng Tools.

2.5.4 Debugger

The symbolic debug utility, symdeb, helps you debug Windows applica
t ions . Symdeb lets you set breakpoints, view source-level code, and
display symbolic information while debugging Windows applications.
Although symdeb is a useful development tool, it is not described in this
guide . If you want to read more about symdeb, see M£crosojt W£ndows
Programm£ng Tools.

2 .5.5 Resource Editors

There are three resource editors: Icon Editor, Font Editor, and Dialog
Editor. These editors are Windows applications that allow you to create
icons, cursors, and bitmaps (Icon Editor) , fonts (Font Editor) , and dialog
box descriptions (Dialog Editor) . For more information on these editors,
see Microsoft Windows Programming Tools.

2.5.6 Program Maintainer

The make program is a program maintainer that updates programs by
keeping track of the dates of its source files. The make program is espe
cially important because of the number of files required to create a Win
dows application . Make works with a make file that contains a list of the
commands and files needed to build a Windows application . The com
mands compile and link the various files. Make executes the commands
only if the files named in those commands have changed . This saves time
if, for instance, you have made only a minor change to a single file. The
following example shows the content of a typical make file for a Windows
application :

19

Microsoft Windows Programmer's Learning Guide

generic . obj : generic . c generic . h
c l - c -AS -Gw -Os -Zp generic . c

generic . exe : generic . obj generic . de f generic . rc
l ink4 generic ,ja l ign: l6 ,/map , s l ibw , generic . de f
r c generic

Typically, make files have the same name as the applications they build,
although any name is allowed. The following example shows a typical
make command:

make generic

2.6 Tips for Writing Windows Applications

When writing Windows applications, remember the following general
rules:

• Do not use C run-time console-input and -output functions, such as
getchar, putchar, scanf, and printf.

• You may use the C run-time memory-management functions malloc,
calloc, realloc, and free, but be aware that Windows translates these
functions to its own local-heap functions, LocalAlloc , LocalReAlloc,
and LocalFree. Since local-heap functions don ' t always operate
exactly like C run-time memory-management functions, you may get
unexpected results.

• Do not use C run-time file-input and -output functions to access serial
and parallel ports . Instead, use the communications functions, which
are described in detail in the M£crosoft W£ndows Programmer 's
Reference.

• You can use the C run-time file-input and -output functions to access
disk files. In particular, use the Windows OpenFile function and the
low- level, C run-time input and output functions. Although the C
run-time stream input and output functions can be used, you do not
get the advantages of opening and managing files with OpenFile .

• Do not take exclusive control of the CPU-it is a shared resource .
Although Windows i s a multitasking system, it i s non-preemptive .
This means it cannot take control back from an application until the
application releases it . A cooperative application carefully manages
access to the CPU and gives other applications ample opportunity
to execute .

• Do not attempt to directly access memory or hardware devices such
as the keyboard , mouse, timer, display, and serial and parallel ports .
Windows requires absolute control of these resources to ensure equal,
uninterrupted access for all applications that are running.

20

Chapter 3

A Sample Application: Generic

3. 1
3.2
3.3
3.4

3.4.1

3.4.2

Introduction 23
The Generic Application
A Windows Application

The WinMain Function

Windows Data Types
Handles 26

23
24

24

25

3.4.3 11anaging Your Instances 26
3.4.4 Registering the Window Class 27
3.4.5 Creating a Window 30
3.4.6 Showing and Updating a Window 31
3.4.7 Creating the Message Loop 31
3.4.8 Yielding Control 33
3.4.{)
3.4. 10

3.4. 11

3.4.12
3.5
3.6
3.6. 1
3. 6.2
3.6.3
3.6.4
3. 6. 5
3.7
3.8
3.8. 1

Terminating an Application 33
The Initialization Function 34
Using Temporary Storage 35
The Application Command Line 35

The Window Function 35
Creating an About Dialog Box 37

Creating a Dialog-Box Template 38
Creating an Include File 3{)
Creating a Dialog Function 40
Appending About to the System Menu 41
Processing the WM_ SYSCO:MMAND Message

Creating a Module-Definition File 43

Putting Generic Together 45
Create the C-Language Source File 46

42

21

3.8.2 Create the Resource Script File 48

3.8.3 Create the Module-Definition File 49

3.8.4 Create a 11ake File 49

3. 9 Using Generic as a Template 50

22

A Sample Application: Generic

3.1 Introduction

This chapter explains how to create a simple Microsoft Windows applica
t ion called Generic . The Generic application demonstrates principles
explained in Chapter 2, "Windows Overview," and illustrates the basic
steps needed to develop a Windows application . Generic will also be used
as basic code for all further sample applications in this guide .

3.2 The Generic Application

Generic is a standard Windows application; that is, it meets the recom
mendations for user-interface style given in the Mz'crosoft Wz'ndows Applz'
catz'on Style Guz'de. Generic has a main window, a border, a system menu
(called a Control menu in the user manuals) , and maximize and minimize
boxes, but no other features. The system menu includes an About com
mand, which , when chosen by the user, displays an About dialog box
describing Generic . The completed Generic, with an About dialog box,
looks like Figure 3 . 1 when displayed :

HicrosoFt Windows
G•n•ric App1ica�ion

u.rsi.on 1.0

Figure 3 .1 Generic with an About Dialog Box

Generic is important not for what it can do, but for what it provides: a
template for writing Windows applications . Building it helps you under
stand how Windows applications are put together and how they work .

23

Microsoft Windows Programmer's Learning Guide

3.3 A Windows Application

A Windows application is any application that is specifically written to
run with Windows and that uses the Windows application program inter
face (API) to carry out its tasks. A Windows application has the following
basic components:

• A WinMain function

• A window function

The WinMain function is the entry point for the application and is simi
lar to the main function used in the standard C environment .

A window function is something new. It is a callback function ; that is , a
function that you register with Windows to be "called back" when Win
dows needs to carry out work on a window. You never call a window func
tion directly. Instead , you let Windows call the window function with
requests to carry out specific tasks or to return information .

3.4 The WinMain Function

Every Windows application must have a WinMain function . An applica
tion cannot run without it . Much like the main function in standard C
programs, WinMain is the entry point for the application. In most Win
dows applications, the WinMain function does the following:

• Registers the window classes to be used in the application and car
ries out other initializations.

• Creates a main window and possibly other windows to be used by
the application .

• Starts a message loop to process messages from the application
queue .

• Terminates the application when the message loop retrieves a
WM_ QUIT message.

The WinMain function has the following form:

int PASCAL WinMain (hinstance ,
HANDLE hinstance ;
HANDLE hPrevinstance;
LPSTR lpCmdLine ;
int nCmdShow;
{
}

24

hPrevinstance , lpCmdLine ,
I* current instance
I* previous instance
I* command l ine

nCmdShow)
*I
*I

I* show-window type (open/icon)
*I
*I

A Sample Application: Generic

The WinMain function uses the PASCAL calling convention . Since
Windows calls this function directly and always uses this convention ,
PASCAL is required . Windows passes WinMain four parameters:
hlnstance receives the instance handle of the application; hPrevlnstance
receives the handle of the previous instance of the application; lpCmdLine
receives a long pointer to a null-terminated command line; and nCmdShow
receives an integer to be passed to the ShowWindow function, which is
used to display the application's main window. The nCmdShow parameter
defines how the window should be displayed : as an open window or as an
icon . For more information on handles, see Section 3 .4 .2 , "Handles . "

3.4.1 Windows Data Types

The WinMain function uses several nonstandard data types to define its
parameters. For example, it uses the HANDLE data type to define the
hlnstance and hPrevlnstance parameters, and the LPSTR data type to
define the lpCmdLine parameter. In general, Windows uses many more
data types than you would find in a typical C program. Although the Win
dows data types are often equivalent to familiar C data types, they are
intended to be more descriptive and should help you better understand the
purpose of a given variable or parameter in an application.

The Windows data types are defined in the windows.h include file . The
Windows include file is an ordinary C- language source file that contains
definitions for all the Windows special constants, variables, data struc
tures, and functions. To use these definitions, you must include the
windows.h file in each source file. Place the following line at the beginning
of your source file:

#include "windows . h" I* Required for a l l windows app l ications *I

The following is a list of some of the more common Windows data types:

Type

WORD

LONG

HANDLE

HWND

LPSTR

FARPROC

Meaning

Specifies a 1 6-bit , unsigned integer .

Specifies a 32-bit , signed integer.

Identifies a 1 6-bit , unsigned integer to be used as a
handle.

Identifies a 1 6-bit , unsigned integer to be used as a
handle to a window.

Specifies a 32-bit pointer to a char type .

Specifies a 32-bit pointer to a function .

25

Microsoft Windows Programmer's Learning Guide

The following is a list of some commonly used structures:

Structure

MSG

WNDCLASS

P AINTSTRUCT

RECT

3.4.2 Handles

Description

Defines the fields of an input message .

Defines a window class.

Defines a paint structure used to draw within a
window.

Defines a rectangle .

The WinMain function has two parameters, hPrevlnstance and
hlnstance, that are called handles . A handle is an unique integer that
Windows uses to identify an object created or used by an application .
Windows uses a wide variety of handles, identifying objects such as appli
cation instances, windows, menus, controls, allocated memory, output
devices, files, GDI pens and brushes, and many more .

Most handles are index values for internal tables. Windows uses handle
indexes to access the information stored in the table . Typically, your
application has access only to the handle, and not to the data. When you
need to examine or change the data, you supply the handle and Windows
does the rest . This is one means Windows has of protecting data in its
multitasking environment.

3.4.3 Managing Your Instances

Not only can you run more than one application at a time in Windows,
you can also run more than one copy of the same application at a time. To
distinguish one copy from another, Windows supplies a unique instance
handle each time it calls the WinMain function to start the application .
An instance is a separately executing copy of an application, and an
instance handle is an integer that uniquely identifies an instance.

In some multitasking systems, if you run multiple copies of the same appli
cation, the system loads a fresh copy of the application 's code and data
into memory and executes it . In Windows, when you start a new instance
of the application, only the data for the application is loaded. Windows
uses the same code for all instances of the application . This is a way to
save as much space as possible for other applications and for data. How
ever, this method requires that the code segments of your application
remain unchanged for the duration of the application . This means that
you must not store data in a code segment or change the code while the
program is running.

26

A Sample Application: Generic

For most Windows applications, the first instance has a special role . Since
many of the resources an application creates, such as window classes, are
generally available to all applications, only the first instance of an applica
tion creates these resources. All subsequent instances may use the resource
without creating them. To help you determine which is the first instance,
Windows sets the hPrevlnstance parameter of WinMain to NULL if there
are no previous instances. The following example shows how to check for a
previous instance:

int PASCAL WinMain (hinstance , hPrevinstance , lpCmdLine , nCmdShow)
HANDLE hinstance ;
HANDLE hPrevinstance ;
LPSTR lpCmdLine ;
int nCmdShow ;
{

i f (! hPrevinstance)

}

You can keep the user from starting more than one instance of an applica
tion by checking the hPrevlnstance parameter when the application starts
and returning to Windows immediately if the parameter is not NULL. The
following example shows how to do this:

if (hPrevinstance)
return (NULL) ;

3 .4.4 Registering the Window Class

Before you can create any window you must have a window class . A win
dow class is a template that defines the attributes of a window, such as
the shape of the window's cursor and the name of the window's menu .
Although Windows provides some predefined window classes, most appli
cations define their own window classes in order to control every aspect
of the way their windows operate .

You must register a window class before you can create a window that
belongs to that class. You register a window class by filling a
WNDCLASS structure with information about the class and passing it
as a parameter to the RegisterClass function . Following is a list of the
fields in the WNDCLASS structure :

Field Description

lpszClassName Points to the name of the window class. A
window class name must be unique; that is,
different applications must use different class
names.

27

Microsoft Windows Programmer's Learning Guide

hlnstance

lpfn WndProc

style

hbr Background

hCursor

hie on

lpszMenuName

cbClsExtra

clWndExtra

Specifies the application instance that is
registering the class .

Points to the window function used to carry
out work on the window.

Specifies the class styles, such as automatic
redrawing of the window when moved or
sized .

Specifies the brush used to paint the window
background.

Specifies the cursor used in the window.

Specifies the icon used to represent a mini
mized window.

Points to the resource name of a menu.

Specifies the number of extra bytes to allo
cate for this structure .

Specifies the number of extra bytes to allo
cate for all the structures created with this
class.

Some fields, such as lpszClassName, hlnstance, and lpfn WndProc,
must be assigned values. Other fields can be set to NULL to direct Win
dows to use a default attribute for windows created using the class. The
following example shows how to register a window class named "Generic" :

WNDCLASS WndClass ;
long FAR PASCAL GenericWndProc (HWND, unsigned, WORD, LONG) ;

int PASCAL WinMain (hinstance , hPrevinstance , lpCmdLine , nCmdShow)
HANDLE h!nstance ;
HANDLE hPrevinstance ;
LPSTR lpCmdLine ;
int nCmdShow;
{

28

if (! hPrevinstance) {

WndCl ass . lpszCl assName = (LPSTR) "Generic" ;
WndCl ass . hinstance = h!nstance ;
WndCl ass . lp fnWndProc = GenericWndProc ;
WndCl ass . style = NULL ;
WndClass . hbrBackground = GetStockObj ect (WHITE_BRUSH) ;
WndCl ass . hCursor = LoadCursor (NULL , IDC_ARROW) ;
WndClass . hicon = Loadicon (NULL , IDI_APPLICATION) ;
WndCl ass . lpszMenuName = (LPSTR) NULL ;
WndCl ass . cbClsExtra = NULL ;
WndCl ass . c lWndExtra = NULL ;

A Sample Application: Generic

}
}

i f (! RegisterCl ass (&WndCl ass))
return (NULL) ;

In this example, the class name is "Generic" . Notice that the name is cast
using the LPSTR data type . This is to ensure that the lpszClassName
field is assigned a 32-bit pointer to the string. The hlnstance field receives
the instance handle passed to the WinMain function . The lpfn WndProc
field receives a pointer to the window function, GenericWndProc . This
specifies that GenericWndProc will be the function that carries out tasks
for the window.

To assign the address of the GenericWndProc function to the
lpfn WndProc field, you must declare the function somewhere before the
assignment statement . Most Windows applications use function proto
types for function declaration in order to take advantage of the Microsoft
C Compiler's automatic type-checking and casting. The following is the
correct prototype for GenericWndProc :

long FAR PASCAL GenericWndProc (HWND, unsigned, WORD, LONG) ;

The hbrBackground field receives a handle to a built-in white brush .
The GetStockObject function returns handles to a variety of built-in
drawing objects, such as pens, brushes, and fonts. The hCursor field
receives a handle to a built-in cursor. The LoadCursor function returns
handles to built- in or application-defined cursors. In this case, the NULL
and IDC- ARROW arguments specify the built-in arrow cursor . The hlcon
field receives a handle to a built-in icon . The Loadlcon function returns
handles to built-in or application-defined icons. In this case, the NULL and
IDL APPLICATION arguments specify the built-in application icon .

The style, lpszMenuName, cbClsExtra, and cbWndExtra fields are
set to NULL. This means Windows will supply default attributes when a
window belonging to this class is created . Note that the LPSTR cast is
required for the lpszMenuName assignment .

Mter you assign values to the WNDCLASS structure fields, you register
the class by using the RegisterClass function . If registration is successful,
the function returns TRUE. Otherwise, it returns FALSE. You should
check the return value since if you cannot register a class, you cannot
create your windows. If the registration fails, you should terminate the
application .

Although the RegisterClass function requires a 32-bit pointer to a
WNDCLASS structure, in the previous example, the address operator
(&) generates only a 1 6-bit address . This is an example of an implicit
cast carried out by the C compiler. The Windows include file contains

29

Microsoft Windows Programmer's Learning Guide

prototypes for all Windows functions . These prototypes specify the correct
types for each function parameter, and the C compiler casts to these types
automatically . In a few cases, you may need to provide an explicit cast or
override a cast, but otherwise you can rely on the C compiler to cast
appropriately.

3.4.5 Creating a Window

You can create a window by using the CreateWindow function . This
function directs Windows to create a window that has the specified style
and belongs to the specified class. Create Window takes several parame
ters: the name of the window class, the window title, the window's style ,
the window position, the parent window handle, the menu handle, the
instance handle, and 32-bits of additional data. The following example
creates a window belonging to the "Generic" class:

hWnd = CreateWindow ("Generic" ,
"Generic Samp l e Appl ication" ,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
NULL ,
NULL ,
hinstance ,
NULL) ;

I* window c l ass *I
I* window name *I
I* window style *I
I* x position *I
I* y position *I
I* width *I
I* height *I
I* parent handle *I
I* menu or chi ld IO*I
I* instance *I
I* additional in fo *I

This example creates an overlapped window that has the style
WS_ OVERLAPPED WINDOW and that belongs to the Generic window
class . The window caption is "Generic Sample Application" .

Since the OW_ USEDEF AULT value is specified for the position, width,
and height parameters, Windows will place the window at a default posi
tion and give it a default width and height . The default position and
dimensions depend on the system and on how many other applications
have been started. Windows does not display the window until you call the
ShowWindow function .

When you create a window, you may specify its parent (used with controls
and child windows) and its menu . An overlapped window should not have
a parent, so this parameter should be set to NULL. An overlapped window
may have a menu , but in this case, NULL specifies that the class menu is
desired . If there is no class menu, then the window will have no menu .

You must specify the instance of the application that is creating the win
dow. Windows uses this instance to make sure that the window function
supporting the window uses the data for this instance and not some other.
The last parameter is for additional data to be used by the window func
t ion when the window is created . This window takes no additional data,
so the parameter is set to NULL.

30

A Sample Application: Generic

If Create Window successfully creates a window, it returns a handle to
the new window. You can use the handle to carry out tasks on the window,
such as showing it or updating its client area. If Create Window cannot
create the window, it returns NULL. Whenever you create a window, you
should check for a NULL handle and respond appropriately. For example,
in the WinMain function, if you cannot create your application 's main
window, you should terminate the application; that is, return control to
Windows.

3.4.6 Showing and Updating a Window

Although Create Window creates a window, it does not automatically
display the window on the system display. Instead, it is up to you to
display the window by using the ShowWindow function and to update
the window's client area by using the Update Window function .

The ShowWindow function directs Windows to display the new window,
which has the handle h Wnd. For the application 's main window, Win
Main should call ShowWindow soon after creating the window, and
should pass the nCmdShow parameter to it. The nCmdShow parameter
defines how the window is displayed: as an open window or as an icon .
After calling ShowWindow, WinMain should call the UpdateWindow
function . The following example illustrates how to show and update a
window:

ShowWindow (hWhd, nCmdShow) ;
UpdateWindow (hWnd) ;

I* Shows the window *I
I* Sends WM_PAINT message*/

3.4. 7 Creating the Message Loop

Once the WinMain function has created and displayed a window, it can
begin its primary duty: to read messages from the application queue and
dispatch them to the appropriate window. WinMain does this by creating
a message loop. A "message loop" is a program loop, typically created by
using a while statement , in which WinMain retrieves messages and
dispatches them.

Windows does not send input directly to an application . Instead , it places
all mouse and keyboard input into an application queue (along with mes
sages posted by Windows and other applications) . The application must
read the application queue, retrieve the messages, and dispatch them so
the appropriate window function can process them. The simplest possible
message loop consists of the GetMessage and DispatchMessage func
tions. This loop has the following form:

31

Microsoft Windows Programmer's Learning Guide

MSG msg ;

whi le (GetMessage (&msg, NULL , NULL , NULL)) {
DispatchMessage (&msg) ;

}

In this example, the GetMessage function retrieves a message from the
application queue and copies it into the structure, msg. The NULL argu
ments indicate that all messages should be processed. The Dispatch
Message function directs Windows to send each message to the appropri
ate window function . Every message an application receives, except the
W1vL QUIT message , belongs to one of the windows created by the appli
cation . Since an application must not call a window function directly, the
DispatchMessage function is required to make sure the messages get to
the appropriate function .

Depending on what the application does, you may need a more compli
cated message loop . In particular, if you wish to process character input
from the keyboard, you need to translate each message you receive by
using the TranslateMessage function . Your message loop should then
look like this:

whi le (GetMessage (&msg , NULL , NULL , NULL)) {
Trans lateMessage (&msg) ;
DispatchMessage (&msg) ;

}

The TranslateMessage function looks for matching \VM._ KEYDOWN
and W1vL KEYUP messages and generates a corresponding W1vL CHAR
message for the window that contains the ANSI character code for the
given key.

A message loop may also contain functions to process menu accelerators
and keystrokes within dialog boxes. Again, this depends on what your
application actually does.

Windows places input messages in an application queue when the user
moves the mouse cursor {pointer) in the window, or presses or releases a
mouse button when the mouse cursor is in the window, or presses or
releases a keyboard key when the window has the input focus. The window
manager first collects all keyboard and mouse input in a system queue,
then copies the corresponding messages to the appropriate application
queue.

The message loop continues unti l GetMessage returns NULL, which it
does only if it retrieves the \VM._ QUIT message, which is a signal to ter
minate the application . It is usually posted {placed in the application
queue) by the window function of the application's main window.

32

A Sample Application: Generic

3.4.8 Yielding Control

Windows is a non-preemptive multitasking system. This means that Win
dows cannot take control from an application . The application must yield
control before Windows can reassign control to another application .

To make sure that all applicat ions have equal access to the CPU, the
GetMessage function automatically yields control when there are no mes
sages in an application queue . This means that if there is no work for the
application to do, Windows can give control to another application . Since
all applications have a message loop, this implicit yielding of control
guarantees sharing of control .

In general, you should rely on the GetMessage function to yield for your
application . Although an explicit Yield function is available, you should
avoid using it. Since there may be times when your application must keep
control for a long time, such as when writing a large buffer to a disk file,
you should try to minimize the work and provide a visual clue to the user
that a lengthy operation is underway.

3.4.9 Terminating an Application

Your application terminates when the WinMain function returns control
to Windows. You can return control at any t ime before starting the mes
sage loop. Typically, an application checks each step leading up to the
message loop to make sure each window class is registered and each win
dow is created . If there is an error, the application can display a message
before terminating.

Once the WinMain function enters the message loop, however, the only
way to terminate the loop is to have the application 's main window func
tion post a � QUIT message in the application queue by using the
PostQuitMessage function . When the GetMessage function retrieves a
\VM_ QUIT message , it returns NULL, which terminates the message loop.
By convention, only the window function for the application 's main win
dow ever posts a � QUIT message and then only when the the main
window is being destroyed (that is, when the window function has received
a W1L DESTROY message) .
Although WinMain specifies a return-value type, Windows does not
currently use the return value. While you are debugging an application,
however, a return value can be helpful . In general, you may use the same
return-code conventions that standard C programs use : zero for successful
execution, nonzero for error. The PostQuitMessage function lets the
window function specify the return value . This value is then copied to the
wParam field of the \VM_ QUIT message . To return this value after ter
minating the message loop, use the following statement :

return (msg . wParam) ; I* Returns the va lue from PostQuitMessage *I

33

Microsoft Windows Programmer's Learning Guide

Although standard C programs typically clean up and free resources just
prior to termination, Windows applications must be prepared to clean up
as each window is destroyed . If you do not clean up as each window is
destroyed , you may lose some data. For example, when Windows itself ter
minates, it destroys each window but does not return control to the
application 's message loop. This means that the loop never retrieves the
\VM_ QUIT message and the statements after the loop are not executed.
(Windows does send each application a message before terminating, so an
application does have an opportunity to carry out tasks before terminat
ing. See Chapter 11 , "File Input and Output," for an illustration of the
WM_ QUERYENDSESSION message .)

3.4.10 The Initialization Function

Most applications use an initialization function to register their window
classes and carry out work for initializing the instance . An initialization
function is one means of keeping the WinMain function simple and read
able , but it is also a means of organizing the initialization tasks so that
they may be placed in a separate code segment and discarded after use .
The Generic application does not discard its initialization function, but a
sample application described later in this guide will.

The following example shows how to create an initialization function . To
show how to use Windows memory-management functions, this example,
rather than declaring a global structure, allocates temporary storage for
the WNDCLASS structure .

BOOL Genericinit (hinstance)
HANDLE h!nstance ; I* current instance *I
{

}

34

HANDLE hMemory ;
PWNDCLASS pWndCl ass ;
BOOL bSuccess ;

I* handle to a l located memory *I
I* structure pointer *I
I* RegisterClass () result *I

hMemory = Loca lAl loc (LPTR , sizeo f (WNDCLASS)) ;
pWndClass = (PWNDCLASS) LocalLock (hMemory) ;

pWndClass->style = NULL ;
pWndClass - > lp fnWndProc = GenericWndProc ;
pWndCl ass- >hinstance = h!nstance ;
pWndClass->hicon = Load!con (NULL , IDI_APPLI CATION) ;
pWndClass- >hCursor = LoadCursor (NULL , IDC_ARROW) ;
pWndCl ass->hbrBackground = GetStockObj ect (WHITE_BRUSH) ;
pWndClass- > lpszMenuName = (LPSTR) NULL ;
pWndClass-> lpszClassName = (LPSTR) "Generic" ;

bSuccess = RegisterClass (pWndCl ass) ;

LocalUnlock (hMemory) ;
Loca lFree (hMemory) ;

I* Unlocks the memory *I
I* Returns it to Windows *I

return (bSuccess) ; I* Returns result o f registering the window *I

A Sample Application: Generic

3.4.11 Using Temporary Storage

Since the RegisterClass function copies your window-class information to
an internal table, you do not need to preserve the window-class informa
tion after the class has been registered . This means you can allocate tem
porary storage for the class structure, register the class, then free the
storage .

In Windows, you can allocate temporary storage by using the LocaWloc
function . The LocaWloc function returns a handle (not a pointer) to the
temporary storage . This is unlike the C run-time malloc function, which
returns a pointer. Windows always identifies an allocated memory block
with a handle. To use the memory, you must lock the memory block by
using the LocalLock function . LocalLock returns a pointer to the
memory block, and you may use this pointer just as you would the pointer
returned by malloc .

Mter you have used a memory block, you must unlock it by using the
LocalUnlock function . You should unlock it even if you plan to use it
again . In general , lock a memory block just before using it and unlock it
immediately after using it . You must unlock the memory block before free
ing it with the LocalFree function .

3.4.12 The Application Command Line

You can examine the command line used to start your application by using
the lpCmdLine parameter. The lpCmdLine parameter points to the start
of a character array that contains the command exactly as it was typed by
the user. Unlike C programs, the command line is not automatically
separated into individual fields. If you wish to extract filenames or options
from the command line, you need to provide the appropriate statements.

3.5 The Window Function

Every window must have a window function . The window function pro
vides a response to input and window-management messages received from
Windows. The window function can be a short function , processing only a
message or two, or it may be complex, processing many types of messages
for a variety of application windows.

A window function has the following form:

long FAR PASCAL GenericWndProc (hWnd, message , wParam, lParam)
HWND hWnd; I* window handle */
unsigned message ; I* type o f message *I
WORD wParam ; I* additional in formation *I

35

Microsoft Windows Programmer's Learning Guide

LONG lParam; I* additional in formation *I
{

switch (message) {

de fault :
return (De fWindowProc (hWnd, message , wParam, lParam)) ;
}
return (NULL) ;

}

The window function uses the PAS CAL calling convention . Since
Windows calls this function directly and always uses this convention,
PAS CAL is required . The window function also uses the FAR keyword
in its definition since Windows uses a 32-bit address whenever it calls a
function . Also, you must name the window function in an EXPORTS
statement in the application 's module-definition file.

The window function receives messages from Windows. These may be
input messages that have been dispatched by the WinMain function or
window-management messages that come directly from Windows. The
window function must examine each message and either carry out some
specific action based on the message or pass the message back to Windows
for default processing through the DefWindowProc function .

The parameter, message, defines the message type. This parameter is used
in a switch statement to direct processing to the correct case . The lParam
and wParam parameters contain additional information about the mes
sage . The window function typically uses these parameters to carry out
the requested action . If a window function doesn 't process a message , it
must pass it to the DefWindowProc function . This ensures that any spe
cial actions that affect the window, the application, or Windows itself can
be carried out .

Most window functions process the WM_ DESTROY message . Windows
sends this message to the window function immediately after destroying
the window. The message gives the window function the opportunity to
finish its processing and, if it is the window function for the application 's
main window, to post a WM_ QUIT message in the application queue. The
following example shows how the main window function should process
this message :

case WM_DESTROY :
PostQuitMessage (NULL) ;
break ;

The PostQuitMessage function places a W1L QUIT message in the
application 's queue. When the GetMessage function retrieves this mes
sage , it will terminate the message loop and the application .

36

A Sample Application: Generic

A window function receives messages from two sources : input messages
from the message loop and window-management messages from Windows.
Input messages correspond to mouse , keyboard , and , sometimes, timer
input . Typical input messages are WM_ KEYDOWN, WM_ KEYUP,
\VM_ MOUSEMOVE, and \VM_ TIMER, all of which correspond directly
to hardware input .

Windows sends window-management messages directly to a window func
tion without going through the application queue or message loop . These
window messages are typically requests for the window function to carry
out some action, such as painting its client area or supplying information
about the window. The messages may also inform the window function of
changes that Windows has made to the window. Some typical window
management messages are WM_ CREATE, WM_ DESTROY, and
WM_ PAINT.

The window function should return a long value . The actual value to be
returned depends on the message received . For example, the correct return
value for WM_ DESTROY is NULL. If the window function doesn ' t pro
cess a message , it should return the DefWindowProc function's return
value .

3.6 Creating an About Dialog Box

The Mz'crosoft Wz'ndows Applz'catz'on Style Guide recommends that you
include an About dialog box with every application . A dialog box is a tem
porary window that displays information or prompts for user input . The
About dialog box displays the application name and copyright informa
tion . The user directs the application to display the About dialog box by
choosing the About command from a menu. This menu is either the first
menu in your application , or if there is no other menu in the application ,
the system menu.

You create and display a dialog box by using the DialogBox function .
This function takes a dialog-box template, a procedure-instance address ,
and a handle to a parent window, and creates a dialog box through which
you can display output and prompt for user input .

To display and use a dialog box, you need to carry out these steps:

1 . Create a dialog-box template and add it to your resource script file.

2. Create a dialog function and add it to your C-language source file .

3. Export your dialog function in your module-definition file .

4 . Append an About command to your system menu and process the
\VM_ SYSCOMMAND message .

37

/
Microsoft Windows Programmer's Learning Guide

Once you have completed these steps, the user can choose the About com
mand from the system menu to display the dialog box. The following sec
t ions explain the steps necessary to create an About dialog box.

3.6.1 Creating a Dialog-Box Template

A dialog-box template is a textual description of the dialog style, contents,
shape, and size . You can create a template by hand or by using the Win
dows 2 .0 Dialog Editor. In this example, the template is created by hand.

You create a dialog-box template by creating a resource script file . A
resource script file contains definitions of resources to be used by the appli
cation, such as icons, cursors, and dialog-box templates. To create an
About dialog-box template, you use a DIALOG statement and fill it with
control statements, as shown in the following example :

AboutBox DIALOG 2 2 , 17 , 144, 75
STYLE WSYOPUP I WS_DLGFRAME
BEGIN

END

CTEXT "Microso ft Windows"
CTEXT "Generic Appl ication"
CTEXT "Version 1 . 0"
DEFPUSHBUTTON "OK"

- 1 , 0, 5 , 144, 8
- 1 , 0 , 14, 144, 8
- 1 , 0 , 34, 144, 8

IDOK, 53 , 59 , 32 , 14, WS_GROUP

The DIALOG statement starts the dialog-box template . The name,
AboutBox, identifies the template when the DialogBox function is used to
create the dialog box. The box 's upper- left corner is placed at the point
(22 , 1 7) in the parent window's client area. The box is 144 units wide by 75
units high . Dialog-box width units are one quarter the width of the
system-font characters. Dialog-box height units are one eighth the height
of the system-font characters .

The STYLE statement defines the dialog-box style . This particular style
is a pop-up window with a framed border, which is the typical style used
for modal dialog boxes. The BEGIN and END statements mark the
beginning and end of the control definitions. The dialog box contains text
and a default push button . The push button lets the user send input to the
dialog function to terminate the dialog box.

The statements, strings, and integers contained between the BEGIN and
END statements describe the contents of the dialog box. You don 't need
to know the specifics of the numerical data since you would normally
create this description by using Dialog Editor. CTEXT creates a rectan
gle with the quoted text centered in a rectangle . This statement appears
several times for the various text that appears in the dialog box. DEF
PUSHBUTTON creates a push button that allows the user to give a
default response; in this case, to choose the "OK" button, causing the dia
log box to disappear .

38

A Sample Application: Generic

The statements in this file were created with a text editor, and were based
on a dialog box used in another application . Many such resources can be
copied from other applications and easily modified by using an editor. Dia
log boxes can also be created from scratch by using Dialog Editor . The
files created by Dialog Editor contain statements that are somewhat
different from the statements shown here , and such files usually are edited
only by using Dialog Editor. For more information about using Dialog Edi
tor to create dialog boxes, see Microsoft Windows Programming Tools.

The WS_ POPUP, WS- DLGFRAME, IDOK, and WS_ GROUP constants
used in the dialog-box template are defined in the Windows include file .
You should include this file in the resource script file by using the include
statement at the beginning of the file .

3.6.2 Creating an Include File

It is often useful to create an include file in which to define constants and
function prototypes for your application . Most applications consist of at
least two source files that share common constants: the C-language source
file and the resource script file . Since the resource compiler, rc , carries out
the same preprocessing as the C compiler, it is useful and convenient to
place constant definitions in a single include file and then include that file
in both the C-language source file and the resource script file .

For example, for the Generic application, you can place the function pro
totypes for the WinMain, GenericWndProc , About, and Genericlnit func
t ions, and the definition of the menu ID for the About command, in the
include file, generic.h. The file should look like this :

#de fine ID_ABOUT 100

int PASCAL WinMain (HANDLE , HANDLE , LPSTR, int) ;
BOOL Genericinit (HANDLE) ;
long FAR PASCAL GenericWndProc (HWND, unsigned, WORD , LONG) ;
BOOL FAR PASCAL About (HWND, unsigned, WORD, LONG) ;

Since this include file includes Windows data types, you must include it
after including the Windows include file. In other words, the beginning of
your source files should look like this:

#include "windows . h"
#include " generic . h"

I* required for a l l Windows appl ications *I
I* speci fic to this program *I

39

Microsoft Windows Programmer's Learning Guide

3.6.3 Creating a Dialog Function

The dialog function creates the About dialog box . The function that
processes input for the dialog box is called About . The About function,
like other dialog functions, uses the same parameters as a window func
tion, but processes only messages that are specific to the dialog box.
(About returns TRUE if it processes a message, and FALSE if it does not .)
Unlike window functions, About usually processes only user- input mes
sages, such as "W1L COMMAND, and does not have to send unprocessed
messages to the DefWindowProc function . The About function looks
like this :

BOOL F AR PASCAL About (hDlg, message , wParam, lParam)
HWND hDlg;
unsigned message ;
WORD wParam;
LONG lParam;
{

}

switch (message) {

}

case WM_INI TDIALOG : I* message : initia l ize dialog box *I
return (TRUE) ;

case WM_COMMAND : I* message : received a command *I
i f (wParam == IDOK) {

EndDialog (hDlg , NULL) ;
return (TRUE) ;

}
break ;

I* "OK" box selected? *I
I* Exits the dia log box *I

return (FALSE) ; I* Didn ' t process a message *I

The dialog function, like the window function, uses the PASCAL calling
convention . Since Windows calls this function directly and always uses
this convention, PAS CAL is required . The dialog function also uses the
FAR keyword in its definition since Windows uses a 32-bit address when
ever it calls a function . Also, you must name the dialog function in an
EXPORTS statement in the application 's module-definition file . As with
a window function , you must not call a dialog function directly from your
application .

The About function processes two messages: "W1L COMMAND and
"W1L INITDIALOG. The "W1L INITDIALOG message is sent to a dialog
function by Windows to let the function prepare before displaying the
dialog box. In this case, "W1L INITDIALOG returns TRUE so that the
"focus" will be passed to the first control in the dialog box that has
the WS_ TABSTOP bit set (this will be the default push button) . If
"W1L INITDIALOG had returned FALSE, the focus would not have been
set to any control in the dialog box. In contrast to WM..- INITDIALOG
messages, Wi\L COMMAND messages are a result of user input . About
responds to input to the "OK" button by calling the EndDialog function,

40

A Sample Application: Generic

which directs Windows to remove the dialog box and continue execution of
the application . The EndDialog function is used to terminate dialog
boxes .

3.6.4 Appending About to the System Menu

Now that you have an About dialog box, you need some way to let the
user tell you when to display it . In a simple application, like Generic, you
can append an About command to the end of the system menu. To do this
you must use the GetSystemMenu and ChangeMenu functions.

A convenient place to make this change is in the window function in
response to the \VM_ CREATE message . Just as you can carry out work
immediately after your window has been destroyed, you can also carry out
work just as your window is created . Windows sends the WN.L CREATE
message to your window function immediately after creating the window
and before the Create Window function returns control to your Win
Main function .

The following example shows how to change the system menu for a win
dow:

case WM_CREATE : I* message : window being created *I

hMenu = GetSystemMenu (hWnd, FALSE) ;

ChangeMenu (hMenu ,
NULL ,
NULL ,
NULL ,
MF_APPEND I MF_SEPARATOR) ;

ChangeMenu (hMenu ,
NULL ,
"A&bout Generic . . . " ,
ID_ABOUT ,
MF_APPEND I MF_STRING) ;

break ;

I* menu handle *I
I* menu item to change *I
I* new menu item *I
I* menu identi fier *I
I* type o f change *I

I* menu handle *I
I* menu item to change *I
I* new menu item *I
I* menu identi fier *I
I* type of change *I

The GetSystemMenu function retrieves the handle of the system menu
for the given window. Each window has a private copy of the system menu
that it can modify if necessary. The FALSE parameter ensures that the
function will retrieve the current system menu, not a fresh copy.

The first ChangeMenu function appends a separator (a horizontal bar) to
the end of the system menu . The second ChangeMenu function appends
the command name "About Generic . . . " immediately after the separator.
The first argument in each call specifies the menu to be changed . The last
argument specifies the type of change . The other arguments specify addi
tional information , such as the name of the command or the menu identi
fier (menu ID) .

41

Microsoft Windows Programmer's Learning Guide

Notice the ampersand (&) in the "A&bout Generic . . . " string. This charac
ter immediately precedes the command mnemonic. A mnemonic is a
unique letter or digit with which the user can access a menu or command.
It is part of Windows' direct-access method-if a user presses the key for
the mnemonic, Windows automatically selects the menu or chooses the
command. In the case of "A&bout Generic . . . " , Windows removes the
ampersand and places an underscore under the letter "b" when displaying
the menu .

Once the changes are made, the user will see the separator and the About
command the next time he or she selects the system menu . If the user
chooses the About command, Windows sends the window function a
\VM_ SYSCOM11AND message containing the About command 's menu ID;
in this case, ID_ ABOUT.

3.6.5 Processing the "WM_ SYSCOMMAND Message

Now that you 've added a command to the system menu, you need to pro
cess the \VM_ SYSCO:N.Th-1A.ND message . Windows sends this message to
the window function when the user chooses a command from the system
menu. Windows passes the menu ID identifying the command in the
wParam parameter, so you can check to see which command was chosen.
You can check the parameter by using a switch statement. In this case,
you want to display the dialog box if the parameter is equal to
ID_ ABOUT, the About command's menu ID. For any other value, you
must pass the message on to the DefWindowProc function . If you do
not, you effectively disable all other commands the system menu .

The \VM_ SYSCOM11AND case should look like this :

FARPROC lpProcAbout ;

42

case WM_SYSCOMMAND : I* message : command from system menu *I
i f (wParam == ID_ABOUT) {

}

lpProcAbout = MakeProcinstance (About , hinst) ;

Dia logBox (hinst ,
"AboutBox" ,
hWnd,
lpProcAbout) ;

I* current instance *I
I* resource to use *I
I* parent handle *I
I* About () instance address *I

FreeProcinstance (lpProcAbout) ;
break ;

else I* Lets Windows process it *I
return (De fWindowProc (hWnd, message ,

wParam, lParam)) ;

A Sample Application: Generic

To display the dialog box, you need the procedure-instance address of the
dialog function . You create the procedure- instance address by using the
MakeProclnstance function . This function binds the data segment of
the current application instance to a function pointer. This guarantees
that when Windows calls the dialog function , the dialog function will use
the data in the current instance and not some other instance of the appli
cation . MakeProclnstance returns the address of the procedure instance.
This value should be assigned to a pointer variable that has the
FARPROC type .

The D ialogBox function creates the dialog box. It requires the current
application 's instance handle and the name of the dialog-box template . It
uses this information to load the dialog-box template from the executable
file. DialogBox also requires the handle of the parent window (the win
dow to which the dialog box belongs) and the procedure- instance address .

The DialogBox function creates and displays the dialog box. The func
tion does not return control until the user has closed the dialog box . Typi
cally, the dialog box contains at least a push-button control to permit the
user to close the box.

When the DialogBox function returns, the procedure- instance address of
the dialog function is no longer needed , so the FreeProclnstance func
tion frees the address . This invalidates the content of the pointer variable,
making it an error to attempt to use the value again.

3 . 7 Creating a Module-Definition File

Every Windows application needs a module-definition file . This file defines
the name, segments, memory requirements, and exported functions of the
application . For a simple application , like Generic, you need at least the
NAME, STACKSIZE, HEAPSIZE, and EXPORTS statements. How
ever, most applications include a complete definition of the module, as
shown in the following example :

; module-de finition fi le for Generic - - used by l ink4 . exe

NAME Generic app l ication ' s module name

DESCRIPTION ' Samp le Microso ft Windows App lication '

STUB ' WINSTUB . EXE ' Generates error message if app lication
is run without Windows

CODE MOVEABLE code can be moved in memory

; DATA must be MULTIPLE i f program can be invoked more than once

DATA MOVEABLE MULTIPLE

43

Microsoft Windows Programmer's Learning Guide

HEAPSI ZE 1024
STACKSI ZE 4096 ; recommended minimum for Windows appl ications

; Al l functions that wil l be cal led by any Windows routine
; MUST be exported .

EXPORTS
GenericWndProc @1
About @2

Note

name of window-processing function
name o f About processing function

The semicolon is the delimiter for comments in the module-definition
file; thus, all text following the semicolon is a programming comment .

The NAME statement defines the name of the application . This name is
used by Windows to identify the application . The NAME statement is
required .

The DESCRIPTION statement is an optional statement that places the
message "Sample Microsoft Windows Application" in the application's
executable file . This statement is typically used to add version control or
copyright information to the file .

The STUB statement specifies another optional file that defines the Win
dows executable stub to be placed at the beginning of the file. This execut
able stub displays a warning message and terminates the application if the
user attempts to run it without Windows.

The CODE statement defines the memory requirements of the appli
cation 's code segment . The code segment contains the executable code
that is generated when the generic. c file is compiled . Generic is a small
model application with only one code segment, which is defined as
MOVEABLE. If the application is not running and Windows needs addi
tional space in memory, Windows can move the code segment to make
room for other segments.

The DATA statement defines the memory requirements of the applica
tion 's data segment . The data segment contains storage space for all the
static variables declared in the generic. c file. It also contains space for the
program stack and local heap. The data segment, like the code segment,
is MOVEABLE. The MULTIPLE keyword directs Windows to create
a new data segment for the application each time the user starts a new
instance of the application . Although all instances share the same code
segment, each has its own data segment . Applications must have the
MULTIPLE keyword .

44

A Sample Application: Generic

The HEAPSIZE statement defines the size, in bytes, of the application 's
local heap . Generic uses its heap to allocate the temporary structure used
to register the window class, so it specifies 1024 bytes of storage . Applica
tions that use the local heap frequently should specify larger amounts of
memory.

The STACKSIZE statement defines the size , in bytes, of the applica
t ion 's stack . The stack is used for temporary storage of function argu
ments. Any application , like Generic, that calls its own local function
must have a stack . Generic specifies 4096 bytes of stack storage , the
recommended minimum for a Windows application .

The EXPORTS statement defines the names and ordinal values of the
functions to be exported by the application . Generic exports its window
function , GenericWndProc, which has ordinal value 1 (this is an identifier;
it could be any integer, but usually such values are assigned sequentially
as the exports are listed) . Windows requires that all functions, except
WinMain, that are to be called by Windows must be exported in this
way. These functions are referred to as "callback" functions . All window
functions, whether for parent or child application windows, or for dialog
boxes, are callback functions .

3.8 Putting Generic Together

At this point you are ready to put the sample application, Generic,
together. You need to do the following:

1 . Create the C-language source file.

2. Create the resource script file .

3 . Create the module-definition file.

4. Create the make file .

5 . Run the make file to compile and link the application .

The following sections describe each step .

45

Microsoft Windows Programmer's Learning Guide

3.8.1 Create the C-Language Source File

The C-language source file must contain the WinMain function , the
GenericWndProc window function, the About dialog function, and the
Genericlnit initialization function . Name the file generz'c. c and make sure it
looks like this:

#inc lude "windows . h"
#inc lude " generic . h"

I* required for a l l Windows app l ications */
I* speci fic to this program */

HANDLE hlnst ; I* current instance */

int PASCAL WinMain (hinstance ,
HANDLE h!nstance ;

hPrevinstance , lpCmdLine , nCmdShow)
I* current instance •/

HANDLE hPrevinstance ; I* previous instance */
LPSTR lpCmdLine ; I* command l ine */
int nCmdShow ; I* show-window type (open/icon) */
{

}

HWND hWnd;
MSG msg ;

I* window handl e */
I* message *I

i f (! hPrevinstance) /* Has app l ication been initial ized? */
i f (! Genericinit (hinstance))

return (NULL) ; /* Exits i f unab le to initial ize */

h!nst = h!nstance ; I* Saves the current instance *I

hWnd = CreateWindow ("Generic" ,
"Generic Samp l e App l ication" ,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT ,

I*
I*
I*
I*

window c l ass *I
window name *I
window sty l e *I
x position *I

CW_USEDEFAULT , I * y position *I
CW_USEDEFAULT , I* width *I
CW_USEDEFAULT , I * height *I
NULL , I* parent handle *I
NULL , I* menu or chi ld ID *I
h!nstance , I* instance *I
NULL) ; I* additiona l in fo *I

if (! hWnd) I* Was the window created? *I
return (NULL) ;

ShowWindow (hWnd, nCmdShow) ;
UpdateWindow (hWnd) ;

I*
I*

Shows
Sends

the window *I
WM_PAINT message *I

whi l e (GetMessage (&msg, I* message structure */

}

NULL , I*
NULL ,
NULL))

handle o f window receiving the message */
I* l owest message to examine */
f* highest message to examine */

{
Trans l ateMessage (&msg) ;
DispatchMessage (&msg) ;

I* Trans l ates virtua l key codes *I
I* Dispatches message to window *I

return (msg . wParam) ; I* Returns the va lue from PostQuitMessage */

BOOL Generic init (hinstance)
HANDLE h!nstance ; I* current instance *I

46

{

}

HANDLE hMemory ;
PWNDCLASS pWndCl ass ;
BOOL bSuccess ;

A Sample Application: Generic

I* handl e to a l located memory *I
I* structure pointer *I
I* RegisterC l ass () resu lt *I

hMemory = Loca lAl loc (LPTR , sizeo f (WNDCLASS)) ;
pWndCl ass = (PWNDCLASS) Loca lLock (hMemory) ;

pWndC l ass->styl e = NULL ;
pWndC l ass - > lp fnWndProc = GenericWndProc ;
pWndCl ass- >hinstance = hinstance ;
pWndCl ass- >hi con = Load! con (NULL , IDI_APPLI CATION) ;
pWndCl ass- >hCursor = LoadCursor (NULL , IDC_ARROW) ;
pWndCl ass- >hbrBackground = GetStockObj ect (WHI TE_BRUSH) ;
pWndC l ass- > lpszMenuName = (LPSTR) NULL ;
pWndC l ass- > lpszCl assName = (LPSTR) "Generic" ;

bSuccess = RegisterCl ass (pWndCl ass) ;

LocalUnlock (hMemory) ;
Loca lFree (hMemory) ;

I* Un locks the memory *I
I* Returns it to Windows *I

return (bSuccess) ; I* Returns result o f registering the window *I

BOOL Genericinit (hinstance)
HANDLE hinstance ; I* current instance *I
{

HANDLE hMemory ;
PWNDCLASS pWndCl ass ;
BOOL bSuccess ;

I* handl e to a l located memory *I
I* structure pointer *I
I* RegisterCl ass () result *I

hMemory = Loca lAl loc (LPTR , sizeo f (WNDCLASS)) ;
pWndCl ass = (PWNDCLASS) LocalLock (hMemory) ;

pWndCl ass ->style = NULL ;
pWndC l ass - > lp fnWndProc = GenericWndProc ;
pWndCl ass- >hinstance = h!nstance ;
pWndC l ass- >hi con = Load! con (NULL , IDI_APPLICATI ON) ;
pWndCl ass- >hCursor = LoadCursor (NULL , IDC_ARROW) ;
pWndCl ass- >hbrBackground = GetStockObj ect (WHI TE_BRUSH) ;
pWndC l ass- > lpszMenuName = (LPSTR) NULL ;
pWndCl ass- > lpszCl assName = (LPSTR) "Generic" ;

bSuccess = RegisterCl ass (pWndCl ass) ;

long FAR PASCAL GenericWndProc (hWnd, message , wParam, lParam)
HWND hWnd; I* window handle *I
unsigned message ; I* type o f message *I
WORD wParam; I* additiona l in formation *I
LONG lParam; I* additiona l in formation *I
{

FARPROC lpProcAbout ;
HMENU hMenu ;

I* pointer to the About function *I
I* handl e to the System menu *I

switch (message) {
case WM_SYSCOMMAND : /* message : command from system menu */

i f (wParam == ID_ABOUT) {
lpProcAbout = MakeProcinstance (About , hinst) ;

47

Microsoft Windows Programmer's Learning Guide

}

}

Dia l ogBox (hinst ,
"AboutBox" ,
hWnd ,
lpProcAbout) ;

I* current instance *I
I* resource to use *I
I* parent handle *I
I* About () instance address *I

FreeProcinstance (lpProcAbout) ;
break;

}

e lse I* Lets Windows process it *I
return (De fWindowProc (hWnd, message ,

wParam, lParam)) ;

case WM_CREATE : I* message : window being created *I

hMenu = GetSystemMenu (hWnd, FALSE) ;

ChangeMenu (hMenu , I* menu handle *I
NULL , I* menu item to change *I
NULL , I* new menu item *I
NULL , I* menu identi fier *I
MF_APPEND I MF_SEPARATOR) ; I* type o f change *I

ChangeMenu (hMenu , I* menu handl e *I
NULL , I* menu item to change *I
"A&bout Generic . . . " , I* new menu item *I
ID_ABOUT , I* menu identi fier *I
MF_APPEND MF _STRING) ; I* type o f change *I

break ;

case WM_DESTROY : I* message : window being destroyed *I
PostQuitMessage (O) ;
break ;

de fault : I* Passes it on i f unprocessed *I
return (De fWindowProc (hWnd, message , wParam, lParam)) ;

return (NULL) ;

3.8.2 Create the Resource Script File

The resource script file must contain the dialog-box template for the
About dialog box. Name the file generic. rc and make sure it looks like this:

#inc lude "windows . h"
#inc lude " generic . h"

AboutBox DIALOG 22 , 17 , 144 , 75
STYLE WS_POPUP i WS_DLGFRAME
BEGIN

END

48

CTEXT "Microso ft Windows"
CTEXT "Generic App l ication"
CTEXT "Version 1 . 0"
DEFPUSHBUTTON "OK"

- 1 , 0, 5, 144 ,
- 1 , 0 , 14, 144 ,
-1 , 0 , 3 4 , 144 ,

IDOK , 5 3 , 5 9 , 32 ,

8
8
8

14, WS_GROUP

A Sample Application: Generic

3.8.3 Create the Module-Definition File

The module-definition file must contain the module definitions for Generic .
Name the file generic. de/ and make sure it looks like this :

; module-de finition fi l e for Generic - - used by l ink4 . exe

NAME Generic appl ication ' s module name

DESCRIPTION ' Samp l e Microso ft Windows App l ication '

STUB ' WINSTUB . EXE '

CODE MOVEABLE

Generates error message i f app l ication
is run without Windows

code can be moved in memory

; DATA must be MULTIPLE i f program can be invoked more than once

DATA MOVEABLE MULTIPLE

HEAPSI ZE 1024
STACKSI ZE 4096 ; recommended minimum for Windows app l ications

; Al l functions that wi l l be cal led by any Windows routine
; MUST be exported .

EXPORTS
GenericWndProc @1
About @2

name o f window-processing function
name o f About processing function

3.8.4 Create a Make File

Once you have the source files, you can create Generic 's make file, then
compile and link the application by using the make program. To compile
and link Generic, the make file must follow these steps:

• Use the Microsoft C compiler, cl, to compile the generic. c file .

• Use the Windows linker, link4, to link the generic. obj object file
with the Windows library and the module-definition file ,
generic. def

• Use the resource compiler , rc , to create a binary resource file and
add it to the executable file of the Windows application .

The following will properly compile and link the files created for Generic :

Update the resource i f necessary

generic . res : generic . rc generic . h
rc -r generic . rc

Update the obj ect fi l e i f necessary

49

Microsoft Windows Programmer's Learning Guide

generic . obj : generic . c generic . h
c l -c -Gsw -Zp generic . c

Update the executabl e fi le i f necessary , and i f so , add the resource back in .
The /NOE must be inc luded when l inking with Windows l ibraries .

generic . exe : generic . obj generic . de f
l ink4 generic , , , s l ibwfNOE , generic . de f
r c generic . res

I f the . res file is new and the . exe fi l e is not , update the resource .
Note that the . rc fi l e can be updated without having to either
comp i l e or l ink the file .

generic . exe : generic . res
rc generic . res

The first two lines direct make to create a compiled resource file,
generic. res, if the resource script file, generic. rc, or the new include file,
generic .h , has been updated. The -r option of the rc command creates a
compiled resource file without attempting to add it to an executable file .

The next two lines direct make to create the generic. obj file if generic. c or
generic .h has a more recent access date than the current generic. obj file.
The cl command takes several command-line options that prepare the
application for execution under Windows. The minimum required options
are -c , -Gw, -Zp. In this case, cl "assumes" that Generic is a small
model application . Generic and all other applications in the Microsoft
Windows Programmer 's L earning Guide are small-model applications.

The make program then creates the generic. exe file if any one of the
generic. obj, generic. deJ, or generic. res files has a more recent access date
than the current generic. exe file . Small Windows applications, like Generic,
must be linked with the Windows slibw. lib library . The link4 program will
also link with the C run-time libraries, slibc. lib and libh . lib, by default . The
object file, generic. obj, and the module-definition file, generic. deJ, are used
as arguments in the link4 command line .

The last r c command automatically appends the compiled resources in the
generic. res file to the executable file, generic. exe.

3. 9 Using Generic as a Template

Generic, though it has no functions, provides certain essentials that make
it an appropriate starting point for your applications. It conforms to the
standards given in the Microsoft Windows Application Style Guide for
appearance and cooperation with other applications. It contains all the
files an application can have : . deJ, . h, . rc, . c, and make. The About dialog
box, an application standard, is included, as well as the About Generic . . .
command on the System menu. This is a Microsoft Windows Application

50

A Sample Application: Generic

Style Guide standard for applications without application menus. (Appli
cations with application menus should place the About Generic . . . com
mand as the last item on the first menu .)
You can use Generic as a template to build your own applications. To do
this, you copy and rename the sources of an existing application , such as
Generic, then change relevant function names, and insert new code . All
sample applications in this guide have been created by copying and renam
ing Generic 's source files, then modifying some of the function and
resource names to make them unique to each new application .

The following procedure describes how to use Generic as a template, allow
ing you to adapt its source files to your application :

1 . Choose your application 's filename .

2 . Copy the following Generic source files, renaming them to match
your application 's filename : generic. c, generic.h, generic. dej,
generic . rc, and generic.

3 . Use a text editor to change each occurrence of "Generic" in your
application 's C- language source file (formerly generic. c) to your
application 's name . This includes changing the following:

• The window-function name: GenericWndProc

• The initialization-function name : Genericlnit

• The class name: Generic

• The window title : Generic Sample Application

• The include filename : generic.h

4 . Use a text editor to change each occurrence of "Generic" in your
application 's module-definition file (formerly generic. de/) to your
application 's name. This includes changing the following:

• The application name : Generic

• The window-function name: GenericWndProc

5 . Use a text editor to change each occurrence of "Generic" in your
application 's resource script file (formerly generic. rc) to your
application 's name . This includes changing the following:

• The include filename : generic .h

• The application title: Generic Application

51

Microsoft Windows Programmer's Learning Guide

6 . Use a text editor to change each occurrence of "Generic" in your
application 's make file (formerly generic) to your application's
name . This includes changing the following:

• The C-language source filename : generic. c
• The object filename: generic.obj
• The executable filename: generic. exe

• The module-definition filename : generic. def

As you add new functions, resources, and include files to your applications,
be

_
sure to use your application 's filename to ensure that these names are

umque .

52

Chapter 4

Output to a Window

4 .1 Introduction 55
4.2 The Display Context 55

4.2. 1 Using the GetDC Function 56

4.2.2 The WM- PAINT Message 56
4.2.3 Invalidating the Client Area 57
4.2.4 Display Context and Device Context 58
4.2 .5 The Coordinate System 58
4.3 Creating, Selecting, and Deleting

Drawing Tools 59
4.4 Drawing and Writing 60

4.5 Computing a String's Length 62
4.6 A Sample Application: Output 62
4.6. 1 Add New Variables 63
4.6.2 Modify the WM_ CREATE Case 63

4.6.3 Add the WM- PAINT Case 64
4.6.4
4.6.5
4.6.6

Modify the WM- DESTROY Case
Add the _ lstrlen Function 65
Compile and Link 65

65

53

Output to a Window

4. 1 Introduction

In Microsoft Windows, all output to a window is performed by the graph
ics device interface (GDI) . This chapter explains how to use the GDI func
tions to draw within the client area of a window. In particular, it describes
how to draw lines and figures, write text, and create pens and brushes . It
also describes the painting and drawing process and explains the purpose
of the display context and the w:M- PAINT message .

4.2 The Display Context

To draw within a window, all you need is the handle to the window. You
use this handle to retrieve a handle to the display context of the window's
client area. A display context defines the output device and the current
drawing tools, colors, and other drawing information used by GDI to gen
erate output . All GDI output functions require a display-context handle .
No output can be performed without one.

For output to a window, Windows requires that you retrieve a handle to
the display context for that window. The method you use to retrieve a
handle depends on where you plan to perform the output operations.
Although you can draw and write anywhere in an application, including
within the WinMain function , most applications do so only in the window
function . Although the window function can draw within the client area in
response to almost any message , the most common time to draw and write
is in response to a \VM_ PAINT message . Windows sends this message to a
window function when changes to the window may have altered the con
tent of the client area. Since only the application knows what is in the
client area, Windows sends the message to the window function so it can
restore the client area.

If you plan to draw within the client area at any time other than in
response to a \VM_ PAINT message, you must use the GetDC function to
retrieve the handle to the display context. For the w:rvL PAINT message ,
you must use the BeginPaint function .

Whenever you retrieve a display context for a window, the context is only
on temporary loan from Windows to your application . A display context is
a shared resource and as long as one application has it , no other applica
tion can retrieve it . This means you must release the display context as

soon as possible after using it to draw within the window. If you retrieve
a display context by using the GetDC function, you must use the
ReleaseDC function to release it. Similarly, for BeginPaint, you use the
EndPaint function .

55

Microsoft Windows Programmer's Learning Guide

4.2.1 Using the GetDC Function

You typically use the GetDC function to provide instant feedback to
some action by the user, such as drawing a line as the user moves the
mouse cursor (pointer) through the window. The function returns a
display-context handle that you can use in any GDI output function . The
following example shows how to use the GetDC function to retrieve a
display-context handle and write the string "Hello Windows! " in the client
area:

hOC = GetDC (hWnd) ;
TextOut (hDC , 10 , 10 , "He l l o Windows ! " , 14) ;
Rel easeDC (hWnd, hOC) ;

In this example, the GetDC function returns the display context for the
window identified by the h Wnd parameter, and the TextOut function
writes the string at the point (10, 10) in the window's client area. The
ReleaseDC function releases the display context .

Anything you draw in the client area will be erased the next time Windows
sends a \VM._ PAINT message to the window function . The reason for this
is that Windows sends a \VM._ ERASEBKGND message to the window
function as part of the \VM._ PAINT message processing. If you pass
WM_ ERASEBKGND on to the DefWindowProc function , DefWin
dowProc fills the client area by using the class background brush , com
pletely erasing any output you may have previously drawn there.

4.2.2 The WM_ PAINT Message

Windows posts a \VM._ PAINT message when some operation by the user
has changed the window. For example, Windows posts a \VM._ PAINT
message when the user closes a window that covers part of another win
dow. Since a window shares the screen with other windows, anything the
user does in one window can have an impact on the content and appear
ance of another window. However, you can do nothing about the change
until your application receives the WM_ PAINT message.

Windows posts a W1L PAINT message by making it the last message in
the application queue. This means any input is processed before the
\VM._ PAINT message . In fact , the GetMessage function also retrieves
any input generated after the WM_ PAINT message is posted . That is,
GetMessage retrieves the \VM._ PAINT message from the queue only
when there are no other messages. The reason for this is to let the applica
tion carry out any operations that might affect the appearance of the win
dow . In general, output operations should be carried out as infrequently as
possible to avoid flicker and other distracting effects. Windows guarantees
this by holding the W1L PAINT message until it is the last message .

56

Output to a Window

The following example shows how to process a \VM_ PAINT message :

PAINTSTRUCT ps ;

case WM_PAINT :
hOC = BeginPaint (hWnd, &ps) ;
I* Output operations •I
EndPaint (hWnd, &ps) ;
break ;

The BeginPaint and EndPaint functions are required . BeginPaint fills
the P AINTSTRUCT structure, ps, with information about the paint
request , such as the part of the client area that needs redrawing, and
returns a handle to the display context . You can use the handle in any
GDI output functions . The EndPaint function ends the paint request and
releases the display context .

You must not use the GetDC and ReleaseDC functions in place of the
BeginPaint and EndPaint functions. BeginPaint and EndPaint carry
out special tasks, such as validating the client area and sending the
WM_ ERASEBKGND message, that ensure that the paint request is pro
cessed properly. If you use GetDC instead of BeginPaint, the painting
request will never be satisfied and your window function will continue to
receive the same paint request .

4.2.3 Invalidating the Client Area

Windows is not the only source of \VM_ PAINT messages. You can also
generate \VM_ PAINT messages for your windows by using two functions:
lnvalidateRect and InvalidateRgn. These functions mark all or part of
a client area as invalid (in need of redrawing) . For example, the following
function invalidates the entire client area:

Inva l idateRect (hWnd, NULL , TRUE) ;

This example invalidates the entire client area for the window identified
by the h Wnd parameter. The NULL argument, used in place of a rectangle
structure, specifies the entire client area. The TRUE argument causes the
background to be erased .

When the client area is marked as invalid , Windows posts a WM_ PAINT
message . If other parts of the client area are marked as invalid , Windows
does not post another WM_ PAINT message . Instead , it adds the invali
dated areas to the previous area, so that all areas are processed by the
same WM_ PAINT message .

57

Microsoft Windows Programmer's Learning Guide

If you change your mind about redrawing the client area, you can validate
parts of it by using the ValidateRect and ValidateRgn functions. These
functions remove any previous invalidation and may remove the
\VM_ PAINT message if no other invalidated area remains.

If you do not want to wait for the w:M_ PAINT message to be retrieved
from the application queue, you can force an immediate \VM_ PAINT mes
sage by using the Update Window function . If there is any invalid part of
the client area, UpdateWindow pulls the w:M_ PAINT message for the
given window from the queue and sends it directly to the window function .

4.2.4 Display Context and Device Context

A display context is actually a type of device context that has been espe
cially prepared for output to the client area of a window. A device context
defines the device, drawing tools, and drawing information for a complete
device, such as a display or printer; a display context defines these things
only for a window's client area. To prepare a display context, Windows
adjusts the device origin so that it aligns with the upper-left corner of the
client area instead of with the upper- left corner of the display . It also sets
a clipping rectangle so that output to a display context is "clipped" to the
client area. This means any output that would otherwise appear outside
the client area is not sent to the display . Although you can retrieve a
device context for the entire display, you should avoid doing so since it
overrides Windows' careful control of the shared display.

4.2.5 The Coordinate System

The default coordinate system for a display context is very simple . The
upper- left corner of the client area is the origin , or point (0,0) . Each pixel
to the right represents one unit along the positive x-axis . Each pixel down
represents one unit along the positive y-axis .

You can modify this coordinate system by changing the mapping mode
and display origins. The mapping mode defines the coordinate-system
units. The default mode is "M1L TEXT, or one pixel per unit . You can also
specify mapping modes that use inches or millimeters as units. The origin
of the coordinate system can be moved to any point .

For simplicity, the examples i n this chapter and throughout this guide use
the default coordinate system.

58

Output to a Window

4.3 Creating, Selecting, and Deleting
Drawing Tools

GDI lets you use a variety of drawing tools to draw within a window. GDI
provides pens to draw lines, brushes to fill interiors, and fonts to write
text . To use these tools, you create them by using functions such as
CreatePen and CreateSolidBrush, then select them into the display
context by using the SelectObject function . When you are done using a
drawing tool, you can delete it by using the DeleteObject function .

You can create a pen for drawing lines and borders by using the
CreatePen function. The function returns a handle to a pen that has the
specified style , width, and color. The following example creates a dashed ,
black pen, one pixel wide :

HPEN hDashPen ;

hDashPen = CreatePen (l , 1 , RGB (O , 0, 0)) ;

The RGB utility creates a 32-bit value representing a red, green, and blue
color value. The three arguments specify the intensity of the colors red,
green, and blue, respectively . In this example, all colors have zero inten
sity, so the specified color is black .

You can create solid brushes for drawing and filling by using the
CreateSolidBrush function . This function returns a handle to a brush
that contains the specified solid color. The following example shows how
to create a red brush :

HBRUSH hRedBrush

hRedBrush = CreateSol idBrush (RGB (255 , 0, 0)) ;

Once you have created a drawing tool, you can select it into a display con
text by using the SelectObject function . The following example selects
the red brush for drawing:

HBRUSH hOldBrush;

hOldBrush = SelectObj ect (hDC, hRedBrush) ;

59

Microsoft Windows Programmer's Learning Guide

In this example, SelectObject returns a handle to the previous brush . In
general, you should save the handle of the previous drawing tool so that
you can restore it later.

You do not have to create or select a drawing tool before using a display
context . Windows provides default drawing tools with each display con
text ; for example, a black pen, a white brush, and the system font .

You can delete drawing objects you no longer need by using the
DeleteObject function . The following example deletes the brush
identified by the handle, hRedBrush :

Del eteObj ect (hRedBrush) ;

You must not delete a selected drawing tool. If necessary, you can use the
SelectObject function to restore a previous drawing tool and remove the
tool to be deleted from the selection , as shown in the following example:

Se l ectObj ect (hDC , hOl dBrush) ;
De l eteObj ect (hRedBrush) ;

Although you can create and select fonts for writing text, working with
fonts is a fairly involved process and is not described in this chapter. For a
full discussion of how to create and select fonts, see Appendix A, "Fonts . "

4.4 Drawing and Writing

GDI provides a wide variety of output operations, from drawing lines to
writing text . Specifically, you can use the LineTo, Rectangle, Ellipse,
Arc, Pie , TextOut, and DrawText functions to draw lines, rectangles,
circles, arcs, pie wedges, and text . In all cases, the functions use the
selected pen and brush to draw borders and fill interiors, and the selected
font to write text.

You can draw lines by using the LineTo function . You usually combine
the MoveTo and LineTo functions to draw lines . The following example
draws a line from the point (10 ,90) to the point (360,90):

MoveTo (hDC, 10 , 90) ;
LineTo (hDC, 360 , 90) ;

You can draw a rectangle by using the Rectangle function . This function
uses the selected pen to draw the border, and the selected brush to fill the
interior . The following example draws a rectangle that has its upper- left
and lower-right corners at the points (10 ,30) and (60,80) , respectively:

Rectangle (hDC, 10 , 30 , 60 , 80) ;

60

Output to a. Window

You can draw an ellipse or circle by using the Ellipse function . The func
t ion uses the selected pen to draw the border, and the selected brush to fill
the interior . The following example draws an ellipse that is bounded by
the rectangle specified by the points (1 60,30) and (210,80):

E l lipse (hOC, 160 , 30 , 210, 80) ;

You can draw arcs by using the Arc function . You draw an arc by defining
the circle, then specifying on which points the arc starts and ends. The fol
lowing example shows an arc drawn from the point (10 ,90) to the point
(360,90):

Arc (hDC, 10 , 90 , 360 , 120, 10 , 90 , 360 , 90) ;

You can draw a pie wedge by using the Pie function . A pie wedge consists
of an arc and two radii extending from the focus of the arc to its respec
tive endpoints . The Pie function uses the selected pen to draw the border,
and the selected brush to fill the interior . The following example draws a
pie wedge that is bounded by the rectangle specified by the points (3 10 ,30)
and (360,80) and that starts and ends at the points (360,30) and (360,80),
respectively:

Pie (hOC , 310 , 30 , 360 , 80 , 360 , 30, 360 , 80) ;

You can display text by using the TextOut function . The function
displays a string starting at the specified point . The following example
displays the string "A Sample String" at the point (1 , 1) :

TextOut (hDC , 1 , 1 , "A Sample String" , 15) ;

You can also display text by using the DrawText function . This function
is similar to TextOut, except that it lets you write text on multiple lines.
The following example displays the string "This long string illustrates the
DrawText function" on multiple lines in the specified rectangle :

RECT rcTextBox ;
PSTR pText = "This long string il lustrates the DrawText function" ;

SetRect (TextBox, 1 , 10 , 160 , 40) ;
DrawText (hDC , pText , str len (pText) , rcTextBox , DT_LEFT) ;

This example displays the string pointed to by the pText parameter as one
or more left-aligned lines in the rectangle specified by the points (1 , 10) and
(1 60,40) .

61

Microsoft Windows Programmer's Learning Guide

Although you can also create and display bitmaps in a window, the pro
cess is not described in this chapter. For full details, see Chapter g ,
"Bitmaps. "

4. 5 Computing a String's Length

You may use the C run-time strlen function in your applications to deter
mine the length of a string, but you must be careful to provide the correct
arguments. In small-model applications, such as the following Output, any
C run- time string functions you may use expect near pointers (1 6-bit
addresses) . In some cases, however, string variables may have the LPSTR
type , meaning their addresses are passed as 32-bit values. You could
potentially cast the long address to a short one by using the PSTR type,
but you would need to ensure that the string was in the application 's data
segment . The easiest solution is to replace the C run-time function with
the locally defined _ lstrlen function that processes 32-bit addresses . The
following example shows just such a function :

1nt _lstr len (lpStr1ng)
LPSTR lpStr1ng;
{

}

1nt 1 ;
for (1 = 0 ; * lpStr1ng++ ; ++1) ;
return (1) ;

This function takes a pointer to a null-terminated string and returns an
integer count of the number characters.

4.6 A Sample Application: Output

This sample application illustrates how to use the WM_ PAINT message
to draw within the client area, as well as how to create and use drawing
tools . The Output application is a simple extension of the Generic applica
tion described in the previous chapter. To create the Output application ,
copy and rename the source files of the Generic application, then make the
following modifications:

62

1 . Add new variables.

2. Modify the WM_ CREATE case .

3 . Add a WM_ PAINT case .

Output to a Window

4 . Modify the WM_ DESTROY case .

5 . Add an _ lstrlen function .

6 . Compile and link the application .

This sample assumes that you have a color display. If you do not , GDI will
simulate some of the color output by "dithering." Dithering is a method of
simulating a color by creating a unique pattern with two available colors;
for example, simulating green by using black and white pixels .

4.6.1 Add New Variables

You need several new global variables for this sample application . Add the
following variables at the beginning of your C-language source file :

HANDLE hinst ;

HPEN hDashPen ;
HPEN hDotPen;
HBRUSH hOldBrush;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;

I* " - - - " pen handle *I
I* " . . . " pen handle *I
I* old brush handle *I
I* red brush handle *I
I* green brush handle *I
I* blue brush handle *I

You also need new local variables in the window function . Declare the fol
lowing at the beginning of the function :

liDC hDC ;
PAINTSTRUCT ps ;
LPSTR lpText = "He l lo Windows !
RECT rcTextBox ;
HPEN hOldPen ;

I * displ ay-context variable * I
I * paint structure *I

This is a very long line indeed . " ;
I* rectangle around the text *I
I* old pen handle *I

4.6.2 Modify the WM._ CREATE Case

You need to create the drawing tools to be used in Output's client area
before any drawing is carried out . Since you need to create these tools only
once, a convenient place to do so is in the \VM_ CREATE message . Modify
the \VM_ CREATE case so it looks like this:

case WM_CREATE :

hRedBrush = CreateSol idBrush (RGB (255 , 0 , 0)) ;
hGreenBrush = CreateSol idBrush (RGB (0 , 255 , 0)) ;
hBlueBrush = CreateSolidBrush (RGB (0 , 0 , 255)) ;

I* Create the " - - - " pen *I

hDashPen = CreatePen (l ,
1 ,
RGB (O, 0, 0)) ;

I* style *I
I* width *I
I* color *I

63

Microsoft Windows Programmer's Learning Guide

I* Create the 11 • • • 1 1 pen *I

hDotPen = CreatePen (2 ,
1 ,
RGB (0 , 0 , 0)) ;

hMenu = GetSystemMenu (hWnd, FALSE) ;

I* style *I
I* width *I
I* co lor *I

ChangeMenu (hMenu , NULL , NULL , NULL , MF_APPEND I MF_SEPARATOR) ;
ChangeMenu (hMenu , NULL , 1 1A&bout Output . . . 11 , ID_ABOUT ,

MF _APPEND I MF _STRING) ;
break ;

The CreateSolidBrush functions create the solid brushes to be used to
fill the rectangle, the ellipse, and the circle . The CreatePen functions
create the dotted and dashed lines used to draw borders.

4.6.3 Add the WM_ PAINT Case

Add the following case statement to the window function :

case WM_PAINT :

64

hOC = BeginPaint (hWnd, &ps) ;

TextOut (hDC, 1 , 1 . lpText , _lstrlen (lpText)) ;

SetRect (&rcTextBox , 1 , 10 , 161 , 44) ;

DrawText (hDC , lpText , _lstrlen (lpText) ,
&rcTextBox , DT_LEFT 1 DT_WORDBREAK) ;

hOldBrush = SelectObj ect (hDC . hRedBrush) ;
Rectangle (hOC, 10, 50, 60, 80) ;

Se lectObj ect (hDC , hGreenBrush) ;
E l l ipse (hOC, 160 , 50 , 210 , 80) ;

SelectObj ect (hDC, hBlueBrush) ;
Pie (hOC , 310 , 50 , 360 , 100 , 360 , 50 , 360 , 100) ;

SelectObj ect (hDC, hOldBrush) ;

hOldPen = Se lectObj ect (hDC, hDashPen) ;

MoveTo (hDC, 10 , 110) ;

LineTo (hDC, 360 , 110) ;

Se lectObj ect (hDC, hDotPen) ;

Arc (hDC, 10 , 90 , 360 , 130, 10, 110 , 360 , 110) ;

SelectObj ect (hDC , hOldPen) ;

EndPaint (hWnd, &ps) ;
break ;

Output to a Window

4.6.4 Modify the WM_ DESTROY Case

You need to delete the drawing tools created for Output's window before
terminating the application . You can do this by using the DeleteObject
function to delete the various pens and brushes in the \VM_ DESTROY
case. Modify the \VM_ DESTROY case so that it looks like this:

case WM_DESTROY :

Del eteObj ect (hRedBrush) :
Del eteObj ect (hGreenBrush) :
De l eteObj ect (hBlueBrush) :
De l eteObj ect (hDashPen) :
De l eteObj ect (hDotPen) :
PostQuitMessage (O) :
break :

You need one DeleteObject function call for each object to be deleted .

4.6.5 Add the _ lstrlen Function

In Output, all string variables have the LPSTR type, meaning their
addresses are passed as 32-bit values; so to compute a string's length you
need to add the locally defined _ lstrlen function (described in Section 4 .5 ,
"Computing a String's Length") to the source fi le . Place the following
function declaration before the window function :

int _lstr len (lpString)
LPSTR lpString;
{

}

int i ;
for (i = 0 ; * lpString+ + ; ++i) ;
return (i) ;

4.6.6 Compile and Link

No changes are required to the make file to recompile and link the Output
application . Mter compiling and linking Output, start Windows and the
application . The application should look like Figure 4 . 1 :

65

Microsoft Windows Programmer's Learning Guide

c::l O u t p u t S a M p l e W�ndow
� l.fJifl

Hello Windows ! This is a ver� long line indee d .
H e l l o Wi ndows l This
i s a v•r� long line
ind••d •

• • c

Figure 4 .1 Output Window

You can use the Wi\L PAINT case of this application to experiment with a
variety of GDI functions . For information about other GDI output func
tions, see the Microsoft Windows Programmer 's Reference.

66

Chapter 5

Keyboard and Mouse Input

5. 1 Introduction 69
5 .2 Input Types 69
5 .2. 1 Message Format 69
5 .2 .2 Keyboard Input 70
5.2.3 Character Input 70

5.2 .4 Mouse Input 71
5 .2 .5 Timer Input 72
5 .2 .6 Scroll-Bar Input 72
5.2 .7 Menu Input 74
5.3 Displaying Formatted Output 74
5.4 A Sample Application: Input 74
5.4. 1 Add New Variables 75
5.4.2 Set the Window-Class Style 76
5.4.3 Modify the Create Window Function 76
5.4.4 Modify the WNL CREATE

and WNL DESTROY Cases 76
5.4.5 Add the WNL KEYUP

and WNL KEYDOWN Cases 77
5.4.6 Add the WNL CHAR Case 77
5.4.7 Add the WNL MOUSEMOVE Case 77

5.4.8 Add the WNL LBUTTONUP
and WNL LBUTTONDOWN Cases 77

5.4.9 Add the WNL LBUTTONDBLCLK Case 78
5.4. 10 Add the WNL TIMER Case 78

67

5.4. 1 1 Add the WM-HSCROLL
and WM- VSCROLL Cases 78

5.4. 12 Add the WM- PAINT Case 79

5.4. 13 Compile and Link 79

68

Keyboard and Mouse Input

5.1 Introduction

This chapter describes the input messages and explains how to use them in
your applications. Windows supplies input messages in response to user
input through the keyboard and mouse, and in response to timer input .

5.2 Input Types

Windows provides the following types of input messages:

Message Description

User input through the keyboard

Keyboard input translated into character codes

User input through the mouse

Keyboard

Character

Mouse

Menu

Scroll-bar

User input through a window's menus and the mouse

User input through a window's scroll bars and the
mouse

Timer Input through the system timer

The keyboard, mouse, and timer input messages correspond directly
to hardware input . Windows passes these messages to the application
through the application queue. The character, menu, and scroll-bar input
are created in response to mouse and keyboard actions in the non-client
area of a window, or are the result of translated keyboard messages_. Win
dows typically sends these messages directly to the window function .

5.2.1 Message Format

Input messages have two formats . Messages that Windows places in the
application queue have the form of an MSG structure. This structure has
fields that identify the message and that contain information about the
message . The GetMessage function in your application 's message loop
retrieves this structure, and the DispatchMessage function takes it as
an argument .

The second format of an input message i s how the window function
receives the message: as four arguments corresponding to the window
function 's h Wnd, message, wParam, and lParam parameters. These
parameters receive the same values as given in the input message 's MSG
structure. The only difference is that the MSG structure includes a field
to specify the location of the mouse when the message was generated and

69

Microsoft Windows Programmer's Learning Guide

the system time when the message was generated . The window function
does not receive this information .

5.2.2 Keyboard Input

Much of an application 's user input comes from the keyboard . Windows
sends keyboard input to an application when the user presses or releases a
key. The following is a list of the keyboard messages and the events that
cause them:

Message Description

WM_ KEYDOWN User presses a key.

\VM_ KEYUP User releases a key.

WM_ SYSKEYDOWN User presses a system key.

\VM_ SYSKEYUP User releases a system key.

The wParam parameter of each key specifies the virtual keycode of the
given key. A virtual keycode is a device-independent value for a specific
keyboard key. Windows uses virtual keycodes to provide consistent key
board input no matter what computer your application is running on . The
lParam parameter contains the keyboard 's actual sc an code for the key, as
well as addition al information about the keyboard, such as the state of the
SHIFT key and whether the current key was previously up or down .

Windows generates system-key messages, WM_ SYSKEYUP and
\VM_ SYSKEYDOWN, for the system keys. These are special keys, such as
the ALT and FlO keys, that belong to the Windows user interface and can
not be used by an application in any other way .

An application receives keyboard messages only when it h as the "input
focus . " Your application receives the input focus when it is the active
application ; that is, when the user has selected your application 's window.
You can also use the SetFocus function to explicitly set the input focus
for a given window, and the GetFocus function to determine which win
dow has the focus.

5.2.3 Character Input

Applications that read character input from the keyboard need to use the
TranslateMessage function in their message loops . TranslateMessage
translates a keyboard-input message into a corresponding ANSI-character
message , WM_ CHAR or WM_ SYSCHAR. These messages contain the
ANSI character codes for the given key in the wParam parameter. The
lParam p arameter is identical to lParam in the keyboard- input message .

70

Keyboard and Mouse Input

5.2.4 Mouse Input

User input can also come from the mouse . Windows sends mouse messages
to the application when the user moves the mouse cursor (pointer) into
and through a window or presses or releases a mouse cursor while the
mouse button is in the window. The following is a list of the mouse mes
sages and the events that cause them:

Message Description

WN.L MOUSEMOVE User moves the mouse cursor into or through
the window.

WN.L LBUTTONDOWN User presses the left button .

WN.L LBUTTONUP User releases the left button .

WM_ LBUTTONDBLCLK User presses, releases, and presses again the
left button within the system's defined
double-click time .

WN.L MBUTTONDOWN User presses the middle button .

WN.L MBUTTONUP User releases the middle button .

WN.L MBUTTONDBLCLK User presses, releases, and presses again the

WN.L RBUTTONDOWN

WN.L RBUTTONUP

middle button within the system's defined
double- click time.

User presses the right button .

User releases the right button .

WN.L RBUTTONDBLCLK User presses, releases, and presses again the
right button within the system's defined
double-click time.

The wParam parameter of each button includes a bitmask specifying the
current state of the keyboard and mouse buttons, such as whether the
mouse buttons, SHIFT key, and CONTROL key are down . The lParam param
eter contains the the x- and y-coordinates of the mouse cursor.

Windows sends mouse messages to a window only if the mouse cursor is in
the window or if you h ave captured mouse input by using the SetCapture
function . The SetCapture function directs Windows to send all mouse
input, regardless of where the mouse cursor is, to the specified window.
Applications typically use this function to take control of it when carrying
out some critical operation with the mouse, such as selecting something in
the client area. Capturing the mouse prevents other applications from tak
ing control of it before the operation is completed .

71

Microsoft Windows Programmer's Learning Guide

Since the mouse is a sh ared resource, it is important to release the c ap
tured mouse as soon as you h ave finished the operation . You release the
mouse by using the ReleaseCapture function . To determine which win
dow h as the c aptured mouse , if any, use the GetCapture function .

Windows sends double-click messages to a window function only if the
corresponding window class h as the CS_ DBLCLKS style . You must set
this style while registering the window class . A double-click message is
always the third message in a four-message series . The first two messages
are the first button press and release . The second button press is replaced
with the double-click message . The last message is the second release .
Remember th at a double-click message only occurs if the first and second
press occur within the system's defined double-click time . You can retrieve
the current double-click time by using the GetDoubleClickTime func
tion . You can set it by using the SetDoubleClickTime function, but be
aware that this sets the double-click time for all applications, not j ust
you r own .

5.2.5 Timer Input

Windows sends timer input to your application whenever the set time
elapses for a timer. To receive timer input, you must set a timer by using
the SetTimer function . Timer input is received in two ways: as a
WM_ TIMER message through the system queue, or through a callback
function that you specify when you call the SetTimer function . The fol
lowing example shows how to set timer input, using a WM_ TIMER mes
sage , for a five-second interval:

idTimer = SetTimer (hWnd, NULL , 5000 , (FARPROC) NULL) ;

This example sets a timer interval of 5000 milliseconds. This means that
the timer will generate input every five seconds. The last argument is
NULL, meaning that there is no callback function for the timer input, so
Windows sends the timer input through the application queue .

The SetTimer function returns a unique integer that identifies the timer .
You can use this same timer ID to turn the timer off by using it in the
KillTimer function .

5.2.6 Scroll-Bar Input

Windows sends a scroll- b ar input message , either WM_ HSCROLL or
\VM__ VSCROLL, to a window function when the user clicks with the
mouse cursor in a scroll bar. Applications use the scroll-bar messages to
direct scrolling within the window. Applications that display text or other
d ata that does not all fit in the client area usu ally provide some form of
scrolling . Scroll bars are an easy way to let the user direct scrolling
actions.

72

Keyboard and Mouse Input

To get scroll- bar input, you need to add scroll b ars to the window. You
can add scroll bars to a window by specifying the WS_ HSCROLL and
WS_ VSCROLL styles when you create the window. These direct the
CreateWindow function to create horizontal and vertical scroll b ars
for the window. The following example creates a scroll bar for the given
window:

hWnd = CreateWindow (" Input" ,
" Input Sample Appl ication" ,
WS_OVERLAPPEDWINDOW i WS_HSCROLL
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
NULL ,
NULL ,
hinstance ,
NULL) ;

I* window c l ass */
I* window name *I

WS_VSCROLL ,
I* x position *I
I* y position *I
I* width *I
I* height *I
I* parent handle *I
I* menu or chi ld ID */
I* instance *I
I* additiona l in fo */

Windows displays the scroll bars when it displays the window. It automat
ically maintains the scroll bars and sends scroll- bar messages to the win
dow function when the user clicks.

When Windows sends a scroll-bar message, it sets the wParam parameter
of the message to a value that indicates the type of scrolling request mad e .
For example, i f t h e user clicks t h e top arrow o f a vertical scroll bar, Win
dows sets the wParam parameter to the value, SB- LINEUP. The following
list shows the various values for the wParam p arameter and how they are
generated :

Scroll Type

SB- LINEUP

SB- LINEDOWN

SIL PAGEUP

SIL PAGEDOWN

SIL THUMBPOSITION

SB_ THUMBTRACK

Description

User clicks the upper or left arrow.

User clicks the lower or right arrow.

User clicks between the scroll box and the
upper or left arrow.

User clicks between the scroll box and the
lower or right arrow.

User releases the mouse button when the
mouse cursor is in the scroll box, typically
after dragging the box.

User drags the scroll box with the mouse .

73

Microsoft Windows Programmer's Learning Guide

5.2. 7 Menu Input

Windows sends a menu-input message, either WM_ SYSCO:tviMAND or
\VM_ COMMAND, to a window function whenever the user chooses a com
mand, such as the About command in the system men u . Since menu input
is often the primary source of input for an application and its processing
c an be complex, it is described in detail in Chapter 8, "Menus . "

5 . 3 Displaying Formatted Output

Although you cannot use the C run-time printf function to display for
matted output , you can use the sprintf function to copy a formatted
string to a buffer and pass the buffer address as an argument to the
TextOut function . In small-model applications, such as the sample appli
cations described in this guide, you need to be careful when using the
sprintf function that you ensure that the buffer you specify is defined as a
global or local variable (is within the application 's data segment or stack) .
The following example shows how to display formatted outpu t :

char MouseText [40] ;

sprlnt f (MouseText , "WM_MOUSEMOVE : %x , %d , %d" , wParam,
LOWORD (lParam) , HIWORD (lParam)) ;

TextOut (hDC , 10 , 10 , MouseText , str len (MouseText)) ;

This example copies the formatted string to the MouseText array. The
array is declared a local variable so that it can be passed to the sprintf
function . It c an also be passed to the C run-time strlen function , which is
used in the TextOut function to compute the string length .

5.4 A Sample Application: Input

This sample application illustrates how to process input messages from the
keyboard, mouse , timer, and scroll bars . The "Input" application displays
the current or most recent state of each of these input mech anisms. To
create the Input application , copy and rename the source files of the
Generic application, then make the following modifications:

74

1 . Add new variables.

2 . S e t t h e window-class style .

Keyboard and Mouse Input

3 . Modify t h e CreateWindow function .

4 . Modify the WM_ CREATE and WM- DESTROY cases.

5. Add the WM_ KEYUP and WM_ KEYDOWN cases.

6 . Add t h e WM_ CHAR case .

7. Add the WM_ MOUSEMOVE case .

8. Add the \VM_ LBUTTONUP and \VM_ RBUTTONUP cases.

9 . Add the WM- LBUTTONDBLCLK case .

10 . Add the WM_ TIMER case .

1 1 . Add the \VM_ HSCROLL and \VM_ VSCROLL c ases.

12 . Add t h e WM_ PAINT case .

13 . Compile and link .

Although Windows does not require a pointing device , this sample assumes
that you have a mouse or other pointing device . If you do not h ave a
mouse , the application will not receive mouse- input messages.

5.4.1 Add New Variables

You need several new global variables . Declare the following variables at
the beginning of the C- langu age source file :

char MouseText [40) ;
char ButtonText [40) ;
char KeyboardText [40) ;
char CharacterText [40) ;
char Scro l 1Text [40) ;
char TimerText [40) ;
int idTimer ;
int nTimerCount = 0 ;

I* mouse state *I
I* mouse-button state *I
I* keyboard state *I
I* latest character *I
I* scro l l status *I
I* timer state *I
I* timer ID *I
I* current timer count *I

These character arrays hold strings that describe the current state of the
keyboard , mouse, and timer.

You also need some local variables for the window function . Declare the
following variables at the beginning of the window function :

HDC hDC ;
PAINTSTRUCT ps ;

I* disp lay-context variable *I
I* paint structure *I

75

Microsoft Windows Programmer's Learning Guide

5 .4.2 Set the Window-Class Style

You need to set the window-class style to CS_ DBLCLKS to enable
double-click processing. In the initialization function , find this statement :

pWndCl ass->style = NULL ;

Change it to the following:

pWndCl ass->styl e = CS_DBLCLKS ; I* double-click messages *I

This enables double-click processing for windows that belong to this class.

5.4.3 Modify the Create Window Function

You need modify the call to the CreateWindow function in order to
create a window that has vertical and horizontal scroll bars. Change the
CreateWindow function call in the WinMain function so that it looks
like this:

hWnd = CreateWindow (" Input" ,
" Input Sample Window" ,
WS_OVERLAPPEDWINDOW i
WS_HSCROLL i WS_VSCROLL ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
NULL ,
NULL ,
hinstance ,
NULL) ;

5.4.4 Modify the WM.. CREATE
and WM.. DESTROY Cases

You need to set a timer by using the SetTimer function . You can do this
in the \VM_ CREATE case . Add the following statement :

idTimer = SetTimer (hWnd, NULL , 5000 , (FARPROC) NULL) ;

You also need to stop the timer before terminating the application . You
can do this in the WM- DESTROY case . Add the following statement :

Ki l lTimer (hWnd , idTimer) ;

76

Keyboard and Mouse Input

5.4.5 Add the WM_ KEYUP
and WM_ KEYDOWN Cases

You need to add the WM_ KEYUP and WM_ KEYDOWN cases to process
key presses. Add the following statements to the window function :

case WM_KEYDOWN :
sprint f (KeyboardText , "WM_KEYDOWN : %x , %x , %X

wParam, LOWORD (lParam) , HIWORD (lParam)) ;
Inva lidateRect (hWnd, NULL , FALSE) ;
break ;

case WM_KEYUP :
sprint f (KeyboardText , "WM_KEYUP : %x , %x , %x

wParam, LOWORD (lParam) , HIWORD (lParam)) ;
Inva lidateRect (hWnd, NULL , FALSE) ;
break ;

5 .4.6 Add the Wl\L CHAR Case

"

"

You need to add a WM_ CHAR case to process ANSI-character input . Add
the following statements to the window function :

case WM_CHAR :
sprint f (CharacterText , "WM_CHAR : %c , %x , %X

wParam, LOWORD (lParam) , HIWORD (lParam)) ;
InvalidateRect (hWnd, NULL , FALSE) ;
break;

"

5.4.7 Add the Wl\LMOUSEMOVE Case

You need to add a WM_ MOUSEMOVE case to process mouse-motion
messages. Add the following statements to the window function :

case WM_MOUSEMOVE :
sprint f (MouseText , "WM_MOUSEMOVE : %x , %d, %d

wParam , LOWORD (lParam) , HIWORD (lParam)) ;
InvalidateRect (hWnd, NULL , FALSE) ;
break ;

5 .4.8 Add the Wl\L LBUTTONUP

"

and Wl\L LBUTTONDOWN Cases

You need to add the WM_ LBUTTONUP and WM_ LBUTTONDOWN
cases to process mouse-button input messages . Add the following state
ments to the window function :

case WM_LBUTTONDOWN :
sprint f (ButtonText , "WM_LBUTTONDOWN : %x , %d , %d

wParam, LOWORD (lParam) , HIWORD (lParam)) ;
"

77

Microsoft Windows Programmer's Learning Guide

Inva l idateRect (hWnd, NULL , FALSE) ;
break ;

case WM_LBUTTONUP :
sprintf (ButtonText, "WM_LBUTTONUP : %x , %d , %d

wParam, LOWORD (lParam) , HIWORD (lParam)) ;
Inva l idateRect (hWnd, NULL , FALSE) ;
break ;

I t

5.4.9 Add the WM_ LBUTTONDBLCLK Case

You need to add a \VM_ LBUTTONDBLCLK case to process mouse
button input messages . Add the following statements to the window
function :

case WM_LBUTTONDBLCLK :
sprint f (ButtonText , "WM_LBUTTONDBLCLK : %X , %d, %d

wParam , LOWORD (lParam) , HIWORD (lParam)) ;
Inva l idateRect (hWnd, NULL , FALSE) ;
break ;

5 .4.10 Add the WM_ TIMER Case

I t

You need to add a \VM_ TIMER case to process timer messages. Add the
following statements to the window function :

case WM_TIMER :
sprint f (TimerText , "WM_TIMER : %d seconds

nTimerCount += 5) ;
Inva l idateRect (hWnd, NULL , FALSE) ;
break ;

I t

5.4.11 Add the WM_ HSCROLL
and WM_ VSCROLL Cases

You need to add the \VM_ HSCROLL and \VM_ VSCROLL cases to pro
cess scroll-bar messages. Add the following statements to the window
function :

case WM_HSCROLL :
case WM_VSCROLL :

78

sprint f (Scro l l Text , "%s : %s , %x , %X "
(message = WM_HSCROLL) ? "WM HSCROLL" : "WM_VSCROLL" ,
(wParam == SB_LINEUP) ? "SB_LINEUP" :
(wParam == SB_LINEDOWN) ? "SB LINEDOWN" :
(wParam == SB_PAGEUP) ? "SB_PAGEUP" :
(wParam == SB_PAGEDOWN) 7 "SB_PAGEDOWN" :
(wParam == SB_THUMBPOSITION) ? "SB_THUMBPOSITION"
(wParam == SB_THUMBTRACK) ? "SB_THUMBTRACK" :
(wParam == SB_ENDSCROLL) ? "SB_ENDSCROLL" : "unknown" ,

LOWORD (lParam) , HIWORD (lParam)) ;
Inva l idateRect (hWnd, NULL , FALSE) ;
break ;

Keyboard and Mouse Input

5.4.12 Add the WM_ PAINT Case

You need to display the current mouse , keyboard , and timer states. The
most convenient way to do this is to use the \VM_ PAINT message to
display the states. Add the following statements to the window function :

case WM_PAINT :
hOC = BeginPaint (hWnd, &ps) ;

TextOut (hDC, 20 , 20, MouseText , strlen (MouseText)) ;
TextOut (hDC, 20 , 40 , ButtonText , strlen (ButtonText)) ;
TextOut (hDC, 20 , 60, KeyboardText , strlen (KeyboardText)) ;
TextOut (hDC, 20 , 80 , CharacterText , strlen (CharacterText)) ;
TextOut (hDC, 20 , 100 , TimerText , str len (TimerText)) ;
TextOut (hDC, 20 , 120 , Scrol lText , str len (Scrol lText)) ;

EndPaint (hWnd, &ps) ;
break ;

5.4.13 Compile and Link

You can compile and link the Input application without changing the
make file . Once the application is compiled, start Windows and then the
Input application . To test the application, press keys on the keyboard ,
click the mouse button , and move the mouse . The application should look
like Figure 5 . 1 :

lltLitOUSEitOUE I •• 471·, 222
WMLLBUTTONUP a a. 346 . 1 1 0

WMLKEYDOWN1 7 6 . 1 . 4841

WMLCHAR a d. 1. 4 02 0

WK_T I HE R • 3� seconds

11tLHSCRO L L 1 SB_THUHBPOS I T I ON, D, 8

Figure 5 . 1 Input Window

79

Chapter 6
Icons

6 .1 What Are Icons? 83
6.2 Class Icons 83
6.3 Creating Icons 84

6.4 Creating Your Own Icons 85
6.5 Using an Icon in a Dialog Box 86

6.6 A Sample Application: Icon 87
6.6. 1 Add an ICON Statement 87
6.6.2 Add an ICON Control Statement 87
6.6.3 Set the Class Icon 88
6.6.4 Compile and Link 88

81

Icons

6.1 What Are Icons?

An icon is a special bitmap that you may use to graphically represent a
window or other object associated with your application . Icons are typi
cally used to represent an application when its main window is minimized.
For example , :Microsoft Paint uses an icon that looks l ike a painter's
palette to represent its minimized window. Icons are also used in message
and dialog boxes .

An icon is not just a bitmap . In fact , it is a composite of two bitmaps,
which when displayed provide special effects, such as a transparent back
ground . When you load an icon, Windows may adjust its size to match
the resolution of the particular display (Windows does not do this for bit
maps) . This means that you can design and use device- independent icons
and be guaranteed that these icons will look reasonable no matter what
display they appear on.

6.2 Class Icons

A class icon is an icon that is used for a particular class of windows each
time a window in that class is minimized. You set a class icon by assigning
an icon handle to the hicon field of the window-class structure before
registering the class. Once the class icon is set, any window you create
using that class will display the class icon when it is minimized . The fol
lowing statement shows how to set a class icon :

pWndCl ass- >hi con = Loadicon (NULL , IDI_APPLICATION) ;

The Loadicon function returns a handle to the built-in application icon
identified by IDL APPLICATION. If you minimize a window that has this
class, you will see a white rectangle with a black border . This is the built
in application icon.

Windows provides several built-in icons . Choices include the exclamation
point , question mark, hand, and asterisk, as well as the application icon
tfor examples of these icons, see the Microsoft Windows Applicat£on Style
Guide) . You can use any of these icons in your applications. Windows uses
most of them in message boxes to represent notes, cautions, warnings, and
errors.

To use a built-in icon, you retrieve a handle to it by using the Loadicon
function . The first argument to the function must be NULL, and the

83

Microsoft Windows Programmer's Learning Guide

second must identify the icon you want . For example, if you want to use
the hand icon, you use the following function :

hHandi con = Load! con (NULL , IDI_HAND) ;

The NULL argument indicates that a built-in icon is requested .

6.3 Creating Icons

Creating an icon requires three simple steps: create the icon by using the
Windows 2.0 Icon Editor, add an ICON statement to your resource script
file, and load the icon, when needed, by using the Loadlcon function . Fig
ure 6 . 1 shows the first step-an icon being edited in Icon Editor:

� I c o n E d > < o � - I C O N . I C O llJI[tjl

r,

Figure 6 .1 Icon Editor with an Icon

Follow the directions given in Microsoft Windows Programming Tools for
creating an icon , then save the icon in a file . The recommended file exten
sion for an icon is . ico.

Next, add an ICON statement to your resource script file . For example ,
the following statement adds the icon named "icon" to your application 's
resources:

icon I CON icon . ico

The filename, icon. ico, specifies the file containing the icon . When the
resource script file is compiled, the icon will be copied from the specified
file into your application 's resources .

84

Icons

Finally, load the icon from your resources by using the Loadlcon func
t ion . You need to specify the name of the icon and the application 's
instance handle:

pWndCl ass->hicon = Load!con (h!nstance , (LPSTR) "icon") ;

In this example, the loaded icon is used as the class icon .

6.4 Creating Your Own Icons

You can create your own icon when a window is minimized by setting the
class icon to NULL and creating the icon when the window function
receives a WM_ PAINT message . Windows lets applications paint within
the client area of an iconic window, creating a dynamic icon such as the
one in the Clock application . (The Clock application continues to show the
time even when it has been minimized .)
To create an icon, you must set the class icon to NULL, then add a
WM_ P AINT case to your window function to draw within the icon 's client
area. The first step, setting the class icon to NULL, must be done before
you register the window class. Use the following statement:

pWndC l ass->hicon = NULL ;

This step is required because it signals Windows to continue sending
WM_ PAINT messages, as necessary, to the window function even though
the window has been minimized .

You can draw within the icon 's client area by processing the \VM_ PAINT
message . Add the following case statement to the window function :

PAINTSTRUCT ps ;

case WM_pA!NT :
i f (I s iconic (hWnd)) {

hOC = BeginPaint (hWnd, &ps) ;

I* P lace output functions here */

EndPaint (hWnd, &ps) ;
}
break ;

Applications need to determine whether the window is iconic, since what
they paint in the icon may be different from what they paint in the open
window. The Islconic function returns TRUE if the window is iconic .

85

Microsoft Windows Programmer's Learning Guide

The BeginPaint function returns a handle to the display context of the
icon's client area. BeginPaint takes the window handle, h Wnd , and a
long pointer to the paint structure, ps. BeginPaint fills the paint struc
ture with information about the area to be painted . As with any painting
operation , after each call to BeginPaint, the EndPaint function is
required . EndPaint releases any resources that BeginPaint retrieved and
signals the end of the application 's repainting of the client area.

You can retrieve the size of the icon 's eli en t area by using the rePaint
field of the paint structure . For example, if you want to draw an ellipse
that fills the icon, you can use the following statement :

E l l ipse (hDC , ps . rcPaint . le ft , ps . rcPaint . top ,
ps . rcPaint . right , ps . rcPaint . bottom) ;

You can use any GDI output functions to draw the icon, including the
TextOut function . The only limitation is the size of the icon , which varies
from display to display, so make sure that your painting does not depend
on a specific icon size .

6.5 Using an Icon i n a Dialog Box

You can place icons in dialog boxes by using the ICON control state
ment in the DIALOG statement . You have already seen an example of a
DIALOG statement in the About dialog box described with the Generic
application . The DIALOG statement for that box looks like this :

AboutBox DIALOG 2 2 , 17 , 144, 75
STYLE WS_POPUP I WS_DLGFRAME
BEGIN

END

CTEXT "Microso ft Windows"
CTEXT "Generic Application"
CTEXT "Version 1 . 0"
DEFPUSHBUTTON "OK"

- 1 , 37 , 5 , 68 , 8
- 1 , 0 , 14, 144, 8
- 1 , 38 , 34, 64, 8

IDOK, 53 , 59 , 32 , 14, WS_GROUP

You can add an icon to the dialog box by inserting the following ICON
statement immediately after the DEFPUSHBUTTON statement :

I CON "icon" , -1 , 25 , 14, 16 , 21

The name "icon" identifies the icon to be used . The icon must be defined
in an ICON statement elsewhere within the resource script file. For exam
ple, adding the following statement to the resource file satisfies the control
statement :

icon I CON icon . ico

86

Icons

When an icon is added to a dialog box, it is treated like any other control .
It must have a control ID, a position for its upper-left corner, a width , and
a height .

6.6 A Sample Application: Icon

This sample application shows how to incorporate icons in your applica
t ions, in particular, how to do the following:

• Use a custom icon as the class icon .

• Use an icon in the About dialog box.

To create the Icon application, copy and rename the source files of the
Generic application, then make the following modifications:

1 . Add an ICON statement to the resource script file .

2 . Add an ICON control statement to the DIALOG statement in
the resource script file .

3 . Load the custom icon and use it to set the class icon in the initiali
zation function .

This sample assumes that you have created an icon by using Icon Editor
and have saved it in the file named icon.ico.

6 .6.1 Add an ICON Statement

You need to add an ICON statement to your resource script file. Insert the
following line at the beginning of the resource script file, immediately after
the # include statements:

icon I CON icon . ico

6.6.2 Add an ICON Control Statement

You need to add an ICON control statement to the DIALOG statement .
Insert the following line immediately after the DEFPUSHBUTTON
statement :

I CON " icon" , - 1 , 25 , 14, 16 , 21

87

Microsoft Windows Programmer's Learning Guide

6.6.3 Set the Class Icon

You can set the class icon by adding the following statement to the initial
ization function in the C-language source file :

pWndClass->h!con = Load!con (h!nstance , " icon") ;

No other changes are required.

6.6 .4 Compile and Link

No changes are required to the make file to recompile and link the Icon
application . When the application is recompiled, start Windows and the
Icon application . Now, if you choose the About command, the About dia
log box will look like Figure 6 .2 :

88

t::3 1 l c o n SaMPle A p p l .J. c a "t" .1. o n � lf2D"J

M�oroso�� Windows
l oon Appl.J.o•t".ion

Uers.lon 1 . 0

Figure 6.2 The About Dialog Box in Icon

Chapter 7

The Cursor, the Mouse,
and the Keyboard

7. 1 Introduction 91
7 .2 Using the Cursor 91

7.2. 1 Class Cursor 91
7.2 .2
7.2.3
7.2.4
7.3

7.3. 1

7.3.2
7.3.3
7.4
7.4. 1
7.4.2

Creating Cursors 92
Displaying Your Own Cursor 93
Showing the Hourglass on a Lengthy Operation

Using the Mouse 94

Starting a Graphics Selection 95
Showing the Selection 97
Ending the Selection 97

Using the Cursor with the Keyboard 98
Using the Keyboard to Move the Cursor 98
Using the Cursor
when No Mouse Is Available 101

7.5 A Sample Application: Cursor 102
7.5. 1 Add the CURSOR Statement 103
7.5 .2 Add New Variables 103
7.5.3 Set the Class Cursor 103
7.5.4 Prepare the Hourglass Cursor 104
7.5.5 Add a Lengthy Operation 104
7.5.6 Add the WM._ lBUTfONDOWN,

WM._ MOUSEMOVE,
and WM._ lBUTfONUP Cases 105

7.5.7 Add the W!vL KEYDOWN Case 106
7.5.8 Compile and Link 107

89

The Cursor, the Mouse, and the Keyboard

7.1 Introduction

The system cursor is a bitmap that shows the user where actions initiated
by the mouse will take place . Most applications use the cursor with either
the mouse or the keyboard to let the user make selections, choose com
mands, and direct other actions within an application . Some of these
actions are carried out automatically by Microsoft Windows; others must
be carried out by the application . This chapter explains the purpose of
the system cursor and shows how to use it in your applications . It also
explains how to use the keyboard to carry out functions similar to those
of the mouse, and how to use the cursor when a mouse or other pointing
device is not available in the system.

7.2 Using the Cursor

Since no one cursor shape can satisfy the needs of all applications, Win
dows lets you change the shape of the cursor to a shape appropriate to
your application and the actions it carries out . Within your application ,
you can control the shape of the cursor in a window either by setting the
"class cursor" or by using the SetCursor function to explicitly set the
shape when the cursor moves within the client area of the window. The
following sections explain these two methods .

7.2.1 Class Cursor

A class cursor defines the shape the cursor will take when it enters the
client area of a window belonging to that class. You specify a class cursor
by assigning a cursor handle the hCursor field of the window-class struc
ture before registering the class . For example, to load the built-in arrow
cursor (!DC- ARROW) in your window, you can add the following state
ment to your initialization function :

pWndClass->hCursor = LoadCursor (NULL , IDC_ARROW) ;

For each window created using this class, the built-in arrow cursor will
appear when the user moves the cursor into the window.

Windows provides several built-in cursor shapes. These include the arrow,
hourglass, 1-beam, and cross-hair cursors. An application can use these
shapes for its class cursors by using the LoadCursor function to retrieve
handles to the shapes. To load a built-in cursor , the first argument must

91

Microsoft Windows Programmer's Learning Guide

be NULL (indicating that a built- in cursor is requested) , and the second
argument must specify the cursor to load; for example , the 1-beam cursor
(IDC_ BEAM) , which is typically used in windows that let the user view
and edit text:

pWndCl ass->hCursor = LoadCursor (NULL , IDC_IBEAM) ;

Built-in cursors can also be loaded for purposes other than the class cur
sor. For example, the hourglass cursor is a commonly used to indicate a
lengthy operation, such as reading or writing to a disk file . As such, it is
used only while the lengthy operation is in progress-as described later in
this chapter.

7 . 2 .2 Creating Cursors

You can create and use your own cursor shapes by following three simple
steps: create the cursor by using the Windows 2.0 Icon Editor, add the cur
sor to your resources by using the CURSOR statement , and load the cur
sor by using the LoadCursor function . Figure 7 . 1 shows the first step-a
cursor being edited in Icon Editor:

c:::::l I c on Ednor BUL L S E Y E . CUR �]ll[t�

Figure 7 .1 Icon Editor and a Cursor

When you have created the cursor, save it in a file by using the . cur
filename extension . This is the recommended extension for cursor files.

Next, you need to add a CURSOR statement to your resource script file .
The CURSOR statement specifies the file that contains the cursor and
the name to be used by the application when loading the cursor:

bul lseye CURSOR bul lseye . cur

92

The Cursor, the Mouse, and the Keyboard

In this example, the name of the cursor is "bullseye" , and the cursor is in
the file bullseye. cur.

Finally, you need to load the cursor and assign its handle to the hCursor
field of the window-class structure. Do this before registering the class :

pWndCl ass->hCursor = LoadCursor (hinstance , (LPSTR) "bul lseye") ;

The LoadCursor function loads the cursor from the application 's
resources. The instance handle, hinstance, identifies the application 's
resources and is required . The name "bullseye" identifies the cursor. It is
the same name given in the resource script file.

7 .2 . 3 Displaying Your Own Cursor

An application does not have to define a class cursor. Instead , the applica
tion can set the hCursor field to NULL to indicate no class cursor . If a
window has no class cursor, Windows will not automatically change the
shape of the cursor when it moves into the client area of the window. This
means you will need to display your own cursor .

To change the cursor shape, you need to use the SetCursor function to
set the shape each t ime the cursor moves in the client area. Since Windows
sends a WM_ MOUSEMOVE message to the window on each cursor move
ment , you can manage the cursor by adding the following statements to
the window function :

case WM_MOUSEMOVE :
SetCursor (hMyCursor) ;
break;

To display a cursor, whether built-in or custom, you still need to load it .
In this example, the handle of the loaded cursor has been assigned to the
variable hMyCursor.

Note

If you choose to display your own cursor, you must make sure you
set the class-cursor field to NULL. Otherwise, Windows will attempt
to change the cursor shape even though you do so on each
WM_ MOUSEMOVE message . This will result in a noticeable flicker
as you move the cursor through the window.

ga

Microsoft Windows Programmer's Learning Guide

7 . 2 .4 Showing the Hourglass on a Lengthy Operation

Whenever your application begins a lengthy operation , such as reading or
writing a large block of data to a disk file, you should change the shape of
the cursor to the hourglass. This lets users know that a lengthy operation
is in progress and that they should wait before attempting to continue
their work . Once the operation is complete, you should restore the cursor
to its previous shape .

You can change the shape of the cursor by using the following statements:

HCURSOR hSaveCursor ;
HCURSOR hHourGl ass ;

hHourGl ass = LoadCursor (hinstance , IDC_WAIT) ;

SetCapture (hWnd) ;
hSaveCursor = SetCursor (hHourGlass) ;

I* Lengthy operation *I

SetCursor (hSaveCursor) ;
ReleaseCapture () ;

In this example, the application first captures the mouse input, using the
SetCapture function . This keeps the user from attempting to use the
mouse to carry out work in another application while the lengthy opera
tion is in progress . When the mouse input is captured, Windows directs it
to the specified window, regardless of whether the mouse is in that win
dow. The cursor shape is then set by using the SetCursor function . The
previous shape returned by SetCursor is saved so that it can be restored
by using SetCursor again when the operation is complete . The
ReleaseCapture function releases the mouse input.

7.3 Using the Mouse

The mouse lets the user move a cursor on the screen and enter simple
input through the press of a button. You can use the mouse to carry out
many types of tasks, such as choosing commands from a menu, selecting
text or graphics, or directing scrolling operations. Windows carries out
many of these tasks automatically, but one common task, selection , must
be done by the application itself. The following sections explain how to use
mouse input to select graphics in a window's client area.

94

The Cursor, the Mouse, and the Keyboard

The mouse is j ust one of many possible system pointing devices. Other
pointing devices such as graphics tablets, joysticks, and light pens may
operate differently but still provide input identical to that of a mouse . The
following examples can be used with these devices as well . Remember that
when a pointing device is present, Windows automatically controls the
position and shape of the cursor as the user moves the pointing device .

7 .3 . 1 Starting a Graphics Selection

A simple approach to selecting graphics is to determine a rectangle within
a window's client area and invert the border of the rectangle to show that
it has been selected . You can use the messages WM_ LBUTTONDOWN,
WM_ LBUTTONUP, and WM_MOUSEMOVE to create the rectangle .
This lets the user create the selection by choosing a point, pressing the left
button , and dragging to another point before releasing. While the user
drags the mouse, the application can provide instant feedback by inverting
the border of the rectangle described by the starting and current points.

For this method , you start the selection when you receive the message
WM_ LBUTTONDOWN. You need to do three things: capture the mouse
input, save the starting (original) point, and save the current point :

BOOL bTrack = FALSE ;
int OrgX = 0 , OrgY = 0 ;
int PrevX = 0 , PrevY = 0 ;
int X = 0 , Y = 0 ;

case WMLLBUTTONDOWN :
bTrack = TRUE ;
OrgX = LOWORD (lParam) ;
OrgY = HIWORD (lParam) ;
PrevX = LOWORD (lParam) ;
PrevY = HIWORD (lParam) ;
SetCapture (hWnd) ;
break ;

When the applicat ion receives the WM_ LBUTTONDOWN message, the
bTrack variable is set to TRUE to indicate that a selection is in progress .
As with any mouse message, the lParam parameter contains the current
x- and y-coordinates of the mouse in the low- and high-order words,
respectively . These are saved as the original x and y values, OrgX and
OrgY, as well as the previous values, PrevX and PrevY. The PrevX and
PrevY variables will be updated immediately on the next WM_ MOUSE
MOVE message . The OrgX and OrgY variables remain unchanged and
will be used to determine a corner of the bitmap to be copied . The
SetCapture function directs all subsequent mouse input to the window
even if the cursor moves outside of the window. This is to ensure that the
selection process continues uninterrupted . The variables bTrack, OrgX,
OrgY, PrevX,' and PrevY must be global variables.

Mlcrosoft Windows Programmer's Learning Guide

If there is any previous selection, it should be cleared before starting the
new selection . Clearing the selection means restoring the inverted screen
to its previous state . You can restore the inverted screen by adding the fol
lowing statements to the beginning of the WM_ LBUTIONDOWN case :

i f (OrgX ! = X 1 1 OrgY ! = Y) { I* Clears previous box *I
hDC = GetDC (hWnd) ;
SetROP2 (hDC, R2_NOT) ;
MoveTo (hDC, OrgX, OrgY) ;
LineTo (hDC, OrgX, Y) ;
LineTo (hDC , X , Y) ;
LineTo (hDC, X, OrgY) ;
LineTo (hDC, OrgX, OrgY) ;
ReleaseDC (hWnd, hDC) ;

}

In some applications, you may want to be able to extend an existing selec
tion . One way to do this is to have the user hold the SHIFT key when creat
ing a selection . Since the wParam parameter contains a flag that specifies
whether the SHIFT key is being pressed, it is easy to check for this and to
extend the selection , as necessary . In this case , extending a selection means
preserving its previous OrgX and OrgY values when you start it. To do
this, change the \VM_ LBUTTONDOWN case so it looks like this:

case WM_LBUTTONDOWN :
bTrack = TRUE ;

}

}

i f (OrgX ! = X 1 1 OrgY ! = Y) { I* Clears previous box *I
hDC = GetDC (hWnd) ;
SetROP2 (hDC, R2_NOT) ;
MoveTo (hDC , OrgX, OrgY) ;
LineTo (hDC , OrgX, Y) ;
LineTo (hDC, X , Y) ;
LineTo (hDC, X, OrgY) ;
LineTo (hDC, OrgX, OrgY) ;
ReleaseDC (hWnd, hDC) ;

PrevX = LOWORD (lParam) ;
PrevY = HIWORD (lParam) ;
i f (! (wParam & MK_SHIFT)) { I* I f shi ft key is not pressed *I

OrgX = LOWORD (lParam) ;
OrgY = HIWORD (lParam) ;

e lse { I* Shi ft key is pressed, update the current box *I
hDC = GetDC (hWnd) ;
SetROP2 (hDC , R2_NOT) ;
MoveTo (hDC, OrgX, OrgY) ;
LineTo (hDC , OrgX, PrevY) ;
LineTo (hDC, PrevX, PrevY) ;
LineTo (hDC, PrevX, OrgY) ;
LineTo (hDC , OrgX, OrgY) ;
ReleaseDC (hWnd, hDC) ;

}

SetCapture (hWnd) ;
break;

9 6

The Cursor, the Mouse, and the Keyboard

7 .3 .2 Showing the Selection

As the user makes the selection, you need to provide feedback about his or
her progress . You can do this by drawing a border around the rectangle by
using the LineTo function on each new WM_ MOUSEMOVE message . To
prevent losing information already on the display, you need to draw a line
that inverts the screen rather than drawing over it . You can do this by
using the SetROP2 function to set the binary raster mode to R2- NOT.
The following statements perform this function :

case WM_MOUSEMOVE :
i f (bTrack) {

}
break ;

hDC = GetDC (hWnd) ;
SetROP2 (hDC , R2_NOT) ; I* Erases the previous box *I
MoveTo (hDC, OrgX, OrgY) ;
LineTo (hDC, OrgX, PrevY) ;
LineTo (hDC, PrevX, PrevY) ;
LineTo (hDC, PrevX, OrgY) ;
LineTo (hDC, OrgX, OrgY) ;

PrevX = LOWORD (lParam) ;
PrevY = HIWORD (lParam) ;
MoveTo (hDC, OrgX, OrgY) ; I* Draws the new box *I
LineTo (hDC, OrgX, PrevY) ;
LineTo (hDC, PrevX, PrevY) ;
LineTo (hDC, PrevX, OrgY) ;
LineTo (hDC, OrgX, OrgY) ;
ReleaseDC (hWnd, hDC) ;

A WM_ MOUSEMOVE message is processed only if bTrack is TRUE (that
is, if a selection is in progress) . The purpose of the WM_ MOUSEMOVE
processing is to remove the border around the previous rectangle and draw
a new border around the rectangle described by the current and original
position . Since the border is actually the inverse of what was originally on
the display, inverting again restores it completely. The first four LineTo
functions remove the previous border. The next four draw a new border.
Before drawing the new border, the PrevX and PrevY values are updated
by assigning them the current values contained in the lParam parameter.

7 .3 .3 Ending the Selection

Finally, when the user releases the left button, you need to save the final
point and signal the end of the selection process. The following statements
complete the selection :

case WM_LBUTTONUP :
bTrack = FALSE ;
ReleaseCapture () ;

X = LOWORD (lParam) ;
Y = HIWORD (lParam) ;
break ;

I* I gnores mouse input *I
I* Releases hold on mouse input *I

I* Saves the current value *I

97

Microsoft Windows Programmer's Learning Guide

When the application receives a WM_ LBUTTONUP message, it immedi
ately sets the value of bTrack to FALSE to indicate that selection process
ing has been completed . It also releases the mouse capture by using the
ReleaseCapture function . It then saves the current mouse position in the
variables, X and Y.

For some applications, you may want to check the final mouse position
to make sure it represents a point to the lower right of the original point .
This is the way most rectangles are described-by their upper- left and
lower-right corners .

The ReleaseCapture function is required since a corresponding
SetCapture function was called . In general, you should release the mouse
immediately after the mouse capture is no longer needed.

7.4 Using the Cursor with the Keyboard

Windows does not require a pointing device, so many applications that
would otherwise use the mouse for input must provide the user with a way
to duplicate these actions with the keyboard . Applications that use the
cursor to track keyboard motion can use the SetCursorPos, SetCursor,
GetCursorPos, ClipCursor, and ShowCursor functions to display and
move the cursor.

7 .4 . 1 Using the Keyboard to Move the Cursor

You can use the SetCursorPos function to move the cursor directly from
your application. This function is typically used to let the user move the
cursor by using the keyboard .

To move the cursor, use the WM_ KEYDOWN message and filter for
the virtual key values of the DIRECTION keys: VIL LEFT, VIL RIGHT,
VIL UP, and VIL DOWN. On each each keystroke , you can update the
position of the cursor :

POINT ptCursor ;

case WM_KEYDOWN :

98

if (wParam != VK_LEFT I I wParam != VK_RIGHT I I
wParam ! = VK_UP I I wParam ! = VK_DOWN)
break ;

GetCursorPos (&ptCursor) ;
ScreenToClient (hWnd, &ptCursor) ;

switch (wParam) {

The Cursor, the Mouse, and the Keyboard

}

case VK_LEFT :
ptCursor . x = 1 ;
break ;

case VK_RIGHT :
ptCursor . x += 1 ;
break ;

case VK_UP :
ptCursor . y -= 1 ;
break;

case VK_DOWN :
ptCursor . y += 1 ;
break ;

ClientToScreen (hWhd, &ptCursor) ;
SetCursorPos (&ptCursor) ;
break ;

If the mouse is also available, you may want to retrieve the current cursor
by using the GetCursorPos function . Since the user could potentially
move the cursor with the mouse at any time, there is no guarantee that
the position values you saved on the last keystroke are correct . The exam
ple shows how to retrieve the cursor position and convert the coordinates
to client coordinates.

The SetCursorPos function moves the cursor to the desired location .
Notice that the SetCursorPos function requires screen coordinates rather
than client coordinates. This means that you need to convert the coordi
nates before calling the function, by using the ClientToScreen function .
In this example, the cursor position is saved in client coordinates for two
reasons: mouse messages give the mouse position in client coordinates, and
client coordinates do not need to be updated if the window moves. In other
words, it is convenient to use client coordinates because the system uses
them and because it means less work for the application .

You should also check the cursor motion so that it remains within the
client area. A simple way to check this is to retrieve the current size of the
client area by using the GetClientRect function :

RECT Rect ;

GetCl ientRect (hWnd, &Rect) ;
break ;

You can then check the current cursor position before setting it , and , if
necessary, adjust it :

if (ptCursor . x >= Rect . right)
ptCursor . x = Rect . right - 1 ;

else i f (ptCursor . x < Rect . le ft)
ptCursor . x = Rect . le ft ;

i f (ptCursor . y > = Rect . bottom)
ptCursor . y = Rect . bottom - 1 ;

9 9

Microsoft Windows Programmer's Learning Guide

else i f (ptCursor . y < Rect . top)
ptCursor . y = Rect . top ;

Another enhancement you might make is to allow for accelerated cursor
motion . Advancing the cursor one unit for each keystroke can be frustrat
ing for users if they need to move to the other side of the screen . You can
accelerate the cursor motion by increasing the number of units the cursor
advances when the user holds down a key . When the user holds down a
key, Windows sends multiple WM_ KEYDOWN messages without match
ing WM_ KEYUP messages. To accelerate the cursor, you simply increase
the number of units to advance on each WM_ KEYDOWN message . The
following statements show how to do this:

int repeat = 1 ;

repeat++ ; I* Increases the repeat rate *I

switch (wParam) {

case VK_LEFT :

}

ptCursor . x -= repeat ;
break ;

case VK_RIGHT :
ptCursor . x += repeat ;
break ;

case VK_UP :
ptCursor . y -= repeat ;
break ;

case VK_DOWN :
ptCursor . y += repeat ;
break ;

de fault :
return (NULL) ;

You need to restore the initial value of the repeat variable when the user
releases the key. You can do this by using the WM_ KEYUP message . The
following statements show how to do this :

case WM_KEYUP :
repeat = 1 ;
break ;

100

I* Clears the repeat count *I

The Cursor, the Mouse, a.nd the Keyboard

7 .4 .2 Using the Cursor
when No Mouse Is Available

When no mouse is available, the application must display and move the
cursor in response to keyboard actions. To determine whether a mouse is
present, you can use the GetSystemMetrics function and specify the
SM_ MOUSEPRESENT option :

GetSystemMetrics (SM_MOUSEPRESENT) ;

This function returns TRUE if the mouse is present .

You will need to display the cursor and update the cursor position when
the application is activated, and hide the cursor when the application is
deactivated . The following statements carry out both activation functions:

case WM_ACTIVATE :
i f (! GetSystemMetrics (SM_MOUSEPRESENT)) {

i f (! HIWORD (lParam)) {

}
}
break ;

i f (wParam) {

}

SetCursor (hMyCursor) ;
ptCursor . x = CursorX;
ptCursor . y = CursorY;
ClientToScreen (hWnd, &ptCursor) ;
SetCursorPos (ptCursor . x , ptCursor . y) ;

ShowCursor (wParam) ;

The cursor functions are called only if the system has no mouse; that is,
if the GetSystemMetrics function returns FALSE. Since Windows posi
t ions and updates the cursor automatically if a mouse is present, the cur
sor functions, if carried out , would disrupt this processing .

The next step is to determine whether or not the window is iconic . The
cursor must not be displayed or updated if the window is an icon . In a
WM_ ACTIVATE message, the h igh-order word is nonzero if the window
is iconic, so the cursor functions are called only if this value is zero.

The final step is to check the wParam parameter to determine whether the
window is being activated or deactivated. This parameter is nonzero if the
window is being activated . When a window is activated, the SetCursor
function sets the shape and the SetCursorPos function positions it .
The ClientToScreen function converts the cursor position to screen
coordinates as required by the SetCursorPos function . Finally, the
ShowCursor function shows or hides the cursor depending on the value
of the wParam parameter.

101

Microsoft Windows Programmer's Learning Guide

When the system has no mouse installed , applications must be careful
when using the cursor. In general, applications must hide the cursor when
the window is closed , destroyed , or relinquishes control . If an application
fails to hide the cursor, it prevents subsequent windows from using the
cursor . For example, if an application sets the cursor to the hourglass,
displays the cursor, then relinquishes control to a dialog box, the cursor
remains on the screen (possibly in a new shape) , but cannot be used by the
dialog box.

7. 5 A Sample Application: Cursor

This sample application illustrates how you incorporate cursors and how
you use the mouse and keyboard in your applications . The Cursor applica
t ion shows how to do the following:

• Use a custom cursor as the class cursor.

• Show the hourglass cursor during a lengthy operation .

• Use the mouse to select a portion of the client area.

• Use the keyboard to move the cursor .

To create the Cursor application , copy and rename the source files of the
Generic application, then make the following modifications:

1 . Add a CURSOR statement to your resource script file .

2 . Add new variables .

3 . Load the custom cursor and use it to set the class cursor in the ini
tialization function .

4 . Add a lengthy operation to the window function (for simplicity, use
the ENTER key to trigger the operation) .

5 . Add the WM- LBUTTONDOWN, WM- MOUSEMOVE, and
WM- LBUTTONUP cases to the window function to support
selection .

6 . Add the WM- KEYDOWN case to the window function to support
keyboard-controlled cursor movement .

This sample assumes that your system has a mouse, so i f your system does
not, the application may not operate as described . However, it is a fairly
straightforward task to adjust the sample to work with both the mouse
and the keyboard or with only the keyboard .

102

The Cursor, the Mouse, and the Keyboard

7 .5 . 1 Add the CURSOR Statement

To use a custom cursor, you need to create a cursor file, using Icon Editor,
and give the name of the file in a CURSOR statement in the resource
script file . Add the following statement to your resource script file :

bul lseye CURSOR bul lseye . cur

Make sure that the cursor file, bullseye. cur, contains a cursor .

7.5.2 Add New Variables

You will need several new variables for this sample application . Place the
following statements at the beginning of your C-language source file :

char str [255] ; I* genera l -purpose string buffer *I

HCURSOR hSaveCursor ; I* handle to current cursor *I
HCURSOR hHourGlass ; I* handle to hourglass cursor *I

BOOL bTrack = FALSE ; I* TRUE i f l e ft button c l icked •I
int OrgX = 0 , OrgY = 0 ; I * original cursor position *I
int PrevX = 0 , PrevY = 0 ; I* current cursor position *I
int X = 0, y = 0; I* l ast cursor position *I
RECT Rect ; I* selection rectangle * I

POINT ptCursor ; I* x and y coordinates of cursor *I
int repeat = 1 ; I• repeat count o f keystroke *I

The hSaveCursor and hHourGlass variables hold the cursor handles to be
used for the lengthy operation . The bTrack parameter holds a Boolean flag
indicating whether a selection is in progress. The variables OrgX, OrgY,
PrevX, and PrevY hold the original and current mouse positions as a selec
tion is being made . OrgX and OrgY, along with the variables X and Y,
hold the original and final coordinates of the selection when the selection
process is complete . The ptCursor structure holds the current position of
the cursor in the client area. This is updated when the user presses a
DIRECTION key. The Rect structure holds the current dimensions of the
client area and is used to make sure the cursor stays within the client area.
The repeat variable holds the current repeat count for keyboard motion .

7.5.3 Set the Class Cursor

To set the class cursor, you need to modify a statement in the initializa
tion function . Specifically, you need to assign the cursor handle the
hCursor field of the window-class structure . Make the following change
in the C-language source file. Find this line :

pWndClass->hCursor = LoadCursor (NULL , IDC_ARROW) ;

103

Microsoft Windows Programmer's Learning Guid�

Change it to the following:

pWndCl ass->hCursor = LoadCursor (hinstance , "bul lseye") ;

7 .5.4 Prepare the Hourglass Cursor

Since you will be using the hourglass cursor during a lengthy operation,
you need to load it . The most convenient place is to load it in the
WM_ CREATE case as the window is being created. Add the following
statement :

hHourGl ass = LoadCursor (NULL , IDC_WAIT) ;

This makes the hourglass cursor available whenever it is needed .

7.5.5 Add a Lengthy Operation

A lengthy operation can take many forms. In this sample , it will be a func
t ion named "sieve" that computes several hundred prime numbers. The
operation begins when the user presses the ENTER key. Add the following
statements to the window function :

case WM_CHAR : ') {
i f (wParam = '
SetCapture (hWnd) ;

}

hSaveCursor = SetCursor (hHourGlass) ;

hDC = GetDC (hWnd) ;
TextOut (hDC, 1 , 1 , "Calculating prime numbers . . . " , 28) ;
sprint f (str , "Calculated %d primes . " , sieve ()) ;
TextOut (hDC, 1 , 1 , str , str len (str)) ;
ReleaseDC (hWnd, hDC) ;

SetCursor (hSaveCursor) ; I* Restores previous cursor *I
ReleaseCapture () ;

break ;

When the ENTER key is pressed , Windows generates a WM_ CHAR message
whose wParam parameter contains an ANSI value representing the
carriage-return value. When the window function receives a WM_ CHAR
message, it checks for this value and carries out the sample lengthy opera
tion, sieve . This function, called Eratosthenes Sieve Prime-Number Pro
gram, is from Byte, January 1983 . It is defined as follows:

ide fine NITER 20
#de fine SIZE 8190

char flags [SI ZE+1) = { 0} ;

104

The Cursor, the Mouse, and the Keyboard

sieve () {
int i , k ;

}

int iter , count ;

for (iter = 1 ; iter <= NITER ; iter++) {
count = 0 ;

}

for (i = 0 ; i <= SIZE ; i++)
flags [i] = TRUE ;

for (i = 2 ; i <= SIZE ; i++) {
i f (flags [i]) {

}
}

for (k = i + i ; k <= SIZE ; k += i)
fl ags [k] = FALSE ;

count++ ;

return (count) ;

7.5.6 Add the WM:.... LBUTTONDOWN,
WM:.... MOUSEMOVE,
and WM.. LBUTTONUP Cases

To carry out a selection , you can add the statements as described in Sec
t ion 7 .3 , "Using the Mouse . " Add the following statements to your window
function :

case WM_LBUTTONDOWN :
bTrack = TRUE ;

i f (OrgX ! = X I I OrgY ! = Y) {
hOC = GetDC (hWnd) ;
SetROP2 (hDC, R2_NOT) ;
MoveTo (hDC, OrgX, OrgY) ;
LineTo (hDC, OrgX, Y) ;
LineTo (hDC, X, Y) ;
LineTo (hDC , X , OrgY) ;
LineTo (hDC, OrgX, OrgY) ;
ReleaseDC (hWnd, hOC) ;

}

I* Clears previous box *I

PrevX = LOWORD (lParam) ;
PrevY = HIWORD (lParam) ;
i f (! (wParam & MK_SHIFT)) { I* I f shi ft key is not pressed *I

}

OrgX = LOWORD (lParam) ;
OrgY = HIWORD (lParam) ;

e lse { I* Shi ft key is pressed, update the current box *I
hOC = GetDC (hWnd) ;
SetROP2 (hDC, R2_NOT) ;
MoveTo (hDC, OrgX, OrgY) ;
LineTo (hDC, OrgX , PrevY) ;
LineTo (hDC, PrevX, PrevY) ;
LineTo (hDC , PrevX, OrgY) ;
LineTo (hDC, OrgX, OrgY) ;
ReleaseDC (hWnd, hOC) ;

}

105

Microsoft Windows Programmer's Learning Guide

SetCapture (hWnd) ;
break ;

case WM_MOUSEMOVE :
i f (bTrack) {

hDC = GetDC (hWnd) ;
SetROP2 (hDC, R2_NOT) ;
MoveTo (hDC, OrgX, OrgY) ;
LineTo (hDC, OrgX, PrevY) ;
LineTo (hDC, PrevX, PrevY) ;
LineTo (hDC , PrevX, OrgY) ;
LineTo (hDC, OrgX, OrgY) ;

I* Erases the previous box *I

PrevX = LOWORD (lParam) ;
PrevY = HIWORD (lParam) ;
MoveTo (hDC, OrgX, OrgY) ;
LineTo (hDC, OrgX, PrevY) ;
LineTo (hDC , PrevX, PrevY) ;
LineTo (hDC, PrevX, OrgY) ;
LineTo (hDC, OrgX, OrgY) ;
ReleaseDC (hWnd, hDC) ;

I* Draws the new box *I

}
break ;

case WM_LBUTTONUP :
bTrack = FALSE ;
Rel easeCapture () ;

I* I gnores mouse input *I
I* Releases ho ld on mouse input *I

X = LOWORD (lParam) ;
Y = HIWORD (lParam) ;
break ;

I* Saves the current va lue

7.5.7 Add the WM_ KEYDOWN Case

*I

In order to use the keyboard to control the cursor, you need to add a
WM_ KEYDOWN case to the window function . The statements in this
case should retrieve the current position of the cursor and update the posi
tion when a DIRECTION key is pressed . Add the following statements to the
window function :

case WM_KEYDOWN :

106

GetCursorPos (&ptCursor) ;
i f (wParam ! = VK_LEFT I I wParam ! = VK_RIGHT I I

wParam ! = VK_UP 1 1 wParam ! = VK_DOWN)
break ;

ScreenToCl ient (hWnd, &ptCursor) ;
repeat++ ; I* Increases the repeat rate *I

switch (wParam) {

case VK_LEFT :
ptCursor . x - = repeat ;
break ;

case VK_RIGHT :
ptCursor . x += repeat ;
break ;

The Cursor, the Mouse, and the Keyboard

case VK_UP :
ptCursor . y -= repeat ;
break ;

case VK_DOWN :
ptCursor . y += repeat ;
break ;

de fault :
return (NULL) ;

}

GetClientRect (hWnd, &Rect) ; I* Gets the c l ient boundaries *I

i f (ptCursor . x >= Rect . right)
ptCursor . x = Rect . right - 1 ;

e lse i f (ptCursor . x < Rect . le ft)
ptCursor . x = Rect . le ft ;

i f (ptCursor . y > = Rect . bottom)
ptCursor . y = Rect . bottom - 1 ;

e lse i f (ptCursor . y < Rect . top)
ptCursor . y = Rect . top ;

case WM_KEYUP :
repeat = 1 ;
break ;

I* Clears the repeat count *I

The GetCursorPos function retrieves the cursor position in screen
coordinates. To check the position of the cursor within the client area,
the coordinates are converted to client coordinates by using the
ScreenToClient function . The switch statement checks for the
DIRECTION keys and adds the content of the repeat-count field of the
lParam parameter to the current position . The new position is checked to
make sure it is still in the client area, using the GetClientRect function
to retrieve the dimensions of the client area. The position is adjusted , if
necessary . Finally, the ClientToScreen function converts the position
back to screen coordinates and the SetCursorPos function sets the new
position .

7 .5.8 Compile and Link

No changes are required to the make file to recompile and link the Cursor
application . When the application is recompiled , start Windows and the
Cursor application . When you move the cursor into the client area it
should look like Figure 7 . 2 :

107

Microsoft Windows Programmer's Learning Guide

� C u r s o r S a "'p l e A p p 1 1 c a t 1 o n lf.JitJ

Figure 7.2 Cursor Window

Press and hold down the left mouse button, then drag the mouse to a new
position and release the mouse button . You should see a selection that
looks like Figure 7 . 3 :

� C u r s o r S a ,. p l e A p p l .J. c a t" .1. o n I!J("tll

Figure 7.3 A Selection in Cursor

Now press the DIRECTION keys to move the cursor. Then press the ENTER
key to view the lengthy operation .

108

Chapter 8

Menus

8.1 What Are Menus? 1 1 1
8 . 2 Using Menus 1 1 1
8.2. 1 Defining a Menu 1 1 1
8.2 .2 Setting the aass Menu 1 12

8.2.3 Setting a Window Menu 112
8 .3 Modifying Menus 1 13

8.3. 1 Replacing a Menu 1 13
8.3.2 Enabling/Disabling Menu Items 1 14
8.3.3 Checking Menu Items 1 14
8.3.4 Using the WNL INITl\1ENU Message 1 15
8.3.5 Changing Existing Menus 1 16

8.3.6 Adding Bitmaps to Menus 1 17
8.4 Using the System Menu 1 18
8.4. 1 The Default System Menu 1 18
8.4.2 Changing the System Menu 1 18
8.4.3 Adding Items to the System Menu 1 19
8.4.4 System-Menu Accelerators 120
8.5 A Sample Application: FileMenu 120
8.5. 1 Add a File Menu to the Resource File 121
8.5.2 Add Definitions to the Include File 122
8.5.3 Add the WNL C011MAND Case 122
8.5.4 Delete the WNL CREATE and

WNL SYSC011MAND Cases 123
8.5.5 Compile and Link 124

8.6 A Sample Application: EditMenu 125
8.6. 1 How Accelerator Keys Work 126

109

8.6.2

8.6.3

8.6.4

8.6.5

8.6.6
8.6.7

8.6.8

110

Add an Edit Menu to the Resource File 126

Add an Accelerator Table to the Resource File

Add a New Variable 127

Load the AcceleFator Table 128

Modify the Message Loop 128

Modify the \VM_ Corrnnand Case 129

Compile and Link 129

127

Menus

8. 1 What Are Menus?

A menu is a list of items, called menu items, which are names or bitmaps
that represent actions an application can take. Menu items are the appli
cation 's command names. The user can direct the application to carry out
a command by using either the mouse or the keyboard to choose the
corresponding menu item. When a user chooses a command, Microsoft
Windows sends a message to the application specifying which command
was chosen .

This chapter shows how to create menus for your applications and how to
process input from menus. It also shows how to use keyboard accelerators
and command mnemonics with menus. Finally, it shows how to modify
menus, use bitmaps with menus, and make special use of the application 's
system menu .

8.2 Using Menus

You can use a menu in any overlapped or pop-up window, but not in a
child window. To use a menu, you can register a class menu, which is
applied by default whenever you create a window of that class, or you
can explicitly specify a menu when you create the window. Before using
a menu, however, you must define it in your application 's resource
script file.

8.2.1 Defining a Menu

You can define the content of a menu by using a MENU statement in the
application 's resource script file . The following MENU statement illus
trates a simple class menu :

de fine IDM_COMMANDl 1
de fine IDM_COMMAND2 2
de fine IDM_COMMAND3 3
de fine IDM_COMMAND4 4

SimpleMenu MENU
BEGIN

END

MENUITEM "Commandl" , IDM_COMMANDl
MENUITEM "Command2" , IDM_COMMAND2
POPUP "Menul"
BEGIN

MENUI TEM " Command3 " , IDM_COMMAND3
MENUI TEM "Command4" , IDM_COMMAND4

END

111

Microsoft Windows Programmer's Learning Guide

The menu , named "SimpleMenu" , contains two commands: Commandl
and Command2, and a single pop-up menu, Menul . The Menul menu con
tains two commands: Command3 and Command4. Each command has a
unique identifier, or menu ID. Windows passes the menu ID of a command
to �he 3fPlication when the user chooses the command. Menu IDs must be
umque constants.

8.2.2 Setting the Class Menu

The default menu for any window is the class menu. You define the class
menu when you register the window class. To define a class menu , you
assign the name of the menu, as given in the resource file , to the
lpszMenuName field of the window-class structure . In the following
statement, the class menu is named "SimpleMenu" :

pWndC l ass-> lpszMenuName = (LPSTR) "SimpleMenu"

In this example, the pWndClass variable is assumed to point to a
WndClass data structure . The menu name is the name given to the menu
in the application 's resource file.

Once a class menu has been registered, each window of that class will have
a class menu unless you override the default by explicitly supplying a
menu handle when you create the window.

8.2.3 Setting a Window Menu

You don ' t have to use the class menu for a window. Instead, you can set a
window's menu when you create the window by specifying a menu handle
with the Create Window function . A menu handle, returned by the
CreateMenu or LoadMenu function, identifies the menu . The following
example shows how to load and specify a menu by using Create Window:

HWND hWnd;
HMENU hMenu;

hMenu = LoadMenu (hinstance , "SimpleMenu") ;
hWnd = CreateWindow ("Sample" ,

112

"Sample" ,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT ,
CW_USEDEFAULT,
(HWND) NULL ,

hMenu ,
h!nstance ,
(LPSTR) NULL) ;

Menus

The LoadMenu function loads the menu named "SimpleMenu" . The
hlnstance variable specifies that the resource is to be loaded from the
application's resources. The returned menu handle is used in the
Create Window function to override the class menu, if one exists.

8.3 Modifying Menus

You can modify a menu at any time, or even create new menus, by
using the EnableMenultem, CheckMenultem, CreateMenu, and
ChangeMenu functions. These functions let you enable and disable a
menu item; put a checkmark by a menu item; add , delete, or modify a
menu item; and even replace an entire menu. These functions also let you
modify a menu, as necessary, during the execution of an application.

Modifying a menu for a window that uses the class menu will not affect the
menus of other windows in the same class . When a window is created, it
receives a private copy of the class menu. It can change this private copy
without affecting the menus of other windows.

8.3.1 Replacing a Menu

You can replace a window's menu by using the SetMenu function . The
SetMenu function is typically used when the application changes modes
and needs a completely new set of commands. For example, an application
could replace a spreadsheet menu with a charting menu when the user
changes from a spreadsheet to a charting mode.

In the following example, the GetMenu function retrieves the current
menu handle from the specified window and saves it for restoring later.
The SetMenu function replaces the current menu with a customized menu
loaded from the application 's resources .

HMENU hMenu ;
HMENU hOldMenu;

hOldMenu = GetMenu (hWnd) ;
hMenu = LoadMenu (hinstance , "CustomMenu") ;
SetMenu (hWnd, hMenu) ;

The customized menu can also be loaded from resources other than
those belonging to the application (by using the module handle of a
library) , or could be created in memory by using the CreateMenu and
ChangeMenu functions .

113

Microsoft Windows Programmer's Learning Guide

8.3.2 Enabling/Disabling Menu Items

You can enable or disable a menu item by using the EnableMenultem
function . This function enables, disables, or grays a command. A disabled
command looks unchanged, but does not respond to mouse clicks or selec
tion by the keyboard . A grayed command has a grayed command name
and does not respond to mouse clicks or selection by the keyboard . You
typically disable or gray a menu item when the action it represents is not
appropriate . For example, you can gray the Print command in the File
menu when there is no printer currently installed in the system.

The following example disables the command whose menu ID is
IDNL SAVE:

EnableMenuitem (hMenu, IDM_SAVE , MF_DISABLED) ;

The following example disables the command whose menu ID is
IDM_ PRINT and redisplays the command name in gray letters:

EnableMenuitem (hMenu, IDM_SAVE , MF_GRAYED) ;

You can enable a command or menu by using the MF_ ENABLED option .
If you change menus or commands in the menu bar, you will need to call
the DrawMenuBar function to display the changes. In the following
example, the command identified by ID- EXIT is enabled and the menu
bar is redrawn to display the change :

EnableMenuitem (hMenu, ID_EXIT , MF_ENABLED) ;
DrawMenuBar (hMenu) ;

You can specify the initial state of a menu or command by using the
INACTIVE and GRAYED options with the MENUITEM statement
in your resource script file . For example, the following statement sets the
initial state of the Print command to grayed:

MENUITEM "Print" , IDM_PRINT , GRAYED

The option applies only to the initial state of the menu . You can change
the state by using the EnableMenultem function in your C-language
source file .

8.3.3 Checking Menu Items

You can place or remove a checkmark next to a specified menu item by
using the CheekMenultem function . You typically check a menu item
when it is in a group of commands that are mutually exclusive . The check
mark indicates the user 's latest choice . For example, if the group of com
mands is Left, Right, and Center, you can put a checkmark by Left to
show that it is the latest command chosen by the user .

114

Menus

The following example places a checkmark next to the item whose menu
ID is IDN.L LEFT:

CheckMenuitem (hMenu, IDM_LEFT , MF_CHECKED) ;

The following example removes the check (if any) from the item whose
menu ID is IDJ\.L RIGHT:

CheckMenuitem (hMenu , IDM_RIGHT , MF_UNCHECKED) ;

If you change menu items in the menu bar, you will need to call the
DrawMenuBar function to display the changes.

You can place an initial checkmark next to a command by using the
CHECKED option in the MENUITEM statement in the resource file .
The following example shows how to make an initial checkmark in the
resource file:

MENUITEM "Le ft" , IDM_LEFT , CHECKED

This option applies only to the initial state of the menu . You can change
the state by using the CheckMenultem function in your 0-language
source file .

8.3.4 Using the "WM_ INI�NU Message

Windows sends a WJ\.L INITMENU message to the window function own
ing a menu just before Windows displays the menu . This lets the window
function check and modify the state of the menu items before the menu is
displayed. In the following example, the window function processes the
WJ\.L INITMENU message , setting the state of a command based on the
value of the wChecked variable:

WORD wChecked = IDM_LEFT ;

case WM_INITMENU :
i f (GetMenu (hWnd) ! = wParam)

break ;
CheckMenuitem (wParam, IDM_LEFT,

IDM_LEFT == wChecked ? MF_CHECKED : MF_UNCHECKED) ;
CheckMenuitem (wParam, IDM_CENTER,

IDM_CENTER == wChecked ? MF_CHECKED : MF_UNCHECKED) ;
CheckMenuitem (wParam, IDM_RIGHT ,

IDM_RIGHT == wChecked ? MF_CHECKED : MF_UNCHECKED) ;
break ;

115

Microsoft Windows Programmer's Learning Guide

The WM_ INITMENU message passes the given menu handle in the
wParam parameter. To make sure the menu about to be displayed is the
window's menu, the GetMenu function retrieves a handle to the current
window's menu that can be compared with wParam. If these are not equal,
the window's menu should not be initialized. Otherwise, you can use the
CheckMenultem function to initialize the commands in the menu .

The following expression , and the others like it in this example , are quick
ways to check the value of the latest command, and to choose the correct
initializing action based on that value :

(IDM_LEFT = wChecked) ? MF_CHECKED : MF_UNCHECKED;

8.3.5 Changing Existing Menus

You can change the appearance and order of menus and menu items by
using the ChangeMenu function . The function can add items to new or
existing menus and change the status of new or existing menu items.

In the following example, the Chan�eMenu function adds a pop-up menu
named "Go" to the window's menu (the Go menu lists four commands:
Home, Work , Store , and Park) :
HMENU hMenu;
HMENU hPopupMenu;

hMenu = GetMenu (hWnd) ;
hPopupMenu = CreateMenu () ;

ChangeMenu (hMenu,
2 ,
"&Go" ,
hPopupMenu,
MF_CHANGE I MF_POPUP MF_BYPOSI TION) ;

ChangeMenu (hPopupMenu ,
0 ,
"&Home" ,
IDM_CAR,
MF_APPEND I MF_STRING MF_BYCOMMAND) ;

ChangeMenu (hPopupMenu,
0 ,
"&Work" ,
IDM_HOUSE ,
MF_APPEND I MF_STRING MF_BYCOMMAND) ;

ChangeMenu (hPopupMenu,
0 ,

116

"&Store" ,
IDM_CLOTHES ,
MF_APPEND MF_STRING MF_BYCOMMAND) ;

ChangeMenu (hPopupMenu ,
0 ,
" &Park" ,
IDM_SERVICES ,
MF_APPEND i MF_STRING i MF_BYCOMMAND) ;

Menus

In this example, the GetMenu function retrieves a handle to the menu
of the window identified by the h Wnd variable. The CreateMenu func
tion creates a new menu whose handle is assigned the hPopupMenu vari
able . The first ChangeMenu function adds the new menu to the window
menu. The .MF_ CHANGE, .MF_ POPUP, and .MF_ BYPOSITION flags
specify that ChangeMenu should replace (MF _ CHANGE) the existing
menu at position 2-the third item from the left end of the menu
(MF_ BYPOSITION)-with the new pop-up menu (MF- POPUP) .
The next four ChangeMenu functions append four menu items to the
new pop-up menu . In each case , the pop-up menu is identified by its han
dle, hPopupMenu. Since the item is being appended, NULL is given as
the item's current position . The name of the menu item, with its mne
monic , appears next . The menu ID of the new item follows. Finally, the
.MF- APPEND, .MF_ STRING, and .MF_ BYCOMMAND options specify
the operation to carry out: append the menu-item name (a string) to the
given menu and set the new menu ID by command value .

8.3.6 Adding Bitmaps to Menus

You can also use bitmaps as menu items. This can be done with the
ChangeMenu function by simply using the .MF _ BITMAP option and
specifying the bitmap to be used . To add a bitmap to a menu, you need
to create a bitmap or load one from the application 's resources. You can
then replace an existing menu item or append the bitmap to the end of
the menu .

In the following example, a bitmap named "dog" is loaded and used in the
ChangeMenu function to add it to the window's menu:

HMENU hMenu;
HANDLE hBitmap ;

hBitmap = LoadBitmap (hinstance , "dog") ;

hMenu = GetMenu (hWnd) ;
ChangeMenu (hMenu,

IDM_PARK,
MAKELONG (hBitmap , 0) ,
IDM_PARK,
MF_CHANGE MF_BYCOMMAND MF_BITMAP) ;

117

Microsoft Windows Programmer's Learning Guide

The LoadBitmap function loads the bitmap from the file and returns a
handle to the bitmap, saved in the hBitmap variable. The ChangeMenu
function then replaces the name of the existing menu item (identified by
IDM_ PARK) with the bitmap. The bitmap handle must be passed as the
low-order word of the third argument to ChangeMenu. The
MAKELONG utility combines the 1 6-bit handle with a 1 6-bit constant
to make the 32-bit argument. The :MF _ BITMAP constant specifies that
the low-order word identifies a bitmap .

8.4 Using the System Menu

The system menu is a menu that is usually supplied and maintained by
Windows for each window. However, some applications may wish to
append additional commands to a window's system menu or even process
some of the system-menu commands. This section explains how to use the
system menu .

8.4.1 The Default System Menu

For each window, Windows creates a default system menu that contains
the commands that can be used with that given type of window. For exam
ple, in a pop-up window, the Icon command is grayed since pop-up win
dows cannot be made iconic . The GetSystemMenu function returns a
handle to a window's default system menu. An application can, if neces
sary, change or disable any item in the default system menu. This is typi
cally done when the application initializes its window or receives a
WM_ INITMENU message.

8.4.2 Changing the System Menu

To change the system menu, you must retrieve a handle to it by using the
GetSystemMenu function, then use the ChangeMenu function to make
changes. You can identify system-menu items by command if you use
values such as SO- MAXIMIZE and SC_ MINIMIZE.

If you have added to or changed the system menu, you must process any
WM_ SYSCOMMAND messages that correspond to the menu items you
added or changed . Windows sends a WM_ SYSCOMMAND message to the
application when the user selects commands from the system menu .
WM_ SYSCOMMAND messages for unchanged commands must be sent
to the DefWindowProc function .

You can restore the system menu to its initial state by calling the
GetSystemMenu function with the second parameter set to TRUE.

118

Menus

You can check or gray a system-menu item by processing the
WM_ INIT:tvfENU message . Windows sends this message to the application
whenever the user selects the system menu (or any other pop-up menu) ,
but before Windows displays the menu. Under some circumstances, win
dows automatically grays one or more system-menu commands.

8.4.3 Adding Items to the System Menu

You have already seen how to add an "About . . . " command to the system
menu of the sample application, Generic . In general, you can use the same
method to add other menu items to the system menu. If you do, it is
recommended that you place a separator between the new item and the
existing items. Also, you must not add pop-up menus to the system menu .

In the following example , the ChangeMenu function is used to add a
separator and the About . . . menu item to the system menu :

#de fine IDABOUT 100

HMENU hMenu;

HMENU hMenu = GetSystemMenu (hWnd, FALSE) ;

ChangeMenu (hMenu, 0 , NULL , NULL , MF_APPEND i MF_SEPARATOR) ;
ChangeMenu (hMenu, 0 , "A&bout . . . " , IDABOUT , MF_APPEND i MF_STRING) ;

When adding a menu item to the system menu, you must make sure that
the menu ID of that item is greater than any of the system-command
(SC_) values defined in the windows.h file.

Whenever you add an item to the system menu, you must process the
input from that item. When the user chooses an item in the system menu ,
Windows passes a WM_ SYSCO:MMAND message , containing the menu ID
of the item, to the window function . The window function should pass the
standard system-menu message on to DefWindowProc and carry out its
own processing for the added items. In the following example, the window
function picks out the WM_ SYSCO:MMAND messages for the About com
mand and processes them separately:

switch (message) {

case WM_SYSCOMMAND :
switch (wParam) {

case IDABOUT :

break ;

119

Microsoft Windows Programmer's Learning Guide

de fault :
return (De fWindowProc (hWnd, message , wParam, lParam) ;

}
break ;

8.4.4 System-Menu Accelerators

Applications can associate keyboard accelerators with system-menu com
mands. When the user presses such an accelerator, Windows sends a
Wl\L SYSCO:MMAND message to the application .

You can associate accelerators with system-menu commands by creating
an accelerator table in your resource script file that uses the menu ID
(whose low-order byte must be greater than any so_ constant) with the
accelerator keys. The following example illustrates how to create an
accelerator table that associates accelerators with the system-menu com
mands:

acce ltab ACCELERATORS
BEGIN

-B, IDM_ABOUT
END

Accelerators for system-menu commands generate Wl\L SYSCOMMAND
messages when the window is iconic-as long as the icon is active .

8 . 5 A Sample Application: FileMenu

Applications that open and save data files use the File menu to offer com
mands that direct the application to open , save , and clear files. This sam
ple application , FileMenu, shows how to add a File menu to an application
and how to process input from a menu (FileMenu does not show how to
open and save files, or how to prompt for user input . These tasks are
described in later chapters in this guide.) . To create FileMenu, you will
need to copy and rename the Generic source files. Then do the following:

120

1 . Add a File menu to the resource file.

2. Add definitions to the include file.

3. Add a Wl\L COMMAND case to the window function .

4 . Remove the WM.- CREATE and Wl\L SYSCOMMAND cases sup
porting the About command in the system menu.

5 . Compile and link the application .

Menus

Since the File menu is typically the first menu in an application, the About
command, previously located in the system menu, should now be appended
to the end of the File menu. Also, you need to add an Exit command to
the File menu . It should appear immediately before the About command.

Note

The File menu's purpose and content are defined in the Microsoft Win
dows Application Style Guide. See the style guide for additional infor
mation about the File menu .

8.5.1 Add a File Menu to the Resource File

You need to add a MENU statement to your resource script file. This
statement defines the menu names and commands for your menu. For this
sample , add the following MENU statement to your resource file :

:Jt inc lude " filemenu . h"

#include "windows . h"
#include " filemenu . h"

FileMenu MENU
BEGIN

POPUP
BEGIN

"&File"

"&New" ,
"&Open . . . " ,
"&Save" ,
" Save &As . . . " ,
"&Print" ,
SEPARATOR

IDM_NEW
IDM_OPEN
IDM_SAVE
IDM_SAVEAS
IDM_PRINT

MENU ITEM
MENU ITEM
MENU ITEM
MENUITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENUITEM

"E&xit" , IDM_EXI T

END
END

"A&bout Filemenu . . . " , IDM_ABOUT

The MENU statement creates the File menu . The File menu is a pop-up
menu (defined by the POPUP statement) that contains five commands:
New, Open, Save, Save As, and Print . Commands are defined by the
MENUITEM statement. The Open and Save As command names include
ellipses (. . .) to indicate that the commands require additional information
and will prompt for that information . Each command has a unique menu
identifier: ID:M_ NEW, ID:M_ OPEN, ID:M_ SAVE, ID:M_ SA VEAS, and
ID:M_ PRINT. The menu ID is used by the application to identify the menu
when the user chooses it .

121

Microsoft Windows Programmer's Learning Guide

Notice that each menu and command name includes an ampersand (&) .
The ampersand specifies the menu or command mnemonic. For more
information about mnemonics, see Chapter 3, "A Sample Application :
Generic . "

8.5.2 Add Definitions to the Include File

The menu IDs must be declared in your include file since these constants
are used in both the C-language source and in the resource script file. For
the File menu, add the following statements to your include file:

:jtde fine
:jtde fine
:jtde fine
:jtde fine
:jtde fine
#de fine
:jtde fi.ne

IDM_NEW 100
IDM_OPEN 101
IDM_SA VE 102
IDM_SAVEAS 103
IDM_PRINT 104
IDM_EXI T 105
IDM_ABOUT 106

A menu ID can have any integer value. The only restriction is that menu
IDs must be unique within a menu. That is, no two commands in a menu
can have the same menu ID.

8.5.3 Add the WM_ CO:MMAND Case

The easiest way to incorporate a menu into an application is to register
the menu as a class menu. Once the menu is registered, Windows automat
ically loads it from the resource file when it is needed ; for example, when a
window using the class menu is created . For this sample, you need to add
the following statement in the FileMenulnit function, before the call to
the RegisterClass function:

pWndClass - > lpszMenuName = (LPSTR) "FileMenu" ;

This statement copies a pointer to the menu into the window-class struc
ture . Windows will use this pointer to specify the name of the class menu
when it loads the menu from the resource file.

When a user chooses a command in a menu , Windows sends a
WJ\L C011MAND message to the corresponding window function . The
message contains the menu ID of the command chosen . The menu ID for
the command is sent in the wParam parameter. It is up to the window
function to carry out any tasks associated with the command. For exam
ple, if the user chooses the Open command, the window function is respon
sible for prompting for the filename, opening the file , and displaying the
file in the window's client area.

122

Menus

This sample shows only how to begin to process menu input . Instead of
performing tasks, the New, Open, Save , Save As, and Print commands
activate a "Command not implemented" message box. The Exit command
calls the DestroyWindow function to destroy the window and terminate
the application . The About FileMenu command displays the About dialog
box. This is the same action that was previously carried out by the
WM_ SYSCOMMAND case . The WM_ SYSCOMMAND case is no longer
needed and should be discarded. You need only add the following case
statement to the window function :

case WM_COMMAND :
switch (wParam) {

}

case IDM_NEW :
case IDM_OPEN :
case IDM_SAVE :
case IDM_SAVEAS :
case IDM_PRINT :

MessageBox (hWnd, "Command not implemented" ,
(LPSTR) NULL , MB_OK) ;

break ;

case IDM_EXIT :
DestroyWindow (hWnd) ;
break ;

case IDM_ABOUT :
lpProcAbout � MakeProcinstance (About , h!nst) ;
DialogBox (hinst , "AboutBox" , hWnd, lpProcAbout) ;
FreeProcinstance (lpProcAbout) ;
break ;

break ;

8.5.4 Delete the "WM_ CREATE and
"WM_ SYSCOMMAND Cases

Since the WM_ COMMAND case supports the About FileMenu . . . com
mand, the WM_ CREATE and WM_ SYSCOMMAND cases are no longer
needed and should be deleted . In particular, you should delete the state
ments in the WM_ CREATE case that change the system menu. The entire
WM_ SYSCOMMAND case should be deleted since special processing of
the system menu input is not required .

123

Microsoft Windows Programmer's Learning Guide

8.5.5 Compile and Link

No changes are required to the make file to recompile and link the
FileMenu application. Start Windows, then start the FileMenu application
and select the File menu; for example, click the menu name, File, with the
mouse . The menu will look like Figure 8 . 1 :

.... . . . -() , '\1
EH• I

.Qpen • • •
Jl•v•
Save 4• • • •
.2r.1nt"

EJ!U:
Ail out: Not"epad • • •

Figure 8 . 1 FileMenu Window

If you choose any of the commands in the File menu, you will get the mes
sage shown in Figure 8 .2 :

E r r o r •

Figure 8.2 FileMenu Error Message

124

8.6 A Sample Application: EditMenu

Menus

The EditMenu sample application illustrates the second most common
menu, the Edit menu. The Edit menu lets the user direct an application
to carry out clipboard operations, such as copying and pasting within the
application or between two cooperating applications. Creating and pro
cessing an Edit menu is similar to creating and processing the File menu,
except that the Edit menu also includes accelerator keys . These are
shortcut keys that let the user choose a command from a menu by using a
single keystroke . Many commands, such as Edit commands, are more con
venient when initiated from the keyboard .

Accelerator keys are provided as part of the resource file, and are tied into
the application through the C-language source code. The keys shown in
this sample are specifically reserved and should be used only as accelerator
keys for the Edit menu .

To create the EditMenu application , copy and rename the FileMenu source
files. Then do the following:

1 . Add an Edit menu to the resource file.

2 . Add an accelerator table to the resource file .

3 . Add a new variable.

4 . Load the accelerator table .

5 . Modify the message loop in WinMain.

6 . Modify the WM_ COMMAND case.

7 . Compile and link the application .

EditMenu does not show how to use the clipboard . This task is described
in Chapter 13 , "The Clipboard . "

Note

The Edit menu's purpose and content are defined in the Microsoft Win
dows Application Style Guide. See the style guide for additional infor
mation about the Edit menu.

125

Microsoft Windows Programmer's Learning Guide

8.6.1 How Accelerator Keys Work

To use accelerators, an application must first create an accelerator table
that contains a list of the accelerator keys, then use the accelerator table
to translate keyboard messages into menu input . An accelerator table is a
list of keystrokes and corresponding menu IDs that you create by using the
ACCELERATORS statement in the resource file. To use the accelerator
table in the application, you must load it by using the LoadAccelerators
function, then you must pass each message you receive through the t able
by using the TranslateAccelerator function, which compares the mes
sage with the keystrokes listed in the table. If there is a match, the func
tion creates a \V1L COMMAND message and sends it to the window func
tion that is using the corresponding menu ID. The window function can
then carry out the command as if the user had chosen it from the menu.

8.6.2 Add an Edit Menu to the Resource File

You need to add an Edit menu to the MENU statement in the resource
file. Since the File menu should be the first menu on the menu bar, you
should place the Edit-menu definition immediately after the File-menu
definition . The MENU statement should now look like this:

Edi tMenu MENU
POPUP "&File"
BEGIN

END

END

POPUP
BEGIN

END

MENU I TEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM

"&Edit"

"&UndoALT+BKSP" ,
SEPARATOR
"Cu&tShi ft+Del " ,
"&CopyCtr l+Ins" ,
"&PasteShi ft+Ins" ,
"C&learDe l " ,

IDM_UNDO

IDM_CUT
IDM_COPY
IDM_PASTE
IDM_CLEAR

The Edit menu has five commands and a separator. The five commands
are, Undo, Cut, Copy, Paste, and Clear. Each command has a mnemonic,
indicated by the ampersand (&), and an accelerator key, separated from
the name with a tab ("\ t") . Whenever a command has a corresponding
accelerator, it should be displayed in this way. The five accelerator keys
in this sample are, ALT+BKSP, SlllFT+DEL, CTRL+INS, SlllFT+INS, and DEL.
The separator between the Undo and Cut commands places a horizontal
bar between these commands in the menu . A separator is recommended
between menu commands that otherwise have nothing in common . For
example, Undo affects only the application, whereas the remaining com
mands affect the clipboard .

126

Menus

8.6.3 Add an Accelerator Table to the Resource File

You can add an accelerator table to the resource file by using the
ACCELERATORS statement : The statement contains a list of the
accelerator keys and the menu IDs of the commands that are associated
with the accelerators. Add the following statement to the resource file :

EditMenu ACCELERATORS
BEGIN

VK_BACK,
VK_DELETE ,
VK_INSERT ,
VK_INSERT ,
VK_DELETE ,

END

IDM_UNDO,
IDM_CUT,
IDM_COPY,
IDM_PASTE ,
IDM_CLEAR ,

VIRTKEY,
VIRTKEY,
VIRTKEY,
VIRTKEY,
VIRTKEY

ALT
SHIFT
CONTROL
SHIFT

The ACCELERATORS statement defines the accelerator keys. As with
other resource statement�, BEGIN starts the entry and END marks its
end. Five accelerator keys are defined, one for each command. Four
accelerators are keystroke combinations using the ALT, SHIFT, or CONTROL
key in combination with another key. The keystrokes are defined using the
Windows virtual-key code, as indicated by the VIRTKEY option . Virtual
keys are device- independent key values that Windows translates for each
computer. It is a way to guarantee that the same key is used on all com
puters without knowing what the actual value of the key is on any com
puter. You may also use ASCII keycodes for accelerators, in which case,
you would use the ASCII option .

The ACCELERATORS statement associates each accelerator with a
menu ID. The IDM_ UNDO, IDM- CUT, IDM_ COPY, IDM- PASTE,
and IDM_ CLEAR constants are the menu IDs of the Edit-menu com
mands. When the user presses an accelerator key, these are the values that
are passed to the window function .

8.6.4 Add a New Variable

Add the following statement to the beginning of the source file:

HANDLE hAccTable ; I* handle to accelerator table */

The hAccTable variable is a handle to the accelerator table. It receives
the return value of the Load.Accelerators function and is used in the
TranslateAccelerator function to identify the accelerator table.

127

Microsoft Windows Programmer's Learning Guide

8.6.5 Load the Accelerator Table

The accelerator table, like any other resource, needs to be loaded before it
can be used. You can load the accelerator table in the vv:tvL CREATE case
by adding the following statements:

case WM_CREATE :
hAccTable = LoadAccelerators (hinst , "EditMenu") ;
break ;

This statement loads the accelerator table into memory and assigns the
handle identifying the table to the hAccTable variable. The hlnstance
variable identifies the application 's resource file, and "EditMenu" is the
name of the accelerator table . Once the table is loaded, it can be used in
the TranslateAccelerator function .

8.6.6 Modify the Message Loop

To use the accelerator table , you must first add a TranslateAccelerator
function to the message loop. After the function has been added, the mes
sage loop should look like this:

while (GetMessage (&msg, NULL , NULL , NULL)) {

}

i f (! TranslateAccelerator (hWnd, hAccTab le , &msg)) {
Transl ateMessage (&msg) ;
DispatchMessage (&msg) ;

}

The new message loop checks each message to see whether it is an
accelerator-key message . If it is, the TranslateAccelerator function con
verts the keystroke to a WM_ COMMAND message, which is sent to the
window function . If the message is an accelerator, it must not be processed
by the TranslateMessage and DispatchMessage functions. If the mes
sage is not an accelerator, it must be processed as usual.

TranslateAccelerator also translates accelerators for commands chosen
from the system menu. In such cases, it translates the message into a
vv:tvL SYSCOMMAND message. The window handle, hWnd, identifies the
window whose messages are to be translated . It must identify the same
window whose menu contains the accelerators. The accelerator handle,
hAccTable, specifies the accelerator table to be used to translate the
accelerator.

128

Menus

8.6. 7 Modify the WM_ Command Case

You need to process Edit menu commands. In this application, instead of
performing tasks, all Edit menu commands activate a "Command not
implemented" message box. You need only add the following statements to
the W1L COMAMND case:

case IDM_UNDO :
case IDM_CUT :
case IDM_COPY :
case IDM_PASTE :
case IDM_CLEAR :

MessageBox (hWnd, "Command not implemented" ,
(LPSTR) NULL , MB_OK) ;

break ;

8.6.8 Compile and Link

No changes are required to the make file to compile and link the Edit
Menu application . Start Windows, then the EditMenu application, and ,
without opening the pop-up menus, press any of the five accelerator keys.
You will notice that the "Command not implemented" message appears
when a command is chosen .

129

Chapter 9

Bitmaps

9. 1 What Are Bitmaps? 133
9 .2 Creating Bitmaps 133
9.2. 1 Creating and Loading Bitmap Files 133

9.2 .2 Creating and Drawing Bitmaps 135
9.2.3 Creating Bitmaps with Hard-Coded Bits 136

9.2.4 Drawing Color Bitmaps 138
9.2 .5 Deleting Bitmaps 139
9.3 Displaying Bitmaps 140
9.3. 1 Displaying a Bitmap 140

9.3.2 Adding Color to Monochrome Bitmaps 142

9.3.3 Stretching Bitmaps 142
9.3.4 Using Bitmaps in a Pattern Brush 143
9.4 A Sample Application: Bitmap 145

9.4. 1 Modify the Include File 146
9.4.2 Add the Bitmap Resources 147
9.4.3 Add the Bitmap, Pattern, and Mode Menus 147
9.4.4 Add Global Variables 148
9.4.5 Add the Wl\L CREA1E Case 149
9.4.6 Modify the Wl\L DESTROY Case 152
9.4.7 Add Wl\L LBUITONUP, Wl\L MOUSEMOVE,

and Wl\L LBUITONDOWN Cases 152

9.4.8 Add the Wl\L RBUTIONUP Case 153
9.4.9 Add the Wl\L ERASEBKGND Case 153
9.4. 10 Add the Wl\L COl\1MAND Case 154
9.4. 11 Modify the l\1ake file 155
9.4. 12 Compile and Link 156

131

Bitmaps

9.1 What Are Bitmaps?

Bitmaps are bit-pattern images saved in memory for display on an output
device . You can use bitmaps in your applications to display images that
are otherwise too complex to draw using GDI output functions. This chap
ter shows how to create and display bitmaps for monochrome as well as
color displays. It also shows you how to create and use a background
brush .

9.2 Creating Bitmaps

You create a bitmap by supplying GDI with the dimensions and color for
mat of the b itmap, and , optionally, the initial value of the bitmap bits.
GDI then returns a handle to the bitmap . You can use this handle in sub
sequent GDI functions to select and display the bitmap .

You can create bitmaps in three ways:

• Using Icon Editor, create the bitmap, then add it to your
application 's resources, and load it by using the LoadBitmap
function.

• Using the CreateCompatibleBitmap function, create the bit
map, then select it into a memory device context , and use GDI out
put functions to draw the bitmap bits.

• Using the CreateBitmap function, create the bitmap, then initial
ize its bits by supplying an array of bits.

The following sections explain how to use each of these methods to create
bitmaps.

9.2.1 Creating and Loading Bitmap Files

You can create bitmaps with the Windows 2 .0 Icon Editor. Icon Editor
lets you specify the dimensions of a monochrome bitmap, then fill it in by
setting the individual pixels . A monochrome bitmap consists of an array
of bits-one bit representing each pixel on the screen . Since each bit in
the bitmap can only be on or off, the bitmap often appears as it would
on a monochrome display, just black and white. (On color displays, mono
chrome bitmaps can be displayed in colors other than black and white .
For details, see Section 9 . 3 .2 , "Adding Color to Monochrome Bitmaps . ")

133

Microsoft Windows Programmer's Learning Guide

Figure 9 . 1 shows a bitmap (cat. bmp) being created in Icon Editor:

= I con Eduor - C A T . BHP l!)l'f'J

Figure 9 . 1 A Bitmap in Icon Editor

To create a bitmap, start Icon Editor and follow the directions given in
Microsoft Windows Programming Tools. Mter you have created the bit
map, you should save it in a file that has the extension . bmp. You may
then use the filename in a resource script file to add the bitmap to your
application 's resources.

To use the bitmap in a bitmap file , you need to add the file to your
application 's resources, then load it by using the LoadBitmap function .
The function takes the bitmap 's resource name, loads the bitmap into
memory, and returns a handle. You can then select the bitmap into a
device context and display it by using the BitBlt function .

Before loading a bitmap, you must add the bitmap to your application 's
resources by inserting a BITMAP statement to your resource script file.
For example, you would use the following statement to load a bitmap
named "dog" :

dog BITMAP dog . bmp

The name "dog" identifies the bitmap, and the filename dog. bmp specifies
the file that contains the bitmap .

To load t h e b itmap you need to supply the resource name and the instance
handle to identify the application's resources:

hBitmap == LoadBitmap (hinstance , "dog") ;

134

Bitmaps

The LoadBitmap function loads the resource named "dog" , then returns
a handle to the bitmap . This handle can be used in subsequent GDI func
t ions to select or display the bitmap .

9.2.2 Creating and Drawing Bitmaps

You can create bitmaps by having GDI create a blank bitmap that you can
fill in by using GDI output functions. You create a blank bitmap by using
the CreateCompatibleBitmap function . This function creates a bitmap
that has the same format (color planes and bits per pixel) as the given
device, but that has no initial image . You can then select the bitmap into
a memory device context and use GDI output functions to draw in the bit
map image . This method is often used to create bitmaps that are custom
ized for a particular device.

The following example creates a "star" bitmap by first making a bitmap
that is compatible with the display; it then fills the compatible bitmap by
using the Polygon function :

HDC hDC;
HDC hMemoryDC;
HBI TMAP hBitmap ;
HBITMAP hOldBitmap ;
POINT Points [S] = { 32 , 0 , 16 , 63 , 63 , 16 , 0 , 16 , 48 , 63 } ;

hDC = GetDC (hWnd) ;

hMemoryDC = CreateCompatibleDC (hDC) ;

hBitmap = CreateCompatib leBitmap (hDC, 64, 64) ;

hOldBitmap = SelectObj ect (hMemoryDC , hBitmap) ;

PatBlt (hMemoryDC , 0 , 0 , 64, 64, WHI TENESS) ;

Polygon (hMemoryDC , Points , 5) ;

SelectObj ect (hMemoryDC , hOldBitmap) ;

DeleteDC (hMemoryDC) ;

ReleaseDC (hWnd, hDC) ;

The GetDC function retrieves a handle to the display context . The bit
map is to be compatible with the display. If you want a bitmap that is
compatible with some other device, you should use the CreateDC func
tion to retrieve a handle to that device . The CreateCompatibleDC func
t ion creates the memory device context in which the image of the bitmap
will be drawn . The CreateCompatibleBitmap function creates the
blank bitmap . The size of the bitmap is set to 64 by 64 pixels. The actual
number of bits in the bitmap depends on the color format of the display . If
the display is a color display, the bitmap will be a color bitmap and may

135

Microsoft Windows Programmer's Learning Guide

have many bits for each pixel . The SelectObject function selects the bit
map into the memory device context and prepares it for drawing. The han
dle of the previously selected bitmap is saved.

The PatBlt function clears the bitmap and sets all pixels white . This, or a
similar function, is required since, initially, the image in a blank bitmap is
undefined . You cannot depend on having a clean bitmap in which to draw.
The Polygon function draws the star by using the endpoints specified in
the array of structures, Points.

The subsequent SelectObject and DeleteDC functions restore the previ
ous bitmap and delete the memory device context . Once the bitmap has
been drawn, the memory device context is no longer needed. It is an error
to attempt to delete a device context when any bitmap other than the
context's original bitmap is selected . Finally, the ReleaseDC function
releases the display context . The bitmap handle, hBitmap, may now be
used in subsequent GDI functions .

9.2.3 Creating Bitmaps with Hard-Coded Bits

You can create a bitmap and set its initial image to an array of bitmap
bits by using the CreateBitmap function . The function creates a bitmap
having an explicit size and color format, then initializes the bitmap image
by copying the bits in the specified array to the bitmap . This method is
typically used to create small, monochrome bitmaps for use with pattern
brushes, but it can also be used to create large bitmaps and color bitmaps.

The following example creates a 64-by-32-pixel, monochrome bitmap and
initializes it by using the bits in the array Square :

HBI TMAP hBitmap ;
short Square [] = {
OxOOOO , OxOOOO, OxOOOO, OxOOOO ,
OxOOOO, OxOOOO, OxOOOO , OxOOOO,
OxOOOO , OxOOOO , OxOOOO , OxOOOO ,
OxOOOO , OxOOOO, OxOOOO, OxOOOO,
OxOOOO , OxOOOO , OxOOOO , OxOOOO,
OxOOOO , OxOOOO , OxOOOO , OxOOOO ,
OxOOOO , OxOOOO, OxOOOO , OxOOOO,
OxOOOO , OxOOOO, OxOOOO , OxOOOO ,
OxOOOO , OxOOOO , OxOOOO , OxOOOO,
OxOOOO , OxOOOO , OxOOOO, OxOOOO ,
OxOOOO , OxOOOO , OxOOOO , OxOOOO,
OxOOOO , Ox f f f f , Ox f f f f , OxOOOO,
OxOOOO , Ox f f f f , Ox f f f f , OxOOOO ,
OxOOOO , Ox f f f f , Ox f f f f , OxOOOO ,
OxOOOO , Ox f f ff , Ox f f f f , OxOOOO,
OxOOOO, Ox f f f f , Ox f f f f , OxOOOO,
OxOOOO , Ox f f f f , Ox f f f f , OxOOOO,
OxOOOO , Ox f f f f , Oxff f f , OxOOOO ,
OxOOOO , Ox f f f f , Ox f f f f , OxOOOO,
OxOOOO, Ox f f f f , Ox f f f f , OxOOOO,
OxOOOO , Ox f f f f , Ox f f f f , OxOOOO,

136

OxOOOO , OxOOOO , OxOOOO , OxOOOO ,
OxOOOO , OxOOOO , OxOOOO, OxOOOO ,
OxOOOO , OxOOOO, OxOOOO, OxOOOO,
OxOOOO , OxOOOO , OxOOOO , OxOOOO,
OxOOOO, OxOOOO , OxOOOO , OxOOOO,
OxOOOO , OxOOOO, OxOOOO, OxOOOO ,

OxOOOO, OxOOOO, OxOOOO, OxOOOO ,

OxOOOO , OxOOOO , OxOOOO , OxOOOO ,
OxOOOO, OxOOOO , OxOOOO , OxOOOO,
OxOOOO , OxOOOO , OxOOOO, OxOOOO,
OxOOOO, OxOOOO , OxOOOO , OxOOOO } ;

hBitmap = CreateBitmap (64, 32 , 1 , 1 , Square) ;

Bitmaps

The CreateBitmap function creates and initializes the bitmap before
returning the bitmap handle . The width and height of the bitmap are 64
and 32 pixels, respectively. The bitmap has one color plane and one bit for
each pixel . This means it is a monochrome bitmap .

The Square array contains the bits used to initialize the bitmap. GDI
requires that such an array contain short integers; that is, each element
should be a 1 6-bit value . CreateBitmap will use as many integers as
necessary to fill in each row of the bitmap . If the bitmap is less than 1 6
bits wide, for example, the function uses the first integer for the first row,
discarding any unused bits. When starting a new row, CreateBitmap
always starts with a new integer.

Once you have created and initialized the bitmap, you can use its handle
in subsequent GDI functions . If you want to change the bitmap, you can
draw in it by selecting it into a memory device context as described in Sec
tion 9 .2 .2 , "Creating and Drawing Bitmaps. " If you want to replace the
bitmap image with another, you can use the SetBitmapBits function to
copy another array of bits into the bitmap . For example, the following
function call replaces the current bitmap image with the bits in the array
Circle :

short Circ l e [] = {

} ;

SetBitmapBits (hBitmap , 256 , Circle) ;

The SetBitmapBits function copies the bits in the Circle array into the
bitmap specified by the hBitmap variable . The array contains 256 bytes,
representing the image of a 64-by-32-pixel monochrome bitmap . If you
want to retrieve the current bits in a bitmap before replacing them, you
can use the GetBitmapBits function . It copies a specified number of
bytes from the bitmap into an array of integers.

137

Microsoft Windows Programmer's Learning Guide

You can also use the CreateBitmap function to create color bitmaps for
color displays. However, the format of a color bitmap depends on the cor
responding device . This means that if you wish to initialize the bits of the
bitmap by using an array, you will need to know the explicit color format
used by the device .

9.2.4 Drawing Color Bitmaps

Since hard-coding a color bitmap is device-dependent and may require con
siderable effort, a better way to create a color bitmap is to create a com
patible bitmap and draw in it . For example, to create a color bitmap that
has a red , green, and blue plaid pattern, you simply create a blank bitmap
and use the PatBlt function, with the red, green , and blue brushes, to
draw the pattern . This method has the advantage of generating a reason
able bitmap even if the display is a monochrome display that does not sup
port color. This is a result of GDI providing "dithered" brushes for mono
chrome displays when a color brush is requested . A dithered brush has a
unique pattern of pixels that represents a given color when that color is
not available for the given device .

The following statements create the color bitmap by drawing it :

de fine PATORDEST OxOOFA0089L
HDC hOC;
HDC hMemoryDC ;
HBI TMAP hBitmap ;
HBI TMAP hOldBitmap ;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;
HBRUSH hOldBrush;

hDC = GetDC (hWnd) ;
hMemoryDC = CreateCompatibleDC (hDC) ;
hBitmap = CreateCompatibleBitmap (hDC, 64, 32) ;
hOldBitmap = SelectObj ect (hMemoryDC , hBitmap) ;

hRedBrush = CreateSolidBrush (RGB (255 , 0 , 0)) ;
hGreenBrush = CreateSol idBrush (RGB (0 , 255 , 0)) ;
hBlueBrush = CreateSolidBrush (RGB (0, 0 , 255)) ;

PatBlt (hMemoryDC , 0 , 0 , 64, 32 , BLACKNESS) ;
hOldBrush = SelectObj ect (hMemoryDC , hRedBrush) ;
PatBlt (hMemoryDC, 0 , 0 , 24, 11 , PATORDEST) ;
PatBlt (hMemoryDC , 40 , 10 , 24, 12 , PATORDEST) ;
PatBlt (hMemoryDC , 24, 2 2 , 24, 11 , PATORDEST) ;
hOldBrush = SelectObj ect (hMemoryDC , hGreenBrush) ;
PatBlt (hMemoryDC , 24, 0, 24, 11 , PATORDEST) ;
PatBlt (hMemoryDC , 0, 10 , 24, 12 , PATORDEST) ;
PatBlt (hMemoryDC , 40 , 22 , 24, 11 , PATORDEST) ;
hOldBrush = SelectObj ect (hMemoryDC , hBlueBrush) ;
PatBlt (hMemoryDC , 40, 0 , 24, 11 , PATORDEST) ;
PatBlt (hMemoryDC , 24, 10 , 24, 12 , PATORDEST) ;

138

Bitmaps

PatBlt (hMemoryDC , 0 , 22 , 24, 11 , PATORDEST) ;

SelectObj ect (hMemoryDC , hOldBrush) ;
De leteObj ect (hRedBrush) ;
DeleteObj ect (hGreenBrush) ;
DeleteObj ect (hBlueBrush) ;

SelectObj ect (hMemoryDC , hOldBitmap) ;
De leteDC (hMemoryDC) ;
ReleaseDC (hWnd, hDC) ;

In this example, the CreateSolidBrush function creates the red, green ,
and blue brushes needed to make the plaid pattern . The SelectObject
function selects each brush into the memory device context as that brush
is needed , and the PatBlt function paints the colors into the bitmap .
Each color is painted three times, each time into a small rectangle . PatBit
intentionally overlaps the different color rectangles a little . Since the
PATORDEST raster-operation code is given , PatBit combinesthe brush
color with the color already in the bitmap by using a Boolean OR opera
tor. The result is a different color border around each rectangle.

9.2.5 Deleting Bitmaps

A bitmap, like any resource, occupies memory while in use . Mter you have
finished using a bitmap or before your application terminates, it is impor
tant that you delete the bitmaps you have created in order to make that
memory available to other applications . To delete a bitmap , you first need
to remove it from any device context it may currently be selected in, then
you can delete it by using the DeleteObject function .

The following example deletes the bitmap identified by the hBitmap
parameter, after removing it as the currently selected bitmap in the
memory device context identified by the hMemoryDC parameter:

Se lectObj ect (hMemoryDC , hOldBitmap) ;
De leteObj ect (hBitmap) ;

The SelectObject function removes the bitmap from selection by replac
ing it with a previous bitmap identified by the hOldBitmap parameter.
The DeleteObject function deletes the bitmap . Thereafter, the bitmap
handle in the hBitmap parameter is no longer valid and must not be used .

139

Microsoft Windows Programmer's Learning Guide

9.3 Displaying Bitmaps

You can display a bitmap in the following three ways:

• Use the BitBlt function to copy the bitmap from a memory display
context to a display device .

• Use the StretchBlt function to copy a stretched or compressed
bitmap from a memory display context to a display device .

• Use the CreatePatternBrush function to create a brush that
incorporates the bitmap . Any subsequent GDI functions that use
the brush, such as PatBlt, will display the bitmap.

You can also display a bitmap in a menu . In such a case, the bitmap is
used as a menu item that the user can choose to carry out an action . For
details, see Chapter 8, "Menus . "

9.3.1 Displaying a Bitmap

You can display any bitmap by using the BitBlt function . This function
copies a bitmap from a source to a destination device context . To display
a bitmap with BitBlt, you need to create a memory device context and
select the bitmap into it first . The following example displays the bitmap
by using BitBlt:

HDC hDC, hMemoryDC;

hDC = GetDC (hWnd) ;
hMemoryDC = CreateCompatibleDC (hDC) ;

hOldBitmap = SelectObj ect (hMemoryDC , hBitmap) ;

BitBlt (hDC, 100, 30, 64, 32 , hMemoryDC, 0 , 0 , SRCCOPY) ;

SelectObj ect (hMemoryDC , hOldBitmap) ;
DeleteDC (hMemoryDC) ;
ReleaseDC (hWnd, hDC) ;

The GetDC function specifies the display context for the client area of
the window identified by the h Wnd variable . The CreateCompatibleDC
function creates a memory device context that is compatible with the
display context . The SelectObject function selects the bitmap , identified
by the hBitmap variable, into the memory device context and returns the
previously selected bitmap . If SelectObject cannot select the bitmap, it
returns zero.

140

Bitmaps

The BitBlt function copies the bitmap from the memory device context to
the display context . The function places the upper-left corner of the bit
map at the point (100 ,30). The entire bitmap, 64 bits wide by 32 bits high,
is copied . The hDC and hMemoryDC variables identify the destination and
source contexts, respectively. The constant , SRCCOPY, is the raster
operation code . It directs BitBlt to copy the source bitmap without com
bining it with patterns or colors already at the destination .

The SelectObject, DeleteDC, and ReleaseDC functions clean up after
the bitmap has been displayed. In general, when you have finished using
memory and display contexts, you should release them as soon as
possible-especially display contexts, which are a limited resource. Win
dows maintains a cache of display contexts that all applications draw
from. If an application does not release a display context after using it ,
other applications may not be able to retrieve a context when needed. The
SelectObject function is required since you must not delete a device con
text while any bitmap other than the context's original bitmap is selected.

In the previous example, the width and height of the bitmap were assumed
to be 64 and 32 pixels, respectively. Another way to specify the width and
height of the bitmap to be displayed is to retrieve the width and height
from the bitmap itself. You can do this by using the GetObject function,
which fills a specified structure with the dimensions of the given object .
For example, to retrieve the width and height of a bitmap, you would use
the following statements:

BITMAP Bitmap ;

GetObj ect (hBitmap , (LPBITMAP) &Bitmap) ;

The next example copies the width and height of the bitmap to the
bm Width and bmHeight fields of the structure, Bitmap . You can use
these values in BitBlt as follows:

BitBlt (hDC, 100, 30 , Bitmap . bmWidth, Bitmap . bmHeight ,
hMemoryDC, 0 , 0 , SRCCOPY) ;

The BitBlt function can display both monochrome and color bitmaps. No
special steps are required to display bitmaps of different formats. However,
you should be aware that BitBlt may convert the bitmap if its color for
mat is not the same as the destination device . For example, when display
ing a color bitmap on a monochrome display, BitBlt converts the pixels
having the current background color to white and all other pixels to black .

141

Microsoft Windows Programmer's Learning Guide

9.3.2 Adding Color to Monochrome Bitmaps

If your computer has a color display, you can add color to a monochrome
bitmap by setting the foreground and background colors of the display
context . The foreground and background colors specify which colors the
white and black bits of the bitmap will have when displayed . You set the
foreground and background colors by using the SetTextColor and
SetBkColor functions . The following example shows how to set the fore
ground color to red and the background color to green :

SetTextCo lor (hDC, RGB (255 , 0 , 0)) ;
SetBkCo lor (hDC , RGB (0 , 255 , 0)) ;

The hDC variable holds the handle to the display context . The Set
TextColor function sets the foreground color to red . The SetBkColor
function sets the background color to green. The RGB utility creates an
RGB color value by using the three specified values. Each value represents
an intensity for each of the primary colors-red, green, and blue-with the
value 255 representing the highest intensity, and zero, the lowest . You can
produce colors other than red and green by combining the color intensi
ties. For example, the following statement creates a yellow RGB value :

RGB (255 , 255 , 0)

Once the foreground and background colors are set , no further action is
required . You can display a bitmap (as described earlier) and Windows will
automatically add the foreground and background colors . The foreground
color is applied to the white bits (the bits set to 1) and the background
color to the black bits (the bits set to zero) . Note that the background
mode , as specified by the SetBkMode function, does not apply to bit
maps. Also, the foreground and background colors do not apply to color
bitmaps.

When displayed in color, the bitmap named "dog" will be red, the back
ground will be green .

9.3.3 Stretching Bitmaps

Your bitmaps are not limited to their original size . You can stretch or
compress them by using the StretchBlt function in place of BitBlt . For
example , you can double the size of a 64-by-32-pixel bitmap by using the
following statement :

StretchBlt (hDC, 100, 30 , 128 , 64, hMemoryDC , 0 , 0 , 64, 32 , SRCCO�Y) ;

The StretchBlt function has two additional parameters that BitBlt does
not . In particular, StretchBlt specifies the width and height of the source
bitmap . The first width and height, given as 128 and 64 pixels in the

142

Bitmaps

previous example , apply only to the final size of the bitmap on the destina
tion device context .

To compress a bitmap, StretchBlt removes pixels from the copied bit
map . This means that some of the information in the bitmap is lost when
it is displayed. To minimize the loss, you can set the current stretching
mode to direct StretchBlt to attempt to save some of the information by
combining it with the pixels that will be displayed. The stretching mode
can be WHITEONBLACK, BLACKONWHITE, or COLORONCOLOR.
You use WHITEONBLACK if you wish to preserve white pixels at the
expense of black pixels; for example , if you have a white outline on a black
background . You use BLACKONWHITE for just the opposite (a black
outline on a white background). COLORONCOLOR is used for color bit
maps where attempting to combine colors can lead to undesirable effects .

The SetStretchBltMode function sets the stretching mode . In the
following example , SetStretchBltMode sets the stretching mode to
WHITEONBLACK:

SetStretchBltMode (hDC , WHI TEONBLACK) ;

9.3.4 Using Bitmaps in a Pattern Brush

You can use bitmaps in a brush by creating a pattern brush . Once the pat
tern brush is created , you can select the brush into a device context and
use the PatBlt function to copy it to the screen; or the Rectangle,
Ellipse, and other drawing functions can use the brush to fill interiors.
When Windows draws with a pattern brush, it fills the specified area by
repeatedly copying the bitmap horizontally and vertically, as necessary. It
does not adjust the size of the bitmap to fit in the area as the StretchBlt
function does.

If you use a bitmap in a pattern brush, the bitmap should be at least eight
pixels wide by eight pixels high-the default pattern size used by most
display drivers. (You can use large bitmaps, but only the upper- left , 8-by-8
corner will be used .) You may hard-code the bitmap, create and draw it , or
load it as a resource . In any case, once you have the bitmap handle, you
can create the pattern brush by using the CreatePatternBrush function .
The following example loads a bitmap and uses it to create a pattern
brush :

hBitmap = LoadBitmap (hinstance , "checks") ;
hBrush = CreatePatternBrush (hBitmap) ;

Once a pattern brush is created, you can select it into a device context by
using the SelectObject function :

hOldBrush = SelectObj ect (hDC, hBrush) ;

143

Microsoft Windows Programmer's Learning Guide

Since the bitmap is part of the brush, this call to the SelectObject func
t ion does not affect the device context 's selected bitmap .

Mter selecting the brush , you can use the PatBlt function to fill a
specified area with the bitmap . For example , the following statement fills
the upper- left corner of a window with the bitmap :

PatBlt (hDC , 0 , 0 , 100, 100, PATCOPY) ;

The PATCOPY raster operation directs PatBlt to completely replace the
destination image with the pattern brush .

You can also use a pattern brush as a window's background brush . To do
this, simply assign the brush handle to the hbrBackground field of the
window-class structure as in the following example:

pWndClass->hbrBackground = CreatePatternBrush (hBitmap) ;

Thereafter, Windows uses the pattern brush when it erases the window's
background. You can also change the current background brush for a win
dow class by using the the SetClassWord function . For example, if you
want to use a new pattern brush after a window has been created , you can
use the following statement :

SetClassWord (hWnd, GCW_HBRBACKGROUND , hBrush) ;

Be aware that this statement changes the background brush for all win
dows of this class. If you only want to change the background for one win
dow, you need to explicitly process the WM_ ERASEBKGND messages
that window receives. The following example shows how to process this
message :

RECT Rect ;
HBRUSH hOldBrush;

case WM_ERASEBKGND :
UnrealizeObj ect (hMyBkgndBrush) ;
hOldBrush = SelectObj ect (wParam, hMyBkgndBrush) ;
GetUpdateRect (wParam, &Rect , FALSE) ;
PatBlt (wParam, Rect . le ft , Rect . top ,

Rect . right - Rect . le ft , Rect . bottom - Rect . top ,
PATCOPY) ;

SelectObj ect (wParam, hOldBrush) ;
break ;

The WM_ ERASEBKGND message passes a handle to a display context in
the wParam parameter. The SelectObject function selects the desired
background brush into the display context . The GetUpdateRect func
tion retrieves the area that needs to be erased (this is not always the entire
client area) . The PatBlt function copies the pattern , overwriting anything

144

Bitmaps

already in the update rectangle . The final SelectObject function restores
the previous brush to the display context .

The UnrealizeObject function is used in the preceding example . When
ever your application or the user moves a window in which you have used
or will use a pattern brush, you need to align your pattern brushes to the
new position by using the UnrealizeObject function . This function resets
a brush's drawing origin so that any patterns output after the move match
the patterns output before the move.

You can use the DeleteObject function to delete a pattern brush when
it is no longer needed . This function does not , however, delete the bitmap
along with the brush . To delete the bitmap, you need to use Delete
Object again and specify the bitmap handle .

9.4 A Sample Application: Bitmap

This sample shows how to incorporate a variety of bitmap operations in an
application . In particular, it shows how to do the following:

• Load and display a monochrome bitmap .

• Create and display a color bitmap .

• Stretch and compress a bitmap using the mouse .

• Set the stretching mode.

• Create and use a pattern brush .

• Use a pattern brush for the window background .

In this application, the user specifies (by using the mouse) where and how
the bitmap is to be displayed . If the user drags the mouse while holding
down the left button, and then releases that button, the application uses
the StretchBlt function to fill the selected rectangle with the current bit
map. If the user clicks the right button, the application uses the BitBlt
function to display the bitmap .

To create the Bitmap application, copy and rename the source files for the
Generic application, then make the following modifications:

1 . Add constant definitions and a function declaration to the include
file .

2 . Add two monochrome bitmaps, created by using Icon Editor, to
the resource script file.

145

Microsoft Windows Programmer's Learning Guide

3 . Add Bitmap, Pattern, and Mode menus t o the resource script file .

4 . Add global variables.

5. Add the WM_ CREATE case to the window function to create bit
maps and add bitmaps to the menus.

6 . Modify the WM_ DESTROY case in the window function to delete
bitmaps.

7. Add the WM_ LBUTTONUP, WM_ MOUSEMOVE, and
WM_ LBUTTONDOWN cases to the window function to create a
selection rectangle and display bitmaps.

8 . Add the \VM_ RBUTTONUP case to the window function to
display bitmaps.

9 . Add the WM_ ERASEBKGND case t o the window function t o erase
the client area.

10 . Add the \VM_ COMMAND case to support the menus.

1 1 . Modify the link4 command line in the make file to include the
select. lib library file .

12 . Compile and link the application .

The following sections explain each step in detail .

9.4.1 Modify the Include File

You need to add the following function declarations and constant
definitions to the include file:

#de fine IDM_BITMAP1 200
#de fine IDM_BI TMAP2 201
#de fine IDM_BITMAP3 202

#de fine IDM_PATTERNl 300
#de fine IDM_PATTERN2 301
#de fine IDM_PATTERN3 302
#de fine IDM_PATTERN4 303

#de fine IDM_BLACKONWHITE 400
#de fine IDM_WHITEONBLACK 401
#de fine IDM_COLORONCOLOR 402

#de fine PATORDEST Ox00FA0089L

HBI TMAP MakeColorBitmap (HWND) ;

146

Bitmaps

9.4.2 Add the Bitmap Resources

You need to add two BITMAP statements to your resource script file.
The two statements add the bitmaps "dog" and "cat" to your application
resources. Add the following statements:

dog BI TMAP dog . bmp
cat BITMAP cat . bmp

The "dog" bitmap is the white outline of a dog on a black background.
The "cat" bitmap is the black outline of a cat on a white background .

9.4.3 Add the Bitmap, Pattern, and Mode Menus

You need to add a MENU statement to your resource script file . This
statement defines the Bitmap, Pattern, and Mode menus used to choose
the various bitmaps and modes that are used in the application . Add the
following statement to the resource script file :

bitmap MENU
BEGIN

POPUP "&Bitmap"
BEGIN

MENUITEM " " , IDM_BITMAPl
END

POPUP "&Pattern"
BEGIN

MENUITEM " " , IDM_PATTERNl
END

POPUP "&Mode"
BEGIN

END
END

MENUITEM "&WhiteOnBl ack" , IDM_WHITEONBLACK, CHECKED
MENUITEM "&BlackOnWhite" , IDM_BLACKONWHITE
MENUITEM "&Co lorOnCo lor" , IDM_COLORONCOLOR

The Bitmap and Pattern menus each contain a single MENUITEM state
ment. This statement defines a command that serves as a placeholder only .
The application will add the actual commands to use in the menu by using
the ChangeMenu function .

147

:Microsoft Windows Programmer's Learning Guide

9.4.4 Add Global Variables

You need to declare the pattern arrays, the bitmap handles and context
handles, and other variables used to create and display the bitmaps. Add
the following statements to the beginning of your source file :

short White [] = { OxFF , OxFF , OxFF , OxFF , OxFF , OxFF , OxFF , OxFF } ;
short Bl ack [] = { OxOO , OxOO , OxOO, OxOO, OxOO, OxOO, OxOO, OxOO } ;
short Zigzag [] = { OxFF , OxF7 , OxEB, OxDD, OxBE , Ox7F , OxFF , OxFF } ;
short CrossHatch [] = { OxEF , OxEF , OxEF , OxEF , OxOO , OxEF , OxEF , OxEF } ;

HBI TMAP hPatternl ;
HBI TMAP hPattern2 ;
HBI TMAP hPattern3 ;
HBI TMAP hPattern4;
HBI TMAP hBitmapl ;
HBI TMAP hBitmap2 ;
HBI TMAP hBitmap3;
HBI TMAP hMenuBitmapl ;
HBI TMAP hMenuBitmap2 ;
HBI TMAP hMenuBitmap3 ;
HBI TMAP hBitmap ;
HBITMAP hOldBitmap ;

HBRUSH hBrush;
int fStretchMode ;

HDC hDC;
HDC hMemoryDC;
BITMAP Bitmap;

I* brush handle
I* type o f stretch mode to use

I* handle to device context
I* handle to memory device context
I* bitmap structure

*I
*I

*I
*I
*I

BOOL bTrack = FALSE ;
RECT Rect ;

I* TRUE i f user is selecting a region *I

WORD wPrevBitmap = IDM_BITMAPl ;
WORD wPrevPattern = IDM_PATTERNl ;
WORD wPrevMode = IDM_WHITEONBLACK;
WORD wPrevitem;

int Shape = SL_BLOCK; I* shape to use for the selection rectangle *I

The pattern arrays White, Black, Zigzag, and CrossHatch contain the bits
defining the 8-by-8-pixel bitmap images. The variables hPatternl , hPat
tern2, hPattern3, and hPattern4 hold the bitmap handles of the brush
patterns. The variables hBitmapl , hBitmap2, and hBitmap3 hold the bit
map handles of the bitmaps to be displayed . The variables hMenuBit
mapl , hMenuBitmap2, and hMenuBitmap3 hold the bitmap handles
of bitmaps to be displayed in the Bitmaps menu. The variables hBrush,
hBitmap, and fStretchMode hold the current background brush, bitmap,
and stretching mode. The variables hDC, hMemoryDC, and hOldBitmap
hold handles used with the memory device context . The Bitmap structure
holds the dimensions of the current bitmap . The bTrack variable is used
to indicate a selection in progress . The Rect structure holds the current

148

Bitmaps

selection rectangle . The variables wPrevBitmap, wPrevPattern, wPrev
Mode, and wPrevltem hold the menu IDs of the previously chosen bitmap,
pattern, and stretching mode. These are used to place and remove check
marks in the menus.

9.4.5 Add the WM_ CREATE Case

You need a WM_ CREATE case and supporting variable and function
declarations to create or load the bitmaps and to set the menus. The
WM_ CREATE case creates four 8-by-8-pixel, monochrome bitmaps to
be used as patterns in a pattern brush for the window background. It
also creates or loads three 64-by-32-pixel bitmaps to be displayed in the
window. To let the user choose a bitmap or pattern for viewing, the
WM_ CREATE case adds them to the Bitmap and Pattern menus by using
the ChangeMenu function . Finally, the case sets the initial values of the
brush , bitmap, and stretching modes and creates the memory device con
text from which the bitmaps are copied .

The WM_ CREATE case creates the four patterns by using the
CreateBitmap function . It loads two bitmaps, "dog" and "cat" , and .
creates a third by using the MakeColorBitmap function defined within
the application . Once the patterns and bitmaps have been created, the
WM_ CREATE case creates pop-up menus, appends the patterns and bit
maps to the menus, and replaces the existing Bitmap and Pattern menus
with the new pop�ups. Next, the hBrush, hBitmap, and fStretchMode vari
ables are set to the initial values for the background brush, bitmap, and
stretching modes. Finally, the case creates the memory device context
from which the bitmaps will be copied to the display. Add the following
statements to your window function :

case WM_CREATE : /* message : create window */

hPattern1 = CreateBitmap (8 , 8 , 1 , 1 , (LPSTR) White) ;
hPattern2 = CreateBitmap (8 , 8 , 1 , 1 , (LPSTR) Black) ;
hPattern3 = CreateBitmap (8 , 8 , 1 , 1 , (LPSTR) Zigzag) ;
hPattern4 = CreateBitmap (B , 8 , 1 , 1 , (LPSTR) CrossHatch) ;

hBitmap1 = LoadBitmap (hinst , "dog") ;
hBitmap2 = LoadBitmap (hinst , "cat") ;
hBitmap3 = MakeColorBitmap (hWnd) ;

hMenuBitmap1 = LoadBitmap (hinst , "dog") ;
hMenuBitmap2 = LoadBitmap (hinst , "cat") ;
hMenuBitmap3 = MakeColorBitmap (hWnd) ;

hMenu = CreateMenu () ;
ChangeMenu (hMenu, NULL , "&White" , IDM_PATTERN1,

MF_APPEND l MF_STRING l MF_CHECKED) ;
ChangeMenu (hMenu, NULL , "&Black" , IDM_PATTERN2,

MF _APPEND I MF _STRING) ;
ChangeMenu (hMenu, NULL , (LPSTR) (LONG) hPattern3 , IDM_PATTERN3,

MF_APPEND l MF_BITMAP) ;
ChangeMenu (hMenu, NULL , (LPSTR) (LONG) hPattern4, IDM_PATTERN4,

MF_APPEND I MF_BITMAP) ;

149

Microsoft Windows Programmer's Learning Guide

ChangeMenu (GetMenu (hWnd) , 1, "&Pattern" , hMenu ,
MF_CHANGE i MF_POPUP i MF_BYPOSITION) ;

hMenu = CreateMenu () ;

ChangeMenu (hMenu, NULL , (LPSTR) (LONG) hMenuBitmap1 , IDM_BITMAP1 ,
MF_APPEND i MF_BITMAP I MF_CHECKED) ;

ChangeMenu (hMenu , NULL , (LPSTR) (LONG) hMenuBitmap2 , IDM_BITMAP2 ,
MF_APPEND I MF_BITMAP) ;

ChangeMenu (hMenu , NULL , (LPSTR) (LONG) hMenuBitmap3 , IDM_BITMAP3 ,
MF_APPEND I MF_BITMAP) ;

ChangeMenu (GetMenu (hWnd) , 0 , "&Bitmap" , hMenu,
MF_CHANGE i MF_POPUP i MF_BYPOSI TION) ;

hBrush = CreatePatternBrush (hPattern1) ;
fStretchMode = IDM_BLACKONWHITE ;

hDC = GetDC (hWnd) ;
hMemoryDC = CreateCompatibleDC (hDC) ;
ReleaseDC (hWnd, hDC) ;
hOldBitmap = SelectObj ect (hMemoryDC , hBitmap1) ;
GetObj ect (hBitmap1 , 16 , (LPSTR) &Bitmap) ;

hMenu = GetSystemMenu (hWnd, FALSE) ;
ChangeMenu (hMenu , NULL , NULL , NULL , MF_APPEND i MF_SEPARATOR) ;
ChangeMenu (hMenu, NULL , "A&bout Bitmap . . . " , ID_ABOUT,

MF _APPEND I MF _STRING) ;
break ;

The CreateBitmap and LoadBitmap functions work as described in
earlier sections in this chapter. The MakeColorBitmap function is
created for this application . It creates and draws a color bitmap, using the
same method described in Section 9 .2 .2 , "Creating and Drawing Bitmaps. "
The statements of this function are given later in this section . Notice that
each bitmap is loaded or created twice . This is required since no single bit
map handle may be selected into two device contexts at the same time. To
display in a menu requires a selection, and to display in the client area
also requires a selection .

The CreateMenu function creates an empty menu and returns a handle
to the menu. The ChangeMenu functions that specify the pattern han
dles add the patterns as menu items to the new menu. The .M:f'_ BITMAP
option specifies that a bitmap is to be added. The CheckMenultem func
tion places a checkmark next to the current menu item, and the last
ChangeMenu function replaces the existing Pattern menu . The same
steps are then repeated for the Bitmap menu .

The CreateCompatibleDC function creates a memory device context
that is compatible with the display. The SelectObject function selects
the current bitmap into the memory device context so that it is ready to
be copied to the display. The GetObject function copies the dimensions
of the bitmap into the Bitmap structure. The structure can then be used in
subsequent BitBlt and StretchBlt functions to specify the width and
height of the bitmap .

150

Bitmaps

The MakeColorBitmap function creates a color bitmap by creating a
bitmap that is compatible with the display, then paints a plaid color pat
tern by using red , green , and blue brushes and the PatBlt function . Add
the following function definition to the end of your source file :

HBI TMAP MakeColorBitmap (hWnd)
HWND hWnd;
{

}

HDC hDC ;
HDC hMemoryDC;
HBI TMAP hBitmap ;
HBI TMAP hOldBitmap ;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;
HBRUSH hOldBrush;

hDC = GetDC (hWnd) ;
hMemoryDC = CreateCompatibleDC (hDC) ;
hBitmap = CreateCompatib leBitmap (hDC , 64, 32) ;
hOldBitmap = SelectObj ect (hMemoryDC , hBitmap) ;
hRedBrush = CreateSol idBrush (RGB (255 , 0 , 0)) ;
hGreenBrush = CreateSolidBrush (RGB (0 , 255 , 0)) ;
hBlueBrush = CreateSolidBrush (RGB (0 , 0 , 255)) ;

PatBlt (hMemoryDC , 0 , 0 , 64, 32 , BLACKNESS) ;
hOldBrush = SelectObj ect (hMemoryDC , hRedBrush) ;
PatBlt (hMemoryDC, 0 , 0 , 24, 11 , PATORDEST) ;
PatBlt (hMemoryDC , 40, 10, 24, 12 , PATORDEST) ;
PatBlt (hMemoryDC , 20 , 21 , 24, 11 , PATORDEST) ;
SelectObj ect (hMemoryDC, hGreenBrush) ;
PatBlt (hMemoryDC , 20 , 0 , 24, 11 , PATORDEST) ;
PatBlt (hMemoryDC , 0 , 10, 24, 12 , PATORDEST) ;
PatBlt (hMemoryDC , 40, 21 , 24, 11 , PATORDEST) ;
SelectObj ect (hMemoryDC, hBlueBrush) ;
PatBlt (hMemoryDC , 40 , 0 , 24, 11 , PATORDEST) ;
PatBlt (hMemoryDC, 20 , 10 , 24, 12 , PATORDEST) ;
PatBlt (hMemoryDC , 0 , 21 , 24, 11 , PATORDEST) ;

SelectObj ect (hMemoryDC, hOldBrush) ;
DeleteObj ect (hRedBrush) ;
DeleteObj ect (hGreenBrush) ;
DeleteObj ect (hBlueBrush) ;
SelectObj ect (hMemoryDC, hOldBitmap) ;
DeleteDC (hMemoryDC) ;
ReleaseDC (hWnd, hDC) ;
return (hBitmap) ;

This function carries out the same steps described at the end of Section
9 .2 .3 , "Creating Bitmaps with Hard-Coded Bits ."

151

Microsoft Windows Programmer's Learning Guide

9.4.6 Modify the WM_ DESTROY Case

You need to delete the bitmaps, patterns , brushes, and memory device
context you have created before terminating the application . You delete
bitmaps, patterns, and brushes by using the DeleteObject function .
You delete the memory device context by using the DeleteDC function .
Modify the WtvL. DESTROY case so that it looks like this:

case WM_DESTROY : I* message : destroy window *I
SelectObj ect (hMemoryDC, hOldBitmap) ;
DeleteDC (hMemoryDC) ;
DeleteObj ect (hBrush) ;
DeleteObj ect (hPatternl) ;
DeleteObj ect (hPattern2) ;
DeleteObj ect (hPattern3) ;
DeleteObj ect (hPattern4) ;
DeleteObj ect (hBitmapl) ;
DeleteObj ect (hBitmap2) ;
DeleteObj ect (hBitmap3) ;
DeleteObj ect (hMenuBitmapl) ;
DeleteObj ect (hMenuBitmap2) ;
DeleteObj ect (hMenuBitmap3) ;

PostQuitMessage (O) ;
break ;

9.4.7 Add WM_ LBUTTONUP, WM_MOUSEMOVE,
and WM_LBUTTONDOWN Cases

You need to add WM- LBUTTONUP, WM- MOUSEMOVE, and
WtvL. LBUTTONDOWN cases to the window function to let the user
select a rectangle in which to copy the current bitmap . These cases use
the selection functions (described in Appendix C, "Windows Libraries")
to create a selection rectangle and supply feedback to the user. The
WM_ LBUTIONUP case then uses the StretchBlt function to fill the
rectangle . Add the following statements to your window function :

case WM_LBUTTONDOWN : I* message : l e ft mouse button pressed *I

bTrack = TRUE ;
SetRectEmpty (&Rect) ;
StartSelection (hWnd, MAKEPOINT (lParam) , &Rect ,

(wParam & �SHIFT) ? (SL_EXTEND I Shape) Shape) ;
break;

case WM_MOUSEMOVE : I* message : mouse movement *I

152

if (bTrack)
UpdateSel ection (hWnd, MAKEPOINT (lParam) , &Rect , Shape) ;

break;

case WM_LBUTTONUP : I* message : l e ft mouse button released *I

bTrack = FALSE ;
EndSelection (MAKEPOINT (lParam) , &Rect) ;
ClearSe lection (hWnd, &Rect , Shape) ;

hDC = GetDC (hWnd) ;
SetStretchBltMode (hDC, fStretchMode) ;
StretchBlt (hDC, Rect . le ft , Rect . top ,

Rect . right - Rect . le ft , Rect . bottom - Rect . top ,
hMemoryDC, 0 , 0 ,
Bitmap . bmWidth, Bitmap . bmHeight ,
SRCCOPY) ;

ReleaseDC (hWnd , hDC) ;
break ;

Bitmaps

To use these functions, you also must include the select .h file (defined in
Appendix C, "Windows Libraries") . Add the following statement to the
beginning of your source file:

#include "Select . h"

0.4.8 Add the \WvL RBUTTONUP Case

You need to add a WM_ RBUTTONUP case to display the current bitmap
by using the BitBlt function . Add the following statements to your win
dow function :

case WM_RBUTTONUP : I* message : right mouse button released *I

hDC = GetDC (hWnd) ;
BitBlt (hDC , LOWORD (lParam) , HIWORD (lParam) ,

Bitmap . bmWidth, Bitmap . bmHeight ,
hMemoryDC , 0 , 0 , SRCCOPY) ;

ReleaseDC (hWnd, hDC) ;
break ;

0.4.0 Add the \WvL ERASEBKGND Case

You need to add a WM_ ERASEBKGND case to make sure the selected
background brush is used . Add the following statements to your window
function :

case WM_ERASEBKGND : I* message : erase background *I

Unreal izeObj ect (hBrush) ;
hOldBrush = SelectObj ect (wParam, hBrush) ;
GetCl ientRect (hWnd, &Rect) ;
PatBlt (wParam, Rect . le ft , Rect . top ,

Rect . right-Rect . le ft , Rect . bottom-Rect . top ,
PATCOPY) ;

SelectObj ect (wParam, hOldBrush) ;
return TRUE ;

153

Microsoft Windows Programmer's Learning Guide

The hOldBrush variable is declared as a local variable. The
UnrealizeObject function sets the pattern alignment if the window has
moved . The SelectObject function sets the background brush and the
GetClientRect function determines which part of the client area needs to
be erased . The PatBlt function copies the pattern to the update rectan
gle . The final SelectObject function restores the previous brush .

9.4.10 Add the WM_ COMMAND Case

You need to add a WM_ COMMAND case to support the Bitmap, Pattern ,
and Mode menus. Add the following statements to your window function :

case WM_COMMAND : I* message : Windows command *I
switch (wParam) {

154

case IDM_BITMAP1 :
wPrevitem = wPrevBitmap ;
wPrevBitmap = wParam;
GetObj ect (hBitmap1 , 16 , (LPSTR) &Bitmap) ;
SelectObj ect (hMemoryDC , hBitmap1) ;
break ;

case IDM_BI TMAP2 :
wPrevitem = wPrevBitmap ;
wPrevBitmap = wParam;
Get0bj ect (hBitmap2 , 16 , (LPSTR) &Bitmap) ;
SelectObj ect (hMemoryDC , hBitmap2) ;
break ;

case IDMLBITMAP3 :
wPrevitem = wPrevBitmap ;
wPrevBitmap = wParam;
GetObj ect (hBitmap3 , 16 , (LPSTR) &Bitmap) ;
hOurBitmap = Se lectObj ect (hMemoryDC , hBitmap3) ;
break ;

case IDM_PATTERN1 :
wPrevitem = wPrevPattern ;
wPrevPattern = wParam;
DeleteObj ect (hBrush) ;
hBrush = CreatePatternBrush (hPattern1) ;
Inval idateRect (hWnd, (LPRECT) NULL , TRUE) ;
UpdateWindow (hWnd) ;
break ;

case IDM_PATTERN2 :
wPrevitem = wPrevPattern ;
wPrevPattern = wParam;
DeleteObj ect (hBrush) ;
hBrush = CreatePatternBrush (hPattern2) ;
Inval idateRect (hWnd, (LPRECT) NULL , TRUE) ;
UpdateWindow (hWnd) ;
break;

}

case IDM_PATTERN3 :
wPrevitem = wPrevPattern ;
wPrevPattern = wParam;
DeleteObj ect (hBrush) ;
hBrush = CreatePatternBrush (hPattern3) ;
InvalidateRect (hWnd, (LPRECT) NULL , TRUE) ;
UpdateWindow (hWnd) ;
break ;

case IDM_PATTERN4 :
wPrevitem � wPrevPattern ;
wPrevPattern = wParam;
De leteObj ect (hBrush) ;
hBrush = CreatePatternBrush (hPattern4) ;
Inva lidateRect (hWnd, (LPRECT) NULL , TRUE) ;
UpdateWindow (hWnd) ;
break;

case IDM_BLACKONWHI TE :
wPrevitem = wPrevMode ;
wPrevMode = wParam;
fStretchMode = BLACKONWHITE ;
break ;

case IDM_WHITEONBLACK :
wPrevitem = wPrevMode ;
wPrevMode = wParam;
fStretchMode = WHITEONBLACK;
break ;

case IDM_COLORONCOLOR :
wPrevitem = wPrevMode ;
wPrevMode = wParam;
fStretchMode = COLORONCOLOR;
break ;

CheckMenuitem (GetMenu (hWnd) , wPrevitem, MF_UNCHECKED) ;
CheckMenuitem (GetMenu (hWnd) , wParam, MF_CHECKED) ;
break ;

9.4.11 Modify the Make file

Bitmaps

You need to modify the link4 command line in the make file to include
the select. lib library file. This file contains the import declarations for
the selection routines that are used with the WM_ LBUTTONUP,
WM_ MOUSEMOVE, and WM_ LBUTTONDOWN cases. You create the
library as described in Appendix C, "Window Libraries . " The new link4
command line should look like this:

l ink4 bitmap , , , s libw/NOE se lect . l ib , bitmap . de f

155

Microsoft Windows Programmer's Learning Guide

9.4.12 Compile and Link

Mter making the necessary changes, compile and link the Bitmap applica
tion . Start Windows and then the Bitmap application . If you drag the
mouse, using the left button , to form a rectangle then release the button ,

the window should look like Figure 9 . 2 :

Figure 9.2 Bitmap Window with Dog

Use the menus to change the background and the stretching mode. Note
the effect of the stretching mode on the "dog" and "cat" bitmaps.

156

Chapter 10

Controls and Dialog Boxes

10. 1 Introduction 159

10.2 Using Controls 159

10.2. 1 Creating a Control 160

10.2.2 Choosing a Control Style 160

10.2.3 Setting the Parent Window 161

10.2.4 Choosing a Control ID 161

10.2.5 Receiving Notification Messages 162

10.2.6 Moving and Sizing a Control 162

10.2. 7 Sending Control Messages 162

10.2.8 Enabling or Disabling Input to a Control 163

10.2.9 Destroying a Control 163

10.3 Using Button Controls 163

10.4 Using Static Controls 165

10.5 Using List Boxes 166

10.6 Using Edit Controls 167

10.7 Using Scroll Bars 167

10.8 Designing Your Own Controls 167

10.9 A Sample Application: EditCntl 168

10.9. 1 Add a Constant to the Include File 168

10.9.2 Add New Variables 168

10.9.3 Add a Create Window Function 169

10.9.4 Add a WM- SIZE Case 170

10.9.5 Compile and Link 170

10. 10 What Is a Dialog Box? 171
10. 10. 1 Creating a Modal Dialog Box 171

10. 10.2 Creating a Modeless Dialog Box 172

157

10. 10.3 Creating a Dialog Function 173

10. 10.4 Using Controls in Dialog Boxes 174

10. 1 1 A Sample Application: FileOpen 174

10. 1 1 . 1 Add Constants t o the Include File 175

10. 1 1 .2

10. 1 1 .3

10. 1 1 .4

10. 1 1 .5

10. 11 .6

10. 11 .7

10. 1 1 .8

158

Create the Open Dialog-Box Template

Add New Variables 177

Add the ID:M_ OPEN Case 177

Create the OpenDlg Function

Add Helper Functions 181

Export the Dialog Function
Compile and Link 183

178

183

175

Controls and Dialog Boxes

10. 1 Introduction

This chapter explains how to create controls and dialog boxes and how to
use them in Microsoft Windows applications. Controls and dialog boxes
are special windows that have features and capabilities that other win
dows do not . Controls and dialog boxes are designed to provide easy
methods for interaction with the user.

10.2 Using Controls

A control is a predefined child window that carries out a specific kind of
input or output . In Windows, controls are used as ready-made windows.
For example, i f you need a filename from the user to complete a task, you
can create and display an edit control to let the user type the name.

A control, like any other window, belongs to a window class. The window
class defines the default attributes of the control, but most importantly,
defines the control window function . It is the window function that deter
mines what the control will look like and how it will respond to user input .
Control window functions are predefined in Windows, so no extra coding is
required in your application when you use a control .

Windows has the following built-in control classes:

Class

Button

Static

List box

Edit

Scroll bar

Description

Produces small, labeled windows that the user can choose
to generate yes/no, on/off type of input .

Produces small windows containing text or simple graphics .
These are often used to label other controls or to separate a
group of controls.

Produces windows that contain lists of names from which
the user can select one or more names.

Produces windows in which the user can enter and edit
text .

Produces windows that look and function like scroll bars in
a window.

The following sections explain how to use these control classes to create
and use controls in your application 's windows.

159

Microsoft Windows Programmer's Learning Guide

10.2.1 Creating a Control

You can create a control by using the CreateWindow function . You use
CreateWindow just as you would when creating a main window, but for
a control, you need to specify the control class, the control style, the
parent window, and the control ID. The following example shows how to
create a push-button control :

hButtonWnd = CreateWlndow ("Button" ,
"OK" ,

I* button c l ass *I
I* button l abe l *I

BS_PUSHBUTTON i WS_CHILD i WS_VISIBLE ,
20 , I* x-coordlnate *I
40 ,
30 ,
12 ,
hWnd,
IDOK,
h!nstance ,
NULL) ;

I* y-coordinate *I
I* width in pixels *I
I* height in pixels *I
I* parent window *I
I* contro l ID *I
I* instance handle *I

This example creates a push-button control that belongs to the "Button"
window class and has the BS- PUSHBUTTON style . The control is a child
window and will be visible when first created. The WS_ CHILD style is
required , but you do not need to specify the WS_ VISIBLE style if you
plan to use the ShowWindow function to show the control . Create Win
dow places the control at the point (20,40) in the parent window's client
area. The width and height are 40 and 12 pixels, respectively. The parent
window is identified by the h Wnd handle . The constant IDOK is the con
trol identifier.

The CreateWindow function returns a handle to the control that you
can use in subsequent functions to move, size, paint , or destroy a window,
or to direct a window to carry out tasks .

10.2.2 Choosing a Control Style

The control styles, which depend on the control class, determine the
appearance and function of the control . The following is a list of com
monly used styles :

Style

BS_ PUSHBUTTON

BS_ DEFPUSHBUTION

160

Description

Specifies a push-button control : a rounded
rectangle containing a label that the user
can choose in order to notify the parent win
dow.

Specifies a default push button . A default
push button is identical to a push button
except that it has a heavier border .

BS_ CHECKBOX

BS- RADIOBUTTON

ES_ LEFT

ES_ MULTILINE

SS_ LEFT

SS_ RIGHT

LBS_ STANDARD

Controls and Dialog Boxes

Specifies a check-box control . The user can
select the box to turn the control on and off.
When the control is on, the box contains an
"X" .

Specifies a radio-button control . The user
can select a circle to turn the control on and
off. When the control is on, the circle con
tains a solid bullet .

Specifies a single-line, left-adjusted edit con
trol .

Specifies a multiple- line edit control.

Specifies a left-adjusted, static text control.

Specifies a right-adjusted, static text con
trol .

Specifies a standard list box. A standard list
box includes a scroll bar and notifies its
parent window when the user makes a selec
tion .

You can find a complete list of styles in the Microsoft Windows
Programmer 's Reference.

10.�.3 Setting the Parent Window

Since every control is a child window, a control requires a parent window.
You specify the parent window when you create the control . As with any
child window, a control is affected by changes to the parent window. For
example, if Windows disables the parent window, it disables the control
as well . If Windows paints, moves, or destroys the parent window, it also
paints, moves, or destroys the control .

Although a control may be any size and moved to any position, it is
restricted to the client area of the parent window. Windows clips the
window if you move it outside the client area or make it bigger than the
client area.

10.2.4 Choosing a Control ID

When you create a control, you can give it a unique identifier, or control
ID. You specify the control ID in the CreateWindow function in place of
a menu handle . Controls cannot have menus. The control will supply the
control ID in any notification messages it sends to the window function of
the parent window. The control ID is especially useful if you have several
controls in a window. It is the quickest, easiest way to distinguish one con
trol from another.

161

Microsoft Windows Programmer's Learning Guide

10.2.5 Receiving Notification Messages

As the user interacts with the control, the control sends information
about that interaction, in the form of a notification message , to the parent
window. A notification message is a \VM_ COMMAND message in which
the wParam parameter contains the control ID, and the lParam parameter
contains the notification code and the control handle . For example,
when the user types a letter in an edit control, the control sends a
\VM_ CO:rv1MAND message containing the EN_ CHANGED notification
code to the window function of the parent .

Since a notification message has the same basic form as menu input, you
can process notification messages much as you would menu input. If you
have carefully selected control IDs that do not conflict with menu IDs, you
can process notification messages in the same switch statement you use to
process menu input.

10.2.6 Moving and Sizing a Control

You can move or size a controlby using the MoveWindow function . This
function moves the control to the specified point in the parent window's
client area and sets the control to the given width and height . The follow
ing example moves a control to the point (10, 10) in the client area and sets
the width and height to 30 and 12 pixels, respectively.

MoveWindow (hButtonWnd, 10, 10 , 30 , 12) ;

Windows automatically moves a control when it moves the parent window.
A control 's position is always relative to the upper- left corner of the
parent's client area, so when the parent moves, the control remains fixed
in the client area but moves relative to the display . Windows does not size
a control when it sizes the parent window, but it does send a \VM_ SIZE
message to the parent to indicate the new size of the parent window. You
can use this message to give the control a new size, if desired .

10.2. 7 Sending Control Messages

Most controls accept and process a variety of control messages. These
are special messages that direct a control to carry out some task that is
unique to the control . For example, the E:rvL GETTEXTLENGTH message
directs an edit control to return the length of a selected line of text .

You send a control message by using the SendMessage function . You
must supply the message number and any required wParam and lParam
parameter values. For example, the following statement sends the
E:rvL GETTEXTLENGTH message to the edit control identified by the

162

Controls and Dialog Boxes

handle hEditWnd; it then returns the length of the selected line in the edit
control :

nLength = SendMessage (hEditWnd, EM_GETTEXTLENGTH, 0 , OL) ;

Many controls also process standard window messages, such as
WM_ HSCROLL and WM_ VSCROLL. You can send these messages to
controls by the same method you use to send control messages .

10.2.8 Enabling or Disabling Input to a Control

You can enable or disable input to a control by using the EnableWindow
function . This function allows or prevents a control from receiving user
input. The following example shows how to disable a control :

EnableWindow (hButton , FALSE) ;

You can restore input to the control by enabling it using the following
function:

EnableWindow (hButton , TRUE) ;

10.2.9 Destroying a Control

You can destroy a control by using the DestroyWindow function . This
function deletes any internal record of the control and removes the control
from the parent window's client area. The following example shows how to
destroy a control :

DestroyWindow (hEditWnd) ;

Windows automatically destroys a control when it destroys the parent
window. In general, you will need to destroy a window only if you no
longer need it in the parent window.

10.3 Using Button Controls

A button control is a small window used for simple yes/no, on/off type of
input. There are the following button-control styles:

• Push button

• Default push button

• Radio button

163

Microsoft Windows Programmer's Learning Guide

• Check box

• Group box

You can create a button control by using the "Button" class and specify
ing a button style . For example, the following call to the Create Window
function creates a default push-button control with the label "OK" :

HWND hDe fButton;

hDe fButton = CreateWindow (" Button" , "OK" ,
BS_DEFPUSHBUTTON i WS_CHILD i WS_VISIBLE ,
20,.40, 30 , 12 , hWnd, IDOK, hinstance , NULL) ;

In this example, the WS_ VISIBLE style is specified , so the control is
displayed when it is created. The control ID is IDOK. This constant is
defined in the windows.h file and is intended to be used with default push
buttons, such as this "OK" button.

A default push button is typically used to let the user signal the comple
t ion of some activity, such as filling in an edit control with a filename . A
default push-button control, as with other button controls, responds to
both mouse and keyboard input. If the user moves the mouse cursor into
the control and clicks it , the button sends a BN_ CLICKED notification
message to the parent window. The button does not have to have the
input focus to respond to mouse input . It does, however, require the focus
to respond to keyboard input. To let the user use the keyboard, you must
give the input focus to the button by using the SetFocus function . The
user can then press the SPACEBAR to direct the button to send a
BN_ CLICKED notification message to the parent window.

A check box is typically used to select some option to use in the current
task. For example, you might use a check box to let the user choose an
italic font for the next output operation . You can create a check-box con
trol by using the BS_ CHECKBOX style, as in the following example:

� de fine ID_ITALIC 201
HWND hCheckBox;

hCheckBox = CreateWindow ("Button" , " Ital ic" ,
BS_CHECKBOX i WS_CHILD i WS_VISIBLE ,
20, 40 , 30, 12 , hWnd, ID_ITALIC, hinstance , NULL) ;

In this example, the check-box label is "Italic" and the control ID is
ID_ ITALIC.

164

Controls and Dialog Boxes

A check box responds to mouse and keyboard input much as a push
button control would . That is, it sends a notification message to the
parent window when the user clicks the control or presses the SPACEBAR.
However, a check box can display a check (an "X") in its box to show that
it is currently on (it has been selected) . You can direct the control to show
the check by using the B:M_ SETCHECK message . You can also test to see
if the check box has a check by using the BM._ GETCHECK message . For
example , to place a check in the check box, use the following function:

SendMessage (hCheckBox , BMLSETCHECK, 1, OL) ;

This means you can place or remove a check in the check box any time
you want ; for example, when the parent window function receives a
BN_ CLICKED notification message. Windows also provides a
BS_ AUTOCHECKBOX style that automatically places or removes
a check .

Radio-button controls work in much the same way as check boxes. How
ever, radio buttons are usually used in groups and represent mutually
exclusive options. Group boxes are used to enclose two or more related
radio buttons . Group boxes do not respond to user input; that is, they do
not generate notification messages.

10.4 Using Static Controls

A static control is a small window that contains text or graphics. You typ
ically use a static control to label some other control or to create boxes
and lines that separate one group of controls from another.

The most commonly used static control is the SS_ LEFT style . This is a
left-adjusted line of text . That is, the control writes the line's text starting
at the left end of the control, displaying as much of the label as will fit in
the control and clipping the rest . The control uses the system font for the
text, so you can compute an appropriate size for the control by retrieving
the font metrics for this font (see Appendix A, "Fonts, " for details) .
Like group boxes, static controls do not respond to user input; that is,
they do not generate notification messages when chosen . However, you can
change the appearance and location of a static control at any time . For
example, you can change the text associated with a static control by using
the Set WindowText function or the W1L SETTEXT message .

165

Microsoft Windows Programmer's Learning Guide

10. 5 Using List Boxes

A list box is a control for a list of character strings, such as filenames . You
typically use a list box to display a list of names from which the user can
select one or more . There are several styles associated with a list box. The
most common styles are LBS_ NOTIFY and LBS_ SORT. These styles
create a list box that sorts its names alphabetically and sends notification
messages to the parent window when the user selects a name. The
WS_ VSCROLL style is often specified with a list box to create a scroll bar
so that the user can scroll the list-box contents. These three styles are
included in the LBS_ STANDARD style .

You can add a string to a list box by using the LB- ADDSTRING message .
This message copies the given string to the list box, which displays it in
the list . If the list box has the LBS_ SORT style, the string is sorted alpha
betically . The following example shows how to add a string:

int n!ndex ;

n!ndex = SendMessage (hListBox , LB_ADDSTRING, NULL , (LPSTR) "Al fred") ;

This message returns an integer that represents the index of the string in
the list . You can use this index in subsequent list-box messages to identify
the string, but only as long as you do not add , delete, or insert any other
string. Doing so may change the string's index. For example, you can
delete the string from the list box by supplying the index with the
LB_ DELETESTRING message , as in the following example :

SendMessage (hListBox , LB_DELETESTRING, n!ndex , NULL) ;

A list box responds to both mouse and keyboard input . If the user clicks a
string or presses the SPACEBAR in the list box, the list box selects the string
and indicates the selection by inverting the string text . If the list box has
the LBS_ NOTIFY style, the list box also sends an LBN_ SELCHANGE
notification message to the parent window. If the user double-clicks a
string and LBS_ NOTIFY is specified, the list box sends the messages
LBN_ SELCHANGE and LBN- DBLCLK to the parent window.

You can always retrieve the index of the selected string by using the
LB_ GETCURSEL and LB_ GETTEXT messages. The LB_ GETCURSEL
message retrieves the selection 's index in the list box, and the
LB_ GETTEXT message retrieves the selection from the list box, copying
it to a buffer that you supply.

166

Controls and Dialog Boxes

10.6 Using Edit Controls

An edit control is a rectangular child window in which the user can enter
and edit text . Edit controls have a variety of features, such as multiple
line editing and scrolling. You specify the features you want by specifying
a control style .

Edit control styles, like window styles, define how the control will look and
operate . For example, the ES_ MULTILINE style creates an edit control in
which you can enter more than one line of text . The ES- AUTOHSCROLL
and ES_ AUTOVSCROLL styles direct the edit control to scroll horizon
tally or vertically if the user enters more text than can fit in the control 's
client area. If these styles are not specified and the user enters more text
than can fit on one line, the control wraps to the next line .

An edit control sends notification messages to its parent window. For
example, an edit control sends an EN_ CHANGE message when the user
makes a change to the text . An edit control can also receive messages,
such as EM_ GETLINE and EM_ LINELENGTH. An edit control carries
out the specified action when it receives a message .

10.7 Using Scroll Bars

Scroll bars are predefined windows that can be positioned anywhere in a
window. They are used to provide scrolling input for the window. The
scroll bar sends a notification message to its parent window whenever the
user clicks the control with the mouse ; this allows the parent window to
process the messages so that proper scrolling can occur.

10.8 Designing Your Own Controls

You can design and use your own controls by creating a control class and
writing the control window function . Controls are a convenient way to
develop windows that provide special-purpose input or output, such as
gauges, thermometers, and charts. Once you have designed and tested a
control, you can use it in a variety of applications.

167

Microsoft Windows Programmer's Learning Guide

10.9 A Sample Application: EditCntl

This sample application illustrates how you can use an edit control in an
application 's main window to provide multiple- line text entry and editing.
The EditCntl application fills the client area of its main window with a
multiple-line edit control and monitors the size of the client area to ensure
that the edit control always just fits.

To create the application, copy and rename the source files of the Edit
Menu application , then make the following modifications:

1 . Add a new constant to the include file .

2 . Add new variables.

3 . Add a Create Window function .

4 . Add a W1L SIZE case.

5 . Compile and link the application .

10.9.1 Add a Constant to the Include File

You need to add a constant to the include file to serve as the Control ID
for the edit control . Add the following statement :

#de fine ID . EDIT 300

10.9.2 Add New Variables

You need a global variable to hold the window handle of the edit control .
Add the following statement to the beginning of the C-language source
file :

HWND hEditWnd; I* handle to edit window *I

You also need a local variable in the WinMain function to hold the coor
dinates of the client-area rectangle . These coordinates are used to deter
mine the size of the control . Add the following statement to the beginning
of the WinMain function:

RECT Rect ;

168

Controls and Dialog Boxes

10.9.3 Add a Create Window Function

You need to create the edit control by using the Create Window func
tion, but before doing so, you need to retrieve the dimensions of the client
area so that you can set the size of the control . Add the following state
ments to the WinMain function immediately after creating the main
window:

GetCl ientRect (hWnd, (LPRECT) &Rect) ;

hEditWnd = CreateWindow ("Edit" ,
NULL ,
WS_CHILD I WS_VISIBLE I
ES_MULTILINE I
WS_VSCROLL I WS_HSCROLL I
ES_AUTOHSCROLL i ES_AUTOVSCROLL ,
0 ,
0 ,
(Rect . right-Rect . le ft) ,
(Rect . bottom-Rect . top) ,

hWnd,
ID_EDIT ,
h!nst ,
NULL) ;

i f (! hEditWnd) {
DestroyWindow (hWnd) ;
return (NULL) ;

}

The GetClientRect function retrieves the dimensions of the the main
window's client area and places that information in the Rect structure .
The CreateWindow function creates the edit control, using the width
and height computed by the Rect structure .

The CreateWindow function creates the edit window. To create an edit
control, you need to use the predefined "Edit" control class and you need
to specify the WS_ CHILD window style . The predefined controls may be
used as child windows only . They cannot be used as main or pop-up win
dows. Since a child window requires a parent window, the handle of the
main window, h Wnd , is specified in the function call .

For this edit control, a number of edit-control styles are also specified .
Edit-control styles, like window styles, define how the control will look
and operate . This edit control is a multiple- line control, meaning the user
will be able to enter more than one line of text in the control window.
Also, the control will automatically scroll horizontally or vertically if the
user types more text than can fit in the window.

The upper- left corner of the edit control is placed at the upper-left corner
of the parent window's client area. A child window's coordinates are
always relative to the parent window's client area. The next two argu
ments, Rect . right-Rect. left and Rect .bottom-Rect . top, define the height

169

Microsoft Windows Programmer's Learning Guide

and width of the edit control, ensuring that the edit control fills the client
area when the window is first displayed .

Since an edit control sends notification messages to i ts parent window, the
control must be given a control ID. Child windows cannot have menus, so
the menu argument in the Create Window function is used to specify the
control ID instead . For this edit control, the ID is set to JD_ EDIT. Any
notification messages sent to the parent window by the edit control will
contain this ID.

If the edit control cannot be created, the CreateWindow function
returns NULL. In this case, the application cannot continue, so the
DestroyWindow function is used to destroy the main window before
terminating the application .

10.0.4 Add a WM_ SIZE Case

You need to add a WM_ SIZE case to the window function . Windows sends
a WM_ SIZE message to the window function whenever the width or
height of a window changes. Since changing the main window size does not
automatically change the edit-control size, the WM_ SIZE case is needed
to change the size of the control . Add the following statements to the win
dow function :

case WM_SIZE :
MoveWindow (hEditWnd, 0 , 0 , LOWORD (lParam) ,

HI WORD (lParam) , FALSE) ;
break ;

10.0.5 Compile and Link

No changes are required to the make file. Compile and link the EditCntl
application, then start Windows and run the application . Now, you can
insert text, backspace to delete text, and you can use the mouse instead of
the keyboard to select text . And since you specified ES_ MULTILINE,
ES_ AUTOVSCROLL, and ES_ AUTOHSCROLL when creating the con
trol, the control can edit a full screen of text, then scroll and edit more .

The EditCntl application illustrates the first step required to make a sim
ple text editor. To make a complete editor, you can add a File menu to the
main window to open and save text files and to copy or retrieve text from
the edit control , and add an Edit menu to the main window to copy, cut,
and paste text through the clipboard . Later chapters illustrate some sim
ple ways to incorporate these features into your application .

170

Controls and Dialog Boxes

10. 10 What Is a Dialog Box?

A dialog box is a pop-up window that an application uses to display or
prompt for information . Dialog boxes are typically used with commands
to prompt the user for the information needed to complete a command.
A dialog box contains one or more controls with which the user can enter
text, choose options, and direct the action of a particular command.

You have already seen a dialog box in the Generic application : the About
dialog box. This dialog box contains text controls that provide informa
tion about the application, and a push-button control that the user can
use to close the dialog box and return to the main window. To process a
dialog box, you need to supply a dialog-box template, a dialog function,
and some means to call up the dialog box.

A dialog-box template is a description of the dialog box and the controls it
contains. You create the template by using a text editor or the Windows
2 .0 Dialog Editor, then add the template to your resource script file .

A dialog function is a callback function that Windows calls when it has
messages for the dialog box. Although a dialog function is similar to a win
dow function , Windows carries out special processing for dialog boxes, so
the dialog function does not have the same responsibilities as a window
function .

The most common way to call up a dialog box is to do so in response to
menu input . For example, the Open and Save As commands in the File
menu both require additional information to complete their tasks. They
both display dialog boxes to prompt for the additional information .

To create a dialog box, you must follow these steps:

1 . Create a dialog-box template and add it to the resource script file .

2 . Create a dialog function to support the box.

3 . Export the dialog function .

You call up a dialog box by using the DialogBox or CreateDialog func
tion . These functions start modal and modeless dialog boxes, respectively.

10.10.1 Creating a Modal Dialog Box

You have already seen a modal dialog box (About) in the Generic applica
tion . A modal dialog box is a pop-up window that displays information
and prompts for user input . It is called modal because it temporarily dis
ables the parent window and forces the user to complete the requested
action before returning control to the parent window.

171

Microsoft Windows Programmer's Learning Guide

Although you can give a modal dialog box almost any window style ,
the recommended styles are WS_ DLGFRAME and WS_ POPUP. The
WS- DLGFRAME style gives the dialog box its characteristic double- line
border. You should not use a menu, title bar, system menu, or other win
dow feature common to overlapping windows. Since a modal dialog box
does not have a system menu , you must supply at least one button that
gives the user some way to terminate the box. For example, the About dia
log box has a push button labeled "OK" .

A modal dialog box starts its own message loop to process messages from
the application queue without returning to the WinMain function . To
keep input from going to the parent window, the dialog box disables the
parent window before processing input . For this reason, a modal dialog
box must never be created using the WS_ CHILD style, since disabling the
parent window also disables all child-style windows belonging to the
parent .

You terminate a modal dialog box by using the EndDialog function .

10.10.2 Creating a Modeless Dialog Box

A modeless dialog box is simply a pop-up window that displays informa
tion or prompts for input from the user . Unlike a modal dialog box, a
modeless dialog box does not disable the parent window. This means you
can continue to work in the parent window while the modeless dialog box
is displayed.

Most modeless dialog boxes have the WS_ POPUP, WS_ CAPTION,
WS_ BORDER, and WS_ SYSTEMMENU styles. The typical modeless dia
log box has a system menu, a title bar, and a thin black border. Although
Windows automatically disables some of the system-menu commands for
the dialog box, the menu still contains a Close command . The user can use
this command instead of a push button to terminate the dialog box. You
can also include controls in the dialog box, such as edit controls and check
boxes.

A modeless dialog box receives its input through the message loop in the
WinMain function . If you have controls in the dialog box and want to let
the user move to and select controls by using the keyboard , you need to
call the IsDialogMessage function in the main message loop. This func
tion determines whether a keyboard input message is for the dialog box
and , if necessary, processes it . The message loop for an application that
has a modeless dialog box will look like this:

whi le (GetMessage (&msg, NULL , NULL , NULL) {

}

172

if (hDl g == NULL : : ! IsD1a logMessage (hDlg, &msg)) {
Trans l ateMessage (&msg) ;
DispatchMessage (&msg) ;

}

Controls and Dialog Boxes

Since a modeless dialog box may not be present at all times, you need to
check the hDlg variable that holds the handle in order to see if it is valid .
If it is valid , IsDialogMessage determines whether the message is for the
dialog box. If so, the message is processed and must not be further pro
cessed by using the TranslateMessage and DispatchMessage functions.

You terminate a modeless dialog box by using the DestroyWindow func
t ion, not the EndDialog function . EndDialog is used for modal dialog
boxes only .

10.10.3 Creating a Dialog Function

A dialog function has the following form:

BOOL FAR PASCAL DlgFunc (hDlg , message , wParam, lParam)
HWND hDlg;
unsigned message ;
WORD wParam;
DWORD lParam ;
{

switch (message) {

I* Place message cases here •/

de fault :
return FALSE ;

}
}

This is basically a window function , except that the DefWindowProc
function is not called . Default processing of dialog-box messages is handled
internally, so the dialog function must not call the DefW'indowProc
function .

The dialog function must be defined as a FAR PASCAL procedure, and
must have the parameters given here. BOOL is the required return type .

Just as it does with window functions, Windows sends messages to a dia
log function when it has information to give the function or wants the
function to carry out some action . Unlike a window function, a dialog
function responds to a message by returning a Boolean value . If the func
t ion processes the message, it returns TRUE. Otherwise, it returns FALSE.

In this function, the hDlg variable receives the handle of the dialog box.
The other parameters serve the same purpose as in a window function .
The switch statement is used as a filter for different messages. Most dia
log functions process the WM_ INITDIALOG and WM_ CO:MMAND mes
sages, but very little else .

173

Microsoft Windows Programmer's Learning Guide

The WM_ INITDIALOG message, sent to the dialog box just before it is
displayed , gives the dialog function the opportunity to give the input focus
to any control in the dialog box. If the function returns TRUE, Windows
will set the input focus to the control of its choosing. Since there is only
one control in this dialog box, the dialog function lets Windows set the
input focus.

The \VM_ COMMAND message is sent to the dialog function by the
controls in the dialog box. If there are controls in the dialog box, they
send notification messages when the user carries out some action within
them. For example , a dialog function with a push button can check
\VM_ COMMAND messages for the control ID of the push button . The
control ID is in the wParam parameter. When it finds the ID, the dialog
function can carry out the corresponding task.

10.10.4 Using Controls in Dialog Boxes

You use controls in dialog boxes much as you use them in regular win
dows . When a control is in a dialog box, however, you can use several spe
cial functions to access the control and send messages to it . For example,
the SendDlgltemMessage function sends a message to a control in the
dialog box, and the SetDlgitemText function sets the text of a control .
You do not need to supply the control handle in these functions . Instead ,
you supply the dialog handle and the control ID. I f you want the control
handle, you can use the GetDlgitem function .

10.11 A Sample Application: FileOpen

This sample application shows how to build and use a modal dialog box to
support the Open command in the File menu . The purpose and operation
of the dialog box is fully described in the Microsoft Windows Applz"cation
Style Guide. The FileOpen dialog box contains the following controls:

174

• A default push-button control , labeled "Open" , used to direct the
application to open the selected file .

• A button control, labeled "Cancel" , used to cancel the Open com
mand.

• A single- line edit control in which the user can enter the name of
the file to open.

Controls and Dialog Boxes

• A list box containing the names of files in the current directory
from which the user can select the file to be opened . The list box
also contains directory and drive names, which can be used to
change the current directory or drive.

• Several static text controls used to label the list box and edit con
trol, and to display the current directory name.

To create the FileOpen application , copy and rename the source files for
the EditCntl application, then make the following modifications:

1 . Add new constants to the include file .

2 . Create the Open dialog-box template and add it to the resource
script file.

3 . Add new variables.

4. Add an IDM_ OPEN case to the WM_ COMMAND case .

5 . Create the OpenDlg dialog function .

6 . Add helper functions to support the OpenDlg dialog function .

7 . Export the OpenDlg dialog function .

8 . Compile and link the application .

10.11.1 Add Constants to the Include File

You need several new constants in the include file to identify the controls
of the FileOpen dialog box. Add the following statements:

#de fine
#de fine
#de fine
#de fine
#de fine

ID_FILENAME 400
ID_EDI T 401
ID_FILES 402
ID_PATII 403
ID_LISTBOX 404

Although you may choose any integer for a control ID, the ID for each con
trol in a given dialog box must be unique. Typically, a predefined ID, such
as IDOK or IDCANCEL, is less than 100, so any number greater than 100
can be used for other controls .

10.11.2 Create the Open Dialog-Box Template

You need a dialog-box template in your resource script file to define the
size and appearance of the Open dialog box. The DIALOG statement
specifies the name and dimensions of a dialog box, as well as the controls
the dialog box contains . Add the following statements:

175

Microsoft Windows Programmer's Learning Guide

Open DIALOG 10 , 10 , 148 , 112
STYLE WS_DLGFRAME I WS_POPUP
BEGIN

LTEXT "Open File &Name : " ,
EDITTEXT ID_EDIT ,

ID_FILENAME ,

END

LTEXT "&Fi l es in" , ID_FILES ,
LISTBOX, ID_LISTBOX,
LTEXT " " , ID_PATH,
DEFPUSHBUTTON "&Open" , IDOK,
PUSHBUTTON "Cancel " , IDCANCEL ,

4, 16 ,
4, 40,
4 , 52 ,

40 , 40 ,
87 , 60 ,
87 , 80 ,

4, 4, 60, 10
100, 12 , ES_AUTOHSCROLL

32 , 10
70, 56 , WS_TABSTOP

100, 10
50, 14
50 , 14

The dialog box has a width and height (in dialog units) of 148 and 1 12 ,
respectively. Dialog units are fractions of the default system-font charac
ter size and are used with dialog boxes to ensure that a dialog box has the
same relative size, no matter which computer it is displayed on. The
BEGIN and END statements are required .

The DEFPUSHBUTTON statement creates a default push button that
is labeled "Open" and has the control ID, IDOK. In modal dialog boxes,
pressing the ENTER key generates a notification message that uses the same
ID, so you can permit the user to click the button or press ENTER to open
the selected file.

The PUSHBUTTON statement creates the "Cancel" push button . Its ID
is IDCANCEL, a predefined ID found in the windows.h file . In modal dialog
boxes, pressing the ESCAPE key generates a notification message by using
the same ID, so you can permit the user to click the button or press the
ESCAPE key to cancel the Open command.

The first LTEXT statement creates a left-adjusted static control that
contains the string, "Open File &Name: " . This string serves as the label
to the list box. In some dialog boxes, all static controls have this same ID.
Although the general rule is to have a unique ID for each control in a dia
log box, it is acceptable to use -1 for static controls, as long as the dialog
function does not need to distinguish between them (for example, as long
as the dialog function does not attempt to change the static-control text
or position) .
The EDITTEXT statement adds an edit control to the dialog box and
identifies it with ID- EDIT. The ES- AUTOHSCROLL style is given so
that the user can enter filenames that are longer than the control is wide .

The LISTBOX statement creates a list box. The ID of the list box is
ID_ LISTBOX. The width and height (in dialog units) of the list box are 70
and 56, respectively. The WS_ TABSTOP style is given so that the user
can move the focus to the list box by using the keyboard . Without this
style , the only method the user has to access the list box is to click it with
the mouse .

176

Controls and Dialog Boxes

The last LTEXT statement creates a left-adjusted static control used
to display the current directory and drive . The control is initially empty;
the pathname is added later. This control also has a unique control ID,
ID_ PATH, to distinguish it from other static controls. This is important
since you will use the DlgDirList function to fill the control .

10.11.3 Add New Variables

You need to declare several new global and local variables in order to hold
the filename and the various pieces used to build the filename . Add the fol
lowing statements at the beginning of your source file:

char FileName [l28) ;
char PathName [l28) ;
char OpenName [l28) ;
char De fPath [128) ;
char De fSpec [l3) = " * · * " ;
char De fExt [] = " . txt" ;
char str [255] ;

I* current filename *I
I•
I*
I*
I*
I*
I*

current pathname *I
filename to open *I
de fault path for l ist box •I
de fault search spec *I
de fault extension •I
string for sprint f () ca l ls •I

You need a new local variable to hold the procedure-instance address of
the FileOpen dialog box. Add the following statement at the beginning of
the window function :

F ARPROC lpOpenDl g;

10.11.4 Add the IDM_ OPEN Case

You need to fill in the ID:M_ OPEN case for the WM_ C011MAND mes
sage, and you need to display the Open dialog box when the user chooses
the command. Add the following statements to the window function :

case IDM_OPEN :
lpOpenDlg = MakeProcinstance ((FARPROC) OpenDlg, h!nst)) ;
Dia logBox (hinst , "Open" , hWnd, lpOpenDlg) ;
FreeProcinstance (lpOpenDlg) ;
break ;

The MakeProclnstanee function creates a procedure-instance address
for the OpenDlg function . The function ensures that the data segment for
the current instance is used when the dialog function is called . Functions,
such as OpenDlg, that are exported by an application may only be called
through a procedure- instance address and must not be called directly.

The FreeProclnstance function is used to free a procedure- instance
address when it is no longer needed . After the DialogBox function
returns, the procedure- instance address, lpOpenDlg, is not needed and
can be freed . It will be recreated the next time the dialog box is invoked.

177

Microsoft Windows Programmer's Learning Guide

The DialogBox function returns only after the dialog function has ter
minated the dialog box. This means the dialog box will complete any
actions the user requests, before the application can continue execution .
Such a dialog box is called a modal dialog box, since while it remains on
the screen, the application is in a new mode of operation . This means the
user can respond only to the dialog box. It also means that commands that
apply to the application are not available while the dialog box is present .

10.11.5 Create the OpenDlg Function

You need to create an Open dialog box to process the various controls.
When the dialog box is first displayed, the dialog function needs to fill the
list box and the edit control, then give the input focus to the edit control
and select the entire specification . If the user selects a filename in the list
box, the dialog function should copy the name to the edit control . If the
user clicks the Open button, the dialog function should retrieve the
filename from the edit control and prepare to open the file . If the user
double-clicks a filename in the list box, the dialog function should retrieve
the filename, copy it to the edit control, and prepare to open the file .

Add the following function to your source file:

HANDLE FAR PASCAL OpenDlg (hDlg, message , wParam, lParam)
HWND hDlg;
unsigned message ;
WORD wParam;
LONG lParam;
{

178

WORD index ;
PSTR pTptr ;
HANDLE hF i l e ;

I * index t o the filenames in the l ist box * I
I * temporary pointer *I
I* handle to the opened file *I

switch (message) {
case WM_COMMAND :

switch (wParam) {
case ID_LISTBOX :

switch (HIWORD (lParam)) {
case LBN_SELCHANGE :

}

i f (! DlgDirSelect (hDlg, str , ID_LISTBOX)) {
SetDlgitemText (hDlg , ID_EDIT , str) ;
SendDl gitemMessage (hDlg, ID_EDIT ,

EM_SETSEL ,
NULL ,
MAKELONG (O , Ox7 fff)) ;

}
e lse {

}

strcat (str , De fSpec) ;
DlgDirList (hDlg, str , ID_LISTBOX,

ID_PATH, Ox4010) ;

break;
case LBN_DBLCLK :

goto open fi l e ;
I * Ends ID_LISTBOX case * I

return (TRUE) ;

Controls and Dialog Boxes

case IDOK :
openfile :

}

}

}

GetDlgitemText (hDlg, ID_EDIT, OpenName , 128) ;
i f (strchr (OpenName , ' * ') I I

}

strchr (OpenName , ' ? ')) {
SeparateFile (hDlg , (LPSTR) str , (LPSTR) De fSpec ,

(LPSTR) OpenName) ;
i f (str [0])

strcpy (De fPath, str) ;
ChangeDe fExt (De fExt , De fSpec) ;
UpdateListBox (hDl g) ;
return (TRUE) ;

i f (! OpenName [O]) {

}

MessageBox (hDlg, "No filename speci fied . " ,
NULL , MB_OK l MB_ICONQUESTION) ;

return (TRUE) ;

AddExt (OpenName , De fExt) ;
EndDia log (hDlg, NULL) ;
return (TRUE) ;

case IDCANCEL :
EndDialog (hDlg, NULL) ;
return (TRUE) ;

break ;

case WM_INITDIALOG : I* Request to initalize *I
UpdateListBox (hDl g) ;
SetDl g!temText (hDlg , ID_EDIT, De fSpec) ;
SendDlgitemMessage (hDlg , I* dialog handl e *I

ID_EDIT , I * where t o send message *I
EM_SETSEL , I* select characters *I
NULL , I* additiona l information *I
MAKELONG (O , Ox7 f f f)) ; I* Accept entire contents *I

SetFocus (GetDlgitem (hDlg, ID_EDIT)) ;
return (FALSE) ; I* Indicates focus is set to a contro l *I

return (FALSE) ;

When the dialog function receives the \VM_ INITDIALOG message, the
SetDlgltemText function copies the initial filename to the edit control,
and the SendDlgltemMessage function sends the E:M- SETSEL message
to the control in order to select the entire contents of the edit control for
editing. The SetFocus function gives the input focus to the edit control.
(The GetDlgltem function retrieves the window handle of the edit con
trol .) The UpdateListBox function, given at the beginning of the
W1L INITDIALOG case, is a locally defined function that fills the list
box with a list of files in the current directory .

When the dialog function receives the \VM_ CO:M"MAND message, it looks
for three different values: JD_ LISTBOX, IDOK, and IDCANCEL.

179

Microsoft Windows Programmer's Learning Guide

For ID_ LJSTBOX, the dialog function checks the notification-message
type . If it is LBN_ SELCHANGE, the dialog function retrieves the new
selection by using the DlgDirSelect function . It then copies the new
filename to the edit control by using the SetDlgitemText function and
selects it for editing by sending a EM_ SETSEL message . If the current
selection is not a filename, the dialog function copies the default speci
fication to the list box by using the DlgDirList function . This fills the list
box with all files in the current directory.

If the ID_ LJSTBOX notification type is LBN_ DBLCLK, the dialog func
t ion carries out the same action as for the IDOK case. A list box sends an
LBN_ DBLCLK message only after sending an LBN_ SELCHANGE mes
sage . This means you do not have to retrieve the new filename when you
receive a double-click notification .

For IDOK, the dialog function retrieves the contents of the edit control
and checks the filename to see if it is valid . The strchr function searches
for wildcard characters in the name . If it finds a wildcard character, it
divides the filename into separate path and filename parts by using the
locally defined SeparateFile function . The strcpy function updates the
DefPath variable with a new default path , if any. The locally defined
ChangeDefExt function updates the DefExt variable with a new default
filename extension , if any. Mter the default path, filename, and filename
extension are updated, the UpdateListBox function updates the contents
of the list box, and the dialog function returns to let the user select a valid
filename from the new list .

If a filename has no wildcard characters, the dialog function makes sure
the file is not empty. If it is empty, the dialog function displays a warning
message , but does not terminate the dialog box. This lets the user try
again . If the filename has no wildcards and the file is not empty, and if the
user has entered a filename that does not have an extension, the dialog
function uses the locally defined AddExt function to append the default
filename extension . The dialog function then calls the EndDialog function
to terminate the modal dialog box and sets the dialog-box return value to
NULL.

For IDCANCEL, the dialog function calls the EndDialog function to ter
minate the dialog box and cancel the command. The return value is set to
NULL.

The dialog function can also check the existence and access mode of the
given file before terminating the dialog box. The existence check, not given
in this example, is entirely up to the application . Some simple ways of
checking whether a file exists and is accessible are shown in Chapter 1 1 ,
"File Input and Output . "

180

Controls a.nd Dialog Boxes

10.11 .6 Add Helper Functions

You need to add several functions to your C-language source file to sup
port the OpenDlg dialog function . These functions are listed as follows:

Function

U pdateListBox

SeparateFile

ChangeDefExt

AddExt

_ lstrlen

_ lstrcpy

_ lstrncpy

Description

Fills the list box in the Open dialog box with the
specified files.

Divides a pathname into separate path and filename
parts.

Copies the filename extension from a filename to a
buffer, as long as the extension has no wildcard char
acters.

Appends an extension to a filename if the filename has
no filename extension .

Returns the length of a string.

Copies a string to a buffer .

Copies a specified number of characters from a string
to a buffer.

The UpdateListBox function builds a pathname by using the default path
and filename, then passes this pathname to the list box by using the
DlgDirList function . This function fills the list box with the names of the
files and directories identified by the pathname. Add the following state
ments to the C-language source file:

void UpdateListBox (hDl g)
HWND hDlg;
{

}

strcpy (str , De fPath) ;
strcat (str , De fSpec) ;
DlgDirList (hDlg, str , ID_LISTBOX, ID_PATH, Ox4010) ;
SetDlgitemText (hDlg, ID_EDIT , De fSpec) ;

The SetDlgltemText function copies the default filename to the dialog
box's edit control .

The SeparateFile function divides a pathname into two parts and copies
them to separate buffers. It first moves to the end of the pathname and
uses the AnsiPrev function to back through it, looking for a drive or
directory separator. Add the following statements to your C-language
source file :

void SeparateFile (hDlg, lpDestPath, lpDestFileName , lpSrcFileName)
HWND hDlg;
LPSTR lpDestPath, lpDestFileName , lpSrcFileName ;

181

Microsoft Windows Programmer's Learning Guide

{

}

LPSTR lpTmp ;

lpTmp = lpSrcFileName + (long) _lstrlen (lpSrcFileName) ;

while (* lpTmp ! = ' : ' && • lpTmp ! = ' \ ' && lpTmp > lpSrcFileName)
lpTmp = AnsiPrev (lpSrcFileName , lpTmp) ;

i f (• lpTmp ! = ' : ' && • lpTmp ! = ' \ ') {
_lstrcpy (lpDestFi l eName , lpSrcFileName) ;
lpDestPath [O] = 0 ;
return ;

}
_lstrcpy (lpDestFileName , lpTmp + 1L) ;
_lstrncpy (lpDestPath, lpSrcFileName ,

(int) (lpTmp - lpSrcFileName) + 1) ;
lpDestPath [(lpTmp - lpSrcFileName) + 1] = 0 ;

The ChangeDefExt, AddExt, _ lstrlen, _ lstrcpy, and _ lstrncpy functions
all use standard C-language statements to carry out their tasks. Add the
following statements to the C-language source file :

void ChangeDe fExt (Ext , Name)
PSTR Ext , Name ;
{

PSTR pTptr ;

pTptr = Name ;
whi le (•pTptr && •pTptr ! = 1 • 1)

pTptr++ ;
if (•pTptr)

i f (! strchr (pTptr , 1 * 1)
strcpy (Ext , pTptr) ;

I* true i f this is an extension *I
&& ! strchr (pTptr , 1 ? 1))

I* Copies the extension *I
}

void AddExt (Name , Ext)
PSTR Name , Ext ;
{

PSTR pTptr ;

pTptr = Name ;
while (•pTptr && •pTptr ! = 1 • 1)

pTptr++ ;
i f (*pTptr ! = ' . 1) I* I f no extension , add the de fault *I

strcat (Name , Ext) ;
}

int _lstrlen (lpStr)
LPSTR lpStr ;
{

}

int i ;
for (i=O ; • lpStr++ ; i++) ;
return (i) ;

void _lstrncpy (lpDest , lpSrc , n)
LPSTR lpDest , lpSrc ;
int n ;

182

I* Gets length using far pointer *I

{

}

while (n- -)
i f (! (* lpDest++ = * lpSrc++))

return ;

void _lstrcpy (lpDest , lpSrc)
LPSTR lpDest , lpSrc ;
{

while (* lpDest++ = * lpSrc++) ;
}

10.11. 7 Export the Dialog Function

Controls a.nd Dialog Boxes

You need to export the OpenDlg dialog function . Add the following line to
the EXPORTS statement in your module-definition file :

OpenDlg @3

10.11.8 Compile and Link

No changes are required to the make file . Compile and link the applica
t ion , start Windows, then run the FileOpen application . When you open
the File menu and choose the Open command, you will see a dialog box
similar to the one shown in Figure 10. 1 :

= � "" MS - D O S E x e c u t .J. v e ""- l.flll(t]l H e::(»=l*�===�' ""
l F i l e O p e n S a M P 1 e A p p l. � c a t .J. O O ' l.'lll[t]l

A £i.l.•
F l
F l
F l Open FJ.l.e tliiii'IMP I
F l l!!ili:l I F l
F l

fi�•• i n C I 'LEARN,F I LEOPEN

F I L E O P E N f'
F I LEOPEN. C (IP•n) F I L E O P E N . OEF
F I LEOPEN. EXE

' () F I L E O P E H . H C•no•l.
F I��OPEN. RC

Figure 10.1 FileOpen Dialog Box

Select a file from the list box, or enter a filename in the edit control , then
choose the Open button .

183

Chapter 1 1

File Input and Output

1 1 . 1 Introduction 187
11 .2 Multitasking and Files 187

11 .2. 1 Open Files 187

1 1 .2 .2 Filenames 188

11 .2.3 Temporary Filenames 189
1 1 .2 .4 Errors When Files Are Open 189
1 1 .3 Creating Files 189
1 1 .4 Opening Existing Files 190
11 .5 Reading and Writing Files 190
11 .6 Reopening Files 191

1 1 .7 Prompting for Files 191

11.8 Checking File Status 192
1 1 .9 A Simple File Editor: EditFile 192
11 .9. 1 Add Constants to the Include File 193
1 1 .9 .2 Add a SaveAs Dialog Box 193

11 .9.3 Add Include Statements 193
1 1 .9.4 Add New Variables 193
1 1 .9 .5 Replace the WM_ CONIMAND Case 194
1 1.9 .6 Add the WM_ QUERYENDSESSION

and WM_ �OSE Cases 197
11 .9.7 Modify the OpenDlg Dialog Function 197

11 .9.8 Add the SaveAsDlg Dialog Function 198
1 1 .9.9 Add Helper Functions 200
1 1 .9 . 10 Export the SaveAsDlg Dialog Function 203
11 .9. 1 1 Add Space to the Heap 203
1 1 .9. 12 Compile and Link 203

185

File Input and Output

1 1 . 1 Introduction

Although file input and output in Microsoft Windows is similar to file
input and output in standard C run-time programs, there are enough
differences to make a review of file input and output important . For exam
ple, although you can use C run-time, stream input and output (1/0) func
t ions in Windows, the low..:level, C run-time input and output functions
are preferred . Also, since Windows is multitasking, you need to take spe
cial care to manage your open files.

To support these differences, Windows provides the OpenFile function .
OpenFile opens and manages your files, returning a file handle that you
can use with the low-level, C run-time functions to read and write data.
This chapter explains how to use the OpenFile function to open and
create disk files. It also explains how to use the low-level, C run-time input
and output functions to read from and write to disk files.

11 .2 Multitasking and Files

Multitasking imposes some special restrictions on file access that you do
not encounter in standard C programs. Since there may be several applica
tions working with files at the same time, you need to follow some simple
rules to avoid conflicts and potential overwriting of files.

11.2.1 Open Files

You should keep a file open for only as long as you have execution control .
This means you should close the file before calling the GetMessage func
t ion or any other function that may yield execution control . The reason
for closing the file is to prevent it from being affected by changes in the
disk environment that may be caused by other applications . For example,
if you are writing to a floppy disk and temporarily relinquish control to
another application , that application may direct you to remove the floppy
disk and replace it with another. If you get control back and attempt to
write as before without having closed and reopened the file, you will end
up destroying data on the new disk .

187

Microsoft Windows Programmer's Learning Guide

Another reason to keep files closed is the DOS open-file limit . DOS sets a
limit on the number of open files that can exist at any one time . If many
applications attempt to open and use files, they can quickly exhaust the
available files.

To prevent open-file problems, the OpenFile function provides an
OF_ REOPEN option that lets you easily close and reopen files. Whenever
you open or create a file, OpenFile automatically copies the relevant facts
about the file, including the full pathname and the current position of the
file pointer, in an OFSTRUCT structure. This means you can close the
file, then reopen it by supplying nothing more than the structure .

If you have changed disks while working in another application, the
OpenFile function will fail to reopen the file . If you specify the
OF- PROMPT option when reopening a file, OpenFile automatically
displays a message box asking you to insert the correct disk .

11 .2.2 Filenames

Ultimately, Windows depends on the DOS file-handling functions to carry
out all file input and output . This means that you must follow DOS con
ventions when carrying out file operations . For example, with DOS, a
filename can have from one to eight characters and a filename extension
can have from zero to three characters. The name must not contain spaces
or special-purpose characters. Furthermore , filenames must be specified in
the OEM character set, not the Windows default character set , ANSI.

It is up to you to make sure your filenames are the appropriate length and
contain the appropriate characters, but you do not have to worry about
translating character sets if you use the OpenFile function . For conveni
ence, OpenFile automatically translates filenames from the ANSI charac
ter set to the OEM set. It does so using the AnsiToOem function .

All edit controls and list boxes use the ANSI character set by default, so if
you plan to display DOS filenames or let users enter filenames, they may
see unexpected characters wherever an OEM character is not identical to
an ANSI character.

If you intend to process international filenames, you must be prepared to
handle filenames that do not contain conventional single-byte character
values. For such filenames, you should use the AnsiNext and AnsiPrev
functions to move forward and backward in a string. These functions
correctly handle strings that contain characters that are not one byte in
length, such as strings in machines that are using Japanese characters.

188

File Input and Output

11.2.3 Temporary Filenames

Since multiple instances of one application may be running at the same
time, one instance can end up overwriting the temporary or scratch file of
another instance if you do not use unique filenames for each instance . You
can create unique filenames by using the GetTempFilename function .
This function creates a unique name by combining a unique integer with a
prefix and filename extension that you supply. The temporary names fol
low the DOS filename requirements.

The GetTempFileName function uses the TEMP environment variable
to create the full pathname of the temporary file. If the user has not set
the variable, the temporary file will be placed in the root directory of the
current drive . If the variable does not specify a valid directory, you will
not be able to create the temporary file.

11 .2.4 Errors "When Files Are Open

Since an application should not relinquish control while it has open files,
applications that need to display an alert or error message by using the
MessageBox function should either make the message box system-modal,
or close the files before displaying the message box. If the message box is
not system-modal or the files are not closed, the user can move to another
application , taking control away from the application with open files.

1 1 . 3 Creating Files

You can use the OpenFile function to create a new file . You must supply
a null- terminated filename, a buffer having OFSTRUCT type, and the
OF_ CREATE option . The following example creates the file. txt file and
returns a handle to the file that can be used in low-level, C run-time I/0
functions:

int hF i l e ;
OFSTRUCT OfStruct ;

hFile = OpenFi le (" file . txt" , &O fStruct , OF_CREATE) ;

The OpenFile function creates the file, if necessary, and opens it for writ
ing. If the file already exists, the function truncates it to zero length and
opens it for writing.

189

Microsoft Windows Programmer's Learning Guide

If you wish to prevent overwriting an existing file, you can check whether
the file exists, before creating a new file , by calling OpenFile as follows:

hFile = OpenFile (" file . txt" , &O fStruct , OF_EXI ST) ;
i f (hFile >= 0) {

wAction = Mess.ageBox (hWnd,
(LPSTR) "Fi l e exists . Overwrite?" ,
(LPSTR) "Fi le" ,

MB_OKCANCEL) ;
i f (wAction == IDCANCEL)

I* End this processing *I
}

}

I* Open the fi l e *I

1 1 .4 Opening Existing Files

You can open an existing file by using the OF_ READ, OF_ WRITE, or
OF- READ WRITE options . These options direct the OpenFile function
to open existing files for reading, writing, or reading and writing. The fol
lowing example opens the file. txt file for reading:

hE' i l e = OpenE' i l e (" fi le . txt" , &O fStruct , OF_READ) ;

If the file fails to open, you can display a dialog box to indicate that the
file was not found. You can also use OpenFile to prompt for the file , as
described in section 1 1 . 7 , "Prompting for Files . "

1 1 . 5 Reading and Writing Files

Once you have opened a file, you can read from it or write to it using low
level, C run-time functions . The following example opens the file. txt file for
reading and then reads 512 bytes from it :

char bu f fer [512] ;
int count ;

hE' i l e = OpenE'i l e (" fi l e . txt" , &O fStruct , OF_READ) ;
i f (hFile >= 0) {

}

190

count = read (hFile, bu f fer , 512) ;
close (hFile) ;

File Input and Output

In this example, the file handle is checked before bytes are read from the
file . OpenFile returns -1 if the file could not be found or opened . The
close function closes the file immediately after reading.

The following example opens the file. tmp file for writing and then writes
bytes from the character-array buffer:

hFile = OpenFile (" file . tmp" , &OfStruct , OF_READ) ;
i f (hFi l e >= 0) {

}

write (hFi l e , bu ffer , count) ;
close (hFi le) ;

You should always close floppy-disk files after reading or writing. This is
to prevent problems if you remove the current disk while working with
another application . You can always reopen a disk file by using the
MF _ REOPEN option .

1 1 . 6 Reopening Files

If you open a file on a floppy disk, you should close it before your applica
tion relinquishes control to another application . The most convenient time
is immediately after reading or writing the file . The file can always be
reopened using OpenFile and the OF- REOPEN option :

hFile = OpenF i l e ((LPSTR) NULL , &O fStruct , OF_REOPEN l OF_READ) ;

In this example, OpenFile uses the filename in the OfStruct structure to
open the file. When a file is reopened, the file pointer marking the current
position in the file is moved to the same position it was in j ust before the
file was closed .

11.7 Prompting for Files

You can automatically prompt the user to insert the correct disk before
reopening a file by using the OF_ PROMPT option . OpenFile uses the
filename to create a prompt string. If you are reopening a file, you need to
use the OF_ REOPEN and OF_ PROMPT options in addition to specifying
how you want to open the file:

hFile = OpenFile ((LPSTR) NULL , &OfStruct , OF_PROMPT I OF_REOPEN
I OF_READ) ;

If you reopen a file as read only, Windows will check whether the date and
time match the date and time of the file when it was first opened.

191

Microsoft Windows Programmer's Learning Guide

1 1 . 8 Checking File Status

You can retrieve the current file status of a open file by using the low
level, C run-t ime function, fstat. This function fills a structure with infor
mation about a file, such as its length in bytes (specified in the size field)
and the date and time it was created . The following example fills the
FileStatus structure with information about the file. txt file:

stat F i leStatus ;

fstat (hFile , FileStatus) ;

1 1 .9 A Simple File Editor: EditFile

This example shows how to create a simple Windows application that uses
the OpenFile and C run-time functions to open and save small text files.
To create the EditFile sample application , you will need to copy and
rename the FileOpen application sources, described in Chapter 10, "Con
trols and Dialog Boxes," and modify them as follows:

1 . Add constants to the include file.

2 . Create a SaveAs dialog-box template and add it to the resource
script file.

3. Add new include statements to the C-language source file.

4. Add new variables .

5 . Replace the WM._ COMMAND case .

6 . Add the WM._ QUERYENDSESSION and WM._ CLOSE cases.

7 . Modify the OpenDlg dialog function .

8 . Create a SaveAs dialog function .

9 . Create helper functions for the SaveAs dialog function .

10 . Export the SaveAs dialog function .

1 1 . Modify the application 's HEAPSIZE statement .

12 . Compile and l ink the application .

When this application is completed, you will be able to view text files in an
edit control . The application 's Open command in the File menu will let
you specify the file to be opened . You will also be able to make changes to
a file or enter new text, and save the text using the Save or Save As com
mand in the dialog box.

192

File Input and Output

11.9.1 Add Constants to the Include File

You need to add a constant definition to the include file to support the
SaveAs dialog box. Add the following statement to the include file :

#de fine MAXFILESIZE Ox7FFF

11 .9.2 Add a SaveAs Dialog Box

You need a new dialog box to support the Save As command. The SaveAs
dialog box prompts for a filename, and lets the user enter the name in an
edit control . Add the following DIALOG statement to the resource file :

SaveAs DIALOG 10 , 10 , 180 , 53
STYLE WS_DLGFRAME I WS_POPUP
BEGIN

END

LTEXT "Save As File &Name : " ,
LTEXT " " ,
EDITTEXT
DEFPUSHBUTTON "Save" ,
PUSHBUTTON "Cancel " ,

ID_FILENAME , 4, 4,
ID_PATH, 84, 4,
ID_EDI T , 4, 16 ,
IDOK, 120 , 16 ,
IDCANCEL , 120 , 36 ,

7 2 , 10
92 , 10

100 , 12
50 , 14
50 , 14

The constants, JD_ PATH, JD_ FILijNAME, JD_ EDIT, IDCANCEL, and
IDOK, are the same as those used i� the Open dialog box. Since the Open
and SaveAs dialog boxes will never be open at the same time, there is no
need to worry about conflicting control IDs.

11 .9.3 Add Include Statements

You need to include additional C run-time include files to support the file
input and output operations. Add the following statements to the begin
ning of the C-language source file :

#include <sys\types . h>
#include <sys\stat . h>

11.9.4 Add New Variables

To open and save a file you will need to declare some global variables . The
following variables should be declared at the beginning of the file:

HANDLE hEditBu ffer ;
HANDLE hOldBu ffer ;
HANDLE hHourGl ass ;
HANDLE hSaveCursor ;
int hFi l e ;
int count ;
PSTR pBu f fer ;
OFSTRUCT OfStruct ;

I* handle to editing bu ffer *I
I* old buffer handle *I
I* handle to hourglass cursor *I
I* current cursor handle *I
I* fi le handle *I
I* number of chars read or written *I
I* address o f readlwrite bu ffer *I
I* in formation from OpenFile () *I

193

Microsoft Windows Programmer's Learning Guide

struct stat FileStatus ;
BOOL bChanges = FALSE ;
BOOL bSaveEnabled = FALSE ;
PSTR pEditBuf fer ;

I* information from fstat () *I
I* TRUE i f the file is changed *I
I* TRUE if text in the edit buf fer *I
I* address of the edit bu ffer *I

char Untitled [] = I* de fault window title
"Edit File - (untit led) " ;

The hEditBuffer variable holds the handle of the current editing buffer.
This buffer, located in the application 's heap, contains the current file
text . To load a file, you allocate the buffer, load the file, then pass the
buffer handle to the edit control . The hOldBuffer variable is used to
replace an old buffer with a new one . The hHourGlass and hSaveCursor
handles hold cursor handles for lengthy operations .

*I

The hFile variable holds the file handle returned by the OpenFile func
tion . The count variable holds a count of the number of characters to be
read or written. The pBuffer variable is a pointer, and holds the address
of the character that contains the characters to be read or written. The
OfStruct structure holds information about the file.

The FileStatus structure holds information about the file. The bChanges
variable is TRUE if the user has changed the contents of the file. The
bSaveEnabled variable is TRUE if the user has given a valid name for the
file to be saved . The Untitled variable holds the main window's caption ,
which changes whenever a new file is loaded .

11 .9.5 Replace the "WM_ CQl\1MAND Case

You need to replace the WM_ CO:MMAND case to process all File-menu
commands except Print . For the New command, you will need to clear the
current filename and empty the edit control if there is any text in it. For
the Open command, you need to retrieve the selected filename, open the
file, and fill the edit control . For the Save command, you need to write the
contents of the edit control back to the current file. Finally, for the Save
As command , you need to prompt for a filename and write the contents of
the edit control .

If the user chooses the New command and there is text in the current file
that has been modified, you should prompt the user with a message box to
determine whether the changes should be saved . Add the following state
ments to the WM_ COMMAND case :

case IDM_NEW :

194

if (! QuerySaveFlle (hWnd))
return (NULL) ;

bChanges = FALSE ;
FileName [0] = 0 ;
SetNewBuffer (hWnd, NULL , Untitled) ;
break ;

File Input a.nd Output

The locally defined QuerySaveFile function checks the file for changes and
prompts the user to save the changes. If the changes are saved, the
filename is cleared and the editing buffer is emptied by using the locally
defined function, SetNewBuffer.

If the user chooses the Open command and there is text in the current file
that has been modified, you should prompt the user to determine whether
the changes should be saved before opening the new file . Add the following
statements to the W1vL COMMAND case :

case IDM_OPEN :
i f (! QuerySaveFile (hWnd))

return (NULL) ;
lpOpenDlg = MakeProcinstance ((FARPROC) OpenDlg, h!nst) ;
hFile = DialogBox (hinst , "Open" , hWnd, lpOpenDl g) ;
FreeProcinstance (lpOpenDlg) ;
i f (! hFi l e)

return (NULL) ;
hEditBuf fer =

Loca lAl loc (LMEM_MOVEABLE i LMEM_ZEROINIT ,
FileStatus . st_size+l) ;

i f (! hEditBu ffer) {
MessageBox (hWnd, "Not enough memory . " ,

NULL , MB_OK I MB_ICONQUESTION) ;
return (NULL) ;

}
hSaveCursor = SetCursor (hHourGlass) ;
pEditBu f fer = LocalLock (hEditBuffer) ;
IOStatus = read (hFi l e , pEditBuffer , FileStatus . st_size) ;
c l ose (hFi le) ;
i f (IOStatus ! = FileStatus . st_size) {

sprint f (str , "Error reading %s . " , FileName) ;
SetCursor (hSaveCursor) ; I* Remove the hourgl ass *I
MessageBox (hWnd, str , NULL ,

MB_OK I MB_ICONQUESTION) ;
}
LocalUnlock (hEditBu f fer) ;
sprint f (str , "EditFile - %s" , FileName) ;
SetNewBu ffer (hWnd, hEditBu f fer , str) ;
SetCursor (hSaveCursor) ; I* Restore the cursor *I
break ;

When the IDM_ OPEN case is processed , the QuerySaveFile function
checks the existing file for changes before displaying the Open dialog box.
The DialogBox function now returns a file handle to the open file . This
handle is created in the OpenDlg dialog function . If the file can ' t be
opened, the function returns NULL and processing ends. Otherwise, the
LocaWloc function allocates the space needed to load the file into mem
ory . The amount of space needed is determined by the FileStatus struc
ture, which is filled with information about the open file by the OpenDlg
dialog function . If there is no available memory, a message box is dis
played and processing ends. Otherwise, the SetCursor function displays
the hourglass, the LocalLock function locks the new buffer, and the 0
run-time read function copies the contents of the file into memory. If the
file was not read completely, a message box is displayed . SetCursor
restores the cursor before the MessageBox function is called . The

195

Microsoft Windows Programmer's Learning Guide

LocalUnlock function unlocks the editing buffer, and after a new window
caption is created, the locally defined SetNewBuffer function changes the
editing buffer and caption .

If the user chooses the Save command and there is no current filename,
you should carry out the same action as the Save As command. Add the
following statements to the \VM_ COMMAND case :

case IDM_SAVE :
i f (! Fi leName [O])

goto saveas ;
i f (bChanges)

SaveFile (hWnd) ;
break ;

The ID1L SAVE case checks for a filename and, if none exists, skips to the
IDM_ SA YEAS case . If a filename does exist, the locally defined SaveFile
function saves the file only if changes have been made to it .

The Save As command should always prompt for a filename . You should
save the file only if the user gives a valid filename .

case IDM_SAVEAS :
saveas :

lpSaveAsDl g = MakeProcinstance (SaveAsDlg , hinst) ;
Success = DialogBox (hinst , "SaveAs" , hWnd, lpSaveAsDlg) ;
FreeProcinstance (lpSaveAsDlg) ;
i f (Success == IDOK) {

sprint f (str , "EditFile - %s" , FileName) ;
SetWindowText (hWnd, str) ;
SaveFile (hWnd) ;

}
break ; I* User canceled *I

The DialogBox function displays the SaveAs dialog box. The
MakeProclnstance and FreeProclnstance functions create and free
the procedure-instance address for the SaveAsDlg dialog function . The
DialogBox function returns IDOK from the SaveAsDlg dialog function if
the user enters a valid filename . The SetWindowText function then
changes the window caption, and the SaveFile function saves the contents
of the editing buffer to the file.

The Exit command should now prompt the user to determine whether the
current file should be saved. Also, to keep track of the changes to the file,
you should process notification messages from the edit-control window.
Modify the IDM_ EXIT case and add the JD_ EDIT case to the
\VM_ COMMAND case, as follows:

case IDM_EXIT :

196

QuerySaveFile (hWnd) ;
DestroyWindow (hWnd) ;
break ;

File Input and Output

case ID_EDIT :
i f (HIWORD (lParam) == EN_CHANGE)

bChanges = TRUE ;
return (NULL) ;

11 .0.6 Add the WM_ QUERYENDSESSION
and WM_ CLOSE Cases

You need to process the WM_ QUERYENDSESSION and WM_ CLOSE
messages to prevent the contents of your files from being lost . Add the fol
lowing statements to the window function :

case WM_QUERYENDSESSION : I* message : to end the session? *I
return (QuerySaveFile (hWnd)) ;

case WM_CLOSE : I* message : close the window *I
i f (QuerySaveFile (hWnd))

DestroyWindow (hWnd) ;
break ;

Windows sends a WM_ QUERYENDSESSION message to the window
function when the user has chosen the End Session, Exit, or Close com
mand in the MS-DOS Executive . The session ends only if TRUE is
returned. The QuerySaveFile function checks for changes to the file, saves
them if desired, and returns TRUE or FALSE depending on whether the
user canceled or confirmed the operation .

Windows sends the WM_ CLOSE message to the window function when
the user has chosen the Close command in the main window's system
menu. The QuerySaveFile function carries out the same task as in the
WM_ QUERYENDSESSION message, but in order to complete the
WM_ CLOSE case, you must also destroy the main window by using the
DestroyWindow function.

11.0. 7 Modify the OpenDlg Dialog Function

You need to modify the IDOK case in the OpenDlg function in order to
open and check the size of the file that is selected by the user. Add the fol
lowing statements immediately after the call to the AddExt function in
the IDOK case of the OpenDlg function :

i f ((hFile = OpenFile (OpenName , (LPOFSTRUCT) &O fStruct ,
OF_READ)) < 0) {

}

sprint f (str , "Error %d opening %s . " ,
O fStruct . nErrCode , OpenName) ;

MessageBox (hDlg , str , NULL , MB_OK 1 MB_I CONQUESTION) ;

e lse {
fstat (hFi l e , &Fi leStatus) ;
i f (Fi leStatus . st_size > MAXFILESIZE) {

sprint f (str ,

197

Microsoft Windows Programmer's Learning Guide

}

"Not enough memory to load %s . \n%s exceeds %ld bytes . " ,
OpenName , OpenName , MAXFILESIZE) ;

MessageBox (hDlg, str , NULL ,
MB_OK I MB_ICONQUESTION) ;

return (TRUE) ;

strcpy (FileName , OpenName) ;
EndDialog (hDlg, �ile) ;
return (TRUE) ;

The OpenFile function opens the specified file for reading and, if success
ful , returns a file handle. If the file cannot be opened, the case displays a
message box containing the error number generated by DOS. If the file is
opened, the C run-time fstat function copies information about the file
into the FileStatus structure . The file size is checked to make sure the file
does not exceed the maximum size given by the MAXFILESIZE constant .
The case displays an error message if the size is too big . Otherwise, the
strcpy function copies the new name to the FileName variable and the
EndDialog function terminates the dialog box and returns the file handle,
hFile, to the DialogBox function .

ll .Q.8 Add the SaveAsDlg Dialog Function

You need to supply a dialog function for the SaveAs dialog box. The func
tion will retrieve a filename from the edit control and copy the name to
the global variable, FileName . The dialog function should look like this:

int FAR PASCAL SaveAsDlg (hDlg, message , wParam, lParam)
HWND hDlg;
unsigned message ;
WORD wParam;
LONG lParam;
{

198

char TempName [128] ;

switch (message) {
case WM_INITDIALOG :

i f (! Fi l eName [0])
bSaveEnabled = FALSE ;

e lse {
bSaveEnabled = TRUE ;
DlgDirList (hDlg, De fPath, NULL , ID_PATH, Ox4010) ;
SetDlgitemText (hDlg, ID_EDIT, FileName) ;
SendDlgitemMessage (hDlg, ID_EDIT , EM_SETSEL , 0 ,

MAKELONG (O , Ox7 f f f)) ;
}
EnableWindow (GetDlgitem (hDlg, IDOK) , bSaveEnabled) ;
SetFocus (GetDlgitem (hDlg, ID_EDIT)) ;
return (FALSE) ; I* FALSE since Focus was changed *I

case WM_COMMAND :
switch (wParam) {

case ID_EDIT :
i f (HIWORD (lParam) == EN_CHANGE && ! bSaveEnab led)
EnableWindow (GetDlgitem (hDlg, IDOK) ,

bSaveEnabled = TRUE) ;

}

}

}

return (TRUE) ;
case IDOK :

File Input and Output

GetDlgitemText (hDlg , ID_EDIT , TempName , 128) ;
i f (CheckFi leName (hDlg , FileName , TempName)) {

SeparateFile (hDlg, (LPSTR) str , (LPSTR) De fSpec ,
(LPSTR) Fil eName) ;

i f (str [OJ)
strcpy (De fPath, str) ;

EndDia log (hDlg, IDOK) ;
}
return (TRUE) ;

case IDCANCEL :
EndDia log (hDlg,
return (TRUE) ;

IDCANCEL) ;

break ;

return (FALSE) ;

The WM_ INITDIALOG case enables or disables the Save button .
The button should be disabled if there is no current filename. The
EnableWindow function , along with the bSaveEnabled variable, enables
or disables the button . If there is a current filename, it should be the pro
posed name. The SetDlgltemText function copies the filename to the
edit control, and the SendDlgltemMessage function selects the entire
name for editing. The DlgDirList function sets the ID_ PATH control to
t�e current directory. Since there is no list box to fill, no list box ID is
given .

The WM_ CO:M1v1AND case processes notification messages from the con
trols in the dialog box. When the function receives the EN_ CHANGE
notification from the edit control, JD_ EDJT, it uses the EnableWindow
function to enable the Save button, if it is not already enabled .

When the function receives a notification from the Save button, it uses the
GetDlgltemText function to retrieve the filename in the edit control,
then checks the validity of the filename by using the locally defined Check
FileName function . This function checks the filename to make sure it con
tains no path separators or wildcard characters . It then checks to see if the
file already exists; if it does, CheckFileName uses the MessageBox func
t ion to ask the user whether the file should be overwritten . Finally, the
dialog function uses the SeparateFile function to copy the filename to the
DefSpec and DefPath variables.

199

Microsoft Windows Programmer's Learning Guide

11 .9.9 Add Helper Functions

You need to add several functions to your C-language source file to sup
port the EditFile application . These functions are as follows:

Function Description

CheckFileName Checks a filename for wildcards, adds the default
filename extension if one is needed, and checks for the
existence of the file.

SaveFile

QuerySaveFile

Saves the contents of the editing buffer in a file .

Prompts the user to save changes if the file has
changed without having been saved .

SetNewBuffer Frees the existing editing buffer and replaces it with a
new one .

The CheckFileName function verifies that a filename is not empty and
that it contains no wildcards. It also checks to see whether the file already
exists by using the OpenFile function and the OF- EXIST option . If the
file exists, CheckFileName prompts the user to see whether the file should
be overwritten . Add the following statements:

BOOL CheckFileName (hWnd, pDest , pSrc)
HWND hWnd;
PSTR pDest , pSrc ;
{

}

200

PSTR pTmp ;

i f (! pSrc [OJ)
return (FALSE) ;

pTmp = pSrc ;

I* Indicates no fi lename was speci fied *I

while (•pTmp) { I* Searches the string for wi ldcards •I

}

switch (•pTmp++) {

}

case 1 * 1 :
case 1 ? 1 :

MessageBox (hWnd , "Wildcards not a l lowed . " ,
NULL , MB_OK I MB_ICONQUESTION) ;

return (FALSE) ;

AddExt (pSrc , De fExt) ; I* Adds the de fault extension i f needed *I

i f (OpenFile (pSrc , (LPOFSTRUCT) &O fStruct , OF_EXIST) >= 0) {
sprint f (str , "Repl ace existing %s? " , pSrc) ;
i f (MessageBox (hWnd, str , "EditFile" ,

MB_OKCANCEL I MB_ICONQUESTION) == IDCANCEL) ;
return (FALSE) ;

}
strcpy (pDest , pSrc) ;
return (TRUE) ;

File Input and Output

The SaveFile function uses the OF_ CREATE option of the OpenFile
function in order to open a file for writing. The OF_ CREATE option
directs OpenFile to delete the existing contents of the file . The SaveFile
function then retrieves a file-buffer handle from the edit control, locks the
buffer, and copies the contents to the file. Add the following statements:

BOOL SaveFile (hWnd)
HWND hWnd;
{

BOOL bSuccess ;
int IOStatus ; I* result o f a fi le write *I

i f ((hFile = OpenFile (FileName , &OfStruct ,

}

OF_PROMPT I OF_CANCEL i OF_CREATE)) < 0) {
sprint f (str , "Cannot write to %s . " , FileName) ;
MessageBox (hWnd , str , NULL , MB_OK i MB_I CONQUESTION) ;
return (FALSE) ;

hEditBu f fer = SendMessage (hEditWnd, EM_GETHANDLE , 0 , OL) ;
pEditBu f fer = Loca lLock (hEditBu f fer) ;
hSaveCursor = SetCursor (hHourGl ass) ;
IOStatus = write (hFi l e , pEditBu ffer , strlen (pEditBu f fer)) ;
c lose (hFi le) ;
SetCursor (hSaveCursor) ;
i f (IOStatus ! = strlen (pEditBu f fer)) {

}

sprint f (str , "Error writing to %s . " , FileName) ;
MessageBox (hWnd, str , NULL , MB_OK i MB_ICONQUESTION) ;
bSuccess = FALSE ;

else {
bSuccess = TRUE ;
bChanges = FALSE ;

I* Indicates the fi le was saved *I
I* Indicates changes have been saved *I

}

}
LocalUnlock (hEditBu f fer) ;
return (bSuccess) ;

The EM.... GETHANDLE message , sent by using the SendMessage func
tion , directs the edit control to return the handle of its editing buffer. This
buffer is located in local memory, so it is locked by using the LocalLock
function . Once locked, the contents are written to the file by using the C
run-time write function . The SetCursor function displays the hourglass
cursor to indicate a lengthy operation . If write fails to write all bytes, the
SaveFile function displays a message box . The LocalUnlock function
unlocks the editing buffer before the SaveFile function returns.

The QuerySaveFile function checks for changes to the file and prompts
the user to save or delete the changes, or cancel the operation . If the user
wants to save the changes, the function prompts the user for a filename
by using the SaveAs dialog box. Add the following statements:

BOOL QuerySaveFile (hWnd)
HWND hWnd;
{

int Response ;
FARPROC lpSaveAsDlg;

201

Microsoft Windows Programmer's Learning Guide

i f (bChanges) {
sprint f (str , "Save current changes : %s" , FileName) ;
Response = MessageBox (hWnd, str ,

"EditFile" , MB_YESNOCANCEL 1 MB_I CONQUESTION) ;
i f (Response == !DYES) {

check_name :

}
e lse

}

}

i f (! Fi l eName [O]) {

}

lpSaveAsDl g = MakeProcinstance (SaveAsDlg, h!nst) ;
Response = Dia logBox (hinst , "SaveAs" ,

hWnd, lpSaveAsDlg) ;
FreeProcinstance (lpSaveAsDlg) ;
i f (Response == IDOK)

goto check_name ;
e lse

return (FALSE) ;

SaveFile (hWnd) ;

e lse i f (Response == IDCANCEL)
return (FALSE) ;

return (TRUE) ;

The SetNewBuffer function retrieves and frees the editing buffer before
allocating and setting a new editing buffer. It then updates the edit control
window. Add the following statements to the C-language source file :

void SetNewBu f fer (hWnd, hNewBuf fer , Tit le)
HWND hWnd;
HANDLE hNewBu f fer ;
PSTR Tit l e ;
{

}

HANDLE hOldBuf fer;

hOldBu f fer = SendMessage (hEditWnd, EM_GETHANDLE , 0 , OL) ;
Loca lFree (hOldBu ffer) ;
i f (! hNewBu f fer) I* Al locates a buf fer if none exists *I

hNewBu f fer = Loca lAl loc (LMEM_MOVEABLE I LMEM_ZEROINIT , 1) ;

SendMessage (hEditWnd, EM_SETHANDLE , hNewBuf fer , OL) ;
Inva lidateRect (hEditWnd, NULL , TRUE) ; I* Updates the buf fer *I
UpdateWindow (hEditWnd) ;
SetWindowText (hWnd, Title) ;
SetFocus (hEditWnd) ;
bChanges = FALSE ;

The new text will not be displayed until the edit control repaints its client
area. The lnvalidateRect function invalidates part of the edit control 's
client area. The NULL argument means that the entire control needs
repainting, and TRUE specifies that the background should be erased
before repainting. All of this prepares the control for painting . The
Update Window function causes Windows to send the edit control a
W1L PAJNT message immediately.

202

File Input and Output

11.0.10 Export the SaveAsDlg Dialog Function

You need to export the SaveAsDlg dialog function . Add the following line
to the EXPORTS statement in your module-definition file :

SaveAsDl g @4

11.0.11 Add Space to the Heap

You need to add extra space to the local heap . This space is required to
support the edit control, which uses memory from the local heap to store
its current text . Make the following change to the module-definition file:

HEAPSI ZE OxAFFF

This statement makes the maximum possible edit-control buffer slightly
less than 32,707 (32K-1) bytes. Files larger than this cannot be opened.

11 .0.12 Compile and Link

No changes are required to the make file . Compile and link the applica
tion, start Windows and then the EditFile application . Now, choose the
Open command, select a file, and EditFile will read and display the file. If
the file is larger than can fit in the window, you can use the DIRECTION
keys to scroll left and right or up and down. Figure 1 1 . 1 shows a file in the
EditFile application :

I D I'LABOUT 1 0 0
I DI'LEX I T 1 81

�- Fi�• �nu i �eNs *'
•deH.ne I DtLNEW 1 02
•de�ine I DI'LDPEN 1 03
MdaFine 1 0"-SAUE 1 04
MdeFine 1 0"-SAUEAS 1 05
ade�ine 1 0"-PR I NT 1 86

* Con�ro� I D s •/
Mde�ine I D_F I L ENAHE 488
•de�ine I D_ED I T 401
Mde�ine I D_F I L E S 4 02
MdeFine I D_PATH 4 03
adeFine I D_L I STBOX 484

/* I�·�!:1!�:!�: :�f!�·�::�:u:�·a�:
i
�:n!!1:h:

i
�;A;:i�E0�� �D � ��;�E�DE F *'

•deFine MAXF I LES I ZE 8x?FFF

1ong F A R PASCAL Edi�Fi 1eWndPro o (HWND . unsigne d . WORD . L ONG) t
B O O L F A R PASCAL Abou � (HWHD . u n s i g n e d . WO R D . LOHO) t
BOOL Edi�Fi

1
e lniT(HANDLE) t

..

Figure 1 1 . 1 EditFile Window

203

Chapter 12

Printing

12. 1 Introduction 207

12.2 Using a Printer 207

12.2. 1 Printing a Line of Text 207

12.2.2 Printing a Bitmap 208

12.2.3 Retrieving the Current Printer 210

12.2.4 Setting Up the Printer 211

12.2.5 Processing Errors During Printing 212

12.2.6 How to Cancel a Print Operation 213

12.2. 7 The Print Abort Function 216

12.2.8 Canceling a Print Operation
with the ABORTDOC Escape 217

12.2.9 How to Print Using Banding 218

12.3 A Sample Application: PrntFile 219

12.3. 1 Add an AbortDlg Dialog Box 219

12.3.2 Add Variables for Printing 220

12.3.3 Add the IDM_ PRINT Case 220

12.3.4 Create the AbortDlg
and AbortProc Functions 223

12.3.5 Add the GetPrinterDC Function 224

12.3.6 Export the AbortDlg
and AbortProc Functions 225

12.3. 7 Compile and Link 225

205

Printing

12 .1 Introduction

In Microsoft Windows, sending output to a printer is similar to sending
output to a screen . The only differences are the use of the spooler and the
escape sequences.

Printing in Windows is handled by GDI. When an application makes a
print request, GDI typically activates the print spooler to queue the print
request and make it distinct from other print jobs. Since more than one
application can be printing at the same time, the spooler is needed to
prevent more than one print job from going to the printer at the same
time. Although the spooler is not required in order to print , it is recom
mended . An application can determine whether GDI will act ivate the
spooler by checking the spooler= line in the [windows] section of win. ini,
the Windows initialization file.

Escape sequences are required for your application to communicate with
the device driver associated with your printer. The Escape function tells
the device driver what to do, and also gathers information, such as page
size , for the application .

When sending output to the printer, you should follow the same general
rules as for other types of GDI output . If you are sending text , or primi
tives, such as rectangles, arcs, and circles, you can send them directly to
the printer device context. You can also send text and primitives to a
memory device context, before sending them to the printer . This allows
you to create complex images in a memory device context before sending
them to the printer.

12 .2 Using a Printer

This section describes how to use the Escape function and other GDI
functions to send data from an application to a printer.

12.2.1 Printing a Line of Text

Printing a single line of text requires the following steps:

• Creating the device context for the printer.

• Starting the print request .

• Printing the line .

207

Microsoft Windows Programmer's Learning Guide

• Starting a new page.

• Ending the print request .

• Deleting the device context .

The following example shows how to print a single line of text on an Epson
FX-80 printer that is connected to the printer port, lpt1 :

hPr = CreateDC ("EPSON" , "EPSON FX-80" , "LPT1 : " , (LPSTR) NULL) ;

i f (hPr ! = NULL) {

}

Escape (hPr , STARTDOC, 4, (LPSTR) "Test" , OL) ;
TextOut (hPr , 10, 10 , "A single l ine o f text . " , 22) ;
Escape (hPr , NEWFRAME , 0, OL , OL) ;
Escape (hPr , ENDDOC, 0 , OL , OL) ;
De leteDC (hPr) ;

The CreateDC function creates the device context for the printer. The
following names are required : the name of the device driver, "EPSON" ; the
name of the device, "EPSON FX-80" ; and the name of the printer port ,
"LPTl : " . The last parameter specifies how the printer should be initial
ized; NULL specifies the default initialization .

The STARTDOC escape , used with the Escape function, starts the print
request . The name "Test" is used by the spooler to identify the request .
Other parameters are not used, so they are set to zero. Mter the request is
started, TextOut copies the line of text to the printer. The line will be
placed starting at the coordinates (10, 10) on the printer paper (the {lrinter
coordinates are always relative to the upper-left corner of the paper) . The
default units are printer pixels. The NEWFRAME escape completes the
page and signals the printer to advance to the next page . The ENDDOC
escape signals the end of the print request, and the DeleteDC function
deletes the device context for the printer. In this example, none of the
parameters of the NEWFRAME and ENDDOC escapes are required, so
they are set to zero.

You should not expect the line of text to be printed immediately. The
spooler collects all output for a print request before sending it to the
printer, so actual printing does not begin until after the ENDDOC escape .

12.2.2 Printing a Bitmap

You can print a bitmap by following the steps required for printing a sin
gle line of text :

208

1 . Create a memory device context that is compatible with the
bitmap .

Printing

2 . Load the bitmap and select i t into the memory device context .

3 . Start the print request and use the BitBlt function to copy the bit
map from the memory device context to the printer.

4. End the print request .

5 . Remove the bitmap from the memory device-context selection and
delete the device context .

The following example shows how to print a bitmap named "dog" that has
been added to the resource file:

HDC hDC;
HDC hMemoryDC ;
HDC hPr ;
BITMAP Bitmap ;

hDC = GetDC (hWnd) ;
hMemoryDC = CreateCompatibleDC (hDC) ;
ReleaseDC (hWnd, hDC) ;

hBitmap = LoadBitmap (hinstance , "dog") ;
GetObj ect (hBitmap , (LPBITMAP) &Bitmap) ;
hOldBitmap = Se lectObj ect (hMemoryDC , hBitmap) ;

hPr = CreateDC ("EPSON" , "EPSON FX-8011 , "LPTl : " , (LPSTR) NULL) ;

i f (hPr ! = NULL) {

}

Escape (hPr , STARTDOC, 4, (LPSTR) "Dog" , OL) ;
BitBlt (hPr , 10 , 30 ,

Bitmap . bmWidth,
Bitmap . bmHeight ,
hMemDC, 0 , 0 , SRCCOPY) ;

Escape (hPr , NEWFRAME , 0, OL , OL) ;
Escape (hPr , ENDDOC, 0 , OL , OL) ;
De leteDC (hPr) ;

Se lectObj ect (hMemoryDC , hOldBitmap) ;
De leteDC (hMemoryDC) ;
DeleteObj ect (hBitmap) ;

In this example, the CreateCompatibleDC function creates a memory
device context that is compatible with the display context of the current
window. The GetDC and ReleaseDC functions retrieve and release the
display context. The LoadBitmap function loads the bitmap from the
resource file . The GetObject function retrieves information about the
b itmap , such as its height and width. These values are used later in the
BitBlt function . The SelectObject function selects the bitmap into the
memory device context .

209

Microsoft Windows Programmer's Learning Guide

The statements for the print request are identical to those in the line-of
text print request , except that the TextOut function has been replaced by
the BitBlt function . BitBlt copies the bitmap from the memory device
context to the printer, placing the bitmap at the coordinates (10 ,30) .
Mter the print request is complete, the SelectObject and DeleteDC
functions are used to remove the bitmap from selection and delete the
memory device context. Since the bitmap is no longer needed, the
DeleteObject function removes it from memory.

12.2.3 Retrieving the Current Printer

You can retrieve information about the current printer, such as its type
and the computer port it is connected to, by using the GetProfileString
function . The Windows Control Panel application adds information about
the current printer to the "device" field in the [windows] section of the
win. ini file . Any application can retrieve this information by using the
GetProfileString function . The information can then be used in the
CreateDC function to create a printer device context for a particular
printer on a particular computer port .

Printer information from the win. ini file consists of three fields: the printer
type, the printer device-driver name, and the computer port . The fields are
separated by commas and , sometimes, spaces . The following example
shows how to retrieve the printer information and divide the fields into
separate strings:

char pPrintinfo [80) ;
PSTR pTemp ;
PSTR pPrintType ;
PSTR pPrintDriver ;
PSTR pPrintPort ;

GetPro fileString ("windows" , "device" , pPrintinfo , (LPSTR) NULL , 80) ;
pTemp = pPrintType = pPrintinfo ;
pPrintDriver = pPrintPort = 0 ;
whi le (*pTemp) {

}

210

i f (*pTemp = ' , ') {
*pTemp++ = 0 ;

}

whil e (*pTemp = ' ')
pTemp++ ;

i f (! pPrintDriver)
pPrintDriver = pTemp ;

else {

}

pPrintPort = pTemp ;
break ;

else
pTemp++ ;

Printing

hPr = CreateDC (pPrintDriver , pPrinterType , pPrintPort , (LPSTR) NULL) ;

}

In this example, the GetProfileString function retrieves the device= field
from the [windows] section of the win. ini file. The function then copies the
line to the pPrintlnfo array. A while statement is used to divide the line
into three separate fields: the printer type, the printer device-driver name,
and the printer port . The fields are separated by commas, so an if state
ment is used to check for a comma and to replace it with a zero in order to
terminate the field . Another while statement skips any leading spaces in
the next field .

Each pointer-pPrintType, pPrintDriver, and pPrintPort-receives the
address of the beginning of its respective field . The pointers are then used
in the CreateDC function to create a printer device context for the
currently selected printer.

12.2.4 Setting Up the Printer

Applications can prepare a printer driver for operation with a particular
printer and port by using the DeviceMode function for the driver . This
function displays a dialog box, letting the user select the printing modes,
such as page orientation and paper size, for the printer.

The DeviceMode function is actually part of the printer's device driver,
and not part of GDI. Therefore, to call the function, you need to load the
device driver and retrieve the address of the function by using the
GetProcAddress function. The application can then use the address to
set up the printer.

The following example illustrates how to access the DeviceMode function
for the Epson FX-80 printer:

HANDLE hDriver ;
FARPROC lpDeviceMode ;

hDriver = LoadLibrary ("EPSON . EXE ") ;
lpDeviceMode = GetProcAddress (hDriver , "DEVICEMODE ") ;

i f (lpDeviceMode ! = NULL) {

}

(* lpDeviceMode) ((HWND) hWnd,
QihNDLE) hDriver ,
(LPSTR) "EPSON FX-80" ,
(LPSTR) "LPTl : ") ;

FreeLibrary (hDriver) ;

I* handle to parent window *I
I* handle to driver module *I
I* printer name *I
I* port name *I

211

Microsoft Windows Programmer's Learning Guide

The parent-window handle, h Wnd , identifies the application 's main win
dow. The driver uses the module handle, hDriver, as its instance handle.
The "EPSON FX-80" printer name is required if the driver can access
more than one printer model . The "LPT1 : " port name specifies the com
puter port to which the printer is connected . If no printer is connected, the
port name should be set to the same name as the printer.

Since each printer has its own modes, each printer driver has its own dia
log box that specifies the modes the user can set . The DeviceMode func
t ion for an Epson FX-80 printer displays a dialog box similar to the one
shown in Figure 1 2 . 1 :

W I H .
W I H2 00. 0UL
W I HOLDAP . ORB
W I HOLOAP . ttOO
W I HTOOL . EXE

Figure 1 2 . 1 Device Modes for an Epson FX-80

The user can set the modes as desired. The driver automatically saves the
new modes and prepares the printer.

It is up to the printer driver to determine how printing-mode information
should be saved . If the format of the mode information is known, an appli
cation can retrieve it by using the GetEnvironment function, or set it by
using the SetEnvironment function or by passing a long pointer to the
environment as the last parameter in a CreateDC function .

12.2.5 Processing Errors During Printing

Although GDI and the spooler attempt to report all printing errors to
the user, applications must be prepared to report out-of-disk and out-of
memory conditions. When there is an error in processing a particular
escape, such as STARTDOC or NEWFRAME, the Escape function
returns a value less than zero. Out-of-disk and out-of-memory errors

212

Printing

usually occur on a NEWFRAME escape. In this case, the return value
includes an SP _ NOTREPORTED bit . If the bit is clear, GDI has already
notified the user. If the bit is set , the application needs to notify the user.
The bit is typically set for general-failure, out-of-disk-space , and out-of
memory errors.

The following example shows how you should process unreported errors
during printing:

status = Escape (hPrDC , NEWFRAME , 0, OL , OL) ;

i f (status < 0) { I* Any unreported errors? *I

}

i f (status & SP_NOTREPORTED) { I* Yes *I

}

switch (status) {

}

case SP_OUTOFDI SK :
OutOfDiskAlert () ;
break ;

case SP_OUTOFMEMORY :
OutOfMemoryAlert () ;
break ;

de fault :
GeneralFai lureAlert () ;
break ;

e lse I* Reported, but may need further action *I
switch (status) {

}

case SP_OUTOFDISK :
NoteOutOfDisk () ;
break ;

case SP_OUTOFMEMORY :
NoteOutOfMemory () ;
break ;

In this example, if the return value, status, is less than zero and the
SP- NOTREPORTED bit in status is set, then unreported error processing
is carried out . If status is less than zero but SP _ NOTREPORTED is not
set, then any reported error processing is carried out .

In the previous example, the correct reponse to an unreported error is to
display a message box explaining the error and to terminate the print
request . If the error has already been reported, you can terminate the
request, then restart it after additional disk or memory space has been
made available .

12.2.6 How to Cancel a Print Operation

Applications should always give the user a chance to cancel a lengthy
printing operation . To do this, the application needs to create a modeless
Abort dialog box when it begins a printing operation . The application also
needs to define an abort function that processes messages for the applica
tion while the printing operation is in effect .

213

Microsoft Windows Programmer's Learning Guide

To create the dialog box and define the abort function, follow these steps:

1 . Place the names of the abort function and the dialog function for
the Abort dialog box under the EXPORTS line of your applica
tion's module-definition file:

EXPORTS
AbortDlg @7
AbortProc @8

2 . Add an Abort-dialog-box template definition to your application 's
resource script file:

AbortDlg DIALOG 20 , 20 , 90 , 64
STYLE WSJ'OPUP I WS_DLGFRAME WS_VISIBLE I WS_CAPTION
CAPTION "PrntFile"
BEGIN

De £PushButton "Cancel" IDCANCEL , 2 9 , 44 ,
Ctext "Sending" , - 1 , 0 , 8 ,
Ctext "text" , ID_FILENAME , 0 , 18 ,
Ctext "to print spooler . " , - 1 , 0 , 2 8 ,

END

32 , 14 , WS_GROUP
90 , 8
90 , 8
90 , 8

3 . Use the MakeProclnstance function to create a procedure
instance address for each instance of the application :

F:ARPROC lpAbortDlg;
FARPROC lpAbortProc ;

lpAbortDlg = MakeProcinstance (AbortDlg, h!nstance) ;
lpAbortProc = MakeProcinstance (fnAbortProc , hinstance) ;

4 . Use the SETABORTPROC value to define the abort function to be
used during the print operation .

5 . Use the CreateDialog function to display the Abort dialog box.

6 . Use the EnableWindow function to disable your parent window.

7 . Start the normal print operation, bu t check the return value from
the Escape function after each NEWFRAME call . If the value is
less than zero, the user has canceled the operation or an error has
occurred .

8 . Use the DestroyWindow function to destroy the Abort dialog
box, if necessary . The box destroys itself if the user cancels the
print operation .

The following example illustrates how to carry out a printing operation
that the user can cancel:

HWND hAbortDlgWnd;
BOOL bAbort ;

I* Create the printer display context *I

214

hPr = CreateDC (I* printer parameters *I) ;

I* Clear the abort flag *I
bAbort = FALSE ;

I* Create the Abort dialog box (modeless) *I
hAbortDlg = CreateDialog (hinstance , (LPSTR) "AbortDlg" ,

hWnd, lpAbortDlg) ;

I* Disable the main window to avoid reentrancy problems *I
Enab leWindow (hWnd , FALSE) ;

I* De fine the abort function *I
Escape (hPr , SETABORTPROC, 0, lpAbortProc , OL) ;

whi le (I* printing *I) {

I* Print one page at a time *I

I* Check NEWFRAME for error or abort *I
status = Escape (hPr , NEWFRAME , 0, OL , OL) ;
i f (status < 0 && bAbort)

break ;
e lse {

I* Do error processing *I
}

}

I* End the print operation *I
Escape (hPr , ENDDOC , 0 , OL , OL) ;

I* Destroy the Abort dialog box *I
DestroyWindow (hAbortDlg) ;

EnableWindow (hWnd, TRUE) ;
DeleteDC (hPr) ;
}

Printing

The abort function retrieves messages from the application queue and
dispatches them if they are intended for the Abort dialog box . The func
tion continues to loop until the w:M_ DESTROY message (generated by
the DestroyWindow function) is encountered or the print operation is
complete . The following example shows the required statements for the
abort function :

int FAR PASCAL AbortProc (hPr , Code)
HDC hPr ; I* for multiple printer disp lay contexts *I
int Code ; I* for printing status *I
{

MSG msg;

I* Process messages intended for the abort dia log box *I
whi le (PeekMessage ((LPMSG) &msg, NULL , NULL , NULL , TRUE))

i f (! IsDia logMessage (hAbortDlgWnd, (LPMSG) &msg)) {
Transl ateMessage ((LPMSG) &msg) ;
DispatchMessage ((LPMSG) &msg) ;

}

215

Microsoft Windows Programmer's Learning Guide

I* bAbort is TRUE (return is FALSE) i f the user has aborted *I
return (! bAbort) ;

}

The dialog function for the Abort dialog box processes the
\VM_ INITDIALOG and \VM_ COMMAND messages. To let the user
choose the Cancel button with the keyboard, the function takes control of
the input focus when the dialog box is initialized . It then ignores all mes
sages until a \VM_ COMMAND message appears . Command input causes
the function to destroy the window and set the abort flag to TRUE. The
following example shows the required statements for the dialog function :

int FAR PASCAL AbortDlg (hWnd, msg, wParam, lParam)
HWND hWnd;
unsigned msg;
WORD wParam;
LONG lParam;
{

I* Watch for Cancel button , RETURN key , ESCAPE key , or SPACE BAR *I
if (msg == WM_COMMAND) {

I* User has aborted operation *I
bAbort = TRUE ;

I* Destroy Abort dia log box *I
DestroyWindow (hWnd) ;
return (TRUE) ;

}
e lse i f (msg == WM_INITDIALOG) {

I* Need input focus for user input *I
SetFocus (hWnd) ;
return (TRUE) ;

}
return (FALSE) ;

}

12.2.7 The Print Abort Function

Applications that make lengthy print requests are required to pass an
abort function to GDI to handle unusual situations during printing opera
tions. The most common situation occurs when a printing operation fills
the available disk space before the spooler can copy the data to the
printer. Since the spooler can continue to print even though disk space is
full, GDI calls the abort function to see if the application wants to cancel
the print operation or simply wait until disk space is free .

An application sets the abort function by using the Escape function .

Escape (hDC , SETABORTPROC , 0 , lpAbortFroc , OL)

216

Printing

GDI will then call the abort function during spooling. The function must
have the following form:

int FAR PASCAL AbortProc (hPr , Code)
HOC hPr ;
int Code ;

The hPr argument is a handle to the printer device context, and the Code
argument specifies the nature of the call. It can be one of the following:

Code Argument Description

SP _ OUTOFDISK Spooler has run out of disk space while spooling the
data file. The printing operation will continue if the
application waits for disk space to become free .

0 Spooler operation is continuing without error .

Once the abort function has been called, it can return TRUE to continue
the spooler operation immediately, or return FALSE to cancel the printing
operation . Most abort functions call the PeekMessage function to tem
porarily yield control, then return TRUE to continue the print operation .
Yielding control typically gives the spooler enough time to free some disk
space .

If the abort function returns FALSE, the printing operation is canceled
and an error value is returned by the application 's next call to the Escape
function .

Important

If an application encounters a printing error or a canceled print opera
tion, it must not attempt to terminate the operation by using the
Escape function with either the ENDDOC or ABORTDOC escape .
GDI automatically terminates the operation before returning the error
value .

12.2.8 Canceling a Print Operation
with the ABORTDOC Escape

You can use the ABORTDOC escape to cancel a print operation , even if
you do not have an abort function or Abort dialog box . In applications
that do not have an abort function, ABORTDOC can be used to cancel
the operation at any time. In applications that do have abort functions,
the ABORTDOC escape can be used only before the first NEWFRAME
or NEXTBAND escape .

217

Microsoft Windows Programmer's Learning Guide

12.2.0 How to Print Using Banding

Banding is a printing technique in which an image is printed by dividing
it into several bands (or slices) and sending each band to the printer sepa
rately. Banding lets applications print complex graphics images without
first creating the complete image in memory. This can reduce the memory
requirements for printing and enhance system performance while printing
operations are in effect . Banding can be used on any printing device that
has banding capability.

To print using banding, follow these steps:

1 . Use the CreateDC function to retrieve a device context for the
printer.

2. Use the GetDeviceCaps function to make sure the printer is a
banding device :

if (GetDeviceCaps (hPrinterDC , RASTERCAPS) & RC_BANDING)

3 . Use the Escape function and the NEXTBAND escape to retrieve
the coordinates of a band :

Escape (hPrinterDC , NEXTBAND, 0 , (LPSTR) NULL , (LPRECT) &rcRect) ;

The function sets the rcRect structure to the coordinates of the
current band. Coordinates are in device units, and all subsequent
GDI calls are clipped to this rectangle .

4 . Check the rcRect structure to see if it is an empty rectangle . The
empty rectangle marks the end of the banding operation . If it is
empty, terminate the banding operation .

5 . Use the DPtoLP function to translate the rcRect points from
device units to logical units.

DPtoLP (hPr , (LPRECT) &rcRect , 2) ;

6 . Use GDI output and other functions t o draw within the band . To
save time, the application should carry out only those GDI calls
that affect the current band . If an application does not wish to save
time, GDI will clip all output that does not appear in the band, so
no special action is required .

7 . Repeat steps 4 through 6 .

Once the banding operation i s done, use the DeleteDC function to remove
the printer device context.

The following example shows how to print using banding:

hPr = CreateDC ("EPSON" , "EPSON FX -80" , "LPTl : " , (LPSTR) NULL) ;

i f (hPr ! = NULL) {
i f (GetDeviceCaps (hPr , RASTERCAPS) & RC_BANDING) {

218

Printing

}

Escape (hPr , STARTDOC, 4, (LPSTR) "Dog" , OL) ;
Escape (hPr , NEXTBAND, 0 , OL , (LPRECT) &rcRect) ;
while (! IsRectEmpty (&rcRect)) {

}

DPtoLP (hPr , (LPRECT) &rcRect , 2) ;

I* P l ace your output function here . To save time ,
* use rcRect to determine which functions need
* to be ca l led for this band .

•I

Escape (hPr , NEXTBAND, 0, OL , (LPRECT) &rcRect) ;

Escape (hPr , NEWFRAME , 0 , OL , OL) ;
Escape (hPr , ENDDOC, 0 , OL , OL) ;

}
DeleteDC (hPr) ;

12.3 A Sample Application: PrntFile

You can add printing capability to the EditFile application described in
Chapter 1 1 , "File Input and Output ," by copying the current text from
the edit control and printing it by using the methods described in this
chapter. To add printing capability, copy and rename the EditFile sources
to PrntFile, then modify the sources as follows:

1 . Add an AbortDlg dialog-box template to the resource script file.

2. Add new variables for printing.

3. Add the IDM-PRINT case to the WM_ COMMAND case .

4 . Create the AbortDlg dialog function and AbortProc function .

5 . Add the GetPrinterDC function .

6 . Export the AbortDlg dialog function and AbortProc function .

7 . Compile and link the application .

This example shows how to print the contents of the edit control, includ
ing the statements required to support the abort function and the dialog
function for the Abort dialog box.

12.3.1 Add an AbortDlg Dialog Box

You need a new dialog box to support printing. The AbortDlg dialog box
permits the user to cancel a printing operation by choosing the Cancel
button . Add the following DIALOG statement to the resource file :

AbortDlg DIALOG 20 , 20 , 90 , 64
STYLE WSJ'OPUP I WS_DLGFRAME I WS_VISIBLE I WS_CAPTION

219

Microsoft Windows Programmer's Learning Guide

CAPTION "PrntFi le"
BEGIN

De fPushButton "Cancel 11

Ctext "Sending" ,
Ctext "text" ,

IDCANCEL , 2 9 , 44 , 32 , 14 , WS_GROUP
- 1 , 0 , 8 , 90 , 8
ID_FILENAME , 0, 18 , 90 , 8

Ctext "to print spooler . " , - 1 , 0 , 2 8 , 90 , 8
END

12.3.2 Add Variables for Printing

You need to declare new variables to support printing. Add the following
declarations to the beginning of your source file :

HDC hPr ;
int LineSpace ;
int LinesPerPage ;
int CurrentLine ;
int LineLength;
DWORD dwLines ;
DWORD dwindex ;
char pLine [128] ;
TEXTMETRIC TextMetric ;
POINT PhysPageSize ;
BOOL bAbort ;
HWND hAbortDlgWnd ;

I* handle for printer device context *I
I* spacing between l ines *I
I* lines per page *I
I* current line *I
I* line length *I
I* number of lines to print *I
I* index into l ines to print *I
I* buffer to store lines before printing *I
I* information about character size *I
I* information about the page *I
I* FALSE i f user cancels printing *I

FARPROC lpAbortDlg, lpAbortProc;

The hPr variable is the handle for the printer device context . It receives
the return value from the CreateDC function call . The variables
LineSpace and LinesPerPage hold the amount of spacing between lines and
the number of lines that can be printed per page, respectively . The
CurrentLine variable is a counter that keeps track of the current line on
the current page . Lines of text are printed one line at a time . The dwLines
variable holds the number of lines in the edit control . The TextMetric
structure receives information about the font to be used to print the lines.
Only the tmHeight and tmExternalLeading fields are used in this example .
The PhysPageSize structure receives the physical width and height of the
printer paper. The height is used to determine how many lines per page
can be printed .

12.3.3 Add the IDM_ PRINT Case

To carry out the printing operation, you need to add an ID1-L PRINT case
to the main window function . Add the following statements:

case IDM....PRINT :

220

hPr = GetPrinterDC () ;
i f (!hPr) {

}

sprint f (str , "Cannot print %s" , FileName) ;
MessageBox (hWnd , str , NULL , MB_OK I MB_ICONQUESTION) ;
return (NULL) ;

lpAbortDlg = MakeProcinstance (AbortDlg, hinst) ;

Printing

lpAbortProc = MakeProcinstance (AbortProc , hinst) ;
Escape (hPr , SETABORTPROC , NULL ,

(LPSTR) (long) lpAbortProc , (LPSTR) NULL) ;
i f (Escape (hPr , STARTDOC , 4 , "PrntFile text" ,

(LPSTR) NULL) < 0) {

}

MessageBox (hWnd , "Unable to start print j ob" ,
NULL , MB_OK I MB_ICONQUESTION) ;

FreeProcinstance (AbortDlg) ;
FreeProcinstance (AbortProc) ;
DeleteDC (hPr) ;

bAbort = FALSE ; /* Clears the abort flag */
hAbortDlgWnd = CreateDialog (hinst , "AbortDlg" , hWnd , lpAbortDlg) ;
EnableWindow (hWnd , FALSE) ;
GetTextMetrics (hPr , &TextMetric) ;
LineSpace = TextMetric . tmHeight + TextMetric . tmExternalLeading;
Escape (hPr , GETPHYSPAGESIZE , NULL , (LPSTR) NULL , (LPSTR) &PhysPageSize) ;
LinesPerPage = PhysPageSize . y / LineSpace ;
dwLines = SendMessage (hEditWnd , EMLGETLINECOUNT , 0, OL) ;
CurrentLine = 1 ;
for (dwlndex = IOStatus = 0 ; dwlndex < dwLines ; dwlndex++) {

pLine [O] = 128 ; /* Maximum buffer size */

}

pLine [1] = 0 ;
LineLength = SendMessage (hEditWnd , EMLGETLINE ,

(WORD) dwlndex , (LONG) ((LPSTR) pLine)) ;
TextOut (hPr , 0, CurrentLine*LineSpace , (LPSTR) pLine , LineLength) ;
i f (++CurrentLine > LinesPerPage) {

}

Escape (hPr , NEWFRAME , 0 , OL , OL) ;
CurrentLine = 1 ;
IOStatus = Escape (hPr , NEWFRAME , 0 , OL , OL) ;
i f (IOStatus < 0 I I bAbort)

break ;

i f (IOStatus >= 0 && l bAbort) {
Escape (hPr , NEWFRAME , 0 , OL , OL) ;
Escape (hPr , ENDDOC, 0, OL , OL) ;

}
EnableWindow (hWnd , TRUE) ;
DestroyWindow (hAbortDlgWnd) ;
FreeProclnstance (AbortDlg) ;
FreeProclnstance (AbortProc) ;
DeleteDC (hPr) ;
break ;

The locally defined GetPrinterDC function checks the win. ini file for the
current printer and creates a device context for that printer. If there is not
a current printer or the device context cannot be created, the function
returns NULL and processing ends with a warning. Otherwise, the
MakeProclnstance function creates procedure instance addresses for the
AbortDlg dialog function and the AbortProc function . The SETABORT
PROC escape used with the Escape function sets the abort function . The
STARTDOC escape starts the printing job and sets the printing title
(shown in the Spooler application) . If the STARTDOC escape fails, the
FreeProclnstance function frees the AbortDlg and AbortProc procedure
instances and the DeleteDC function deletes the device context before
processing ends.

221

Microsoft Windows Programmer's Learning Guide

The CreateDialog function creates the AbortDlg dialog box and the
Enable Window function disables the main window. This prevents users
from attempting to work in the main window while printing. They can,
however, continue to work in some other application.

Since the edit control may contain more than one l ine , it is important to
provide adequate spacing between lines. This keeps one l ine from overwrit
ing or touching another. The GetTextMetrics call retrieves current font
information, such as height and external leading, which can be used to
compute adequate l ine spacing. The height is the maximum height of char
acters in the font . The external leading is the recommended amount of
space, in addition to the height, that should be used to separate lines of
text in this font . The line spacing, assigned to the LineSpace variable, is
the sum of the height and external leading fields, TextMetric . tmHeight
and TextMetric . tmExternalLeading.

Since the edit control may contain more lines than can fit on a single
page, it is important to determine how many lines can fit on a page and
to advance to the next page whenever this line limit is reached . The
GETPHYSP AGESIZE escape retrieves the physical dimensions of the page
and copies the dimensions to the PhysPageSize structure . PhysPageSize
contains both the width and height of the page . The lines per page,
assigned to the LinesPerPage variable, is the quotient of the physical
height of the page, PhysPageSize.y, and the line spacing, LineSpace .

The TextOut function can print only one l ine at a time, so a for state
ment provides the loop required to print more than one line of text . The
El'vL GETLINECOUNT message , sent to the edit control by using the
SendMessage function, retrieves the number of lines to be printed and
determines the number of times to loop. On each execution of the loop, the
El'vL GETLINE message copies the contents of a line from the edit control
to the line buffer, pLine. The loop counter, index, is used with the
El'vL GETLINE message to specify which line to retrieve from the edit con
trol . The E:M_ GETLINE message also causes SendMessage to return the
length of the line . The length is assigned to the LineLength variable .

Once a line has been copied from the edit control, it is printed by using
the TextOut function . The product of the variables CurrentLine and
LineSpacing determines the y-coordinate of the line on the page . The :»
coordinate is set to zero . Mter a line is output , the value of the Current
Line variable is increased by one. If CurrentLine is greater than LinesPer
Page, it is time to advance to the next page. Any text printed beyond the
physical bottom of a page is clipped . There is no automatic page advance,
so it is important to keep track of the number of lines printed on a page
and to use the NEWFRAME escape to advance to the next page when
necessary. If there are any errors during printing, the NEWFRAME escape
returns an error number and processing ends.

222

Printing

After all lines in the edit control have been printed, the NEWFRAME
escape advances the final page and the ENDDOC escape terminates the
print request . The DeleteDC function deletes the printer device context
since it is no longer needed, and the DestroyWindow function destroys
the AbortDlg dialog box.

12.3.4 Create the AbortDlg
and AbortProc Functions

You need to create the AbortDlg and AbortProc functions to support the
printing process. The AbortDlg dialog function provides support for the
AbortDlg dialog box that appears while the printing is in progress . The
dialog box lets the user cancel the printing operation if necessary . The
AbortProc function processes messages intended for the AbortDlg dialog
box and terminates the printing operation if the user has requested it .

The AbortDlg dialog function sets the input focus and sets the name of the
file being printed . It also sets the bAbort variable to TRUE if the user
chooses the Cancel button . Add the following statements to the C
language source file:

int FAR PASCAL AbortDlg (hDlg, msg, wParam, lParam)
HWND hDlg;
unsigned msg;
WORD wParam;
LONG lParam;
{

}

switch (msg) {
case WJ>LCOMMAND :

return (bAbort = TRUE) ;

case WI>L.INITDIALOG :

}

SetFocus (GetDlgitem (hDlg, IDCANCEL)) ;
SetDlgitemText (hDlg, ID_FILENAME , FileName) ;
return (TRUE) ;

return (FALSE) ;

The AbortProc function checks for messages in the application queue and
dispatches them to the AbortDlg dialog function or to other windows in
the application . If one of these messages causes the AbortDlg dialog func
t ion to set the bAbort variable to TRUE, the AbortProc function returns
this value, d irecting Windows to stop the printing operation . Add the fol
lowing statements to the C-language source file :

int FAR PASCAL AbortProc (hPr , Code)
HDC hPr ; /* for multiple printer display contexts */
int Code ; /* printing status */

223

Microsoft Windows Programmer's Learning Guide

{

}

MSG msg;

while (! bAbort && PeekMessage (&msg, NULL , NULL , NULL , TRUE))
i f (! IsDialogMessage (hAbortDlgWnd , &msg)) {

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}
return (l bAbort) ;

12.3.5 Add the GetPrinterDC Function

You need to add a function to your C-language source file to support the
printing operation . The GetPrinterDC function retrieves the "device" field
from the [windows] section of the win. ini file, divides the entry into its
separate components, then creates a printer device context using the
device name and printer port given in the entry. Add the following state
ments to the C-language source file:

HANDLE GetPrinterDC ()
{

}

char pPrint!nfo [SO] ;
LPSTR lpTemp ;
LPSTR lpPrintType ;
LPSTR lpPrintDriver ;
LPSTR lpPrintPort ;

i f (! GetProfileString ("windows" , "device" ,
(LPSTR) " " , pPrint!nfo , 80))

return (NULL) ;
lpTemp = lpPrintType = pPrint!nfo ;
lpPrintDriver = lpPrintPort = 0 ;
while (* lpTemp) {

}

i f (* lpTemp == ' , ') {
* lpTemp++ = 0;

}

while (* lpTemp = ' ')
lpTemp = AnsiNext (lpTemp) ;

i f (l lpPrintDriver)
lpPrintDriver = lpTemp ;

else {

}

lpPrintPort = lpTemp ;
break ;

else
lpTemp = AnsiNext (lpTemp) ;

return (CreateDC (lpPrintDriver , lpPrintType , lpPrintPort , (LPSTR) NULL)) ;

To separate the "device" field into its three components, the AnsiNext
function advances through the field one character at a time.

224

Printing

12.3.6 Export the AbortDlg
and AbortProc Functions

You need to export the AbortDlg dialog function and the AbortProc func
tion . Add the following lines to your module-definition file under the
EXPORTS statement :

AbortDlg
AbortProc

@5
@6

Cal led so user can cancel the print function
Processes messages intended for the Abort dialog box

12.3. 7 Compile and Link

No changes are required to the make file. Compile and link the PrntFile
application, then start Windows and activate PrntFile; you will see that
the Print command has been added to the File menu. You can print by
opening a file or by entering text from the keyboard, then choosing the
Print command.

225

Chapter 13

The Clipboard

13. 1 What Is the Clipboard? 229

13.2 Using the Clipboard 229
13.2. 1 Copying Text to the Clipboard 230

13.2 .2 Pasting Text from the Clipboard 232

13.2.3 Pasting Bitmaps from the Clipboard 234
13.2.4 Selecting and Copying Bitmaps

to the Clipboard 235
13.3 Special Clipboard Topics 237
13.3. 1 The Clipboard Application 238
13.3.2 Rendering Data on Request 238
13.3.3 Rendering Formats Before Terminating 238
13.3.4 Registering Private Formats 239
13.3.5 Controlling Data Display in the Clipboard 239
13.3.5. 1 Using a Display Format for Private Data 239
13.3.5 .2 Taking Full Control

of the Clipboard-Viewer Display 240
13.3.5.3 Using the Clipboard-Viewer Chain 241

13.4 A Sample Application: Clip Text 242
13.4. 1 Add New Variables 242
13.4.2 Add a W1L INITh1ENU Case 243
13.4.3 Modify the WM_ C01v:IMAND Case 243

13.4.4 Compile and Link 244
13.5 A Sample Application: ClipBit 245
13.5. 1 Add New Variables 245

13.5 .2 Modify the WM_ INI'Th1ENU Case 245

13.5.3 Modify the IDM_ COPY
and IDM_ PASTE Cases 246

227

13.5.4 Add the WNL LBUITONDOWN,
WNL MOUSEMOVE,
and WNL LBUITONUP Cases 247

13.5.5 Compile and Link 248

228

The Clipboard

13. 1 What Is the Clipboard?

The clipboard is the data-exchange feature of Microsoft Windows. It is
a common area to store data handles through which applications can
exchange formatted data. The clipboard holds any number of different
data formats and corresponding data handles, all representing the same
data, but in as many different formats as an application is willing to sup
ply. For example, a pie chart might be held in the clipboard as both a
metafile picture and a bitmap . An application pasting the pie chart would
have to decide which representation it wanted . The general rule is that the
one with the most information is the most desirable.

This chapter explains how to use the clipboard to do the following:

• Copy text to the clipboard .

• Paste text from the clipboard .

• Copy a bitmap to the clipboard .

• Paste a bitmap from the clipboard.

• Use the clipboard viewer chain .

13.2 Using the Clipboard

To copy data to the clipboard, you must format the selected data by using
either a predefined or private format . For most formats, you must allocate
global memory and copy the data into it. You then copy the memory han
dle to the clipboard by using the SetClipboardData function .

In Windows applications, copying and pasting are carried out through
Edit-menu commands. You can add the Edit menu to an application by
following the steps used to create the EditMenu application described in
Chapter 8 , "Menus . "

Windows provides several predefined data formats for use in data inter
change . Following is a list of common formats and their contents:

Format

CF_ TEXT

CF- METAFILEPICT

CF_ BITMAP

Contents

Null- terminated text

Metafile-picture structure

A bitmap

229

Microsoft Windows Programmer's Learning Guide

CF- SYLK

CF- DIF

SYLK standard data- interchange format

DIF standard data-interchange format

When you paste data from the clipboard by using the GetClipboard
function, you specify the format you expect . The clipboard supplies the
data only if it has been copied in that format .

13.2.1 Copying Text to the Clipboard

You can copy a short string of text to the clipboard . To do this you will
need to do the following:

• Copy the string to global memory.

• Open the clipboard .

• Clear the clipboard .

• Give the global memory handle to the clipboard .

• Close the clipboard.

You copy text to the clipboard in response to the user choosing the Copy
command from the Edit menu . To process the menu input and copy the
text string to the clipboard, you need to add a W1L COMMAND case to
the window function . Add the following statements:

case WM_COMMAND :
switch (wParam) {
case ID_COPY :

}

hData = GlobalAl loc (GMEM_MOVEABLE , (LONG) strlen (string)) ;
i f (hData = 0)

break ;
lpData = GlobalLock (hData) ;
for (i = 0 ; string [i] ! = 0 ;

lpData [i] = string (i] ;
lpData [i] = 0 ;
GlobalUnlock (hData) ;
i f (OpenCl ipboard (hWnd)) {

I* Lock it down *I
i++) l* Can ' t copy with C run-time *I

I* so use this to copy string *I
I* nul l terminate *I

EmptyCl ipboard () ;
SetCl ipboardData (CF_TEXT , hData) ;
CloseCl ipboard () ;

}
hData = 0 ;
break ;

break ;

When copying text, the clipboard requires the text to be in a global
memory block . This means you will need to allocate a global block and
copy the string to it . In the W1L COMMAND case, the following state
ments allocate global memory and copy the string:

230

The Clipboard

hData = GlobalAl loc (GMEM_MOVEABLE , (LONG) strlen (string)) ;
i f (hData == 0)

break ;
lpData = GlobalLock (hData) ;
for (i = 0 ; string [i] ! = 0; i++)

lpData [i] = string [i] ;
lpData [i] = 0 ;
GlobalUnlock (hData) ;

I* Lock it down *I
I* Can ' t copy with C run-time *I
I* so use this to copy string *I
I* nul l terminate *I

The GlobalAlloc function allocates enough memory to hold the string.
The GMEM_ MOVEABLE flag specifies movable memory. The clipboard
can take either fixed or movable memory, but should not be given discard
able memory. Movable memory is the most efficient . You should always
check a memory handle to ensure it is valid (not NULL) before attempting
to lock it.

As you would do with any movable memory, you must lock it to retrieve
the memory address. The locally defined _ lstrcpy function is used instead
of the C run-time strcpy function, since strcpy cannot handle mixed
pointers (string is a short pointer and lpData is a long pointer) . The clip
board requires the string to have a terminating null character. Finally, the
memory must be unlocked before it can be copied to the clipboard.

Each time you copy the string to the clipboard, this code will allocate
another global memory block . The reason for this is that once you have
passed a data handle to the clipboard , the clipboard takes ownership of it.
This means that you can no longer use the handle other than to view con
tents, and you must not attempt to free the handle or change its contents.

Copying the global memory handle to the clipboard is simple : open the
clipboard, empty it , set the data handle, then close the clipboard . The fol
lowing statements carry out these steps:

if (OpenClipboard (hWnd)) {
EmptyCl ipboard () ;
SetClipboardData (CF_TEXT , hData) ;
CloseClipboard () ;

}
hData = 0 ;

The OpenClipboard function opens the clipboard for the specified win
dow. OpenClipboard will fail if another window already has the clip
board open. The EmptyClipboard function clears all existing handles in
the clipboard and assigns ownership of the clipboard to the window that
has it open . An application must empty the clipboard before copying data
to it . The SetClipboardData function copies the memory handle to the
clipboard and identifies the data format, CF_ TEXT. The clipboard is
then closed by the CloseClipboard function . Since the clipboard now
owns the global memory identified by hData, it is convenient to set this
memory to zero to prevent attempts to free or change the memory.

231

Microsoft Windows Programmer's Learning Guide

13.2.2 Pasting Text from the Clipboard

You can paste text from the clipboard into your client area. That is, you
can retrieve a text handle from the clipboard and display it in the client
area by using the TextOut function . To do this you will need to do the
following:

• Open the clipboard .

• Retrieve the data handle associated with CF _ TEXT.

• Close the clipboard .

You should let the user paste only if there is text in the clipboard. To
prevent attempts to paste when no text is present, you can check the
clipboard before Windows displays the Edit menu by processing the
WM_ INIT:tvfENU message . If the clipboard is empty, you can disable the
Paste command; if text is present, you can enable it . Add the following
statements to the window function :

WORD wFormat ;

case WM_INITMENU :
i f (wParam = GetMenu (hWnd)) {

wFormat = 0 ;
while ((wFormat = EnumClipboardFormats (wFormat)) ! = 0

&& wFormat ! = CF_TEXT)

i f (wFormat == CF_TEXT)
EnableMenuitem (wParam, ID_PASTE , MF_ENABLED) ;

e lse

}
break ;

EnableMenuitem (wParam, ID_PASTE , MF_GRAYED) ;

Since an application has at least two menus, including a system menu , it is
important to ensure that the message applies to the Edit menu . You can
do this by using the GetMenu function .

The EnumClipboardFormats function checks for the CF _ TEXT for
mat . The function enumerates the contents of the clipboard by return-
ing the format type of each handle. The while statement is required,
since the function returns only one format at a time . Finally, the
EnableMenultem function enables or disables the Paste command based
on whether the CF _ TEXT format is found.

You can paste from the clipboard when the user chooses the Paste com
mand from the Edit menu . To process the menu input and retrieve the
text from the clipboard, you will need to add an JD_ PASTE case to the
WM_ COMMAND case in the window function . Add the following state
ments immediately after the ID_ COPY case:

232

case ID_PASTE :
i f (OpenCl ipboard (hWnd)) {

}

hCl ipData = GetClipboardData (CF_TEXT) ;
CloseClipboard () ;
i f (hClipData == 0)

break ;
hDC = GetDC (hWnd) ;
lpCl ipData = GlobalLock (hClipData) ;
for (count = 0 ; lpCl ipData [count] ! = 0 ; count++)

,
TextOut (hDC, 10 , 10 , lpCl ipData, count) ;
GlobalUnlock (hCl ipData) ;
Re leaseDC (hWnd, hDC) ;

break ;

The Clipboard

The OpenClipboard function opens the clipboard for the specified win
dow if it is not already open. The GetClipboardData function retrieves
the data handle for the text, or it retrieves zero if there is no such data.
This handle should be checked before being used . The CloseClipboard
function closes the clipboard , which should always be closed immediately
after it has been used . Closing the clipboard lets other applications access
it .

The GetClipboardData function returns a handle to global memory.
The global memory is assumed to contain a null- terminated ANSI string.
This means the global memory can be locked by using the GlobalLock
function, and the contents can be displayed in the client area by using the
TextOut function . In this example , the locally defined _ lstrlen function is
used to count the number of characters in the string instead of the C run
time strlen function . Since this application is compiled as a small-model
application, strlen requires a short pointer and cannot use the long
pointer, lpClipData.

So that you will be able to see that your application has copied the con
tents of the clipboard, the TextOut function writes to the coordinates
(10 , 10) in your client area. You will need a display context to use
TextOut, so the GetDC function is required, and since you must release
a display context immediately after using it, the ReleaseDC function is
also required.

This method of displaying the text in the client area is for illustration
only. Since the content of the string is not saved by the application, there
is no way to repaint the text if the client-area background is erased, such
as during processing of a W1vL PAINT message.

You must not modify or delete the data you have retrieved from the clip
board . You can examine it or make a copy of it, but you must not change
it. To examine the data, you may need to lock the handle, as in this exam
ple, but you must never leave a data handle locked . Unlock it immediately
after using it .

233

Microsoft Windows Programmer's Learning Guide

Data handles returned by the GetClipboardData function are for tem
porary use only. Handles belong to the clipboard, not to the application
requesting data. Accordingly, handles should not be freed and should be
unlocked immediately after using. The application should not rely on the
handle's remaining valid indefinitely . In general, the application should
copy the data associated with the handle, then release it without changes.

13.2.3 Pasting Bitmaps from the Clipboard

You can paste more than just text into your client area from the clip
board . You can retrieve a bitmap from the clipboard and display it in your
client area. To retrieve and display a bitmap, you use the same technique
as for pasting text but you make a few changes to accommodate bitmaps.

First, you must modify the WM_ INITMENU case in the window function
so that it recognizes the CF _ BITMAP format instead of CF _ TEXT. After
you change it , the WM_ INIT11ENU case should look like this:

case WM_INITMENU :
i f (wParam == GetMenu (hWnd)) {

wFormat = 0 ;

}

while ((wFormat = EnumClipboardFormats (wFormat)) ! = 0
&& wFormat ! = CF_BITMAP)
'

i f (wFormat == CF_BITMAP)
EnableMenuitem (wParam, ID_PASTE , MF_ENABLED) ;

else
EnableMenuitem (wParam, ID_PASTE , MF_GRAYED) ;

break ;

Retrieving a bitmap from the clipboard is as easy as retrieving text, but
displaying a bitmap requires more work than does displaying text . In gen
eral, you need to do the following:

1 . Retrieve the bitmap data handle from the clipboard . Bitmap data
handles from the clipboard are GDI bitmap handles (created by
using functions such as CreateBitmap) .

2 . Create a compatible d isplay context and select the data handle
into the compatible display context .

3 . Use the BitBlt function to copy the bitmap to the client area.

4 . Release the bitmap handle from the current selection .

After you have changed it , the ID_ PASTE case should look like this :

case ID_PASTE :

234

i f (OpenCl ipboard (hWnd)) {
hClipData = GetCl ipboardData (CF_BITMAP) ;
ClosaCl ipboard () ;
i f (hCl ipData == 0)

The Clipboard

}

break;
hDC = GetDC(hWnd) ;
hMemoryDC = CreateCompatibleDC (hDC) ;
i f (hMemoryDC ! = NULL) {

}

GetObj ect (hClipData , sizeo f (BITMAP) ,
(LPSTR) &PasteBitmap) ;

hOldBitmap = Se lectObj ect (hMemoryDC , hClipData) ;
i f (hOldBitmap ! = NULL)

BitBlt (hDC, 10, 10,
PasteBitmap . bmWidth,
PasteBitmap . bmHeight ,
hMemoryDC, 0 , 0 , SRCCOPY) ;

SelectObj ect (hMemoryDC , hOldBitmap) ;
}
De leteDC (hMemoryDC) ;

ReleaseDC (hWnd , hDC) ;

break ;

The CreateCompatibleDC function returns a handle to a display con
text, in memory, that is compatible with your computer's display . This
means any bitmaps that you select for this display context can be copied
directly to the client area. If CreateCompatibleDC fails (returns
NULL), the bitmap cannot be displayed .

The GetObject function retrieves the width and height of the bitmap, as
well as a description of the bitmap format . It copies this information into
the PasteBitmap structure, whose size is specified by the sizeof function .
In this example, only the width and height are used and then only in the
BitBlt function . The SelectObject function selects the bitmap into the
compatible display context. If it fails (returns NULL), the bitmap cannot
be displayed . SelectObject may fail if the bitmap has a different format
than that of the compatible display context . This can happen, for exam
ple, if the bitmap was created for a display on some other computer.

The DeleteDC function removes the compatible display context . Before a
display context can be deleted , its original bitmap must be restored by
using the SelectObject function .

13.2.4 Selecting and Copying Bitmaps
to the Clipboard

Whether you are copying text or bitmaps to the clipboard, you will want
to give the user some method of selecting the data to be copied . The goal
is to let the user select a portion of the client area for copying to the clip
board . You can use the same technique described in Chapter 9, "Bitmaps, "
to select a portion of the client area by using the mouse . The steps
required to make the selections are as follows:

1 . When the \VM_ LBUTTONDOWN message is received , use the
locally defined StartSelection function to save the current mouse
location and begin selection .

235

Microsoft Windows Programmer's Learning Guide

2 . On each WM_ MOUSEMOVE message, use the locally defined
UpdateSelection function to make sure the rectangle described by
the original WM_ LBUTTONDOWN location and the current loca
tion is inverted (in reverse video) .

3 . When the WM_ LBUTTONUP message i s received, use the locally
defined EndSelection function to save the current mouse position .
The rectangle described by the original position and this final posi
t ion marks the area to be copied .

The steps required to copy the bitmap are as follows:

1 . Restore the screen (remove the reverse video) .
2 . Create a compatible display context; create and select a compatible

bitmap; and copy the screen bitmap to the compatible display .

3 . Release the compatible bitmap from the selection and copy i t to
the clipboard .

The following statements are necessary to tell the application what to do
when a user chooses the Copy command:

case ID_COPY :
hDC = GetDC (hWnd) ;
PatBlt (hDC, OrgX, OrgY,

CopyWidth,
CopyHeight ,
DSTINVERT) ;

hMemoryDC = CreateCompatibleBitmap (hDC) ;
i f (hMemoryDC ! = NULL) {

}

hBitmap = CreateCompatibleBitmap (hDC,
CopyWidth, CopyHeight) ;

i f (hBitmap ! = NULL) {
hOldBitmap = SelectObj ect (hMemDC, hBitmap) ;
i f (hBitmap ! = NULL) {

BitBlt (hMemoryDC , 0 , 0 , CopyWidth, CopyHeight ,
hOC , OrgX, OrgY, SRCCOPY) ;

hBitmap = SelectObj ect (hMemDC, hOldBitmap) ;
i f (hBitmap ! = NULL && OpenCl ipboard (hWnd)) {

EmptyCl ipboard () ;
SetCl ipboardData (CF_BITMAP, hBitmap) ;
CloseClipboard () ;
}

}
}
DeleteDC (hMemoryDC) ;

ReleaseDC (hWnd, hOC) ;
EnableMenuitem (hMenu, ID_COPY, MF_GRAYED) ;
OrgX = OrgY = CopyWidth = CopyHeight = 0;
break ;

The GetDC and PatBlt functions clear the selection rectangle from the
screen . This is required so that a true bitmap is copied instead of an
inverted one.

236

The Clipboard

The CreateCompatibleDC and CreateCompatibleBitmap functions
prepare the compatible display context that will receive the bitmap from
the screen. A bitmap cannot be copied directly from the screen to the clip
board . It must be copied to a compatible bitmap first . The handle of the
compatible bitmap is then copied to the clipboard .

To copy a bitmap from the screen, the SelectObject function selects the
compatible bitmap into the compatible display context . The BitBlt func
t ion then copies the screen image to the compatible display context and ,
hence, the compatible bitmap . To copy the bitmap to the clipboard, you
must remove the bitmap from selection in the compatible display context .
You can then copy it to the clipboard by using the same sequence of func
tions you would use to copy text to the clipboard . In each step of the
operation, if the bitmap or display context cannot be created, the copy
operation is terminated .

The DeleteDC function removes the compatible display context since the
application no longer needs it . Also, since the display context is no longer
needed, the ReleaseDC function is used to release it. The Copy command
is disabled and the variables used to identify the selection are set to zero.
In other words, the copying operation removes the selection .

You could extend this example to incorporate a Cut command. A Cut
command carries out the same action as the Copy command but also
deletes the contents of the selection from the screen . The easy way to
incorporate this command is to incorporate a Clear command, too, then
have the Cut command carry out a copying and clearing operation .

13.3 Special Clipboard Topics

The clipboard provides a number of special features that an application
can use to improve the usability of the clipboard and save itself some
work. In particular, the clipboard lets applications delay the formatting
of data passed to the clipboard until the data are needed, and lets applica
tions draw within the Clipboard application 's client area. Delaying for
matting of data can save an application much time if the format is com
plex and no other application is likely to use it . Drawing in the Clipboard
application 's window lets an application display data formats that Clip
board does not know how to display . The following sections describe these
features in more detail .

237

Microsoft Windows Programmer's Learning Guide

13.3.1 The Clipboard Application

The Clipboard application, clipbrd. exe, provides a way for the user to view
the contents of the clipboard ; for this reason, it is also known as the "clip
board viewer ." It lists the names of all the formats for which handles
(NULL or otherwise) exist in the clipboard , and displays the contents of
the clipboard in one of these formats.

The clipboard viewer can display all the standard data formats. If there
are handles for more than one standard data format, the clipboard viewer
displays only one format, choosing from the following list , in decreasing
order of priority: CF_ TEXT, CF_ :M.ETAFILEPICT, CF- BITMAP,
CF_ SYLK, and CF_ DIF.

13.3.2 Rendering Data on Request

Applications that use many data formats can save formatting time by
passing NULL data handles to the SetClipboardData function instead of
generating all the data handles when a Cut or Copy command is used . The
application does not actually have to generate a handle to the data until
another application requests a handle by calling the GetClipboardData
function .

When the GetClipboardData function is called with a request for a for
mat that a NULL data handle has been set for , a WM_ RENDERFORMAT
message is sent to the clipboard owner. When an application receives this
message, it can do the following:

1 . Format the data last copied to the clipboard (the wParam value of
WM_ RENDERFORMAT specifies the format being requested) .

2 . Allocate a global memory block and copy the formatted data to it .

3 . Pass the global memory handle and the format number to the clip
board by using the SetClipboardData function .

In order to accomplish these steps, the application needs to keep a record
of the last data copied to the clipboard . The application may get rid of
this information when it receives the WM_ DESTROYCLIPBOARD mes
sage , which is sent to the clipboard owner whenever the clipboard is emp
tied by a call to the EmptyClipboard function .

13.3.3 Rendering Formats Before Terminating

When an application is destroyed, its knowledge of how to render data it
has copied to the clipboard is also destroyed. Accordingly, a special mes
sage , WM_ RENDERALLFORMATS, is sent when the application that
owns the clipboard is being destroyed . Upon receiving this message , an

238

The Clipboard

application should follow the steps described in Section 13 .3 .2 , "Rendering
Data on Request , " for all formats that the application is capable of gen
erating.

13.3 .4 Registering Private Formats

In addition, an application may create and use private formats, or even
new public ones. To create and use a new data- interchange format , an
application must do the following:

1 . Call the RegisterClipboardFormat function to register the
name of the new format .

2 . Use the value returned by RegisterClipboardFormat as the code
for the new format when calling the SetClipboardData function .

Registering the format name ensures that the application is using a unique
format number. In addition, it allows the Clipboard application to display
the correct name of the data being held in the clipboard . For more infor
mation about displaying private data types in Clipboard, see Section
13 .3 .5 , "Controlling Data Display in the Clipboard . "

I f two or more applications register formats with the same name, they will
all receive the same format code . This allows applications to create their
own public data types. If two or more applications register a format called
WORKSHEET, for example, they will all have the same format number
when calling the SetClipboardData and GetClipboardData functions,
and will have a common basis for transferring WORKSHEET data
between them.

13.3.5 Controlling Data Display in the Clipboard

There are two reasons why an application might wish to control the
display of information in the Clipboard application . First, the application
may have a private data type that is difficult or impossible to display in a
meaningful way. Second , it may have a private data type that requires
special knowledge to display.

13.3 .5 .1 Using a Display Format for Private Data

You can use a "display format" to represent a private data format that
would otherwise be difficult or impossible to display . The data associated
with display formats are text, bitmaps, or metafile pictures that the clip
board viewer can display as substitutes for the corresponding private data.
To use a display format, you copy both the private data and the display
data to the clipboard . When the clipboard viewer chooses a format to
display, it chooses the display format instead of the private data.

239

Microsoft Windows Programmer's Learning Guide

There are three display formats: CF_ DSPTEXT, CF_ DSPBITMAP, and
CF_ DSP.rv1ETAFILEPICT. The data associated with these formats are
identical to the text, bitmap, and metafile-picture formats . Since text,
bitmaps, and metafile pictures are also standard formats, the clipboard
viewer can display them without help from the application .

The following description assumes that the application has already fol
lowed the steps described in Section 13 .2 . 1 , "Copying Text to the Clip
board , " to take ownership of the clipboard and set data handles .

To force the display of a private data type in a standard data format , the
application must take the following steps:

1 . Open the clipboard for alteration by calling the OpenClipboard
function .

2 . Create a global handle that contains text, a bitmap, or a metafile
picture, specifying the information that should be displayed in the
clipboard viewer.

3. Set the handle to the clipboard by calling the SetClipboardData
function . The format code passed should be CF _ DSPTEXT if the
handle is to text, CF _ DSPBITMAP if the handle is for a bitmap,
and CF_ DSP.rv1ETAFILEPICT if it is for a metafile picture.

4. Signal that it is done altering the clipboard by calling the
CloseClipboard function .

1 3 .3 . 5 .2 Taking Full Control
of the Clipboard-Viewer Display

An application can take complete control of the display and scrolling of
information in the clipboard viewer. This control is useful when the appli
cation has a sophisticated private data type that only it knows how to
display . Microsoft Write uses this facility for displaying formatted text .

The following description assumes that the application has already fol
lowed the steps described in Section 13 .2 . 1 , "Copying Text to the Clip
board , " to take ownership of the clipboard and set data handles .

To take control of the display of information in the clipboard viewer, the
application must take the following steps:

240

1 . Open the clipboard for alteration by calling the OpenClipboard
function .

2 . Call the SetClipboardData function, using
CF_ OWNERDISPLAY as the data format, with a NULL handle .

The Clipboard

3 . Signal that it i s done altering the clipboard by calling the
CloseClipboard function .

The clipboard owner will then receive special messages associated with the
display of information in the clipboard viewer. These messages are
described in the following list :

Message

WM_ P AINTCLIPBOARD

Action

Paint the specified portion of the
window.

WM_ SIZECLIPBOARD

WM_ VSCROLLCLIPBOARD

WM_ HSCROLLCLIPBOARD

WNL ASKCBFORMATNAME

Take note of the window size change .

Scroll the window vertically.

Scroll the window horizontally .

Supply the name of the displayed
format .

You 'll find full descriptions of these messages in the Microsoft Windows
Programmer 's Reference.

1 3 .3.5.3 Using the Clipboard-Viewer Chain

The chaining together of clipboard-viewer windows provides a way for
applications to be notified whenever a change is made to the clipboard .
The notification, in the form of a WM_ DRA WCLIPBOARD message , is
passed down the viewer chain whenever the CloseClipboard function
is called . The recipient of the WNL DRAWCLIPBOARD message must
determine the nature of the change (Empty, Set, etc.) by calling the
EnumClipboardFormats function , the GetClipboardData function ,
and other functions, as desired .

Any window that has made itself a l ink in the viewer chain must be
prepared to do the following:

• Remove itself from the chain before it is destroyed .

• Pass along WM_ DRA WCLIPBOARD messages to the next link in
the chain .

The code for this action looks like this:

case WM_DESTROY :
ChangeCl ipboardChain (hwnd, my_save_next) ;

I* rest o f processing for WM_DESTROY *I
break ;

241

Microsoft Windows Programmer's Learning Guide

case WM_DRAWCLIPBOARD :
i f (my_save_next ! = NULL)

SendMessage (my_save_next , WM_DRAWCLIPBOARD, wParam, lParam) ;

I* rest o f processing for WM_DRAWCLIPBOARD *I

break;

The my- save_ next string is the value returned from the
SetClipboardViewer function . These clipboard-viewer chain actions
should be the first steps taken by the switch-statement branches that pro
cess the WM_ DESTROY and WM- DRA WCLIPBOARD messages.

13.4 A Sample Application: ClipText

This sample application illustrates how to copy and paste from the clip
board . To create the ClipText application, copy and rename the source
files of the EditMenu application, then make the following modifications:

1 . Add new variables .

2 . Add a WM_ INITMENU case.

3 . Modify the WM_ COMMAND case to process the ID_ COPY
and ID_ PASTE cases.

4. Compile and link the application .

This sample uses global memory to store the text to be copied . For a full
explanation of global memory, see Appendix B, "Memory Management . "

13.4.1 Add New Variables

You need to add several new global variables to hold the handles used for
the copy and paste operations, as well as hold the addresses of the text
strings . Add the following to the beginning of your C-language source file :

char a_string [) = "He l lo Windows ! " ;
HANDLE hData , hClipData ;
LPSTR lpData , lpClipData ;

The a- string array holds the string to be copied to the clipboard . The
hData and hClipData variables hold the data handles to the global
memory containing the copied text . The lpData and lpClipData pointer
variables receive the addresses of the global memory blocks containing the
strings.

242

The Clipboard

13.4.2 Add a WM_ INITMENU Case

You need to add a WM_ INITMENU case to your window function to
prepare the Edit menu for pasting. In general, the Paste command should
not be available unless there is selected text in the clipboard to paste. Add
the following statements to the window function :

case WM_INITMENU :
i f (wParam == GetMenu (hWnd)) {

wFormat = 0 ;

}

i f (OpenCl ipboard (hWnd)) {

}

while ((wFormat = EnumClipboardFormats (wFormat))
! = 0 && wFormat ! = CF_TEXT) ;

CloseClipboard () ;
i f (wFormat == CF_TEXT)

EnableMenuitem (wParam, ID_PASTE , MF_ENABLED) ;
e lse

EnableMenuitem (wParam, ID_PASTE , MF_GRAYED) ;

return (TRUE) ;

These statements process the WM_ INITMENU message only if the speci
fied menu is the menu bar. The EnumClipboardFormats function enu
merates the formats currently in the clipboard . If the CF_ TEXT format
is found, the EnableMenuitem function enables the command. Other
wise, the Paste command is disabled .

13.4.3 Modify the WM_ COMMAND Case

You need to modify the ID:M_ COPY and ID:rvL PASTE cases in the
\VM_ COMMAND case to process the Edit-menu commands. The
ID:M_ COPY case must create a global memory block, fill it with text, and
copy the handle of the block to the clipboard . The ID:rvL PASTE case must
retrieve a handle from the clipboard and write the text in the client area.

Replace the existing ID:M_ COPY statement with the following statements:

case ID_COPY :
hData = Globa lAl loc (GMEM_MOVEABLE ,

(DWORD) _lstrlen (a_string)) ;
i f (! hData)

break ;
lpData = GlobalLock (hData) ;
_lstrcpy (lpData , (LPSTR) a_string) ;
GlobalUnlock (hData) ;
i f (OpenCl ipboard (hWnd)) {

EmptyCl ipboard () ;
SetClipboardData (CF_TEXT , hData) ;
CloseClipboard () ;

}
hData = 0 ;
return ((long) TRUE) ;

243

Microsoft Windows Programmer's Learning Guide

The GlobaWloc function allocates the global memory block used to
store the text string. The locally defined _ lstrcpy function copies the
string into the block after the handle has been locked by the GlobalLock
function . The handle must be unlocked before copying the handle to the
clipboard . The EmptyClipboard function is used to remove any existing
data from the clipboard .

Replace the ID:M_ PASTE statement with the following statements:

case ID_PASTE :
i f (OpenClipboard (hWnd)) {

}

hCl ipData = GetClipboardData (CF_TEXT) ;
CloseClipboard () ;
i f (! hClipData)

break ;
hDC = GetDC (hWnd) ;
lpClipData = GlobalLock (hClipData) ;
TextOut (hDC, 10 , 10 , lpCl ipData , _lstrlen (lpCl ipData)) ;
Globa lUnlock (hClipData) ;
Re leaseDC (hWnd, hDC) ;

return (TRUE) ;

The GetClipboardData function returns a handle to a global memory
block. The GlobalLock function locks this handle, returning the block
address that is used in the TextOut function to write the text .

13 .4.4 Compile and Link

No changes are required to the make file to recompile and link the Clip
Text application . After compiling and linking it, start Windows, the Clip
board application , and ClipText . Then, choose the Copy command in the
Edit menu . You should see something like Figure 1 3 . 1 :

- i � l � l
T•xt:'
H•.ll.o Wi.ndows I -Q-1 -Q .

f:i1• .E;di�

H•.ll.o W.indows l

...

Figure 1 3 . 1 ClipText Window and Clipboard

244

The Clipboard

13.5 A Sample Application: ClipBit

This sample application illustrates how to copy and paste bitmaps from
the clipboard . To create the ClipBit application, copy and rename the
source files of the ClipText application, then make the following
modifications:

1. Add new variables.

2. Modify the \VM_ INITI.1ENU case .

3 . Modify the JD_ COPY and JD_ PASTE case .

4. Add the mouse cases to create a selection rectangle .

5 . Compile and link the application .

This sample assumes that you have a mouse or other pointing device . It
uses the selection functions provided by the Select library described in
Appendix C, "Windows Libraries . "

13.5.1 Add New Variables

You need a few new global variables to process the mouse- input messages.
Add the following statements to the beginning of the C-language source
file :

BOOL bTrack = FALSE ;
RECT SelectRect ;

I* TRUE i f l e ft button cl icked *I
I* Holds the current selection *I

You also need some new local variables in the window function to copy or
paste bitmaps. Add the following statements to the beginning of the win
dow function :

HDC hMemoryDC;
HBITMAP hBitmap , hOldBitmap ;
BITMAP PasteBitmap ;

13.5.2 Modify the WM_ INI�NU Case

You need to make two changes to the \VM_ INITMENU case . First,
replace the CF_ TEXT constant with CF_ BITMAP. Second, use the
EnableMenultem function to disable the Copy command if the selection
rectangle is empty. Mter you have changed it, the WM:_ INITMENU case
should look like this :

case WM_INITMENU :
i f (vParam == GetMenu (hWnd)) {

vFormat = 0 ;

245

Microsoft Windows Programmer's Learning Guide

}

i f (OpenClipboard (hWnd)) {

}

while ((wFormat = EnumClipboardFormats (wFormat))
! = 0 && wFormat ! = CF_BITMAP) ;

CloseCl ipboard () ;
i f (wFormat == CF_TEXT)

EnableMenuitem (wParam, ID_PASTE , MF_ENABLED) ;
else

EnableMenuitem (wParam, ID_PASTE , MF_GRAYED) ;

i f (IsRectEmpty (SelectRect))
EnableMenuitem (wParam, ID_COPY, MF_GRAYED) ;

e lse
EnableMenuitem (wParam, ID_COPY, MF_ENABLED) ;

return (TRUE) ;

13.5.3 Modify the IDM_ COPY
and IDM_ PASTE Cases

You need to modify the IDM_ COPY and IDM_ PASTE cases to process
bitmaps. The IDM_ COPY case must clear the selection rectangle from the
client area, copy the bitmap to memory, and then copy the bitmap handle
to the clipboard . The IDM_ PASTE case must copy the handle into a
memory device context, then copy the bitmap to the display .

After changes, the IDM_ COPY case should look like this :

case ID_COPY :

246

ClearSe lection (hWnd, &SelectRect , SL_BLOCK) ;
hMemoryDC = CreateCompatibleDC (hDC) ;
i f (hMemoryDC) {

}

hBitmap = CreateCompatibleBitmap (hMemoryDC ,
SelectRect . right-SelectRect . le ft ,
SelectRect . bottom-SelectRect . top) ;

i f (hBi tmap) {
hOldBitmap = SelectObj ect (hMemoryDC , hBitmap) ;
BitBlt (hMemoryDC , 0 , 0 ,

SelectRect . right - Se lectRect . le ft ,
SelectRect . bottom - SelectRect . top ,
hDC, SelectRect . le ft , SelectRect . top , SRCCOPY) ;

SelectObj ect (hMemoryDC , hOldBitmap) ;
i f (OpenClipboard (hWnd)) {

}

EmptyClipboard () ;
SetCl ipboardData (CF_BITMAP , hBitmap) ;
CloseClipboard () ;

}
DeleteDC (hMemoryDC) ;

ReleaseDC (hWnd, hDC) ;
SetRectEmpty (SelectRect) ;
break ;

The Clipboard

The CreateCompatibleDC function creates the memory device context
needed to copy the selected bitmap from the client area to the clipboard.
Mter a bitmap is created and selected, the BitBlt function copies the
selected bitmap to the memory device context . Before copying the bitmap
handle to the clipboard , the SelectObject function removes it from selec
t ion in the memory device context . Mter the copy operat ion is complete,
the DeleteDC function deletes the memory device context since it is no
longer needed . The SetRectEmpty function then clears the selection rec
tangle .

After you have changed it , the IDM_ PASTE case should look like this :

case ID_PASTE :
i f (OpenClipboard (hWnd)) {

}

hCl ipData = GetClipboardData (CF_BITMAP) ;
CloseClipboard () ;
i f (! hCl ipData)

break ;
hDC = GetDC (hWnd) ;
hMemoryDC = CreateCompatibleDC (hDC) ;
i f (hMemoryDC) {

GetObj ect (hClipData , sizeo f (BITMAP) ,
(LPSTR) & PasteBitmap) ;

}

hOldBitmap = SelectObj ect (hMemoryDC , hClipData) ;
i f (hOldBitmap) {

BitBlt (hDC, 10 , 10 ,
PasteBitmap . bmWidth, PasteBitmap . bmHeight ,
hMemoryDC , 0 , 0 , SRCCOPY) ;
SelectObj ect (hMemoryDC , hOldBitmap) ;

}
DeleteDC (hMemoryDC) ;

ReleaseDC (hWnd, hDC) ;

break ;

The CreateCompatibleDC function first creates the memory device
context needed to display the bitmap retrieved from the clipboard . The
GetObject function retrieves the bitmap dimensions since these are not
provided by the clipboard . The BitBlt function then copies the bitmap to
the client area.

13.5.4 Add the WM_ LBUTTONDOWN,
WM_ MOUSEMOVE,
and WM_ LBUTTONUP Cases

You need to add the WM_ LBUTTONDOWN, WM_ MOUSEMOVE, and
WJ\L LBUTTONUP cases to process the mouse input that creates the
selection rectangle. Add the following statements to the window function :

247

Microsoft Windows Programmer's Learning Guide

case WM_LBUTTONDOWN :
bTrack = TRUE ;

StartSelection (hWnd, MAKEPOINT (lParam) , &SelectRect ,
(wParam & MK_SHIFT) ?
SL_EXTEND I SL_BLOCK : SL_BLOCK) ;

break ;

case WMLMOUSEMOVE :
i f (bTrack)

UpdateSe lection (hWnd, MAKEPOINT (lParam) ,
&SelectRect , SL_BLOCK) ;

break ;

case WM_LBUTTONUP :
bTrack = FALSE ;
EndSelection (MAKEPOINT (lParam) , &SelectRect) ;
break ;

These statements create a block selection . The selection remains in the
client area until the user copies the contents of the selection to the clip-
��.

!

13.5.5 Compile and Link

No changes are required to the make file to recompile and link the ClipBit
application . Mter compiling and linking the application, start Windows,
the Paint application , and ClipBit . Then, choose the Copy command in
the Edit menu . You should see something like Figure 13 . 2 :

Figure 1 3 . 2 ClipBit Window

248

�-

Appendixes

A Fonts 251
B
c

Memory Management
Windows Libraries

269
283

249

Appendix A

Fonts

Al Introduction 253

A2 Writing Text 253

A3 Using Color when Writing Text 253

A4 Using Stock Fonts 254

A5 Creating a Logical Font 256

A6 Using Multiple Fonts in a Line 257

A 7 Getting Information About
the Selected Font 258

A8 Getting Information About a Logical Font 259

A 9 Enumerating Fonts 260

A lO Checking a Device's Text Capabilities 262

A l l Adding a Font Resource 263

A 12 Setting the Text Alignment 264

A 13 Creating Font-Resource Files 265

A 13. 1 Creating Font Files 265

A 13.2 Creating the Font-Resource Script 266

A 13.3 Creating the Dummy Code Module 266

A 13.4 Creating the Module-Definition File 267

A 13.5 Compiling and Linking
the Font-Resource File 268

A 14 A Sample Application: ShowFont 268

251

Fonts

A. l Introduction

Microsoft Windows offers a rich array of text-writing capabilities that goes
far beyond simple terminal-based text output . In particular, Windows lets
you choose the font to be used for text output .

A font is a collection of characters that have a unique combination of
height , width, typeface, character set, and other attributes. An application
uses fonts to display or print text of varying faces and sizes. For example,
a word-processing application uses fonts to give the user a "what you see
is what you get" interface .

This appendix shows how to use fonts in your applications, and how to
create font resources that your application and others can use .

A. 2 Writing Text

You can write text in a given font by selecting the font and using the
TextOut function to write it . TextOut writes the characters of the
string by using the font that is currently selected in the device context .
The following example shows how to write the string "This is a sample
string" :

hDC = GetDC (hWnd) ;
TextOut (hDC, 10 , 10 , "This is a sample string" , 23) ;
ReleaseDC (hWnd, hDC) ;

In this example, TextOut starts the string at the coordinates (10 , 10) and
prints all 23 characters of the string.

The default font for a device context is the system font . This is a fixed
width font representing characters in the ANSI character set . Its font
name is "System." Windows uses the system font for menus, window cap
tions, and other text .

A.3 Using Color when Writing Text

You can add color to the text you write by setting the text and back
ground colors of the device context . The text color determines the color of
the character to be written; the background color determines the color of
everything in the character cell except the character. GDI writes the entire
character cell (the rectangle enclosing the character) when it writes text . A
character cell usually has the same width and height as the character .

253

Microsoft Windows Programmer's Learning Guide

You can set the text and background colors by using the SetTextColor
and SetBkColor functions. The following example sets the text color to
red and the background color to green :

SetTextColor (hDC, RGB (255 , 0 , 0)) ;
SetBkCol or (hDC , RGB (0 , 255 , 0)) ;

When you first create a device context, the text color is black and the
background color is white. You can change these colors at any time .

Note

If you are using a common display context, your colors are lost each
time you release the context, so you need to set them each time you
retrieve the display context .

The background color applies only when the background mode is opaque .
The background mode determines whether the background color in the
character cell has any affect on what is already on the display surface . If
the mode is opaque , the background color overwrites anything already on
the display surface; if it is transparent, anything on the display surface
that would otherwise be overwritten by the background is preserved. You
can set the background mode by using the SetBkMode function, or you
can retrieve the current mode by using the GetBkMode function . Simi
larly, you can retrieve the current text and background color by using the
GetTextColor and GetBkColor functions.

A4 Using Stock Fonts

You are not limited to using the system font in your application . GDI
offers a variety of stock fonts that you can retrieve and use as desired . To
use stock fonts in your application, you must specify the type of font you
want in the GetStockObject function . GetStockObject creates the
font you request and returns a handle to the font that you can use to
select into a device context . There are the following stock fonts:

Font

SYSTEM_ FONT

254

Description

Specifies the system font . This is a fixed
pitch font based on the ANSI character set,

Fonts

and is used by the system to display win
dow captions, menu names, and text in dia
log boxes. The system font is always avail
able. Other fonts are available only if they
have been installed.

OEM_ FIXED_ FONT Specifies a fixed-pitch font based on an
OEM character set . OEM character sets
vary from system to system. For IBM com
puters and compatibles, the OEM font is
based on the IBM PC character set.

ANSL FIXED_ FONT Specifies a fixed-pitch font based on the
ANSI character set . For example, a Courier
font is typically used, if one is available .

ANSL VAIL FONT Specifies a variable-width font based on the
ANSI character set. For example, a Helvet
ica font is typically used, if it is available.

DEVICEDEFAULT- FONT Specifies a font preferred by the given
device . This font depends on how the GDI
font mapper interprets font requests, so the
font may vary widely from device to device.

To use a stock font , create it by using the GetStockObject function ,
then select the font handle into the device context by using the
SelectObject function . Any subsequent calls to TextOut will use the
selected font . The following example shows how to use the variable-width
ANSI font :

HFONT hFont ;
HFONT hOldFont ;

hFont ; GetStockObj ect (ANSI_VAR_FONT) ;
i f (hOldFont ; SelectObj ect (hDC , hFont)) {

}

TextOut (hDC, 10 , 10, "This is a sample string" , 23) ;
SelectObj ect (hDC, hOldFont) ;

As you would with any other GDI object, you must select a font before it
can be used in an output operation . The SelectObject function selects
the font you have created and returns a handle to the previous font . The
system stock font is always available, even if no other stock font is. If no
other stock fonts are available, GetStockObject returns a handle to the
system font .

255

Microsoft Windows Programmer's Learning Guide

A. 5 Creating a Logical Font

A logical font is a list of font attributes, such as height , width, character
set, and typeface, that you want GDI to consider when choosing a font for
writing text . You can create a logical font by using the CreateFont func
tion . CreateFont returns a handle to the logical font . You can use this
handle in the SelectObject function to select the font for the device con
text . When you select a logical font, GDI chooses a physical font , based on
your request , to write subsequent text . GDI attempts to choose a physical
font that matches your logical font exactly, but if it cannot find an exact
match in its internal pool of fonts, it chooses the closest matching font .

In the following example, the CreateFont function creates a logical font :

hFont � CreateFont (
10 , I* 1 fHeight *I
8 , I* 1 fWidth *I
0 , I* 1 fEscapement *I
0 , I* 1 fOrientation *I
FW_NORMAL , I* 1 fWeight *I
FALSE , I* l f!ta l ic *I
FALSE , I* _l fUnder line *I
FALSE , I* 1 fStrikeOut *I
ANSI_CHARSET, I* l fCharSet *I
OUT_DEFAULT_PRECIS , I* l fOutPrecision *I
CLIP_DEFAULT_PRECIS , I* l fCl ipPrecision *I
DEFAULT_QUALI TY, I* l fQua l ity *I
FIXED_PI TCH I FF_MODERN, I* 1 fPitchAndFamily *I
"System" I* 1 fFaceName *I
) ;

This logical font asks for a fixed-pitch font in which each character is ten
pixels high and eight pixels wide . Font dimensions are always described in
pixels . The requested escapement and orientation are zero, which means
the baseline along which the characters are displayed is horizontal and
none of the characters will be rotated . FW_ NORMAL is the requested
wei�ht . Other typical weights are , FW_ BOLD (for darker, heavier charac
ters) and FW_ LIGHT (for lighter characters) . Italic, underlined , or
struckout characters are not desired. The requested character set is ANSI,
the standard character set of Windows. Default output precision, clipping
precision , and quality are requested. These attributes affect the way the
characters are displayed. Setting these attributes to default values lets the
display device take advantage of its own capabilities to display characters.
The requested font family is FF_ MODERN. The font name is "System" .

When you supply a logical font to SelectObject, the function examines
the pool of available fonts to find a font that satisfies the requested attri
butes. If it finds an exact match, it returns a handle to that font . If it fails
to find an exact match, it chooses the closest possible font and returns
that handle . In some cases, SelectObject may not find an exact match
but nevertheless can synthesize the requested font by using an existing
font that is close . For example, if the only available system font were five

256

�'

Fonts

pixels high and your logical font specified a height of ten pixels,
SelectObject could synthesize the requested font by doubling the height .
In such cases, SelectObject returns the synthesized font for writing text .

A.6 Using Multiple Fonts in a Line

If you are developing an application that uses a variety of fonts-a word
processor, for instance-you will probably want to use more than one font
in a l ine of text . To do so, you will need to write the text in each font
separately. The TextOut function cannot change fonts for you .

The main difficulty with using more than one font i n a line of text is that
you need to keep track of how far each call to TextOut advances the line
of text, so that you can supply the appropriate starting location for the
next part of the line. If you are using variable-width fonts, keeping track
of the length of a written string can be difficult . However, Windows pro
vides the GetTextExtent function , which computes the length of a given
string by using the widths of characters in the current font .

One way to write a line of text that contains multiple fonts is to use the
GetTextExtent function after each call to TextOut and add the length
to a current position . The following example shows how to write the line
"This is a sample string. " , using italic characters for the word "sample" ,
and bold characters for all others:

X = 10 ;
SelectObj ect (hDC, hBoldFont) ;
TextOut (hDC , X, 10 , "This is a " 10) ;

X = X + LOWORD (GetTextExtent (hDC , "This is a " 10)) ;
SelectObj ect (hDC, hital icFont) ;
TextOut (hDC , X , 10 , "sample " , 7) ;

X = X + LOWORD (GetTextExtent (hDC , "sample " , 7)) ;
SelectObj ect (hDC , hBo ldFont) ;
TextOut (hDC , X , 10 , "string . " , 7) ;

In this example, the SelectObject function sets the font to be used in the
subsequent TextOut function . The hBoldFont and hitalicFont font han
dles are assumed to have been previously created using the CreateFont
function . Each TextOut function writes a part of the line, then the
GetTextExtent function computes the length of that part . GetText
Extent returns a double-word value containing both the length and
height . You need to use the LOWORD utility to retrieve the length . This
length is added to the current position to determine the starting location
of the next part of the line .

257

Microsoft Windows Programmer's Learning Guide

Another way to write a line with multiple fonts is to create a function that
consolidates all the required actions into a single call . The following exam
ple shows such a function :

WORD StringOut (hDC, X, Y, lpString, hFont)
HDC hDC;
short X;
short Y;
LPSTR lpString;
HANDLE hFont ;
{

}

HANDLE hPrevFont ;

hPrevFont = SelectObj ect (hDC, hFont) ;
TextOut (hDC, X, Y, lpString, _lstrlen (lpString)) ;
SelectObj ect (hDC, hPrevFont) ;
return (LOWORD (GetTextExtent (hDC, lpString, _lstrlen (lpString))) ;

This function writes the string in the given font , then resets the font to its
previous setting and returns the length of the written string. The following
example shows how to write the line, "This is a sample string." :

X = 10 ;
X = X + StringOut (hDC, X, 10 , "This is a " , hBoldFont) ;
X = X + StringOut (hDC, X, 10 , "sample " , hital icFont) ;
StringOut (hDC, X, 10 , "string . " , hBoldFont) ;

A 7 Getting Information About
the Selected Font

You can retrieve information about the selected font from a device context
by using the GetTextMetrics and GetTextFace functions .

The GetTextMetrics function copies a TEXTMETRIC structure into
a buffer that you supply. The structure contains a description of the font ,
including the average dimensions of the character cells within the font , the
number of characters in the font , and the character set on which the font
is based . You can use the text metrics to determine how much space you 'll
need between lines of text, or which character values have corresponding
characters and which are represented by the font 's default character.

The text metrics are most often used to determine how much space you
need between lines of text to prevent one line from overwriting another.
For example, to compute an appropriate value for single-line spacing, you
add the values of the tmHeight and tmExternaiLeading fields of the
TEXTMETRIC structure . The tmHeight field specifies the height of
each character cell and tmExternalLeading specifies the font designer's
recommended spacing between the bottom of one character cell and the

258

Fonts

top of the next . The following example shows how to write several lines
with single-spacing:

TEXTMETRI C TextMetrlc ;
lnt nLineSpacing;
int i ;

GetTextMetrlcs (hDC , &TextMetric) ;
nLineSpace = TextMetric . tmHeight + TextMetric . tmExterna lLeading;

y = 0;
for (i = 0; 1 < 4 ; 1++) {

}

TextOut (hDC, 0 , Y, "Single- l ine spacing" , 19) ;
Y += nLineSpace ;

You can also use the text metrics to verify that the selected font has the
characteristics you need, such as weight, character set, pitch, and family.
This is useful if you did not prepare the device context; for example, if you
received it as part of a window message from a child window or control .
For more information about the fields of the TEXTMETRIC structure,
see the Microsoft Windows Programmer 's Reference.

The GetTextFace function copies a name identifying the typeface of
the selected font into a buffer that you supply. The name of the typeface
together with the text metrics let you fully specify the font . The following
example copies the name of the current font into the character array,
FaceName .

char FaceName [32] ;

GetTextFace (hDC, 32 , FaceName) ;

A.S Getting Information About a Logical Font

You can retrieve information about a font from the font handle by using
the GetObject function . The GetObject function copies logical-font
information, such as the height , width, weight , and character set , to a
structure that you supply. You can use the logical-font information to see
if the given font meets your needs. GetObject is often used after creating
a font with the CreateFont function to see how closely the font matches
the requested font . In the following example , GetObject retrieves
logical-font information for a newly created font and compares the
character-set values and facenames:

259

Microsoft Windows Programmer's Learning Guide

HE'ONT hFont ;
LOGFONT LogFont ;

hFont = CreateFont (
10 ,
10 ,
0 ,
0 ,
FW_NORMAL ,
FALSE ,
FALSE ,
FALSE ,
OEM_CHARSET,
OUT_DEFAULT_PRECIS ,
CLIP_DEFAULT_PRECIS ,
DEFAULT_QUALI TY,
FIXED_PITCH I FF_MODERN,
"Courier" ,

) ;

GetObj ect (hFont , (LPLOGFONT) &LogFont) ;

i f (LogFont . l fCharSet ! = OEM_CHARSET) {

}
i f (strcmp (LogFont . 1 fFaceName , "Courier")) {

}

I* Height *I I* Width *I I* Escapement *I I* Orientation *I I* Weight *I I* Italic *I I* Underline *I I* StrikeOut *I I* CharSet *I I* OutPrecision *I I* ClipPrecision *I I* Qua l ity *I I* PitchAndFami ly *I I* Type face *I

The font that GDI uses when you actually select a font by using the
SelectObject function may vary widely from system to system. The
selected font , which depends on the fonts available at the time of the selec
tion , may or may not closely match your request . The only way to guaran
tee a request is to determine which fonts are actually available and request
only those fonts, or add the appropriate font resource to the system font
table before making the request , or change the method the font mapper
uses to choose a font .

A. 9 Enumerating Fonts

You can find out which fonts are available for a given device by using the
EnumFonts function . This function sends information about the avail
able fonts to a callback function that you supply. The callback function
receives both logical-font and text-metric information . From this informa
tion you can determine which fonts you want to use and create appropri
ate font handles for them. If you create font handles by using the supplied
information , you are guaranteed to get an exact match for the font when
you select it for writing text .

260

Fonts

The EnumFonts function usually provides font information about all the
fonts that have a specific typeface name . You can supply the name when
you call EnumFonts. If you do not supply a name, EnumFonts supplies
information about arbitrarily selected fonts, each representing a typeface
currently available . The way to examine all available fonts is to get a list
of the available typefaces, then examine each font in each typeface .

The following example shows how to use EnumFonts to find out how
many fonts having the "Courier" typeface are available . The callback
function , EnumFunc, receives the font information and creates handles for
each font :

FARPROC lpEnumFunc ;

int FAR PASCAL EnumFunc (
{
}

hDC = GetDC (hWnd) ;
lpEnumFunc = MakeProcinstance (EnumFunc , h!nst) ;
EnumFonts (hDC, "Courier" , lpEnumFunc , NULL) ;
FreeProcinstance (lpEnumFunc) ;

To use the EnumFonts function, you must supply a callback function .
As with all callback functions, EnumFunc must be explicitly named in the
EXPORTS statement in your module-definition file and must be declared
with the FAR and PASCAL attributes. For each font to be enumerated,
the EnumFunc callback function receives a pointer to a logical-font struc
ture, a pointer to a text-metrics structure, a pointer to any data you may
have passed in the EnumFonts function call, and an integer specifying
the font type. The following example shows a simple callback function
that creates a list of all the sizes (in terms of height) of a given set of ras
ter fonts:

short SizeList [lO] ;
short SizeCnt = 0 ;

int F AR PASCAL EnumFunc (lpLogFont , lpTextMetric , FontType , lpData)
LPLOGFONT lpLogFont ;
LPTEXTMETRIC lpTextMetric ;
short FontType ;
LPSTR lpData ;
{

}

i f (FontType & RASTER_FONTTYPE) {
SizeList [SizeCnt++] = lpLogFont- > l fHeight ;
i f (SizeCnt >= 10)

return (0) ;
}
return (1) ;

261

Microsoft Windows Programmer's Learning Guide

This example first checks the font to make sure it is a raster font . If the
RASTEIL FONTTYPE bit is l, the font is a raster font ; otherwise , it is a
vector font . The next step is to save the value of the lfHeight field in the
SizeList array. The callback function saves the first 10 sizes, then returns
zero to stop the enumeration .

You can also use the DEVICE_ FONTTYPE bit of the FontType parame
ter to distinguish GDI-supplied fonts from device-supplied fonts. This is
useful if you want GDI to simulate bold , italic, underline, and strikeout
attributes. GDI can simulate these attributes for GDI-supplied fonts, but
not for device-supplied fonts.

A 10 Checking a Device's Text Capabilities

You can determine the extent of a device's text-writing capabilities by
using the GetDeviceCaps function and the TEXTCAPS index. This
index directs the function to return a bit flag identifying the text capabili
ties of the device . For example, you can use the text-capability flag to
determine if the given device can use vector fonts, rotate characters, or
simulate font attributes such as underlining and italicizing.

Most of the text capabilities apply to fonts that are supplied by the device
as opposed to those supplied by GDI. Typically, GDI can scale fonts and
simulate attributes for the fonts it supplies, but it cannot do so for
device-supplied fonts. You can determine how many device fonts there are
by using the GetDeviceCaps function with the NUMFONTS index. You
can retrieve information about the device fonts by using the EnumFonts
function and checking the DEVICE_ FONTTYPE bit in the FontType
parameter each time your EnumFonts callback function is called .

The following example shows how to make a list of device-supplied fonts.
The GetDeviceCaps function returns the number of device-supplied
fonts and EnumFonts creates font handles for each font :

HDC hDC ;
HANDLE hDevFonts ;
FARPROC lpEnumFunc ;
short NumFonts ;

int FAR PASCAL EnumFunc (lpLogFont , lpTextMetric , FontType , Data)
LPLOGFONT lpLogFont ;
LPTEXTMETRI C lpTextMetric ;
short FontType ;
LONG Data;
{

262

PSTR pDevFonts ;
short index ;
int code = 1 ;

Fonts

}

i f (FontType & DEVICE_FONTTYPE) {
pDevFonts = LocalLock (LOWORD (Data)) ;
i f (pDevFonts ! = NULL) {

}

index = ++pDevFonts [O) ;
i f (index < HIWORD (Data))

pDevFonts [index) = CreateFontindirect (lpLogFont) ;
e lse

code = 0;
}
LocalUnlock (LOWORD (Data)) ;

return (code) ;

hDC = GetDC (hWnd) ;
NumFonts = GetDeviceCaps (hDC, NUMFONTS) ;
hDevFonts = Loca lAl loc (LMEM_FIXED I LMEM_ZEROINIT ,

sizeo f (HANDLE) * (NumFonts + 1)) ;
lpEnumFunc = MakeProcinstance (EnumFunc , h!nst) ;
EnumFonts (hDC , NULL , lpEnumFunc , MAKELONG (hDevFonts , NumFonts)) ;
FreeProcinstance (lpEnumFunc) ;

A. l l Adding a Font Resource

GDI keeps a system font table that contains all the fonts that applications
can use . GDI chooses a font from this table when an application makes a
request for a font by using the CreateFont function .

A font resource is a group of individual fonts representing characters in a
given character set that have various combinations of heights, widths, and
pitches. For example , the system font resource contains a collection of
fonts representing different sizes of characters in the ANSI character set .
Similarly, the OEM font resource contains a collection of fonts represent
ing different sizes of characters in an OEM character set .

An application can have up to 253 entries in the system font table .

Applications can load font resources and add the fonts in the resource to
the system font table by using the AddFontResource function . Once a
font resource is added , the individual fonts in the resource are accessible
to the application . In other words, the CreateFont function considers the
fonts when it tries to match a physical font with the specified logical font .
(Fonts in the system font table are never directly accessible to an applica
t ion . They are available only through the CreateFontlndirect or
CreateFont functions, which return handles to the fonts, not memory
addresses.)

263

Microsoft Windows Programmer's Learning Guide

You can add a font resource to the system font table by using the
AddFontResource function . Similarly, to make room for other font
resources, you can remove a font resource from the system font table by
using the RemoveFontResource function .

Whenever an application adds or removes a font resource , it should inform
all other applications of the change by sending a wrvL FONTCHANGE
message to the applications . You can use the following call to the
SendMessage function to send the message to all windows:

SendMessage (- 1 , WM_FONTCHANGE , 0, OL) ;

If the user has installed fonts by using the Control Panel application , you
can retrieve a list of those fonts by using the GetProfileString function
to search the [fonts] section of the win.z"ni file.

A.12 Setting the Text Alignment

The TextOut function uses a device context's current text alignment to
determine how to position text relative to a given location . For example ,
the default text alignment is top- left , so TextOut places the upper-left
corner of the character cell of the first character in the string at the
specified location . That is , a function call such as the following places the
upper- left corner of the letter "A" at the coordinates (10 , 10) :

TextOut (hDC, 10 , 10 , "ABCDEF" , 6) ;

You can change the text alignment for a device context by using the
SetTextAlign function . If you think of TextOut as fill ing a rectangle
with a text string, then you can think of the text alignment as specifying
what part of the rectangle to place the specified point of the string in .
SetTextAlign recognizes the left end, the center, and the right end of the
rectangle, as well as the rectangle's top and bottom and the baseline
within it. You can combine any one horizontal position with one vertical
position to specify several combinations of alignment . For example, the
following function sets the text alignment to right-bottom:

SetTextAlign (hDC , TA_RIGHT l TA_BOTTOM) ;
TextOut (hDC , 10 , 10 , "ABCDEF " , 6) ;

This example places the lower-right corner of the letter "F" at the coordi
nates (10, 10) .

You can always determine the current text alignment by using the
GetTextAlign function .

264

Fonts

A. 13 Creating Font-Resource Files

You can create your own font resources for your application and others by
creating font files and adding them as resources to a font-resource file . To
create a font-resource file, you must follow these steps:

1 . Create the font files.

2 . Create a font-resource script.

3 . Create a dummy code module .

4. Create a module-definition file that describes the fonts and the
devices that use the fonts.

5. Compile and link the sources.

A font-resource file is actually an empty Windows library-it contains no
code or data, but does contain resources. Once you have font files, you can
add them to the empty library by using the resource compiler. You can
also add other resources to the library, such as icons, cursors, and menus.

Note

You should not add fonts to an application 's resources. These
resources should be reserved for use by the application only.

The following sections explain how to create font-resource files .

A.13.1 Creating Font Files

Before creating a font resource, you need one or more font files. You can
create font files by using the Windows 2 .0 Font Editor , described in
Microsoft Windows Programming Tools. You can also create original files
by using the font-file format given in the Microsoft Windows Programmer 's
Reference. You are free to determine the number, size, and type of font
files in a font resource. In most cases, you should include enough fonts to
reasonably satisfy most logical-font requests for the device the fonts are to
be used with .

When planning font sizes, remember that GDI can scale device
independent raster fonts by 1 to 8 times vertically and 1 to 5 times hor
izontally . GDI can also simulate bold, underlined , strikeout , and italic
fonts. Although scaled or simulated fonts do not look as nice as actual
fonts, they can save valuable memory resources.

265

Microsoft Windows Programmer's Learning Guide

A13.2 Creating the Font-Resource Script

You add the resources to the file by adding one or more FONT state
ments to your resource script file. The statement has the following form:

number FONT filename

One statement is required for each font file to be placed in the resource .
The number must be unique since it is used to identify the font later. The
following is a typical resource script file for a font resource:

1 FONT FntFilOl . FNT
2 FONT FntFil02 . FNT
3 FONT FntFi l03 . FNT
4 FONT FntFil04 . FNT
5 FONT FntFi lOS . FNT
6 FONT FntFil06 . FNT

Fonts can be added to modules that contain other resources by adding
them to the existing resource script . This means you can have icon , menu ,
cursor, and dialog-box definitions in the resource script file, as well as in
FONT statements.

Note

To avoid loading unneeded fonts, it is recommended that each font
resource contain fonts that represent characters designed for only one
aspect ratio or resolution .

A13.3 Creating the Dummy Code Module

The dummy code module provides the object file from which the font
resource file is made . You create the dummy code module by using the
assembler and the Cmacros. The module 's source file should like like this:

TITLE FONTRES - Stub fi le to bui ld FONTRES . EXE

. xl ist
include cmacros . inc
. list

sBegin CODE
sEnd CODE
end

Assemble this source file by using the masm command. It will create an
object file that contains no code and no data, but which can be linked to
an empty Windows library to which you can add the font resources.

266

Fonts

A.13.4 Creating the Module-Definition File

You need to create a module-definition file for the font resource . The file
must contain a LIDRARY statement defining the resource name, a
DESCRIPTION statement that describes the font-resource characteris
tics, and a DATA statement . The module-definition file for a font
resource should look l ike this:

LI BRARY FontRes

DESCRIPTION ' FONTRES 133 , 96 , 72 System, Terminal (Set #3) '

DATA NONE

The DESCRIPTION statement provides device-specific information
about the font that can be used to match a font with a given display
or printer. The following are the three possible formats for the
DESCRIPTION statement in a font resource :

DESCRIPTION 'FONTRES Aspect, LogPixelsX, LogPixels Y: Gmt'

DESCRIPTION 'FONTRES CONTINUOUSSCALING: Gmt'

DESCRIPTION 'FONTRES DEVICESPECIFIC DeviceTypeGroup: Gmt'

The first format specifies a font that was designed for a specific aspect
ratio and logical pixel width and height, and can be used with any device
having the same aspect and logical pixel dimensions . Aspect is the value
(lOO*AspectY)/ AspectX rounded to an integer. The Aspect.X, AspectY,
LogPixels.X, and LogPixels Y values are the same as given in the
corresponding device 's GDIINFO structure (the values of which are
accessible by using the GetDeviceCaps function) . You can give more
than one set of Aspect, LogPixel.X, and LogPixelYvalues, if desired . The
Gmt value is a comment. The following statements are examples :

DESCRIPTION ' FONTRES 133 , 96 , 72 : System, Terminal (Set #3) '
DESCRIPTION ' FONTRES 200, 96 , 48 ; 133 , 96 , 72 ; 83 , 60, 72 ; 167 , 120 , 72 : He lv '

The second format specifies a continuous scaling font . This typically
corresponds to vector fonts that can be drawn to any size and that do not
depend on the aspect or logical pixel width of the output device. The fol
lowing statement is an example:

DESCRIPTION ' FONTRES CONTINUOUSSCALING : Modern , Roman , Script '

The third format specifies a font that is specific to a particular device
or group of devices . The Device TypeList can be DISPLAY or a list of
device- type names, the same names you would specify as the second
parameter in a call to the CreateDC function . For example :

267

Microsoft Windows Programmer's Learning Guide

DESCRIPTION ' FONTRES DI SPLAY : HP 7470 plotters '
DESCRIPTION ' FONTRES DEVI CESPECIFI C HP 7470A, HP 7475A : HP 7470 plotters '

Note

The maximum length of a DESCRIPTION line is 127 characters.

A.l3.5 Compiling and Linking
the Font-Resource File

The following make file lists the commands required to compile and link
the font-resource file :

fontres . obj : fontres . asm
masm fontres ;

fontres . exe : fontres . de f fontres . obj fontres . rc fontres . exe \
FntFi lOl . FNT FntFil02 . FNT FntFil03 . FNT \
FntFi104 . FNT FntFilOS . FNT FntFi l06 . FNT

link4 fontres . obj , fontres . exe , NUL , (NOD, fontres . de f
rc fontres . rc
rename fontres . exe fontres . fon

By convention, all font-resource files have the .Jon filename extension . The
last line in the make file renames the executable file to fontres.fon.

A 14 A Sample Application: ShowFont

This sample application illustrates how to use fonts in a Windows applica
tion . Although the ShowFont application has the same basic structure as
any application described in this guide, it contains considerably more
statements, in a far greater variety, than any other sample application.
For this reason, a full description of the application is given in the applica
tion source files found on the Learning Guide Samples Disk .

The ShowFont application illustrates more than how to use fonts. It also
shows how to modify many of the tasks previously described in this guide
in order to carry out slightly different tasks. For example, it shows how to
create and use modeless dialog boxes, how to use list boxes with your own
strings (instead of the current directory) , and how to use Windows'
direct-access method for group boxes and radio buttons in a dialog box.

268

Appendix B

Memory Management

B. 1 Introduction 271
B.2 Using Memory 271

B.2. 1 Using the Global Heap 272

B.2.2 Using the Local Heap 273
B.2.3 Working with Discardable Memory 27 4
B.3 Using Segments 276
B.3. 1 Code Segments 277
B.3.2 The DATA Segment 278
B.4 A Sample Application: Memory 278
B.4. 1 Split the C-Language Source File 279
B.4.2 Modify the Include File 279
B.4.3 Add New Segment Definitions 280
B.4.4 Modify the Ivfake File 281
B.4.5 Compile and Link 281

269

Memory Management

B. l Introduction

This appendix provides tips for using the Microsoft Windows memory
management system. The system lets you allocate and manage extra
memory for an application while it is running. Windows also uses the
system to manage the code and data segments of your application .

B.2 Using Memory

Windows provides a memory-management system that lets you allocate
blocks of memory for use in your applications. You can allocate blocks for
memory from either the global or the local heap. The global heap is a pool
of free memory available" to all applications. The local heap is a pool of
free memory available to just your application .

In most memory-management systems, the memory you allocate remains
fixed at a specific memory location until you free it. In Windows, allocated
memory can be movable and discardable, as well as fixed . A movable mem
ory block does not have a fixed address; Windows can move it at any time
to a new address. Movable memory blocks let Windows make best use of
free memory. For example, if a movable memory block separates two free
blocks of memory, Windows can move the movable block to combine the
free blocks into one contiguous block. A discardable memory block is simi
lar to movable memory in that windows can move it , but Windows can
also reallocate a discardable block to zero length if it needs the space to
satisfy an allocation request . Reallocating a memory block to zero length
destroys the data the block contains, but an application always has the
option of reloading the discarded data whenever it is needed .

When you allocate a memory block, you receive a handle to that block and
not a pointer. The memory handle identifies the allocated block . You use
it to retrieve the block's current address when you need to access the
memory.

To access a memory block, you lock the memory handle. This temporarily
fixes the memory block and returns a pointer to its beginning. While a
memory handle is locked, Windows cannot move or discard the block .
Therefore, after you have finished using the block, you should unlock the
handle as soon as possible . Keeping a memory handle locked makes Win
dows' memory management less efficient and may cause subsequent alloca
tion requests to fail .

Windows lets you compact memory. By squeezing the free memory from
between allocated memory blocks, Windows collects the largest contiguous
free-memory block possible, from which you may allocate additional
blocks of memory. This squeezing is a process of moving and (if necessary)

271

Microsoft Windows Programmer's Learning Guide

discarding memory blocks. Windows also lets you discard individual
memory blocks if you temporarily have no need for them.

B.2.1 Using the Global Heap

The global heap contains all of system memory. Windows allocates the
memory it needs for code and data from the global heap when it first
starts . Any remaining free memory in the global heap is available to appli
cations and Windows libraries.

You can allocate any size of memory block from the global heap . Applica
tions typically allocate large blocks from the global heap . These blocks can
exceed 64 kilobytes (K) if the applications need that much contiguous
space . As with all memory allocations, Windows returns a handle identify
ing the block when it is allocated . To use the block, the application must
lock it. At this point , Windows returns a full 32-bit address to the first
byte in the block .

You can allocate a block of global memory by using the GlobalAlloc
function . You specify the size and type (fixed, movable, or discardable) ,
and GlobalAlloc returns a handle to the block. Before you can use the
memory block, you must lock it by using the GlobalLock function, which
returns the full 32-bit address of the first byte in the memory block . You
may then use this long pointer to access the bytes in the block . In the fol
lowing example, the GlobalAlloc function allocates 4096 bytes of mov
able memory and the GlobalLock function locks it so that the first 256
bytes can be set to OxFF:

HANDLE hMem;
LPSTR lpMem;
int i ;

i f ((hMem = GlobalAl loc (GMEM_MOVEABLE , 4096)) ! = NULL) {
i f ((lpMem = GlobalLock (hMem)) ! = (LPSTR) NULL) {

for (i = 0 ; i < 256 ; 1++)
lpMem [i] = OxFF ;

Globa lUnlock (hMem) ;
}

}

In this example, the application unlocks the memory handle by using the
GlobalUnlock function as soon as possible after accessing the memory
block . Once a movable or discardable memory block is locked, Windows
guarantees that the block will remain fixed in memory until it is unlocked .
This means the address remains valid as long as the block remains locked ,
but this also keeps Windows from making the best use of memory if other
allocation requests are made . Cooperative applications unlock memory .

272

Memory Management

The GlobaWloc function returns NULL if an allocation request fails.
You should always check the return value to ensure that a valid handle
exists . If desired, you can check to see how much memory is available in
the global heap by using the GlobalCompact function . This function
returns the number of bytes in the largest contiguous free block of
memory.

You should also check the address returned by the GlobalLock function .
This function returns a null pointer if the memory handle was not valid or
if the contents of the memory block have been discarded .

You can free any global memory you may no longer need by using the
GlobalFree function . In general, you should free memory as soon as you
no longer need it so that other applications can use the space . Although it
is a good idea to free global memory before your application terminates,
Windows will automatically free it if you do not .

B.2.2 Using the Local Heap

The local heap contains free memory that may be allocated for private use
by the application . The local heap is located in the application 's data seg
ment and is therefore accessible only to a specific instance of the applica
tion . You can allocate memory from the local heap in blocks of up to 64K
and the memory can be fixed, movable, or discardable, as needed .

Applications do not automatically have local heaps. You must specify a
local heap for an application by using the HEAPSIZE statement in the
application 's module-definition file . The statement sets the initial size, in
bytes, of the local heap. If the local heap is in a fixed data segment, you
may allocate up to the specified heap size . If the local heap is in a movable
data segment, you may allocate beyond the initial heap size and up to
64K, since Windows will automatically allocate additional space for the
local heap until the data segment reaches the 64K maximum. You should
note, however, that if Windows allocates additional local memory to
satisfy a local allocation, it may move the data segment, making invalid
any long pointers to blocks in local memory.

The maximum size of any local heap depends on the size of the applica
tion 's stack and static and global data. The local heap shares the data seg
ment with the stack and this data, but since a data segment may be no
larger than 64K, the local heap for an application can be no larger than
64K less the size of the stack and the size of the application 's global and
static data. The application 's stack size is defined by the STACKSIZE
statement given in the application 's module-definition file. The global and
static data size depends on how many strings and global or static variables
are declared in the application .

273

Microsoft Windows Programmer's Learning Guide

You can allocate local memory by using the LocaWloc function . The
function allocates a block of memory in the application 's local heap and
returns a handle to the memory. You lock the local memory block by using
the LocalLock function . This returns a 1 6-bit offset to the first byte in
the memory block . The offset is relative to the beginning of your data seg
ment . In the following example , the LocaWloc function allocates 256
bytes of movable memory and the LocalLock function locks it so that the
first 256 bytes can be set to OxFF:

HANDLE hMem;
PSTR pMem;
int i ;

i f ((hMem = Loca lAl loc (LMEM_MOVEABLE , 256)) ! = NULL) {
i f ((pMem = Loca lLock (hMem)) ! = NULL) {

for (i = 0 ; i < 256 ; i++)
pMem [i] = OxFE' ;

LocalUnlock (hMem) ;
}

}

In this example, the application unlocks the memory handle by using the
LocalUnlock function as soon as possible after accessing the memory
block . Once a movable or discardable memory block is locked, Windows
guarantees that the block will remain fixed in memory until it is unlocked .
This means the address remains valid as long as the block remains locked,
but this also keeps Windows from making best use of memory if other allo
cation requests are made. If you want to ensure that you are getting the
best performance from your application 's local heap , make sure you unlock
memory after using it .

The LocaWloc returns NULL if an allocation request fails . You should
always check the return value to ensure that a valid handle exists. If
desired , you can check to see how much memory is available in the global
heap by using the LocalCompact function . This function returns the
number of bytes in the largest contiguous free block of memory.

You should also check the address returned by the GlobalLock function .
This function returns NULL if the memory handle was not valid or if the
contents of the memory block have been discarded.

B.2.3 Working with Discardable Memory

You create a discard able memory block by combining the
GMEM_ DISCARDABLE and G11:EM_ MOVEABLE options when allocat
ing the block. The resulting block will be moved as necessary to make
room for other allocation requests, or if there is not enough memory to
satisfy the request, the block may be discarded. The following example
allocates a discardable block from global memory:

hMem : Globa lAl loc (GMEM_MOVEABLE 1 GMEM_DISCARDABLE , 4096L) ;

274

Memory Management

When Windows discards a memory block, it empties the block by reallo
cating it , with zero bytes given as the new size . The contents of the block
are lost , but the memory handle to this block remains valid . Any attempt
to lock the handle and access the block will fail , however.

Windows determines which memory blocks to discard by using a "least
recently used" (LRU) algorithm. It continues to discard memory blocks
until there is enough memory to satisfy an allocation request . In general, if
you have not accessed a discardable block in some time, it is a candidate
for discarding. A locked block cannot be discarded.

You can discard your own memory blocks by using the GlobalDiscard
function . This function empties the block but preserves the memory han
dle. You can also discard other applications ' memory blocks by using the
GlobalCompact function . This function moves and discards memory
blocks until the specified or largest possible amount of memory is avail
able. One way to discard all discardable blocks is to supply -1 as the argu
ment. This is a request for every byte of memory. Although the request
will fail , i t will discard all discardable blocks and leave the largest possible
block of free memory.

Since a discarded memory block 's handle remains valid , you can still
retrieve information about the block by using the GlobalFlags function .
This is useful for verifying that the block has actually been discarded.
GlobalFlags sets the GME:M._ DISCARDED bit in its return value when
the specified memory block has been discarded. Therefore, if you attempt
to lock a discardable block and the lock fails, you can check the block 's
status by using GlobalFlags.

Once a discardable block has been discarded, its contents are lost . If you
wish to use the block again, you need to reallocate it to its appropriate
size and fill it with the data it previously contained. You can reallocate it
by using the GlobalReAlloc function . The following example checks the
block's status, then fills it with data if it has been discarded :

lpMem = GlobalLock (hMem) ;

i f (lpMem == (LPSTR) NULL) {

}

i f (Globa lF lags (hMem) & GMEM_DISCARDED) {
hMem = GlobalReAl loc (hMem, 4096L ,

}

GMEM_MOVEABLE i GMEM_DISCARDABLE) ;
lpMem = Globa lLock (hMem) ;

I* Fil l with data *I
GlobalUnlock (hMem) ;

275

Microsoft Windows Programmer's Learning Guide

You can make a discardable object nondiscardable (or vice versa) by using
the GlobalReAlloc function and the G:tvfE:M_ MODIFY flag as shown in
the following example:

hMem = Globa lReAl loc (hMem, 4096L , GMEM_MODIFY i GMEM_MOVEABLE) ;

This example changes a discardable block, identified by the hMem parame
ter, to a movable block.

B.3 Using Segments

One of the principal features of Windows is that it lets the user run more
than one application at a time. Since multiple applications place greater
demands on memory than does a single application , Windows' ability to
run more than one application at a time has a significant impact on how
you write applications . Although many computers typically have at least
640K of memory, this memory rapidly becomes a limited resource as the
user loads and runs more and more applications. In Windows, you must be
conscious of how your application uses memory and be prepared to mini
mize the amount of memory your application occupies at any given time .

To help you manage your application 's use of memory, Windows uses the
same memory-management system for your application 's code and data
segments that you use within your application to allocate and manage glo
bal memory blocks. When the user starts your application, Windows allo
cates space for the code and data segments in global memory, then copies
the segments from the executable file into memory. These segments can be
fixed, movable, and even discardable. You specify their attributes in the
application 's module-definition file.

You can reduce the impact your application has on memory by using mov
able code and data segments. MOVEABLE is, in fact , the default attri
bute that code and data segments typically receive . Using movable seg
ments lets Windows at least move the segments, when necessary, in order
to take advantage of free memory as it becomes available . To prevent
disaster, Windows moves a segment only if it is not "busy" ; that is, if it is
not currently executing or being accessed .

You can minimize your application 's impact on memory by using discard
able code segments. If you make a code segment discardable, Windows dis
cards it , if necessary, to satisfy requests for global memory. Unlike ordi
nary memory blocks that you may allocate , discarded code segments are
monitored by Windows, which automatically reloads them if your applica
tion attempts to execute code within the segment . This means that your
application 's code segments are in memory only when they are needed.

276

Memory Management

If you use discardable code segments, you must not store data in the seg
ment. Discarding a segment destroys the contents of the segment. Win
dows does not save the current contents of a discarded segment . Instead it
assumes that the segment is no different than when originally loaded and
will load the segment directly from the executable file when it is needed .

B.3.1 Code Segments

A code segment is one or more bytes of machine instructions. It represents
all or part of an application 's program instructions. A code segment is
never greater than 64K.

Every application has at least one code segment . For example , the sample
applications described in previous chapters have one and only one code
segment . You can also create an application that has multiple code seg
ments. In fact , most Windows applications have multiple code segments.
These segments let you reduce the size of any given code segment to just
the number of instructions needed to carry out some task. If you also
make these segments discardable, you effectively minimize the memory
requirements of your application 's code segments.

When you create medium- or large-model applications, you are creating
applications that use multiple code segments. Medium- and large-model
applications typically have one or more source files for each segment . You
compile each source file separately and explicitly name the segment to
which the compiled code will belong. Then you link the application , nam
ing the segments and defining their attributes in the application 's
module-definition file.

To define a segment's attributes, you use the SEGMENTS statement in
the module-definition file . The following example shows definitions for
three segments:

SEGMENTS
PAINT_TEXT MOVEABLE DISCARDABLE
INIT_TEXT MOVEABLE DISCARDABLE
WNDPROC_TEXT MOVEABLE DISCARDABLE

You may also use the CODE statement in the module-definition file to
define the attributes of the default code segment, _ TEXT. The C compiler
typically creates a _ TEXT segment for you when you create a small-model
application . Also, C run-time code that the linker may append to your
application is often in the _ TEXT segment . The following example shows
how to make the segment discardable :

CODE MOVEABLE DISCARDABLE

277

Microsoft Windows Programmer's Learning Guide

If you use discardable code segments in your application, you need to bal
ance discarding with the number of times the segment may be accessed.
For example, the segment containing your main window function probably
should not be discardable since Windows calls the function often. Since a
discarded segment has to be loaded from disk when needed, the savings in
memory you may realize by discarding the window function may be offset
by the loss in performance that comes with accessing the disk often.

B.3.2 The DATA Segment

Every application has a DATA segment. The DATA segment contains
the application 's stack, local heap, and static and global data. Like a code
segment, the DATA segment cannot be larger than 64K.

A DATA segment can be fixed or movable, but not discardable . If the
DATA segment is movable, Windows automatically locks the segment
when it passes control to the application. Otherwise, a movable DATA
segment may move if an application allocates global memory, or the appli
cation attempts to allocate more memory than is currently available in the
local heap. For this reason, it is important not to keep long pointers to
variables in the DATA segment .

You can define the attributes of the DATA segment by using the DATA
statement in the module-definition file. The default attributes are movable
and multiple . The multiple attribute directs Windows to create one copy
of an application's data segment for each instance of the application . This
means the contents of the DATA segment are unique to each instance of
the application .

A large-model application may have additional data segments, but only
one DATA segment . In Windows, any additional data segments must be
explicitly defined in the SEGMENTS statement of the module-definition
file and must be fixed .

B.4 A Sample Application: Memory

This sample application illustrates how to create a medium-model Win
dows application that uses discardable code segments. To create the
Memory application, copy and rename the source files of the Generic appli
cation, then make the following modifications:

278

1 . Split the C-language source file into four separate files.

2 . Modify the include file .

Memory Management

3 . Add new segment definitions to the module-definition .

4 . Modify the make file.

5. Compile and link the application .

The following sections describe each step in detail .

B.4.1 Split the C-Language Source File

You need to split the C-language source file into separate files so that the
functions within the file are compiled as separate segments. For this appli
cation , you can split the source file into four parts, as described in the fol
lowing list :

Source File

memory1 . c

memory2. c

memory3. c

memory4. c

Content

Contains the WinMain function . Since Windows exe
cutes WinMain fairly often, the segment created from
this source file is not d iscardable . This is to prevent a
situation in which the segment has to be loaded from
the disk often . Since WinMain is relatively small any
way, keeping this segment in memory has very little
impact on available global memory.

Contains the Memorylnit function . Since the
Memorylnit function is used only when the application
first starts, the segment created from this source file
can be discardable .

Contains the MemoryWndProc function . Although the
segment created from this source file can be discard
able, the MemoryWndProc function is likely to be
called at least as often as the WinMain function
receives control . In this case, the segment is movable
but not discardable.

Contains the About function . Since the About func
tion is seldom called (only when the About dialog box
is displayed) , the code segment created from this
source file can be discardable .

You must include the windows.h and memory.h files in each source file .

B.4.2 Modify the Include File

You need to move the declaration of the hlnst variable into the memory.h
file. This ensures that the variable is accessible in all segments. The hlnst
variable is used in the WinMain and MemoryWndProc functions.

279

Microsoft Windows Programmer's Learning Guide

B.4.3 Add New Segment Definitions

You need to add segment definitions to the module-definition file to specify
the attributes of each code segment . This means you need to add a
SEGMENTS statement to the file and list each segment by name in the
application . Mter changes, the module-definition file should look like this:

; Module-de finition file for Memory

NAME Memory appl ication ' s module name

DESCRIPTION ' Samp l e Microso ft Windows Application '

STUB ' WINSTUB . EXE ' Make sure it doesn ' t run without Windows

CODE MOVEABLE Code can be moved in memory

SEGMENTS
MEMORY_MAIN PRELOAD MOVEABLE
MEMORY_INIT LOADONCALL MOVEABLE DISCARDABLE
MEMORY_WNDPROC LOADONCALL MOVEABLE
MEMORY_ABOUT LOADONCALL MOVEABLE DISCARDABLE

; DATA must be MULTIPLE i f program can be invoked more than once
DATA MOVEABLE MULTIPLE

HEAPSI ZE 1024
STACKSIZE 4096 ; recommended minimum for Windows applications

; Al l functions that wi l l be cal led by any Windows routine
; must be exported .
EXPORTS

MemoryWndProc
About

@1 ; name of window-processing function
@2 ; name o f About processing function

The SEGMENTS statement defines the attributes of each segment : the
l\1EMORY- MAIN segment contains WinMain; l\1EMORY_ INIT contains
the Memorylnit function; l\1EMORY_ WNDPROC contains the window
function; and l\1EMORY- ABOUT contains the dialog function . Each seg
ment has the MOVEABLE attribute, but only l\1EMORY- INIT and
l\1EMORY_ ABOUT have the DISCARDABLE attribute . Also, only the
l\1EMORY- MAIN segment is loaded when the application is started . The
other segments have the LOADONCALL attribute, which means they
are loaded when needed .

Although each segment is explicitly defined, the CODE statement is still
given . This statement specifies the attributes of any additional segments
the linker may add to the application; for example, segments containing
C run-time functions called in the application source files.

280

Memory Management

B.4.4 Modify the Make File

You need to modify the make file to separately compile the new C
language sources. Since this application is a medium-model application ,
you need to use the -AM option when compiling. For clarity, you should
also name each segment by using the -NT option when compiling. Mter
changes, the make file should look like this:

memory . res : memory . rc memory . h
r c -r memory . rc

memoryl . obj : memoryl . c memory . h
c l - c -AM -Gw -Zp -NT MEMORY_MAIN memoryl . c

memory2 . obj : memory2 . c memory . h
c l -c -AM -Gw -Zp -NT MEMORY_INIT memory2 . c

memory3 . obj : memory3 . c memory . h
c l - c -AM -Gw -Zp -NT MEMORY_WNDPROC memory3 . c

memory4 . obj : memory4 . c memory . h
c l -c - AM -Gw -Zp -NT MEMORY_ABOUT memory4 . c

memory . exe : memoryl . obj memory2 . obj memory3 . obj memory4 . obj memory . de f
l ink4 memory! memory2 memory3 memory4, memory . exe , , mlibw , memory . de f
rc memory . res

memory . exe : memory . res
rc memory . res

You must link with the mlibw. lib library instead of the slibw. lib library.

B.4.5 Compile and Link

After compiling and linking the Memory application, start Windows, the
Heapwalker application (provided with the Microsoft 2.0 Windows Soft
ware Development kit) , and Memory. Use Heapwalker to view the various
segments of the Memory application.

281

'�

Appendix C

Windows Libraries

C. 1 Introduction 285
C.2 Creating a Library 285
C.2. 1 Create the Initialization Function

C.2 .2 Create the Library Functions 287

C.2.3 Create the Module-Definition File

C.2.4 Compile and Link 289
C.2.5 Add Resources 290

C.2 .6 Create the Import Library 290
C.2.7 Create the Include File 291
C.3 The Library Data Segment 291

C.4 The Library Stack 292
C.4 .1 The Local Heap 292

286

289

C.4.2 Initializing the Local Heap for Libraries
C.5 Linking with Functions in a Library 295
C.6 A Sample Library: Select 296
C.6. 1 Create the Functions 297
C.6.2 Create the Module-Definition File 303
C.6.3 Create the Include File 303
C.6.4 Compile and Link 303

294

283

Windows Libraries

C. l Introduction

A Microsoft Windows library is an executable module containing functions
that Windows applications can dynamically link to and call in order to
perform useful tasks. A Windows library is similar to run-time libraries,
such as the C run-time library, except that it is linked with the application
when the application is run, not when the application is linked with the
linker. This method of linking a library with an application when the
application runs is called dynamic linking.

Dynamic linking is an important extension of traditional linking methods.
It makes linking more efficient by permitting applications to link with a
single copy of a library. Only one copy of a library needs to be in memory.
Applications using the library link to the same copy, unlike traditional
linking, in which one copy of a library is required for each application .

All Windows libraries are dynamic-link libraries . For example, the gdi. exe,
user. exe, and kernel. exe files that comprise the major part of Windows are
dynamic-link libraries . You can create your own dynamic- link libraries for
your applications by following the directions given in this appendix.

C. 2 Creating a Library

You create Windows libraries much as you would Windows applications:
you write the sources, then compile, link, and add the resources. However,
many of the steps are different from those needed to create Windows appli
cations. To make a Windows library, follow these steps:

1 . Write the initialization function and the library functions.

2. Create a module-definition file that contains a LIDRARY state
ment naming the library and an EXPORTS statement for each
function in the library to be exported .

3 . Compile the library source file .

4 . Use the link4 command to create the . exe file .

5 . Use the r c command to compile and add resources to the library's
executable file .

6. Use the implib command to create an import library that can be
linked with application source files that call functions in the Win
dows library .

7 . Use a text editor to create an include fi le to be used in application
source files that call the library functions. The include file should
define each function 's return and parameter types .

285

Microsoft Windows Programmer's Learning Guide

0.2.1 Create the Initialization Function

A Windows library can have an initialization function, if one is desired .
Windows calls the function when it first loads the library, giving the func
tion the opportunity to carry out any initialization tasks the library may
need, such as initializing the local heap. The initialization function , when
called, must return to Windows immediately after completing its tasks.
Unlike the WinMain function in an application , the initialization func
tion must not create windows or enter a message loop .

Windows does not require a library to have an initialization function . If a
library does not require initialization, no function is required .

To create an initialization function, you will need to write it in assembly
language . Windows does not use a high- level calling convention when call
ing this function . Instead, it passes relevant data in registers and expects
the function to have direct access to these registers. When a library's ini
tialization function is first called , the registers contain the following infor
mation :

Register Contents

DI

DS

ex

Contains the module handle of the library.

Contains the segment address of the library's data segment .

Contains the size of the local heap . This is the same value
given in the HEAPSIZE statement in the library's
module-definition file .

The CS, IP, SS, and SP registers contain current addresses of code and
stack . All other registers are free to use . No special values are passed in
them.

To create an initialization function, you must do the following:

286

• Specify the initialization function 's address as the library's entry
point . You do this by naming the function in the END statement
in the assembly-language file.

• Avoid excessive use of the stack . The initialization function uses
the system stack, which is a limited resource .

• If the initialization is successful, return a nonzero value in the AX
register. Otherwise, return zero in the AX register to direct Win
dows to cancel the load operation .

Windows Libraries

You can use the Cmacros to create the initialization file. The file should
have the following form:

?WIN=l
include include
assumes cs , CODE

sBegin CODE

cProc LoadLib , <FAR , PUBLIC , NODATA> , <si , di>
cBegin

xor ax, ax

LoadExit :
mov ax , 1

LoadError :
cEnd

sEnd CODE

end LoadLib

Prepare error return value

Initia l ization code

On success , return non-zero
Otherwise , return zero

In this example, the initialization function , LoadLib, prepares the error
return value in the AX register, then carries out any initialization . Since
the initialization function is constructed by using the Cmacros, it can call
C-language helper functions that you have written for the library, or even
call functions in other Windows libraries.

You can assemble the initialization file by using the masm command. No
special options are required. You can then link the resulting object file
with the object files containing the library's functions. A library's func
tions can be written in the C language, if desired . The initialization func
tion , if assembled as shown in the preceding example , is completely com
patible with C-language sources .

C.2.2 Create the Library Functions

You may create as many library functions as you like. A library function
can have any number of parameters and any return type, but must be
declared with the PASCAL and FAR attributes. The PAS CAL attri
bute keeps the calling convention used by the library function consistent
with the convention used by Windows. The FAR attribute permits the
function to be called by applications.

The following example shows the general form of a library function :

HANDLE FAR PASCAL Createinfo (lpinfo , nBytes)
LPSTR lpinfo ;
int nBytes ;

287

Microsoft Windows Programmer's Learning Guide

{

}

HANDLE hinfo ;
PSTR pinfo ;

hinfo = LocalAl loc (LMEM_MOVEABLE LMEM_ZEROINIT , nBytes) ;
i f (hin fo == NULL)

return (-1) ;
pinfo = LocalLock (hin fo) ;
_lstrncpy (pinfo , lpin fo , nBytes) ;
LocalUnlock (hinfo) ;
return (h!n fo) ;

Library functions should not use global or static variables to retain data
that will be used in a subsequent call. Since Windows is a multitasking
system, any other application could call a library function and modify a
variable between the time it is set and the time it is needed . If you must
save data between calls, either have the application pass a long pointer to
a buffer that will hold the data, or allocate space in the library's local heap
and return the local memory handle to the application . If a handle is
returned, the application must supply it when requesting access to the
data again .

A library function can call other functions within the library and even call
functions in other Windows libraries . If you call functions in other
libraries, you must import those functions by using one of the methods
described in section C.5 , "Linking with Functions in a Library . "

A library function can call standard C run-time functions as long as they
obey the SS != DS rule . In others words, library functions can call only
those C run-time functions that do not assume that the data segment and
stack are located in the same physical segment in memory . For a list of the
C run-time functions and their segment assumptions, see Microsoft Win
dows Programming Tools.

If an application supplies the address of a callback function, the library
function should assume that the address is a proper procedure- instance
address . It is the application 's responsibility to ensure that a procedure
instance address is created and passed to the function . A callback function
can be called by using the following method :

int FAR PASCAL LibFunc (lpCa l lBackFunc)
FARPROC lpCal lBackFunc ;
{

* (lpCa l l BackFunc) (1 , 2 , 3) ;
}

Not all functions in a library need to to be exported . If a library has helper
functions that are called only by the exported functions, never from an
application , the helper functions do not need to be exported.

288

C.2.3 Create the Module-Definition File

Windows Libraries

A Windows library's module-definition file must use the LffiRARY state
ment to define the library, and each function in the library must be explic
itly exported by naming it in an EXPORTS statement . For example, a
library named "info" that exports three functions should have the follow
ing statements:

LIBRARY info

DATA SINGLE

EXPORTS
Create In fo
Getinfo
Deleteinfo

The DATA statement is given to specify that the library has a data seg
ment, but that only one copy of the segment will be created. You cannot
have multiple instances of a library, which is contrary to conventions for
Windows applications.

For convenience, you can also supply an explicit ordinal value for each
exported function . An ordinal value is an integer that identifies the func
t ion and permits it to be imported by number instead of name . Each func
t ion receives an implicit ordinal number if you do not supply a number. In
the example just cited, the ordinal values are 1, 2 , and 3 , respectively . You
can override the implicit ordinal values by supplying your own, as in the
following example :

EXPORTS
Createin fo @101
Getinfo @102
Deleteinfo @103

C.2.4 Compile and Link

You compile the library source files as you would application sources. The
following example shows an appropriate C-compiler command line for a
small-model Windows library :

c l -c -Asnw -Gsw -Os -Zp select . c

Note that stack probes are disabled . Windows libraries should not check
for stack overflow or underflow since the information used to check these
conditions is not accessible to the library.

You link a Windows library by using the link4 command, j ust as you
would a Windows application . However, you must link with the appropri
ate C run-time library. For small-model libraries, the appropriate C run
time library is named swinlibc. lib. Use this library instead of the standard

289

Microsoft Windows Programmer's Learning Guide

C run-time library, slibc. lib. If your library uses any Windows functions,
link with the appropriate Windows library . For example, use slibw. lib for
small-model libraries .

The following example shows an appropriate link4 command line for link
ing a small-model Windows library named "info" :

l ink4 in fo , , , swinl ibc s l ibw , in fo

Note

You must specify one of the libraries swinlibc. lib, mwinlibc. lib,
cwinlibc. lib, or lwinlibc. lib when you link a Windows library . These are
the small- , medium- , compact- , or large-model C run-time libraries for
Windows libraries, respectively. Use these special libraries in place of
the standard libraries slibc. lib, mlibc. lib, clibc. lib, or llibc. lib.

C.2.5 Add Resources

You add resources to a library exactly as you would add resources to an
application . Create a resource script file and the necessary cursor, icon,
and bitmap files, then compile the resource script file and add it to the
executable file by using the re command. The following example shows
resources being compiled and added to a library named "info" :

rc in fo . rc info . exe

C.2.6 Create the Import Library

You create an import library for your Windows library by using the
implib command. This command uses your library's module-definit ion file
to create a . lib file that can be specified on the link4 command line for
applications that call the library functions. An import library contains
information about the name and ordinal value of the library functions.
The linker uses this information to create entries in the application's exe
cutable file that Windows can use to dynamically link the library functions
when the application is loaded.

The following example shows the appropriate implib command line for
creating an import library for a Windows library named "info" :

implib in fo . l ib in fo . de f

2QO

C.2. 7 Create the Include File

Windows Libraries

You create an include file for a library by supplying appropriate function ,
type, and structure definitions. The following example shows a C-language
include file for a Windows library named "info" :

HANDLE FAR PASCAL Createinfo (LPSTR, int) ;
int FAR PASCAL Getinfo (HANDLE , LPSTR , int) ;
int FAR PASCAL De leteinfo (HANDLE) ;

The include file should be included in any application sources that call the
library functions.

C.3 The Library Data Segment

A Windows library, like a Windows application , has a data segment in
which global and static data declared within the library are stored . When
an application calls a library function, the current data segment is auto
matically switched to the library's data segment, making access to the
variables in the application 's data segment no longer possible . This means
the application must pass whatever data is required by the function as
parameters to the function , or pass a long pointer to the data.

If a library function uses the global or static variables in the library's data
segment to store information for a specific application, it must not assume
that the information remains unchanged between calls from that applica
tion. Since Windows is a multitasking system, any number of other appli
cations can call the same function between the first and second times the
original application called it . If a function needs to save information for an
application , the application should pass a long pointer to a buffer that will
receive the information, or the function should allocate space in the
library's local heap .

Since Windows does not require a library to have a stack, i f no global or
static variables are declared, then no data segment will be created for the
library. In such cases, the data segment is not switched when the applica
tion calls a library function . In some cases, functions in a library can be
denied access to the library's data segment by specifying the NODATA
option in the module-definition file for that function . For such functions,
no data-segment switching occurs when the application calls the function .
Such functions must not attempt to access global or static variables in the
library's data segment.

291

Microsoft Windows Programmer's Learning Guide

0.4 The Library Stack

A Windows library, unlike a Windows application , has no stack . Instead ,
it uses the caller's stack for parameters and local variables. This means
the caller's stack must have sufficient space to handle the library's needs,
and the library must take special care not to make excessive use of the
stack (for example, a library must avoid using large character arrays as
local variables) .
Stack probes, which are provided by the C compiler to check for stack
overflow and underflow, cannot be used in a Windows library since the
information required to check the stack is in the application 's data seg
ment and is not available to Windows library functions.

C.4.1 The Local Heap

A Windows library can have a local heap. The local heap is subject to the
same rules of usage as the local heap in a Windows application . To use a
local heap, however, the library must initialize it by using the Locallnit
function in the library's initialization function .

A local heap gives a library a means of storing data that is specific to a
given application without exposing that data to overwriting if another
application uses the library. In general, if a library needs to save data
specific to an application, the library should allocate space in its local
heap, copy the data to the allocated space, and return the data's local
handle to the application . When the application wants the data back, it
can supply the handle . Every handle in the library's local heap is guar
anteed to be unique, so there will be no conflict with other applications.

The following example shows how to initialize and u s e a local heap in a
Windows library . In this example , the local heap is used to store a struc
ture containing information about an application . The library has three
functions: Createlnfo, Getlnfo, and Deletelnfo. The Createlnfo function
allocates and fills a data block in the library's local heap . The Getinfo
function retrieves information from the local heap. The Deletelnfo func
tion removes the data block from the local heap .

To create this library, you need to do the following:

292

1 . Use the HEAPSIZE statement in the module-definition file to
establish an initial local-heap size . For libraries, the default size
for a local heap is zero.

2 . Create an initialization function for the library and use the
Locallnit function to initialize the local heap .

3 . Create the functions that use the local heap .

Windows Libraries

The first step is to set the local-heap size in the module-definition file . You
need to determine an appropriate size and use the HEAPSIZE statement
to set it , as in the following example :

LIBRARY info

DATA SINGLE

HEAPSI ZE 4096

EXPORTS
Createinfo @1
Getinfo @2
De leteinfo @3

The library name is "info" . Since there can be only one instance of
a library, the data segment is given the SINGLE attribute . The
HEAPSIZE statement specifies 4096 bytes as the initial size of the
library's local heap .

The next step i s to create the initialization function . To do this, insert a
call to the Locallnit function in the library's initialization function. The
initialization function should look like this:

EXTERNFP <Local init>

cProc LoadLib , <FAR, PUBLIC, NODATA> , <si , di>
cBegin

xor
j cxz
push
push
push
ca ll

LoadError :
cEnd

ax , ax
LoadError Fail if no heap
ax Local init (O, 0, cbHeap)
ax Uses library ' s data segment
ex
Local init ; Returns nonzero on success

In this example , the initialization function calls the Locallnit function,
passing it the size of the local heap and a default data-segment address.
The initialization function returns the return value from Locallnit, so if
the heap could not be initialized, the load will be canceled .

The final step is to create the library's functions. Once the local heap is
initialized, there are no special steps the functions need to take. They sim
ply call the LocaWloc, LocalLock, LocalUnlock, and other local
memory-management functions as needed . For example:

HANDLE FAR PASCAL Createinfo (lpinfo , nBytes)
LPSTR lpin fo ;
int nBytes ;

293

Microsoft Windows Programmer's Learning Guide

{

}

HANDLE h!n fo ;
PSTR pin fo ;

hinfo = LocalAl loc (LMEM_MOVEABLE LMEM_ZEROINIT , nBytes) ;
i f (hin fo == NULL)

return (- 1) ;
p!n fo = LocalLock (hinfo) ;
_lstrncpy (p!nfo , lp!nfo , nBytes) ;
LocalUnlock (hinfo) ;
return (h!n fo) ;

int FAR PASCAL Getinfo (hinfo , lpBu f fer , wOffset , nBytes)
HANDLE h!nfo ;
LPSTR lpBu f fer ;
WORD wOf fset ;
int nBytes ;
{

}

PSTR p!nfo ;

pinfo = LocalLock (hinfo) ;
i f (pinfo == NULL)

return (- 1) ;
_lstrncpy (lpBu ffer , pin fo+wOffset , nBytes) ;
LocalUnlock (hinfo) ;
return (nBytes) ;

int FAR PASCAL Deleteinfo (hinfo)
HANDLE h!n fo ;
{

return (Loca lFree (hinfo)) ;
}

C.4.2 Initializing the Local Heap for Libraries

If the library allocates memory from the local heap and therefore uses the
HEAPSIZE statement in the module-definition file, the initialization
function must call the Locallnit function to initialize the local heap. For
example, the following call initializes the heap for subsequent use :

Local !nit (O , 0 , HeapSize) ;

The heap-size value in the CX register can be used in the Locallnit func
tion call .

294

Windows Libraries

C.5 Linking with Functions in a Library

There are three ways an application can link with and use Windows
library functions:

• Implicit import

• Explicit import

• GetProcAddress import

In each case, the application imports the library functions to be called .
Implicit import is the preferred method since it requires no special treat
ment in an application 's source files .

In an implicit import, the application contains calls to the library func
tions just as if the function were declared within the application . When
the application is linked, the import library for the corresponding Win
dows library must be supplied on the linker command line . The import
library contains the necessary information about the function in order
to allow Windows to establish a dynamic link with the library when the
application is loaded. This is the method used to link with such Windows
functions as CreateWindow and GlobaWloc . The Windows import
library slibw. lib must be specified on the linker command line when you use
these functions in your applications. In the following example , an applica
tion uses three functions, from the Windows library info. exe. The corre
sponding import library info. lib is given on the linker command line when
the application is linked :

11nk4 app , , , s libw . l ib in fo . lib , app

You can create an import library for each Windows library you create by
using the implib command. This command converts information about
exported functions found in your module-definition files into appropriate
import- library entries .

In an explicit import, an application contains calls to the library functions
as if the function were declared within the application . When the applica
tion is linked, its module-definition file must contain explicit IMPORTS
statements that define the imported functions and the name of the library
in which they are located . The linker uses this information to create
entries that Windows can use to establish a dynamic link with the library
when the application is loaded. In the following example, three functions,
Createlnfo, Getlnfo, and Deletelnfo, from the Windows library info. exe are
explicitly imported :

295

Microsoft Windows Programmer's Learning Guide

IMPORTS
Info . Createinfo
Info . Getin fo
Info . De l etein fo

Note that the module name of the Windows library is used, not the execut
able file name. The module name is the name given in the LffiRARY
statement of that library 's module-definition file .

In a GetProcAddress import, the application calls the functions
indirectly and only after explicitly loading the librar:y and dynamically
linking to the desired function . Import libraries and;or IMPORTS state
ments are not required . In the following example, an application links
dynamically with the Createinfo function in the Windows library info. exe:

HANDLE hLibrary ;
FARPROC lpFunc ;

hLibrary = LoadLibrary (" INFO . EXE") ;
i f (hLibrary ! = NULL) {

lpFunc = GetProcAddress (hLibrary , "CREATEINFO") ;
i f (lpFunc ! = (FARPROC) NULL)

* (lpFunc) ((LPSTR) Buf fer , 512) ;
}
FreeLibrary (hLibrary) ;

In this example, the LoadLibrary function loads the desired Windows
library and returns a module handle to the library. The GetProcAddress
function retrieves the address of the Createinfo function by using the
function 's name, "CREATEINFO" . The name is spelled with capital
letters since that is the way it is recorded in the library's executable file .
The function address can then be used to call the function . The following
statement is an indirect function call that passes two arguments (Buffer
and the integer 5 12) to the function:

* (lpFunc) ((LPSTR) Bu ffer , 512) ;

Finally, the FreeLibrary function frees the Windows library (removes it
from memory) after it has been used.

0. 6 A Sample Library: Select

This sample library contains functions that you can use to carry out selec
tions by using the mouse . The functions are based on the graphics selec
tion method described in Chapter 7 , "The Cursor, the Mouse, and the
Keyboard . " These functions provide two kinds of selection feedback : a box
that shows the outline of the selection, and a block that shows the entire
selection inverted . The library exports the following functions:

296

Function

StartSelection

U pdateSelection

EndSelection

ClearSelection

Windows Libraries

Action

Starts the selection and initializes the selection rec
tangle. When selecting with the mouse, you call this
function when you receive a \VM_ LBUTTONDOWN
message .

Updates the selection box or block . When selecting
with the mouse, you call this function when you
receive a \VM_ MOUSEMOVE message.

Ends the selection and fills in the select ion rectangle
with the final selection dimensions . When selecting
with the mouse , you call this function when you
receive a \VM_ LBUTTONUP message .

Clears the selection box or block from the screen and
empties the selection rectangle .

The selection rectangle is a RECT structure that the application supplies
and the library functions fill in . The coordinates given in the rectangle are
client coordinates.

To create this library you need to create several files:

File

select. c

select. de]

select.h

select

select. lib

Contents

The C-language source for selection functions

The module-definition file for the Select library

The include file for the Select library

The make file for the Select library

The import library for the Select library

The Select library does not have an initialization file because the functions
do not use a local heap and because no other initialization is necessary .

C.6.1 Create the Functions

You can create the library functions by following the description given in
Chapter 7 , "The Cursor, the Mouse, and the Keyboard . " Simply copy the
statements used to make the graphics selection into the corresponding
functions. Also, to make the selection functions more flexible, add the
additional block capability.

297

Microsoft Windows Programmer's Learning Guide

After you change it , the StartSelection function should look like this :

int FAR PASCAL StartSelection (hWnd, ptCurrent , lpSelectRect , fF lags)
HWND hWnd;
POINT ptCurrent ;
LPRECT lpSe lectRect ;
int fF l ags ;
{

}

i f (! IsEmptyRect (lpSelectRect))
ClearSelection (lpSelectRect) ;

i f (! fF lags & SL_EXTEND) {
lpSelectRect - > l e ft = ptCurrent . x ;
lpSe lectRect->top = ptCurrent . y ;

}
lpSelectRect->right = ptCurrent . x ;
lpSe lectRect->bottom = ptCurrent . y ;
SetCapture (hWnd) ;

This function receives a window handle, h Wnd; the current mouse loca
tion, ptCurrent; a long pointer to the selection rectangle, lpSelectRect;
and the selection flags, fFlags. The first step is to clear the selection if the
selection rectangle is not empty. The IsRectEmpty function returns
TRUE if the rectangle is empty. The StartSelection function clears the
selection by calling the ClearSelection function, which is also in this
library.

The next step is to initialize the selection rectangle . The StartSelection
function extends the selection (it leaves the upper- left corner of the selec
tion unchanged) , if the SS_ EXTEND bit in the fFlags argument is set .
Otherwise, it sets the upper- left and lower-right corners of the selection
rectangle to the current mouse location . The SetCapture function directs
all subsequent mouse input to the window even if the cursor moves outside
of the window. This is to ensure that the selection process continues unin
terrupted . To call this function, an application would use the following
statements:

case WM_LBUTTONDOWN :
bTrack = TRUE ;
StartSelection (hWnd, MAKEPOINT (lParam) , &SelectRect ,

(wParam & MK_SHIFT) ? SL_EXTEND : NULL) ;
break ;

After you change it , the UpdateSelection function should look like this:

int FAR PASCAL UpdateSelection (hWnd, ptCurrent , lpSelectRect , fF l ags)
HWND hWnd;
POINT ptCurrent ;
LPRECT lpSelectRect ;
int fF l ags ;

298

{

}

Windows Libraries

HDC hDC ;
short OldROP ;

hDC = GetDC (hWnd) ;
switch (fF lags & SL_TYPE) {

case SL_BOX :

}

OldROP = SetROP2 (hDC, R2_XORPEN) ;
MoveTo (hDC, lpSelectRect-> l e ft ,

lpSelectRect- >top) ;
LineTo (hDC , lpSelectRect->right ,

lpSelectRect- >top) ;
LineTo (hDC, lpSelectRect->right ,

lpSelectRect->bottom) ;
LineTo (hDC , lpSelectRect->left ,

lpSelectRect- >bottom) ;
LineTo (hDC, lpSelectRect - > l e ft ,

lpSelectRect- >top) ;
LineTo (hDC , ptCurrent . x , lpSelectRect->top) ;
LineTo (hDC, ptCurrent . x , ptCurrent . y) ;
LineTo (hDC, lpSelectRect - > l e ft , ptCurrent . y) ;
LineTo (hDC, lpSelectRect - > l e ft , lpSelectRect- >top) ;
SetROP2 (hDC , OldROP) ;

break ;

case SL_BLOCK :
PatBlt (hDC,

lpSelectRect - > l e ft , lpSelectRect- >bottom,
lpSelectRect- >right - lpSelectRect - > l e ft ,
ptCurrent . y - lpSelectRect- >bottom,
DSTINVERT) ;

PatBlt (hDC, PrevX, OrgY,

break ;

lpSelectRect->right , lpSelectRect- >top ,
ptCurrent . x - lpSelectRect- >right ,
ptCurrent . y - lpSelectRect- >top , DSTINVERT) ;

lpSe lectRect- >right = ptCurrent . x ;
lpSelectRect->bottom = ptCurrent . y ;
ReleaseDC (hWnd, hDC) ;

As the user makes the selection, the UpdateSelection function provides
feedback about the user's progress . For the box selection, the function first
clears the current box by drawing over it, then draws the new box. This
requires eight calls to the LineTo function .

To update a block sel�ction, the UpdateSelection function inverts the
rectangle by using the PatBlt function . To avoid flicker while the user
selects, UpdateSelection inverts only the portions of the rectangle that are
different from the previous selection rectangle . This means the function
inverts two separate pieces of the screen. It assumes that the only area
that needs inverting is the area between the previous mouse location and

299

Microsoft Windows Programmer's Learning Guide

the current. Figure C. l shows the typical coordinates for describing the
areas being inverted :

�----------���--------------- x
Orig i n 8

� Ong;n A

Height A Rectangle A

Rectangle 8

L....,_____._._____.

1---1Nor1lth A _j__ Width 8-'
y

Rectangle A :

Height 8

Origin A = (lpSelectRect->left, lpSelectRect->bottom)
Width A = (lpSelectRect->right - lpSelectRect->left
Height A = ptCurrent.y - lpSelectRect >bottom

Rectangle 8 :

Origin 8 = (lpSelectRect->right, lpSelectRect ->top)
Width 8 = ptCurrent.x - lpSelectRect ->right
Height 8 = ptCurrent.y - lpSelectRect->top

Figure 0 . 1 Inverting a Rectangle

The first PatBlt call inverts the left-most rectangle by using
lpSelectRect- > left , the original location on the x-coordinate of the mouse
button when first pressed , and lpSelectRect- >bottom, the most recent
update of the location of the mouse on the y-coordinate, to set the origin
of the area to be inverted . The width of the first area is determined by

300

Windows Libraries

subtracting lpSelectRect- >left from lpSelectRect- >right , the most recent
update of the location of the mouse on the x-coordinate . The height of this
area is determined by subtracting lpSelectRect- >bottom from
ptCurrent .y, the current location of the mouse on the y-coordinate .

The second PatBlt call inverts the right-most rectangle by using
lpSelectRect- >right , the most recent location on the x-coordinate of
the mouse button, and lpSelectRect- >top, the original location on the
y-coordinate of the mouse, to set the origin of the area to be inverted .
The width of this second area is determined by subtracting
lpSelectRect- >bottom, the most recent update of the location of the
mouse on the x-coordinate, from ptCurrent .x , the current location of the
mouse on the x-coordinate . The height of this area is determined by sub
tracting lpSelectRect- >top from ptCurrent .y, the current location of the
mouse on the y-coordinate .

When the selection updating is complete, the values lpSelectRect- >right
and lpSelectRect- >bottom are updated by assigning them the current
values contained in ptCurrent.

To update a box selection , the application should call the UpdateSelection
function as follows:

case WM_MOUSEMOVE :
i f (bTrack)

UpdateSelection (hWnd, MAKEPOINT (lParam) , &SelectRect , SL_BOX) ;
break ;

Mter you change i t , the EndSelection function should look like this:

int FAR PASCAL EndSelection (ptCurrent , lpSelectRect)
POINT ptCurrent ;
LPRECT lpSelectRect ;
{

}

i f (ptCurrent . x < lpSelectRect - > l e ft) {
lpSelectRect- >right = lpSelectRect - > l e ft ;
lpSelectRect- > l e ft = ptCurrent . x ;

}
e l se

lpSelectRect- >right = ptCurrent . x ;
i f (ptCurrent . y < lpSelectRect- >top) {

lpSelectRect->bottom = lpSelectRect- >top ;
lpSelectRect- >top = ptCurrent . y ;

}
e lse

lpSelectRect->bottom = ptCurrent . y ;
ReleaseCapture () ;

The EndSelection function saves the current mouse position in the selec
tion rectangle . For convenience, the final mouse position is checked to
make sure it represents a point to the lower right of the original point .
Rectangles typically are described by upper-left and lower-right corners .

301

Microsoft Windows Programmer's Learning Guide

If the final position is not to the lower right (that is, if either the x- or y
coordinate of the position is less than the original x- and y-coordinates) ,
the values of the original point and the final point are swapped as neces
sary. The ReleaseCapture function is required since a corresponding
SetCapture function was called . In general, you should release the mouse
immediately after mouse capture is no longer needed .

Finally, when the user releases the left button , the application should call
the EndSelection function to save the final point :

case WM_LBUTTONUP :
bTrack = FALSE ;
EndSelection (MAKEPOINT (lParam) , &SelectRect) ;
break ;

After you change it , the ClearSelection function should look like this:

int FAR PASCAL ClearSelection (hWnd, lpSelectRect , fF lags)
HWND hWnd;
LPRECT lpSelectRect ;
int fF lags ;
{

}

HOC hDC;
short OldROP ;

hDC = GetDC (hWnd) ;
switch (fF l ags & SL_TYPE) {

}

case SL_BOX :
OldROP = SetROP2 (hDC, R2_XORPEN) ;
MoveTo (hDC, lpSelectRect - > l e ft , lpSelectRect- >top) ;
LineTo (hDC, lpSelectRect- >right , lpSelectRect- >top) ;
LineTo (hDC, lpSel ectRect->right , lpSelectRect->bottom) ;
LineTo (hDC, lpSelectRect->le ft , lpSelectRect->bottom) ;
LineTo (hDC, lpSelectRect - > l e ft , lpSe lectRect- >top) ;
SetROP2 (hDC, OldROP) ;

break ;

case SL_BLOCK :
PatBlt (hDC ,

break ;

lpSelectRect - > l e ft , lpSelectRect- >top ,
lpSelectRect- >right - lpSelectRect - > l e ft ,
lpSelectRect- >bottom - lpSelectRect->top ,
DSTINVERT) ;

ReleaseDC (hWnd, hDC) ;

Clearing a box selection means removing it from the screen . You can
remove the outline by drawing over it with the XOR pen . Clearing a block
select ion means restoring the inverted screen to its previous state . You can
restore the inverted screen by inverting the entire selection .

302

Windows Libraries

C.6.2 Create the Module-Definition File

To link the Select library, you need to create a module-definition file con
taining the following:

LIBRARY Select

CODE MOVEABLE
DATA NONE
HEAPSI ZE 0

EXPORTS
StartSelection
UpdateSelection
EndSelection
ClearSelection

Since the selection functions do not use global or static variables and there
is no local heap, the DATA statement is used to specify no data segment,
and HEAPSIZE is used to set the heap size to zero.

C.6.3 Create the Include File

You need to create the select.h include file for the Select library. This file
contains the definitions for the constants used in the functions, as well as
function definitions. The include file should look like this :

int FAR PASCAL StartSelection (HWND, POINT , LPRECT , int) ;
int FAR PASCAL UpdateSelection (HWND, POINT , LPRECT , int) ;
int FAR PASCAL EndSelection (POINT , LPRECT) ;
int FAR PASCAL ClearSelection (HWND, LPRECT , int) ;

You should also use the include file in applications that use the selection
functions. This will ensure that proper parameter and return types are
used with the functions.

C.6.4 Compile and Link

To compile and link the Select library you need to create the make file
as follows:

select . obj : select . c select . h
c l - c -Asnw -Gsw -Os -Zp select . c

se lect . exe : select . obj
l ink4 select , select . exe , , swinl ibc s libwjNOD, select . de f

select . l ib : select . de f
imp l ib select . l ib select . de f

303

:Microsoft Windows Programmer's Learning Guide

Once you have compiled and linked the Select library, you can create a
small test application to confirm that it is working properly. For a descrip
t ion of an application that uses the selection functions, see Chapter 13 ,
"The Clipboard , " or Chapter 9 , "Bitmaps. "

304

