
1Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Microsoft Windows RPC

Security Vulnerabilities

HITB Security Conference

December 12th, 2003

2Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

 Introduction to Microsoft RPC

 Reverse engineering of Microsoft RPC services

 dmidl (reverse midl)

 fa (reverse c)

 Exploitation techniques for RPC vulnerabilities

 RPC DCOM RemoteActivation (stack overflow)

 RPC Messenger (heap overflow)

 Summary

Presentation overview

3Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

It's 106 miles to Chicago, we've got a full

tank of gas, half a pack of cigarettes, it's

dark and we're wearing sunglasses.

-- Elwood Blues

Part 1:

4Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Remote Procedure Call (RPC) is an inter-process

communication mechanism that allows client and

server software to communicate over the network

There are two main standards of RPC mechanism:

Microsoft RPC is compatible with the Open Group's

Distributed Computing Environment specification for

remote procedure calls

 DCE (Distributed Computing Environment) RPC

 ONC (Open Network Computing) RPC

Introduction to Microsoft RPC

What is it?

5Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Communication mechanisms

Microsoft RPC uses IPC mechanisms, such

as named pipes, LPC ports, NetBIOS, or Winsock,

to establish communications between the client

and the server

RPC servers can be reached with the use of

different RPC, transport and network protocols

(protocol-sequence)

A given RPC server may listen for requests on

multiple endpoints, which are specific to the

registered protocol-sequence

6Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Communication mechanisms (2)

Protocol sequences supported by Microsoft RPC:

ncacn_nb_tcp Connection-oriented NetBIOS over Transmission Control Protocol (TCP)

ncacn_nb_ipx Connection-oriented NetBIOS over Internet Packet Exchange (IPX)

ncacn_nb_nb Connection-oriented NetBIOS Enhanced User Interface (NetBEUI)

ncacn_ip_tcp Connection-oriented Transmission Control Protocol/Internet Protocol (TCP/IP)

ncacn_np Connection-oriented named pipes

ncacn_spx Connection-oriented Sequenced Packet Exchange (SPX)

ncacn_dnet_nsp Connection-oriented DECnet transport

ncacn_at_dsp Connection-oriented AppleTalk DSP

ncacn_vns_spp Connection-oriented Vines scalable parallel processing (SPP) transport

ncadg_ip_udp Connectionless User Datagram Protocol/Internet Protocol (UDP/IP)

ncadg_ipx Connectionless IPX

ncadg_mq Connectionless over the Microsoft® Message Queue Server (MSMQ)

ncacn_http Connection-oriented TCP/IP using Internet Information Server as HTTP proxy

ncalrpc Local procedure call

7Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC client/server architecture

Specific functionality of a given RPC server is

exposed in a form of interfaces identified by their

identifiers (UUID) and version (major and minor)

numbers

Each interface can contain a set of functions that can

be called remotely

Before a call to a given RPC function, an appropriate

BIND operation must be issued in order to uniquely

assign client application to the target RPC interface

with which it wants to talk to

8Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Why it is so important ?

Microsoft RPC has been a backbone communication

mechanism used in Windows operating system since

its early days (Windows NT 3.1, back in 1993)

There are many (if not all) Windows services that

heavily rely on the RPC infrastructure:

 services expose their functionality through MS RPC

 RPC interfaces of a service can be very often reached

remotely (either through ncacn_ip_tcp, ncadg_ip_udp or

ncacn_np), what means that successful bind operation can

be issued on them

9Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC interfaces (Windows 2000)

RPC interfaces that can be by default reached remotely

on Windows 2000 systems (SP4 + all hotfixes) through

ncacn_np:

12345678-1234-abcd-ef00-0123456789ab v1.0 (spoolsv.exe)

12345778-1234-abcd-ef00-0123456789ab v0.0 (lsasrv.dll)

c681d488-d850-11d0-8c52-00c04fd90f7e v1.0 (lsasrv.dll)

3919286a-b10c-11d0-9ba8-00c04fd92ef5 v0.0 (lsasrv.dll)

12345778-1234-abcd-ef00-0123456789ac v1.0 (samsrv.dll)

d335b8f6-cb31-11d0-b0f9-006097ba4e54 v1.5 (polagent.dll)

98fe2c90-a542-11d0-a4ef-00a0c9062910 v1.0 (advapi32.dll)

367abb81-9844-35f1-ad32-98f038001003 v2.0 (services.exe)

93149ca2-973b-11d1-8c39-00c04fb984f9 v0.0 (scesrv.dll)

82273fdc-e32a-18c3-3f78-827929dc23ea v0.0 (eventlog.dll)

65a93890-fab9-43a3-b2a5-1e330ac28f11 v2.0 (dnsrslvr.dll)

8d9f4e40-a03d-11ce-8f69-08003e30051b v1.0 (umpnpmgr.dll)

4b324fc8-1670-01d3-1278-5a47bf6ee188 v3.0 (srvsvc.dll)

6bffd098-a112-3610-9833-46c3f87e345a v1.0 (wkssvc.dll)

8d0ffe72-d252-11d0-bf8f-00c04fd9126b v1.0 (cryptsvc.dll)

c9378ff1-16f7-11d0-a0b2-00aa0061426a v1.0 (cryptsvc.dll)

0d72a7d4-6148-11d1-b4aa-00c04fb66ea0 v1.0 (cryptsvc.dll)

6bffd098-a112-3610-9833-012892020162 v0.0 (browser.dll)

17fdd703-1827-4e34-79d4-24a55c53bb37 v1.0 (msgsvc.dll)

300f3532-38cc-11d0-a3f0-0020af6b0add v1.2 (trkwks.dll)

3ba0ffc0-93fc-11d0-a4ec-00a0c9062910 v1.0 (wmicore.dll)

10Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC interfaces (Windows 2000) cont.

RPC interfaces that can be by default reached remotely

on Windows 2000 systems (SP4 + all hotfixes) through

ncacn_ip_tcp:

e1af8308-5d1f-11c9-91a4-08002b14a0fa v3.0 (rpcss.dll)

0b0a6584-9e0f-11cf-a3cf-00805f68cb1b v1.1 (rpcss.dll)

975201b0-59ca-11d0-a8d5-00a0c90d8051 v1.0 (rpcss.dll)

e60c73e6-88f9-11cf-9af1-0020af6e72f4 v2.0 (rpcss.dll)

99fcfec4-5260-101b-bbcb-00aa0021347a v0.0 (rpcss.dll)

b9e79e60-3d52-11ce-aaa1-00006901293f v0.2 (rpcss.dll)

412f241e-c12a-11ce-abff-0020af6e7a17 v0.2 (rpcss.dll)

00000136-0000-0000-c000-000000000046 v0.0 (rpcss.dll)

c6f3ee72-ce7e-11d1-b71e-00c04fc3111a v1.0 (rpcss.dll)

4d9f4ab8-7d1c-11cf-861e-0020af6e7c57 v0.0 (rpcss.dll)

000001a0-0000-0000-c000-000000000046 v0.0 (rpcss.dll)

1ff70682-0a51-30e8-076d-740be8cee98b v1.0 (mstask.exe)

378e52b0-c0a9-11cf-822d-00aa0051e40f v1.0 (mstask.exe)

11Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC interfaces (Windows XP)

RPC interfaces that can be by default reached remotely on

Windows XP systems (SP1 + all hotfixes) through ncacn_np:

12345778-1234-abcd-ef00-0123456789ab v0.0 (lsasrv.dll)

621dff68-3c39-4c6c-aae3-e68e2c6503ad v1.0 (wzcsvc.dll)

18f70770-8e64-11cf-9af1-0020af6e72f4 v0.0 (ole32.dll)

1ff70682-0a51-30e8-076d-740be8cee98b v1.0 (schedsvc.dll)

378e52b0-c0a9-11cf-822d-00aa0051e40f v1.0 (schedsvc.dll)

0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 v1.0 (schedsvc.dll)

3faf4738-3a21-4307-b46c-fdda9bb8c0d5 v1.0 (audiosrv.dll)

6bffd098-a112-3610-9833-46c3f87e345a v1.0 (wkssvc.dll)

8d0ffe72-d252-11d0-bf8f-00c04fd9126b v1.0 (cryptsvc.dll)

a3b749b1-e3d0-4967-a521-124055d1c37d v1.0 (cryptsvc.dll)

0d72a7d4-6148-11d1-b4aa-00c04fb66ea0 v1.0 (cryptsvc.dll)

f50aac00-c7f3-428e-a022-a6b71bfb9d43 v1.0 (cryptsvc.dll)

12b81e99-f207-4a4c-85d3-77b42f76fd14 v1.0 (seclogon.dll)

8fb6d884-2388-11d0-8c35-00c04fda2795 v4.1 (w32time.dll)

300f3532-38cc-11d0-a3f0-0020af6b0add v1.2 (trkwks.dll)

63fbe424-2029-11d1-8db8-00aa004abd5e v1.0 (sens.dll)

629b9f66-556c-11d1-8dd2-00aa004abd5e v3.0 (sens.dll)

4b324fc8-1670-01d3-1278-5a47bf6ee188 v3.0 (srvsvc.dll)

3f77b086-3a17-11d3-9166-00c04f688e28 v1.0 (srvsvc.dll)

17fdd703-1827-4e34-79d4-24a55c53bb37 v1.0 (msgsvc.dll)

6bffd098-a112-3610-9833-012892020162 v0.0 (browser.dll)

5ca4a760-ebb1-11cf-8611-00a0245420ed v1.0 (termsrv.dll)

000001a0-0000-0000-c000-000000000046 v0.0 (rpcss.dll)

12Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC interfaces (Windows XP) cont.

RPC interfaces that can be by default reached remotely

on Windows XP systems (SP1 + all hotfixes) through

ncacn_ip_tcp:

e1af8308-5d1f-11c9-91a4-08002b14a0fa v3.0 (rpcss.dll)

0b0a6584-9e0f-11cf-a3cf-00805f68cb1b v1.1 (rpcss.dll)

1d55b526-c137-46c5-ab79-638f2a68e869 v1.0 (rpcss.dll)

e60c73e6-88f9-11cf-9af1-0020af6e72f4 v2.0 (rpcss.dll)

99fcfec4-5260-101b-bbcb-00aa0021347a v0.0 (rpcss.dll)

b9e79e60-3d52-11ce-aaa1-00006901293f v0.2 (rpcss.dll)

412f241e-c12a-11ce-abff-0020af6e7a17 v0.2 (rpcss.dll)

00000136-0000-0000-c000-000000000046 v0.0 (rpcss.dll)

c6f3ee72-ce7e-11d1-b71e-00c04fc3111a v1.0 (rpcss.dll)

4d9f4ab8-7d1c-11cf-861e-0020af6e7c57 v0.0 (rpcss.dll)

000001a0-0000-0000-c000-000000000046 v0.0 (rpcss.dll)

621dff68-3c39-4c6c-aae3-e68e2c6503ad v1.0 (wzcsvc.dll)

18f70770-8e64-11cf-9af1-0020af6e72f4 v0.0 (ole32.dll)

1ff70682-0a51-30e8-076d-740be8cee98b v1.0 (schedsvc.dll)

378e52b0-c0a9-11cf-822d-00aa0051e40f v1.0 (schedsvc.dll)

0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 v1.0 (schedsvc.dll)

3faf4738-3a21-4307-b46c-fdda9bb8c0d5 v1.0 (audiosrv.dll)

6bffd098-a112-3610-9833-46c3f87e345a v1.0 (wkssvc.dll)

12b81e99-f207-4a4c-85d3-77b42f76fd14 v1.0 (seclogon.dll)

13Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC interfaces (XP) cont.

RPC interfaces that can be by default reached remotely

on Windows XP systems (SP1 + all hotfixes) through

ncacn_ip_tcp:

8fb6d884-2388-11d0-8c35-00c04fda2795 v4.1 (w32time.dll)

300f3532-38cc-11d0-a3f0-0020af6b0add v1.2 (trkwks.dll)

8d0ffe72-d252-11d0-bf8f-00c04fd9126b v1.0 (cryptsvc.dll)

a3b749b1-e3d0-4967-a521-124055d1c37d v1.0 (cryptsvc.dll)

0d72a7d4-6148-11d1-b4aa-00c04fb66ea0 v1.0 (cryptsvc.dll)

f50aac00-c7f3-428e-a022-a6b71bfb9d43 v1.0 (cryptsvc.dll)

63fbe424-2029-11d1-8db8-00aa004abd5e v1.0 (sens.dll)

629b9f66-556c-11d1-8dd2-00aa004abd5e v3.0 (sens.dll)

4b324fc8-1670-01d3-1278-5a47bf6ee188 v3.0 (srvsvc.dll)

3f77b086-3a17-11d3-9166-00c04f688e28 v1.0 (srvsvc.dll)

17fdd703-1827-4e34-79d4-24a55c53bb37 v1.0 (msgsvc.dll)

6bffd098-a112-3610-9833-012892020162 v0.0 (browser.dll)

5ca4a760-ebb1-11cf-8611-00a0245420ed v1.0 (termsrv.dll)

000001a0-0000-0000-c000-000000000046 v0.0 (rpcss.dll)

14Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Other RPC interfaces

There are many more RPC interfaces in Windows

2000/XP system. These interfaces can be divided

respectively into:

More details: Windows Network Services Internals, J.B. Marchand
http://www.hsc.fr/ressources/articles/win_net_srv/index.html.en

 interfaces that can be only reached locally either through

ncacn_np or ncalrpc protocol sequences

 ORPC interfaces, which require proper OBJREF pointer

for the call to proceed (usually obtained through

IRemoteActivation interface)

 interfaces introduced to the system along with a specific

application (i.e. Microsoft Internet Information Services,

Microsoft Exchange, Microsoft SQL Server, ...)

15Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Authentication issues

Presented Windows interfaces can be reached from the network

through ncacn_np protocol sequence and NULL SESSION

Reachability (successful BIND operation) does not necessarily

mean that functions of a given interface can be actually called (!)

as there are some server applications that restrict access to its

interfaces on a per-client basis by defining a security-callback

function (RpcServerRegisterIfEx).

RpcServerRegisterAuthInfo function can be used for defining

what authentication service to use when the server receives a

request for a remote procedure call

RPC server may use the RpcBindingInqAuthClient function to

check whether the client connection meets the desired level of

authentication.

16Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Authorization issues

Most interfaces run with SYSTEM privileges and impersonate

the client for the time of processing its request

(RpcImpersonateClient)

If the server code has an implementation flaw that may lead

to the code execution, SYSTEM privileges can be always

reestablished by issuing a call to RpcRevertToSelf

(regardless of the privileges possessed at the time of

the call)

In some cases, client privileges are additionally checked after

impersonation (i.e. OpenThreadToken/PrivilegeCheck/

CheckTokenMembership call sequence)

17Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC runtime security issues

If there are multiple RPC interfaces registered in one process:

If the server stub was compiled without the /robust switch, RPC

marshaler may not reject all malformed RPC packets

Additionally, if the [range] keyword is not used in an IDL interface

definition file, RPC interface may accept requests to access out-of-

bounds data

 Each of them can be reached through any of the protocol

sequences registered in that process,

 Context handles from one interface are valid and can be

passed to the other completely unrelated interface (unless

strict_context_handle attribute is used for the interface)

Reference: Writing Secure Code, Second Edition, M. Howard, D. LeBlanc
http://www.amazon.com

18Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

void *my_malloc(int size){

return(HeapAlloc(GetProcessHeap(),0,size));

}

int func_1(handle_t h,int i,struct s *stab[],unsigned char *str){

char* p;

hyper a;

if(!(p=my_malloc(32))){

return(1);

}

lstrcpy(p,str);

return(0);

}

Introduction to Microsoft RPC

Example service

19Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Interface Definition (IDL)

[

uuid(11111111-2222-3333-4444-555555555555),

version(1.0)

]

interface if{

struct s{

byte b;

hyper h;

};

int func_1(

[in] handle_t h,

[in] int i,

[out,size_is(i)] struct s *stab[],

[in,string,size_is(256)] char *c

);

}

20Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

Midl compiler (midl.exe)
test.acf

test.c

midl

midl /Oicf /client none test.idl

test.idl

test.h test_s.c

C/C++

compiler

test.exe

21Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Introduction to Microsoft RPC

RPC/NDR engine (rpcrt4.dll)

test.exe

rpcrt4.dll

RpcServerUseProtseqEp(prot,5,endp,NULL);

RpcServerRegisterIf(if_v1_0_s_ifspec,NULL,NULL);

RpcServerListen(1,1234,FALSE);

main(int argc,char **argv){

}

func_1

22Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Reverse engineering of

Microsoft RPC

Basic research is when I'm doing what I

don't know what I'm doing.

-- Wernher Von Braun

Part 2:

23Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

dmidl (reverse MIDL)

RPC interface decompiler

Dmidl is a tool that reverse RPC interfaces definitions

build with the use of Microsoft IDL compiler. It performs

automatic search for binaries that contains MIDL

generated stubs and tries to decompile them back to IDL

Dmidl supports fully-interpreted (/Oi and /Oicf) as well as mixed (/Os)

marshaling modes. It was tested on Windows 2000, XP and 2003 binaries

The tool was written in 2001 by reverse engineering midl.exe binary and

comparing/analysing files generated by this compiler. Later, in 2002, it was

updated according to more detailed NDR documentation published in MSDN

Another midl decompiler: muddle, M. Chapman
http://www.cse.unsw.edu.au/~matthewc/muddle/

24Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

 Finding and parsing RPC control structures

 Reversing procedure format strings

 Reversing type format strings

 Combining parameter and type information

 Generating interface definition (.idl file)

dmidl (reverse MIDL)

How it works

z:\projects\DMIDL-2.0>dmidl -g idl.test2

rpc interface decompiler (reverse midl) [version 2.0]

copyright LAST STAGE OF DELIRIUM 2001-2002 poland //lsd-pl.net/

idl.test2

11111111-2222-3333-4444-555555555555 v1.0 test-oi.exe.1.idl 1 stub

11111111-2222-3333-4444-555555555555 v1.0 test-oicf.exe.1.idl 1 stub

11111111-2222-3333-4444-555555555555 v1.0 test-os.exe.1.idl 1 stub

12 files analysed, 3 interfaces found

z:\projects\DMIDL-2.0>

25Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

struct RPC_SERVER_INTERFACE{

RPC_SYNTAX_IDENTIFIER InterfaceId;

RPC_SYNTAX_IDENTIFIER TransferId;

RPC_DISPATCH_TABLE *DispatchTable;

...

MIDL_SERVER_INFO *ServerInfo

};

= 045d888a-eb1c-c911-9fe8-08002b104860, v 2.0

struct MIDL_SERVER_INFO{

MIDL_STUB_DESC *StubDesc;

SERVER_ROUTINE *DispatchTable;

FORMAT_STRING *ProcFormatString;

short *FormatStringOffset;

...

};

struct MIDL_STUB_DESC{

char *TypeFormatString;

long Version;

...

};

Finding and parsing RPC control structures

/Oicf and /Oi modes

= 0x20000 (/Oicf)

= 0x10001 (/Oi)

NdrServerCall2 (/Oicf)

NdrServerCall (/Oi)

RPC_DISPATCH_FUNCTION table[]

func1

func2

SERVER_ROUTINE table[]

= 11111111-2222-3333-4444-555555555555, v 1.0

26Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Finding and parsing RPC control structures

/Os mode

struct RPC_SERVER_INTERFACE{

RPC_SYNTAX_IDENTIFIER InterfaceId;

RPC_SYNTAX_IDENTIFIER TransferId;

RPC_DISPATCH_TABLE *DispatchTable;

...

MIDL_SERVER_INFO *ServerInfo

};

if_func1

if_func2

RPC_DISPATCH_FUNCTION table[]

void __RPC_STUB if_func2(RPC_MESSAGE *RpcMessage){

NdrServerInitializeNew(

RpcMessage,&StubMsg,&StubDesc

);

NdrConvert(

&StubMsg,&ProcFormatString.Format[24]

);

func1(...);

}

struct MIDL_STUB_DESC{

char *TypeFormatString;

long Version;

...

};

= 0x10001

= NULL

FormatStringOffset

= 045d888a-eb1c-c911-9fe8-08002b104860, v 2.0

= 11111111-2222-3333-4444-555555555555, v 1.0

27Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Reversing procedure format strings

/Oicf mode

FUNCTIONS:

func_1

00000: 00 handle_type

00001: 48 old_flags

00002: 00 00 00 00 rpc_flags

00006: 00 00 method_index 0

00008: 14 00 stack_size 20

00010: 32 00 00 00 explicit_handle

00014: 08 00 in_param_hint 8

00016: 08 00 out_param_hint 8

00018: 07 oi2_flags

00019: 04 cparams 4

00020: 48 00 04 00 08 00 in FC_LONG

00026: 13 00 08 00 0a 00 in -> 00010

00032: 0b 01 0c 00 2c 00 out -> 00044

00038: 70 00 10 00 08 00 in ref FC_LONG

28Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FUNCTIONS:

func_1

00000: 00 handle_type

00001: 48 old_flags

00002: 00 00 00 00 rpc_flags

00006: 00 00 method_index 0

00008: 14 00 stack_size 20

00010: 32 00 00 00 explicit_handle

00014: 4e 0f in FC_IGNORE

00016: 4e 08 in FC_LONG

00018: 51 01 0a 00 out -> 00010

00022: 4d 01 28 00 in -> 00040

00026: 53 08 return FC_LONG

FUNCTIONS:

func_1

00000: 4e 0f in FC_IGNORE

00002: 4e 08 in FC_LONG

00004: 51 01 0a 00 out -> 00010

00008: 4d 01 28 00 in -> 00040

00012: 53 08 return FC_LONG

Reversing procedure format strings

/Oi and /Os modes

29Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Reversing type format strings

Initial decoding

TYPES:

00002: 15 FC_STRUCT

00003: 07 align 8

00004: 10 00 size 16

00006: 01 FC_BYTE

00007: 39 FC_ALIGNM8

00008: 0b FC_HYPER

00009: 5b FC_END

00010: 1b FC_CARRAY

00011: 03 align 4

00012: 04 00 size 4

00014: 28 00 00 00 size_is

00018: 4b 5c FC_PP

00020: 48 49 04 00 00 00 01 00 FC_VARIABLE_REPEAT

00028: 00 00 00 00 12 00 e0 ff FC_UP -> 00002

00036: 5b FC_END

00037: 08 FC_LONG

00038: 5c FC_PAD

00039: 5b FC_END

00040: 11 00 02 00 FC_RP -> 00044

00044: 22 44 40 00 00 01 FC_C_CSTRING

Recognized types:

 base types

 strings

 structures

 unions

 arrays

 pointers

 other

30Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Combining parameter and type information

Complex types

 Enumerate implicit/explicit handles and contexts

 Follow embedded types and pointers

 Calculate stack positions, offsets, alignments and

padding values for fields in structures and unions

 Analyze correlation descriptors and fields’ attributes

 Enumerate known callback functions (x86 opcode

pattern matching)

31Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

[

uuid(11111111-2222-3333-4444-555555555555),

version(1.0)

]

interface if{

/* TYPES */

struct _2{

byte _1;

hyper _2;

};

/* FUNCTIONS */

long

func_1(

/* adr 0x00401000 sym ? */

[in] handle_t _1,

[in] long _2,

[out,size_is(_2)] struct _2 *_3[],

[in,ref,size_is(256),string] char *_4

);

}

Generating interface definition

.IDL file

An interface definition

generated by dmidl is

compatible with midl

compiler and may be

recompiled

Identified RPC function

names are resolved

with the use of

Windows symbol files

(dbghelp.dll library)

32Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FA – Win32 x86 code decompiler

Why to decompile code?

Manual analysis of even medium size machine level code

functions is usually very difficult, tiring and it takes lots of

time. This is mainly due to the fact that machine level code

usually:

 Introduces lots of redundant instructions (i.e. PUSH/POP)

 Is optimized with regard to memory accesses, conditional

instructions, subroutine invocations

 Lacks lots of information with regard to subroutines, function

arguments, return values and local variables

 Lacks type information

 Lacks information about the original code structure (loops,

if/else blocks)

33Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FA – Win32 x86 code decompiler

Why to decompile code? (2)

The process of code decompilation allows to obtain some

high level code (syntax similar to C) that is much more

informative for the security auditor than the original

machine code

The FA project was started in January 2003 for the purpose

of decompiling RPC interfaces from the Windows operating

system binary files. Currently it allows for:

 Dumping RPC interface information from the target binary

 Disassembling selected function from a given RPC interface

 Decompiling selected function from a given RPC interface

into C-like language

34Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FA – Win32 x86 code decompiler

Dumping RPC interface information

z:\projects\FA>fa -p test.exe

rpc interface decompiler (reverse c) [version 0.9]

copyright LAST STAGE OF DELIRIUM 2003 poland //lsd-pl.net/

image: test.exe

.code: 0x66001000-0x66004000 (12288 bytes)

.data: 0x66004000-0x66006000 (8192 bytes)

.idata: 0x66004000-0x660040b0

RPC interfaces:

[0] 11111111-2222-3333-4444555555555555 ver. 1.0

func_0 0x66001018

35Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

z:\projects\FA>fa test.exe –d 0 0

rpc interface decompiler (reverse c) [version 0.9]

copyright LAST STAGE OF DELIRIUM 2003 poland //lsd-pl.net/

image: test.exe

disassembling from 0x66001018

66001000 PUSH ebp

66001001 MOV ebp,esp

66001003 MOV eax,dword ptr [ebp+8]

66001006 PUSH eax

66001007 PUSH 0

66001009 CALL GetProcessHeap

6600100f PUSH eax

66001010 CALL HeapAlloc

66001016 POP ebp

66001017 RET

entry:

66001018 PUSH ebp

66001019 MOV ebp,esp

6600101b SUB esp,c

6600101e PUSH 20

66001020 CALL loc_66001000

66001025 ADD esp,4

66001028 MOV dword ptr [ebp+fffffffc],eax

6600102b CMP dword ptr [ebp+fffffffc],0

6600102f JNE loc_66001038

66001031 MOV eax,1

66001036 JMP loc_66001048

66001038 MOV eax,dword ptr [ebp+14]

6600103b PUSH eax

6600103c MOV ecx,dword ptr [ebp+fffffffc]

6600103f PUSH ecx

66001040 CALL lstrcpyA

66001046 XOR eax,eax

66001048 MOV esp,ebp

6600104a POP ebp

6600104b RET

FA – Win32 x86 code decompiler

Disassembling RPC function

36Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FA – Win32 x86 code decompiler

Decompiling RPC function

z:\projects\FA>fa test.exe –w 0 0

rpc interface decompiler (reverse c) [version 0.9]

copyright LAST STAGE OF DELIRIUM 2003 poland //lsd-pl.net/

image: test.exe

loading type info from windows.h

decompiling from 0x66001018

...

LPVOID __cdecl sub_66001000(SIZE_T arg1) {

return HeapAlloc(GetProcessHeap(),0,arg1)

}

int __cdecl entry_66001018(unknown arg1,unknown arg2,unknown arg3,LPCSTR arg1) {

/* frame: type=ebp, size=12

local vars:

LPCSTR loc2 (ebp offset –4, size 4)

*/

loc2 = sub_66001000(20)

if (loc2<>0) {

eax = lstrcpyA(loc2,arg1)

eax = 0

} else {

eax = 1

}

return eax

}

37Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FA – Win32 x86 code decompiler

Decompiler operation

In general, the process of FA operation is a reverse of the

compilation process (but to be true it is much simpler)

FA works in several passes:

 Code disassembly, subroutines and call tree enumeration

 Compiler idioms and inline calls detection

 Conversion to high level language, push/pop removal

 Subroutine arguments and local vars enumeration

 Operands merging, dead operands removal

 Code structuring – finding loops and if/else constructs in code

 Type propagation

38Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FA – Win32 x86 code decompiler

Decompiler features

 Convert machine level code into a set of 10 high level codes

(ASSIGN, TRY/EXCEPT, CALL, GOTO, RET, IF, SWITCH, QMARK,

WHILE, FOR)

 Structure code (find loops and if/else constructs, regardless of their

nesting)

 Locate inline calls and compiler idioms in the machine code (C

operator ?, inline memset, memcpy, strlen, strchr, etc.)

 Find out information about function arguments, local variables and

in most cases about their types

 Work against optimized code (shared instructions, very tricky)

 Remove redundant information from code (removing unused

instructions, merging operands expressions)

Current version of FA is able to:

39Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

FA – Win32 x86 code decompiler

Decompiler features (2)

On average FA is able to reduce the size of code to

analyze after decompilation about 60% (counted in

the number of instructions)

It usually allows to find out what a given function

actually does

FA can use PDB/DBG info (if available) to produce

much more readable code

It proved very well as it was used for locating MS03-

026 and MS03-043 vulnerabilities and some other

flaws that had been fixed in the meantime ;-)

40Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Exploitation techniques for

RPC vulnerabilities

Part 3:

If I had only known, I would have been a

locksmith.

-- Albert Einstein

41Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

RPC vulnerabilities

Exploitation details

Phases:

 Invoking remote RPC function (TCP and UDP)

 Jumping to specified memory location

 Finding user data in process memory

 Executing user supplied code

 Avoiding process crash (and Windows reboot)

Special:

 Bypassing Windows 2003 stack overflow detection

42Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

RPC DCOM RemoteActivation service

MS03-026

 The vulnerability exists in the RemoteActivation function

exported by the 4d9f4ab8-7d1c-11cf-861e0020af6e7c57

RPC interface

 Server implementing this interface is located in rpcss.dll

image. It is loaded into the address space of the svchost

process which is started by default on any

Win2000/XP/2003 system

 Successful exploitation of the vulnerability results in a

remote code execution with the highest (SYSTEM)

privileges in the target Windows operating system

43Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Invoking remote RPC function (TCP)

RemoteActivation()

error_status_t

RemoteActivation(

[in] handle_t _1,

[in,ref] struct _110 *_2,

[out,ref] struct _144 *_3,

[in,ref] struct _20 *_4,

[in,unique,string] wchar_t *_5,

[in,unique] struct _188 *_6,

[in] long _7,

[in] long _8,

[in] long _9,

[in,unique,size_is(_9)] struct _20 *_10,

[in] short _11,

[in,size_is(_11)] short _12[],

[out,ref] hyper *_13,

[out,ref] struct _252 **_14,

[out,ref] struct _20 *_15,

[out,ref] long *_16,

[out,ref] struct _6 *_17,

[out,ref] long *_18,

[out,ref,size_is(_9)] struct _188 **_19,

[out,ref,size_is(_9)] long *_20

);

IDL specification
The vulnerability results

from a buffer overrun

condition in a

GetMachineName()

function, which copies

user provided wchar_t*

argument passed to the

RemoteActivation()

function to the fixed-

length local stack buffer

44Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

00: 05 00 rpc version (5)

02: 0b packet type (BIND)

03: 03 flags

04: 10 00 00 00 encoding

08: ?? ?? frag len

0a: 00 00 auth len

0c: 00 00 00 00 call id

10: 00 00 max xmit frag

12: 00 00 max recv frag

14: 00 00 00 00

18: 01 00 00 00

1c: 01 00 00 00

20: b8 4a 9f 4d 1c 7d cf 11 IFID = 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57

28: 86 1e 00 20 af 6e 7c 57

30: 00 00 00 00 vers = v0.0

34: 04 5d 88 8a eb 1c c9 11 TSID

3c: 9f e8 08 00 2b 10 48 60

44: 02 00 00 00 vers

Invoking remote RPC function (TCP)

BIND packet

hex codeofs fields

45Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Invoking remote RPC function (TCP)

REQUEST packet

00: 05 00 rpc version (5)

02: 00 packet type (REQUEST)

03: 03 flags

04: 10 00 00 00 encoding

08: ?? ?? frag len

0a: 00 00 auth len

0c: 00 00 00 00 call id

10: 00 00 max xmit frag

12: 00 00 max recv frag

14: 00 00 00 00

18: 05 00 02 00 01 00 arg 2: struct _110 * = {{5,2},1,0,0,0}

...

48: 01 00 00 00 arg 5: wchar_t * = “\\aaaaa\bb”

4c: 01 00 00 00

50: 01 00 00 00

54: 61 61 61 61 ... string

...

??: 01 00 00 00 arg 7:

??: 01 00 00 00 arg 8:

??: 01 00 00 00 arg 9:

hex codeofs fields

46Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Jumping to specified memory location

Original stack frames

RemoteActivation(...){

...

GetServerPath(wchar_t *path,wchar_t **res){

char buf[32];

if(path[0]!=’\\’||path[1]!=’\\’) goto err;

GetMachineName(path,buf,0);

...

*res=path;

err:

return;

}

...

}

stack

local buf

local vars

saved EBP

arg 1: path

arg 2: res

saved EIP

saved EBP

saved EIP

\\aaaaaaaaaa...\bbb...

ptr

before

pseudocode

RemoteActivation()

frame

GetServerPath()

frame

47Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Jumping to specified memory location

Stack frames after buffer overflow

stack

local buf

saved EBP

arg 1: path

arg 2: res

saved EIP

saved EBP

saved EIP

RemoteActivation(...){

...

GetServerPath(wchar_t *path,wchar_t **res){

char buf[32];

if(path[0]!=’\\’||path[1]!=’\\’) goto err;

GetMachineName(path,buf,0);

...

*res=path;

err:

return;

}

...

}

\\aaaaaaaaaa...0xffffffff0x12345678\bbb...

ptr

aaaaaaaaaa

aaaaaaa...

0xffffffff

0x12345678 after

pseudocode

local vars

48Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Finding user data in process memory

Process address space

0x00000000

0x01000000

0x70000000

0x7ffde000

0x7fffffff

svchost process memory map

executable

image

dynamic

libraries

TEBs, PEB

Heap 1 (default)

Heap 2

Stack (thread 1)

Heap 3

Stack (thread 3)

Heap 4

...

 The most difficult problem that occurs

during remote exploitation of the bug on

Windows 2000/XP/2003 is finding the

address of memory location, where

dynamically allocated, user provided

data (containing asmcode) resides

 This is primarily caused by the fact that

heap and stack areas, base addresses,

executable and libraries images are

different across different operating

systems versions, service packs and

languages

 This also results from the fact that

vulnerable components are

multithreaded

49Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Finding user data in process memory

Heap layout

0x00070000

0x00980000

0x00170000

0x00a80000

svchost default process heap

Segment 1

Segment 2

 Every process has one default heap

(in svchost it starts at 0x70000), which

has one linear memory segment

 If more memory space is required by

an application, the Heap manager can

request additional segments from the

operating system

 Position and size of segments

depends on virtual process memory

maps (thus the application, libraries it

uses etc)

 Freed memory blocks are

concatenated (whenever possible) and

are available for further allocation

 With time, available memory space is

fragmented

Heap Header

allocated

memory

blocks

freed

memory

blocks

NOTE:

addresses of allocated memory

blocks are hard to predict especially

in the case of multithreaded

processes

50Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Finding user data in process memory

Filling the Heap in linear way

0x00070000

0x00980000

0x00170000

0x00a80000

0x00c10000

0x00e10000

0x01010000

0x01410000

...

svchost default process heap

Segment 1

Segment 2

Segment 4

Segment 3

Heap Header

memory blocks

allocated by

NDR engine for

fragmented rpc

request packets

 The goal is to fill up the remote process

address space in a linear way

 RPC packet fragmentation mechanism

may be used to send data that will be

allocated on Heap

 When there are no more free blocks,

Heap manager enlarges the existing

segment by requesting new memory

pages directly from OS. If this is not

sufficient, it allocates memory space for

new segments

 New segments are allocated in highly

predictable addresses

 About 10-15 MB of data send to remote

machine will place given data at the

address that is constant for every version

of Windows 2000 and XP (0x01080080)
predictable

memory block

address

51Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Finding user data in process memory

OTHER METHODS

 Relative jump through call ebx instruction stored in code

segment of svchost.exe executable image may be used

 After return from GetServerPath() function ebx register

points to the overwritten stack frame

 svchost.exe image base address and call instruction

offset do not depend on installed service pack or

operating system language version

 3 universal addresses for Windows 2000, XP, 2003

 Windows versions may be easily distinguished if

communication with rpc services is possible

Reference: dcom proof of concept code, .:[oc192.us]:. Security
http://packetstormsecurity.nl/0308-exploits/oc192-dcom.c

52Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

attacker machine

svchost.exe

process

buffer overflow

attack

asmcode process

XORE

INIT

FORK

EPILOG

APP

APP

create suspended process

allocate memory

copy asmcode body

modify EIP register

resume thread

decode asmcode body

find base of kernel32.dll through PEB

resolve needed winapi addresses

immediate return (!) to exploited application

BIND

DISP

plugins

filesystem

C:\>cd windows
C:\WINDOWS> dir
C:\ _

spawn cmd.exe

redirect input/output

support full-duplex mode

file download/upload
More details: Win32 assembly components, LSD
http://www.lsd-pl.net/windows_components.html

Executing user supplied code

WINASM

create TCP socket

accept connections

receive and run plugins

console

asmcode control

connection

asmcode

asmcode

53Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

 svchost process is very critical for Windows operating system

and cannot be terminated or stopped, as it might easily lead

to the system malfunction and unavoidable reboot

 Structure Exception Handling mechanism may be used to

restore stable state of svchost process after stack overflow

attack

 In order to do it, a special instruction sequence is executed to

generate an divide by zero exception

 Exception is caught by the operating system and gets

handled by the exception frame common for every function

executed remotely through RPC engine

 Handler performs stack unwind operation, restores registers’

contents and resumes process execution

Avoiding process crash

Roll back on SEH

54Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Avoiding process crash

OTHER METHODS

 An alternative way to stabilize svchost process after an

attack is to use ExitThread() function

 By using call to this function, a process crash can be

avoided because the thread that has corrupted stack in

result of buffer overflow is terminated

 Using this method, an attack on the same process may

be performed multiple times, as NDR engine creates

new thread for the purpose of new RPC requests

 This approach slightly changes the behavior of svchost

process however it does not corrupt its operating

Reference: dcom proof of concept code, .:[oc192.us]:. Security
http://packetstormsecurity.nl/0308-exploits/oc192-dcom.c

55Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Bypassing Windows 2003 stack bo detection

The idea of Visual C /GS switch

Reference: Compiler Security Checks In Depth, B. Bray (MSFT)
http://www.codeproject.com/tips/seccheck.asp

push ebp

mov ebp,esp

sub esp,28h

mov eax,[__security_cookie]

mov [ebp+0ch],eax

stack

local buf

saved EBP

arg 1: path

arg 2: res

saved EIP

prolog

RemoteActivation()

frame

GetServerPath()

frame

cookie
epilog

mov ecx,[ebp+0ch]

call __security_check_cookie

leave

retn 8

void __security_error_handler(int code,void *data){

if(user_handler!=NULL) user_handler(code, data);

else {__crtMessageBoxA();_exit(3);}

}

If the cookie was unchanged, __security_check_cookie executes

the RET instruction and ends the function call. If the cookie doesn’t

match, it calls report_failure, which calls error_handler.

56Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Bypassing Windows 2003 stack guard protection

Overwriting user_handler

Reference: Microsoft Compiler Flaw Technical Note, C. Ren, M. Weber, and G. McGraw
http://www.cigital.com/news/index.php?pg=art&artid=70

stack

local buf

saved EBP

arg 1: path

arg 2: res

saved EIP

cookie

aaaaaaaaaa

aaaaaaa...

0xffffffff

0xffffffff

user_handler

RemoteActivation(...){

...

GetServerPath(wchar_t *path,wchar_t **res){

char buf[32];

if(path[0]!=’\\’||path[1]!=’\\’) goto err;

GetMachineName(path,buf,0);

...

*res=path;

err:

return;

}

...

}

after

pseudocode

mov eax,[user_handler]

mov [eax],path

...

mov ecx,[ebp+0ch]

cmp ecx,[__security_cookie]

jnz raport_failure

...

call [user_handler]

\\aaa... \b...

57Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Bypassing Windows 2003 stack guard protection

Jump to \\aaa...\b... obstacle

5c pop esp

00 5c 00 61 add [eax+eax+61],bl

...

hex code x86 instruction opcodes

0x00070000

0x00980000

0x00170000

0x00a80000

0x00c10000

0x00e10000

0x01010000

0x01410000

...

svchost default process heap

Segment 1

Segment 2

Segment 4

Segment 3

Heap Header

memory blocks

allocated by

NDR engine for

first tour of

fragmented rpc

request packets

 Establish 15 parallel TCP connections

 For each of them send 6000 packets (1024

bytes long) and call remote activation

method (no overflow)

 Send next 160000 packets to properly fill

up remaining memory space

 Invoke remote activation method in the

way that would trigger buffer overflow

RPC bcache will reuse blocks allocated

during first call and eax register will

point to them

memory blocks

used during

remote

activation call

second tour of

fragmented rpc

request packets

58Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Bypassing Windows 2003 stack guard protection

OTHER METHODS

 Structure Exception Handling mechanism may be used

 The idea is to modify exception registration structure

located on the stack when performing buffer overflow

 Next step is to trigger an exception before security

cookie check is made (by writing beyond the stack)

 Overwritten pointer to exception handler must point to

an address outside the address space of loaded module

(jump through register instruction)

Reference: Defeating the Stack Based Buffer Overflow Prevention Mechanism

of Microsoft Windows 2003 Server, D. Litchfield
http://www.nextgenss.com/papers/defeating-w2k3-stack-protection.pdf

59Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

RPC messenger service

MS03-43

 The vulnerability exists in the NetrSendMessage function

exported by the 5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

RPC interface

 Server implementing this interface is located in

msgsvc.dll image. It is loaded into the address space of

the svchost process, which is started by default on any

Windows 2000/XP system. On Windows 2003

messenger service is disabled by default

 Successful exploitation of the vulnerability results in a

remote code execution with the highest (SYSTEM)

privileges in the target Windows operating system

60Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Invoking remote RPC function

NetrSendMessage()

error_status_t

NetrSendMessage(

[in,ref,string] char *_1,

[in,ref,string] char *_2,

[in,ref,string] char *_3

);

IDL specification
The vulnerability results

from a buffer overrun

condition in a

Msgtxtprint() function,

which copies user

provided wchar_t*

argument passed to the

NetrSendMessage()

function to the fixed-

length heap located

buffer.

61Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

char *alert_buf_ptr;int alert_len;

NetrSendMessage(char *a1,char *a2,char *a3){

Msglogsbm(char *a1,char *a2,char *a3){

alert_buf_ptr=LocalAlloc(0x40,0x11ca);

Msghdrprint(a1,a2);

Msgtxtprint(char *a3,int a3len){

char *ptr=LocalAlloc(2*a3len+1);

memcpy(alert_buf_ptr+alert_len,a3,a3len);

LocalFree(ptr);

}

MsgOutputMsg(alert_len,alert_buf_ptr){

RtlOemStringToUnicodeString(...,alert_buf);

MsgDisplayQueueAdd(alert_buf_ptr,alert_len){

LocalAlloc(0x40,alert_len);

}

RtlFreeUnicodeString(...,alert_buf);

}

}

}

pseudocodeAllocated

Allocated

Jumping to specified memory location

Heap blocks

before

Fixed length

buffer

62Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

aaaaaaaaaa

aaaaaaa...

Allocated

Free

Jumping to specified memory location

Block header after buffer overflow

char *alert_buf_ptr;int alert_len;

NetrSendMessage(char *a1,char *a2,char *a3){

Msglogsbm(char *a1,char *a2,char *a3){

alert_buf_ptr=LocalAlloc(0x40,0x11ca);

Msghdrprint(a1,a2);

Msgtxtprint(char *a3,int a3len){

char *ptr=LocalAlloc(2*a3len+1);

memcpy(alert_buf_ptr+alert_len,a3,a3len);

LocalFree(ptr);

}

MsgOutputMsg(alert_len,alert_buf_ptr){

RtlOemStringToUnicodeString(...,alert_buf);

MsgDisplayQueueAdd(alert_buf_ptr,alert_len){

LocalAlloc(0x40,alert_len);

}

RtlFreeUnicodeString(...,alert_buf);

}

}

}

pseudocode

after

63Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

aaaaaaaaaa

aaaaaaa...

Allocated

Allocated

Allocated

Free

aaaaaaa...

Free

Jumping to specified memory location

Alloc() and Free() operations

char *alert_buf_ptr;int alert_len;

NetrSendMessage(char *a1,char *a2,char *a3){

Msglogsbm(char *a1,char *a2,char *a3){

alert_buf_ptr=LocalAlloc(0x40,0x11ca);

Msghdrprint(a1,a2);

Msgtxtprint(char *a3,int a3len){

char *ptr=LocalAlloc(2*a3len+1);

memcpy(alert_buf_ptr+alert_len,a3,a3len);

LocalFree(ptr);

}

MsgOutputMsg(alert_len,alert_buf_ptr){

RtlOemStringToUnicodeString(...,alert_buf);

MsgDisplayQueueAdd(alert_buf_ptr,alert_len){

LocalAlloc(0x40,alert_len);

}

RtlFreeUnicodeString(...,alert_buf);

}

}

}

pseudocode

before

64Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

aaaaaaaaaa

aaaaaaa...

Allocated

Allocated

Allocated

Free

aaaaaaa...

Free

Unhandled Exception Filter

Valid RW MemoryAddress

ExptFilter Address

Address

Instruction Address

Exception

Jmp [esi+48]

Jumping to specified memory location

Concatenation of free blocks

65Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

 The same method as for resuming svchost process state may

be used for a process that was a target of Stack and Heap

buffer overflow

 Before resuming the process all corrupted Heap structures

must be fixed and all used Heap block headers must have

appropriate sizes and control flags

 Free block lists must contain only pointers to valid free blocks

 The original pointer to unhandled exception handler must be

restored

 In order to resume the process a Divide by Zero exception is

triggered and exception handler performs stack unwind

operation, restores registers’ contents and resumes process

execution

Avoiding process crash

Roll back on SEH and fixing the Heap

66Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Summary

 RPC mechanism is a great example of complex

technological component in the context of security

 Existance of a single vulnerability in such a critical

component has a great potential impact on security

of a whole system

 A complexity of RPC mechanism is one of the

biggest difficulty, which can be however reduced by

application of effective reverse engineering tools

 Verification of vulnerability’s impact is a complex

task and its exploitation requires often a lot of work

and time

67Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

Thank you

for your attention!

