
PRESENTATION TITLE GOES HERE NVML: Implementing Persistent

Memory Applications

Paul von Behren / Intel Corporation

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

SNIA Legal Notice

The material contained in this tutorial is copyrighted by the SNIA unless
otherwise noted.

Member companies and individual members may use this material in
presentations and literature under the following conditions:

Any slide or slides used must be reproduced in their entirety without modification

The SNIA must be acknowledged as the source of any material used in the body of
any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.

Neither the author nor the presenter is an attorney and nothing in this
presentation is intended to be, or should be construed as legal advice or an
opinion of counsel. If you need legal advice or a legal opinion please
contact your attorney.

The information presented herein represents the author's personal opinion
and current understanding of the relevant issues involved. The author, the
presenter, and the SNIA do not assume any responsibility or liability for
damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

2

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Abstract

NVML is an open-source library that simplifies development of

applications utilizing byte-addressable persistent memory (PM). The

SNIA NVM Programming Model describes basic behavior for a

persistent memory-aware file system enabling applications to directly

access persistent memory. NVML extends the SNIA programming

model providing application APIs that help applications create and

update data structures in persistent memory avoiding pitfalls such as

persistent memory leaks and inconsistencies due to unexpected

hardware or software restarts. This tutorial includes an overview of

persistent memory hardware (NVDIMMs) and the SNIA NVM

Programming Model, then describes the APIs provided by NVML and

examples showing how these APIs may be used by applications.

3

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Hardware supporting persistent memory (PM)

Yesterday: battery backed RAM

Today: NVDIMMs with DRAM and flash

On power down, RAM copied to flash; on power

up, copy back to RAM

Emerging NVDIMMs: Phase Change Memory,

Memristor, many others

Offer ~ 1000x speed-up over NAND, closer to DRAM

Characteristics as seen by software

Load/Store (memory instructions) accessible

Would reasonably stall CPU for a load instruction

No paging (at least not by the OS)

4

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Software access to PM

Could treat PM like disks/SSDs

Existing software works, faster than with flash

But we still have block stack latency (Intel SSD study)

With Next Generation NVM, hardware is no longer the bottleneck

5

*

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

SNIA goals

Define a programming model for direct access to PM

No kernel code in data path, use existing load/store instructions

Use a general approach for different types of PM

hardware

Use existing OS solutions where appropriate

E.g., use existing file permissions rather than invent something new

Specify behavior, not a specific API

Allow OS developers to implement APIs appropriate to the OS

Support application developer goals for power-fail safe

atomicity

6

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Legacy memory mapped files

Background: memory mapped files

backed by block devices

POSIX mmap(), Windows

MapViewOfView()

Disk file mapped to virtual memory

Paged to memory when referenced

Msync() flushes dirty pages to disk

Programming Model (POSIX)

mmap()

load/store commands to virtual memory

msync() to assure changes are persistent

7

User

Space

Kernel

Space

Application

Standard

File API

Legacy

File System

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Persistent memory programming model

With PM, no paging between

persistence and volatile memory

Memory map command causes PM

file to be mapped to app's virtual

memory

Sync command flushes CPU cache

And PM device flush as needed

Load/Store commands directly

access PM

Standard file API still works

Perhaps less performant

8

Persistent Memory

User

Space

Kernel

Space

 Application

Load/

Store
Standard

File API

PM-Aware

File System

MMU

Mappings

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Role of NVML

Open-source library that simplifies

development of apps using byte-

addressable PM.

Builds on the SNIA model

APIs to help developers use PM

Works with existing CPU hardware

Support new features as they emerge

Doesn't require language extensions

We recognize that they will improve

developer experience

But we don't want to wait for standard

language support, or drive developers

to non-standard languages

9

Persistent Memory

User

Space

Kernel

Space

 Application

Load/

Store
Standard

File API

PM-Aware

File System

MMU

Mappings

NVML

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Libraries provided by NVML

libpmem provides low level persistent memory support.

The libraries below are implemented using libpmem.

libpmemobj provides a transactional object store,

providing memory allocation, transactions, and general

facilities for persistent memory programming

libpmemblk supports arrays of PM-resident blocks, all

the same size, that are atomically updated

libpmemlog provides a PM-resident log file

See the libpmem page for documentation and examples.

libvmem turns a pool of persistent memory into a

volatile memory pool, similar to the system heap

10

http://pmem.io/nvml/libpmem

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Libpmem: low level PM support

Flush-to-persistence support

Includes PM optimized memmove and friends

Other NVML libraries are implemented using libpmem

May be used without using other NVML libraries

#include <libpmem.h>

cc ... -lpmem (or -lpmem_debug)

int pmem_is_pmem(void *addr, size_t len);
void pmem_persist(void *addr, size_t len, int flags);
void pmem_flush(void *addr, size_t len, int flags);
void pmem_fence(void);
void pmem_drain(void);

11

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Libpmemobj: transactional

object store

General purpose (unlike the specialized libpmemblk,

libpmemlog, libvmem)

"Object" does not imply some specific object store

implementation; refers to any memory container for data

Library maps entire memory pool (direct access file) into

program’s address space

Programmer designs the desired layout

Defines data structures

Uses libpmemobj to coordinate all accesses

12

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemobj:
guiding design principles

Programmer can load/read any data structure without

having to copy it

Load instructions directly access data from its resting place in

PM

Program can write to a data structure directly after telling

the library the structure is changing as part of a

transaction

Library maintains undo log, rolls back interrupted transactions on

recovery

13

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemobj:
guiding design principles

Programmer is responsible for multi-threaded locking

But locking/unlocking can be tied to transactions for

programming convenience

All pointers in pmem are really Object IDs

OIDs can point between pmem pools

OIDs can be mapped to different memory addresses each time

the programs runs and they still work correctly

14

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemobj:
macros to help using OIDs

struct node {

 OID_TYPE(struct node) next;

 int val;

};

Declares a linked list structure with a next pointer that is

an OID

Macros will use struct node for type checking at compile time

to make sure next is always used as a pointer to that type

15

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemobj:
transaction example

/* “pop” is a pool handle… */

TX_BEGIN(pop)

 newnode = TX_ALLOC(struct node, 1);

 DIRECT(newnode)->val = 123;

 DIRECT(newnode)->next = NULL;

 DIRECT(list_head)-> next = newnode;

TX_END

The effects of operations between BEGIN/END happen

fully or not at all (including memory allocation)

16

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemobj:
providing atomic operations

Library provides some common operations

Atomic with respect to other threads

Atomic with respect to power loss – style interruptions

Don’t need transactions to use these

These operations often eliminate the need to use a

transaction

Or eliminate the need for a nested transaction

17

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemobj:
atomic list operations

Move element between two lists

MT safe, atomic

After crash, element will be on one list

Allocate an element and place on a list

After crash, element will be on list or never allocated

Remove an element from a list and free

After crash, element will be on list or freed

18

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Libpmemblk: PM carved into blocks

Pool is divided up into a specific chunk size

Single block writes to the pool are atomic

Ideal usage: user space PM cache

APIs
PMEMblkpool *pmemblk_open(const char *path, size_t bsize);

PMEMblkpool *pmemblk_create(const char *path, size_t bsize,

 size_t poolsize, mode_t mode);

void pmemblk_close(PMEMblkpool *pbp);

size_t pmemblk_nblock(PMEMblkpool *pbp);

int pmemblk_read(PMEMblkpool *pbp, void *buf, off_t blockno);

int pmemblk_write(PMEMblkpool *pbp, const void *buf, off_t blockno);

int pmemblk_set_zero(PMEMblkpool *pbp, off_t blockno);

int pmemblk_set_error(PMEMblkpool *pbp, off_t blockno);

19

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemlog: (append-mostly) log

Common usage: append entries to log file

Append operation very efficient

Read through (for log shipping) also optimized

APIs

PMEMlogpool *pmemlog_open(const char *path);

PMEMlogpool *pmemlog_create(const char *path,

 size_t poolsize, mode_t mode);

void pmemlog_close(PMEMlogpool *plp);

int pmemlog_append(PMEMlogpool *plp, const void *buf, size_t count);

int pmemlog_appendv(PMEMlogpool *plp,

 const struct iovec *iov, int iovcnt);

off_t pmemlog_tell(PMEMlogpool *plp);

void pmemlog_rewind(PMEMlogpool *plp);

void pmemlog_walk(...); /* walk log and call callback function */

20

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libpmemlog : legacy append APIs

The writev() system call is often used:

writev(fd, iov, iovcnt)

Handy for grabbing header, data from

separate locations in memory

Not atomic

Well, POSIX says “atomic with

respect to other reads and writes”

Certainly not power-fail atomic

Fairly long code path

Includes file system

Potentially multiple trips through the

block stack for metadata updates

writev

hdr data

data

file
system

driver

21

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

The PMEMlog API

APIs
PMEMlog *pmemlog_map(int fd);

void pmemlog_unmap(PMEMlog *plp);

size_t pmemlog_nbyte(PMEMlog *plp);

int pmemlog_append(PMEMlog *plp, const void *buf, size_t count);

int pmemlog_appendv(PMEMlog *plp, const struct iovec *iov, int iovcnt);

off_t pmemlog_tell(PMEMlog *plp);

void pmemlog_rewind(PMEMlog *plp);

void pmemlog_walk(PMEMlog *plp, size_t chunksize ,

 int (*process_chunk)(const void *buf, size_t len, void *arg),

 void *arg);

22

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Algorithm converted for PM

pmemlog_appendv(plp, iov, iovcnt)

Atomic "gather append"

Uses direct access store to PM

And appropriate CPU flush operations

No system calls

appendv

hdr data

data

 Persistent Memory

23

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

libvmem: volatile memory allocator

Allows caller to

use PM as volatile memory via malloc/free-like calls

Leverage capacity

Doesn’t bother flushing for durability

Vmem pools “reset” on application restart

We are adding facility to intercept malloc/free in

unmodified code

Uses LD_PRELOAD

24

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

On being a good citizen

The library never:

Exits

Forks or Joins threads

Uses signals

Calls select()

Caller can supply:

Custom malloc(), etc.

Debug version of the library:

Traces all calls, errors, lots of details

Includes assertion checking

25

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

The SNIA model

and implementation status

NVM Programming Model spec published in 2012

Update in SNIA member review

clarifies assumptions for kernel; and CPU behavior

http://www.snia.org/tech_activities/standards/curr_standards/npm

Linux support progressing

Has been in development review for a year

Hoping for integration kernel in 1-2 months

Expecting inclusion in experimental distros in 3-4 months

Implemented as DAX (direct access) mount option for EXT4
mkfs.ext4 /dev/pmem0

mount -o dax /dev/pmem0 /mnt/pmem/

Support for other file systems started

26

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

NVML status and more information

NVML is still under development and is not yet ready for

production use

libpmemobj in early development, other modes are implemented

Stable API planned for end of March 2015

Stable implementation planned for September 2015

http://pmem.io/nvml/

has blog articles and links to NVML source

https://github.com/pmem/nvml/

The source repo

https://github.com/pmem

Related work: POC adapts of OSS, valgrind macros

27

http://pmem.io/nvml/
http://pmem.io/nvml/
http://pmem.io/nvml/
http://pmem.io/nvml/
https://github.com/pmem/nvml/
https://github.com/pmem/nvml/
https://github.com/pmem
https://github.com/pmem

NVML: Implementing Persistent Memory Applications

Approved SNIA Tutorial © 2015 Storage Networking Industry Association. All Rights Reserved.

Attribution & Feedback

28

Please send any questions or comments regarding this SNIA

Tutorial to tracktutorials@snia.org

The SNIA Education Committee thanks the following

Individuals for their contributions to this Tutorial.

Authorship History

Paul von Behren: February 17, 2015

Updates:

Additional Contributors

Andy Rudoff

mailto:tracktutorials@snia.org

