
Graphics Processing Units (GPUs):
Architecture and Programming

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.3033-004

CUDA
Advanced Techniques 2

Alignment

Memory Alignment

• Memory access on the GPU works much
better if the data items are aligned at
64 byte boundaries.

• Hence, allocating 2D (or 3D) arrays so
that every row starts at a 64-byte
boundary address will improve
performance.

• Difficult to do for a programmer!

Pitch

Rows

Columns

Pitch

Padding

2D Arrays

• CUDA offers special versions of:
– Memory allocation of 2D arrays so that

every row is padded (if necessary). The
function determines the best pitch and
returns it to the program. The function
name is cudaMallocPitch()

– Memory copy operations that take into
account the pitch that was chosen by the
memory allocation operation. The function
name is cudaMemcpy2D()

cudaMallocPitch(void** devPtr,
size_t* pitch,
size_t widthInBytes,
size_t height)

device array

• This allocates at least width (in bytes) X height array.
• The value returned in pitch is the width in bytes of the

allocation.
• The above function determines the best pitch and

returns it to the program.
• It is strongly recommends the usage of this function for

allocating 2D (and 3D) arrays.

Will return the pitch

cudaError_t cudaMemcpy2D (void * dst,
size_t dpitch,
const void * src,
size_t spitch,
size_t width,
size_t height,
enum cudaMemcpyKind kind)

• dst - Destination memory address
• dpitch - Pitch of destination memory
• src - Source memory address
• spitch - Pitch of source memory
• width - Width of matrix transfer (in bytes)
• height - Height of matrix transfer (rows)
• kind - Type of transfer

the widths in memory in bytes
including any padding added
to the end of each row

Example
int main(int argc, char * argv[])

{

float * A, *dA;

size_t pitch;

A = (float *)malloc(sizeof(float)*N*N);

cudaMallocPitch(&dA, &pitch, sizeof(float)*N, N);

//copy memory from unpadded array A of 760 by 760 dimensions

//to more efficient dimensions on the device

cudaMemcpy2D(dA,pitch,A,sizeof(float)*N,sizeof(float)*N,N,
cudaMemcpyHostToDevice);

…

}

So..

Pitch is a good technique to speedup memory access

• There are two drawbacks that you have to live with:
• Some wasted space

• A bit more complicated elements access

Multi-GPU System

Nebulae: #10 in Top 500 list (June 2012)

Intel Xeon X5650 and Nvidia GPU Tesla c2050

Tsubame 2.0: #5 in Top 500 list

Intel Xeon X5670 and Nvidia GPU

Flavors

• Multiple GPUs in the same node (e.g. PC)

• Multi-node system (e.g. MPI).

Multi-GPU configuration is here to stay!

Hardware Example:
Tesla S870 Server

Hardware Example:
Tesla S870 Server

Connected to a single-host

Hardware Example:
Tesla S870 Server

Connected to a two host systems

Why Multi-GPU Solutions

• Scaling-up performance

• Another level of parallelism

• Power

• Reliability

// Run independent kernel on each CUDA device
int numDevs= 0;
cudaGetDeviceCount(&numDevs);
…
for (int d = 0; d < numDevs; d++) {

cudaSetDevice(d);
kernel<<<blocks, threads>>>(args);

}

CUDA Support

• cudaGetDeviceCount(int * count)
– Returns in *count the number of devices

• cudaGetDevice (int * device)
– Returns in *device the device on which the

active host thread executes the device
code.

CUDA Support

• cudaSetDevice(devID)
– Device selection within the code by

specifying the identifier and making CUDA
kernels run on the selected GPU.

Peer-to-Peer Access

CUDA Support:
Peer to peer memory Access

• Peer-to-Peer Memory Access
– cudaDeviceEnablePeerAccess() to check

peer access

What we want to do …

Does the device support P2P?

cudaError_t cudaDeviceCanAccessPeer
(int* canAccessPeer,

int device,

int peerDevice)

• Returns 1 in canAccessPeer if device can
access peerDevice.

• You need to check both directions.

cudaError_t cudaDeviceEnablePeerAccess (
int peerDevice,
unsigned int flags)

peerDevice
ID

Always set
to zero

Access granted by this call is unidirectional (i.e. current device can access peer device)

cudaError_t cudaDeviceDisablePeerAccess (
int peerDevice)

Then …

CUDA Support
Peer to peer memory Copy

• Using cudaMemcpyPeer()

cudaMemcpyPeer (void * dst,
int dstDevice,
const void * src,
int srcDevice,
size_t count)

Size of
memory
copy in
bytes

•This function is asynchronous with respect to the host.
•This function is serialized with respect to all pending and future
asynchronous work into the current device.

Important: If GPU supports Unified Virtual Address,
then no need to the above function.

(We will see shortly)

The Evolution of CPU-GPU
Memory Operations

Milestones
• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Managed Memory (CUDA 6.0 and up)

We already saw this!

The Evolution of CPU-GPU
Memory Operations

Milestones
• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Unified Memory (CUDA 6.0 and up)

Unified Virtual Address
Space (UVA)

• From CUDA 4.0

• puts all CUDA execution, CPU and GPU,
in the same address space

• Requires Fermi-class GPU and above

• Requires 64-bit application

• Call cudaGetDeviceProperties() for all
participating devices and check
unifiedAddressing flag

Easier Memory Copy

• Between host and multiple devices:
cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• Between two devices:
cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• cudaMemcpy() knows that our buffers are on different
devices

• (UVA), will do a P2P copy

• Note that this will transparently fall back to a normal copy
through the host if P2P is not available

Example:
Direct N-Body

• Simulation of dynamical system of N-
bodies

• O(N2)
• Compute-Bound application
• Assume we have K GPUs

– So each GPU is responsible for N/K bodies

• For each iteration:
– Get all N up-to-date positions onto each GPU
– Compute accelerations)N/k per GPU(

– Integrate position, velocity)N/k per GPU(

Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host

– Zero-copy shared host array
(cudaMallocHost())

– Per-device arrays with peer-to-peer
exchange transfers (UVA)

– Peer-to-peer memory access

N-Body
Explicit Copy Via Host

for(;;) {
for (int d = 0; d < devs; d++) {

cudaSetDevice(d);
cudaMemcpyAsync(pos[d], in, devs*bytes, H2D, s[d]);

}
for (int d = 0; d < devs; d++) {

cudaSetDevice(d);
integrate<<<b, t, 0, s[d]>>>(pos[d], otherArgs);

}
for (int d = 0; d < devs; d++) {

cudaSetDevice(d);
cudaMemcpyAsync(&out[offset[d]], pos[d], bytes, D2H,
s[d]);

}

Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host
– Zero-copy shared host array (direct device

access to host memory, through PCIe, which is
slow) … cudaMallocHost() or cudaHostAlloc() … so,
use it when:
• You copy data to the device only once and access it there

AND/OR
• You generate data on the device and copy back to host

without reuse AND/OR
• Your kernel(s) that access the memory are compute

bound

– UVA
– Peer-to-peer memory access

N-Body
Zero-copy

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

Allocates size bytes of host memory that is page-locked
and accessible to the device.

Important: If GPU supports Unified Virtual Address,
then no need to the above function.

(We will see shortly)

N-Body
Zero-copy

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

for (int d = 0; d < devCount; d++) {
cudaSetDevice(d);
cudaHostGetDevicePointer(&dout[d], hostPtr, 0);
cudaHostGetDevicePointer(&din[d], hostPtr, 0);

}
pointer that will be passed to the device to access host memory

Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host
– Zero-copy shared host array

(cudaMallocHost())
– Per-device peer-to-peer exchange transfers

• UVA as we have seen
• Non-UVA:

– cudaMemcpyPeer()
– Copies memory from one device to memory on another

device

– Peer-to-peer memory access

Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host
– Zero-copy shared host array

(cudaMallocHost())
– Per-device peer-to-peer exchange transfers
– Peer-to-peer memory access

• Pass pointer to memory on device A to kernel
running on device B

• Requires UVA
• Must first enable peer access for every pair:
• cudaDeviceEnablePeerAccess

The Evolution of CPU-GPU
Memory Operations

Milestones
• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Unified Memory (CUDA 6.0 and up)

Source of the next few slides:
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

Unified Memory

• From Kepler architecture (CC 3.0 and up)

• Creates a pool of managed memory that is
shared between the CPU and GPU.

• Managed memory is accessible to CPU and
GPU with single pointers.

• Under the hood: data automatically
migrates from CPU to GPU.

Unified Memory

source: https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

Isn’t it like UVA?

• Unified memory depends on UVA.

• UVA does NOT move data automatically
between CPU and GPU.

• Unified memory gives higher performance
than UVA.

Advantages of Unified Memory

• Ease of programming
• Data is migrated on demand.

– offer the performance of local data on the
GPU

– while providing the ease of use of globally
shared data

• Very efficient with complex data
structures (e.g. linked lists, structures
with pointers, …).

Note: The physical location of data is invisible to the program
and may be changed at any time

Disadvantages of Unified Memory

• Carefully tuned CUDA program that
uses streams to efficiently overlap
execution with data transfers may
perform better than a CUDA program
that only uses Unified Memory.

How to allocated managed memory?

• Option 1: cudaMallocManaged() routine,
which is semantically similar to
cudaMalloc()

• Option 2: defining a global
__managed__ variable, which is
semantically similar to a __device__
variable

cudaMallocManaged()
int main() {

int *ret;

cudaMallocManaged(&ret, 1000 * sizeof(int));

AplusB<<< 1, 1000 >>>(ret, 10, 100);
cudaDeviceSynchronize();

for(int i=0; i<1000; i++)
printf("%d: A+B = %d\n", i, ret[i]);

cudaFree(ret);
return 0;

}

__managed__
__device__ __managed__ int ret[1000];

__global__ void AplusB(int a, int b) {

ret[threadIdx.x] = a + b + threadIdx.x;

}

int main() {

AplusB<<< 1, 1000 >>>(10, 100);

cudaDeviceSynchronize();

for(int i=0; i<1000; i++)

printf("%d: A+B = %d\n", i, ret[i]);

return 0;

}

Final Notes About Unified Memory
• Coherence is ahead of performance in

runtime implementation. Data has to be
coherent across CPUs and GPUs in the
system.

• Page faulting is implemented in systems
with compute capability 6.x and up
cudaMallocManaged will not run out of
memory as long as there is enough system
memory available for the allocation.

• Before that, all managed data must move
to the GPU before kernel launch
(automatically of course) Devices of
compute capability lower than 6.x cannot
allocate more managed memory than the
physical size of GPU memory

Dynamic Parallelism

The Usual case
• Data travels back

and forth between
the CPU and GPU
many times.

• Reason: because
of the inability of
the GPU to create
more work on
itself depending
on the data.

With Dynamic Parallelism:

• GPU can generate
work on itself without
involvement of CPU.

• Permits Dynamic Run
time decisions.

• Kernels can start new
kernels

• Streams can spawn
new streams.

CUDA 5.0 and later on devices of Compute Capability 3.5 or higher

A kernel can call another kernel that calls another kernel up to 24 nested …
Subject to the availability of resources.

When do we need that?
• Nested for-loop for example

• The need for adaptive grids

Example
of fluid simulation

Source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/

Important
• As in the host, device kernel launch is

asynchronous.
• Successful execution of a kernel launch means

that the kernel is queued;
– it may begin executing immediately,
– or it may execute later when resources become

available.
• Note that every thread that encounters a

kernel launch executes it. So be careful!
• Child grids always complete before the parent

grids that launch them, even if there is no
explicit synchronization.

Important
• The CUDA Device Runtime guarantees that parent

and child grids have a fully consistent view of global
memory when the child starts and ends.

Source: http://devblogs.nvidia.com/parallelforall/cuda-dynamic-parallelism-api-principles/

Important

• By default, grids launched within a thread block are
executed sequentially.

• This happens even if grids are launched by
different threads within the block.

• To deal with this drawback streams
• streams created on the host cannot be used on the

device.
• Streams created in a block can be used by all

threads in that block.

cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

Important

• If the parent kernel needs results
computed by the child kernel to do its
own work it must ensure that the
child grid has finished execution before
continuing
– by explicitly synchronizing using

cudaDeviceSynchronize(void).
– This function waits for completion of all

grids previously launched by the thread
block from which it has been called.

Example

void threadBlockDeviceSynchronize(void)
{

__syncthreads();

if(threadIdx.x == 0)

cudaDeviceSynchronize();

__syncthreads();

}

To ensure all launches
have been made.

What do we gain?

• Reduction in trips to CPU

• Recursion

• More freedom where data generated by
the kernel decides how to partition the
data for lower-level of the hierarchy.

How to Compile and Link?

nvcc -arch=sm_35 -rdc=true myprog.cu -lcudadevrt

generate relocatable device code, required for later linking

Hyper-Q

Till Fermi
• Only one work queue

• Even though Fermi allows 16 concurrent
kernels.

• GPU resources not fully utilized

Fermi already supported 16 way
concurrency of kernel launches
from separate streams
Pending work is bottlenecked on 1
work queue.
GPU’s computational resources not
being utilized fully.

With Hyper-Q

• Starting with Kepler

• We can have connection from multiple
CUDA streams, Message Passing
Interface (MPI) processes, or multiple
threads of the same process.
– 32 concurrent work queues, can receive

work from 32 process cores at the same
time.

– 3X Performance increase on Fermi

With Hyper-Q

Conclusions

• There are many performance
enhancement techniques in our arsenal:
– Alignment
– Streams
– Pinned pages
– Asynchronous execution
– Dynamic Parallelism
– Multi-GPU

• There are tools to help you!

