

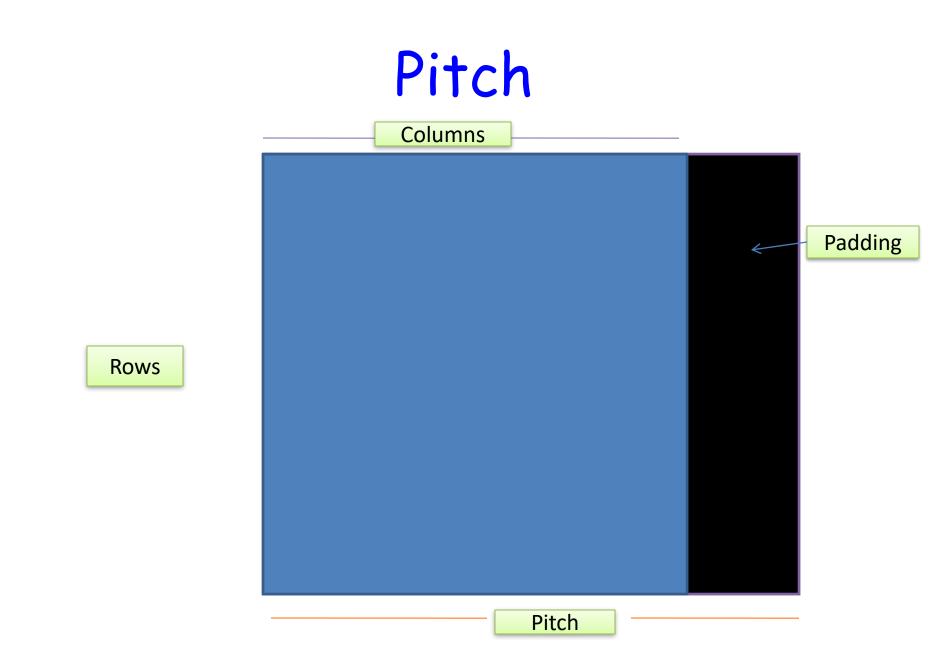
CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming CUDA Advanced Techniques 2

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Alignment

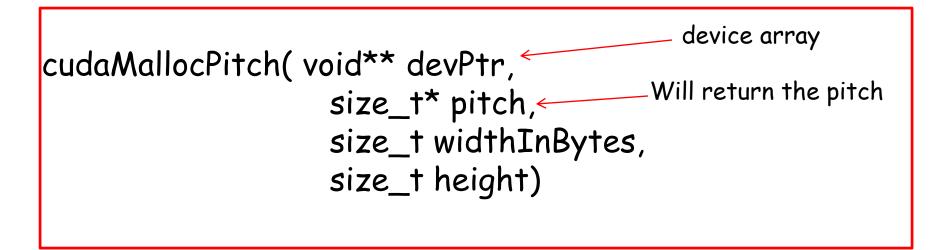
Memory Alignment

- Memory access on the GPU works much better if the data items are aligned at 64 byte boundaries.
- Hence, allocating 2D (or 3D) arrays so that every row starts at a 64-byte boundary address will improve performance.
- Difficult to do for a programmer!

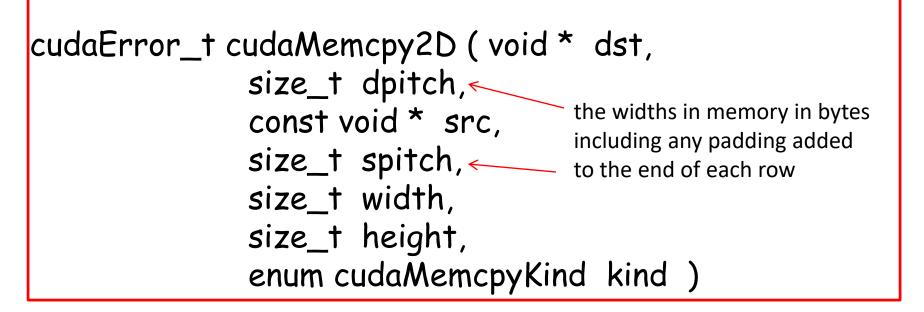


2D Arrays

- CUDA offers special versions of:
 - Memory allocation of 2D arrays so that every row is padded (if necessary). The function determines the best pitch and returns it to the program. The function name is cudaMallocPitch()
 - Memory copy operations that take into account the pitch that was chosen by the memory allocation operation. The function name is cudaMemcpy2D()



- This allocates at least width (in bytes) X height array.
- The value returned in pitch is the width in bytes of the allocation.
- The above function determines the best pitch and returns it to the program.
- It is strongly recommends the usage of this function for allocating 2D (and 3D) arrays.



- *dst* Destination memory address
- dpitch Pitch of destination memory
- src Source memory address
- *spitch* Pitch of source memory
- width Width of matrix transfer (in bytes)
- *height* Height of matrix transfer (rows)
- kind Type of transfer

```
Example
```

```
int main(int argc, char * argv[])
{
    float * A, *dA;
    size_t pitch;
```

}

```
A = (float *)malloc(sizeof(float)*N*N);
cudaMallocPitch(&dA, &pitch, sizeof(float)*N, N);
```

//copy memory from unpadded array A of 760 by 760 dimensions
//to more efficient dimensions on the device
cudaMemcpy2D(dA,pitch,A,sizeof(float)*N,sizeof(float)*N,N,
cudaMemcpyHostToDevice);

So..

Pitch is a good technique to speedup memory access

- There are two drawbacks that you have to live with:
 - Some wasted space
 - A bit more complicated elements access

Multi-GPU System

Nebulae: #10 in Top 500 list (June 2012)



Intel Xeon X5650 and Nvidia GPU Tesla c2050

Tsubame 2.0: #5 in Top 500 list

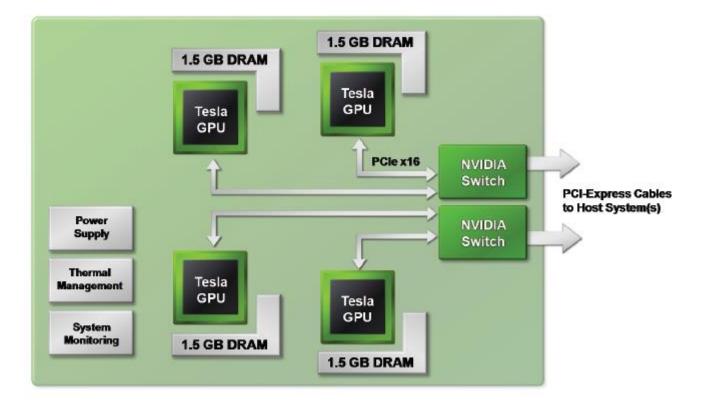
Intel Xeon X5670 and Nvidia GPU

Flavors

- Multiple GPUs in the same node (e.g. PC)
- Multi-node system (e.g. MPI).

Multi-GPU configuration is here to stay!

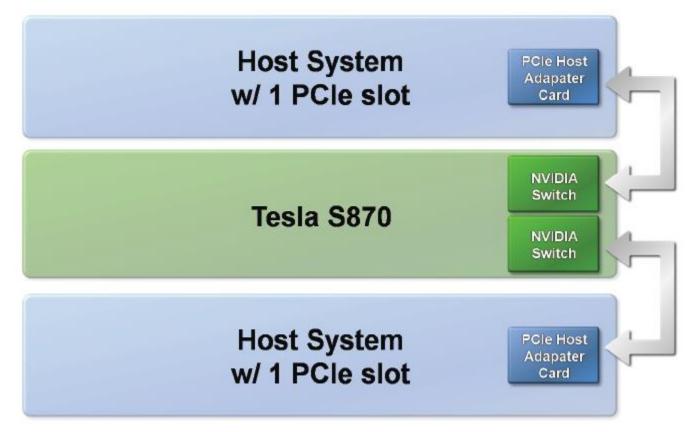
Hardware Example: Tesla S870 Server



Hardware Example: Tesla S870 Server

Connected to a single-host

Hardware Example: Tesla S870 Server



Connected to a two host systems

Why Multi-GPU Solutions

- Scaling-up performance
- Another level of parallelism
- Power
- Reliability

```
// Run independent kernel on each CUDA device
int numDevs= 0;
cudaGetDeviceCount(&numDevs);
...
for (int d = 0; d < numDevs; d++) {
    cudaSetDevice(d);</pre>
```

kernel<<<blocks, threads>>>(args);

CUDA Support

- cudaGetDeviceCount(int * count)
 Returns in *count the number of devices
- cudaGetDevice (int * device)
 - Returns in *device the device on which the active host thread executes the device code.

CUDA Support

- cudaSetDevice(devID)
 - Device selection within the code by specifying the identifier and making CUDA kernels run on the selected GPU.

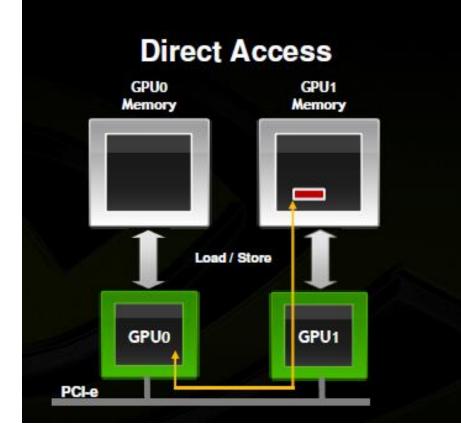
Peer-to-Peer Access

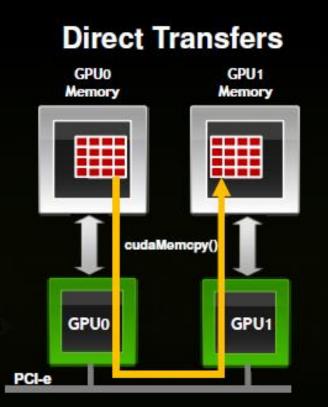
CUDA Support: Peer to peer memory Access

- Peer-to-Peer Memory Access
 - cudaDeviceEnablePeerAccess() to check peer access

```
// Set device 0 as current
cudaSetDevice(0);
float* p0;
size t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);
                                    // Allocate memory on device 0
                                    // Launch kernel on device 0
MyKernel<<<1000, 128>>>(p0);
cudaSetDevice(1);
                                    // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0);
                                    // Enable peer-to-peer access
                                    // with device 0
// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);
```

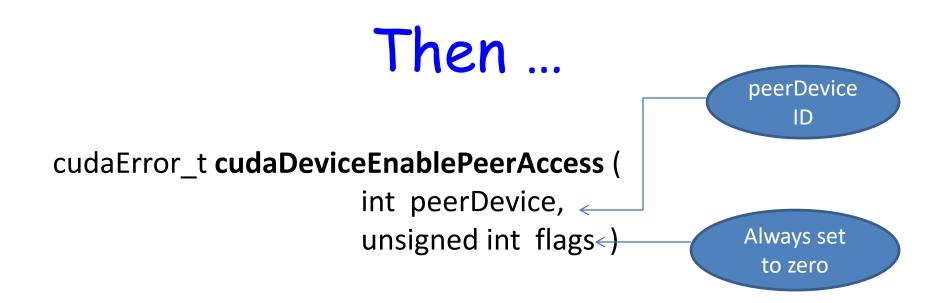
What we want to do ...





Does the device support P2P?

- cudaError_t cudaDeviceCanAccessPeer (int* canAccessPeer, int device, int peerDevice)
- Returns 1 in canAccessPeer <u>if device can</u> <u>access peerDevice.</u>
- You need to check both directions.

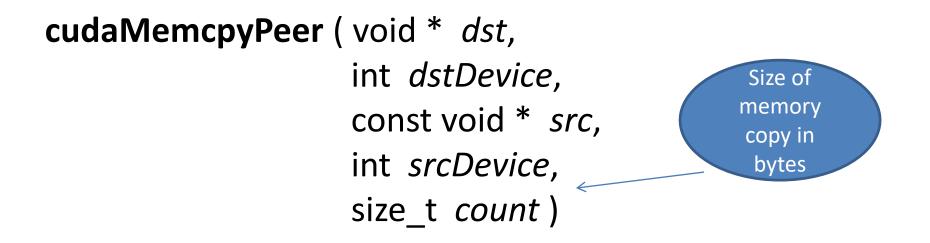


Access granted by this call is unidirectional (i.e. current device can access peer device)

cudaError_t cudaDeviceDisablePeerAccess (int peerDevice) CUDA Support Peer to peer memory Copy

Using cudaMemcpyPeer()

```
cudaSetDevice(0);
                                     // Set device 0 as current
float* p0;
size t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);
                                     // Allocate memory on device 0
                                     // Set device 1 as current
cudaSetDevice(1);
float* p1;
cudaMalloc(&p1, size);
                                     // Allocate memory on device 1
                                     // Set device 0 as current
cudaSetDevice(0);
MyKernel<<<1000, 128>>>(p0);
                                     // Launch kernel on device 0
cudaSetDevice(1);
                                     // Set device 1 as current
cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1
MyKernel<<<1000, 128>>>(p1);
                                     // Launch kernel on device 1
```



- •This function is asynchronous with respect to the host.
- •This function is serialized with respect to all pending and future asynchronous work into the current device.

Important: If GPU supports Unified Virtual Address, then no need to the above function. (We will see shortly)

The Evolution of CPU-GPU Memory Operations

Milestones

- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Managed Memory (CUDA 6.0 and up)

The Evolution of CPU-GPU Memory Operations

Milestones

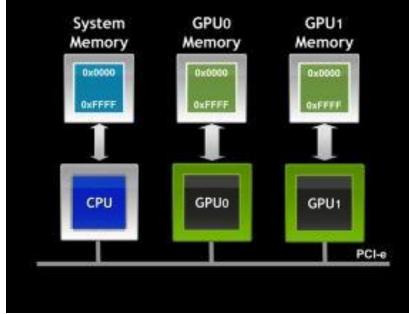
- Traditional cudaMemcpy()
- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Unified Memory (CUDA 6.0 and up)

Unified Virtual Address Space (UVA)

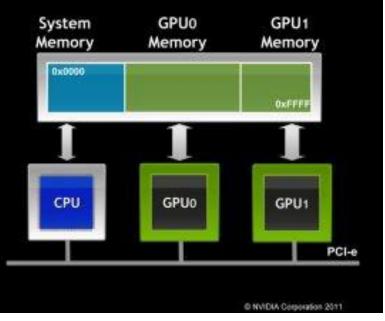
- From CUDA 4.0
- puts all CUDA execution, CPU and GPU, in the same address space
- Requires Fermi-class GPU and above
- Requires 64-bit application
- Call cudaGetDeviceProperties() for all participating devices and check unifiedAddressing flag

Unified Virtual Addressing Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces



UVA : Single Address Space



Easier Memory Copy

• Between host and multiple devices:

cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• Between two devices:

cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

- cudaMemcpy() knows that our buffers are on different devices
- (UVA), will do a P2P copy
- Note that this will transparently fall back to a normal copy through the host if P2P is not available

Example: Direct N-Body

- Simulation of dynamical system of Nbodies
- O(N²)
- Compute-Bound application
- Assume we have K GPUs
 - So each GPU is responsible for N/K bodies
- For each iteration:
 - Get all N up-to-date positions onto each GPU
 - Compute accelerations (N/k per GPU)
 - Integrate position, velocity (N/k per GPU)

Example: Direct N-Body

- Sharing data among GPUs: options
 - -Explicit copies via host
 - Zero-copy shared host array (cudaMallocHost())
 - Per-device arrays with peer-to-peer
 exchange transfers (UVA)
 - Peer-to-peer memory access

```
N-Body
          Explicit Copy Via Host
for(;;) {
  for (int d = 0; d < devs; d++) {
     cudaSetDevice(d);
     cudaMemcpyAsync(pos[d], in, devs*bytes, H2D, s[d]);
  for (int d = 0; d < devs; d++) {
     cudaSetDevice(d);
     integrate<<<b, t, 0, s[d]>>>(pos[d], otherArgs);
  for (int d = 0; d < devs; d++) {
     cudaSetDevice(d);
     cudaMemcpyAsync(&out[offset[d]], pos[d], bytes, D2H,
     s[d]);
```

Example: Direct N-Body

- Sharing data among GPUs: options
 - Explicit copies via host
 - Zero-copy shared host array (direct device access to host memory, through PCIe, which is slow) ... cudaMallocHost() or cudaHostAlloc() ... so, use it when:
 - You copy data to the device only once and access it there AND/OR
 - You generate data on the device and copy back to host without reuse AND/OR
 - Your kernel(s) that access the memory are compute bound
 - UVA
 - Peer-to-peer memory access

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

Allocates size bytes of host memory that is page-locked and accessible to the device.

Important: If GPU supports Unified Virtual Address, then no need to the above function. (We will see shortly)

N-Body Zero-copy

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

for (int d = 0; d < devCount; d++) {
 cudaSetDevice(d);
 cudaHostGetDevicePointer(&dout[d], hostPtr, 0);
 cudaHostGetDevicePointer(&din[d], hostPtr, 0);</pre>

pointer that will be passed to the device to access host memory

Example: Direct N-Body

- Sharing data among GPUs: options
 - Explicit copies via host
 - Zero-copy shared host array (cudaMallocHost())
 - Per-device peer-to-peer exchange transfers
 - UVA as we have seen
 - Non-UVA:
 - cudaMemcpyPeer()
 - Copies memory from one device to memory on another device

Peer-to-peer memory access

Example: Direct N-Body

- Sharing data among GPUs: options
 - Explicit copies via host
 - Zero-copy shared host array (cudaMallocHost())
 - Per-device peer-to-peer exchange transfers
 - Peer-to-peer memory access
 - Pass pointer to memory on device A to kernel running on device B
 - Requires UVA
 - Must first enable peer access for every pair:
 - cudaDeviceEnablePeerAccess

The Evolution of CPU-GPU Memory Operations

Milestones

- Traditional cudaMemcpy()
- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Unified Memory (CUDA 6.0 and up) Source of the next few slides: https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

Unified Memory

- From Kepler architecture (CC 3.0 and up)
- Creates a pool of managed memory that is shared between the CPU and GPU.
- Managed memory is accessible to CPU and GPU with single pointers.
- Under the hood: data automatically migrates from CPU to GPU.

Unified Memory

CPU Code

```
void sortfile(FILE *fp, int N) {
    char *data;
    data = (char *)malloc(N);
```

fread(data, 1, N, fp);

```
qsort(data, N, 1, compare);
```

```
use_data(data);
```

```
free(data);
```

CUDA 6 Code with Unified Memory

```
void sortfile(FILE *fp, int N) {
    char *data;
    cudaMallocManaged(&data, N);
```

```
fread(data, 1, N, fp);
```

```
qs ort <<<...>>> (data .N .1.compare);
cu daDeviceSynch ronize();
```

```
use_data(data);
```

```
cudaFree(data);
```

Ŋ

source: https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

Isn't it like UVA?

- Unified memory depends on UVA.
- UVA does NOT move data automatically between CPU and GPU.
- Unified memory gives higher performance than UVA.

Advantages of Unified Memory

- Ease of programming
- Data is migrated on demand.
 - offer the performance of local data on the GPU
 - while providing the ease of use of globally shared data
- Very efficient with complex data structures (e.g. linked lists, structures with pointers, ...).

Note: The physical location of data is invisible to the program and may be changed at any time

Disadvantages of Unified Memory

 Carefully tuned CUDA program that uses streams to efficiently overlap execution with data transfers may perform better than a CUDA program that only uses Unified Memory.

How to allocated managed memory?

- Option 1: cudaMallocManaged() routine, which is semantically similar to cudaMalloc()
- Option 2: defining a global
 <u>managed</u> variable, which is
 semantically similar to a <u>device</u>
 variable

cudaMallocManaged()

int main() {

int *ret;

cudaMallocManaged(&ret, 1000 * sizeof(int));

```
AplusB<<< 1, 1000 >>>(<u>ret</u>, 10, 100);
cudaDeviceSynchronize();
```

```
for(int i=0; i<1000; i++)
printf("%d: A+B = %d\n", i, <u>ret[i]</u>);
```

```
cudaFree(ret);
return 0;
```


__device__ __managed__ int ret[1000];

```
__global__ void AplusB(int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}
```

int main() {

```
AplusB<<<< 1, 1000 >>>(10, 100);
cudaDeviceSynchronize();
```

```
for(int i=0; i<1000; i++)
    printf("%d: A+B = %d\n", i, ret[i]);</pre>
```

return 0;

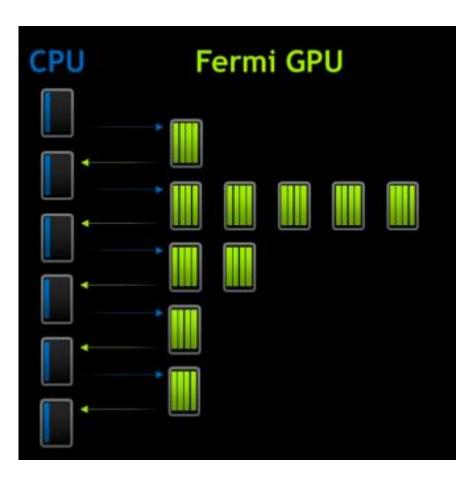
Final Notes About Unified Memory

- Coherence is ahead of performance in runtime implementation. Data has to be coherent across CPUs and GPUs in the system.
- Page faulting is implemented in systems with compute capability 6.x and up →cudaMallocManaged will not run out of memory as long as there is enough system memory available for the allocation.
- Before that, all managed data must move to the GPU before kernel launch (automatically of course) → Devices of compute capability lower than 6.x cannot allocate more managed memory than the physical size of GPU memory

Dynamic Parallelism

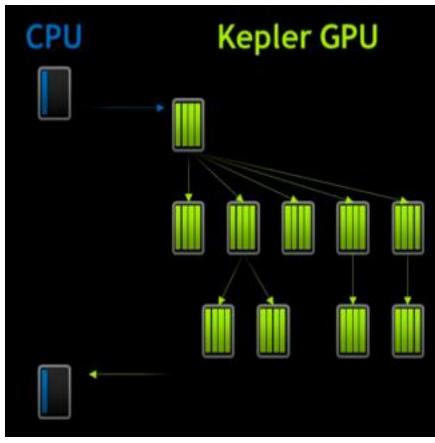
The Usual case

- Data travels back and forth between the CPU and GPU many times.
- Reason: because of the inability of the GPU to create more work on itself depending on the data.



With Dynamic Parallelism:

- GPU can generate work on itself without involvement of CPU.
- Permits Dynamic Run time decisions.
- Kernels can start new kernels
- Streams can spawn new streams.



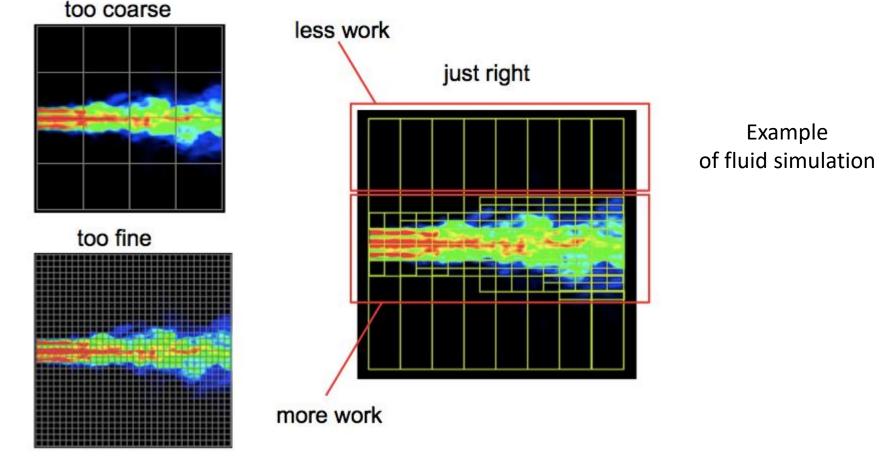
CUDA 5.0 and later on devices of Compute Capability 3.5 or higher

```
global ChildKernel(void* data) {
    //Operate on data
  global ParentKernel(void *data) {
    if (threadIdx.x == 0) {
        ChildKernel<<<1, 32>>>(data);
        cudaThreadSynchronize();
    }
      syncthreads();
    //Operate on data
// In Host Code
ParentKernel<<<8, 32>>>(data);
```

A kernel can call another kernel that calls another kernel up to 24 nested ... Subject to the availability of resources.

When do we need that?

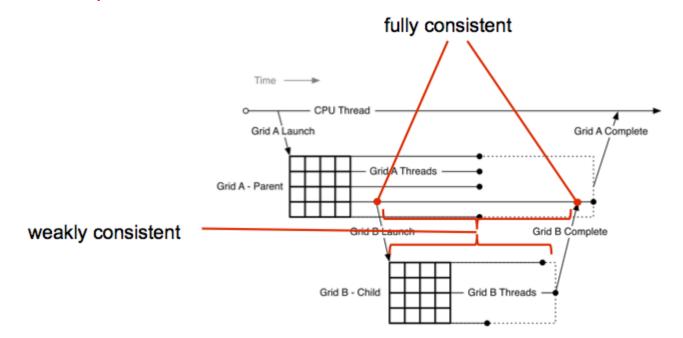
- Nested for-loop for example
- The need for adaptive grids



Source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/

- As in the host, device kernel launch is asynchronous.
- Successful execution of a kernel launch means that the kernel is queued;
 - it may begin executing immediately,
 - or it may execute later when resources become available.
- Note that every thread that encounters a kernel launch executes it. So be careful!
- Child grids always complete before the parent grids that launch them, even if there is no explicit synchronization.

• The CUDA Device Runtime guarantees that parent and child grids have a fully consistent view of global memory when the child starts and ends.



Source: http://devblogs.nvidia.com/parallelforall/cuda-dynamic-parallelism-api-principles/

- By default, grids launched within a thread block are executed sequentially.
- This happens even if grids are launched by different threads within the block.
- To deal with this drawback \rightarrow streams
- streams created on the host cannot be used on the device.
- Streams created in a block can be used by all threads in that block.

cudaStream_t s;

cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

- If the parent kernel needs results computed by the child kernel to do its own work → it must ensure that the child grid has finished execution before continuing
 - by explicitly synchronizing using cudaDeviceSynchronize(void).
 - This function waits for completion of all grids previously launched by the thread block from which it has been called.

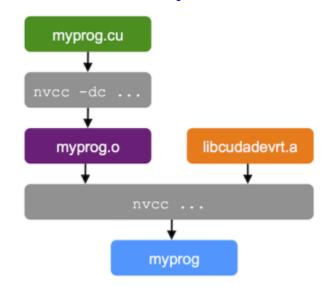
Example

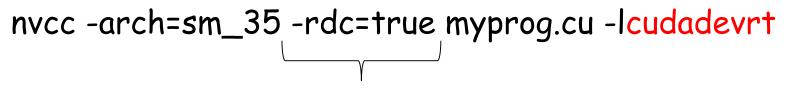
void threadBlockDeviceSynchronize(void) To ensure all launches ____syncthreads(); have been made. if(threadIdx.x == 0) cudaDeviceSynchronize(); _syncthreads();

What do we gain?

- Reduction in trips to CPU
- Recursion
- More freedom where data generated by the kernel decides how to partition the data for lower-level of the hierarchy.

How to Compile and Link?

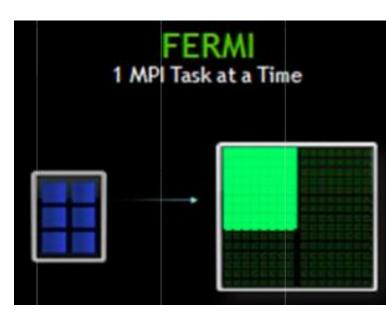




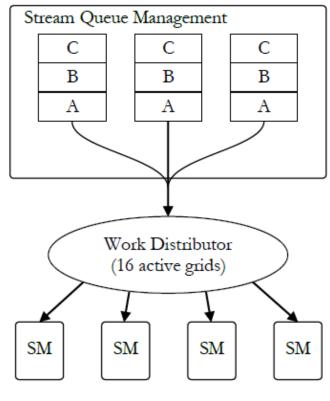
generate relocatable device code, required for later linking

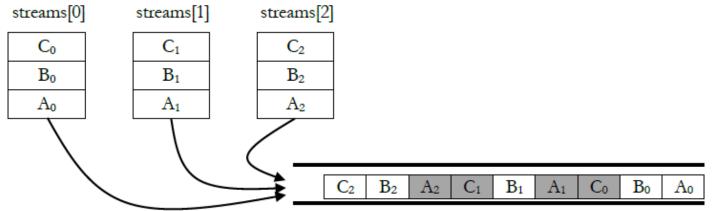
Till Fermi

- Only one work queue
- Even though Fermi allows 16 concurrent kernels.
- GPU resources not fully utilized



Fermi already supported 16 way concurrency of kernel launches from separate streams Pending work is bottlenecked on 1 work queue. GPU's computational resources not being utilized fully.



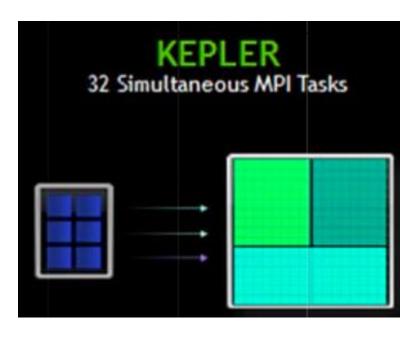


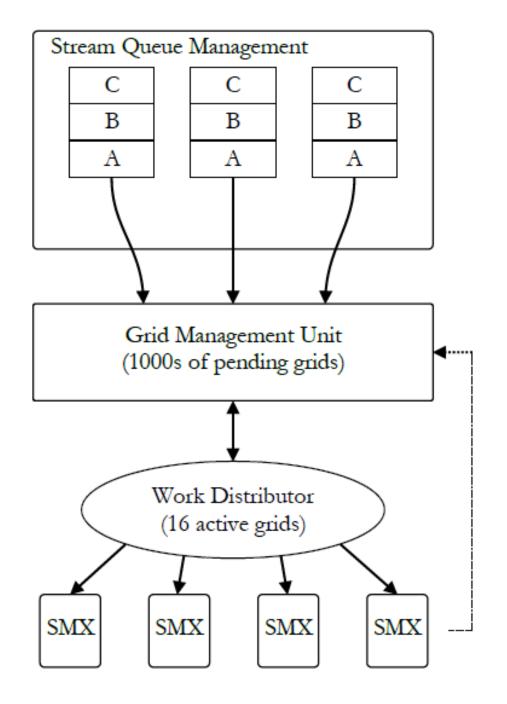
Hardware Work Queue

With Hyper-Q

- Starting with Kepler
- We can have connection from multiple CUDA streams, Message Passing Interface (MPI) processes, or multiple threads of the same process.
 - 32 concurrent work queues, can receive work from 32 process cores at the same time.
 - 3X Performance increase on Fermi

With Hyper-Q





Conclusions

- There are many performance enhancement techniques in our arsenal:
 - Alignment
 - Streams
 - Pinned pages
 - Asynchronous execution
 - Dynamic Parallelism
 - Multi-GPU
- There are tools to help you!