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Optimization of Generalized Unary Coding 

Rakshitha Ravula 

 

Abstract In this paper, an optimum version of the recently advanced generalized unary coding 

[9] is proposed.   In this method, the block of 1’s that identifies the number is allowed to be 

broken up which extends the count. The result is established by a theorem. The number count 

is now n(n-k-1) +1 rather than the previously described (n-k)2-1. 

1. Introduction 

Unary coding is found in the representation of information in biological systems as in the 

keeping of time in birdsong [1],[2]. It has also been used applications not only to computer 

arithmetic [3], neural network training [4], [5] and other coding applications (e.g. [6]).  The 

history of unary coding goes back to the beginning of writing [7],[8].  

 

The main shortcoming of the unary code is its relative inefficiency in representing number 

count. Recently, a generalized version of the standard unary code was proposed [9] in which 

instead of a count of n numbers using a n-bit code, the counting was extended to (n-k)2-1, 

where the number is represented by a string k 1s in the block. In this paper, we present a 

variant of this generalized coding scheme which extends the count to n(n-k-1) +1. 

 

2. Generalizations of unary coding 

The generalization of unary coding [9] may be done in a variety of manner depending on how 

the 1s are used in relation to the 0s. 

I. Increasing k 

Increase k until k=n, where n is the size of the block. Table 1 presents the example of n=4 and 

the resulting count: 

Table 1. Increasing k  

n Code 

0 0000 

1 0001 

2 0010 

3 0100 

4 1000 

5 0011 

6 0110 

7 1100 

8 0111 

9 1110 
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10 1111 
 

The total count for n bits is 0 to n(n+1)/2. Here n=4, total count is from 0 to 10. The first cycle 

will count to n, the second to n−1, and so on. The total, therefore, is n + (n − 1) + (n − 2)+・ ・ 

・+(n − n + 1) = n2 − (1 + 2 + 3+・ ・ ・+n − 1) =n(n + 1) − n(n + 1)/2 = n(n + 1)/2. 

II.  Fixed k 

Here k is fixed and after the k+1 digits, the extra digits are marked by a 1 that is separated from 

the basic set of k 1s. The separation is first 1 unit, and then it is successively increased. Table 2 

illustrates this for n=7 and k=3. 

Table 2.  Fixed k 

n Code 

0 0000000 

1 0000111 

2 0001110 

3 0011100 

4 0111000 

5 1110000 

6 0010111 

7 0101110 

8 1011100 

9 0111001 

10 1110010 

11 0100111 

12 1001110 

13 0011101 

14 0111010 

15 1110100 

 

In the fixed k method for n bits where the additional cycles are marked by a distance of 1 and 

more in succession, the total count is 0 through (n-k)2-1. The count is n − k+1 in the first cycle 

and each of the subsequent cycles. The total number of cycles possible is n − k − 1. Therefore, 

the total count is (n − k + 1)(n − k − 1) = (n − k)2 − 1. 

Here for n=7, k=3 total count is from 0 to 0 to 15. 

3. Proposed Method 

Here k is fixed and for every value of s a bit is moved towards left. n is the total number of bits 

including k 1’s. For every cycle i.e. after every (s-1) digits starting from s=2, a 1 is appended to n 
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and this is separated from the basic k 1’s by a zero. For additional cycles the number of zeros 

between the appended 1 and basic set k 1’s is increased by 1.  

Here is an example for n=8, k=3 

Table 3: Fixed K moving 1 bit at a time 

n Code 

0 00000000 

1 00000111 

2 00001110 

3 00011100 

4 00111000 

5 01110000 

6 11100000 

7 11000001 

8 10000011 

9 00010111 

10 00101110 

11 01011100 

12 10111000 

13 01110001 

14 11100010 

15 11000101 

16 10001011 

17 00100111 

18 01001110 

19 10011100 

20 00111001 

21 01110010 

22 11100100 

23 11001001 

24 10010011 

25 01000111 

26 10001110 

27 00011101 

28 00111010 

29 01110100 

30 11101000 

31 11010001 

32 10100011 

33 10000111 
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Theorem: In fixed k method moving 1 bit each time for n bits, the total count is 0 through n(n-k-

1) +1. 

Proof: There are k 1s in the n bit long sequence and hence there are (n-k) 0s. The unique 

sequences that are formed without considering the shifts are (n-k-1). Therefore, the total count 

in this process will be n(n-k-1) because each of these can be shifted n times. The last count will 

be the termination of the process. Hence, total count is from 0 to n(n-k-1)+1. 

4. Algorithm for Coding and Decoding 

We now present methods for coding and decoding of the proposed scheme. 

Coding: 

i. Inputs given n, k. Calculate n-1 

ii. For s=0, n=00000000 (always). For n=1, append basic set of k 1’s to the right. 

iii. Shift each bit left for every increase in s value. This cycle repeats for every (n-1) times.  

iv. After s= 2n+1, the number of 0’s between the appended 1 and basic set of k 1’s is 

incremented. 

v. This process continues till the final count is n(n-k-1) +1. 

Decoding: 

i. Calculate n, k. 

ii. P denotes the multiple of n. P= {1, ….  , (n- k)}. 

iii. For every s=Pn+1, the number of 0’s between the appended 1 and basic set of k 1’s is 

incremented. 

Here consider an example n=8, k=4. To calculate 13: 

i. Find 1,9, 17,25 

ii. 13 lies between 9 and 17. 

iii. 13-9=4, so move first 4 bits to right and keep the rest of the bits as it is. 

 

5. Analysis of different cases with fixed k: k=3, n=8, n1=1 

We now present results on the distance between different codewords which could be relevant 

in error situations. The distance function varies in a zig-zag manner for both the previous 

scheme as well as the new scheme proposed by us as shown by Figure 1. 
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Fig 1. Fixed k, on X axis: N2; on Y-axis: Distance between n1 and n2 

 

From the graph we observe the proposed scheme in this paper is more efficient as it has higher 

count than the previous method. The count in the first method is (n-k)2-1 and the count in the 

second method is n(n-k-1)+1. For fixed k=3 and varying values of n the variation in the count is 

represented clearly in the graph below: 
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Fig 2: Graphical representation of count for varying n values and fixed k 

 

6. Conclusions 

An optimum version of the recently advanced generalized unary coding is proposed which 

extends the capacity to count beyond the result of the previous method.   In this method, the 

block of 1’s that identifies the number is allowed to be broken up which extends the count. The 

result is established by a theorem. The number count is increased to n(n-k-1) +1 rather than the 

previously described (n-k)2-1. 
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